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We use computer simulations and an analytical model to study the relationship
between kinematics and performance in jet-propelled jellyfish swimming. We prescribe
different power-law kinematics for the bell contraction and expansion, and identify
kinematics that yield high swimming speeds and/or high efficiency. In the simulations,
high efficiency is found when the bell radius is a nearly linear function of time, and
in a second case corresponding to ‘burst-and-coast’ kinematics. The analytical model
studies the contraction phase only, and finds that the efficiency-optimizing bell radius
as a function of time transitions from nearly linear (similar to the numerics) for
small-to-moderate output power to exponentially decaying for large output power.
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1. Introduction
Jet-propelled swimming is a common mode of aquatic locomotion, performed by

jellyfish, squids and octopuses. On the power stroke, a muscular cavity contracts,
ejecting water in one direction and propelling the body in the opposite direction. On
the recovery stroke, the cavity reopens, refilling with water to prepare for the next
stroke. This mode of swimming is thought to be less efficient than oscillatory and
undulatory modes of fish swimming (Daniel 1985; O’Dor & Webber 1991; Anderson
& Demont 2000). Biologists and biomechanicians have argued that to obtain a given
increase in momentum, a swimmer does less work by accelerating a large mass of
fluid by a small velocity increment than a small mass of fluid by a large velocity
increment (O’Dor & Webber 1991; Vogel & Davis 2000; Alexander 2003; Biewener
2003). Body-caudal-fin modes of fish swimming are generally considered to be similar
to the former approach, while jet propulsion is more similar to the latter.

Biologists have long been interested in the muscular structure and mechanics of
the jellyfish bell (Romanes 1876; Gladfelter 1973; Daniel 1983; DeMont & Gosline
1988a; Satterlie 2002). DeMont & Gosline (1988b) measured the elastic constants
of jellyfish tissues, and used a simple mass–spring model to argue that the system
operates near the resonant frequencies of the immersed tissues. Both the jellyfish bell
and the squid mantle have radially oriented elastic fibres with a nonlinear stiffening
behaviour that is conjectured to be important for swimming efficiency (Gosline &
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DeMont 1985; Pabst 1996). Mechanical engineers and applied mathematicians have
analysed the fluid dynamics of vortex ring formation related to jellyfish locomotion
(Linden & Turner 2001; Dabiri, Colin & Costello 2006; Dabiri 2009). Recent
computational studies have used jellyfish geometry and motions recorded from
experiments to analyse the flows near jellyfish (Huang & Sung 2009; Mohseni &
Sahin 2009; Hamlet, Santhanakrishnan & Miller 2011). Wilson & Eldredge (2011)
studied the gain in propulsive efficiency from passive hinges in a jellyfish-like
swimmer using a viscous vortex-particle method. At zero Reynolds number, reciprocal
bell motions are not effective, but non-reciprocal jellyfish-like motions that yield net
locomotion have been found (Evans, Spagnolie & Lauga 2010; Spagnolie & Lauga
2010).

In Peng & Alben (2012) we simulated an axisymmetric bell-shaped swimmer using
a vortex-sheet method. We considered a one-parameter family of bell shapes which
ranged from prolate to oblate. The bell assumed a sequence of shapes from this
family periodically in time, and moved axially under fluid forces. The periodic shape
sequence was set by four parameters: the mean bell shape (ranging from prolate
to oblate), the stroke amplitude, the duty cycle (i.e. the ratio of the durations of
the contraction and expansion phases), and a ‘Strouhal number’ giving the length
of an idle state between the end of the expansion phase and beginning of the next
contraction phase. We found that in general, faster bell motions led to faster average
swimming speeds but with a higher cost of locomotion. Faster bell velocities resulted
from increases in the prolateness of the bell shapes, the stroke amplitude, and the
idle state duration (which resulted in faster motions during the non-idle state). For
an oblate swimmer, a minimal cost of locomotion was obtained with contraction
and expansion strokes of nearly equal duration. In that work we found qualitative
agreement between the the vorticity fields seen in the vortex-sheet method and
experimental studies (Franco et al. 2007; Dabiri et al. 2010), for both prolate and
oblate swimmers.

In this work we focus on prolate bell shapes, which swim predominantly by
expelling a strong jet of fluid. By contrast, the fluid dynamics of oblate swimmers
have elements of both jet propulsion and a reversed von Kármán wake typical of other
organisms (bony fishes, for example), which swim by flapping an appendage. Prolate
bell shapes, however, use jet propulsion more exclusively, by squeezing a strongly
confined volume of fluid during the power stroke. The kinematics of a prolate jellyfish
were described by Dabiri et al. (2006), and connections between jellyfish wakes and
foraging behaviour were made by Dabiri et al. (2010). McHenry & Jed (2003) used
a drag-coefficient model to show that over a certain range of body mass, prolate
swimmers achieve a higher speed than oblate swimmers, but with a higher cost of
locomotion.

Here we perform vortex-sheet simulations in which the bell shapes and kinematics
are determined by four parameters, different from those in Peng & Alben (2012), and
specifically chosen for swimming by jet propulsion. The bell radius is approximately
a power-law function of time. By varying the power law we vary the relationship
between the speed of contraction and the bell radius, and obtain a wide range
of contraction strokes. Varying the power law varies the degree to which the bell
is accelerating smaller or larger volumes of fluid as it contracts, and allows us to
quantify the effects on efficiency, which were discussed qualitatively in several studies
(O’Dor & Webber 1991; Vogel & Davis 2000; Alexander 2003; Biewener 2003). In
jet-propelled swimming, the recovery stroke is used to refill the bell, and has been
found to be subdominant to the power stroke in the total energy budget (DeMont &
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Gosline 1988b). We use the same set of power-law functions of time for the power
and recovery strokes, for simplicity, and study the effects on the speed and efficiency
of locomotion. In § 2 we present the vortex-sheet model, which is similar to that in
previous studies (Alben 2010b; Peng & Alben 2012). We then focus on power-law
kinematics in the vortex-sheet model, and determine the kinematics which lead to
fast and efficient swimming. In general speed and efficiency are inversely correlated,
and the most efficient strokes involve a nearly linear change of bell radius with time.
However, there are kinematics which achieve high speed with high efficiency. These
consist of a rapid decrease of bell radius near the end of contraction, and a slow
increase of bell radius at the beginning of expansion, so that the bell ‘coasts’ with
small profile drag.

In § 3, we develop an analytical model for the power stroke only, where a potential
flow representation is reasonable. We use the calculus of variations to optimize the
kinematics for efficiency, over the space of kinematics which are contracting on the
power stroke, but otherwise arbitrary. For optimal strokes giving small to moderate
thrust, the bell radius shrinks at nearly constant speed. For optimal strokes giving
large thrust, the bell radius shrinks exponentially more slowly near the end of the
contraction phase. These optimal strokes quantify the decrease in jet propulsion
efficiency due to an increase in the output power required for swimming. In § 4,
we give a brief comparison with a two-dimensional immersed-boundary simulation at
different Reynolds numbers, and find that although the basic propulsive mechanism
is the same, the vortex wake dynamics and body velocities change considerably in
this case. Section 5 presents the conclusions of the work and a brief comparison with
experimentally measured kinematics.

2. Computational study
2.1. Axisymmetric vortex-sheet model

Profiles of our axisymmetric (symmetric about the z-axis) bell-shaped swimmer are
shown in figure 1(a). The bell shape in the r–z plane is a curve of length one, with
tangent angle θ(s, t), a prescribed function of arclength s and time t. As s increases
from 0 to 1, the bell profile is traversed from the apex to the trailing edge in the r–z
plane. Denoting the axial position of the bell apex by Z(t), the position of the bell
ζ(s, t) in the r + iz complex plane is:

ζ(s, t)= iZ(t)+
∫ s

0
eiθ(s′,t) ds′. (2.1)

In this work, θ(s, t) is prescribed, and Z(t) arises as a balance between bell inertia and
integrated fluid forces on the bell in the axial direction, according to Newton’s second
law. We prescribe θ(s, t) in the form

θ(s, t)=−1.55(1− e−s/β(t)). (2.2)

The tangent angle is horizontal at the bell apex, s= 0. The prefactor −1.55 in (2.2) is
nearly −π/2, so the bell becomes nearly vertical for s� β(t). We chose a prefactor
near −π/2 to obtain a streamlined prolate shape, and we expect that other prefactors
near −π/2 would yield similar results. The single control parameter is β(t), which is
periodic in time (with period unity), and varies between a maximum value β0 and a
minimum value βm. Bell shapes for four values of β are shown in figure 1(a).

