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Abstract

We consider non-intersecting random walks satisfying the condition that the increments have a finite
moment generating function. We prove that in a certain limiting regime where the number of walks
and the number of time steps grow to infinity, several limiting distributions of the walks at the mid-
time behave as the eigenvalues of random Hermitian matrices as the dimension of the matrices grows to
infinity.

1 Introduction

It is known that various limiting local statistics arising in random matrix theory are independent of the
precise structure of the randomness of the ensemble [41, 11, 21, 45, 29, 17, 18]. For example, consider the
set of Hermitian matrices equipped with a probability measure invariant under unitary conjugation. For a
very general class of measures, as the size of the matrix becomes large, the largest eigenvalue converges in
distribution to the Tracy-Widom distribution, while the gap probability in the ‘bulk scaling limit’ converges
to a (different) universal distribution.

It has been discovered that the limiting distributions arising in random matrix theory also describe limit
laws of a number of specific models in combinatorics, probability theory, and statistical physics; apparently,
these models are not expressible in terms of random matrix ensembles. Examples include the longest increas-
ing subsequence of random permutations [5, 40, 13, 28], random Aztec and Hexagon tiling models [30, 9],
last passage percolation models with geometric and exponential random variables [27], polynuclear growth
models [42, 31], and vicious walker models [25, 3]. For these models, the distribution function of interest
was computed explicitly in terms of certain determinantal formulae and the asymptotic analysis of these
determinants yielded the desired limit law. Nevertheless, it is believed that such limit laws should hold for
a class of models much wider than the explicitly computable (“integrable”) models. One such universality
result for models “outside random matrices” was obtained in [12, 10, 47] for thin last passage percolation
models with general random variables.

This paper studies non-intersecting random walks and proves random matrix central limit theorems in a
certain limiting regime. The motivations for this study come from two sources. The first one is the fact that
the eigenvalue density function of Gaussian unitary ensemble can be described in terms of a non-intersecting
Brownian bridge process [22, 30]. Namely, consider n standard Brownian bridge processes (B(1)

t , · · · , B(n)
t )

conditioned not to intersect during the time interval (0, 2) (i.e. B(1)
t > · · · > B

(n)
t for 0 < t < 2), all starting

from and ending at the origin. A simple computation shows that the distribution of {B(1)
1 , . . . , B

(n)
1 } at

time 1 is the same as the distribution of the eigenvalues of the n × n Gaussian unitary ensemble. See
subsection 1.1.1 below for the computation. Hence, it is a natural question to ask if the same limit laws hold
for general non-intersecting random walks. The second motivation is that a number of the mentioned specific
probability models for which the random matrix central limit theorem was obtained are indeed interpreted
in terms of non-intersecting random walks. We mention a few of them in the following subsection.
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1.1 Motivating Examples

We begin by introducing two distribution functions. Define the kernels

A(a, b) =
Ai(a)Ai′(b)−Ai′(a)Ai(b)

a− b
, S(a, b) =

sin(π(a− b))
π(a− b)

. (1)

Set

FTW (ξ) = det(1− A|(ξ,∞)), FSine(η) = det(1− S|[−η,η]). (2)

The Tracy-Widom distribution, FTW , is the limiting distribution of the largest eigenvalue and FSine is the
limiting distribution for the gap probability of the eigenvalues ‘in the bulk’ in Hermitian random matrix
theory.

1.1.1 Non-intersecting Brownian bridge process

Let Bt = (B(1)
t , . . . , B

(n)
t ) be an n-dimensional standard Brownian motion. We compute the density function

of B1 conditioned that B(1)
t > B

(2)
t > · · · > B

(n)
t for 0 < t < 2 and B0 = B2 = (0, . . . , 0). Let pt(x, y) =

1√
2πt

e−
(x−y)2

2t . The argument of Karlin and McGregor [33] implies that the density function of n one-
dimensional non-intersecting Brownian motions at time t which start from (x1, . . . , xn) where x1 > · · · > xn

is given by
ft(b1, . . . , bn) = det

(
pt(xi, bj)

)n
i,j=1

, b1 > · · · > bn. (3)

Hence, the density function of B1 equals for b1 > · · · > bn,

f(b1, . . . , bn) = lim
x,y→0

det
(
p1(xi, bj)

)n
i,j=1

· det
(
p1(bi, yj)

)n
i,j=1

det
(
p2(xi, yj)

)n
i,j=1

=
2n(n−1)/2

πn/2
∏n−1

j=1 j!

∏
1≤i<j≤n

|bi − bj |2
n∏

j−1

e−b2j ,

(4)

which is the density function of the eigenvalues of n × n Hermitian matrices from the Gaussian unitary
ensemble. Therefore, combined with the well-known results of random matrix theory,

lim
n→∞

P
(
(B(1)

1 −
√

2n)
√

2n1/6 ≤ x
)

= FTW (x). (5)

1.1.2 Longest Increasing Subsequence and Plancherel Measure on Partitions

The longest increasing subsequence problem can be formulated in the following manner. Denote by Sn the
symmetric group on n symbols endowed with uniform measure. Given π ∈ Sn, a subsequence π(i1), ..., π(ir)
is called an increasing subsequence if i1 < · · · < ir and π(i1) < · · ·π(ir). Denote by `n(π) the length of the
longest increasing subsequence (this subsequence need not be unique). For applications of `n and activities
around the asymptotic behavior of `n see [2, 5, 16], for example . In particular, in [5] the following limit
theorem is proven:

lim
n→∞

P
(
`n(π)− 2

√
n

n1/6
< x

)
= FTW (x). (6)

A closely related object is the uniform measure on the set of pairs of standard Young tableaux having
the same shape (equivalently, the so-called Plancherel measure on the set of partitions). Given a partition
of n, λ = (λ1, ..., λr), where λ1 ≥ · · · ≥ λr > 0 and λ1 + · · · + λr = n, a standard Young tableaux of shape
λ consists of r rows of boxes with distinct entries from {1, .., n} such that the rows are left-justified, the ith

row has λi boxes, and the entries are constrained to increase along rows and columns from left to right and
top to bottom, respectively. These objects will be called row increasing Young tableaux if the rows increase
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but the columns do not necessarily increase. The Robinson-Schensted bijection implies that the number of
boxes in the top row of the pair of standard Young tableaux corresponding to π ∈ Sn is equal to `n(π) [46].
Therefore, the distribution of `n is same as the distribution of the number of boxes in the top row of the
pair of standard Young tableaux having the same shape chosen uniformly. This correspondence provides
a representation of `n which is computable in terms of explicit formulae if the number of standard Young
tableaux of a given shape is computable.

