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We develop a model to numerically study the dynamics of vortex streets in channel
flows. Previous work has studied the vortex wakes of specific vortex generators.
Here, we study a wide range of vortex wakes including regular and reverse von
Kármán streets with various strengths, geometries, and Reynolds numbers (Re) by
applying a smoothed von Kármán street as an inflow condition. We find that the spatial
structure of the inflow vortex street is maintained for the reverse von Kármán street
and altered for the regular street. For regular streets, we identify a transition to asym-
metric dynamics which happens when Re increases, or vortices are stronger, or vortex
streets are compressed horizontally or extended vertically. We also determine the
effects of these parameters on vortex street inversion. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4927462]

I. INTRODUCTION

In recent years, vorticity-enhanced heat transfer has become an important research topic due to
the faster heat transfer requirement for increased processing power of compact electronic devices.1–6

The problem involves fundamental issues in both fluid dynamics and heat transfer. In this work, we
investigate vortex dynamics in channel flows, commonly used in the convection cooling.

In channel flows, bluff bodies and vibrating plates have been employed to generate vortices
to improve mixing. Much previous work has been conducted on their resulting vortex wakes. For
example, von Kármán’s inviscid point vortex street approximates the wake structure of a bluff body
by a staggered array of oppositely signed vortices7 and has been used to represent vortex shedding by
different body shapes including circular and square cylinders8,9 and inclined flat plates.10 Among the
topics of study on vortex shedding are the formation of vortex wakes,11–13 shear layer instabilities,14,15

and numerical simulation methods.6,16

Another type of vortex generator induces vortices using an oscillating plate. Depending on the
rigidity of the plate, the Reynolds number, and the amplitude and the frequency of the oscillation, the
plate can generate distinct vortex wakes at its trailing edge including regular and reverse von Kármán
streets and more complicated patterns.17 Schnipper et al. showed six different vortex wake structures
obtained by pitching oscillations of a foil in a vertically flowing soap film for different Strouhal num-
bers and pitching amplitudes.18 Godoy-Diana et al. obtained a similar phase diagram which shows
transitions between different vortex wake structures.19 Among these different vortex wakes, perhaps
the simplest are the regular and the reverse von Kármán streets. The former is analogous to the vor-
tex wake behind a bluff body and can also be obtained by passive flapping of a flexible flag.20–22

This phenomenon was experimentally examined by Taneda23 and Zhang et al.24 using gravity-driven
soap-film tunnels. Alben and Shelley25 and Michelin et al.26 studied the regime in which the motion
of the flag is periodic and a von Kármán street is shed from the trailing edge of the flag. Their models
used different inviscid flow descriptions, but their results are in good agreement with respect to the
positions of the shed vortices’ centers. Under proper conditions,27 a vibrating plate can also create a
reverse von Kármán street at the trailing edge. This type of vibration has drawn attention from the
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biolocomotion community, as a flapping foil can model the generation of locomotor and maneuvering
forces in the flying and swimming of animals.28–30

Although many studies have been conducted on this subject, several aspects of the problem
require further investigation. Most of the previous work on the vortex wake focuses either on the
formation mechanism of the shed vortices or on the development of the flow in an unbounded region.
There are fewer studies of the development of the von Kármán street in a bounded channel31–37 and
even fewer results for the reverse von Kármán street.5,38 Davis et al.31 carried out a numerical and
experimental study of the confined flow around rectangular cylinders for two different blockage ratios
and a wide range of Re and found increased drag and Strouhal number due to the presence of the
channel walls. Suzuki et al.32 studied the flow in a channel obstructed by a square rod and gave special
attention to the crossing of the upper and lower rows of the vortex street. They found the main cause
that the vortex street’s inversion was the coupling of the wake vorticity and the separated boundary
layer from the wall. Camarri and Giannetti further investigated the inversion of the vortex street in
the wake of a confined square cylinder.33 They proposed that for low to moderate blockage ratios, this
phenomenon depends on the amount of vorticity in the incoming upstream flow, which was confirmed
through simulations with artificial inflow conditions to control the vorticity introduced into the flow.
Singha and Sinhamahapatra34 focused on the confined flow dynamics with a circular cylinder as the
obstacle at Reynolds number less than 250 and found that the transition from steady flow to periodic
vortex shedding is delayed due to the wall confinement. Zovatto and Pedrizzetti35 studied the vortex
wake pattern of a cylinder placed asymmetrically in the channel and showed that the vortex wake
changes to a single row of same-sign vortices as the body approaches one wall. Similar studies were
also carried out on vibrating plates. Guo and Paidoussis36 studied the stability of a rectangular plate
in inviscid channel flow with different boundary conditions at the leading and trailing edges. Alben37

considered a similar problem of a flapping flag in an inviscid channel with a vortex sheet model.
Gerty5 and Hidalgo and Glezer38 experimentally investigated the flow induced by a vibrating reed in
a channel which includes a reverse von Kármán street.

Most previous work only focused on a specific type of vortex generator, since the flow past a
vibrating plate and a bluff body are quite different. Therefore, comparisons between different vortex
generators are difficult. In this work, we propose a model to simulate the fluid dynamics of a wide
range of vortex generators in channel flow by approximating the vortex shedding with modified reg-
ular and reverse von Kármán streets. We then apply the model to vortex streets with various strengths
and geometries and discuss how the wall confinement affects the vortex dynamics.

The paper is organized as follows: Sec. II describes the model for the vortex dynamics, Sec. III
discusses the numerical method for solving the model, Sec. IV studies the effects of fluid parameters
on vortex dynamics, and the conclusions follow in Sec. V.