These bell shapes have axial extent greater than their radial extent. The shapes
model a class of jet-propelled swimmers which includes prolate jellyfish and squid
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FIGURE 1. Bell kinematics. (a) Bell shapes for four values of β: 0.2, 0.3, 0.4 and 0.5.
(b) Prescribed values of β versus time during the bell closing 0 6 t 6 t0 and opening
t0 6 t 6 1. For the closing, the concave-down curves are labelled γc,d, and the concave-up
curves are labelled γc,u. From top to bottom, the seven curves have power-law exponents
γc,d = 5, 3, 2, 1 and γc,u = 2, 3, 5. On the opening phase, the exponents are the same, but are
labelled o instead of c. (c) βs, values of β after Fourier filtering. (d) Values of bell radius
corresponding to βs. (e) Bell kinematics from a freely swimming N. pineata jellyfish, from
Peng & Alben (2012).

(Gosline & DeMont 1985). For these swimmers, fluid is ejected from the bell during
radial contractions, which propel the bell in the axial direction. Another class of bell
shapes, not considered in this work, are oblate, longer in the radial direction than in
the axial direction. In Peng & Alben (2012) we compared the propulsion of oblate and
prolate swimmers using a fluid dynamical model similar to that used here.

Our main interest in this work is understanding jet propulsion driven by radial
contractions. We focus on the effect of bell kinematics on bell speed and propulsive
efficiency. Figure 1(b) shows the range of bell kinematics we consider in terms of
β, which increases monotonically with the bell radius, as indicated by figure 1(a).
Figure 1(b) shows values of β over a period of motion, divided into two phases: a
closing phase during 0 6 t 6 t0, and an opening phase during t0 6 t 6 1. The closing
(or contraction) phase is also the power stroke, when fluid is ejected and the bell
accelerates. The opening (or expansion) phase is also the recovery stroke, when the
bell refills with fluid and decelerates. In each phase, we consider a range of kinematics
which are power-law functions of time. The choice of power law corresponds to
whether the bell radius changes most rapidly when the radius is large or small. In the
closing phase, the strokes which close most rapidly at the end of the power stroke
(when the bell is small) are given by

β(t)= β0 + (βm − β0)

(
t

t0

)γc,d

, γc,d > 1, 0 6 t 6 t0. (2.3)
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Here the exponent γc,d has two subscripts: c for ‘closing’ and d for ‘concave down’.
The corresponding β(t) plots are those in figure 1(b) which are concave down on
0 6 t 6 t0. The highest curve, with γc,d = 5, is labelled. The lower set of curves on
0 6 t 6 t0 are those which are concave up, with kinematics given by

β(t)= β0 + (βm − β0)

(
1−

(
1− t

t0

)γc,u)
, γc,u > 1, 0 6 t 6 t0. (2.4)

Here the subscripts on γc,u are c for ‘closing’ and u for ‘concave up’. These strokes
close most rapidly at the beginning of the power stroke, when the bell is large. The
lowest curve in figure 1(b) on 0 6 t 6 t0, with γc,u = 5, is labelled. At the interface
between these two types of kinematics is a straight-line trajectory given both by (2.3)
with γc,d = 1 and (2.4) with γc,u = 1.

The kinematics on the opening phase are described analogously, but with the
subscript o, for ‘opening’. Those which open most rapidly at large radii (at the
end of the recovery stroke) are concave up:

β(t)= βm + (β0 − βm)

(
t − t0

1− t0

)γo,u

, γo,u > 1, t0 6 t 6 1, (2.5)

and those which open most rapidly at small radii (at the beginning of the recovery
stroke) are concave down:

β(t)= βm + (β0 − βm)

(
1−

(
1− t − t0

1− t0

)γo,d
)
, γo,d > 1, t0 6 t 6 1. (2.6)

These curves are shown in figure 1(b) for t0 6 t 6 1.
We consider strokes which couple one of eleven closing strokes (the seven in

figure 1(b) plus four intermediate strokes: γc,d = 4, 3/2 and γc,u = 3/2, 4) with one
of eleven opening strokes (with same exponents as the closing strokes), for a total
of 121 stroke combinations. In general, coupling the closing and opening strokes
in figure 1(b) gives discontinuous accelerations at the interfaces between the strokes
(t = 0, t0, 1, . . .). We use a Fourier filter on the 121 stroke cycles to obtain smooth
approximations to these curves. Let β̂k be the Fourier coefficients of β. We define a
smoothed version of β by enforcing an exponential decay of the Fourier coefficients,
with damping of coefficients corresponding to wavenumbers greater than 20 (in
magnitude):

β̂s,k =
{
β̂k, |k|6 20
β̂k exp

[−(|k| − 20)2/32
]
, |k|> 20.

(2.7)

The smoothed functions βs(t) plotted in figure 1(c) correspond to the β(t) plotted in
figure 1(b). While the transitions in βs are smooth, the differences between βs and
β are uniformly small over the period. The values of bell radius R corresponding to
βs are plotted in figure 1(d). The R curves have nearly the same concavity as the
corresponding βs curves, but with a slight bias towards downward concavity.

Our motivation for this choice of stroke kinematics is the following. First, jet-
propelled swimming is naturally composed of two strokes, the power stroke and the
recovery stroke, each with distinct flow characteristics. Therefore, it is natural to make
independent choices of kinematics on the two strokes. The kinematics are pieced
together smoothly, however, to obtain a system of differential equations which is
smooth in time. The set of possible kinematics is infinite-dimensional, so we choose a
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low-dimensional subset to explore computationally. One simplifying assumption is to
choose strokes whose bell radius changes monotonically with time. If the bell radius
oscillates on a power stroke, it might be more natural to consider it as a sequence of
power and recovery strokes, unless the oscillations have small amplitudes, in which
case they can perhaps be neglected to a first approximation. A key property of jet-
propelled swimming, described in the Introduction, is the relationship between the
speed of bell contraction and the bell radius. We vary this relationship using strokes
whose velocities change simply – monotonically – with bell radius. The power-law
functions (2.3) and (2.4) are a simple set of functions with this property. Alternative
one-parameter families of functions with this property are quadratic functions of time
with varying curvature or exponential functions of time with varying rate constants.
For the recovery stroke, we use the same family of power-law functions as on
the power stroke, for simplicity. Figure 1(e) shows an example of prolate jellyfish
kinematics from Peng & Alben (2012), and it is close to the space of kinematics
considered here.

We use βs(t) to set θ(s, t) in (2.2). The remaining term in the bell position, Z(t)
in (2.1), is set by Newton’s second law, which couples the bell motion to the fluid
pressure forces. We use a computational model which neglects viscosity everywhere
except at the sharp trailing edge of the bell. There we apply a Kutta condition to make
the flow velocity finite at the trailing edge, as in previous studies (Jones 2003; Alben
2009, 2010b). A similar fluid model for an axisymmetric flow out of a piston was
given by Nitsche & Krasny (1994), and we used a version of this model in a previous
study of jellyfish swimming (Peng & Alben 2012).

The unsteady incompressible inviscid axisymmetric flow around the pulsing bell can
be solved by evolving a bound axisymmetric vortex sheet along the bell and free
vorticity which is shed from the bell at its trailing edge. The bound vortex sheet and
free vorticity are discretized as a set of closely spaced circular vortex filaments. The
stream function of the flow at (z, r) induced by a circular vortex filament of unit
strength at (z′, r′) is

Ψ (z, r; z′, r′)= 1
2π
(ρ1 + ρ2)(F(λ)− E(λ)) (2.8)

where ρ2
1 = (z− z′)2 + (r − r′)2 + δ2, ρ2

2 = (z− z′)2 + (r + r′)2 + δ2 and λ = (ρ2 −
ρ1)/(ρ2 + ρ1). F(λ) and E(λ) are the complete elliptic integrals of the first and second
kind, and δ is a regularization parameter. Setting δ > 0 allows smooth evolution of the
free vorticity (Krasny 1986). The flow velocity corresponding to the stream function
(2.8) may be obtained by differentiation, and is given by Nitsche & Krasny (1994).