One way (among many) to compute the number of standard Young tableaux of shape λ is by a non-
intersecting path argument [32]. Let N1

t , ..., N
r
t be independent rate 1 Poisson processes with initial con-

ditions N i
0 = 1 − i for i = 1, 2, ..., r. Define Aλ to be the event that N i

1 = λi + (1 − i) for all i = 1, 2, ..., r.
For almost every element of Aλ (the elements of Aλ where no two jumps of these processes occurs at the
same time) there is a natural map to a row increasing Young tableaux. The map is defined as follows: If
N i jumps first then place a 1 in the leftmost box in row i; if N j jumps second then place a 2 in the first
box of row j if j 6= i and a 2 in the second box of row i if j = i; continue in this fashion to produce a row
increasing Young tableaux of shape λ. It is not hard to show that this map induces the uniform probability
measure (when properly normalized by P(Aλ)) on the row increasing Young tableaux. The subset Bλ ⊂ Aλ

which is mapped to the standard Young tableaux of shape λ correspond to the realizations whose paths do
not intersect each other for all t ∈ [0, 1]. Since the mapping described induces uniform measure on the row
increasing Young tableaux of shape λ and the standard Young tableaux correspond to non-intersecting path
realizations, Bλ, the number of standard Young tableaux of shape λ can be computed by evaluating:

|row increasing Young tableaux of shape λ|P(Bλ)
P(Aλ)

. (7)

The denominator of (7) is e−r
∏r

i=1
1

λi!
by definition of Poisson processes and the independence of the N i

while |row increasing Young tableaux of shape λ| = n!
λ1!···λr! by elementary combinatorics. On the other

hand, via the Karlin-McGregor formula [33],

P(Bλ) = det
(

e−1

(λi − i+ j)!

)r

i,j=1

. (8)

Hence, the number of standard Young tableaux of shape λ is n! det
(

1
(λi−i+j)!

)r

i,j=1
. In tandem with the RSK

correspondence this formula leads to an algebraic formula for the number of π ∈ Sn for which `n(π) ≤ m.
Moreover, a slight extension of this argument shows that the result (6) can be stated in terms of the top
curve of the nonintersecting Poisson processes if these process where forced to return to their initial locations
at time 2 by imposing that their dynamics between times 1 and 2 have negative rather than positive jumps.
The asymptotic behavior of other curves can also be studied [6, 40, 13, 28, 7].

1.1.3 Symmetric Simple Random Walks and Random Rhombus Tilings of Hexagon

Consider n symmetric simple random walks S(m) = (S(1)(m), . . . , S(n)(m)), conditioned not to intersect
and S(0) = (2(n−1), 2(n−2), . . . , 0) = S(2k). Any realization of such walks is in one-to-one correspondence
to a rhombus tiling of a hexagon with sides of lengths k, k, n, k, k, n. Again, using the argument of Karlin
and McGregor, the distribution of S(k) can be expressed in terms of a determinant. This determinant
was significantly simplified and was shown to be related to the so-called Hahn orthogonal polynomials by
Johansson [30]. A further asymptotic analysis of the Hahn polynomials [8, 9] shows that as n, k →∞ such
that k = O(n), the top walk S(1)(k) converges to FTW and the gap distribution in the ‘bulk’ converges to
a discrete version of FSine. A similar asymptotic result was obtained also for domino tilings of an Aztec
diamond [30].

Certain polynuclear growth models, last passage percolation problems, and a bus system problem [43, 31,
39, 4] have also been analyzed in depth using non-intersecting path techniques. In each of the cases described
above, the random walks are very specific and the analysis relies heavily on their particular properties.
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1.2 Statement of Theorems

Let k be a positive integer. Let

xi =
2i− k

k
, i ∈ {0, ..., k}. (9)

Note that xi ∈ [−1, 1] for all i. Let {Y j
l }

k,Nk

j=0,l=1 be a family of independent identically distributed random
variables where Nk is a positive integer. Assume that EY j

l = 0 and V ar(Y j
l ) = 1. Further assume that there

is λ0 > 0 such that E
(
eλY j

l

)
<∞ for all |λ| < λ0.

Define the random walk process S(t) = (S0(t), ..., Sk(t)) by

Sj(t) = xj +
√

2
Nk

( j
tNk
2

k∑
i=1

Y j
i +

(
tNk

2
−
⌊
tNk

2

⌋)
Y jj

tNk
2

k
+1

)
, for t ∈ [0, 2], (10)

which starts at Sj(0) = xj . For Nk equally spaced times Sj is given by

Sj

(
2
Nk

l

)
= xj +

√
2
Nk

(
Y j

1 + · · ·+ Y j
l

)
, l = 1, 2, . . . , Nk. (11)

For t between 2
Nk
l and 2

Nk
(l + 1), Sj(t) is simply defined by linear interpolation.

Let (C([0, 2]; Rk+1), C) be the family of measurable spaces constructed from the continuous functions on
[0, 2] taking values in Rk+1 equipped with their Borel sigma algebras (generated by the sup norm). Let
Ak, Bk ∈ C be the events defined by

Ak = {y0(t) < · · · < yk(t) for t ∈ [0, 2]}, (12)
Bk = {yi(2) ∈ [xi − hk, xi + hk] for i ∈ {0, ..., k}} (13)

where hk > 0. The results of this paper focus on the process S(t) conditioned on the event Ak ∩ Bk where
hk � 2

k . In other words, the particles never intersect and all particles essentially return to their original
location at the final time 2.

The main results of this paper state that under certain technical conditions on hk and Nk, as k → ∞,
the locations of the particles at the half time (t = 1) behave, after suitable scaling, statistically like the
eigenvalues of a large random Hermitian matrix from the Gaussian unitary ensemble. The conditions for hk

and Nk are that {hk}k>0 is a sequence of positive numbers and {Nk}k>0 is a sequence of positive integers
satisfying

hk ≤ (2k)−2k2
and Nk ≥ h

−4(k+2)
k . (14)

Let Ck, Dk ∈ C be defined by

Ck =
{
yk(1) ≤

√
2k +

ξ√
2k1/6

}
, (15)

Dk =
{
yi(1) /∈

[
− πη√

2k
,
πη√
2k

]
for all i ∈ {0, ..., k}

}
, (16)

where ξ and η > 0 are fixed real numbers. The event Ck is a constraint on the location of the right-most
particle, and Dk is the event that no particle is in a small neighborhood of the origin at time 1.

