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1 Introduction to Bergman Spaces

Definition 1. We call the set D = {z ∈ C : |z| < 1} the disk, and we define the
Bergman space Ap(D) = Lp(D)∩O(D) where Lp is the usual Lebesgue space, on
the disk and O is the set of all functions holomorphic (analytic) in the disk.

The Bergman space is equipped with the Lp function norm, that is

‖f‖ =

[ ∫
D
|f(z)|pdA

] 1
p

where dA is the standard area measure. One of the interesting properties of the
Bergman spaces is that they come equipped with a reproducing kernel function.
This function is discussed in detail below. For further details see the books [3]
or [4]. The space A2 is equipped with an inner product given by:

〈f, g〉 =

∫
D
f(z)g(z)dA.

Furthermore, there is a function K(z, w) on D×D with the reproducing property
that:

f(z) =

∫
D
f(w)K(z, w)dA(w)

where z is some element of D. We then call this function K the kernel of
A2 denoted Bλ(z, w) where λ is some weight function introduced into the inner
product.

2 The Theorem’s of Rouche and Montel

Informally, Montels theorem tells us that any uniformly bounded family of holo-
morphic functions defined on an open subset of the complex plane, C is normal.
Here, normal means that the functions have a certain amount of robustness to
them, a notion made precise in the following:
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Definition 2 (Normal Family). A set F of continuous functions f defined on a
complete metric space X with range Y , another complete metric space is called
normal if every sequence of functions in F contains a subsequence uniformly
converging on compact sets to a continuous function g from X to Y . Formally,
for arbitrary sequences of functions in F , there is a subsequence {fn(x)}∞n and
a continuous function g(x) from X to Y such that the following holds for every
compact subset K contained in X:

lim
n→∞

sup
x∈K

d(fn(x), f(x)) = 0.

Rouche’s theorem is useful in that it tells us where zeroes occur (up to some
region) in analytic functions. While it is almost a direct result of the argument
principle, it is powerful in that the hypotheses are easily met and are present in
many applications.

Theorem 1 (Rouche’s theorem). Let C denote a simple closed contour, and
suppose that
(i) two functions f(z) and g(z) are analytic both on C, and inside the region
contained within C,
(ii) |f(z)| > |g(z)| at each z0 ∈ C. Then f(z) and f(z) + g(z) have the same
number of zeroes (including multiplicities) inside the region defined by C.

For a proof of Rouche’s theorem, see [2].

3 Results

3.1 Determining Valid ’A’ for Which the Bergman Kernel Bλ(z, w)
Has Zeroes

We set out to find the range of values A for which the weighted Bergman Kernel,
Bλ(z, w) has zeroes for weights λ of the form:

λ(r) =

{
A+ 1, 0 ≤ r ≤ 1

4

1, 1
4 < r ≤ 1

.

In order to accomplish this, I adapt the proof in [1] which showed that for A
= 17, the corresponding Bergman Kernel does indeed contain a zero in D× D.
The proof essentially has 3 components once the proper arrangement of the
kernels terms are given, notice that:
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(1− zw̄)2Bλ(z, w) = (1− zw̄)
2
∞∑
k=0

αk(zw̄)
k

= α0 + α1(zw̄)− 2α0(zw̄) +

∞∑
k=2

(αk − 2αk−1 + αk−2)(zw̄)k

(where αk =
1

2π
∫ 1

0
r2k+1λ(r)dr

=
16k+1(2k + 2)

(2 ∗ π)(16k+1 +A)
)

which we then define to be L(t)+S(t) for linear part, and sum part respectively.

The problem then becomes to find suitable A for which L(t) has zeroes,
then show that for values of |t| = 1, L(t) > S(t) and lastly use Rouch’s theorem
to conclude that Bλ(z, w) has zeroes.

Since we have:

max
|t|=1−ε

|S(t)| <
∞∑
k=2

|αk − 2αk−1 + αk−2|

we need only show that

min
|t|=1−ε

|L(t)| >
∞∑
k=2

|αk − 2αk−1 + αk−2|

for ε smaller than some value.
Just as was done in [1], we show that αk − αk−1 < αk−1 − αk−2 at least

for k ≥ 2 allowing us to recognize the series as telescoping. I have shown that
αk − αk−1 < αk−1 − αk−2 holds by considering

(αk − αk−1)
(16k−1 +A)

(16k−1 +A)
(1)

and

(αk−1 − αk−2)
(16k+1 +A)

(16k+1 +A)
(2)

leaving us with common denominators, making the proof of the inequality easier.
Now, the numerator of (1) is (A× 16k−1)(2× 16k+2 + 2× 162 × 15k+ 2× 16×
15k × A+ 162 × 2× A) when we get rid of terms shared by (2). Similarly, the
numerator of (2) is (A×16k−1)(2×16k + 2×16k+1×15k+ 2×15k×A+ 2×A)
when we remove terms found exactly in (1). By comparing numerators, we see
(2) dominates (1) for sufficiently large k. Also, there can be values of k where
the two equations are equal, so for all k greater than or equal to the maximum
of these points of incidence we have our desired inequality. By setting (2) equal
to (1) with k = 2 we find that A = 3328