We determine the strengths of the filaments in the bound vortex sheet by enforcing
the no-penetration condition on the bell. On the bound vortex sheet, the filaments are
placed at arclength coordinates corresponding to a Chebyshev–Lobatto discretization
(as in Nitsche & Krasny 1994):

sj = cos(π/2(1− j/m)), j= 1, . . . ,m. (2.9)

On the bound sheet, δ is set to zero to avoid ill-posedness in the equations enforcing
no penetration. The strengths of the m vortex filaments are determined by setting the
component of the flow induced by the bound and free vortex filaments normal to the
body equal to the component of the body’s velocity normal to itself at m intermediate
points:

s′j = cos(π/2(1− (j− 1/2)/m)), j= 1, . . . ,m. (2.10)
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In a generic solution, the vortex-sheet strength will have an inverse-square-root
singularity at the bell edge (s = 1). The Kutta condition removes this singularity
by choosing a particular value of vorticity flux into the free vortex sheet shed from
the bell edge. The free vortex sheet is discretized as a set of vortex filaments, with a
new filament created at the edge at each time step, and advected off the edge at the
local flow velocity. The Kutta condition amounts to choosing the circulation in the free
vortex sheet between the newly created filament and the previously shed filament, at
each time step. This method of enforcing the Kutta condition is very similar to that
of previous studies (Jones 2003; Alben 2009), and closely related to that of Nitsche &
Krasny (1994). The regularization parameter δ rises smoothly from a small value δ0 to
a larger value δ1, moving away from the bell edge along the free sheet:

δ(s)= δ0 + (δ1 − δ0)(1− exp
[−((s− 1)/(2δ1))

2
]
). (2.11)

Here s equals 1 at the bell edge and increases on moving into the free sheet; δ0 is
set to 0.05 and δ1 is set to 0.2. The purpose of the tapered δ-function is to reduce
the effect of regularization on the Kutta condition, by using a smaller regularization
parameter (δ0) where the Kutta condition is imposed. Using a larger value (δ1) away
from the bell edge results in slower vortex-sheet roll-up, which saves computational
time. The effect of using a tapered regularization was studied by Alben (2010a).

The pressure jump from the outside to the inside of the bell, [p](s, t), is related to
the bound vortex-sheet strength γ , and the components of the bell velocity τ and the
flow velocity µ which are tangent to the bell:

∂tγ + ∂s((µ− τ)γ )=−∂s[p]. (2.12)

The derivation of this equation is given by Alben (2012) starting from the Euler
momentum equation, based on previous work of Shelley and collaborators (e.g. Hou,
Lowengrub & Shelley 2001), and the equation has been used several times (Jones
2003; Alben 2009; Peng & Alben 2012).

The axial motion of the jellyfish is coupled to the pressure force on the bell by
Newton’s second law:

R1

∫ 1

0
∂ttz 2πr ds=−

∫ 1

0
[p] cos θ2πr ds. (2.13)

Here R1 is a dimensionless parameter, ρsh/ρf L, equal to the product of the ratio of
solid density ρs to fluid density ρf with the ratio of bell thickness h to bell arclength L.
We use R1 = 0.1, which is a reasonable value for a prolate jellyfish or squid (Gosline
& DeMont 1985; DeMont & Gosline 1988a). Equation (2.13) and the Kutta condition
are used to solve for Z in (2.1), and the strength of the newly created vortex filament
in the free sheet, at each time. This system of two nonlinear equations is solved at
each time step using Broyden’s iterative method (Ralston & Rabinowitz 2001).

2.2. Example of flows
We begin by giving an example of the bell and fluid dynamics for a particular choice
of kinematic parameters: γc,d = 1, γo,d = 1, βm = 0.2 and t0 = 0.5. Figure 2 shows
the dynamics during the 48th period of motion, well after the bell has attained a
quasi-periodic motion. The grey dots are the points used to discretize the free vortex
sheet. As the sheet evolves and stretches, points are inserted or deleted to maintain
a spacing between 1/6 and 1/3 the local value of δ (a similar method was used
in Nitsche & Krasny 1994 and Alben 2009). To save computational time, at fixed
time intervals during the simulation, we identify segments of the free vortex sheet
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FIGURE 2. (Colour online) Vortex sheet segments (grey dots) and contours of the vorticity
field (solid lines) at ten equally spaced instants during a period of motion, for γc,d = 1,
γo,d = 1, βm = 0.2 and t0 = 0.5. Right: body snapshots in the lab frame over one period. The
body moves upward.

containing the smallest circulation, add their circulation to neighbouring segments,
and delete them from the sheet. Otherwise, the rapid growth in vortex-sheet length
would make many computations prohibitively expensive after ∼20 periods. Much of
the increase in vortex-sheet length occurs because portions of the sheet experience a
straining flow, which stretches them exponentially in time even though their circulation
is conserved. Since the number of sheet segments is proportional to the length of the
sheet, we obtain many sheet segments with exponentially small circulation. These can
be merged with other sheet segments as follows. We begin with the discretization of
the free vortex sheet as a union of line segments, each with a given circulation. For
each segment, we compute the change in velocity 1v at the nearest point on the
body due to moving the circulation in that segment to each of the other segments
in the vortex sheet. We determine the move that results in the smallest 1v, and
perform that move. We continue computing the moves which result in the smallest 1v,
and performing the moves, until the number of vortex-sheet segments decreases to a
predefined minimum (typically 750 or 1000). A larger minimum number of segments
results in a smaller maximum of 1v for the sequence of moves performed at a given
time in the simulation, and thus in a smaller perturbation to the computation, at the
expense of increased computing time needed to evolve more segments. During the
sequence of moves, we may move segments containing circulation which originated
in multiple locations at the beginning of the algorithm. In this case, we compute 1v
using the original locations of the portions of circulation in those segments, at the
beginning of the algorithm. This gives the correct value of 1v for such a move. We
use a time step 1t = 0.00125 in the results shown here, and perform the process
of merging segments only every 25 or 50 time steps (the ‘merge interval’) to save
computational time.
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We have studied the dependence of our results on the two main numerical
parameters: the minimum number of segments and the merge interval. In appendix A
we present tables with the maximum velocity perturbation, the average bell speed, and
the average input power, for different combinations of these numerical parameters and
the kinematic parameters. At most kinematic parameter values, our results change by a
few per cent or less as long as the minimum number of segments is 750 or greater, for
a merge interval of 25 or 50. Changes of a few per cent persist under further increases
in these parameters. The most likely reason is that inviscid vortex-sheet dynamics
are intrinsically sensitive to small perturbations over long times. A generic example
of this phenomenon, the appearance of chaos in a vortex-sheet spiral, was studied
by Krasny & Nitsche (2002). Our vortex-segment merging events are a source of
perturbations, and for a chaotic dynamical system, very small perturbations will lead
solution trajectories to diverge to some extent over sufficiently long times. In our case,
the vortex-sheet dynamics have a small aperiodic component which is of the order of a
few per cent of the periodic component of the dynamics.

In figure 2, the grey points represent the endpoints of vortex-sheet segments.
Some points are relatively isolated because their neighbouring segments were moved
according to the criterion above. Due to regularization, the free vortex sheet can be
considered a set of vortex blobs, with a smooth vorticity field which moves without
diffusing. The contour lines of this vorticity field are also shown in figure 2. In this
example the bell radius velocity is approximately constant during closing (frames 1–5),
and during opening (frames 6–10). In the first frame (t = 47.1), the bell is beginning to
close. A clockwise vortex-ring spiral, formed during the previous opening, is adjacent
to the bell edge. During the next four frames, this vortex ring and the surrounding
fluid are squeezed out of the bell and advected downward. During frames 6–10, the
bell reopens, forming a new clockwise vortex spiral, which will be squeezed out on
the next stroke.

In figure 3 we show the streamlines at the same instants. During the bell closing
(frames 1–5), the flow velocity inside the bell is directed mainly in the axial direction.
Outside the bell and adjacent to it, the flow is directed inward, following the bell.
The region of recirculating flow is downstream of the bell. During frames 6–10, the
bell opens and decelerates. A new clockwise eddy forms inside the bell, and the
streamlines are more curved inside the bell, reflecting the superposition of the eddy
and an upward flow inside the bell.