Theorem 1 (Edge). Let Pk be the probability measure induced on (C([0, 2]; Rk+1), C) by the random walks
{S(t) : t ∈ [0, 2]}. Let {hk}k>0 and {Nk}k>0 satisfy (14). Then

lim
k→∞

Pk(Ck|Ak ∩Bk) = FTW (ξ). (17)

A similar theorem holds for the bulk.
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Theorem 2 (Bulk). Let Pk be the probability measure induced on (C([0, 2]; Rk+1), C) by the random walks
{S(t) : t ∈ [0, 2]}, and let {hk}k>0 and {Nk}k>0 satisfy (14). Then

lim
k→∞

Pk(Dk|Ak ∩Bk) = FSine(η). (18)

The proofs have a two step strategy. The first step is to show that under the conditions of the theo-
rems the process S(t) is well approximated by non-intersecting Brownian bridge processes starting at the
same positions. This proof relies on the Komlos, Major, Tusnady (KMT) theorem. The second step is to
compute the limiting distributions of the non-intersecting Brownian bridge processes and prove that these
distributions are indeed FTW or FSine. This Brownian bridge process is quite similar to the one discussed
in subsection 1.1.1 above, but with the minor difference in the starting and ending positions. This results,
using the Karlin-McGregor formula, in a density function for the particles analogous to the Coulomb gas
density with a potential different from GUE, namely the Stieltjes-Wigert potential. The asymptotics of such
Coulomb system is analyzed using Riemann-Hilbert methods.

The above theorems are proven under the condition that Nk is large compared to the number, k + 1,
of particles. This assumption ensures that the Brownian approximation of the random walks has a smaller
effect than the non-intersecting condition. Although it is believed that the condition on Nk is technical,
it is not clear under which conditions on the random variables one has Nk = O(k). For example, when
{Y j

l } are Bernoulli, these results were proven even when Nk = O(k) (see subsection 1.1.3 above). This is
because there is an integrability in this problem: The Karlin-McGregor argument applies directly because
intersecting paths must be incident at some time. It is a challenge to find the optimal scaling such that a
result of this nature holds for more general random variables. In other words, in what scaling regime does
the exact Karlin-McGregor calculation essentially not matter?

This paper is organized as follows. The approximation by the Brownian bridge process is proven in
Section 2. The asymptotic analysis of the Brownian bridge process (appearing in section 2) is carried out in
Section 3. Some other considerations such as finite dimensional distributions and the modifications necessary
to study random variables without finite moment generating functions are discussed in section 4.

Acknowledgments. The authors would like to thank Percy Deift and Harold Widom for useful discussions.
The work of Baik was supported in part by NSF grants DMS #0457335 and the Sloan Fellowship. The work
of Suidan was supported in part by NSF grants DMS #0202530/0553403.

2 Approximation by a Brownian bridge process

Let {Xt}t≥0 be the Rk+1-valued stochastic process Xt = (X0(t), ...Xk(t)) where Xj(t) = xj +Bj
t for a family

of k+ 1 independent standard Brownian motions Bj
t . The proof in this section relies on the Komlos, Major,

Tusnady coupling of Brownian motions and random walks [35, 36] which can be stated in our setting as
follows: With increments of the form {Y j

l }
k,Nk

j=0,l=1 described in the introduction, there exists a coupling such
that

P
(

sup
0≤l≤Nk

∣∣∣∣Si

(
2l
Nk

)
−Xi

(
2l
Nk

)∣∣∣∣ > 1√
Nk

(c logNk + x)
)
≤ e−ax, (19)

for some fixed a, c > 0 which depend only on the properties of the moment generating functions of the
{Y j

l }
k,Nk

j=0,l=1. Alternatively, (19) can be written as

P
(

sup
0≤l≤Nk

∣∣∣∣Si

(
2l
Nk

)
−Xi

(
2l
Nk

)∣∣∣∣ > c logNk√
Nk

+ y

)
≤ e−ay

√
Nk . (20)

This fact immediately implies that

P
(

sup
0≤i≤k

sup
0≤l≤Nk

∣∣∣∣Si

(
2l
Nk

)
−Xi

(
2l
Nk

)∣∣∣∣ > c logNk√
Nk

+ y

)
≤ (k + 1)e−ay

√
Nk . (21)
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Let {S(t)}t∈[0,2] be the k + 1-dimensional random walk process defined in Introduction and let {Xt}
be the KMT coupled k + 1-dimensional Brownian process on the same probability spaces (Ω(k),F (k),P(k)).
We can assume that the probability space which holds S and X is large enough to hold a third process
Zt = (Z0(t), ..., Zk(t)) where the Zi(t) are standard Brownian bridge processes with initial and terminal
conditions specified by Zi(0) = Zi(2) = xi. Let FS

k , F
X
k , FZ

k : C([0, 2],Rk+1) → R be defined by

FS
k (y) =

1lAk∩Bk∩Ck
(y)

E1lAk∩Bk
(S)

, (22)

FX
k (y) =

1lAk∩Bk∩Ck
(y)

E1lAk∩Bk
(X)

, (23)

FZ
k (y) =

1lAk∩Bk∩Ck
(y)

E1lAk∩Bk
(Z)

. (24)

Let GS
k , G

X
k , G

Z
k : C([0, 2],Rk+1) → R be defined by

GS
k (y) =

1lAk∩Bk∩Dk
(y)

E1lAk∩Bk
(S)

, (25)

GX
k (y) =

1lAk∩Bk∩Dk
(y)

E1lAk∩Bk
(X)

, (26)

GZ
k (y) =

1lAk∩Bk∩Dk
(y)

E1lAk∩Bk
(Z)

. (27)

Theorems 1 and 2 will be proven in two steps. The first step is to show that under the conditions given
in the Introduction,

Proposition 1. As k →∞, the random variables FS
k , FZ

k , GS
k , and GZ

k satisfy

E(FS
k (S)− FZ

k (Z)) → 0, (28)
E(GS

k (S)−GZ
k (Z)) → 0. (29)

As E(FS
k (S)) = Pk(Ck|Ak ∩Bk) and E(GS

k (S)) = Pk(Dk|Ak ∩Bk), it is enough to prove

Proposition 2.

lim
k→∞

EFZ
k (Z) = FTW (ξ) (30)

lim
k→∞

EGZ
k (Z) = FSine(η). (31)

The proof of proposition 2 is given in section 3 below. The rest of this section focuses on the proof of
Proposition 1. Proposition 1 is proven in two steps: First, E(FS

k (S)) is approximated by E(FX
k (X)); second,

E(FX
k (X)) is approximated by E(FZ

k (Z)). The proof of (29) is handled in a similar way.