II. MODELLING

We model the fluid dynamics of a two-dimensional viscous flow in a channel. The channel has
length L and height H , and the fluid has kinematic viscosity ν. A background flow is present in the
channel, and for simplicity, we only consider the case of a uniform flow Ub. The flow satisfies the
two-dimensional incompressible Navier-Stokes equations in vorticity-stream function form,

∂ω

∂t
+ u · ∇ω = ν∆ω, (1)

− ∆ψ = ω. (2)

Here, ω(x, y, t) and ψ(x, y, t) denote the vorticity and the stream function of the flow, respectively.
The velocity u = (u, v) is obtained from the stream function by

u(x, y) = ∂ψ

∂ y
, v(x, y) = −∂ψ

∂x
. (3)

A schematic figure of the computational domain is shown in Figure 1.
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FIG. 1. Schematic of the computational domain with a uniform background flow Ub. The channel has length L and height
H . Dirichlet boundary conditions are applied at the entrance of the channel. No-penetration and no-slip conditions are used
at the walls and advective derivative conditions are applied to both ω and ψ at the outflow.

A. Boundary conditions

To solve the Navier-Stokes equations, we need to impose proper boundary conditions for ω and
ψ on each boundary. We discretize the channel with an N × M uniform spatial grid which has N
points in the x direction and M points in the y direction. The indices (1,1), (N,1), (M,N), and (1,M)
indicate the lower left, lower right, upper right, and upper left corners of the computational domain,
respectively.

No-slip (u = 0) and no-penetration (v = 0) conditions are applied at the upper and lower wall
boundaries of the channel. Both conditions involveψ, while neither involves the vorticityω. To obtain
a boundary condition forω, Briley39 proposed a fourth-order formula for the vorticity boundary values
by using the near-boundary stream function values,

ωi,1 =
1

18h2 (85ψi,1 − 108ψi,2 + 27ψi,3 − 4ψi,4) ≡ ωB
i,1, ∀i = 1,2, . . . ,N, (4)

ωi,M =
1

18h2 (85ψi,M − 108ψi,M−1 + 27ψi,M−2 − 4ψi,M−3) ≡ ωB
i,M, ∀i = 1,2, . . . ,N. (5)

Here, h = 1/(M − 1) denotes the grid spacing in the y direction. Briley’s formula is obtained by
discretizing the no-slip condition ∂ψ/∂ y = 0 with a fourth-order finite difference approximation and
then applying it to Equation (2). The advantage of using a fourth-order instead of a second-order
formula on wall boundaries was discussed by Napolitano40 as he reported smaller global errors in
two numerical examples when using a high-order scheme. The no-penetration condition ∂ψ/∂x = 0
gives a Dirichlet boundary condition for ψ,

ψi,1 = ψ1,1, ψi,M = ψ1,M, i = 1,2, . . . ,N, (6)

where ψ1,1 and ψ1,M are the values of ψ at the inflow boundaries, to be given later.
Outflow boundary conditions are used to approximate conditions at the channel exit. If the flow

is laminar and the channel is sufficiently long, the flow approaches a Poiseuille flow at the exit, in
which case the natural boundary condition is a reasonable choice,41,42

∂nω = 0, ∂nψ = 0, (7)

where n is the outward normal coordinate at the exit. This implies that the vertical velocity is zero at
the exit, which is true for Poiseuille flow. However, when the channel is not very long, the flow can
still be transient at the exit, and conditions based on unsteady problems are required. Much previous
work has been carried out on the proper outflow conditions in this case.42–45 In this work, we apply the
advective derivative condition46–48 for ω and ψ at the outflow boundary. Sani and Gresho48 proposed
this condition for the velocity variables,

∂u
∂t
+ c

∂u
∂n
= 0, (8)

where c is an average outflow velocity (for example, the averaged streamwise velocity across the exit,
ū48). Later, Comini and Manzan47 derived conditions for ω and ψ based on Equation (8),
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∂ω

∂t
+ ū

∂ω

∂n
= 0, (9)

∂

∂t

(
∂ψ

∂x

)
+ ū

(
−∂

2ψ

∂y2 − ω
)
= 0. (10)

Equation (10) is numerically solvable at the exit by combining the wall values of ψ, from the pre-
scribed inflow (discussed next), with the no-penetration condition. The advantage of this condition
is that the numerical error caused by truncating the finite domain only affects a local region close to
the exit and does not cause flow disturbances further upstream.48 In this work, we choose L = 4H for
the simulations. This is a moderate length which allows enough flow development without excessive
computational cost.

Finally, we discuss the inflow boundary conditions. We want to approximate situations where
a vortex generator is placed in front of the channel so that vortices are created and driven into the
channel by an imposed background flow. We model the wakes of such vortex generators as modified
reverse or regular von Kármán vortex streets with various geometries and strengths.

In inviscid flow, the complex potential of a von Kármán point vortex street is7,49

wvk = φvk + iψvk =
iΓ
2π

log
(
sin

π

a
(z − z0)

)
− iΓ

2π
log

(
sin

π

a

(
z − z0 −

1
2

a − ib
))
, (11)

and the corresponding complex velocity is

uvk = u(z) − iv(z) = iΓ
2a

cot
(
π

a
(z − z0)

)
− iΓ

2a
cot

(
π

a

(
z − z0 −

1
2

a − ib
))
, (12)

where point vortices with strength Γ are placed at z0 + (m + 1
2 )a + ib and those with strength −Γ are

placed at z0 + ma,m = 0,±1,±2, . . . . Positive Γ gives a reverse von Kármán street, while negative Γ
gives a regular von Kármán street. Equation (12) has a singularity ∼1/z at the point vortex location.
However, the point vortex itself travels with a finite velocity because it does not induce velocity at its
own location.7,49 The velocity at z = z0 is

Up =
Γ

2a
tanh

πb
a
. (13)

By symmetry, each vortex moves with the same velocity Up.
To obtain a more realistic inflow at moderate Reynolds number, we replace the point vortices

in Equation (12) by finite-size vortices, or “vortex blobs,” to account for viscous diffusion. The blob
has radius δ, and the velocity inside the blob is computed by subtracting the point-vortex singularity
from the von Kármán street solution and adding a desingularized kernel. The complex velocity, the
stream function, and the vorticity inside the mth blob are defined as

ublob = uvk(z) − iΓ
2π

1
z − zm

+
iΓ
2π

z̄ − z̄m
|z − zm|2 + δ2 , (14)

ψblob = ψvk +
Γ

2π
log(|z − zm|) − Γ2π log(


|z − zm|2 + δ2), (15)

ωblob =
Γδ2

π(|z − zm|2 + δ2)2 . (16)

Here, the subscript “vk” denotes the von Kármán street solution, and zm is the location of the mth
blob. The δ-term is an artificial smoothing kernel that regularizes the point vortex. It is analogous to
the desingularized kernel used by Krasny,50 and as δ → 0, the velocity tends to that of a point vortex
model. In the region 2δ away from the vortex blob center, we use the velocity of the unmodified point
vortex von Kármán street. A cubic Hermite interpolation (denoted by subscript “herm”) is used to
obtain a smooth transition between the two different velocity fields,

u(z) − iv(z) =



uvk(z), |z − zm| > 2δ,
uherm, δ < |z − zm| ≤ 2δ,
ublob, 0 < |z − zm| ≤ δ.