2.3. Results across kinematic parameter space
We now present results across kinematic parameter space. From our 121 combinations
of closing and opening power-law kinematics, we select a reduced set of nine (three
closing motions paired with three opening motions), and plot the axial velocity of
the bell apex in figure 4, over the 26th period of motion, when a quasi-periodic
motion has been attained. We consider two values of minimum bell position, given
by βm = 0.2 (figure 4a) and 0.3 (figure 4b). We set t0 to 0.5 (closing and opening
strokes of equal duration) for now, and give results for other t0 later. On each panel
three curves are shown, one for each of three power laws of bell opening (labelled by
line type in the legend box). For each value of βm, the three panels are for a different
power law for bell closing (labelled outside the legend box).

We first note some common aspects of the various plots. During the first half of
the period, when the bell is closing, the graphs in a given panel are essentially shifted
copies of one another, having nearly the same slopes. Thus the axial acceleration
during closing is determined primarily by the closing motion, rather than the opening
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FIGURE 3. (Colour online) Streamlines for the flows in figure 2. Black arrowheads show the
directions of flow in the lab frame (the flow is at rest at infinite distance).

motion, which varies greatly for the three graphs in each panel. The axial acceleration
is strongly correlated with the bell’s inward radial velocity, and thus is largest at the
beginning of the closing phase in the top panels, and at the end of the closing phase
in the bottom panels. Although the axial acceleration is essentially determined by the
closing motion alone, the mean axial velocity during closing varies considerably with
the opening exponent. Thus the two phases of motion are coupled significantly in the
bell dynamics.

Considering the opening phase, 25.5 6 t 6 26, we compare the top, middle, and
bottom rows of figures 4(a) and 4(b). We find that a given opening exponent (indicated
by solid, dashed, or dashed-dotted line) leads to a similar slope (axial acceleration)
across all three rows. Thus, as for the closing phase, the axial acceleration during
the opening phase is mainly determined by the instantaneous radial motion, and is
correlated with the outward radial bell velocity. The velocity profiles in the opening
phase are quite different from those in the closing phase, however, reflecting the
asymmetry between the flow fields during bell closing and opening. The former
is characterized by a strong downward jet, while the latter is associated with the
formation of a large attached vortex ring.

The largest instantaneous velocity occurs in the bottom row at the end of the closing
phase, with γc,d = 3. Here the bell has largest radial velocity at the end of the closing
phase, so the most axial thrust is provided when the profile area of the bell, and thus
the fluid resistance, is smallest. The velocities in figure 4(b) are uniformly smaller than
those in figure 4(a), because the amplitude of motion is smaller, but otherwise the two
are generally similar.

For the same nine cases, we now consider the work done by the bell on the fluid
(i.e. the product of the fluid pressure and the bell velocity in the normal direction,
integrated over the surface area of the bell and time). In figure 5 we show bar graphs,
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FIGURE 4. Axial velocity of the bell apex during a period of motion (25 6 t 6 26), for nine
combinations of power-law kinematics: panels top to bottom show γc,u = 3, γc,u = 1 and
γc,d = 3, respectively, and within each panel lines show γo,u = 3, γo,d = 1, and γo,d = 3. (a)
βm = 0.2, (b) βm = 0.3.

with one bar for each of ten equal subintervals of a period. Each bar gives the average
input power during its subinterval. The data for each subinterval is an average over 20
to 40 values for the corresponding subinterval in 20 to 40 consecutive periods. Unlike
the bell apex velocity, the input power shows moderate deviations from one period to
the next. The power fluctuations are due to generic fluctuations in inviscid vortex-sheet
dynamics (Krasny & Nitsche 2002). The power fluctuations are subdominant to the
phase-averaged power, however: for a set of subinterval input power averages taken at
the same phase over 20 to 40 consecutive periods, the standard deviation is typically
10–15 % of the mean. The periodic motion of the bell keeps the vortex-sheet dynamics
close to periodic.

As for the velocity profile, the input power in the closing phase is essentially
determined by the closing power law. The solid, dashed, and dashed-dotted lines
overlap closely in this phase (0 6 t 6 0.5). This apparent independence of the closing-
phase input power from the opening-phase kinematics provides justification for our
analytical model (to be given in § 3) which treats the closing phase independently.
For γo,d = 1 and 3 (solid and dashed lines), the input power in the opening phase
is dominated by the interval 0.5 6 t 6 0.6, when the bell motion undergoes a
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FIGURE 5. Input power during ten equal subintervals of a period, averaged over the
corresponding subinterval of many (20–40) periods. The parameters are the same as those
in figure 4. (a) βm = 0.2. (b) βm = 0.3.

sharp transition from closing to opening kinematics with a large acceleration and
consequently large work done. The bell radius is smallest at t = 0.5, so the transition
here leads to stronger vortex shedding and more work done than at the t = 1 transition.
In general the shape of the power distribution is determined by the opening power
law, but the magnitude is strongly influenced by the closing power law, and whether
the bell had a large acceleration at the end of the closing phase (as for γc,d = 3,
bottom panels). Thus the input power during the opening phase (0.5 6 t 6 1) generally
increases moving from the top to the bottom row. The input power increases with the
stroke amplitude (from figure 5b to 5a) more strongly than does the axial velocity
(figure 4).

Figure 6 presents maps of the average bell apex velocity, in the two-parameter space
of closing and opening power laws, based on the full set of 121 combinations of
stroke kinematics. The map is drawn by interpolating values on an 11-by-11 grid, with
all power-law values except for 3/2 marked on the axes. For βm = 0.2, the largest
speeds occur for γo,u > 1 and γc,d > 1. Here the β(t) graph is concave down on the
closing phase and concave up on the opening phase. Thus the fluid is ejected most
rapidly when the bell is small, leading to a large thrust force when the bell has a small
drag coefficient. The bell reopens slowly, maintaining the small drag coefficient for
a relatively long time. The slowest speeds occur for γc,u > 1. Here the bell contracts
fastest when the bell is largest; it has a larger drag coefficient at those times.
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FIGURE 6. (Colour online) Maps of time-averaged bell apex velocity in the space of opening
and closing exponents, γc,d–γc,u, γo,d–γo,u, corresponding to the minimum bell size (a)
βm = 0.2, (b) βm = 0.3. Here t0 = 0.5. The values on the colour bars are logarithmically
spaced.

For βm = 0.3, the speeds are much slower due to the smaller stroke amplitude. This
comparison indicates that bell speeds may increase very rapidly as βm tends to 0, for
a given set of stroke exponents. For βm = 0.3 the speeds also do not vary as greatly.
They are smallest in essentially the same region as for βm = 0.2. The largest speeds
occur also for γc,d > 1, but with γo,d � 1. A very rapid reopening of the bell enhances
thrust generation in this case by shedding stronger vorticity into the fluid.

Figure 7 presents maps of the time-averaged input power, or rate of work done by
the body on the fluid, for the same parameters. In general, the power and velocity are
strongly correlated. Both are large when large vorticity is shed from the body into the
fluid. In general the input power increases more rapidly than the velocity, when both
increase under a given change of kinematic parameter values. As a consequence the
ratio of average input power to average velocity, or cost of locomotion, is lowest at
low speeds.

Figure 8 maps the cost of locomotion. The minima occur near the centre of the
plot for βm = 0.3, and above and to the right of centre for βm = 0.2. There is a
band of near-minimal values which extends to large values of γc,d with γo,u > 1. It is
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FIGURE 7. (Colour online) Maps of time-averaged input power in the space of opening and
closing exponents. Parameters are the same as in figure 6: (a) βm = 0.2, (b) βm = 0.3; t0 = 0.5.
The values on the colour bars are logarithmically spaced.

remarkable that the body can move at high speeds with nearly optimal efficiency for
this value of βm.