Three preliminary lemmas are needed in order to prove Proposition 1. Recall (9) that

xi =
2i− k

k
, i = 0, ..., k. (32)
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Lemma 1. Let a, c > 0 be the constants in KMT approximation (21). For any ρ ≥ 3c log Nk√
Nk

,

E|1lAk∩Bk
(S)− 1lAk∩Bk

(X)| ≤ 2(k + 1)e−
1
2 a
√

Nkρ +
32(k + 1)

ρ

√
Nk

π
e−

ρ2Nk
64 + 8(2k + 1)ρ (33)

E|1lBk
(S)− 1lBk

(X)| ≤ (k + 1)e−
1
2 a
√

Nkρ +
16(k + 1)

ρ

√
Nk

π
e−

ρ2Nk
64 + 8(k + 1)ρ (34)

E|1lCk
(S)− 1lCk

(X)| ≤ (k + 1)e−
1
2 a
√

Nkρ +
16(k + 1)

ρ

√
Nk

π
e−

ρ2Nk
64 + 8(k + 1)ρ (35)

E|1lDk
(S)− 1lDk

(X)| ≤ (k + 1)e−
1
2 a
√

Nkρ +
16(k + 1)

ρ

√
Nk

π
e−

ρ2Nk
64 + 8(k + 1)ρ. (36)

Proof. Note that

E|1lAk∩Bk
(S)− 1lAk∩Bk

(X)| = E|1lAk
(S)1lBk

(S)− 1lAK
(X)1lBk

(X)|
= E|(1lAk

(S)− 1lAk
(X))1lBk

(S) + (1lBk
(S)− 1lBk

(X))1lAk
(X)|

≤ E|1lAk
(S)− 1lAk

(X)|+ E|1lBk
(S)− 1lBk

(X)|. (37)

We first estimate E|1lAk
(S) − 1lAk

(X)| = P(E) where E = {S ∈ Ak, X /∈ Ak} ∪ {S /∈ Ak, X ∈ Ak}. Recall
that Ak = {y0(t) < · · · < yk(t) for t ∈ [0, 2]}. Let ρ ≥ 3c log Nk√

Nk
where c is the KMT coupling constant. The

event E can be expressed as the disjoint union of the following three events E1, E2, E3. The first event E1 is

the subset of E consisting of “bad” paths satisfying sup
0≤i≤k

sup
t∈[0,2]

|Si(t) −Xi(t)| >
c logNk√

Nk

+ ρ. The second

event E2 is the subset of E \E1 consisting of paths satisfying mint∈[0,2](Si(t)−Si−1(t)) < 0 for some 1 ≤ i ≤ k
while X0(t) < · · · < Xk(t) for all t ∈ [0, 2]. The third event E3 is the subset of E \ E1 consisting of paths such
that mint∈[0,2](Xi(t)−Xi−1(t)) < 0 for some 1 ≤ i ≤ k while S0(t) < · · · < Sk(t) for all t ∈ [0, 2]. In order
to estimate P(E1), note that the KMT theorem couples random walks to Brownian motion at discrete times.
Hence, even when X and S are close at discrete times, “bad paths” may occur if X fluctuates too much in
( 2

Nk
l, 2

Nk
(l + 1)) for some l. (Note that S is simply linearly interpolated for times not integral multiple of

2
Nk

.) Thus, from (21) and a standard estimates for Brownian motions,

P(E1) ≤ P
(

sup
0≤i≤k

sup
0≤l≤Nk

∣∣∣∣Si

(
2l
Nk

)
−Xi

(
2l
Nk

) ∣∣∣∣ > c logNk√
Nk

+
ρ

2

)
+ P

({
sup

0≤i≤k
sup

0≤l≤Nk

∣∣∣∣Si

(
2l
Nk

)
−Xi

(
2l
Nk

) ∣∣∣∣ ≤ c logNk√
Nk

+
ρ

2

}
∩
{

max
s,t∈( 2l

Nk
,
2(l+1)

Nk
)

|Xi(t)−Xi(s)| >
ρ

2
for some 0 ≤ i ≤ k and for some 0 ≤ l < Nk

})

≤ (k + 1)e−
1
2 a
√

Nkρ + (k + 1)NkP
(

max
t,s∈[0, 2

Nk
]
|X1(t)−X1(s)| >

ρ

2

)

≤ (k + 1)e−
1
2 a
√

Nkρ +
16(k + 1)

ρ

√
Nk

π
e−

ρ2Nk
64 .

(38)

Note that this estimate does not use the fact that E1 is a subset of E . For a path in the event E2, there is
i ∈ {1, 2, . . . , k} such that mint∈[0,2](Si(t)− Si−1(t)) < 0, but Xi−1(t) < Xi(t) for all t ∈ [0, 2] and |Sj(t)−
Xj(t)| ≤ c log Nk√

Nk
+ ρ all t ∈ [0, 2] and j ∈ {0, 1, . . . , Nk}. Therefore, for a path in E2, 0 < mint∈[0,2](Xi(t)−
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Xi−1(t)) < 2c log Nk√
Nk

+ 2ρ ≤ 4ρ. Thus, from a standard Brownian motion argument,

P(E2) ≤ P
(

0 ≤ min
t∈[0,2]

(Xi(t)−Xi−1(t)) < 4ρ for some 1 ≤ i ≤ k

)
≤ kP

(
0 ≤ min

t∈[0,2]
(X1(t)−X0(t)) < 4ρ

)
≤ 4kρ.

(39)

A similar argument yields that

P(E3) ≤ P
(
−4ρ < min

t∈[0,2]
(Xi(t)−Xi−1(t)) < 0 for some 1 ≤ i ≤ k

)
≤ kP

(
− 4ρ < min

t∈[0,2]
(X1(t)−X0(t)) < 0

)
≤ 4kρ.

(40)

Therefore,

E|1lAk
(S)− 1lAk

(X)| = P(E1) + P(E2) + P(E3)

≤ (k + 1)e−
1
2 a
√

Nkρ +
16(k + 1)

ρ

√
Nk

π
e−

ρ2Nk
64 + 8kρ.

(41)

Now we estimate E|1lBk
(S) − 1lBk

(X)| = P(F) where F = {S ∈ Bk, X /∈ Bk} ∪ {S /∈ Bk, X ∈ Bk}. As
before, we express F = F1 ∪ F2 ∪ F3, a disjoint union. The first event F1 is the subset of F consisting
of the same bad paths as in E1. The event F2 is the intersection of F \ F1 and {S ∈ Bk, X /∈ Bk} and
the event F3 is the intersection of F \ F1 and {S /∈ Bk, X ∈ Bk}. The argument for E1 implies that same
bound (38) to P(F1). For a path in F2, there is i ∈ {0, 1, . . . , k} such that Xi(2) /∈ [xi − hk, xi + hk]. But as
Si(2) ∈ [xi − hk, xi + hk] and |Si(2)−Xi(2)| ≤ 2 log Nk√

Nk
+ ρ ≤ 2ρ, we find that Xi(2) ∈ (xi + hk, xi + hk + 2ρ]

or Xi(2) ∈ [xi − hk − 2ρ, xi − hk). Therefore,

P(F2) ≤ (k + 1)P(X0(2) ∈ [−2ρ, 2ρ]) ≤ 4(k + 1)ρ. (42)

A similar argument yields the same bound for P(F3). Therefore, (34) is proven and so is (33) by using (37)
and (41). An almost identical argument proves (35) and (36).