(17)
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FIG. 2. (a) A schematic figure of the vortex blob model. The horizontal and vertical displacements between adjacent blobs
are 1

2a and b, respectively. The blobs have radii δ and are located at z = 1
4a+ i

1
2 (H −b) and z = 3

4a+ i
1
2 (H +b); (b)

cross-sectional values of u at x = 1
4a and x = 3

4a, with Ub = 1, Γ= 1, and δ = 0.05. The circles indicate the centers of
the vortex blobs.

The vortex blobs move with the same velocity as in the point vortex case since the blob does not
contribute to its own velocity and the contributions of all the other blobs are the same as in the point
vortex model as they are more than 2δ away. Thus, the vortex blob with an additional uniform back-
ground flow Ub has speed

U = Ub +
Γ

2a
tanh

πb
a
. (18)

A schematic figure of the vortex blob model and values of the horizontal velocity u on cross sec-
tions through the blob centers for Ub = 1, Γ = 1, a/H = 1, and b/H = 0.5 are shown in Figures 2(a)
and 2(b), respectively.

The inflow just described is periodic in x (with period a) and time (with period τp = a/U). It
is a good approximation of the formation of the vortex street when the vorticity has only diffused
slightly. In the numerical simulation, we pre-compute the values of the velocities, vorticity, and stream
function over one period at the upstream boundary, and then at each time instant t, we impose the
appropriate values at t as ω = ωin,ψ = ψin,u = uin, and v = vin.

We summarize all the boundary conditions for fluid Equations (1) and (2),

ω = ωin, ψ = ψin, x = 0,0 < y < H, (19)

∂ω

∂t
+ ū

∂ω

∂x
= 0,

∂

∂t

(
∂ψ

∂x

)
+ ū

(
−∂

2ψ

∂y2 − ω
)
= 0, x = L,0 < y < H, (20)

ω = ωB
1 , ψ = ψ1,1, 0 ≤ x ≤ L, y = 0, (21)

ω = ωB
M, ψ = ψ1,M, 0 ≤ x ≤ L, y = H, (22)

where ψ1,1 and ψ1,M are obtained from ψin.

B. Nondimensionalization

We classify our flows as either vortex-dominated or background-flow-dominated based on the
incoming vortex street conditions. When the strength of the vortex blob |Γ| is larger than the back-
ground flow |UbH |, we define the flow as vortex-dominated. Otherwise, the flow is background-flow-
dominated. This criterion is applied for both the reverse and regular von Kármán streets.

For simplicity, we use the original notation to indicate all the dimensionless variables. Then,
Equations (1)–(3) become
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∂ω

∂t
+ u · ∇ω = 1

Re
∆ω, (23)

− ∆ψ = ω, (24)

u =
∂ψ

∂ y
, v = −∂ψ

∂x
, (25)

with several important dimensionless parameters:

1. Sb =
b
H

, the dimensionless vertical distance between the two rows of vortices.

2. Sa =
a
H

, the dimensionless horizontal period length.

For the vortex-dominated regime, we choose |Γ|/H as the characteristic velocity, and the dimension-
less parameters also include:

3. Re = |Γ|
ν , the Reynolds number.

4. Ur =
UbH
|Γ| , dimensionless background flow.

For the background-flow-dominated regime, we choose Ub as the characteristic velocity, and the
parameters include:

3. Re = UbH
ν , the Reynolds number.

4. Γr =
Γ

UbH , dimensionless vortex strength.

Γr can be positive or negative depending on the inflow vortex street type. By definition, Ur and |Γr |
are less than or equal to 1. Multiple Reynolds numbers have also been used to describe flows induced
by cylinders51 and flapping bodies.52

In experiments, it would be difficult to control all the parameters (Γ,Ub,Sa,Sb) independently
as we described in the vortex-blob model. A series of work has been conducted on the relationships
between those parameters, and experimental data and empirical results have provided some typical
values for them. Here, we discuss two ways of generating vortex streets and show how to compute
the vortex street parameters of our model from experimental measurements.

The regular von Kármán street can be generated by flow past a circular cylinder. In this case,
the far-field flow velocity U∞ and the cylinder’s diameter D are the two main control parameters in
the experiments, and the vortex street can be altered by changing these two quantities. For instance,
the vertical spacing between the vortices b can be approximated by the diameter D.53,54 The ratio
of the vertical to horizontal spacing b/a = Sb/Sa is around 0.28 given by the von Kármán instability
analysis53 and around 0.26 by Kronauer’s instability analysis.54 The strength of the vortices is pre-
dicted in the work of Berger and Wille55 as Γ ≈ 0.395U∞D/St for flow past a circular cylinder at low
Reynolds numbers (less than 200) where St is the Strouhal number. The value of St depends on the
Reynolds number and ranges between 0.1 and 0.2 for a large range of Re.56 Then, the vortex strength
is approximately 2U∞D to 4U∞D. The velocity of the vortex blob U is approximately 0.89U∞ at
Re ≈ 20 000 according to Bearman.57 Therefore, given the values of a,b, Γ, and U∞, the prescribed

background flow can be obtained by Ub = U − Γ
2a

tanh
πb
a

.
A reverse von Kármán street can be generated by a heaving rigid foil. In this case, the vortices’

shedding frequency f , the far-field flow velocity U∞, and the heaving amplitude A are the main control
parameters in the experiments. In one setup, it was shown that these three parameters must satisfy the

relation StA =
2 f A
U

> 0.18 to ensure the generation of a reverse von Kármán street at the foil’s trailing

edge.18,19 The vertical spacing can be approximated by the amplitude A and the background flow Ub

is close to the far-field velocity U∞. If we ignore the vortex shedding from the leading edge,18 the

circulation of the vortex at the trailing edge can be approximated by Γ ≈ 1
2
π2A2 f 2. Finally, the hori-

zontal spacing can be obtained by solving the following nonlinear equation: a f = Ub +
Γ

