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1. Introduction

Ranking is a popular topic of recommendation system. One fundamental problem is
ranking inference. Given user preference information, ranking inference aims to decide
the list of the K most popular items. The essential part of ranking inference problem is
how to utilize input information and draw the optimal ranking decision. Papers in various
areas including machine learning, approximation algorithms, and operations research study
ranking design from different angles (Ailon et al. [2005],Radlinski et al. [2008],Derakhshan
et al. [2018]). The ideal preference information is supposed to incorporate comparison
results between any two items, but we very often face more complicated situations: only
partial preference information is available. For example, users browse videos on YouTube.
They only click a couple of attractive videos and provide no data to less interesting ones.
Therefore, YouTube can not get access to the full preference information. Ranking agents
can also have different objectives. In the e-commerce context, rather than directly inferring
ranking sequence by popularity, online retailers focus on objectives like maximizing click
through rate, maximizing revenue, etc.

In this report, we analyze some cutting-edge ranking methods which build on differ-
ent information structures and model assumptions, especially those with approximation
algorithm approaches. The presentation is intended for dissemination of new ideas from
the theory of ranking aimed at a business audience. Our report is organized as follows. In
section 2, we discuss the case where ranking agents have full access to user preference infor-
mation. In section 3, we introduce the partial preference information case with additional
choice mechanisms. In section 4, we extend the discussion to online learning algorithms
without historical data. We conclude in section 5.

2. Full Preference Information

In this section, we introduce a stream of literature which assumes that each user submits
the full ranking preference in input information. Suppose there are three items A,B, and



C. The full preference information consists of ranking sequence of each individual with
form, A � B � C.

2.1. Definition of Problems

Several closely related problems are studied in the paper Ailon et al. [2005]. An algo-
rithm is given and then analyzed for each problem type whereby approximation results are
obtained. We state the problems below with the convention that V = {1, . . . , n}:

Definition 2.1 (Fas-Tournament:).
Input: A tournament represented as a digraph G = (V,A) with the property that either

(i, j) ∈ A or (j, i) ∈ A for all distinct i, j ∈ V .
Output: A permutation π on V minimizing the number of pairs i, j with i <π j and

(j, i) ∈ A. We call such pairs backward edges with respect to the permutation π.

Definition 2.2 (Rank-Aggregation).
Input: A list of k permutations (viewed as rankings) π1, . . . , πk on V .
Output: A permutation π minimizing the sum of distances:

k∑
i=1

d(π, πi) (1)

where d(π, ρ) is the number of i, j pairs such that i <π j but j <ρ i. This is known as the
Kemeny distance.

As mentioned in the introduction, aggregating ranking information is an important
theoretical and applied problem. Several “real world” examples have been considered from
a more theoretical stand point. These include voting, social choice theory, high-dimensional
data mining and combining of micro-array databases. The latter two problems have been
tackled by consensus or ensemble clustering and were studied in detail in Filkov & Skiena
[2004] and Strehl & Ghosh [2003]. In Ailon et al. [2005] another closely related problem is
given which captures the clustering studied in the aforementioned references.

Definition 2.3 (Consensus-Clustering). Input: A list of k different clusterings C1, . . . , Ck
of V . Output: One clustering C that minimizes

k∑
i=1

d(C, Ci) (2)

where the distance between two clusterings is the number of {i, j : i 6= j} ⊂ V that are
clustered together by one and separated by the other.

One last closely related notion of clustering presented as a computational problem is
the following:
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Definition 2.4 (Correlation-Clustering). Input: A relation R : {{i, j} : i, j ∈ V } →
{⊕,	}. Output: m disjoint clusters C1, . . . , Cm covering V and minimizing the number of
disagreement pairs. A disagreement pair here means a ⊕ labeled pair ending up in different
clusters, or a 	 pair ending up in the same cluster.

We do not present analyses of Definition 2.3 or Definition 2.4 here, but do note that
these problems are approximated in Ailon et al. [2005] utilizing and extension of the primary
algorithm presented in the next subsection.

2.2. Pivoting Algorithm

Let G = (V,A) be an instance of Fas-Tournament, Definition 2.1.

Algorithm 1: Fas-Pivot(G = (V,A))

Set VL → ∅, VR → ∅.
Pick random pivot i ∈ V .
for j ∈ V \{i} do

if (j, i) ∈ A then
Add j to VL (placing j on the left side);

end
else if (i, j) ∈ A then

Add j to VR (placing j on the right side);
end
Let GL = (VL, AL) be the tournament induced by VL.
Let GR = (VR, AR) be the tournament induced by VR.
Return Fas-Pivot(GL), i, Fas-Pivot(GR).

end

Theorem 2.5. The algorithm Fas-Pivot is a randomized expected 3-approximation algo-
rithm for Fas-Tournament.

