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Abstract

The periodic KPZ fixed point is the conjectural universal limit of the KPZ universality class models
on a ring when both the period and time critically tend to infinity. For the case of the periodic narrow
wedge initial condition, we consider the conditional distribution when the periodic KPZ fixed point is
unusually large at a particular position and time. We prove a conditional limit theorem up to the “pinch-
up” time. When the period is large enough, the result is the same as that for the KPZ fixed point on the
line obtained by Liu and Wang in 2022. We identify the regimes in which the result changes and find
probabilistic descriptions of the limits.

1 Introduction and main results

The KPZ fixed point is a universal two-dimensional random field [I7] to which the height functions of many
random growth models on the line are expected to converge in the large-time limit. Among various properties
found for the KPZ fixed point (see, for example, [7} 111 6] 14} 5] 19 [5] and references therein) is the recent
study on conditional distributions when the field is uncharacteristically large at a specific position and time
[16]. This paper aims to study similar conditional distributions for the periodic KPZ fixed point, which
arises as the universal limit for random growth models on a ring. The size of the ring affects the field, and
the interest is to determine the effect of domain size on the conditional distribution. We first review a result
for the “pinched-up” KPZ fixed point and then introduce the periodic KPZ fixed point.

1.1 KPZ fixed point when it is pinched-up

Let H(x,t) denote the KPZ fixed point with the narrow wedge initial condition. Consider the event that
H(0,1) = L is large. It was showed in [I8] that conditional on this event, H(x,t) — L is distributed as a
properly scaled Tracy-Widom distribution for every fixed (z,t) € R x (1,00) as L — oo. This is consistent
with the intuition that the conditioning makes the shifted height H(z, 1) — L close to the narrow wedge, and
thus, from the Markovian property, the pinched-up process after time ¢ = 1 should look again like the KPZ
fixed point with the narrow wedge initial condition, starting at ¢ = 1. On the other hand, for ¢t € (0,1), the
following result was proven.

Theorem 1.1 ([16]). Let H(z,t) be the KPZ fized point with the narrow wedge initial condition. Let By and
By be independent Brownian bridges. Then, conditional on the event that H(0,1) = L,

H( —tL

NeIAE
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for (z,t) € R x (0,1) in the finite-dimensional distributions sense as L — co.

= (Bi(t) — ) A (Ba(t) + 2) (1)
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The KPZ fixed point with the narrow wedge initial condition satisfies the invariance properties

1
aH(a 2z, a73t) 4 H(z,t) and H(z,t) 4 H(z + 8t t) + n ((z+ Bt)* — 2°) (2)
for every a > 0 and 8 € R. Thus, also implies a result when the conditioning is given at a general point
(X,T) instead of (0,1) (see [I6l, Remark 1.5]): conditioned that H(X,T) = L,
H(EX + 222 1T) — tL
\/§T1/4L1/4

as L — oo for (z,t) € R x (0,1).

The papers [8, Theorem 1.9] and [I0] also considered conditional limit theorems and obtained the first-
order term and concentration results. The result has an implication on the geodesics as well. Based on the
above result, the authors of [16] conjectured that under the same conditional event, the geodesic converges to
the Brownian bridge. This conjecture was recently proved by [9] using geometric and probabilistic methods.
These results show that the geodesic between (0,0) to (0,1) typically stays within the distance of order
L=/* from the straight line.

= (Ba(t) — ) A (Ba(t) + ) 3)

1.2 Periodic KPZ fixed point

Let h(n,t) be the height function of the totally asymmetric simple exclusion process (TASEP) on the discrete
ring of size 2a. We identify the ring as the set {—a + 1,--- ,a} and extend the TASEP periodically on the
integers Z by setting h(n £ 2a,t) = h(n,t). We may call the extended TASEP a periodic TASEP of period
2a. Suppose that initially, h(n,0) = |n| for —a 4+ 1 < n < a and is extended periodically. This initial
condition is called the periodic step initial condition.

An interesting large time limit arises when the period 2a is proportional to ¢%/3, which is called a relaxation
time scale. In this limit, the ring size affects the fluctuations of the height function critically. It was showrﬂ
in [2] that for every positive integer m, for every m distinct points (v;, ;) € Rx R, and every m real numbers
Bii=1,---,m,

- T%/3 Ti — T

_ 3/2
T=(2a)3/2—0c0 im1

converges, where 8 = (81, ,Bm), T = (71, Tm), and ¥ = (y1,-+ ,¥m). The function F,,(8;v,7) are
periodic with the shift v; — ;41 for any ¢, and can be extend to continuously for (v, 7, 3) € R™ xR}* x R™.
The functions F,,,, m = 1,2, - - -, form a consistent collection of multivariate cumulative distribution functions
See Section 2.2] and Appendix [A] for the formula and properties of these functions.
Let H®")(y,7), (v,7) € R x Ry, be a process defined by the collection F,,. It satisfies the spatial
periodicity
H(per)(,y +1, 7.) — ’H(Per) (77 7—).

Since we will only discuss finite-dimensional properties in this paper, we will simply call it the periodic
KPZ fixed point with the periodic narrow wedge initial condition. The limit was also proved for the
discrete-time TASEP [13] and the PushASEP [12] on a ring. The distribution functions F,, are expected
to be the universal limits for the multi-time, multi-position distributions of the KPZ universality class in
the periodic domain at the relaxation time scale. The convergence was also extended to other initial
conditions satisfying some technical assumptions [3]. Since we will only consider the periodic narrow wedge
initial condition case in this paper and leave other initial conditions for future consideration, we will simply
call HPe)(~, 1) the periodic KPZ fixed point without mentioning the initial condition.

n [2], the case when ; # v/, 7 = 7, and B; = B,/ for some i # i’ was not analyzed. See Appendix |A| how we can obtain
the result in this case.



Unlike the KPZ fixed point, the periodic KPZ fixed point does not satisfy the invariance properties .
Instead, it was conjectured in [2] that

VB3P (2623 er) — H(v,7) ase— 0 (5)

and
V2
Tl/4T1/2
where B is a Brownian motion. The limit in (@ does not depend on . The one-point distribution case of
() with v = 0 was verified in [4, Theorem 1.6] and the one-point distribution case of @ was proved in [4]
Theorem 1.5].

(3’-[(7”‘”“)(77 T) + TT) — B(7) as T — o0 (6)

The process H®¢") has period 1. It is illuminating to consider the general periods. For p > 0, let
Hy(y,7) = p'PHE) (p~ ey, p~*7). (7)

Then, it satisfies
Hp(v+p,7) = Hp(7,7) (8)

We call it the p-periodic KPZ fixed point (with the periodic narrow wedge initial condition). The processes
with different parameters are related by the formula

PP H, (py, 0¥ 1) £ P H (07,67 7) 9)
for all p,q > 0. The conjectures and @ are translated to the conjecture on the large period limit
Hp(2v,7) = H(v, 7) as p — 00 (10)
and the conjecture on the small period limit

v

11/4 (Hp(v,7)+p'7) = B(7) asp — 0. (11)

1.3 Results

The goal of this paper is to study the periodic KPZ fixed point when it is unusually large at the origin
at a specific time. We obtain the following results up to the time before the “pinch-up”. There are three
theorems depending on the period.

Theorem 1.2. Conditional on the event that H,(0,1) = ¢,

HP(ﬂ%?ﬂ -t

\@51/4

for (z,t) € R x (0,1) in the sense of convergence of finite-dimensional distributions as £ — o0 z'fE|

— (B1(t) — x) A (Ba(t) + )

Mt <p and logp < 03/

Here, By and By are independent Brownian bridges.

2The notations mean that pf!/4 — oo and logp/ZS/2 — 0 as £ — oco.



Theorem 1.3. Conditional on the event that H,(0,1) = ¢,

Hy (322, 8) — 1
\/551/4

— M, (z, 1)

for (z,t) € R x (0,1) in the sense of convergence of finite-dimensional distributions as £ — oo if

p=rVv20 /4 with r > 0.

Here, the random field M (x,t) is defined in Subsection [1.4)

Theorem 1.4. Conditional on the event that H,(0,1) = ¢,

Hp(z\z(%’ ) — il N LB@)
V20174 V2

for (z,t) € R x (0,1) in the sense of convergence of finite-dimensional distributions as £ — oo if

(“llogl < p< 74,

Here, B is a Brownian bridge.

We have several remarks.

~ Hp (22 1)—te
Let Hy(x,t) = %
and real numbers hq,--- , hy,_1, the limit

. The above results should be understood as, for every positive integer m

lim P (ﬁp(xlvtl) >hy,--- 7ﬁp(xmflatm71) > hm—1

£— 00

,(0,1) = e) (12)

exists in each case and is given by the probabilities described in the theorems. The conditioning on
Hp(0,1) = ¢ means

P (ﬁp(xlvtl) > hiyo  Hp (T 1stme1) =l 1, Hp(0,1) € (£ — ¢, 0 + e))
;
2 P(H,(0.1) € (( - .0+ 0))

In all three cases, the position and the height are scaled the same way as in the KPZ fixed point case
(1), except for multiplicative 2 in the spatial variable (see ([10])).

As mentioned at the end of Section if the KPZ fixed point is conditioned on the event H(0,1) =
¢ — oo, then its geodesic stays within the order £~/4 from the straight line from (0,0) to (0,1). Since
‘H,, has the period p, it is natural to conjecture that limit theorems for the periodic KPZ fixed point
take different forms depending on p > ¢=1/4 or p < £~'/%. The results above show that the critical
regime is indeed when p is same order as £~1/%.

In Theorem p is allowed to tend to zero, stay O(1), or tend to infinity as long as it satisfies
p > (~Y* and logp < ¢3/2. In this case, the limit is exactly same that of the KPZ fixed point
as the KPZ fixed point (except for the factor 2 in the spatial scale). The condition logp < 3/ is
technical one. We expect that Theorem holds true as long as p > ¢~'/4 but it is not clear how to
remove this condition from our proof.



e In Theorem and the period p necessarily tends to zero. Theorem corresponds to the case
when the period and the geodesic interact critically, while Theorem [I.4]is about the situation when the
geodesic is overwhelmed by the period. The condition p > £~!log ¢ in theorem is also a technical
one, which may be weakened, but we do not expected that it can be completely removed.

e From the scaling property @, the theorems imply similar results when we condition at time 7 instead
of time 1: conditional on the event that #,(0,7) = ¢, the limit of

3/4
My (V22 7)) — th

ﬂ71/4€1/4

as { — oo is equal, in the sense of finite dimensional distributions, to one of the above three theorems.

e For the case when p = O(1) or p — oo in Theorem it is also interesting to consider the case when
the conditioning is given at a general position instead of the origin. We expect a result similar to
(3). However, unlike the KPZ fixed point situation, the periodic KPZ fixed point does not satisfy the
invariance properties , and the result does not directly follow from Theorem |1.2} This situation will
be studied in a separate paper.

1.4 The limiting distribution for Theorem [1.3
We now describe the random field M, appearing in Theorem It depends on a positive parameter r.

Definition 1.5. Forr > 0, define the function

W,(x,y):max{seR:[x:s}—i—[yjs}>0}, 2,y €R, (13)

where [a] denotes the largest integer less than or equal to a.

The maximum is achieved since the function s [L?S] + [y—js] is non-increasing and left-continuous.

The function w,(z,y) satisfies the following properties.
Lemma 1.6. (a) If (z,y) — (¢',y) = k(r,—r) for some k € Z, then w,(x,y) = w,(z’,y’).

(b) For every z,y € R,
y—x y—z r—y r—=y
r , = —, — — = , — —_ . 1
wy (2, y) max{x—i—r{ 5 } y r[ 2r] r} max{y—&—r[ 5 } x r[ 2r] r} (14)

(c) For every x,y € R,

r+y
5

lim w,(z,y) =x Ay and liné we(z,y) = (15)
r—

r—o0
(d) For everyr > 0, the function w,(x,y) is a non-decreasing continuous function in both x and y variables.
(e) For every x,y, the function r — w,(x,y) is continuous.

Proof. (a) is straightforward.

(b) Both formulas and are invariant if (z,y) is changed to (z + r,y — r). Hence it is sufficient to
show that they are the same when 0 < y — z < 2r. In this case, the first formula of is equal to
wy(z,y) = max{z,y —r}. On the other hand, the formula is equal to z if z <y < x4 r and is equal
toy—rifz+r <y <az+2r. Thus, and the first formula of are the same. The formula
implies that w,(z,y) = w,(y, ) and hence the second formula of follows from the first formula.



() Asr — oo, [§f] = —1if a <0 and [§] = 0 if @ > 0. On the other hand, as r — 0, r[$] — § for every

real number «. Thus, (c¢) follows from (b).

(d) The non-decreasing property is easy to check from . On the other hand, if w,(z,y) = s, w,(2',y') = &,
and (z,y) = (2',y) + (€1, €2), then we find from that s — max{e;,e2} < s’ < s + max{—e1, —e2}.
Thus, w,(z,y) is jointly continuous in (z,y).

(e) The property clearly holds if x = y since w,(x,2) = x. For x # y, since w,(x,y) = w,(y, x), it is enough

to consider the case when y > z. Let f(r) =z +r [%2] and g(r) = y —r [4:2] —r. They are continuous

functions of r € (0,00) \ {47 :n =1,2,---}, and so is r = w,(z,y) = max{f(r),g(r)}. At ro =", we
find that f(r) = “5% as r T ro and f(r) — ZH¥ — L2 asr | ry while g(r) — ZF¥ — -2 asr 1 ry and
g(r) — “2'?’ as r | ro. Thus, w,(z,y) = wy,(z,9) as r — rg in either direction. This completes the proof.