2a
tanh

πb
a

as a defines the period length of the vortex streets.
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III. NUMERICAL METHODS

We design our numerical scheme to solve Navier-Stokes Equations (23) and (24) accurately and
efficiently in the regime of laminar flow. We discretize the equations with an implicit Crank-Nicolson
scheme to avoid the time step constraints of fully explicit schemes for the Navier-Stokes equations58,59

and linearize the nonlinear advection term by a second-order extrapolation from previous time steps,

un+1/2 =
3
2

un − 1
2

un−1. (26)

At the first step, we use a first-order extrapolation u1/2 = u0 to obtain u1 and then correct the re-
sults by taking u1/2 = 1

2 (u0 + u1), which is also a second-order extrapolation. Spatial derivatives are
discretized with a second-order difference scheme except at the channel walls where a fourth-order
Briley’s formula is used.

With the linearization of the advection term,ω and ψ are coupled only through Briley’s formula.
If we place the boundary conditions in a specific order in the system of equations, we can decouple the
two terms with a computational cost of O(N M) and solve them separately (we refer to Appendix A
for more details). This linearization may be expected to cause an instability when dt is large or the
flow changes rapidly. However, we find that for most parameters in the region of interest, a time step
of dt = 1/128 is good enough for a stable result.

Since the incoming vortex street is time-periodic, we expect that the channel flow also converges
to a time-periodic solution whose period is that of the incoming flow, given by τp = Sa/U. In the
simulation, we start from zero initial flow and evolve the flow with our time-marching scheme until it
converges to a time-periodic state. The vorticity profiles at the end of each period ωkτp, k = 0,1, . . .
are used for comparison, and the simulation is terminated when ∥ωkτp − ω(k−1)τp∥2 ≤ 10−8. We find
that for a grid size of 513 × 129 and dt = 1/128, it generally takes fewer than 30 periods for the
channel flow to become time-periodic starting from zero flow. Convergence studies are performed for
solutions at fixed times. We only obtain a convergence order between 1 and 2 for both time and space,
because the problem is singular at the leading edge of the channel and in the initial condition. For
smooth problems, second-order convergence is obtained for both time and spatial variables. Details
about the numerical methods and convergence studies are provided in Appendices A and B.

IV. RESULTS AND DISCUSSION

Now we present the channel flows that result from the two types of incoming flows: reverse
and regular von Kármán streets. Unlike flows in an unbounded region, the flow behaves dramatically
different for these two types of incoming flows due to the existence of the walls. We are mainly inter-
ested in the periodic-state solutions. Therefore, all the results presented in this section are obtained
by the above numerical method and are in the time-periodic state unless stated.

A. Reverse von Kármán street

In the reverse von Kármán street case, two staggered rows of vortex blobs enter the channel
periodically with positive circulations in the upper row and negative circulations in the lower row.

We show the contour plots of the vorticity and the speed ∥u∥ = √u2 + v2 of the flow over the
whole channel at one time instant (beginning of a period) in Figure 3. The plots are obtained with
Ur = Γr = 1, which implies Ub = Γ = 1.

FIG. 3. Contour plots of vorticity (a) and flow speed (b) obtained with Re= 1000, Sa = 1, Sb = 0.5, Ur = 1, and Γr = 1. (a)
Region shades give vorticity values; (b) line shades give flow speed values.
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FIG. 4. Instantaneous contour plots of vorticity obtained with Sa = 1, Sb = 0.5, Ur = 1, Γr = 1, and (a) Re= 200, (b)
Re= 500, (c) Re= 2000, and (d) Re= 5000.

In Figure 3(a), we notice that the vortex blobs mainly move in the downstream direction and the
structure of the reverse von Kármán vortex street is maintained in the channel. The blobs diffuse in the
channel, and their shape approximates a semicircle due to the walls’ presence. Each blob induces an
upstream flow between the blob itself and the wall and decreases the speed of the flow in that region,
as shown in Figure 3(b). This flow thus generates opposite-signed vorticity in the boundary layer
adjacent to the corresponding vortex blob, which leads to alternating positive and negative vorticities
in the boundary layer.

These properties hold not only for this particular parameter set. We observe the same phenomena
for a wide range of Re, Sa, Sb, Ur , and Γr in the reverse von Kármán street cases. In Figures 4–7,
we show the time instantaneous vorticity contours of the flows at various dimensionless parameter
values, and we take all the contour curves at the same values for comparison.

In Figure 4, we vary the Reynolds number from 200 to 5000 and keep the other parameters
unchanged. The diffusion effect becomes weaker as the Reynolds number increases. Therefore, we
observe stronger vortex blobs as well as stronger and thinner boundary layers in the channel as Re
becomes larger.

In Figure 5, we change the value of Sb, while keeping the other parameters fixed. Sb defines the
vertical space between two incoming blobs, and therefore cannot exceed 1. In the computation, the
vortex blob has δ = 0.05 and we take Sb no larger than 0.8 and only consider situations when the
blobs do not contact the wall.