Denote by pt(a, b) = 1√
2πt

e−
(a−b)2

2t the standard heat kernel in one dimension. The theorem of Karlin and
McGregor [33] for the non-intersecting Brownian motions implies that the joint probability density function
ft(y0, . . . , yk) of (k + 1)-dimensional Brownian motion X(t) at time t satisfying X0(s) < X1(s) · · · < Xk(s)
for s ∈ [0, t] is equal to

ft(y0, . . . , yk) = det
(
pt(xi, yj)

)k
i,j=0

(43)

where xi = Xi(0). The following Lemma establishes a lower bound of this density when yi = xi for all i.

Lemma 2. For t > 0,

det
(
pt(xi, xj)

)k
i,j=0

≥ 1

(2πt)
k+1
2

e−
2(k+1)(k+2)

3tk

(
2√
tk

)k(k+1)

. (44)

In particular, for all sufficiently large k,

det
(
p2(xi, xj)

)k
i,j=0

≥ k−k2
. (45)
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Proof. As xi = 2i−k
k ,

det
(
pt(xi, xj)

)k
i,j=0

= det
(

1√
2πt

e−
1
2t (xi−xj)

2
)k

i,j=0

=
e−2

Pk
j=0 j2

(2πt)
k+1
2

det
(
e

2ij

tk2
)k
i,j=0

(46)

It is an exercise to show that for k ≥ 1,

det
(
e

2ij

tk2

)k

i,j=0
=

[
k∏

l=1

δ
l(l−1)

2

] k∏
j=1

(δj − 1)k+1−j

 , (47)

where δ = e
4

tk2 . Using (47) and the fact that δ − 1 > 4
tk2 > 0,

det
(
pt(xi, xj)

)k
i,j=0

=
1

(2πt)
k+1
2

e−
2(k+1)(k+2)

3tk

k∏
j=1

(δj − 1)k+1−j

≥ 1

(2πt)
k+1
2

e−
2(k+1)(k+2)

3tk (δ − 1)
k(k+1)

2

≥ 1

(2πt)
k+1
2

e−
2(k+1)(k+2)

3tk

(
4
tk2

) k(k+1)
2

.

(48)

This completes the proof of Lemma 2.

The following lemma will be used to control the difference between a conditioned version of the process
X and the process Z.

Lemma 3. If hk ≤ (2k)−2k2
, then for sufficiently large k,∣∣∣∣ det(p1(yi, xj)

det(p2(xi, xj))
−
∫ hk

−hk
· · ·
∫ hk

−hk
det(p1(yi, xj + sj))ds0 · · · dsk∫ hk

−hk
· · ·
∫ hk

−hk
det(p2(xi, xj + sj))ds0 · · · dsk

∣∣∣∣ ≤ 1
k

(49)

uniformly in (y0, ..., yk) ∈ Rk+1.

Proof. The conclusion of this lemma is a consequence of several elementary determinant estimates. First
note that if A = (aij)k

i,j=0 is a (k + 1)× (k + 1) matrix with entries |aij | ≤ 1, then for the matrix Iij given
by (Iij)mn = δimδjn,

|det(A)− det(A+ εIij)| ≤ εk!. (50)

Using a Lipschitz estimate for the Gaussian density, equation (50) implies that for any t ≥ 1√
2πe

, any h > 0,
and any (a0, . . . , ak), (b0, . . . , bk) ∈ Rk+1,∣∣∣∣∣det(pt(ai, bj))−

1
(2h)k+1

∫ h

−h

· · ·
∫ h

−h

det(pt(ai + si, bj))ds0 · · · dsk

∣∣∣∣∣ ≤ 2h(k + 1)2k!. (51)

Now a simple algebraic manipulation yields that the left-hand-side of (49) equals∣∣∣∣det(p1(yi, xj))
det(p2(xi, xj))

·
1

(2hk)k+1

∫
[−hk,hk]k+1 (det(p2(xi, xj + sj))− det(p2(xi, xj))) ds0 · · · dsk

det(p2(xi, xj)) + 1
(2hk)k+1

∫
[−hk,hk]k+1 [det(p2(xi, xj + sj))− det(p2(xi, xj))] ds0 · · · dsk

+
1

(2hk)k+1

∫
[−hk,hk]k+1 [det(p1(yi, xj))− det(p1(yi, xj + sj))] ds0 · · · dsk

det(p2(xi, xj)) + 1
(2hk)k+1

∫
[−hk,hk]k+1 [det(p2(xi, xj + sj))− det(p2(xi, xj))] ds0 · · · dsk

∣∣∣∣. (52)
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Using the estimates (45) and (51), the denominator on the second fraction in (52) is bounded below by

k−k2
− 2hk(k + 1)2k! ≥ 1

2
k−k2

(53)

for sufficiently large k. Hence, using (51) again, the absolute value of second fraction of (52) is less than or
equal to

2hk(k + 1)2k!kk2
. (54)

On the other hand, as det(p1(xi, yj)) is the density function (for (y0, . . . , yk) ∈ Rk+1
> where Rk+1

> =
{(y0, ..., yk) ∈ Rk+1 : y0 < · · · < yk}) corresponding to the probability of k + 1 Brownian motions starting
from (x0, . . . , xk) and ending at (y0, . . . , yk) at time 1 without having intersected, it is clearly less than the
same type of probability density function when a non-intersection condition is not imposed. Therefore,

det(p1(xi, yj)) ≤
k∏

i=0

1√
2π
e−

1
2 (xi−yi)

2
≤ 1. (55)

The absolute value of the first term in the brackets of (52) is less than or equal to

2hk(k + 1)2k!k2k2
. (56)

Since hk is assumed to be less than or equal to (2k)−2k2
, (49) follows.

The proof of Proposition 1 follows.