We now show examples of body motions and fluid flows which correspond to the
cases of fast and efficient swimming we have just identified. In figure 9 three motions
are shown, with ten instants over a period for each motion, for βm = 0.2. The bell and
vorticity contours are shown, in a frame moving with the bell apex. Figure 9(a) shows
a swimmer which is fast and inefficient. Strong vorticity is formed on an accelerating
contraction stroke, and maintained on the decelerating recovery stroke. Figure 9(b)
shows a fast and efficient swimmer. The contraction stroke is similar to that in (a),
but the expansion stroke is quite different. Now the swimmer remains contracted for
longer, and expands rapidly at the end. As a result, the profile drag is smaller. The
vorticity field is weaker in frames 6 and 7 of (b) than in (a). Also, the work done
on the recovery stroke, shown for similar cases (with γo,d = 3 and γo,u = 3) in the
bottom panel of figure 5(a), shows that the bell in figure 9(a) is doing a very large
amount of work between frames 5 and 6, possibly related to the concentrated vortex
near the bell in frames 5 and 6. In figure 9(c) we show a swimmer which is much
slower than in (a) or (b), and slightly less efficient than in (b). Both the contraction
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FIGURE 8. (Colour online) Maps of the cost of locomotion, the ratio of time-averaged input
power to time-averaged apex velocity. Parameters are the same as in figure 6: (a) βm = 0.2, (b)
βm = 0.3; t0 = 0.5. The values on the colour bars are logarithmically spaced.

and expansion strokes have nearly constant velocity. Now the vorticity field is much
weaker throughout the motion, and more of the vorticity is visibly shed from the bell.

For the swimmer with a smaller stroke amplitude (βm = 0.3), two swimming
motions are shown in figure 10. Figure 10(a), fast and inefficient, is similar to
figure 9(a). The bell expands rapidly between frames 5 and 6, resulting in large
work done. A slow and efficient swimmer is shown in figure 10(b), again with nearly
constant bell velocity on both strokes. Similarly to figure 9(c), we find weaker vorticity
overall, and noticeable vortex shedding in frames 1–4.

We have so far only discussed cases with t0 = 0.5 (closing and opening strokes
of equal duration). We have also simulated the cases t0 = 0.3 and t0 = 0.7. Maps
of average swimming speed, input power, and cost of locomotion are given in
appendix B, along with comparisons of results at all three values of t0. Here we
briefly summarize the findings. For t0 = 0.3, the power stroke exponent has a relatively
greater effect on the results, while for t0 = 0.7 the recovery stroke does. The reason is
that the bell moves faster on the shorter of the two strokes, leading to larger thrust and
larger power consumption. For the smaller stroke amplitude (βm = 0.3), the lowest cost
of locomotion is obtained for closing power laws near 1 for all t0. Slightly lower cost
of locomotion occurs at t0 = 0.5. For the larger stroke amplitude (βm = 0.2), the lowest
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FIGURE 9. (Colour online) Vorticity field contours in the body apex frame, for three motions,
with ten instants over a period for each motion, for βm = 0.2: (a) fast and inefficient (γc,d = 1
and γo,d = 5), (b) fast and efficient (γc,d = 2 and γo,u = 3) and (c) slow and efficient (γc,d = 1
and γo,u = 1). Bars at left give vorticity values on the contours.
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FIGURE 10. (Colour online) Vorticity field contours in the body apex frame, for two motions,
with ten instants over a period for each motion, for βm = 0.3: (a) fast and inefficient (γc,d = 5
and γo,d = 5) and (b) slow and efficient (γc,d = 1 and γo,u = 1). Bars at left give vorticity
values on the contours.

cost of locomotion is obtained with power laws near 1 at t0 = 0.3 and a stroke which
is concave down on the closing phase and concave up on the opening phase at t0 = 0.7.
This is a ‘burst and coast’ swimming motion.

In efficient swimming by squid and jellyfish, the opening stroke is passive, using
elastic energy stored in internal fibres during the power stroke (Gosline & DeMont
1985; DeMont & Gosline 1988a). Using experimental measurements, the energy
needed for the refilling stroke was calculated to be only 15–20 % that used in
the power stroke for Polyorchis penicillatus (DeMont & Gosline 1988b). Thus, the
recovery stroke is subdominant to the power stroke in its effect on the input power
(and thrust generation). In many of the cases shown in figure 5, the work done during
the recovery stroke was not subdominant to that used in the power stroke. This is
true for most of the inefficient cases, and for many of the efficient cases as well.
In the efficient cases, the work done on the recovery stroke is dominated by work
done at the transition from the bell closing to the bell opening, as can be seen for
0.5 < t < 0.6 in figure 5. At this time, the bell makes a sharp transition in kinematics
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(even with the Fourier smoothing), resulting in large power output. In particular, an
intense starting vortex ring is created (visible in the sixth frames of figures 2, 9c and
10b). A smoother transition between the power and recovery strokes greatly reduces
the power output, as shown in the cases with concave-up power and recovery strokes.
Therefore, it is reasonable to assume that this transitional power could be reduced
with a more specialized choice of kinematics near the stroke transition. For example,
a passive, spring-powered recovery stroke could yield a smoother transition, because
the fluid pressure would resist large bell accelerations. However, for simplicity, we
have considered only recovery strokes which are prescribed and of the same form as
the power strokes. We next propose a model which considers only the flow during
the power stroke. By isolating the power stroke, the following model is tractable
analytically, and focuses on the power expenditure that is considered to be dominant
for observed swimmers.

3. Analytical potential flow model
We now consider a jet-propelled swimmer with a simpler geometry, together with

a potential-flow model of the fluid flow created by the swimmer. The swimmer is
a circular cylinder, closed at the top and open at the bottom. The cylinder has a
time-dependent radius R(t), which decreases on the power stroke and increases on
the recovery stroke. The flow on the recovery stroke is difficult to model analytically
because it corresponds to the creation of a vortex spiral of complex shape inside the
bell (e.g. figure 2). On the power stroke, the vorticity is expelled from the bell, and
the flow can be approximated as an axisymmetric stagnation-point flow which does
not penetrate the bell surface. In a frame moving with the top surface, the stagnation
point inside the bell is fixed at the midpoint of the inside of the top surface. Choosing
this point for the origin (r, z) = (0, 0), the flow inside the cylindrical bell (0 6 z 6 H,
0 6 r 6 R(t)) on the power stroke is then given by

ur(r, z, t)= dR

dt

r

R(t)
, (3.1)

uz(r, z, t)=− 2
R(t)

dR

dt
z. (3.2)

This flow field satisfies ∇ ·u= 0. On the upper and radial boundaries,

uz(r, 0, t)= 0, ur(R, z, t)= dR

dt
, (3.3)

so the no-penetration condition is satisfied; uz(R, z, t) is non-zero, so there is slip along
the sides. However, since the boundary layer on the inside wall of the bell remains
attached during the power stroke, this flow is a reasonable approximation. We assume
that the cylinder has a fixed axial dimension (height) H. To a good approximation, bell
height is nearly fixed in prolate jellyfish and squid during the power stroke (Gosline
& DeMont 1985). Bell height is maintained by the longitudinal fibres’ resistance
to stretching in squid (Pabst 1996) and jellyfish (Megill 2002), and the action of
longitudinal muscles in octopuses (Gosline & DeMont 1985).

We now assume that the bell does not swim freely, but rather has a constant axial
speed U during the power stroke. Therefore, U is added to the internal axial flow (3.2).
This is different from our computational model in § 2, for which the bell is swimming
freely in the axial direction. In many of those cases U remains within 20 % of its
average during the power stroke (see figure 4). Because our bell is not swimming
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FIGURE 11. Streamlines of axisymmetric stagnation point flow for four contracting cylinders
(cylinder bodies shown by thick black lines at the top and right of each frame). Imposed axial
velocity U is: (a) 0, (b) 1, (c) 2 and (d) 3. In each case the radial boundary velocity is 0.5. The
black arrows indicate the flow and body velocity magnitudes along each boundary.

freely we use a different definition of efficiency here. Assuming a fixed bell velocity
allows us to avoid solving an equation for the bell motion using empirical inputs, such
as the drag coefficient and acceleration reaction coefficients (Daniel 1983).

In figure 11 we show the streamlines for sample flows inside the cylinder. These are
given by (3.1)–(3.2) with R = 0.5, dR/dt = −0.5, plus superposed uniform axial flows
U with four different integer values ranging from 0 to 3, from (a) to (d).