When Sb is zero, all the negative and positive blobs are aligned on the centerline of the channel
and the blob induced velocity is zero at each blob center at the inflow. They rely on the background

FIG. 5. Instantaneous contour plots of vorticity obtained with Re= 1000, Sa = 1,Ur = 1, Γr = 1, and (a) Sb = 0, (b) Sb = 0.3,
(c) Sb = 0.5, and (d) Sb = 0.7.
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FIG. 6. Instantaneous contour plots of vorticity obtained with Re= 1000, Sb = 0.5, Ur = 1, Γr = 1, and (a) Sa = 0.5, (b)
Sa = 1, (c) Sa = 1.5, and (d) Sa =∞.

flow to be advected into the channel. However, when the blobs enter the channel, there will only be a
finite number of blobs in the channel and their induced velocities do not cancel with each other. The
blobs will shift away from the centerline and form a street similar to the reverse von Kármán street
as shown in Figure 5(a). There is no difference between the reverse and regular von Kármán street
inflows when Sb = 0, as we can view the reverse von Kármán street case as the regular one shifted by
a half period in time. As Sb increases, the vortex blobs are closer to the wall boundary and stronger
interactions with the boundary layer occur.

In Figure 6, we vary the value of Sa and fix the other parameters. Sa defines the horizontal spacing
between two blobs and determines the length of the period. When Sa tends to infinity, only a single
vortex blob is in the channel as shown in Figure 6(d) and the time-periodicity is violated. We notice
that the blob is closer to the wall compared to the one at the same x position in panel (b) although they
are at the same height at the entrance of the channel. This indicates that the interaction between blobs
helps to maintain the vertical positions of the blobs. As Sa increases, the period length also increases,
which leads to fewer blobs in the channel.

In Figure 7, we change the value of Γr and Ur and fix the other parameters. In the background-
flow-dominated regime, the vortex blobs become weaker as Γr decreases. In panel (a), the boundary
layer behaves similarly to the Prandtl boundary layer solution with small perturbations to the main
flow. In the vortex-dominated regime, we fix the strength of the vortex blob and decrease the back-
ground flow Ur from 1 to 0. The background flow generates negative vorticity in the lower boundary
layer and positive vorticity in the upper layer. Thus, we observe a weaker Prandtl boundary layer in

FIG. 7. Instantaneous contour plots of vorticity obtained with Re= 1000, Sa = 1, Sb = 0.5 and (a) Γr = 0.1, Ub = 1; (b)
Ur =Ub = 1,Γr = Γ= 1; (c) Ur = 0.1, Γ= 1; (d) Ur = 0, Γ= 1.
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FIG. 8. (a) Instantaneous contour plots of vorticity obtained with Re= 1000, Sa = 1, Sb = 0.5, Γr =−0.5, and Ub = 1. (b)
Instantaneous contour plots of vorticity obtained with the stress-free boundary condition and the same parameters as (a).

panel (c) compared to panel (b) as Ur decreases. Meanwhile, the blobs also generate oppositely signed
vorticity which is weakened by the background flow. Therefore, we find stronger opposite-signed
vorticity with smaller Ur . For reverse von Kármán street inflow, the blob-induced velocity at the blob’s
center is in the downstream direction, which allows the blobs to enter the channel with Ur = 0, shown
in panel (d). We observe two oppositely signed regions of vorticity separated from the wall behind
the first positive blob and the second negative blob. The separated vorticity is much weaker than the
vortex blobs and is smoothed out quickly in the channel.

B. Regular von Kármán street

In the regular von Kármán street case, two staggered rows of vortex blobs enter the channel peri-
odically with negative circulations in the upper row and positive circulations in the lower row. In
contrast to the reverse von Kármán street case where the spatial structure is maintained in the channel,
the vortex street is not stable for regular von Kármán street inflow.

We show the instantaneous contour plots of the vorticity for a certain set of parameters in
Figure 8(a) and observe that the entering vortices move away from the wall, and the structure of
the incoming flow is altered. We see a “crisscross” motion of the rows of vortices which is in
agreement with earlier works.32–34,60 The crisscross motion happens mainly due to the interaction
between the incoming vortex blobs and the wall-separated vorticity. Each vortex blob induces a
flow in the downstream direction and increases the flow speed in the region between the blob and
the wall. Therefore, the vortex blob reinforces the boundary layer and leads to strong vorticity with
opposite sign on the wall which then separates. The interaction between the incoming vortex blob
and the separated vorticity of the adjacent wall boundary layer then pushes the negative vortex blob
downwards and the positive blob upwards. The blobs thus cross the centerline and exchange their
positions in the channel. Afterwards, the positive blobs remain in the upper half and the negative blobs
in the lower half, forming a street with a structure similar to that of the reverse von Kármán street.

FIG. 9. Instantaneous contour plots of vorticity obtained with Γr =−0.5, Sa = 1, Sb = 0.5, Ub = 1, and (a) Re= 200, (b)
Re= 500, (c) Re= 1500, and (d) Re= 2000.
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FIG. 10. Instantaneous contour plots of vorticity obtained with Re= 1000, Sa = 1, Sb = 0.5, and (a) Γr =−0.1, Ub = 1; (b)
Γr =−0.5, Ub = 1; (c) Γr = Γ=−1, Ub =Ur = 1; (d) Ur = 0.6, Γ=−1.

To test this hypothesis, we impose a stress-free condition for u on the wall as
∂u
∂ y
= 0 instead of

the no-slip condition. This condition plus the no-penetration condition leads to ω = ∇ × u = −uy +
vx = 0 at the wall boundary which prohibits the generation and separation of wall vorticity. A similar
strategy was applied by Camarri and Giannetti33 to examine the vorticity field in flow past a confined
cylinder. In Figure 8(b), we show the instantaneous vorticity contours obtained with same parameters
as in panel (a) but with the stress-free boundary condition. By eliminating the wall vorticity, it is clear
that the inversion of vortices does not happen.

We also consider the effect of the parameters Re, Sb, Sa, Ur , and Γr on the flow structures. In
Figures 9–13, we show the instantaneous vorticity contours for various parameter sets, and we take all
the contours at the same values for comparison. We find that in the regular von Kármán street cases,
physical parameters play a significant role in determining the flow structures and dynamics, which is
in contrast to the reverse von Kármán street cases.