Proof of Proposition 1. Two estimates will be needed. Note that

|E(FS
k (S)− FZ

k (Z))| ≤ E|FS
k (S)− FX

k (X)|+ |E(FX
k (X)− FZ

k (Z))|. (57)

The first term on the right side of (57) is estimated as follows:

E|FS
k (S)− FX

k (X)|

= E
∣∣∣∣1lAk∩Bk∩Ck

(S)
E1lAk ∩Bk(S)

− 1lAk∩Bk∩Ck
(X)

E1lAk∩Bk
(X)

∣∣∣∣
= E

∣∣∣∣1lAk∩Bk∩Ck
(S)(E1lAk∩Bk

(X)− E1lAk∩Bk
(S)) + (1lAk∩Bk∩Ck

(S)− 1lAk∩Bk∩Ck
(X))E1lAk∩Bk

(S)
E1lAk∩Bk

(S)E1lAk∩Bk
(X)

∣∣∣∣
≤ |E1lAk∩Bk

(X)− E1lAk∩Bk
(S)|

E1lAk∩Bk
(X)

+ E
∣∣∣∣ (1lAk∩Bk∩Ck

(S)− 1lAk∩Bk∩Ck
(X))

E1lAk∩Bk
(X)

∣∣∣∣
≤ 2E|1lAk∩Bk

(S)− 1lAk∩Bk
(X)|+ E|1lCk

(S)− 1lCk
(X)|

E1lAk∩Bk
(X)

.

(58)

By setting ρ = N
−1/4
k in the Lemma 1, for large enough k, it is easy to check that

E|1lAk∩Bk
(S)− 1lAk∩Bk

(X)| ≤ 20k

N
1/4
k

, E|1lCk
(S)− 1lCk

(X)| ≤ 20k

N
1/4
k

. (59)

On the other hand, by using (45) and the argument leading to (53), for large enough k,

E1lAk∩Bk
(X)

= (2hk)k+1 det(p2(xi, xj)) +
(
E1lAk∩Bk

(X)− (2hk)k+1 det(p2(xi, xj))
)

= (2hk)k+1 det(p2(xi, xj)) +
∫

[−hk,hk]k+1
(det(p2(xi, xj + sj))− det(p2(xi, xj))) ds0 · · · dsk

≥ (2hk)k+1

2kk2 .

(60)
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Hence, from (59), for large enough k,

E|FS
k (S)− FX

k (X)| ≤ 120kk2+1

(2hk)k+1N
1/4
k

→ 0 (61)

as k → ∞. For the second term of (57), note that the Karlin-McGregor formula for the non-intersecting
Brownian motions implies that (cf. (43) above) the density function of the non-intersecting Brownian bridge
process Z evaluated at time 1 is equal to

f(y0, . . . , yk) =
det(p1(xi, yj))k

i,j=0 det(p1(yi, xj))k
i,j=0

det(p2(xi, xj))k
i,j=0

. (62)

Similarly, the density of the non-intersecting Brownian motion X evaluated at time t is equal to

f(y0, . . . , yk) =

∫
[−hk,hk]k+1 det(p1(xi, yj))k

i,j=0 det(p1(yi, xj))k
i,j=0ds0 · · · dsk∫

[−hk,hk]k+1 det(p2(xi, xj + sj))ds0 · · · dsk
. (63)

Therefore,

|E
(
FX

k (X)− FZ
k (Z)

)
| =

∣∣∣∣E(1lAk∩Bk∩Ck
(X)

E1lAk∩Bk
(X)

− 1lAk∩Bk∩Ck
(Z)

E1lAk∩Bk
(Z)

)∣∣∣∣
≤
∫

Rk+1
>

∣∣∣∣
∫
[−hk,hk]k+1 det(p1(xi, yj)) det(p1(yi, xj + sj))ds0 · · · dsk∫

[−hk,hk]k+1 det(p2(xi, xj + sj))ds0 · · · dsk

− det(p1(xi, yj)) det(p1(yi, xj))
det(p2(xi, xj))

∣∣∣∣dy0 · · · dyk.

(64)

By using Lemma 3 and (55), this implies that

|E
(
FX

k (X)− FZ
k (Z)

)
| ≤ 1

k

∫
Rk+1

>

|det(p1(xi, yj))|dy0 · · · dyk

≤ 1
k

∫
Rk+1

>

[ k∏
i=0

1√
2π
e−

(xi−yi)
2

2

]
dy0 · · · dyk ≤

1
k
.

(65)

The proof of (29) is exactly the same. This completes the proof of Proposition 1.

3 Asymptotics of a Brownian bridge process

We prove Proposition 2 in this section. Together with the results of Section 2, this completes the proof of
Theorem 1 and Theorem 2.

From the density formula of Karlin and McGregor for non-intersecting Brownian bridge process [33]
(cf. (43)),

E
(
FZ

k (Z)
)

=
1

det
(
p2(xi, xj)

)k
i,j=0

∫
Rk+1

>

[
det
(
p1

(
xi, yj

))k
i,j=0

]2 k∏
j=0

(1−H1(yj))dyj (66)

where xi = 2i−k
k and

H1(y) = 1l(√
2k+ ξ√

2k1/6 ,∞
)(y). (67)

Also

E
(
GZ

k (Z)
)

=
1

det
(
p2(xi, xj)

)k
i,j=0

∫
Rk+1

>

[
det
(
p1

(
xi, yj

))k
i,j=0

]2 k∏
j=0

(1−H2(yj))dyj (68)
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where
H2(y) = 1l[− η√

k+1
, η√

k+1
](y). (69)

We need the limit of (66) and (68) as k →∞.
In the discussion below, H(y) denotes either of H1 or H2. Indeed, the algebra below works for arbi-

trary bounded functions H(y). Using the formula of pt and the definition of xi, an elementary algebraic
manipulation using Vandermode determinants yields that (66) and (68) are equal to

C ′k ·
∫

Rk+1

∏
0≤i<j≤k

(e
2yj

k − e
2yi
k )2

k∏
j=0

(1−H(yj))e−y2
j−2yjdyj , (70)

where C ′k is the normalization constant so that (70) becomes 1 when H(y) ≡ 0:

C ′k =
e−

(k+1)(k+2)
3k

det
(
p2(xi, xj)

)k
i,j=0

(k + 1)!(2π)k+1
. (71)

Note that the integration domain is changed to Rk+1 by using the symmetry of the integrand. Changing the
variables by yj = k

2 log uj − 1, (70) equals

Ck ·
∫

Rk+1
+

∏
0≤i<j≤k

(uj − ui)2
k∏

j=0

(1− Ĥ(uj))
1
uj
e−

k2
4 (log uj)

2
duj (72)

where
Ĥ(u) = H

(k
2

log u− 1
)

(73)

and the normalization constant

Ck =
kk+1e−

(k+1)(k+2)
3k

det
(
p2(xi, xj)

)k
i,j=0

(k + 1)!(2π)k+1
. (74)

This is the standard β = 2 ensemble in the random matrix theory on the half real line R+ with the weight

w(u) =
1
u
e−

k2
4 (log u)2 = e−

k2
4 (log u)2−log u. (75)