O

We now define M, (z,t).
Definition 1.7. For every r > 0, define

L go 1 (") )

— (B (t) +Ba(t)) —x, —=( — By’ (f) + Ba(t)) + x|, z,t) e Rx (0,1),
\@(1() 2(1)) \/i( 1 (1) + Ba(t)) (z,1) (0,1)

where Bgr)(t) is a Brownian bridge on the circle S'(r) = R/\/2rZ and By(t) is an independent standard
Brownian bridge.

M, (z, ) = Wr<

Here we identify S*(r) with the interval (—ﬁ, ﬁ} Lemma (a) shows that M,(z,t) is unchanged even

if we change the value of IB%@ (t) by an addition of v/2rk for some integer k. Thus, M, (x,t) is well-defined.
The limits M,(z,t) as r — oo and r — 0 are the ones appearing Theorems and respectively. As

r — 00, S1(r) becomes R and Bgr)(t) converges to a Brownian bridge By (t). Hence, by (18], M, (x, t) converges
to (M\/%Bk(t) —z) A (w + ). Since Bl(t)\'/gﬂgz(t) and _El(%BZ(O

have the same distribution as a
pair of independent Brownian bridges, we see that M,(z,t) — (B1(t) — z) A (B2(t) + z) in distribution as

r — 0o. On the other hand, the second equation of implies that M,(x,t) — %Bg(t) asr— 0.

1.5 Right tail of one-point density
The analysis of the paper also yields the following right tail asymptotics.

Theorem 1.8. Let

Fo(Bim,7) = %Pmp(m < ) (16)

be the one-point density function of the periodic KPZ fixed point. Then, as £ — oo,

1
We_%ew(l +0(1)) if 07V < p and logp < €3/2,
™
Fo(6:0,1) = 722(;%@3“(1 +o(1)) if p=rv204, (17)
1 _443/2 1 —~1/4
————e€ 3 1+o0(1 if £ ogl < p < 07V,
Nzl (I+o(1)) if gl <p

where

= e = @ Ze—%z’*. (18)

kEZ keZ



Thus, if £~/* <« p and logp < £3/2, the right-tail is same as that of the density function of the GUE
Tracy-Widom distribution. For the KPZ fixed point on the line, which is the p = oo case of the periodic KPZ
fixed point, the one-point distribution is given by the GUE Tracy-Widom distribution. Hence, we expect
that the right-tail does not change as long as p > ¢~ /4.

The right tail when p = 1 was previously obtained for the the one-point distribution function. The result
[, Theorem 1.7] shows that

3/2
,%4/

P (H1(0,1) > £) = (14+00(73/?))  asl— oco.

167¢3/2 c

The above theorem when p = 1 is consistent with the formal derivative of this result.

1.6 Structure of the paper

The proofs of Theorems are based on an analysis of an explicit formula of the multi-time, multi-
position distributions of the periodic KPZ fixed point obtained in [2]. The method is similar to that of [16]
for the KPZ fixed point, but the formulas for the periodic KPZ fixed point are more complicated, and hence
analysis becomes more involved. The other difficulty is to find probabilistic descriptions of the limits of the
formulas, especially for Theorem [I.3] which we first obtain in terms of complicated contour integrals. We
guess the probabilistic interpretations of the formulas and check that they are correct by direct computations.

The explicit formula of the multi-time, multi-position distributions of the periodic KPZ fixed point
involves an integral of a Fredholm determinant. In Section [2] we introduce this formula and show that upon
the conditioning, the integral of some terms of the series expansion of the Fredholm determinant vanishes. We
then state four propositions, Proposition [2.8 and prove Theorems|1.2 assuming these propositions.
We also prove Theorem in this section. Section |3|is a preparatory section where we consider a function
appearing in the distribution formula to compute its limit and obtain several bounds. Section [is the main
analytic part of the paper. We perform asymptotic analysis and prove Proposition [2.842.10, Proposition
m is proved in Section [5| There are two sections in the Appendix. In Appendix [A] we prove for the
exceptional values of parameters that were not treated in [2] and also prove the continuity and consistency
of the distribution functions F,,. Finally, we show in Section [B] that the series formula of the Fredholm
determinant in Section [2]is the same as that of [2].

Acknowledgments

The work of Baik was supported in part by NSF grants DMS-1954790 and DMS-2246790. The work of Liu
was supported by NSF grants DMS-1953687 and DMS-2246683.

2 Proof of theorems

2.1 Set-up

The conditions on p and ¢ in Theorem [1.2 are
e (Case 1) p>> £~/ logp < £3/2, and ¢ — oo,
o (Case2) p= rv/20~1% and ¢ — oo,

e (Case 3) {'logl < p< =% and ¢ — oo,

3 Asymptotic result was also obtained for P (H1(y,7) > £) for all v, 7.



respectively. In the rest of the paper, we will refer these limits as “for Case 1”7, and so on. In each case, we
evaluate the limit of

P (ﬂﬁl {;qp(xi,ti) > hi} ‘Hp(o,l) = z) i (19)

i=1

in . We will also often state that a result holds “eventually” to mean that it holds when the appropriate
parameters are large enough. For example, for Case 3, it means that there are positive constants ¢y, ca,c3 > 0
such that the result holds for all ¢ and p satisfying ¢ > ¢1, p~ 1 0~1/4 > ¢, and 25 > c3.

The following result from [I6] shows that when we consider the limit of it is enough to consider the
case when t{,--- ,t,,_1 are all distinct.

Lemma 2.1. [16, Lemma 3.6] Let Y be a random field on R x (0,T) with the property that for every positive
integer d and x1,--- ,xq € R, the cumulative distribution function P (N_,{Y (z;,t;) < B;}) is continuous
in the variables B; and t; for every 1 < i < d. If a sequence of random fields Y,, on R x (0,T) satisfies
(Yo (xiyti))i=1,..a = Y (zi,t))i=1,... .a in distribution as n — oo for every d and for every (z;,t;) € R x
(0,7),i=1,---,d, wherety,--- ,tq are distinct numbers, then Y, (z,t) — Y (z,t) in the sense of convergence
of finite-dimensional distributions as n — oo.

Thus, the convergence for distinct times imply the convergence for arbitrary times if the limit distributions
satisfy a continuity property. The limit fields in Theorems [[.2}I.3] clearly satisfy the continuity properties,
and thus, it is enough to prove the convergence in distribution for distinct times only.

2.2 Formula of the distribution functions

Recall the relation between H,, and ("), When the times are distinct there is an exact formula for
the multi-point distributions of #®¢"). We state the formula here. We analyze this formula to prove the
theorems.
Let B1,-++,Bm be real numbers. Set I;” = [3;,00) and I; = (—oc,(3;]. Consider m points (y1,71),
s (Ym,™m) € R x (0,00) satisfying 0 < 73 < -+ < 7,,. The paper [2] obtained formulas for the joint
probabilities

P (O (n,m) € I, oo HE) (e, Tone1) € Ty, HO) (G, 7o) € 17 (20)

for an arbitrary choices of + and — in each place. When all but the last signs are positive, we have (see [2]
eq. (7.17)] and note the relation between H (") and H,,)

P(ﬁ{Hm,mzﬂi}m{ﬂmm,rm)gm) e fo foap@ [ e

Z
i=1 i=1 7

where the contours are circles centered at the origin with the radii satisfying 0 < |2z1| < -+ < |z;n| < 1. With
z = (21, ,2m), the functions C(z) and D(z) are defined in and below. In Appendix [Al we will
use the case when all signs are negative.

To introduce the function C(z), let Lis(z) denote the polylogarithm function of order s. Then,

ort A1 (zi)+—% 3/2 Az (2:)

m—1 m
1

1=

=1 epr /2

GQB(Zi,Zi)72B(Zi+1,Zi) (22)

Zi — Zi41 L+1)+ﬁA2(2i+l)

i=1

4The result is also obtained for equal-time case when 7; = Ti+1 for some i as long as 3; < Bi+1.
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_\/%LB/Q(Z)? AQ(Z) = —\/%Li5/2(z)’ B(Z,Z,) _ i z (z )

e 23
Am S (k+ KV (23)

Here, we set z,,,4+1 = 0 in the expressions.
The function D(z) is a Fredholm determinant. The series formula of it is

D(z)= Y, nl Dy (2) (24)

nef{0,1,+ }m

where n! = nilng! - n,,! for n = (nq, -+ ,ny) and Dy (z) is given below. The formula of Dy,(z) below is
slightly different from that of [2 Lemma 2.10] and we explain in Appendix [Blhow to obtain the formulaﬂ
For |z| < 1, define the discrete set

L,={w: e 2 = 4, Re(w) < 0}. (25)

For n = (ny, - ,ny,) and distinct complex numbers z1, - - , 2z, in the punctured unit disk, let

Dn(z) = ﬁ (1 - Zz‘l)n (1 - Zzl>" > Ho(U,U)Ru(U,U)Ea(U,U)  (26)

i=2 U,UeLz] x--xLIm

with the functions defined as follows. Let

1 w

h(w,z) = ——— Liy o (ze®=¥)/2)q for Re(w) < 0. 27
(w,2) N A 1/2( )dy (w) (27)
For U = (UM, ... . UM) and U = (UW,... ,UM) with UD, T L7, we write the components U =
(ul(-i), e z)) and U(Z = (4 5) . usf)) Then,
Ho(U, 0) = [ T 205" ewn 5o 2 )= () =i (@) (28)
i=1j=1

where h;(w) := h(w; 2;) and ho(w) = hpe1(w) = 0. Next, for X = (z1,--- ,2,) and Y = (y1,- -+, ya), let

)a — H1§i<j§a(xj - xi)(yj — yz)
H?,j:1(xi + yj)

K(X;Y) = det ( (29)

z; + Y
denote the Cauchy determinant. We have

ﬁH (Z) z) HK U( G+, U() U(i+1)) (30)

=1 jl—l

with the convention that U©) = U(©) = y(m+1) — {j(m+1) — ) Finally,

m . _TiTTi—1 34 YiT Vi1 2 [3i—ﬁi—ls
H H Ez+ () Ez ( 5})7 Ez,:ﬁ:(s) — e 3/2 R T =172 ) (31)

1=17;,=1

5The paper [5] also discusses another Fredholm determinant formula.



2.3 Derivative of the distribution function

The conditional probability is interpreted as (see ((19))

P( ﬁ {Hp(’)/k,Tk) > Bk} ,Hp(’}/mﬂ—m) = ﬁm)

k=1

~ lim P (ﬂ;n:_ll {Hp(’)/k,Tk) > Bk} N {Hp(’Ymva) € (ﬁm — € Bm+ 6)}>

e—0 P (Hp('ym, Tm) S (ﬂm -6 Bm + 6))

M%P (0?2711 {HP('VkaTk) > By N {HP(7m= Tm) < ﬂm})
aﬁ%mmmmm < Bm) '

We now take a derivative of (21) to find a formula for (32). We have the following result for the numerator.
The denominator is given by the same formula with m = 1 In the result below, compared with (24] . the sums
are only over n € {1,2,---}™, instead of being over n € {0,1,2,---}"™. Also Dy(z) is the same as Dy(z),
except for the extra factor Zn 1 (u §m) + ﬁ;m)) in the summand. This proof is modeled on a computation
from [16].

Proposition 2.2. Let N = {1,2,---}, the set of positive integers. Then,

0 m—
WIP (ﬂk:ll{Hp(’Yk7Tk) > ﬁk} N {Hp('ymfrm) < Bm})
m
- m 33)
Du(2) Dal2)\ 1 dz; (
A(2m) n
e f - f (e £ B vow & 22 )T
where the contours are the circles centered at the origin with radii satisfying 0 < |z1| < -+ < |zm| < 1. The

terms A1(z), C(z), and Dy(z) are defined in , , and , and forn = (ny, - ,ny),
~ S zi\" zi \ TP 3 3
Doz) =TT (1- 1— Ho (U, U) R (U, U) Eo (U, T 4
@-T1(1-=) (1-2) DR ACAUT NGAUTNUARREY)

=2 U, UeLl} x---xLym
where .
Ra(U,U) = Ra(U,0) Y (uS™ +a{™). (35)
j=1

Proof. In the formula , Bm appears in two places. Since

dC(z) 1 dEn(U,U) 1 u™ 4 g™
dﬁm :mAl(Zm)C(Z) and d/‘T pl/ UU jz::l +u )a

we find that
0
0Bm

ST a5 Bz bR

ne{o,Lw}m ne{0,1,-}m =1 F

P (MeS { Hp (s ) = Bk 0 {Hp (s Tn) < B })
(36)

where the sums are over n € {0,1,---}™. Note the fact that E(U, U) decays super-exponentially fast as a
variable tends to co in the sets L, where the rate of decay depends only on |z| € (0, 1). Hence the summation
of Dp and Dy, are uniformly convergent. Thus, we can change the order of the integral with respect to z
and summation over n. Now Lemma [2.3] below shows that the integral is zero if one of the components of n
is zero. Thus, we obtain the result. O]
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Recall that the contours for the integral are circles satisfying 0 < |z1] < -+ < |zp| < L.

Lemma 2.3. If one of the components of n = (ny,--- ,ny,) is zero, then
]{. . .fAl(zm)C(z)Dn(z) ﬁ g (37)
=1~
and m
%...j{c(z)bn(z)ilj[l ZZ —0. (38)

Proof. The case when m = 1 can be checked directly. Note that in this case Dyp(z) = 1, Dy(z) = 0. And
the functions C(z), A1(z1)/2z1 are both analytic at z; = 0. These implies the two identities and (38).
Below we assume that m > 2.

Let n = (n1,--+ ,ny,) be given and one of the components is zero. Let k be the smallest integer such
that ny = 0. We will show the integrands of both integrals are analytic as a function of z; in the integration
domain, and thus the integrals are zero.