In Figure 9, we vary the Reynolds number from 200 to 2000 and keep the other parameters un-
changed. As the Reynolds number increases, diffusion becomes weaker and the strengths of the vortex
blobs are maintained for longer distances in the channel, which leads to stronger vorticity separated
from the walls.

In Figure 10, we vary Γr andUr with the other parameters fixed. We first consider the background-
flow-dominated regime where Ub = 1 and vary Γr from −1 to 0. We observe clearly distinct results
for different Γr in Figures 10(a)–10(c). When Γr is small as shown in Figure 10(a), the blobs move
towards the centerline but do not cross it in the channel. As the magnitude of Γr increases, the flow
becomes more and more irregular. We define the time-averaged vorticity over one time-period τp as

FIG. 11. Contour plots of time-averaged vorticity obtained with Re= 1000, Sa = 1, Sb = 0.5, and (a) Γr =−0.1, Ub = 1; (b)
Γr =−0.5, Ub = 1; (c) Γr = Γ=−1, Ub =Ur = 1; (d) Ur = 0.6, Γ=−1.
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FIG. 12. Instantaneous contour plots of vorticity obtained with Re= 1000, Γr =−0.75, Ub = 1, Sa = 1, and (a) Sb = 0.1, (b)
Sb = 0.3, (c) Sb = 0.5, and (d) Sb = 0.7.

ω =
1
τp

 τp

0
ω(·, t)dt and show the corresponding contour plots in Figure 11. We note that the time

period τp = Sa/U is defined according to the inflow condition.
We define the flow to be a “symmetric street” if ω is anti-symmetric with respect to the

centerline (y = 0.5). This holds for flows with Γr = −0.1 and −0.5. Intuitively, symmetry is possible
because the time-averaged inflow and the geometric shape of the channel are symmetric. However,
we find that when the interactions of the vortex blobs and the boundary layers are sufficiently strong,
the average flow becomes asymmetric as shown in Figures 11(c) and 11(d), and we define such cases
as “asymmetric streets.” In this case, the vorticity separated from the wall is comparable in strength
to the vortex blobs, and the interaction destroys the structure of the vortex streets.

In the regular von Kármán street inflow, the induced velocity at the center of the blobs is in the
upstream direction, and therefore, a positive background flow is necessary for the blobs to enter the
channel. In fact, in the vortex-dominated regime, Ur must satisfy the following bounds depending on
the geometric parameters Sa and Sb to guarantee a downstream velocity of the vortex blobs:

1 ≥ Ur ≥
tanh (πSb/Sa)

2Sa
. (27)

For parameter values Sa = 1 and Sb = 0.5, we find that the flow is always asymmetric in the vortex-
dominated regime for Re ≥ 250.

In Figure 12, we vary the value of Sb and keep the other parameters fixed. As Sb increases, the
vortex blobs are closer to the wall and their interactions with the wall vorticity are stronger as well.

FIG. 13. Contour of vorticity obtained with Re= 1000, Γr =−0.5, Ub = 1, Sb = 0.5, and (a) Sa = 0.5, (b) Sa = 1.0, (c)
Sa = 1.5, and (d) Sa =∞.
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FIG. 14. Diagram of vortex street type for (a) Re and Γr with Sa = 1 and Sb = 0.5. (b) Sb and Sa with Re= 1000 and
Γr =−1,Ub = 1. The triangles indicate numerical results giving symmetric streets and the circles indicate asymmetric streets.
The solid line indicates the transition boundary.

Therefore, we expect to observe more irregular streets when Sb becomes larger. Figures 12(a)–12(c)
show contour plots of vorticity in symmetric streets and Figure 12(d) shows an asymmetric street.

In Figure 13, we change the value of Sa and keep the other parameters unchanged. The vortex
blobs are closer to each other as Sa decreases, which leads to more irregular streets since the inter-
actions are stronger, as shown in Figure 13(a). When Sa tends to infinity, only a single vortex blob is
present in the channel. The blob crosses the centerline under the pure influence of the wall vorticity
without other blobs.

In Figure 14, we plot a diagram of different types of vortex streets corresponding to the fluid
parameters Re, Γr , Sa, and Sb. In general, the flow transitions from symmetric to asymmetric as Re in-
creases, Γr becomes more negative, Sa decreases, and Sb increases. We only consider the background-
flow-dominated regime in panel (a) and note that for a given Re, if the flow is asymmetric for Γr = −1,
then all flows in the vortex-dominated regime are also asymmetric.

For symmetric streets, the time-averaged vorticity ω is always zero along the centerline of the
channel. Right above the centerline,ω is negative at the entrance of the channel and gradually becomes
positive. Similarly, ω is positive right below y = 0.5 and decreases along the channel to negative
values. We define the exchange distance Xe as the horizontal position whereω inverts its positive and
negative layers in the channel,

Xe = inf{x : ω(x,0.5 + h) ≥ ϵ}. (28)

Here, ϵ is a small threshold and is chosen to be 10−6 in the simulation. h is the y-direction grid spac-
ing and 0.5 + h is one grid point above the centerline. By the symmetry of ω, this definition is the
same as Xe = inf{x : ω(x,0.5 − h) ≤ −ϵ}. In Figure 15, we use the contour plots ofω at Re = 1000,
Sa = 1, Sb = 0.5, Γr = −0.5, and Ub = 1 to illustrate the position of Xe. This definition of Xe is similar
to the xinv quantity defined by Camarri and Giannetti33 as the cross section in x at which positive and

FIG. 15. Contour plots of ω at Re= 1000, Sa = 1, Sb = 0.5, Γr =−0.5, and Ub = 1. The centerline y = 0.5 is shown with a
horizontal dashed line. Above the centerline, negative vorticity enters the channel and increases to positive values after Xe.
Below the centerline, positive vorticity enters the channel and decreases to negative values after Xe.
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FIG. 16. (a) Xe vs. Re with Γr =−0.2,−0.3,−0.4,−0.5,−0.6,−0.7,−0.8,Ub = 1, Sa = 1, and Sb = 0.5; (b) Xe vs. Sb with
Sa = 1,1.25,1.5,1.75,2, Γr =−0.75, Ub = 1, and Re= 1000.

negative vortex trajectories intersect. Xe depends on Re, Γr , Sb, and Sa, and we plot Xe versus different
parameters in Figure 16. We only consider Xe for symmetric streets. The missing data points in the
graph indicate that the street is asymmetric for that particular parameter set. We define Xe = 4 if the
positive and negative blobs do not cross the centerline in the channel.