We scale time by the length of the power stroke. At the beginning of the power
stroke, a parcel of fluid (with density ρ) inside the bell travels at the speed of the
swimmer in the lab frame, U, and has z-momentum per unit volume

b0 = ρU. (3.4)

During the power stroke, fluid is ejected from the bell orifice at z = H with z-
momentum per unit volume changed by the ejection flow to

b(t)= ρ(U + uz(r,H, t)). (3.5)

The z-momentum flux is the product of (3.5) with the flow through the orifice,
uz(r,H, t), integrated over the orifice area A. The total z-momentum of the ejected
fluid is the z-momentum flux integrated over time:

B=−ρ
∫ 1

0

∫∫
A
(U + uz(r,H, t))uz(r,H, t) dA dt. (3.6)

The initial momentum of the ejected fluid is

B0 =−ρ
∫ 1

0

∫∫
A
Uuz(r,H, t) dA dt, (3.7)

so the change in z-momentum (or z-impulse) provided to the ejected fluid is

1B= B− B0 =−ρ
∫ 1

0

∫∫
A
uz(r,H, t)2 dA dt. (3.8)
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The opposite z-impulse is transmitted to the jellyfish (and the remaining fluid in the
bell). The impulse takes the form of a thrust force FT integrated over the power stroke:∫ 1

0
FT dt =−1B. (3.9)

The average power output is the average of FT times the jellyfish swimming speed U,

〈Pout〉 =
∫ 1

0
UFT dt = 4πρUH2

∫ 1

0

(
dR

dt

)2

dt, (3.10)

using (3.2), (3.8) and (3.9).
The total work done by the jellyfish on the power stroke corresponds to the increase

of kinetic energy 1KE of the ejected fluid. This is calculated analogously to the
change in z-momentum, replacing (3.5) with the kinetic energy per unit volume

ke(t)= 1
2ρ((U + uz(r,H, t))2 + ur(r,H, t)2). (3.11)

The initial kinetic energy per unit volume is

ke0 = 1
2ρU2. (3.12)

The change in kinetic energy of the ejected fluid is

1KE =−
∫ 1

0

∫∫
A
(ke(t)− ke0)uz(r,H, t) dA dt, (3.13)

which, using (3.2) and (3.1), is

1KE =−πρ
∫ 1

0

(
4UH2R′2 + R′3

(
4

H3

R
+ 1

2
HR

))
dt. (3.14)

This is the same as the integral of input power, as well as the average input power:

1KE =
∫ 1

0
Pin dt = 〈Pin〉. (3.15)

We define an optimization problem as follows: determine a non-increasing stroke
function R(t), 0 6 t 6 1 which minimizes 〈Pin〉 for a given 〈Pout〉, i.e.

Minimize 〈Pin〉 over R(t) ∈ C1[0, 1]
with R(t)> 0,R(0)= 1,R′(t)6 0, and 〈Pout〉 = Pout. (3.16)

An alternative problem is to maximize the Froude efficiency,

η = 〈Pout〉
〈Pin〉 , (3.17)

but we prefer (3.16) because it allows us to determine efficient strokes over a range of
output power values. The most efficient stroke may differ for slow swimming and fast
swimming, which require different amounts of thrust. We now address the constraints.
As a radius, R(t) must be non-negative. By setting its initial value to unity, we define
a length scale for the problem. Thus all lengths are non-dimensionalized by the bell
radius at the start of the power stroke. We constrain R(t) to be non-increasing to
prevent the bell from reopening during the power stroke, in which case separation
would occur and the stagnation-point flow model would no longer be valid.
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The first term in the outer sum on the right-hand side of (3.14), proportional to R′2,
is the same as (3.10), so it is held fixed during the optimization, and can be dropped
from the quantity being minimized. The second term in the inner sum, proportional to
HR, comes from the ur(r,H, t)2 term in the kinetic energy. It is equal to the product
of the first term with R2/8H2. The stagnation-point flow model is most reasonable
when H is comparable to or larger than R (i.e. for a prolate swimmer), so we neglect
this second term in the inner sum. In fact, we can expect the neglected term to be
somewhat smaller than we have estimated, because the radial flow speed at the orifice
should be somewhat smaller than the value ur(r,H, t) from the stagnation-point flow,
due to end effects: the radial forcing of the flow from the cylinder boundary ends at
z= H, so the inward radial flow should be somewhat weaker there.

Thus the minimization problem (3.16) becomes

Minimize
∫ 1

0
−R′3

R
dt over R(t) ∈ C1[0, 1]

with R(t) > 0,R(0)= 1 and
∫ 1

0

(
dR

dt

)2

dt = Pout

4πρUH2
≡ p0. (3.18)

Taking the first variation of the Lagrangian

L =
∫ 1

0
−R′3

R
dt − λ

(∫ 1

0
R′2 dt − p0

)
(3.19)

with respect to R and setting it to zero, we obtain the differential equation

6R′′R′R− 2R′3

R2
+ 2λR′′ = 0 (3.20)

and boundary conditions

R(0)= 1,
(−3R′(1)

R(1)
− 2λ

)
R′(1)= 0. (3.21)

The value of λ can be determined in terms of p0, using the constraint in (3.19). We
rewrite (3.20) in terms of a new variable

w≡ R′

R
(3.22)

which reduces (3.20) to a first-order equation:

6ww′ + 4w3 + 2λ(w′ + w2)= 0 (3.23)

with a boundary condition on w given by the second equation of (3.21):

w(1)=−2λ
3

or w(1)= 0. (3.24)

We can remove λ from (3.23) and (3.24) by rescaling w and t:

v ≡−w

λ
, u≡ λ(1− t). (3.25)

In terms of v and u, (3.23) and (3.24) become

(6v − 2)
dv
du
+ 4v3 − 2v2 = 0, v|u=0 = 2

3
or v|u=0 = 0. (3.26)
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FIGURE 12. (a) Plot of v versus u, which occurs in the exponent of the rescaled bell-closing
trajectories of (3.28). (b) Energy-minimizing bell-closing trajectories R(t) for various fixed
values of time-averaged output thrust power.

The second boundary condition, v(0) = 0, gives the solution v ≡ 0, which implies
R′ ≡ 0. This is a degenerate solution which satisfies the constraint in (3.16) only for
p0 = 0. The other boundary condition, v(0) = 2/3, gives a solution to (3.26) which is
given implicitly by

1
v
− 3

2
− ln

(
4− 2

v

)
= u. (3.27)

A plot of v(u) is given in figure 12(a); v decreases from 2/3 to 1/2 as u ranges from
0 to ∞. R is obtained by integrating (3.22), with the first boundary condition in (3.21):

R(t)= exp
(∫ λ

λ(1−t)
v(u′) du′

)
. (3.28)

We consider (3.28) for 0 < λ < +∞. When λ� 1, v ≈ 2/3 over the integration range
in (3.28), so

R(t)≈ e−2λt/3 ≈ 1− 2λt

3
, (3.29)

which is approximately linear because λ is small. When λ� 1, v ≈ 1/2 for most of
the integration range in (3.28). More precisely, v ≈ 1/2 for 1− t� 1/λ. Thus

R(t)≈ e−λt/2 for 1− t� 1
λ
. (3.30)

For large λ there is a boundary layer near t = 1, given by 1 − t 6 O(1/λ), over which
R(t) transitions from exponential decay with exponent −λt/2 to exponential decay
with exponent −2λt/3, to satisfy the second boundary condition in (3.21) (given in
terms of w in (3.24) and v in (3.26)). The boundary layer corresponds to 0 6 u . 6 in
figure 12(a), over which v(u) transitions from 2/3 to 1/2. Since R(t) in the boundary
layer is exponentially smaller than (3.30), which is already exponentially small, the
single exponential approximation (3.30) has a small absolute error over the whole
range 0 6 t 6 1.

For small λ, the optimal stroke is an approximately linear decrease of R, with slope
proportional to λ. For large λ, the optimal stroke is well-approximated as exponential
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FIGURE 13. (a) The correspondence between the time-averaged output thrust power p0 and
the Lagrange multiplier λ. (b) The correspondence between the time-averaged input power Pin
(rescaled) and the time-averaged output thrust power p0.

decay, with decay constant proportional to λ. For intermediate values of λ, the optimal
strokes interpolate these behaviours. Figure 12(b) shows R(t) as λ transitions from
small to large. We find that R(t) is nearly linear when small output power is required,
and Rmin is not small. For larger required output power, with smaller Rmin, the bell
slows exponentially at the smallest values of R, reflecting the inverse power of R in
the work integral, which penalizes high speeds at the smallest R. When the geometry
is changed from axisymmetric to two-dimensional, the optimal strokes have essentially
the same form (see appendix C). In the numerical study of § 2, the bell radius
decreased by 30 % (for βm = 0.3) or 50 % (for βm = 0.2) on the power stroke. In
these cases, from figure 12(b), the analytical model gives an optimal power stroke
with essentially constant velocity (for Rmin = 0.7), and with a slight upwards concavity
(for Rmin = 0.5). The numerical results of figure 8 also show low cost of locomotion
near γc,u = 1, exemplified by figures 9(c) and 10(b). The fast and efficient swimmer
of figure 9(b) uses different contraction kinematics than are predicted by the analytical
model, and apparently the vortex dynamics in the numerical model are needed to
evaluate this case.