We first focus on the integral in . Since ny = 0, the set L7* is empty. Thus, the integrand does not
contain any factor involving U*) and U (k) which depend on z;. If k = 1, the only term that depends on z;
in A1 (2,)C(2)Dn(z) [[1~, L is the factor

i=1 z;

1 g @ -(2) 21\
e~ 22y (ha(uy ) +ha(a;7)) (1 _ 2L eP1A1(z1)+7142(21)+2B(21)—2B(22,21)
21— 22 22

Since |z1] < |22/, this function is analytic at z; = 0. This implies the integrand in is analytic in z;
around the origin. Hence holds when k = 1.
If 1 < k < m, the only term that depends on zj in A;(2,)C(z)Dn(z) [[1n, = is

i=1 z;

1 o= BT (e (uf" ) e (D)) =S (g (u§ ) b (a5 T))
(zr—1 — 2&) (26 — Zk41)

N —1 Nk41
% (1 _ _Fk ) (1 _ Zk) eBr=Br-1)A1(zR)+(Th =Tk —1) A2(21)+2B(21,) —2B(2,25-1) =2B(2k+1,28)
Zk—1

As a function of zy, it is of the form
(26 — 2p—1)" (2 — 2pp1)™ ! x (a term analytic in |z;] < 1)

Since ni—; > 1, the first factor is analytic in 2. On the other hand, due to the contour conditions, the
second factor is analytic in |z| < |2;41|. Thus, the whole term is analytic at z; = 0, and we obtain
when 1 < k <m.
If k = m, the only term that depends on z,, in A;(2,,)C(z)Dn(z) [[;~, zi is
_ AGm) S e @) (87 D)
Zm (mel - Zm)

Mo —
X (1 _ Zm > 1e(ﬁmfﬁm—l)Al(Zm)+(7m*Tmfl)AQ(Zm)+QB(Zm)7QB(zm,zm,l)'
Zm—1

As a function of z,,, it is of the form

)nm,lfl Al(zm) % (

Zm

a term analytic in |z,,| < 1)

11



Since n,,—1 > 1, the above is analytic at z,, = z;,—1. On the other hand, since 4;(0) = 0, the term @
is analytic at z, = 0. Thus, the integrand in is analytic in z,, within the integration contour. We

obtain .
The proof of is exactly the same as that of when k < m since Dy(z) is the same as Dy(z)

except an extra factor Zn (u; (m) | A(m)) which does not depend on z;. When k = m, we have n,, = 0.
This factor 37" (u; (m) 4 A(m)) = 0 hence the integrand is zero. We still have (38). O

From the above results, we can write the probability in as below.

Definition 2.4. Forz = (21, ,2m) with 0 < |21 < -+ < |zm| < 1, define
mot Zi — Zi+1 e ert/ 7z A (zi)+ ;}2 Az(z:)

C*(z) =Cl(z @ T Rl 2B (20,2)=2B(2i11,2:) 39

@=ce 11 = =1l s (39)

where A1, As, B are given in , and we set zy 11 = 0. Define

Di(z) = > Ho(U,U)Ra (U, U)En(U,U),

U,UeLZ] x---xLIm
. o . . (40)
D2 (z) = > Ho(U,U)Ra(U, U)En (U, U)

U, UeLl} x - xLZm

where the functions Hy (U U) Ra(U,U), and Ex(U,U) are defined in 28), (30), and (1)), while the function
Ra(U,U) is defined in . Also define

T%(z) = ﬁ (1 - Zzl>n (1 - )n”l. (41)

Zie
i=2 -1

Corollary 2.5. Let N = {1,2,---} and 1 = (1,---,1). Let C*(z), D%(z), and D%(z) be given above with

———
the parameters
2x; )
=t v = \[1/3:; , B; = t;0 + hi/20M* fori=1,--- ,m, (42)
where 0 <t;1 < <tp1<1l,z1,- ,Zm_1 €ER, by, -+ ,hyp_1 €R, and t,, =1, z,,, =0, h,, = 0. Then,
m—1 V2 ~ ~
H(YEEE b)) — t:h P, P, P, P,
P( N {W)zhi}’ﬂp(o,l)é _ Pogt Prua + Py + Prya (43)
i=1 V20i/4 Pii+Pio+Pii+Pio

where

P = HL;%...%Al(zm)C'(z)DI(z)Tl'(z) =

(271) el
_ 0t (21O (@) D8 ()T (2) TT .
Pz = 2 f A1) @ DAL 2 I

By = S 2m ;4 f(r <>ﬁdjj,

. —1)m-1 . o dz
Pm,2 = ((2721)777, Z D T H .

n! 2z
neNm\{l} i=1

12



2.4 Four propositions

We analyze the equation (43)) to prove Theorems" We will see that the main contributions to the limit

computes

the limit of Pm,l- Proposition shows that P, is of a smaller order. Similarly, Proposition shows
that P, 2 and I3m72 are also of smaller orders. Probabilistic interpretations of the limits from Proposition
are obtained in Proposition In the next subsection, we prove the main theorems assuming these
four propositions. The proofs of these propositions are the main analysis of this paper and they given in
Section d and [

All results in this subsection hold uniformly for the parameters in compact subsets of 0 < t; < -+ <
tmo1 <1, (z1,"+ ,xm_1) ER™ L ER, (hy, -+ ,hpm_1) € R™ 1 although we do not state this fact explicitly.

P
comes from B L for all three Cases. There are four propositions in this subsection. Proposition [2.

We first need some definitions.

Definition 2.6. For every vector a = (a1, ,ay,) of real numbers, we denote
a, 1= 17
a; — a;—1, 2§Z§m
Definition 2.7. For a = (a1, -+ ,am) € R™ satisfying 0 < a3 < -+ < apy and b = (by,-+- ,by) € R™,
define
m m Aa; .2
Ss(a,b) zHE Akt 46
@b = G [ e 11 G 0
where the contours are wvertical lines, oriented upward, satisfying Re(&) > --- > Re(§m). For w =
(w1, ,wm) € C™ satisfying 0 < |w1\ <o < wil, define
m
Aai 2 €
Se(a, b;w) = Z H i 5 H S (47)
7 i—1
& 1=2

where the sum is over the roots of the equations
e =w;  fori=1,---,m. (48)

Let t = (tla"' 7tm) = (tla"' 7tm7171)7 X = (xlv"' ,(Em) = (1.17"' ,(Em,170)7 and h = (hlv"' ahm) =
(h1,--+ ,hm—1,0). The first proposition is about P, 1.

Proposition 2.8. We have

Soo(t,h —x)So(t, h + x) for Case 1,
pi7a et fma S,(t,h — x;w)S:(t, h + x; 1 Lt i Case 2
D 7{ ?{ w)S,(t,h +x;w) Z:H2( ” )211 S, for Case 2,
and
3
23/265/4])1/26%“ P1 — Seo(2t,2h) for Case 3. (50)

The integral contours for Case 2 are counterclockwise circles satisfying 0 < |w1| < -+ < |wm]-

The formula of Pm,l in contains ﬁl(z), which, from , is a series. The above result is obtained
by showing that after scaling z appropriately, the series converges to an integral for Case 1 and to a series
for Case 2. Note that S, is an integral while S, is a series. For Case 3, only one term dominates the series
D1 (Z)

The second proposition shows that P, ; is smaller than If’m,1. Note from our assumptions in section
pf — oo for all three Cases.

13



Proposition 2.9. There is a constant C' > 0 such that

L 3 D
—_ed?p < ie 5 for Case 1 and 2 (51)
pl/2 s Dl
and
3 C ¢
55/4171/26%”371 < e % for Case 8 (52)
B V4
eventually.

The third proposition shows that P, > and [:’mg are small.

Proposition 2.10. There are positive constants § and C such that

_503/2 1,3 »
< Ce % and 3£2Pm72

4£%
e3"" Ppo e

< e, (53)

eventually for all three Cases.

The fourth and final proposition is a probabilistic interpretation of the limits in Proposition 2.8 The
result was obtaine(ﬂ in [16].

Proposition 2.11. Let a,b,c € R™ satisfying 0 < a1 < -+ < -1 < Q-
(a) ([16, Lemma 3.4]) We havfﬂ
Sw(a,b) =P (B(ai) = b1, -+ ,B(am-1) = bn—1,B(am) = bm) (54)
where B is a Brownian motion.
(b) For every r € (0,00),

m wi_ m dwa
%...]{Sr(a,b;W)Sr(&C;W)H (1 - w1> 11 2miw;
g =1 ¢

=2

=P <nhl {Wf(Bl(“i) _ %,Bz(aiwr b; ;CZ) > bi‘;‘ci}n{Bl(am) — b _ _ Ba(am) — cm EZ})

where the contours are circles satisfying 0 < |w1| < -+ < |wy,| < 1, By and By are independent Brownian
motions, and w, is the function defined in .

2.5 Proof of Theorems and

We now prove the main theorems assuming Proposition In (43), denote Py, 1+ P 2 +15m,1 +Pm’2 =
P, .

Proof of Theorems and[1.4. For Case 1, Proposition and imply that

40 4,3
Weiiez Pm — Soo(t, h + X)Soo(t,h - X)
6We need to set £; = —u; in to find the formula (3.6) of [I6].
"The notation P(B(a1) € I1,--- ,B(am—1) € Im—1,B(am) = by) means fh dyy - -- f[ . dym—1 f(y1,-* ,Ym—1,bm) where
f is the joint density function of B(a1),- -, B(am)-

14



By Proposition m (a), recalling that t,, = 1 and x,,, = hy, =0, we find that

p, P (ﬂi’i‘f {B1(t:) — @i = hi, Ba(ti) + =i = hi} (N{B1(1) = B2(1) = 0]’)
P F(Bi(1) = B2(1) = 0)

for independent Brownian motions By and Bs. The limit is equal to

( ﬂ {(B1(t;) — ) A (Balty) + ;) > hi}>

for independent Brownian bridges B, and BQ Theorem (1.2 - 2| then follows from ., and Lemma
Similarly, for Case 2, Proposition n and Proposition (b) 1mp1y that 'f converges to

( ﬂ {w.(B — x4, By(ti) + @) > hi}

B/ (1) = —Bj(1) € rZ>

for independent Brownian motions B} and B)}. Let B;(t) = B,l(t);;é(t) and By(t) = w. Then, B,
and By are again independent Brownian motions and the above probability is equal to

IP’( ﬁ {Wr(B1(t)\-/|-§B2(t) — 2, _B1(t)\%— Ba(t) + ;) > hi} ‘Bl(l) € V2rZ, By(1) = 0),

Since w, in the formula is unchanged if By (¢) is replaced by By (t) + v/2rk for any integer k (see Lemma
(a)), this is equal to

m—1 r r)
(ﬂ {wr —B( +BQ()*:@-,—_B§ (%BQ@ + @) zm}>

o
for a Brownian bridge B(r) on S'(r) = R/v/2rZ and independent Brownian bridge B,. Since Wr(M\/-ng(t) —

®
z, w + x) = M,(z, t) by Definition [1.7 Theoremfollows

Finally, for Case 3, Proposition 2.10[ and Proposition m (a) again show that m converges to

i (Tﬁ {B(2t;) > 2h;} ‘B(z) = o) =P (ﬁl {]Bs(ti) > \@hi}>

i=1

where B is a Brownian motion and B is a Brownian bridge on [0, 1]. Thus, we obtain Theorem O

Proof of Theorem[1.8 Proposition [2.2] Lemma [2.3] and Corollary [2.5] show that
1
fp(6,0,1) = 1/2(P11+P12+P11+P12)
with ¢4 = 1, zy = 0, and ¢; = . Propositions[2.8H2:10| thus imply the result. The equality of the two formula
of ¢(r) is due to the Poisson summation formula, >, ., g(k) = 3,7 (k) with §(t) = [7_ g(z)e 2 *dz,
for suitable functions g. O
We prove Proposition 2.8] 2.9] 2-10] and 2.11] in Section [f] and [5} In the next section, we prove a limit

and estimates for a key function that appear in the proofs.
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3 Preparations

Leta>0,b€e R, ce R, and d > 0. For ¢ > 0, consider the function from G, : R — C defined by

2(d +1ix)

1+4/1+ 240

Ge(x) = 3a&(2)” + (c — 2b)(x) + 63% (b(2)* — ag(x)’)  where () = — (56)

While proving Proposition and [2.10] we need to analyze the functions E“%(s) in (31). In the
appropriate choice of the variable s, E“*(s) are related to the function G, with particular values of a, b, c,
and d: see . We compute a pointwise limit and uniform bounds of G,(x) in this section.
3.1 Pointwise limit
Lemma 3.1 (Pointwise limit). For every x € R,

Ge(zg) — 3a(d+ix)? — (¢ — 2b)(d + iz) (57)

if £ — 0o and xy — x. The convergence is uniform for x in a compact subset of R and for (a,b,c,d) in a
compact subset of (0,00) x R x R x [0, 00).

Proof. Tt is clear since &(zy) — —(d + ix). O

3.2 A lemma

The following simple lemma will be used in the next subsection.