In panel (a), we find that Xe increases when the Reynolds number increases. This is in contrast to
the observation by Camarri et al.33 where they found the inverted position monotonically decreases
with Re. However, their work focuses on a narrower range of Reynolds numbers (50-170) with a
square cylinder as the vortex generator, which is different from our model. When Γr becomes more
negative, the vortex blobs and the interactions with the separated vorticity are stronger, resulting in
a smaller exchange distance.

When Sb increases, the blobs are closer to the wall which makes them move towards the center-
line faster, as the wall interactions are stronger. On the other hand, the blobs must also travel further
to invert their positions as they are further moved from the centerline. Therefore, in panel (b), the
maximum Xe is obtained at a moderate value of Sb instead of at the boundaries, and we find that Xe

decays linearly with Sb beyond the maximum.
The effect of Sa on Xe is also complicated. When Sb < 0.175, we notice that Xe decreases with

Sa, and when Sb ≥ 0.2, it increases with Sa. When Sb is sufficiently small and the blob is close to the
centerline, the inversion location mainly depends on the speed of the vortex blob. For negative Γr , this
speed increases with Sa which leads to smaller Xe. When Sb is large, the blobs are pushed towards the
centerline through their interactions with the boundary vorticity. The exchange distance Xe is more
influenced by the strength of these interactions. We therefore observe smaller Xe with smaller Sa as
the interactions between the blobs and the separated vorticity are stronger.

V. CONCLUSION

In this work, we have numerically studied the effect of wall confinement on vortex street dy-
namics in a channel flow. Instead of modelling a specific vortex generator, we model typical wakes
as smoothed von Kármán vortex streets with various vortex strengths and geometries and apply them
as inflow boundary conditions. This approximation allows us to explore a large parameter space of
{Re,Γr ,Ur ,Sb,Sa} and classify the vortex dynamics of the channel flows.

When the inflow is a reverse von Kármán street, we find that vortex blobs maintain their spatial
structure from the inflow and mainly move in the downstream direction. When the inflow is a regular
von Kármán street, we find that the vortex blobs move towards the centerline and exchange their
positions in the channel. This “criss-cross” motion is due to the interactions between the blobs and the
separated vorticity from the wall. The location where the inversion happens depends on the strength of
this interaction, as well as the momentum of the vortex blobs and the geometry of the incoming streets.
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For the regular von Kármán streets, different parameters lead to very different flow profiles. We
have classified them as symmetric or asymmetric streets depending on the symmetry of the time-
averaged vorticity. The transition to asymmetry happens when the interactions between the blobs
and the separated vorticity are sufficiently strong to destroy the spatial structure of the inflow. We
have determined the transition location in certain cross sections of {Re,Γr ,Sb,Sa} space. In general,
the flow transitions to asymmetric as Re increases, Γr becomes more negative, Sa decreases, and Sb
increases.

An extension of this work is to consider the vortex dynamics in a three-dimensional channel.
This requires an understanding of the vortex wakes behind different vortex generators in 3-D flow.
Another interesting topic is to apply the current fluid model to study the vorticity-enhanced heat
transfer process. For example, Hildago et al.61 used a piezoelectric driven reed to generate a reverse
von Kármán street in a heated channel and found a large increase in the coefficient of performance
(the ratio of the thermal power dissipation to the mechanical power used to drive the flow). Shoele
and Mittal62 studied heat transfer of a self-oscillating flexible reed in a channel flow which generated
a regular von Kármán vortex wake. They reported that the optimal thermal performance is achieved
when the vortex wake disrupts the boundary layer but does not have strong vortices. A better under-
standing of the vortex dynamics in a channel flow may suggest vortex generators with improved
thermal performance.
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APPENDIX A: NUMERICAL METHODS

In this section, we show the details of our numerical methods. Equations (23) and (24) are dis-
cretized with an linearized implicit Crank-Nicolson scheme. Denoting the current time step as n, the
time discretization is

ωn+1 − ωn

dt
+

1
2

un+1/2 · (∇ωn+1 + ∇ωn) = 1
2

1
Re

(∆ωn+1 + ∆ωn), (A1)

−∆ψn+1 = ωn+1. (A2)

With the linearization of the advection term, we see that Equations (A1) and (A2) are coupled
only through Briley’s formula and if we place the boundary conditions in a specific order in the system
of equations, we can write the linear system as follows:
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Here, B stands for Briley’s formula, L = −∆ + u · ∇, c = −dt ū, adv . denotes the advective deriv-
ative condition, I(ωin) and I(ψin) are the identity matrices from the inflow conditions onω and ψ, and
I(ψw) is the identity matrix from the wall boundary condition on ψ. The linear system can be written
in block matrix form as

*
,

A11 A12

A21 A22

+
-
*
,

ψ

ω
+
-
= *
,

b1

b2

+
-
. (A3)

The problem can be solved by a block LU decomposition which leads to the linear system,

(A21 − A22A−1
12 A11)ψ = b2 − A22A−1

12 b1. (A4)

The matrix in Equation (A4) can be formed explicitly as all four blocks are sparse matrices and
the right-upper block A12 is a diagonal matrix given ū , 0. A21 has only 2N + M + 1 nonzeros on
the diagonal, and both A11 and A22 are close to pentadiagonal matrices except at boundary points.
The computational cost to explicitly form the matrix in Equation (A4) is O(N M). The linear matrix
can be solved by an iterative method such GMRES with a preconditioner.63,64 However, we find a
direct solver is sufficiently fast and scalable. For a spatial grid of 513 × 129 and dt = 1/128, it takes
about 150 s to run the simulation for one period on a single processor. The computational cost scales
approximately as (N M)1.3.