Note that w(u) = o(u−m) for any m ≥ 0 as u→ +∞, and w(u) = o(um) for any m ≥ 0 as u ↓ 0.
With the change of variables u = e−

2
k2 x, (75) equals

w(u)du = c · e− k2
4 (log x)2dx, c = e

1
k2 . (76)

This is, up to a constant, the Stieltjes-Wigert weight which is defined as

π−1/2ke−k2(log x)2 (77)

(see e.g. section 2.7 of [48] or section 3.27 of [34]). The moments for the Stieltjes-Wigert weight is an
example of indeterminate moment problem; hence, there are several weights that have the same moments
as the weight (77). Another interesting feature of the Stieltjes-Wigert weight (77) is that the corresponding
orthogonal polynomials (called Stieltjes-Wigert polynomials) are an example of so-called q-polynomials with
q = e−

1
2k2 (see e.g. section 3.27 of [34]). It seems that the above non-intersecting bridge process Z is the

first example where the q-polynomials appear in random matrix theory context.
Various β = 2 matrix ensembles of the form (72) (on both the real line and a subset of the real line)

have been analyzed asymptotically and it has been proven that the local statistics of the ‘eigenvalues’, or
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the particles u0, . . . , uk, are generically independent of the potential w. For example, such ‘universality’ is
proven when w(x) = e−(k+1)V (x) for an analytic weight V on R or R+ satisfying certain growth conditions
as x → ±∞ (and as x → 0 for weights on R+) (e.g. [41, 11, 21, 37]) and when w(x) = e−Q(x) where Q(x)
is a polynomial (e.g. [20]). However, the asymptotic analysis of the ensemble with the weight given in (75)
above does not seem to be in a literature. It is well-known (see (78) below) that the asymptotics of β = 2
ensemble amounts to the asymptotic analysis of the corresponding orthogonal polynomials. For our case, we
need the asymptotics of the orthogonal polynomials of degree k and k + 1 with respect to the weight (75)
as k →∞; note that the weight also varies as k increases. The asymptotics of Stieltjes-Wigert polynomials
are studied recently in [52] and [26] but in different asymptotic regimes: the degree goes to infinity while
the weight is fixed. Therefore, the analysis of this section seems to yield new results for asymptotics of
Stieltjes-Wigert polynomials. Nevertheless, the asymptotics analysis of the orthogonal polynomials and the
ensemble (72) with varying weight (75) can be done in a very similar way to the analysis in [20, 21] using
the Deift-Zhou steepest-descent method for related Riemann-Hilbert problems (RHP’s), which is now one
of standard tools for asymptotic analysis for orthogonal polynomials. We note that the paper [52] also used
Deift-Zhou method (for a different asymptotic regime), and our analysis has some overlap with the analysis
of [52]. In this section, we only present a sketch of the analysis.

It is a standard result in random matrix theory (see e.g. [38, 49]) that (72) equals

det(1−KkĤ) (78)

where

Kk(x, y) =
√
w(x)w(y)

γk

γk+1

pk+1(x)pk(y)− pk(x)pk+1(y)
x− y

(79)

is the Christoffel-Darboux kernel in which pn(x) = γnx
n + · · · is the nth orthonormal polynomial with

respect to w. Hence

E
(
FZ

k (Z)
)

= det(1−KkĤ1)

E
(
GZ

k (Z)
)

= det(1−KkĤ2).
(80)

Let Y(z) be the solution to the following Riemann-Hilbert problem; Y(x) is the 2×2 matrix-valued function
on C \R+ satisfying

• Y(z) is analytic for z ∈ C \ R+, Y±(z) = limε↓0 Y(z ± iε) is continuous for z ∈ R+, and Y(z) is
bounded as z → 0.

• For z ∈ R+,

Y+(z) = Y−(z)
(

1 w(z)
0 1

)
. (81)

• Y(z)z−(k+1)σ3 = (I +O(z−1)) uniformly as z →∞ such that z ∈ C \ R+ where σ3 =
(

1 0
0 −1

)
.

There is a unique Y to this RHP and in particular, the (11) and (21) entries of Y(z) are given by Y11(z) =
γ−1

k+1pk+1(z) and Y21(z) = −2πiγkpk(z) [24] . Note that the existence of Y under the condition that Y(z)
is bounded as z → 0 (rather than, for example, that Y12(z) = O(z−1) as in, say, [51]) is due to the fact that
w(x) → 0 faster than any polynomials as x→ 0. Thus, the Christoffel-Darboux kernel can be written as, by
using the fact that detY(z) = 1,

Kk(x, y) =
√
w(x)w(y)

1
2πi(x− y)

(
0 1

)
Y−1(y)Y(x)

(
1
0

)
. (82)

One of the main ingredient in analyzing the RHP for orthogonal polynomials asymptotically is the so-
called equilibrium measure and the corresponding ‘g-function’. Let ψ(x)dx be a measure on R+ = supp(w)
with total mass ∫

ψ(x)dx = k + 1. (83)
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Define the ‘G-function’
G(z) =

∫
log(z − x)ψ(x)dx, z ∈ C \ R+, (84)

where log represents the log function on the standard branch so that log u = log |u|+i arg(u) where | arg(u)| <
π. It is customary to define ψ to be the probability measure and define g-function as in (84) (hence
G(z) = (k + 1)g(z)), but in this paper we use the above convention since it simplifies some formulas below.
Note that

G+(x) +G−(x) = 2
∫

log |x− y|ψ(y)dy, x ∈ R+. (85)

We look for G satisfying the following two conditions; there is a constant ` such that

• G+(x) +G−(x) + log(w(x))− ` = 0 for x ∈ supp(ψ),

• G+(x) +G−(x) + log(w(x))− ` < 0 for x ∈ R+ \ supp(ψ).

For such G, the measure ψ is called the equilibrium measure.
Using the standard procedure to solve this variational problem (see e.g. [44, 19]), one can compute the

equilibrium measure for the weight (75).

Lemma 4. For the weight (75), the support of the equilibrium measure is [a,b] where

√
a = e

2k+1
k2 −

√
e

4k+2
k2 − e

2
k ,

√
b = e

2k+1
k2 +

√
e

4k+2
k2 − e

2
k .