Lemma 3.2. Let A > 0. Let r be a solution to the equation 1> — T% = 1. Then, |r| > 1+ 3(\ﬁ+1) if
0<A<3and\|>1—|— fA>1
Proof. Solving a quadratm equation, all solutions satisfy
" <1+W>1/2 (1 24 )1/2
rl = .
Vv1I+4A+1
Note that
1+ % for 0 <y < 3,
Vi+y >
1+ g for y > 9/16.
If 0 < A <3, then 24— < A <3, while if 4> 1, then YHA=L > Y51 > & Hence,
2A
r>14+ ——— if0<A<3
Irl = 3(VI4+4A+1) -
and 1o
1 2A
rl>1+4+ - if A>1.
Il (\/1+4 A+ 1> B
The result follows by noting that
V13+1 for 0 < A <3,
VI+4A+1< o
1+ VAA+1<4VA  for A> 1.
O
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3.3 Uniform estimates

We find a uniform upper bound of |e%¢(®)| = eReCe(®) From its definition, £(x) satisfies the equation
&(x)? .
8(3/21 = 2¢(x) + 2(d + ix). (58)
Thus,
. a
Ge(x) = Gi(z) + 2b(d + ix) where G () = 3aé(x)* + c&(z) — M{(m):‘. (59)

Consider Gi(z). Note that Gy (z) = — 5% (&(z) — €3/4)% + 3a&(x)63/* — al/? + c&(x). Write

where v, > 0 and w, € R. The quadratic equation for £(x) implies that v, and w, satisfy
02 —w?=1+2d073* and vpw, = —xl™3/4, (60)

Using the first equation, we see that Re((&(x) — £3/4)3) = (—v2 + 3v,w?)09* = (203 — 3v,)%/* — 6dv, L3/2.
Hence,
Re (G1(2)) = —2a(v? — 1)63/? — (¢ — 6ad)v 03/ + ct®/*. (61)

In order to obtain an upper bound of Re (G1(z)), we need an estimate of v,.

Lemma 3.3. Define
Vg
% = Tsar e b ©2)

Then, there is a constant co > 0 such that if £ > co,

2

50 > ﬁ for |z| < V/363/4
and | |1/2
X 6 3/4

Proof. From , v? satisfies the equation

B
2_Z=C where B = 22073/2 and C = 1 + 2d¢—3/4.

(%
2
Vg

o

Let r = C~1/2y, and apply Lemmawith A= %. Note that since v, > 0, we have r > 0. Also note that
r =1+ d,. Thus, Lemma[3.2] implies that

5 - 21,2[—3/2
T 3(VI3 4 1)(1 + 2d0—3/4)2

for |z| < V/303/%4(1 4 2d¢=3/%)

and
|w‘1/2£—3/8
© T 3V2(1 4 2de—3/4)1/2

We take £ large enough so that 2d¢—3/* < % The result follows by noting that m >

for |z| > £3/4(1 + 2d0=3/%).

1
10 and

1 1 ]
3v2,/6/5 ~ 5
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From the definition ,
vp = (14 2d073MY2(1 4+ 6,). (63)

In (6I), Re(Gi(x)) is a cubic function of v,. We write the linear term of v, in terms of a linear term d,
using (63). For the cubic term of v,, we note that since (14 x)¢ > 1+ cz for all z > 0 and ¢ > 1,

03 =(1 4 2d073/%)3/2(1 4 6,)% > (14 3de=3/*)(1 4 34,,).
Thus, since a > 0 and d > 0, we find that
Re (Gy(x)) < —6a(1 4 3d0™3/4)5,0%/% — (¢ — 6ad) (v, — 1)03/* < —6a6,%/2 — (¢ — 6ad) (v, — 1)63/*  (64)

Since (1 +2)/2 <1+ 1a for all z > 0, we see from that v, < (14 d¢=3/*)(1 + 8,). Therefore, we find
that
Re (Gy(2)) < (—6@59683/2 + e — 6ad|®* + |c — 6ad|d) 8z + |c — 6ad]d. (65)

Thus, since a > 0, there is a constant ¢y > 1 such that if £ > ¢y, then
Re (G (z)) < —5al®%8, + |c — 6ad)d. (66)

Since Re(Gy(z)) = Re(Gy(z)) + 2bd from (59), (66), and Lemma [3.3] imply the following bound.

Lemma 3.4. Uniformly for (a,b,c,d) in a compact subset of (0,00) x R x R x [0,00), there are constants
C >0 and cg > 0 such that if £ > cg, then

5@ < Ce™ 57" for |z| < 303/ (67)

and
6
1e5¢@)| < Cem ™ Viel  for a| > S (68)

Corollary 3.5. Let G,(x) be the function defined in (56). Uniformly for (a,b,c,d) in a compact subset of
(0,00) x R x R x [0,00), there are constants co > 1, ¢; > 0, and c2 > 0 such that

6@ < cre=eaVIl forallz € R (69)

and for all £ > cy.

Proof. The result follows from Lemma by noting ¢/ > 1 and 2 + 1 > /]z| for all 2 € R. O

4 Asymptotic analysis

We prove Proposition and in this section. The proofs are almost uniform for all three cases
except that we need to add the restriction p < ¢°/# in the proof of Proposition for Case 1. The remaining
situation for Case 1 is handled separately at the end of this section.

4.1 Choice of contours

It is convenient to introduce the notation
p€1/4
= N

Note that r — oo for Case 1, r is a constant for Case 2, and r — 0 for Case 3.

r
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The contours for the integrals of are circles around the origin satisfying 0 < |z1] < --- < |z] < 1.
We make the following specific choice of the radii. The choice is the same for all three Cases except in the
last subsection which we change the analysis slightly. Let

pr > >pm>0
be real numbers which we keep fixed. We choose the contours as
2 = e*%p*'PiJriGi’ 0; € (—m, 7], (71)

for each ¢ = 1,--- ;m. Throughout this section except for the last subsection |4.10, we assume that z; are
given by the above equation. We write z = (21, , 2 ).

4.2 Bound of C*

The function C*(z) is given by the formula . For every a > 0, polylogarithm functions satisfy

Lia(z) = |3 727 <Nl < 2z for |2 < 1/2. (72)
n=1 n=1
Thus, if [2] < 1/2, then (see (23))
1 1
A(6)| = - =Liaga0)] < el and 1Al = |- —Linga(a)] < . )
Similarly, for |z|,|2'| <1/2,
1« k() IS k) k'
|B(z,2")| = | — < = 27127 < [211']. (74)
dr Mz,;l (k+ K)Vkk'| ~ 4r Mz,;l

We find the following bound.
Lemma 4.1. For z given in , there is a constant ¢ > 0 such that

|C.(Z) _ 1| < cép—1/2e—%ec£p71/267%p
for all 0 € (—m, 7™ and £,p > 0 satisfying €p > 2. Furthermore, |C*(z)| < 2 and C*(z) — 1 uniformly in
0 € (—m,w|™ eventually for all three Cases.

Proof. From , |z:] < e F It lp > 2, then |z;] < e™! < 1/2. From the formula of C*(z), the bounds
(73) and , and the choice of the parameters , we find, using the inequality |e¥ — 1] < |w|e‘w| for all
complex number w, that there is a constant ¢ > 0 so that

m
0% (2) = 1] < eltp™ /2 4 p=/2) (3 faal (0™ D R

i=1

Since fp > 2, we see {p~1/2 + p=3/2 < 34p=1/2. Using |2| < e~ %, we obtain the bound after replacing the

constant ¢ by 2<.
Lp

Note that Ep*1/2e’%p < ;(ﬁp)?’me*%. In all Cases, £p > log ¢ — co. Hence, the term (¢p)3/2e~7 —

(€p4)1/2
0. For Case 1 and 2, The term (¢p*)'/? is bounded below, and thus, tp~1/2¢=% — 0. For Case 3, we have
(~'logt < p. Thus, lp~/* <« ﬁ and fp > 4log ¢ eventually. Thus, fp~1/2e~% < (152/2)4 e~2logt 5,
Hence, C*(z) — 1 for all three Cases, which also implies that |C*(z)| < 2 eventually. O
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4.3 The functions u;(k)

For |z| < 1, a complex number u is in the discrete set L, = {u: e=*/2 = z, Re(u) < 0} if and only if it is of
the form u = —\/—2log z + 4wik for some k € Z. With in mind, define the function

ui(k) = ui(k; 0;) = —/lp + 2rp; — 2i0; + 4wk, k€ Z (75)
for i =1,--- ,m, where the branch of the square root is chosen so that Re(u;(k)) < 0. We also define
0 (k) = (i (B7), kD)) for KO = (Y, k() € 2 (76)
Furthermore, we write
Uk) = (ur(kM), - upn (k™)) for k= (kM. k™) ez =2™ x ... x Z"» (77)
forn = (ny, - ,nm).
Using these notations, the functions in become
Di(z) = Z sa(k,k) and  Dp(z) = Z 32 (k, k) (78)
kkezn Kk kezn
with
s (K, :) = Hn(U(k), U(l})){%n(U(k)v U(l}))En(U(k), U(l})% (79)
Sn(k, k) := Hn(U(k), U(k)) n (U(k), U(k)) En(U(k), U(k)),
where by k € Z®, we mean that k = (k() ... k(™) € Zm1 x ... x Z"m,
4.4 Bound of H,
The function Hy(U,U) in involves the function
h(w, z) = L /w Lil/g(ze(’”z_yz)/Q)dy L e L11/2(ze("’2_(m“lm(w))z)ﬂ)dx
V2r J oo V27 Joo
for Re(w) < 0. From (72)), we see that for Re(w) < 0 and |z| < 1/2,
2 [Re(w) 2o
|h(w, z)| < E/m |2]e®e(@)"=2)/2qg < |4|. (80)
Lemma 4.2. For z given in , we have
|Hn(U(k),U(k)) — 1] < S\n\e-%eslnle’% < 4|n|etn!
for alln e N™, k,R ez, 0 e (—m 7)™, and £,p > 0 satisfying {p > 2. As a consequence,
| Ha(U(k), U(k))| < 5nle*.
Proof. Using the inequality e — 1] < |w|el*l and the estimate (80)),
[ Ha (U, U) = 1] < 8| (miax |z;[)e* ™10z 120 < gnleti
for all U, U € L. x---x L, if |A21\, y|zm| < 1/2. For z given in , |zi] < e % < 1/2 for all 4 if £p > 2.
Inserting U = U(k) and U = U(k), we obtain the result. O
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4.5 Bound and limits of E,
Recall from and that for n = (n1,--+ ,7m),

mo T ) . ) ) ) At 3, Aay 2, LAy +fel/4Ah
_ H H Ez,+(u(l))Ez,—(a(l)) where Ez,i(s) —e 3p3/2 Vapri/Ai® 172
Ji Ji
=1 ji—1

We compute the limit and bounds of Ey(U(k), U(k)) where U(k) is the function from (77). For the limit,
we only need the case when n = 1, and thus we do not state the results when n # 1.
Define

Bt (s) = Bt (s)e 30 HVABRE O (81)
Then,
m Ny
Ea(U(K), U(K)) = e~ 3202 mat)2v2e A man) TT T B (weP) B~ (wiR)) (82)
i=1j=1

where u;(k) is the function from (75). When n = 1, since }_/" | Ah; = 0 and Y_;", At; = 1, this formula
becomes

Ey(U(k), U(k)) = =37 HE%+ () ES (uy (). (83)

The function E**(u;(k)) is expressible in terms of the function G, from (56). Recall the function &(x)
in , which contains the parameter d. Comparing with the formula of u;, we find that

ui(k) = —/Ip(1 — 631/45(%1};9”)) with d = % (84)

A direct computation shows that

B () = & () (85)

with the parameters
===, b=+—=, = V2Ah;, and d= 1. 86
a 3 \/i Cc 1 \/5 ( )

Thus, the results from Subsection [3] are applicable.

We first find a limit of F;(U(k),U(k)). For y = (y1,---,%m) € R™, we use the notation [y] =
([yl}v' o ﬂ[ym])'

Lemma 4.3 (Limit of F,, when n = 1). For Case 1, for everyy,y € R™,

B (U([ry]), U([r3]))

3/2
460

m
— H 6%(Pi+2ﬂiyi)2_(Ahi—Afi)(Pi“rQﬂ'iyi))“’ Agti (pi+27i9:))? = (Ahi+Awm;) (pi+27i0:)) (87)
i=1
uniformly in 0 € (—m,w|™. For Case 2, for every k, k' € Z™,
453/2E1(U(k) U(R)) N He%fi(k‘i)2*(Ahi*Awi)§i(ki)+Azti €i(ki)®—(Ahi+Az:)&; (ki) (88)

i=1
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uniformly in 0 € (—m, ™, where

(k) = pi + +(2mik — i6). (89)
For Case 3, if
b; = ro;
fori=1,--- m, then
e%ZWZEA(U(0)7U(0))-+:fieﬁtﬂﬂr*vﬁz—QAhﬂpr*wﬂ (90)
i=1
uniformly for ¢ = (1, ,©m) in a compact subset of R™.

- 2mk—6;
Proof. From (83), it is enough to compute the limits of E** (u;(k)) = &\ ) We use Lemma From
, d = L. Recall that r — oo for Case 1, r is a constant for Case 2, and r — 0 for Case 3. Thus, for Case
L

V2
d+127r[ry] —0i _ pi i?w[ry] -0 L pit 27Tiy,
V2r V2 V2r V2
and hence Lemma yields the result (87). For Case 2, d + i% =2+ 12”\’;;’1‘ = i\/’g) and we obtain
(88). For Case 3, with 6; = rg;,

c 0 pi— iy
V2r V2
Thus, we obtain (90)). O

We now find a uniform bound for E,(U(k),U(k)). We start with the following result.

Lemma 4.4. There are constants co > 1, ¢ > 0, and c, > 0 such that

AL al T T o ST 01 —ge. 1RO _ 0L
[V, U(k)) | T[ e ™5 2 vamame < o T T et HT B2 HET 51 o)
i=1

i=15=1
for allm € N™| kkezZm, 0¢ (—=m, 7™, and £ > ¢y. As a consequence,

T Amidt g2 3/4 e TR e ST
[Ba(U(K), UGk | T 57 ravaman et o T T emer v riTmen oL 92)
i=1

= i=1j=1

~. 2mk—0;
Proof. Since E*(u;(k)) = V&) with the parameters (86), Corollary gives a bound: there are
constants ¢y > 1, ¢ > 0, and ¢y > 0 such that

2wk —0;

[EYE (ui(k))] < ere =%

(93)

forall k € Z, 8 € (—m, 7], and £ > ¢g. Thus, from 7 we obtain the bound where we replaced c¢? by
c1 and eoV/ V21 by 2c¢,. The bound follows from since

0

AN
2

% > 5= (94)

for every k € Z and 6 € (—m, 7). O

When n =1, due to 7 the above result implies the next bound.
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Corollary 4.5 (Bound of F,, for n = 1). Suppose n = 1. With the same constants ¢ > 1, ¢; > 0, and
> 0 in Lemma[{.4)

m

E1(U(K), U(K))| Sc{“He—Qc*\/%lk——l 200\ Tk 22 )

and

E1(U(k), U(k))] < c{”ﬁe—%ﬁ—%ﬁ (96)

for allk,k € Z™, 6 € (—m, 7™, and £ > co.
For the case when n # 1, we have the following estimate. We use the fact that ¢1,--- ,t,,_1 are distinct.