Once ψ is obtained, we obtain ω by the following equation:

ω = A−1
12 b1 − A−1

12 A11ψ. (A5)

Since A12 is a diagonal matrix, only matrix-vector multiplication is required to obtain ω from ψ.

APPENDIX B: CONVERGENCE STUDY

In this section, we display the results of convergence studies for time and space. For a smooth
problem, second order convergence is expected for both time and spatial variables. For all the numer-
ical results obtained here, we use the following parameters: the length of the channel L = 4, the height
of the channel H = 1, Sa = 1, and Sb = 0.5. We choose Ub = Γ = 1 for the reverse von Kármán streets
and Ub = 1,Γ = −0.5 for regular von Kármán street, and Re = 500 for both cases.

In Tables I and II, we show the convergence results for spatial variables by comparing the value
of ω obtained at certain locations and a fixed time instant t = 6τp, where τp is the time period. These
locations include interior points at the center line of the channel (x, y) = (2,0.5) and near one of the
vortex blobs (x, y) = (2,0.25) and the boundary point at (x, y) = (4,0.5). Tables I and II show the
results for reverse and regular von Kármán streets, respectively. The error and ratio are calculated by
the following formula:

error =
�����
ω(dx) − ω(dx

2
)
�����
,

ratio =

�
ω(dx) − ω( dx2 )�
�
ω( dx2 ) − ω( dx4 )� ,

and it should be 4 when second order convergence is achieved.

TABLE I. dx-convergence in ω for reverse von Kármán street.

(x,y)= (2,0.5) (x,y)= (2,0.25) (x,y)= (4,0.5)
dx ω(x, y) Error Ratio ω(x, y) Error Ratio ω(x, y) Error Ratio

2−6 6.022×10−3 2.196×10−3 2.8 −2.966 3.124×10−3 2.5 5.326×10−2 8.167×10−3 4.5
2−7 8.218×10−3 7.759×10−4 3.5 −2.969 1.237×10−3 2.3 4.509×10−2 1.830×10−3 1.4
2−8 8.994×10−3 2.248×10−4 . . . −2.970 5.289×10−4 . . . 4.326×10−2 1.292×10−3 . . .
2−9 9.219×10−3 . . . . . . −2.970 . . . . . . 4.197×10−2 . . . . . .
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TABLE II. dx-convergence in ω for regular von Kármán street.

(x,y)= (2,0.5) (x,y)= (2,0.25) (x,y)= (4,0.5)
dx ω(x, y) Error Ratio ω(x, y) Error Ratio ω(x, y) Error Ratio

2−6 −3.269 0.940 1.8 −0.355 0.119 2.6 1.493 0.511 1.3
2−7 −4.209 0.537 2.4 −0.236 4.523×10−2 2.8 0.982 0.395 6.5
2−8 −4.746 0.225 . . . −0.191 1.627×10−2 . . . 0.586 6.069×10−2 . . .
2−9 −4.971 . . . . . . −0.175 . . . . . . 0.526 . . . . . .

TABLE III. dt-convergence in ω for reverse von Kármán street.

(x,y)= (2,0.5) (x,y)= (2,0.25) (x,y)= (4,0.5)
dt ω(x, y) Error Ratio ω(x, y) Error Ratio ω(x, y) Error Ratio

2−6 5.762×10−3 2.458×10−3 3.6 −3.027 5.341×10−2 7.0 2.952×10−2 1.556×10−2 2.4
2−7 8.218×10−3 6.805×10−4 5.4 −2.974 7.706×10−3 3.1 4.509×10−2 6.567×10−3 2.2
2−8 8.994×10−3 1.264×10−4 . . . −2.966 2.451×10−4 . . . 5.166×10−2 2.977×10−3 . . .
2−9 9.025×10−3 . . . . . . −2.963 . . . . . . 5.464×10−2 . . . . . .

As shown in Tables I and II, a convergence order between 1 and 2 is achieved. This is mainly
caused by the leading edge singularity due to the violation of no-slip and no-penetration conditions
of the inflow condition. If we consider a smooth problem where the inflow condition is given by a
Poiseuille flow u(y) = 6y(1 − y), v = 0, then a second order convergence can be achieved with the
same numerical methods.

In Tables III and IV, we show the convergence results for time variables again by comparing the
value ofω obtained at certain locations and the fixed time instant t = 6τp. Tables III and IV show the
results for the reverse and regular von Kármán streets, respectively. The error and ratio are calculated
by the following formula:

error =
�����
ω(dt) − ω(dt

2
)
�����
,

ratio =

�
ω(dt) − ω( dt2 )�
�
ω( dt2 ) − ω( dt4 )� .

As shown in Tables III and IV, the convergence ratios for some points are actually larger than
2. This may be caused by the sudden start of the fluids as the inflow changes abruptly from 0 to
some nonzero values at t = 0. We also consider a smooth problem where the inflow condition is given
by a combination of two Poiseuille flows u(y, t) = 8e−t

3
y(1 − y) + 6(1 − e−t

3)y(1 − y) and initially
the flow in the channel is set to be u(x, y, t) = 8y(1 − y). The flow and its first three derivatives are
continuous at t = 0. We observe a second order convergence in time for this smooth problem.

TABLE IV. dt-convergence in ω for regular von Kármán street.

(x,y)= (2,0.5) (x,y)= (2,0.25) (x,y)= (4,0.5)
dt ω(x, y) Error Ratio ω(x, y) Error Ratio ω(x, y) Error Ratio

2−6 −4.453 0.244 4.9 −0.243 6.987×10−3 3.5 1.493 0.321 4.4
2−7 −4.209 4.934×10−2 6.9 −0.236 1.976×10−3 5.5 0.982 7.407×10−2 3.3
2−8 −4.160 7.117×10−3 . . . −0.234 6.366×10−4 . . . 1.056 2.449×10−2 . . .
2−9 −4.153 . . . . . . −0.233 . . . . . . 1.080 . . . . . .
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