We can understand why nearly linear R(t) are optimal for strokes that avoid very
small R by considering a related problem. If instead of minimizing the integral of
R′3/R in (3.18), we were to minimize the integral of R′3 under the same constraints,
the optimal solutions would have exactly linear R(t) (i.e. constant R′). This is the same
as finding a function with minimum L3-norm for a given L2-norm, and the solution
is a constant function (R′ here). Physically, a uniform velocity is favoured because
the cost of increasing the velocity at one time outweighs the savings of decreasing
the velocity at another time to maintain the same integral of R′2. Adding the inverse
factor of R to the integral of R′3 invokes an additional cost for velocities at smaller
R. Figure 12 shows that the additional cost is fairly small until R is required to reach
small values (less than ∼0.2) by larger output power requirements.

The correspondence between the output power p0 and λ is plotted in figure 13(a).
For small and large λ, the asymptotic expressions (3.29) and (3.30) imply that

p0 ≈ 4λ2

9
, λ� 1; p0 ≈ λ4 , λ� 1. (3.31)
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Parameter Value

Maximum time step (dt) 1× 10−5

Minimum Eulerian spatial step (dx) 0.015625
Lagrangian spatial step (ds) 0.007813
Domain size (D) 8, 16
Spring constant (k) 127
Bending stiffness (kbend) 5

TABLE 1. Dimensionless parameter values for two-dimensional immersed-boundary
simulations. Note that the domain size was set to 8 when βm = 0.3 and 16 when βm = 0.2.

The correspondence between Pin and p0 is shown in figure 13(b). Here the asymptotic
expressions give

Pin ≈ p3/2
0 , λ� 1; Pin ≈ 2p2

0, λ� 1. (3.32)

The Froude efficiency, which is the ratio p0/Pin, decreases as p0 increases. This is
consistent with other locomotory systems (Sparenberg 2002; Alben 2008).

4. Comparison to the two-dimensional viscous problem
In this work we have studied axisymmetric inviscid models of the flows around

swimming jellyfish. Before concluding, we briefly compare our results with those seen
in two-dimensional viscous simulations using the immersed-boundary method (Peskin
2002; Herschlag & Miller 2011).

The particular immersed-boundary framework used here is an adaptive, parallel
implementation described in Griffith et al. (2007). The Eulerian grid on which
the Navier–Stokes equations were solved was locally refined near the immersed
boundaries and regions of vorticity with a threshold of |ω| > 0.25. This Cartesian
grid was organized as a hierarchy of four nested grid levels, and the finest grid was
assigned a spatial step size of dx= 0.015625. The ratio of the spatial step size on each
grid relative to the next coarsest grid was 1:4. Periodic boundary conditions were used.
Other relevant parameters used in the numerical simulations are given in table 1, using
the same non-dimensionalization as in the previous sections: lengths are in units of
arclength along the bell from apex to outer edge, times are in units of pulsing period,
and densities are in units of fluid density (mass per volume).

The jellyfish bell was defined by θ and β given in (2.2), (2.3) and (2.5). For these
simulations, the following values were used: β0 = 0.5, βm = 0.2, 0.3, t0 = 0.5, γc,d = 1
and γo,u = 1. The motion of the bell was driven by prescribing a preferred curvature
that changed in time to approximately match the boundary motion in the vortex-sheet
simulations. The bending stiffness of the bell was set to kbend = 5, and linear springs of
stiffness k = 127 were used to resist stretching or compression of the bell.

Figure 14 shows snapshots of the vorticity field over a period for a Reynolds
number of 500 and βm = 0.3. During the contraction stroke (first five frames), vortex
dipoles are shed from the bell edges, and the bell accelerates in the vertical direction.
On the recovery stroke (last five frames), a new pair of vortices is formed, and the bell
decelerates. Vorticity is generated along the length of the bell, but vortex separation
only occurs at the bell tips. These features are similar to those observed in the
vortex-sheet simulations and described for actual jellyfish (Dabiri et al. 2005).
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FIGURE 14. (Colour online) Vorticity field snapshots from an immersed-boundary
simulation of a two-dimensional jellyfish swimming at Reynolds number 500. The colour
bar is labelled by the vorticity values. The kinematic parameters are: β0 = 0.5, βm = 0.3,
t0 = 0.5, γc,d = 1 and γo,u = 1 (see § 2.1).

In figure 15 we show the same instants during a period of a vortex-sheet
simulation with the same kinematic parameters as in figure 14, except the flow is now
axisymmetric (and inviscid). There are several notable differences. First, the vorticity
field is considerably weaker for the axisymmetric flow. Second, the bell’s average axial
speed is about twice as large for the axisymmetric model as for the two-dimensional
model. A vortex ring dipole is formed in the axisymmetric model, but it is asymmetric,
dominated by the negative (clockwise) vorticity. During the recovery stroke (last five
frames), a shed vortex ring splits into two parts. One part is advected downward and
the other part moves upward into the bell. Furthermore, the motion of the vorticity is
mainly axial in the axisymmetric case, and more oblique in the two-dimensional case.

We now return to the two-dimensional simulations and examine the effect of varying
the stroke amplitude (βm) and the Reynolds number. Figure 16 shows the same
simulation as figure 14 but with βm now 0.2, so the stroke amplitude is increased.
Unsurprisingly the strength of the shed vorticity is increased. The vortex dynamics are
also considerably different. The shed vortex dipoles now move inward and collide in
the wake. Furthermore, the flow in the wake loses left–right symmetry, although the
bell and near-wake flows are nearly symmetric.

With βm still 0.2, we now vary the Reynolds number. Figure 17 shows vorticity
fields near the time of maximum contraction for four different Reynolds numbers:
10, 100, 500 and 1000. At Reynolds number 10, there is little vortex shedding. At
Reynolds number 100, the shed vortices move obliquely away from the bell. At
Reynolds numbers of 500 and 1000, the shed vortices move inward and collide in the
wake. The flow becomes noticeably less symmetric as the Reynolds number increases
from 500 to 1000.

This brief section shows that the flow properties change considerably with a two-
dimensional geometry and in the presence of viscosity. It is therefore possible that
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FIGURE 15. (Colour online) Vorticity field snapshots from the axisymmetric vortex sheet
simulation with the same kinematic parameters as in figure 14. The colour bar is labelled by
the vorticity values.
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FIGURE 16. (Colour online) Vorticity field snapshots from an immersed-boundary
simulation of a two-dimensional jellyfish swimming at Reynolds number 500. The kinematic
parameters are the same as in figure 14 except βm is now 0.2.

the results on the cost of locomotion may be significantly modified in this case.
Nonetheless, in a two-dimensional version of our analytical axisymmetric potential-
flow model, we find that the contraction stroke yielding the optimal efficiency is nearly
the same as that in the axisymmetric case (see appendix C).
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FIGURE 17. (Colour online) Snapshots from immersed-boundary simulations of a two-
dimensional jellyfish swimming at Reynolds numbers 10, 100, 500 and 1000, near the time of
maximum contraction. The kinematic parameters are the same as in figure 16.

5. Conclusions and discussion
We have studied simple jet-propelled swimmers using computations and an

analytical model. We studied a vortex-sheet model with smooth prolate bell shapes
and motions and two stroke amplitudes. We varied the prescribed stroke kinematics
over different power-law functional forms. We found that the forward acceleration of
the bell on each power and recovery stroke is mainly determined by the kinematics on
that stroke, irrespective of differences in the preceding strokes. Input power is large
when the bell radius acceleration is large, which occurs for kinematics with power
laws much greater than one. Speed and efficiency vary inversely in general, except at
the larger stroke amplitude (βm = 0.2) for a special set of kinematics in which the bell
closes rapidly at the smallest radii and reopens moderately slowly. For the simulations,
the most efficient kinematics occur with power laws in a region containing unity, with
a slight bias towards slower bell radius velocity when the bell is small.