Corollary 4.6 (Bound of E, for n # 1). Let ¢, > 0 be the constant from Lemma . There are positive
constants cg, 0, and co such that

6%53/2 En(U(k), U(l;)) S e—%‘ses/Q—cQ‘n|€3/2 H H 676*\/ %‘k;w —Cxy/ %lfcy)l (97)

i=1j=1

for allm e N™\ {1}, k,k € Z", 0 € (—m, 7™, and £ > co.

Proof. Since At; are positive constants (recall that ¢y, - ,t,,—1 are distinct) that add up to 1, we find that

ZmAt, =1+ Z - 1A > 1 +m1n{At } for every n € N™\ {1}.

Let c and § be any positive constants satisfying 1 + min/”,{At;} = 2. Then,
(1-¢)> miAt; >146  forallneN™\{1}. (98)
i=1
This inequality implies that

m m m
ZniAti >1+d6+ CZNiAti >1+§+cn IH_I{I{Atz}

i=1 i=1

for all n € N\ {1}. Thus,

m
log <C1n| H EWEQ'“?\/EWNLJSM)

=1

4146
< 7%43/2 In|¢3/? < . min{At;} - 20203 i |Ay| — £ 3/21og|c1|)

The last parenthesis term is larger than or equal to a positive constant ¢, if £ is large enough. Thus, we
obtain the result from Lemma [£.4] after adjusting the constant co. O

4.6 Bounds and limits of R, and ]%n
From ,

k(l H‘K U(Z) U(H-l) U(t) U(z+1)) (99)

alUlK U.Ull > i
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with U® = u;(k®) and U® = u;(k®) and the convention that U©) = U0 = ymt) — lm+d) — ¢
Recall from that

1 a L Ti: — X A
K(X:Y) = det ( > _ Hlsmsaa( i~ @) (Y5 — i) (100)
Ti+ Y5/ =1 ILi =i (i +v5)
for X = (z1,-+ ,2q) and Y = (Y1, , Ya)-
From the definition , we have a trivial bound
ui(k)| > /tp (101)
foralli=1,---,m and k € Z.
To estimate , we need the following lemmas.
Lemma 4.7. For everyi,i =1,--- ,m and k, k' € Z,
ui (k) + s (k)| = /7. (102)

Proof. From the definition (7E]), Re(u;(k)?

> 0 and Re(u;(k)) < 0. Thus, arg(—u;(k)) € (—n/4,7/4). Using
polar forms —u;(k) = ce'? and —uy (k') = '

)

c'e¥" for some ¢,¢’ >0 and ¢, ¢’ € (—n/4,7/4), we find that
Jui(k) + up (K)] = |e+ el 9| > e+ ¢ cos(p — ¢)] > e = ui(k)| > v/ip

for all 4,7’ and k, k’. The last inequality is due to (101)). O

Lemma 4.8. We have
Jui(k)| < 5v/€p + 5V/k| (103)

foralli=1,...,m, k €Z, and £,p > 0 satisfying (> > 4p} and fp > 1.
Proof. 1f ¢3 > 4p?, then 2rp; < 2rp; < £p (recall (70)). Thus, (see (75))
lui(k)[* = (€p + 2rp;)? + (dmk — 20,)% < 4(Lp)* + (4 |k| + 2m)* < 4(fp)* + 3272 |k|* + 872
for all §; € (—m, w]. Hence, for ¢p > 1,
lui (k)] < ((4+ 872)(€p)? + 3202 %) < (4 + 872)V/4\/lp + (3202) /4[]
Since (4 + 872)1/4 2 3.01 and (3272)'/* ~ 4.21, we obtain the result. O

Lemma 4.9. (a) For everyr >0, a >0 and e > 0,

1 > 7
— Z |k|a676\/§ < 7’/ y“efﬁ\/;dy. (104)
"= T
(b) Recall that r = Zl\gp. For every € > 0 and a > 0, there is a positive constant C' = C(a,€) such that
> ey EL a
D uik)|te VT < Ctp) ! (105)
k=—o0

foralli=1,...,m and ¢,p > 0 satisfying {3 > 4p} and {p > 1.
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Proof. (a) For k > 1, we have k > ¥1 > £ for all « € [k, k + 1]. Thus,
1 w— 1 &t T I 5 °°
— Z kee~VE < — Z/ wie™V 3 dy = —/ wie~ V5 dg = 7‘/ yae*\/gdy.
re ré k re Jq 1
k=1 k=1 ’
(b) The result (a) implies that

1 N V e e ]
a Z |k|a€7E - < dgq—0 + 2rB, where B, = / yaefe\/;dy.
r(l

k=—o0 0

Hence, if £3 > 4p} and fp > 1, then (103 implies that
ST luk)te VT <5t ST (20(4p)2 + 29k|*2)e VT < 100 ((ep)a/2(1 +2rBy) + 2121, )
k=—o0 k=—o0

Since ¢3 > 4p} implies that r < 2 p , the above is bounded by a constant times (¢£p)*/2*1 if ¢3 > 4p% and
Ip > 1. We thus obtain the result. O

Lemma 4.10. For every € > 0, there is a positive constant Cy such that
K(u;(k), —ug (K); ui (K), —
TT7oy i Gy TGy i (K))]

for all two distinct integers i and i’ from {0,--- ,m + 1}, n,n’ € N, k.keZ" K.,k €Z", and {,p > 0
satisfying 03 > 4p} and lp > 1.

’He WWHW W < (Sl ) (106)

Proof. Since K is a Cauchy determinant . the left-hand side of (| is zero if two ‘components of any
of k, k. k, or k' are equal. Thus, it is enough to consider the case that k, k. k, or kK’ all have distinct
components. Let € > 0 be an arbitrary constant.

For vectors X = (z1, -+ ,2,) and Y = (y1,--+ ,¥a), and scalars f1,--- , f,, the Hadamard’s inequality

implies that
a
det ( Iy )
Lq + Yp q,p=1

K (u00), — i (K3 uy (), —uy (k)| -
) VIR TT e—c St VIR
T e T ) 14 f_[

" " 726\/% 76\/%
<1\ 2 o e P e Z\uz )= a5 Pz () P (107)

p=1 Jui(k

K(XQY)pr

p=1

Thus,

T\ 2 Gyl o 25 ) + e G Pl G

p=1 p=1

Consider the first sum. From and (102)), |u;(k)| > /7 p and |u; (k) + uir (K')] > +/fp. Since we assume
that the components of k are dlstmct the case a = 0 of (105) implies that there is a constant C; > 0 so

that _
- e~2eV 11k 1 «— - 1 = _ 7<Cl

6_25\/ %lkjl
; () + s o) Pl o) P~ (@) ; = )2

(108)
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¢3 > 4p} and fp > 1. The same bound holds for the fourth sum. For the second sum, note that =i b|2 <
w for all complex a, b. Since
ui(kq)? — wir (k)| = [2rp; + i(—26; + dmkq) — 2rpy — i(—20; + 47k),)| > 2r|p; — pir|, (109)
the a = 0 and a = 2 cases of (105)) show that there is a constant Cy > 0 such that
Z e < ( + ‘Uz(k’q)| ) Z(l + |ui/(k;'A)|2)e_26 LA
|ui(kq) — wir (kp)) [ uir (k)12 2r2(pi — pir)*Ap £ !
p=t : : i=1 (110)

(L+ uik)*) 5 o (B 202V L czﬁp
< 35— poytp 2= I (F) (1 [ () )

if 3 > 4p] and ¢p > 1. The third sum is similar. Hence, the left-hand side of (106] is bounded by

) izl | R [H SO <q>|2>] [T/t + S+ lutpm | 1)

r2
q=1

ALl _ 9,/ Rl . o
From (103), since e 2V~ < 1and e 2V - L’:' < max{ze 2" : £ > 0} < oo, with additional constants C
and Cy,

2
o2/ TTkql ((21 Crzfp(l_H (k)| )> & C2€p+03(fp) +C4fp. (112)
P

- €p r2 r2 r
Since 2 > 4p] implies that 2 > 2p1, there is a positive constant Cy so that the right-side of is bounded
by C“ﬁiﬁw if £ > 4p} and Ep > 1. Hence, (I11]) is bounded by (C”(r#)(’”"l)/? O

Corollary 4.11 (Bound of R, and Rn) For every € > 0, there is a positive constant Cy such that

In] m n; _ _
. C 150 10
|Ru(U(k), U(K))| < ( OEQ p)° > HH 2e\/ 1k [+2ey/ LIRS (113)
i=1j=1
and o]
. . Co(t LI FRTX0) TR0
V09,000 < (2 (P ) T3 T (1)
i=1j=1

for allm € N™| k, ke 7, and £,p > 0 satisfying €3 > 4p} and fp > 1.
Proof. The bound (113 . ) follows by inserting the estimate in the formula (99). For the bound (114 -, we
need to modify the argument a little bit. Recall that Ry (U( ),U(k)) is equal to Ry (U(k), U(k)) times the

sum >0 (um (k (m)) —l—um(k(m))) . We may assume that kj( ™) are distinet for 1 < j < n,, and k ™) are also
distinct since otherwise the left-hand side is zero. Using the lower bound |u; (k)| < 5v/fp + 5\/E in (T03),

Nm

S (k™) + wn (K™

Jj=1

< (10m 33 RV 3 e T T e T T

(115)

Note that the maximum of the function \/ze~V*/" over z € [0,00] is C'y/r. Here C is a positive contant.
Also note that 2pir < ¢p by our assumption ¢3 > 4pf. Hence the left hand side of (115) is bounded by a
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: (1150 4. /117D
constant times |n||¢p|*/2 ]2, H;“:l eV IR ey I Combining with the estimate (113|) and adjusting
the € value accordingly we obtain (114)). O

The exponential bounds of Corollary are enough for n # 1. However, for n = 1, we need a stronger
estimate. In the next lemma, we obtain a polynomial bound in this case. Note that when n = 1, the product
formula of the Cauchy determinant implies that

0 = 0" s Lo (116

and ]321(U, U)Az (U + G )Ry (U, U). We insert U = U(k) and U = U(k) where k = (k1,- - , k) € N™ and
k= (k1 - k) € N™.

Lemma 4.12 (Bound of R,, and Ry for n = 1). There is a polynomial P of 2m variables such that

()P Ry (U(K), UR)| < [P, 5)] amd ()22 (U1, U))| < [P (X, %)

for allk,k € Z™, 0 € (—m, 7)™, and ¢, p satisfying 3 > 4p} and fp > 1.

Proof. Recall the trivial bound |u;(k)| > +/fp from (101) for all i and k¥ and the bound from (102) that
lui (k) + uir (K")| > /fp for all i,i" and k,k’. The bound (103)) implies that

oo ) (- )

if > 4pi and ¢p > 1. On the other hand, since [u;(k)? — uir(K')*] = |2rp; +i(=20; +2mh) — 2rpy —i(=20, +
27k")| > 2r|p; — pir|, we have

. / : i/ !
L) bue®) | k)] e (R) )
ui(k) —uir(K) | Jui(k)? — i (K)? 2rlp; — pi|
for all k, k" € N, and ¢ # ¢'. Inserting these estimates into (116]), we obtain the desired inequalities. O

The proof shows that we also have the bound given by P ( I Tp ) For a later convenience, we replaced

it by a less precise bound P (%, r)

We also need pointwise limits of Rp when n = 1.

Lemma 4.13 (Limit of Ry forn = 1). For Case 1, for everyy,y € R™,

m

A 1
=)™ 12(lp)* 2 2 Ry (U([ry), U([r9))) — . . — —
( = (pi + 2miy; — pi—1 — 2miyi—1)(pi + 2mig; — pi1 — 27igi—1)
(118)
uniformly for 0 € (—m,w|™. For Case 2, for every k. k e Z",
. m 1
(_1)m—12(£p)3/2r2m—2R1(U H _ _ (119)

Zo (ki) = i1 (kiz1)) (& (ki) — &i—1(Ki-1))
uniformly for 0 € (—m,m|™, where & (k) = p; + (27ik —i6;) as in B9). For Case 3, if

91‘:“)01‘7 7;:1’"'7m7

27



then

m
1
1 m—12 /¢ 3/2 2m— 2R _> 120
(-1 (¢p) (U( g —ip; — pic1 +ipi—1)? (120)

uniformly for ¢ is a compact subset of R™.