The proof of this theorem relies on the observation that an edge (i, j) ∈ A becomes a
“backward” edge precisely when there is a third vertex k such that (i, j, k) form a directed
triangle in G and k was chosen as a pivot when all three were input to the same recursive
call. In short, the pivot step would then have i to its right and j to its left thus making
(i, j) a backward edge.

The analysis then follows by first considering the set T of all directed triangles and then
writing the cost of the algorithm in terms of a sum over this set. By writing the following
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linear programming problem :

minimize
∑
e∈A

xe (3)

subject to xe1 + xe2 + xe3 ≥ 1 (4)

{e1, ε2, e3} ∈ T (5)

xe ≥ 0. (6)

This LP lower bounds COPT and since a packing of triangles {βt} is a feasible solution it
is also a lower bound on the optimal.

Lastly, such a packing is demonstrated using a probabilistic argument and the events
At := one of the vertices of triangle t is chosen as a pivot when all three vertices are part
of the same recursive call.

2.3. Weighted Tournaments And Rank Aggregation

Somewhat remarkably, the following strategy can be proven as a good approximation
algorithm in many cases for the weighted version of Fas-Tournament, Definition 2.1.
Given an instance Gw = (V,Aw) with weights defined in the obvious way, construct the
unweighted majority tournament Gw = (V,Aw) and return Fas-Pivot(Gw). Several re-
sults are then shown, the most important of which for our purposes are the following:

Lemma 2.6. For an optimal (w.r.t. Fas-Tournament) permutation π∗, let c∗(e) denote
the cost incurred by e so that COPT =

∑
e∈Aw

c∗(e).
If the weights satisfy the “probability constraints” wij +wji = 1, then w(t) ≤ 5c∗(t) for

all t ∈ T , and if the weights satisfy the “triangle inequality” constraints wij ≤ wik + wkj
then w(t) ≤ 3c∗(t) for all t ∈ T .

This lemma allows us to prove approximation guarantees for Fas-Pivot on Rank-
Aggregation summarized in the following theorem:

Theorem 2.7. The best of Fas-Pivot on Gw and selecting a random permutation uni-
formly at random is an expected 11/7 approximation for Rank-Aggregation, Defini-
tion 2.2.

3. Partial Preference Information

Ranking aggregation assumes the unique optimal ranking which minimizes disagree-
ments under contradictory information. However, there are three limitations about the
above setting. First, ranking preferences are stochastic. The assumption that users have
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uniform and deterministic ranking preferences can be relaxed to a general setting where het-
erogeneous users make random decisions following some probability distribution. Second,
the underlying intent mechanism is known. The mechanism provides additional informa-
tion to infer the best ranking. In this sense, partial preference information could provide
enough support in the ranking design phase. Third, objectives are various. Instead of
simply ranking items according to relevance or popularity, different measures occur ac-
cording to various objectives. For example, there is strong empirical evidence that on the
e-commerce page, ranking positions affect clicks and ultimately, demand. Smart ranking
design can affect choice behavior, such as click and purchase decisions on online platforms,
therefore improve the total revenue. This leads to a new stream of literature, display
optimization.

3.1. Definition of Problems

Position-based ranking model has been well-studied in literature varying among differ-
ent assumptions and approaches. A recent paper Ferreira et al. [2019] studies how online
platforms rank items to maximize the total impressed users, defined as people who click
at least one item. Define user (indexed by t) type as (pt, kt), where pt is the vector of
intrinsic click probabilities, kt is the attention window. Define the ranking sequence as the
function π : [n]→ [n] mapping from product to position.

Definition 3.1 (Impressed-User).
Define the event that user t is ”impressed” as

Ht(π) =

{
1 if

∑
i∈[n]Cit(π) ≥ 1

0 if
∑

i∈[n]Cit(π) = 0
,

where Cit is a binary random variable indicating if item i is clicked or not.

It is based on the setting that each user has individual preference and attention window,
where they will continue browsing if at least one item interests them within attention
window. Therefore, the objective is:

max
π1,π2,...,πT

E

[
T∑
t=1

Ht(πt)

]
,

The decision variables are ranking sequences πt for each arriving user. This paper shows
that in the offline setting where the user type distribution is known, this problem is NP-
Hard. It is proved by constructing a special case and showing that the special case is
equivalent to a stochastic version of the maximum coverage problem.
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3.2. OffAR Algorithm

To address the above problem, this paper develops a greedy algorithm achieving 1
2

approximation factor.