47 is our maximal value on A, that is
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the point at which (2) becomes less than or equal to (1) for k = 2. Clearly for
positive A < 3328

47 , our inequality holds for k ≥ 2. Since αk−αk−1 < αk−1−αk−2
the series is telescoping, converging to

α1 − α0 − lim
k→∞

(αk − αk−1) = (α1 − α0)− 2.

Note that our limit is independent of A relying only on the value of 1
4 and k.

Since
min
|t|=1−ε

|L(t)| = (α1 − 3α0)− ε(α1 − 2α0)

we need to show that
−2α0 − ε(α1 − 2α0) > −2

which holds true for A > 16− ε/4.
Lastly we show that L(t) has zeroes for t ∈ D. Consider

α0 + (α1 − 2α0)t =
16(2)

16 +A
+ (

162(4)

162 +A
− 4(16)

16 +A
)t

which when set equal to 0 tells us that

t =
−256−A

30A

which has |t| < 1 for A > 256/29. Then only for A ∈ [16, 3328/47] the Bergman
Kernel Bλ(z, w) has a zero in D×D, as these values of A permit a zero of L(t) in
|t| < 1− ε and |L(t)| > |S(t)| on |t| = 1− ε when ε is chosen to be small enough.
Rouch’s theorem allows us to conclude that L(t) + S(t) = (1 − zw̄)2Bλ(z, w)
has a zero in D× D since (1− zw̄)2 doesn’t vanish here.

4 Computational Results

Definition 3 (truncation). Given a Bergman kernel function Bλ(z, w) =

∞∑
n=0

αn(zw̄)n

we call the Kth degree polynomial

K∑
n=0

αn(zw̄)n the K−truncation of the kernel

function. We denote the K−truncation of Bλ(z, w) as |K|Bλ(z, w).

Using the sage mathematical software, I have developed a program which
allows us to determine whether or not a Bergman kernel (corresponding to a
given weight λ(r)) has a zero within the disk for its K-truncation. The program
takes as input a given weight, and a range of values K for which to calculate
the minimum modulus |t0| where t0 = z0w̄0 at which |K|Bλ(z0, w0) = 0.

These results are then output as two columns, with the value for K on
the left, and the real number modulus of t0 on the right. These findings have
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allowed me to verify that for very high values of K my bounds on A hold. In
addition to this, I have output tables of ”minimum moduli” corresponding to a
wide range of truncation levels for several ”interesting” weights. This program
while allowing me to verify my results was initially inspired by the question
posed below of what happens to our kernel when the value for 1

4 is changed.

4.1 Determining the Usefulness of Obtained Computational Results

In this section we set out to prove one key point which tells us that the above
computations allow us to answer questions related to actual Bergman kernels,
and not just their approximations.

Lemma 1. Given a Bergman kernel Bλ(z, w) which doesn’t have zeroes inside
the disk, there exists a natural number K0 such that for all K > K0 the function
|K|Bλ(z, w) will have zeroes only when |t| > 1 where t = zw̄.

Proof. Assume there exists a sequence {an} where an ∈ D which converges to
a ∈ D. Also, assume that for each an there is a kn−truncation of Bλ(z, w)
which vanishes at t = an. In [4] it is shown that these truncations converge
uniformly on compact subsets using the Bergman Inequality. In every small
compact neighborhood E of a, with E ⊆ D, the truncations are almost 0 as
they vanish at nearby points (the an’s) within the neighborhood. By the uniform
convergence of the truncations to a in E we can make Bλ(z, w) as small as we
wish in E and thus conclude that Bλ(z, w) must vanish somewhere inside of
D× D.

5 Direction for Future Work

One of the main goals of this theory is determining kernel functions which van-
ish inside of the disk. In this case, I have shown that for a specific class of kernel
functions (depending on A) we have vanishing points inside of the disk. This
attempt can be furthered in two directions:
First, find out what values of q where q was 1

4 in the original theorem allow us
to still have vanishing points inside of D, and find a relationship between this
value of q and what we called A above.
Secondly, one could pursue the route of adding more ”levels” to our weight.
That is, instead of having our weight be defined in two pieces, determine what
happens when we have a weight consisting of more than just two piecewise de-
fined sections.

The last ongoing attempts at answering this question of ”which weights λ(r)
provide us with kernel functions having zeroes inside of the disk” consist of
outputting large tables using the computational methodology described and use
these results as evidence that one weight function or another vanishes inside of
the disk.
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