Proof. From the definition of u;(k),

1/2
wi(k) = —/lp + 2rp; — 2i6; + 4xik = —/lp + 2t&; (k) = —/Ip (1 + ?&(k))
p

using £(k) = p; + +(2mik — i6;). Hence, for every k,

ui(k) = —/lp (1 +0 (631/4»

uniformly in 6; € (—m, w]. Also for every ¢ # ¢' and k, &/,

1 wi(k) + uy (k) 7_2\/@(1"_0([31/4))

wi(k) —uir (k) wi(k)? —uy ()2 20(&(k) — & (K))
uniformly in 6;,0; € (—m, ). Inserting them into Ry (U(k), U(K’)) using the formula (T16), we find that for

every k, k' € Z,
1
(10 (@)

(121)

_1\ym—1 3/2r2m72A1 /) — - 1
(a2t e 2R (W00, V00 = | e~ e —e o)

uniformly for 6 € (—m,w]™. The result (121) implies (119) for Case 2. For Case 1, we have r — oo, and
thus,

—i6; + 2mi[ry .
&G([ry]) = pi + R E— Iy — p; + 27y
for every y € R. Hence, (121)) implies (L18]). If 8; = rp;, then
—if; .
§i(0) = pi+ —— =pi — o
Thus, (120) follows from (121)) after inserting k = k=0. O

4.7 Proof of Proposition
We analyze

dé;
2T

Bua= o7 [ by [ (122)

where z; = e*%””’i“ai, 0; € (—m, 7], as given in recall . From when n =1,

. m Zic1 m e~ TPi—1+ifi1
=2

1=2

Since p1 > -+ > py > 0, we find
T (z)| <2™. 124
1

28



Recall from that

ﬁ;(z): Z §;(kaf{) (125)

kkezm

where §(k,k/) = Hy(U(k),U(k))R: (U(k), U(k))Ey(U(k),U(k)). Lemma [4.2] Corollary [4.5] and Lemma
imply that there are constants ¢y > 1,c, > 0 and a polynomial P of 2m variables such that

3/2
(tp)¥/22m=2¢ri72 < |P(? ?)I [Lee/™ eV (126)
1=1

§1(k, k)

for all k. k € Z™, 0 € (—m,n|™, and L,T > 0 satisfying ¢ > ¢y and fp > 2.

4.7.1 Case 2
For Case 2, r = él/% is a constant. Thus, the right-hand side of (126) gives a uniform upper bound,
independent of L and T, that is summable. Therefore, by the dominated convergence theorem, Lemma [£.2]

and equations and (119) imply that

_ m—13 3/2, 4ﬁ3/2Ao 1
(=™ R ()™ e ETIDD H k) — & 1O )&k — &1 (k1)

kkezmZ 2

3

X H e%ﬁi(ki))Q*(Ahi*Am)&(ki) H eAr:i Ei(ki)2—(Ahi+Ax;) € (ks)

i=1 i=1

uniformly for § € (—m,7]™. Furthermore, the left-hand side is uniformly bounded in L,T,0. The limit
factorizes to the product of two series, and we find from Definition that it is equal to

S.(t,h —x;w)S,(t,h + x;w) where w; = e i+ (127)

Consider the limit of (122). Lemma shows that C*®(z) — 1 is uniformly in 6. Thus, the above limit
for D$(z) implies that

2 3/2 A K —(rpi—1—i0i—1)\ ™ 4¢.
2 ()23 By S.(t,h — x; w)S,(6,h + x5 w) [ | (1 - ) [
r .

(= 7] Py e_(TPi—lgi) e 2
where w; = e~"i+1%  Changing the variables 6; to w;, this proves Proposition for Case 2.

4.7.2 Casel

For Case 1, we write the series (125) as an integral of a piecewise constant function,

/ . / N y))dydy = " / - / _8(Iry], [ry])dydy- (128)

Consider the bound (126)) and insert [ry;] for k; and [ry}] for k}. Since r — oo for Case 1, we may assume
that r > 1. Then
vl _ Il
2~
Thus, the estimate ((126]) implies an r-independent upper bound,

<2yl  for |y| > 2.

e ] [ryms|ﬁ<y,y'>|I[e*W@*W”‘zj
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where ﬁ(y y’') is a polynomial of y,y’ € R™ that does not depend on r and . Therefore, the dominated
convergence theorem, Lemrna and equations (118]) and (87]) imply

2

(1" S () *e3" Di(2)

m

1
/m /m g (pi + 2miy; — pi—1 — 2miy;—1)(pi + 27y} — pi—1 — 27iy,_,)

2 . . . iy
% He 5L (pi+2miyi)? —(Ahs— Az ) (pi+2miy;) He i(p;42miy))? 7(Ahl+Ax1)(pl+27r1yi)dydy/.

=1 =1

Note that the y-integrals and the y’-integrals factorize. Changing the variables p; +2miy; = &;, the y-integral
is equal to (—1)™ 1S, (t,h —x) of Deﬁnition Similarly the y’-integral is equal to (—1)™ 1S (t,h+x).
Note that the ordering of the contours comes from the condition that p; > --- > p,,. Thus,

aL

(1" S ()2 T D (0)  Suclth— x) S b2+ x) 12

uniformly for § € (—m, 7)™, and the limit does not depend on 6.
From Lemma H C*(z) — 1 is uniformly in #. On the other hand, since r — oo for Case 1,

. m Zio1 m e~ "Pi—1Fifi 1
Tr(z) =[] <1 5 > =11 (1 e ) 1

i=2 1=2

uniformly in 6 as well. Thus,

2 . .

S(p)*Pe3" Py = Sac(t,h = %) S (.1 + X).
This proves Proposition [2.8] for Case 1.

4.7.3 Case 3
For Case 3, r — 0. We change the variables 6; = rp; so that (122)) becomes

~ rm i
Pm’lz(_l)m_l(%)m L@ H1< =5 (pi)dps, 2z = e T IO (130)
Write
2 403/2 ~ - 1 de;
?(fp)l%/?ese Pm,l = Z / Qr(go,k,k)H or (131)
kkezm 7" i=1
where
Qr(pik k) = 201 (—1)"™ = (6p) 2637 % (2)33 (k, K) TF (2 H1< (132)

By Lemma [£1] C*(z) — 1 uniformly. Thus, we may assume that |C*(z | < 2. For the term 77 (z), the
estimate is not enough for Case 3. We need a better estimate. For every ¢ € R™,

T —rpi—1-+irp;_1 . m ) ]
r71n 1 = m—1 H ( e—rpitirg; ) - (=1) ! H(Pi —ip; — pic1 +ipi-1). (133)

Since |1 — e¥| < |w| for complex numbers w satistfying Re(w) < 0, we also see that

T . m
itz <H|le pi—ilpia—g)|  forall p e R™. (134)
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2 _
< (pr=pm+ )" (135)

Thus,
1732 ﬁ .

rml

3 (k, k), we find that

- > pm. Using the estimate (| - ) for §
m—1,,k R . [Tkl 1k
) IP(5 ) 2131 Hl(

(136)

since p; > -
. 21
Qi k)| < 4(pr — pm + —

For the sum over (k,k) # (0,0) in (I31)), we find, after integrating over ¢;s, that

for all p € R™
Z / 1 dei

(o3 k, k)|
2
(k,k)ez2m\ {(0,0)} i T
2 m_1 27\
A D DR
1=1

i=1
—c. /UC /|k
S 4(p1 — pm + T ; ) ) H c .
k,kez™\{(0,0)}

Recall that r — 0 for Case 3. Lemma (a) implies that for any non-negative integer ¢, there is a constant

\/>dy< pr 1/2 h

o
%

C} > 0 such that
> By oo [Ty
r +

kez\{0}
and
Z(|k|)‘€ 76*\/ <1+ ZCZ _\;%SQ
r 172
keZ
for all small enough r > 0. Therefore, there are a positive constant C' and a non-negative integer n so that
dp;  C _ e
> e so,kkIH i O
(kk)€z2™\{(0,0)}
Thus, the series tends to 0 as r — 0.
We now con51der the term for k = k =0 in (131), [ Qr(¥;0,0) [, df; In the derivation of .,
we used (96)). We now use the bound ( 1nstead to ﬁnd
p2m— 2((1))3/26%63/2 83 (k, k)‘ < |P g X ‘H —2¢,y/Tki— B2 [—2ca /L hi— (137)
(138)

Thus, when k = k = 0, there is a constant C' > 0 such that
s Adcx -
83(0,0)| < C e varVi¥il.

3/2
)3/%%5 /
i=1

r2m—2(£p

Using this estimate in (132)), and also using (134) and the fact that |C®(z)| < 2
dcy -
i(pi1 — @5 |He*m il

=1

=2

|Qr(¢;0,0)| < 4CH |pi1 — pi —

31



Since the upper bound is absolutely integrable and does not depend on L, T, we can apply the dominated con-
verge theorem to evaluate the integral of Q,(¢;0,0). Recall §3(0,0) = H;(U(0),U(0))R1(U(0),U(0))E1(U(0),U(0))

in (79). Lemma implies that H(U(0),U(0)) — 1. Thus, (90), (120), and (133) imply, also using
C*(z) — 1, that

dSO'L ( 1)’”74*1 A 1 At (0, —i0:)2—2Ah, (0, —io; "
Q ’O 0 _>7/ - - e i(pi—ipi) i(pi—ipi)) do;.
R™ (o )1:[1 2m @2m)™  Jgm g pi =i — pi—1 T ipiq % 11;[1 7

m

The limit is S (2t,2h) in Definition
Combining all together we conclude that %(gp)?,/zegﬁ/?pm’l — Soo(2t,2h). Thus, we proved Proposition
2.8 for Case 3.

4.8 Proof of Proposition

The formula of P, ; and PmJ are similar:

Py = U § facne @i e 2

(27T1)m i i

and
m

P’“:(zm 74 j{(}' VD3 (2 Tl()de-

In the previous section on the analysis of Pm717 all upper bounds were obtained from absolute value estimates.
In P,, 1, there is an additional decay factor due to (see )

I3
A1 (zm)| < lom| < e F

and the fact that £p — oo for all three Cases. Furthermore, the term D1q(z) involves R (U(k), U(k)) while
D1 (z) contains R} (U(k),U(k)). By Lemma , we find that an estimate of R} (U(k),U(k)) is the W

times the estimate of R$(U(k), U(k)). Thus, in all estimates obtained in the last sections for Dy (z), we can

multiply W to obtain an estimate for D1(z). Due to these two factors, since |Pm’1| is uniformly bounded
£p

in all three cases, we find that | P, ;| is of order (2;)717/2 is all three cases. This proves Proposition

4.9 Proof of Proposition when p < %/

We prove Proposition for Case 2 and 3 as well as Case 1 under the extra assumption that p < ¢5/4 in
this section and prove remaining part of Case 1 in the next section. The assumption p < £°/4 will be used
only When we Snnphfy at the very end of the analysis.

Recall (78) and Lemma 2| Corollary 4.6, and Corollary |4.11| imply a bound for s%(k,k) and
32 (k, k) Let Cy > 0 be the constant from Lemma 4] that appears in Corollary When applying
Corollary ‘ we use the constant € = 5. Thus, we ﬁnd that there are positive Constants co, C2, Cx, 0 and
Cy such that

2 ‘Hl mo c i c 7.(%
8%63/2|5;(k’ f()| < 5|n|e4\n| (Co(gp) ) 6—475[3/2—62|n|€3/2 HHBi%V%lk;)li%\/%lk?l (139)
r

i=1j=1

for all n € N™\ {1}, k,k € Z*, § € (—m, 7)™, and L,T > 0 satisfying £ > ¢o and £p > 2. Wealsohavea
similar estimate for §%(k, k) where we need to multiply [n|[¢p due to the difference between and (113).
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Consider the series which are sums over k,k € Z". Since s%(k, k) = % (k,k) = 0 if two components
of any one of ky,- - , km, k1, , km are equal (due to the Cauchy determinants in R, (k,k)), it is enough to
take sums over indices of distinct components. Thus, noting /", n; = |n,

2|n|
Co(tp)2\ ™ > cu [TF]
e%ES/zD;(Z) < 5|n|e4\n\ ( OEQP) ) 6—43—553/2—62\n|€3/2 Z e 2V T .

k=—o0

The sum can be estimated using the a = 0 case of (105)), and we find that

4\ Inl
e D3 () < 5n| (C(’(rim> e (140)

where the constant C is modified from the last equation. We also have a similar estimate for D2 (z) where
we need to multiply |n|ép.

From ,

Pals Y g e @piene [ 5

neNm\{1} i=1

3/2
4650

le

493/2 A 1 ° e . - del
|e3£ Ppo| < Z ﬁ/ |C (Z)Dn(Z)Tn(Z)‘H )
(n.) (—m,7]™ : 2m
nGN'”\{l} ) i=1

_tp_
where z; = e™ 2

eitifi - By (73), |A1(zm)| < |2m| < 1. By Lemma |C*(z)| < 2 for all three Cases
eventually. Using the formula of z;, since p; > -+ > p,,, we see that satisfies

m 5 n; 2 ni_—1—1
(=) (-2)
i 2 Ri—1

where ¢/ = max{p;—1 — p; : 2 <4 < m} > 0. Note that this estimate contains an exponential function and
is very loose but it is sufficient when we assume that p < ¢5/4.
Thus, with a new positive constant Cy,

Ta(2)] =

< H2m(1 + er(Pi—l_Pi))ni—l < 22|n\ec/r|n\ (141)
=2

n|

493/2 __ 468 y3/2 |Il| Co(gp)4 ’ _ 3/2

R T D M o I (142)
neN™\{1}

Since we assume that p < £°/4, we have r = pl'/*/\/2 < £3/2 and (¢p)*/r? = 2p*("/? <« (5. Recall
that ¢ — oo for all three Cases. Thus the sum on the right hand side of (142) is convergent and uniformly

bounded for all three cases. Note that pf/Q < 032 since fp — co. This proves first result of Proposition

An estimate of P, 5 is similar; the summand in (142) is multiplied by |n|¢p. This change does not
affect the proof much and we obtain the second result of Proposition [2.10

4.10 Proof of Proposition [2.10 when p > ¢

Case 1 is when /=% < p and logp < 3/2. We prove Proposition for Case 1 when p < ¢°/* does not
hold. The proof given here applies to the situation when p and ¢ satisfy p > ¢ and logp < ¢3/2. Note that
we have £ and r both tend to infinity in this case.