Algorithm 2: Greedy Algorithm for OffAR

Initialize null ranking πg(i) = ∅ for all 1 ≤ i ≤ n, and initialize unranked items
U = [n].

for r ← 0 to n do
for i ∈ U do

Let π̃g ← πg;
π̃g(i)← r;
∆ir = Et∼D[Ht(π̃

g)−Ht(π
g)];

end
Let i∗r = argmaxi∈U∆ir;
Set πg(i+ r∗)← r;
U ← U\{i∗r}.

end

Theorem 3.2. The algorithm OffAR is a randomized expected 1
2 -approximation algorithm

for Impressed-User Ranking.

The intuition of OffAR algorithm is straightforward. OffAR ranks items from top
positions to low positions. At each update, it places the product which has the largest
attraction increment to the current position. The proof idea is similar to vertex cover
problem. It estabishes a relationship between the optimal ranking π∗ and the algorithm
ranking πg and prove the bound on the ratio of Ht(π

∗) to Ht(π
g).

Furthermore, under pairwise independent assumptions, the greedy algorithm achieves
a (1 − 1

e )-approximation factor. The key part of the proof states that this problem is
a special case of stochastic submodular optimization problem. Badanidiyuru & Vondrák
[2014] gives a (1 − 1

e − ε)-approximation for maximizing monotone stochastic submodu-
lar optimization functions. Derakhshan et al. [2018] considers different choice structure:
two-stage sequential search model. This model is derived by Weitzman [1979]. Through
characterizing the optimal strategy, it shows that ranking items in decreasing order of their
preference weights does not necessarily maximize market share or user utility. Since the
original problems are NP-complete, they design a PTSA algorithm, w-ordered algorithm,
which achieves a multiplicative approximation factor of 1

2 and an additive factor of 0.1716.
The PTSA algorithm includes a DP-based approach.

4. Online Ranking

In practice, preference information is not available at the beginning. User data is
collected while conducting the algorithm. Motivated by real-world examples in recommen-
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dation systems, web search, etc., some recent work studies learn-to-rank algorithms, i.e.
underlying mechanism is known whereas parameters are unknown. A popular approach is
the classic reinforcement leaning method, multi-armed bandit (MAB). MAB demonstrates
the exploration-exploitation tradeoff, allocating the limited resources under unknown en-
vironment.

Ferreira et al. [2019] proposes online algorithms to offer the ranking for users, balancing
popularity and diversity. The theoretical bounds provide the performance ratio 1

2+α with

probability 1−δ and the regret is bounded byO(nT 2/3(log1+α(T ))1/3 log(T )). The learning-
to-rank problem studies how to learn rank web documents while learning Radlinski et al.
[2008]. Instead of assuming that the relevance of one document is independent of other
documents, this paper argues that the usefulness and relevance of a document does depend
on other documents ranked higher, therefore clicks are dependent among documents. They
consider the measure, regrets minimization, where the goal is to minimize the total number
of poor rankings displayed over all time. Based on the regret measure, two algorithms
are proposed to directly minimize the abandonment rate, where low abandonment rate
implies high relevance and better ranking decision. These two algorithms achieve (1− 1

e )-
approximation ratio and rather good practical performance. Kveton et al. [2015] modifies
the upper confidence bound algorithm and proposes the cascading bandits algorithm, UCB-
cascade, assuming user behavior follows cascade model.

5. Conclusion

Ranking has proven to be an interesting problem from the perspectives of both theo-
retical computer science and applied computer science. Progress has been made from both
of these perspectives and in both cases optimal results have been proven. One promising
aspect of ranking (both on the theory side and applied side of things) is the flexibility in
the models. For instance, in Ailon et al. [2005] 5 models are discussed all of which follow
the same general ”full information inference” paradigm. When we consider that each of
these models can be adapted to a weighted setting, it becomes clear that ranking is a
general problem which can be modified slightly leading to new questions. In Ferreira et al.
[2019] online ranking is discussed which is another promising area – especially in terms of
applications as web based platforms (such as YouTube or Amazon) are constantly utilizing
ranking in this setting. Kveton et al. [2015] does a good job of “combining” the theory
and applied side of things by introducing the cascading bandits algorithm which has both
practical applications and is interesting as a potential approach to the theoretical multi-
armed bandit problem. Regardless of perspective, ranking as a whole is both a challenging
(and fun) theoretical problem to consider as well as an idea that has countless real world
applications in many different disciplines.
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