At smaller stroke amplitudes, and at larger amplitudes when the power stroke
plays a dominant role, these optimally efficient strokes agree well with those of
the analytical potential-flow model, despite a number of differences in the analytical
model formulation. The analytical model considers only the power stroke, and assumes
the bell moves axially at a constant speed. The optimal power strokes for efficient
propulsion transition from a nearly linear bell radius versus time at small to moderate
power output, to an exponentially decaying bell radius versus time when large power
output is required. When the model is changed from axisymmetric to two-dimensional,
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the optimal strokes are similar, and become the same when time is rescaled by a
constant factor (see appendix C).

We conclude by comparing with the kinematics of a real prolate jellyfish from
Dabiri et al. (2006), which plotted the bell diameter of Nemopsis bachei versus time
during swimming. The graph in their figure 2(a) is concave up on the power stroke,
in agreement with the numerical and analytical optima here, and roughly linear on the
recovery stroke, which is close to the optimal kinematics in our computational model.
The velar diameter varied by about a factor of four over a stroke, significantly more
than in our computational model. This corresponds to Rmin = 0.25 in our analytical
model, for which the graph of radius versus time has a moderate degree of upward
concavity, similar to that observed in the experiment.

Optimization problems are a way of understanding a variety of mechanical systems,
both biological and man-made. We do not know to what extent swimming efficiency
is an important factor in the evolution of jet-propelled organisms, but it is thought to
be a dominant portion of the energy budget for many fish (Alexander 1967). Other
aspects of swimming performance, such as agility, are very important in predator–prey
interactions.
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Appendix A. Numerical tests
In table 2 we show examples of how the time-averaged bell apex velocity and

input power vary with two numerical parameters at different kinematic parameters
(defined in §§ 2.2 and 2.1). Here ‘Max 1v’ is the maximum velocity perturbation (also
defined in § 2.2) over a long-time simulation (40–100 pulsing periods). We find that
results change by less than a few per cent once the minimum number of vortex-sheet
segments exceeds 750. Max 1v generally decreases for an increase in the minimum
number of vortex-sheet segments, but not always. Max 1v does not correlate strongly
with the merge interval parameter. The largest outlier is the case with βm = 0.3, γo = 3,
γc = 1, min no. of segments = 500 and merge interval = 50. Results with a larger min
no. of segments agree more closely in this case.

Appendix B. Varying the power stroke duration (t0)
Figure 18 shows the time-averaged bell apex velocity for the power stroke duration

t0 equal to 0.3 (figure 18a,c) and 0.7 (figure 18b,d). For both values of βm, the
overall distributions of speeds are similar to those for t0 = 0.5 (figure 6). However, the
variation is more vertical for t0 = 0.3 and more horizontal for t0 = 0.7. This is because
the bell acceleration is larger on whichever of the power or recovery strokes is shorter,
and large bell accelerations produce the dominant thrust forces over the cycle.

Similar results hold for the input power, shown in figure 19. The values are larger
overall than in figure 7 for t0 = 0.5, and the largest values generally occur for concave-
down strokes. In these cases the bell radius speed is largest when the bell radius is
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βm γo γc Min no. of
segments

Merge
interval

max 1v 〈vz〉 〈Pin〉

500 25 1.02× 10−4 2.079 2.310
500 50 2.89× 10−5 2.133 2.362

0.2 1/3 3 750 25 1.35× 10−5 2.105 2.360
750 50 1.11× 10−4 2.070 2.304

1000 25 3.00× 10−5 2.063 2.292
1000 50 1.00× 10−5 2.100 2.339

500 25 2.58× 10−4 2.788 1.727
500 50 6.99× 10−5 2.765 1.726

0.2 1 1 750 25 3.93× 10−5 2.842 1.654
750 50 1.64× 10−4 2.903 1.723

1000 25 9.89× 10−5 2.854 1.664
1000 50 2.86× 10−5 3.032 1.865

500 25 1.74× 10−4 4.293 4.745
500 50 6.16× 10−5 4.364 4.790

0.2 3 1 750 25 2.36× 10−5 4.296 4.763
750 50 1.37× 10−4 4.440 4.814

1000 25 5.72× 10−5 4.361 4.752
1000 50 3.39× 10−5 4.396 4.810

500 25 8.39× 10−5 1.178 0.430
500 50 3.42× 10−5 1.199 0.441

0.3 1/3 3 750 25 8.92× 10−6 1.177 0.426
750 50 9.82× 10−5 1.225 0.445

1000 25 2.54× 10−5 1.173 0.426
1000 50 1.87× 10−5 1.235 0.452

500 25 9.82× 10−5 0.969 0.218
500 50 2.58× 10−5 0.923 0.204

0.3 1 1 750 25 2.83× 10−5 1.030 0.234
750 50 1.06× 10−4 1.028 0.223

1000 25 4.34× 10−5 0.956 0.219
1000 50 2.07× 10−5 0.980 0.220

500 25 1.68× 10−4 1.636 0.612
500 50 5.09× 10−5 1.760 0.774

0.3 3 1 750 25 2.50× 10−5 1.531 0.601
750 50 1.26× 10−4 1.523 0.611

1000 25 4.15× 10−5 1.522 0.603
1000 50 1.94× 10−5 1.521 0.587

TABLE 2. The time-averaged bell apex velocity 〈vz〉 and input power 〈Pin〉, for different
choices of numerical parameters – the minimum number of vortex sheet segments and the
merge interval – at different values of the kinematic parameters, βm, γo, γc.

small. In general, larger vorticity is shed when the bell is small, for a given bell radius
speed.

Figure 20 shows the cost of locomotion, the ratio of the quantities in figures 18
and 19. The same trends with respect to t0 are evident here as well. Among the three
values of t0, the cost of locomotion is lowest for 0.7, when βm = 0.2, with a ‘burst and
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FIGURE 18. (Colour online) Maps of time-averaged bell apex velocity in the space of
opening and closing exponents, γc,d–γc,u, γo,d–γo,u, for minimum bell size (a) βm = 0.2 and
(b) βm = 0.3, and power stroke duration t0 = 0.3 (left) and t0 = 0.7 (right). The values on the
colour bars are logarithmically spaced.

coast’ type of kinematics, i.e. a concave-down power stroke and a concave-up recovery
stroke. The reasons were discussed in the context of the t0 = 0.5 results.

Appendix C. Two-dimensional potential-flow model
In the two-dimensional version of the problem, the jellyfish bell is a rectangle of

height H and width 2X(t). The flow inside the bell is

ux(x, y, t)= X′
x

X
, (C 1)

uy(x, y, t)=−X′
y

X
, (C 2)

and the minimization problem is

Minimize
∫ 1

0
−X′3

X2
dt over X(t) ∈ C1[0, 1]

with X(t)> 0,X(0)= 1,X′(t)6 0 and
∫ 1

0

(
X′2

X

)
dt = C. (C 3)
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Taking the first variation of the Lagrangian

L =
∫ 1

0
−X′3

X2
dt + λ

(∫ 1

0

X′2

X
dt − C

)
(C 4)

with respect to X and setting it to zero, we obtain the differential equation

6X′′X′X − 4X′3

X3
+ λ

(
−2X′′

X
+ X′2

X2

)
= 0 (C 5)

and boundary conditions

X(0)= 1,
(−3X′(1)2

X(1)2
+ 2λ

X′(1)
X(1)

)
= 0. (C 6)

We make the substitutions

v ≡ X′

λX
, u≡ λ(t − 1), (C 7)

which transforms (C 5) and the second condition in (C 6) into

(6v − 2)
dv
du
+ 2v3 − v2 = 0,

(
v − 2

3

)
v|u=0 = 0. (C 8)
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This equation is almost the same as (3.26), and becomes the same when the
independent variable is changed to ũ = u/2. Thus the solution in the two-dimensional
case is

X(t)= exp
(
−2
∫ −λ
−λ(1−t)

v(ũ′) dũ′
)
, (C 9)

where v(ũ) is the function plotted in figure 12(a). Thus the solution in the two-
dimensional case is also exponentially decaying, with a decay constant which is twice
that for the axisymmetric case.
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