The main reason that we added the assumption p < ¢5/4 in the last section is the factor ecrInl in
which comes from the estimate of |T2(z)| < 22mlec’rnl | In order to improve this estimate, we modify
the integral contours. In 7 the contours were chosen as

_fp_ 510,
Z; =€ 2 rp1+10,l7 91 c (—7T,7T],
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where p; > -+ > p,, > 0 were fixed numbers. In this section, we choose these numbers to be dependent on

r:
1—1

r
for 1 < ¢ < m, where p; is a a fixed positive number. With this change, the estimate (141)) is changed to

(143)

Pi = pP1 —

T2 (z)| < 22Imlec’ Il (144)

The difference is that the exponent is changed from c’rjn| to ¢/|n|, which gives a much tighter bound.
However, we need to check how other quantities in the estimate change due to the contour changes.
The estimates in Sections [.2] and [£:4] are still valid without any change. For the estimates in Section
note that d = \% = % — Z—r Wthh depends on r but is close to the constant 2 12 Since Corollary holds
uniformly on d, Lemma ﬁand Corollary [£.6] still hold. However, the estimates in Section [£.6] need some
changes.
Lemma is changed to the following estimate.

Lemma 4.14. For every € > 0, there is a positive constant Cy such that
K (i), =i (K); i (), —uz (k') »
TT5 ()| TT5y i (R)))

for all two distinct integers i and i’ from {0,--- ,m + 1}, n,n’ € N, k.keZ" K,k €Z", and {,p > 0
satisfying 02 > 4p} and lp > 1.

eVl e\/ITHe*\/llT k| < o™ (145)
j=1

Proof. Recall that it is enough to consider the case when k, k', R, or k’ all have distinct components. In the
proof of Lemma, the estimates (107]) and (108)) still hold. However, we need to change the estimate m
Since the components of k;) are all distinct, we have

2em n 1
Z |wilkq) — wir (k) 1 s (3, )2 =2 |ui(k )—u'(k’)l |wir (k)12 =2 |wikq) — wir (K usr (K)[2

p=1 k'€Z

(146)

We split the last sum into two parts. The first part contains all k' satisfying |u;(kq) — wir (K")] > |wir (K)].
This part is bounded by, recalling the definition of u; (k') in ,

1 1 1
= <
; | (K7)|* %: (p + 2rpir )2 + (Awk! — 260,)% — k/z:ez 1+ (4nk! — 26;)

(147)

which is uniformly bounded by a constant. The second part of the sum contains all &’ satisfying |u;(k,) —
uy (k') < |uy(K')|. Noting the fact that |u;(kq) + wir (') < |ui(kq) — wer (B')] + 2|y (') < 3wy (K')|, this
part is bounded by

|Uz q) +uir (k') ‘2
148
> T — ot (0 PP 0P = 2 Tt o= G G .
which is uniformly bounded by a constant since 7 # i’ and

|(wi(kq))? = (wir (K1) = 4r*(ps — pir)? + (4n(kq — k') +2(0i — 6:))°

149
= 4(Z — i/)2 + (47T(kq — k/) + 2(01/ - 91))2 ( )
by our choices of p; and p;;. Combing the above two parts, we obtain
n -2/ TR
< (O, (150)

|wilkq) — wir (k) PP uir (R,)[2

p=1
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which implies that the bound ((111)) changes to

He_e\/THe il lﬁ %+C2

j=1

n/ C
I/ +¢|- (151)

We thus obtain ((145)). O

Using the above bound instead of Lemma the same proof shows that Corollary changes to the
following.

Corollary 4.15. For every € > 0, there is a positive constant Cy such that

|Ra(U(k), UK)| < G T T €2V 18" 21" (152)

i=1j=1

and

| Ra(U(K), U(K))| < [nf(ep) /20 T T V2oV oIk (153)

i=1j=1
for alln e N™, k,R € Z™, and L, p > 0 satisfying £> > 4p} and p > 1.

We are ready to prove Proposition for Case 1 assuming p > ¢ and log p < ¢3/2. We follow the same
analysis of subsection except that we replace Corollary by Corollary and the inequality (141])

by (144]). Then the inequality (139) is replaced by
mon; - NG
6%53/2 |S:1(k, 1”()| < 5|n|64\n|Oén‘ef%ﬁ/zfcﬂn\fs/z H H 67%‘ V %‘k?)‘*% V %‘kg )‘ (154)
i=1j=1
and the inequality (140)) is changed to

4 D (2) < 5ln| (Cotp)?) ™ e ealnl”, (155)

For the bounds of |5¢(k, k)| and D2 (z), we only need to multiply the bounds of |s®(k, k)| and D% (z) by a
factor |n|(£p)*/? due to Corollary Finally, using (144]), the inequality (142 changes to

3/2 _ 48 p3/2 |n| n| /|n| —co|n|e3/2
5 P < e BTN )2 (Co(tp)?)™ e/ mlg=calni?’? (156)
neN™\{1}

The sum is uniformly bounded provided p < ec2?®/ 2 which holds since logp < ¢3/2. This proves the first
part of Proposition The proof of the second part on P, 2 is similar.

5 Proof of Proposition [2.11

We start with a lemma.
Lemma 5.1. Let a € R™ satisfy 0 < a1 < -+ < apm-1 < @y, and let b € R™. Then, for every r > 0,
51 1) m

1_6""(51 Aa; .2
S L& —AbE;
e eTFel-ANG g,
27r1 / /H — &1 }_[1 (157)

=P (B(a1) — b1 € [0,7),-+ ,B(am—1) = b—1 € [0,7),B(am) = bm)

where the contours are distinct vertical lines oriented upwards and B is a standard Brownian motion.
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Proof. From Gaussian integrals,

(Ayl)
2Aa;

\/QWAaz

for every y € R™. The result follows by integrating y; from b; to b; +r for ¢ = 1,--- ;m — 1 and taking
Ym = b O

Bgig? Ay1£1d§ _H

If the contours are ordered as Re(£1) > -+ > Re(,,), then taking r — 400, (157) yields

: / / i 1 T 50— Ab,
Torom | —1]e¢ 7 G =P (Blar) = b1, B(am—1) 2 bm—1,B(am) = bm) ,
@) g 11 (B(ar) (am-1) (am) = brn)
which is Proposition 2.11] (a). This computation is due to [16, Lemma 3.4].

We now prove Proposition 2.11] (b).

Proof of Proposition (b). Denote the left-side of by

R j{ %Sabw acw)H

=2

wi—1 \ 7 dw;
(1— o )1:[1 o (158)

where the contours are circles satisfying 0 < |w;| < -+ < |wp,| < 1 and (recall (47))

m

Se(a,b;w) = o Z ﬁ o H o THEI—AbiEs
U & — i1 '
€1, Em 1=2 i=1

Since the sum is over the points &; satisfying e~ = w;, we see that

i Wi—1 " .
H 1— ) :H<1fer(£1 6171)).
i=2 < Wi i=2
Thus, we can write A as
)Ti(a, c; W) ﬁ duw: (159)
=1 Wi
where . i)
(_l)mfl U 1 — e(€i=&i—1 Aa‘l 2 A
T.(a,c;w) = ———— ez & TRk 160
( ) " 51;51” z:H2 i =& zl_ll (160)

Let 0 < |w| < 1. Let f(§) be a function that is analytic in a vertical strip p — 2§ < Re(§) < p + 26
M, and decays fast as Im(§) — +oo in the strip. By the Cauchy residue

r

Y rwf(f) L e rwf(f)
OO e R et =t M= S

froiew 27T1 ptd—ioco 2mi p—J—ioco

for some 6 > 0, where p = —
theorem,

Using the geometric series and moving the contours, we find that

oo

r 1 —kr
> f0=55 3 / | fee g

e "E=w
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where the contour is oriented upwards. Extending the formula in a natural way, we have

—1)ym-1 Aa7
sr<a,b;w>—((217fi)m > = nm/ /H& i 1,H€ E-Abitiemnirtigg, (161)

nezm
and
(_1)177,—1 / / 1 — er&i—8&i-1) Bag 2 A -
Tr A, CCW) = —/———— n e 2 &5 beze nzrfzd 162
( ) (27i)™ ngz::m el H fz | H &i (162)
where the contours are vertical lines, oriented upwards, satisfying Re(§;) > - -+ > Re(&y). The ordering of

the contours follows from |wy| < -+ < |wp,].
Change the summation index n to k by setting n; = ky +---+ k; for i = 1,--- ;m so that k; = An;
(where ng :=0.) Using Lemma with b; replaced by b; + rk; and ¢; replaced by ¢; + rk;, we find that

P (ﬂ?;l{Bl(ai) —b; > rki} N {Bi(am) — by = rkm}>

Si(a,b;w) = 163
@bw) = 3 P T~ (163)
and
P (ﬂ?;l{Bz(ai) —¢; € [rki,r(ki + 1))} N {Ba(am) — cm = rkm})
T,(a,c;w) = Z Ak, Ak, (164)
kezZm Wy " Wm

where B; and By are independent Brownian motions.
Inserting the above formulas into (159)) and computing the integrals, we obtain

A= P (nhl{Bl(ai) —b; > —rk;} N {By(am) — bm = —rkm}>

kezZm i=1

- (165)
x P < ﬂ {Ba(a;) — ¢; € [rki,r(k; + 1))} N {Ba(am) — cm = rk‘m}> .
Note that for two random variables X and Y,
D {X>—-kYelkk+1)}= D {X> -k [Y]=k={X+[]Y]>0}={X]+[Y] >0}
k=—o00 k=—oc0

where we used the simple fact that x + [y] > 0 if and only if [x] + [y] > 0. Thus,

D ("ﬁl{{sl(air) —bz} N {BQ(air)—ci] . O}ﬂ{sl(amr) — b _ _BQ(amr) —em eZ})  (166)

i=1

From the definition of w,(z,y),

[x:‘g] + [y:‘g] >0 if and only if w(z,y) > s. (167)

Hence, (166]) implies (55).
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A Extension and continuity of the distribution functions F,,

The limit result was proved in [2] for most but not all parameters. In this section, we first show that the
convergence holds for all parameters. We then show that the limit functions are a consistent collection of
multivariate cumulative distribution functions. We further show that they are continuous in all variables.
Let h(n,t) be the height function for the TASEP on the discrete ring of size 2a as in Section For
T >0, let
h('yT2/3, 27T) — 7T

ﬂT(’Ya T) = _T1/3 ) (7?7—) eR x R-i—

where the ring size is set as (2a)%/? = T Let

RY c={r= (11, ,7m) € (0,00)": 0 <71 <+ < Ty}

For 7 € R} _, define

QM) ={B8=(B1, - ,Bm) ER™: B < Bip1 if 7 = i1}

It was shown in [2] that for every v € R™ and 7 € R _, the limit

T—o0

lim IP’( ﬂ {ET(%—,TZ-) < Bl}> =F,,(B;7,7) converges if 3 € Q' (7), (168)
i=1

as mentioned in .
When m = 1, it was already shown in [I] that the one-point distribution F; is a distribution function
and is continuous. We do not need the explicit form of F,, for the first two results below.

We first show that the limit (168) convergences for every 3 € R™. For 7 € R} _, define the set

Q1) =QP(r) ={B=(Br, - ,Bm) ER™: f; < i1 if 7 = 7341}
Lemma A.1. Lety € R™ and 7 € R _. For every B e Qm(r), the limit

lim  Fo(B;7,7) (169)
Qm(r)38—8

exists. Furthermore, if we denote the limit as Fm(B;v, T), then

i P( Q {hr(yi.7) < ﬁl—}) =Fu(8,7.7). (170)
Proof. For € > 0, let
ﬁ;:Bi—(Q—mz_l)e and ﬂ;’z@—k(l—i—m_’_l)e

for i =1,--- ,m. Then, 8', " € Q7(). Furthermore, (57, , B, By1, > Bm) € Q' (1) for every k.
Let 8 € Q7(7) be an arbitrary number satisfying >\ | |3; — Bz| < e. Note that ) < 8; < 8/. Thus,

Fo(8'57,7) <Fn(Biv,7) <Fn(8":7,7)

where we used the fact that being a limit of a distribution function, F,,(8;v,7) is a weakly increasing
function of 8 € Q7 (7). From the monotonicity property again, as € | 0, Fp,,(f';y,7) increases weakly and
F,.(8";~,7) decreases weakly. Therefore, the limit (169)) converges if we show that

h&)l F..(8";7,7) = Fn(8';v,7) =0. (171)

8To be precise, we set a = [T'2/3]/2 since a is a half-integer.
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For every j, from ([168]),
M(Bia ] 17ﬁ 7BJ+17" ,Bm7'77 ) (Bi?v j— 1vﬁj7ﬂj+1»" ,5m,’77 )

= lim P({ﬁ < hT Vi, Tj) < B”} m {hT v5,75) < Bi} ﬂ {hT Vi, Tj) < B”})

T—o0 im i1
< Ylgﬂoop(ﬂj <hr(v;,7) < BY) =Fi(B):75,75) — F1(Blivj. 7).

Summing over j, we obtain
!/ !/ G !/
F ( s T aﬁm,’)/a ) m(ﬁla"' 75m;7a Z Fl ﬁ]?’yj)Tj) Fl(ﬁj'Yjﬂ}))'
Jj=1

Since the one-point distribution F; is continuous (see [I]), the right side converges to zero as e — 0. The
left-hand side is also nonnegative due to the monotonicity property of F,,. Thus we obtain , which
implies the convergence of .

With the same notations as above, from the monotonicity of probabilities which holds for the parameters
without any restrictions,

P(ﬁ {hr(y,7) < 52}) < P(ﬁ {hr(vi,7) < ﬁz}) < P(ﬁ {hr(yi,m) < @{l})

As T — oo, the lower bound tends to F,,(3’;7,7) and the upper bound tends to F,,(8";v,7). If we let
€ 1 0, then both of them converge to F,,(5;~, 7). This shows (L70]). O

Corollary A.2. For every v € R™, 7 € R}, and 8 € R™, the limit

; = lim P hy(vi,7i) < Bi 172

m(ﬂa%T) TE;Iclxv (Q{ T(’YMTZ) = 61}) ( 7 )
1=

converges. The function F,,(B;v,T) is invariant under the permutations of the triples (B;,7vi,7i), i =

1

’...7m'

Proof. The probability P(N 1{hT (7i,mi) < Bi}) is defined for every (v,7,6) € R™ x R x R™, and is
invariant under the permutatlons of the triples (8;,7i,7:). For a permutation o € S,,, let v7,77, 5 be
the parameters obtained from ~, 7,8 applying the permutation o to the index. Let o be a permutation
so that 77 € RY _ and B" € QF (7). There is at least one such permutation. By the last lemma,

ﬂ?;l{flT(%,Ti) < Bi}) = 1{hT v, 77) < B7}) converges. If there are more than one permutation
with the same property, then 1t is easy to check that they results in the same limit. The invariance under
permutations follow easily. O

Therefore, the convergence holds for all parameters, and we use the same notation F,,(8;~v,7) for
the limit. We now show that F,,(8;v,7) are a collection of consistent multivariate cumulative distribution
functions. For the restricted parameters, this fact was proved in [2| Section 7]. Here, we prove it for all
parameters.

Proposition A.3. (a) For every m and (v,7) € R™ xR, f — F,,,(B;7,7) is a multivariate cumulative
distribution function.

(b) Let (y,7,5) € R™ xR} x R™. For each j =1,---,m, let @) 7@ BU) be the points in R™~ obtained
from ~y, 7,8 by removing vy;,T;, B, respectively. Then,

lim F,,(8;v,7) = Fm_1(5(j);’y(j),7'(j)).

]‘>OO
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Proof. (a) The equation (|172)) implies the monotone non-decreasing property. It also implies that F.,,(5;,7) <
Fi(Bj;7;,m) and 1 —F,,(B;7v,7) < Z;nzl(l —F1(Bj;75,75)). We thus find the correct limit properties as
becomes small or large.

(b) From (172)) again,

0 < Fpor (89391, 79) — Fo(B57,7) = Tlg@@({ﬂT<vj,Tj) >} [ {br(y.m) < @-})
1<i<m
i)

< Tli_I};OP(hT(%Jj) > Bj) =1 =F1(Bj;7j,75)-
The upper bound tends to 0 as 8; — 400 since F; is a distribution function [IJ. O

The final result of this Section is the continuity of F,,(5;7,7). When 8 € Q7 (7), the limit F,(3;v, )
for (168) is given by the formula

m

B (B:.7) = ﬁ f - f C(2)D(z) [[ £ (173)

Zi

where the integrand is same as that of the formula (with p = 1) but the radii of the contour circles
satisfy the reverse inequalities 0 < |z,| < --- < |21] < 1. From the formula of C(z) and D(z) in Section
(with p = 1) and Lemma F..(8;7,7) is Jomtly continuous for v € R™, 7 € R _, and 8 € Q™ (7). Due
to the invariance under permutations of the triples of the parameters, it is continuous on the set

U :=R™ xR} xR™\ {(v,7,8) : i = B and 7; = 7; for some 1 < i < j < m}.
The next result shows that it is continuous in all of R™ x R* x R™.
Proposition A.4. The function Fp,(B;7,7) is jointly continuous in (v,7,3) € R™ x R x R™.
Proof. Let (v,7,8) be a point in R™ x R* x R™. For (v/,7/,") € R™ x R x R™ and 1 < j < 'm, let
Pyéj):(...77}—177_;'7’){7."1‘17...)7 T(/j):(...’T]{—17TJ{7TJ—+17...)7 62],):(...’ ;’—176}7/8]-"1'17“.)'

Fom (172)), for every j,

B (805 Y5 7)) = B (B(-1)i7G-1)s T(5-1)]
< Th_{r;op(hT V5 7i) < B, hT<7J7TJ) > B;) +]P(hT(%7TJ) < Bj, hT(’YJ, ) > )
= TIE)I;O]P)(hT v ,Tj/ < ﬂ ) +P(hT(’7j77_j) < 6]) - 2P(hT(’Y_;’T]/) < ﬂév hT(ijvTj) < 6])

Thus,
Fom (B 70y () = B (BG—1)3 V-1 TG—1) | = Fr(B5575: 75) + Fa (83375 73) = 2F2(85, 6559575, 755 75)
< F1(B5575, 75) + F1(By3 74, 75) — 2F2(B5, B — €755 75> Tj» T)

for every € > 0. If (v}, 7}, ;) is close enough to (v;,7j,B;), then (v}, v;, 7}, 75, 85, Bj —€) € U2. Thus, the
continuity of Fy on U7 implies that

limsup — [Fm(5(;):70), 7(5)) = Frn (B 1)5 -1 T(G-1))
(y',7,B") = (v,7.8)

< 2F1 (85575, 75) — 2F2(B5, 85 — €95, 75, 75) = 2F1(853 75, 75) — 2F1(85 — €95, 75)
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where we used the fact that Fa(a, b;v,v,7,7) = F1(a;7, 7) if a < b, which follows from the definition of (172]).
Since the inequality holds for every e > 0 and the one-point distribution function F; is continuous, we find
that

limsup — [F0n (55705 7)) = Fn(B5-1):7-1) T5-)) = 0-
(4,780~ (.7.8)

Summing over j, we conclude that

lim sup [Fr (8579, 7") = Fi(B;7,7)| = 0,
y's7",B8) = (v,7,8)

proving the desired continuity. O

B Formula of Dy(z)

We state the formula of D(z) given in [2| Lemma 2.10] and show that it can be written as the form in
Subsection It is enough to check it when p = 1 since the general p case follows from the property @
For complex vectors W = (wy, -+ ,w,) and W' = (w}, -+ ,wl,), we denote

AW)= ] (w;-w:) and A(W;W’):HH(W—

1<i<j<n

We also use the notation that for a function g of a single variable and a vector W = (w1, - -+ ,wy),

g(W) =[] g(ws).
i=1
For 0 < |z| < 1, the sets L, and R, are the discrete sets in the complex plane defined as

L,={w: e = Re(w) <0} and R, ={w: e w2 = 4, Re(w) > 0}.

The series formula of D(z) given in [2| Lemma 2.10] is

D(z)= Y, nl Dn(2)

ne{0,1,--- }m
where for n = (ny,++ ,ny) and 0 < |z1] < -+ < |zm| < 1,
g ni—1 1))2
_ Zi_1 2 AUD)2A(V0)2 Uy £ (170
Dn(z) - (1 - 2 ) (1 - zil) Z H U() V( )) fl( )fl(v )
U(Y)GL”z =1
ve >eR i
i1 (174)

H i), - 1))A(V(i); Uli-b) e—h (VP 2 1) =h(VE~Y 2))
“LLA( U(z SUGD)A(V@; VD) h(U® 2 ) +A00 D 2

with

]. w 2 2
— Liy o (2™ =¥)/2)dy, Re(w) < 0,
= Ll )dy (w)

—w

Liy /o (ze(w2792)/2)dy, Re(w) > 0,

h(w,z) = .
Vo
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e_%(Ti—Ti—l)ws'f'%('W_'Yi—l)w2+(61_61—1)w7 Re(w) <0,
fi(w) = Liri—m; 3_1 ) 2_(8._3.
e3(mi Tim1)w” —5 (Yi—yi—1)w”—(B: ﬁz—l)w, Re(w) >0,
and
7 _ T 2h(w,z;)
fz(w) wfz(w)e :

Note that w € R, if and only if —w € L,. Thus, setting U = —V @ the sum in (174) can be written
as

T AUDRA(-T@
T H (-U®)?

N AR

U@ e i=1
i=1,,m

AU DA~ 7D o= h(=0D ) =h(=007Y 2)
1;[2 AUD; U A(—T@; 061y ehUD =AUt 2)

Since h(—w, z) = h(w, z), after inserting the formula f;(w) = L fi(w)e? =) and using the notation E*
of instead of f;, we can express the above sum as

2h(U(l) 2i)+2h(0D 2;) mon

% + (Z) i, - (4)
Z H eh(UG=D 2)) +h(UGHD) 2)+h(U =1 2)+h(T+D 2, H H £ )E" (“g )

U@, U(l)eL"zz 1 i=1j5=1
i=1,--

mo n; m

(=02 L AU@D; —UE=D)A(=U@D; Ui-D)
X }_[1]1_[1 uf (3) ~ (1) H ) 7U(7,)) z:l_[z A(U(i); U(ifl))A(,U(i); ,0(1‘71))

where we set U(©) = () = U(mﬂ) = UM+ = () 5o that ¢"U"”#1) = 1, and so on. The product involving
the function h is Hy (U, U of (28) and the next product involving E* is Ey, (U, U of (| . Finally, again
with the convention U(®) = U(O) Ulm+1) = g(m+1) = ), we have

A(UU)?A T AU U A(-UD;U6Y)
}_[1 A(U U@ I;IA UG ) S UG-D)A(=U@); —UG-D)
mAL A (1) A(—U(l_l))A(U(l);—U(i_l))A(—U(i);U(i_l))A(U(i))A(—U(i))
B H U(z D; U= AU@; UGD)A(=U @) ; —UE=D)A(UG); T @)
m+1
= (—1)mttnm H KU —U®,gt-1, U(i))

in terms of the Cauchy determinant (29). This is a factor of Ry (U, U) of ([30), and we thus find that Dy (z)
is equal to the form in Subsection

References

[1] J. Baik and Z. Liu. Fluctuations of TASEP on a ring in relaxation time scale. Comm. Pure Appl. Math.,
71(4):747-813, 2018.

[2] J. Baik and Z. Liu. Multipoint distribution of periodic TASEP. J. Amer. Math. Soc., 32(3):609-674,
2019.

[3] J. Baik and Z. Liu. Periodic TASEP with general initial conditions. Probab. Theory Related Fields,
179(3-4):1047-1144, 2021.

42



[4]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

J. Baik, Z. Liu, and G. L. F. Silva. Limiting one-point distribution of periodic TASEP. Ann. Inst.
Henri Poincaré Probab. Stat., 58(1):248-302, 2022.

J. Baik, A. Prokhorov, and G. L. F. Silva. Differential equations for the KPZ and periodic KPZ fixed
points. Comm. Math. Phys., 401(2):1753-1806, 2023.

R. Basu and S. Ganguly. Time correlation exponents in last passage percolation. In In and
out of equilibrium 3. Celebrating Vladas Sidoravicius, volume 77 of Progr. Probab., pages 101-123.
Birkh#user/Springer, Cham, 2021.

P. L. Ferrari and A. Occelli. Universality of the GOE Tracy-Widom distribution for TASEP with
arbitrary particle density. FElectronic Journal of Probability, 23:1-24, 2018.

S. Ganguly and M. Hegde. Sharp upper tail estimates and limit shapes for the KPZ equation via the
tangent method, 2022. arXiv:2208.08922.

S. Ganguly, M. Hegde, and L. Zhang. Brownian bridge limit of path measures in the upper tail of KPZ
models, 2023. arXiv:2311.12009.

P. Y. Gaudreau Lamarre, Y. Lin, and L.-C. Tsai. KPZ equation with a small noise, deep upper tail and
limit shape. Probab. Theory Related Fields, 185(3-4):885-920, 2023.

K. Johansson. Long and short time asymptotics of the two-time distribution in local random growth.
Math. Phys. Anal. Geom., 23(4):Paper No. 43, 34, 2020.

J.-H. Li and A. Saenz. Contour integral formulas for PushASEP on the ring, 2023. arXiv:2308.05372.

Y. Liao. Multi-point distribution of discrete time periodic TASEP. Probab. Theory Related Fields,
182(3-4):1053-1131, 2022.

Z. Liu. One-point distribution of the geodesic in directed last passage percolation. Probab. Theory
Related Fields, 2022.

Z. Liu. When the geodesic becomes rigid in the directed landscape. Electronic Communications in
Probability, 27:1-13, 2022.

Z. Liu and Y. Wang. A conditional scaling limit of the KPZ fixed point with height tending to infinity
at one location, 2022. arXiv:2208.12215.

K. Matetski, J. Quastel, and D. Remenik. The KPZ fixed point. Acta Math., 227(1):115-203, 2021.

R. Nissim and R. Zhang. Asymptotics of the one-point distribution of the KPZ fixed point conditioned
on a large height at an earlier point, 2022. arXiv:2210.04999.

J. Quastel and D. Remenik. KP governs random growth off a 1-dimensional substrate. Forum Math.
Pi, 10:Paper No. el0, 26, 2022.

43



	Introduction and main results
	KPZ fixed point when it is pinched-up
	Periodic KPZ fixed point
	Results
	The limiting distribution for Theorem 1.3
	Right tail of one-point density
	Structure of the paper

	Proof of theorems
	Set-up
	Formula of the distribution functions
	Derivative of the distribution function
	Four propositions
	Proof of Theorems 1.2, 1.3, 1.4, and 1.8

	Preparations
	Pointwise limit
	A lemma
	Uniform estimates

	Asymptotic analysis
	Choice of contours
	Bound of C
	The functions ui(k)
	Bound of Hn
	Bound and limits of En
	Bounds and limits of Rn and n
	Proof of Proposition 2.8 
	Case 2
	Case 1
	Case 3

	Proof of Proposition 2.9
	Proof of Proposition 2.10 when p5/4
	Proof of Proposition 2.10 when p

	Proof of Proposition 2.11
	Extension and continuity of the distribution functions Fm
	Formula of Dn(z)