(86)

The equilibrium measure is for x ∈ [a,b],

ψ(x) =
1
2π

√
(b− x)(x− a)h(x), h(z) =

1
2πi

∮
C

−(log(w(s)))′

(s− z)R(s)
ds (87)

where R(z) = ((z − a)(z − b))1/2 denotes the principal branch of the square-root function and the simple
closed contour C contains z and [a,b] inside, does not touch (−∞, 0] and is oriented counter-clockwise. A
residue calculation yields that

ψ(x) =
k2

2πx
arctan

(√
(b− x)(x− a)√

ab + x

)
, x ∈ [a,b]. (88)

We remark that a and b are sometimes called the Mhaskar-Rakhmanov-Saff numbers. The above a and
b are obtained in [52]: with αn and βn in (2.2) and (2.3) of [52],

a =
(
e−

1
2k2 αn

)
|k 7→ k

2 ,n=k+1, b =
(
e−

1
2k2 βn

)
|k 7→ k

2 ,n=k+1. (89)

Given this ψ, G(z) is defined as in (84) and ` defined as ` = 2G(b) − log(w(b)) = 2G(a) − log(w(a)).
The function h(z) in (87) is analytic in z ∈ C \ (−∞, 0]. A residue calculation yields that

h(z) =
k2

2zR(z)
log
(√

ab+ z −R(z)√
ab+ z +R(z)

)
, z ∈ C \ (−∞, 0] (90)

where log denotes the principal branch of logarithm. For a computation below, we note that as k →∞,

√
a = 1−

√
2
k

+
2
k

+O(k−3/2),

√
b = 1 +

√
2
k

+
2
k

+O(k−3/2).

(91)
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We also remark that with x = 1 + 2w√
k
, for w = O(1), as k →∞, at least formally,

ψ(x)dx ∼ k

π

√
2− w2dw, w ∈ [−

√
2,
√

2], (92)

which is precisely the Wigner’s semicircle. This last calculation is not going to be used below, but it gives
an intuitive reason why the ensemble (72) (and (70)) has the same asymptotics as the Gaussian unitary
ensemble, not only locally, but also globally.

Set
M(z) = e−

1
2 `σ3Y(z)e−G(z)σ3e

1
2 `σ3 (93)

for z ∈ C \R+. Using the analyticity of G for z ∈ R+ \ [a,b] and the variational conditions, M(z) solves the
following equivalent RHP:

• M(z) is analytic for z ∈ C \ R+, M±(z) is continuous for z ∈ R+, and M(z) is bounded as z → 0.

• For z ∈ R+, M+(z) = M−(z)VM (z) where

VM (z) =
(
eG−(z)−G+(z) 1

0 eG+(z)−G−(z)

)
, z ∈ (a,b) (94)

VM (z) =
(

1 e2G(z)+log(w(z))−`

0 1

)
, z ∈ R+ \ (a,b). (95)

• M(z) = I +O(z−1) as z →∞.

The non-unit terms in the jump matrix can be expressed in a unifying way. Set

H(z) = G(z) +
1
2

log(w(z))− 1
2
`, z ∈ C \

(
(−∞, 0] ∪ [a,b]

)
. (96)

Noting the variational condition, we find that for z ∈ (a,b),

G+(z)−G−(z) = 2G+(z) + log(w(z))− ` = 2H+(z)
= −(2G−(z) + log(w(z))− `) = −2H−(z).

(97)

Hence G+(z) − G−(z) has an analytic continuation for both above and the below the real axis. Therefore,
the jump matrix VM equals

VM (z) =
(
e−2H+(z) 1

0 e−2H−(z)

)
, z ∈ (a,b) (98)

VM (z) =
(

1 e2H(z)

0 1

)
, z ∈ R+ \ (a,b). (99)

Using the definition of G and Lemma 4, one can check that

H ′(z) =
1
2
R(z)h(z). (100)

Now we scale the RHP for M so that the the interval (a,b) becomes (−1, 1). In other words, instead of
moving interval as the support of the equilibrium measure, we will fix the support. In that way, we can use
the analysis of [20, 21] more directly. Define

N(z) = M
(

b− a
2

z +
b + a

2

)
. (101)

Set Σ = (−b+a
b−a ,∞), and set

Ĥ(z) = H

(
b− a

2
z +

b + a
2

)
. (102)

The matrix N solves the following RHP:
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• N(z) is analytic for z ∈ C \ Σ, N±(z) is continuous for z ∈ Σ, and N(z) is bounded as z → −b+a
b−a .

• For z ∈ Σ, N+(z) = N−(z)VN (z) where

VN (z) =

(
e−2Ĥ+(z) 1

0 e−2Ĥ−(z)

)
, z ∈ (−1, 1) (103)

VN (z) =
(

1 e2Ĥ(z)

0 1

)
, z ∈ Σ \ (−1, 1). (104)

• N(z) = I +O(z−1) as z →∞.

−(b+a)/(b−a)

2

Ω3

Ω1

Ω4

Σ 0

Σ 2

Σ 3 Σ 4

Σ 1

−1 1

Ω

Figure 1: Contours for N

Note the factorization for z ∈ (−1, 1)(
e−2Ĥ+(z) 1

0 e−2Ĥ−(z)

)
=
(

1 0
e−2Ĥ−(z) 1

)(
0 1
−1 0

)(
1 0

e−2Ĥ+(z) 1

)
(105)

where we use the fact that Ĥ+(z) + Ĥ−(z) = 0 for z ∈ (−1, 1). Let Σj , j = 0, 1, . . . , 4 and Ωj , j = 1, . . . , 4
be the contours and open regions given in 3. Contours are oriented from the left to the right. Define

Q(z) =



N(z) z ∈ Ω1 ∪ Ω4

N(z)

(
1 0

−e−2Ĥ(z) 1

)
z ∈ Ω2

N(z)

(
1 0

e−2Ĥ(z) 1

)
z ∈ Ω3.

(106)

Then Q+(z) = Q−(z)VQ(z) for z in Σ0, . . . ,Σ4 where

VQ(z) =
(

0 1
−1 0

)
z ∈ Σ0 (107)

VQ(z) =
(

1 0
e−2Ĥ(z) 1

)
z ∈ Σ1 ∪ Σ2 (108)

VQ(z) =
(

1 e2Ĥ(z)

0 1

)
z ∈ Σ3 ∪ Σ4. (109)

The off-diagonal terms of VQ on Σ1 ∪ · · · ∪ Σ4 converges to 0 as the following Lemma implies.
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Lemma 5. There are δ0 > 0 and k0 > 0 such that for k ≥ k0,

Re
[
Ĥ(x+ iy)

]
≥ 2k|y|

√
1− x2 for −1 ≤ x ≤ 1 and −δ0 ≤ y ≤ δ0. (110)

For any δ > 0,

Ĥ(x) ≤ −kδ3/2 for −b + a
b− a

< x ≤ −1− δ and x ≥ 1 + δ (111)

when k ≥ k0, and

lim
k→∞

∫
(Σ3∪Σ4)∩{|z−1|>δ}∩{|z+1|>δ}

e2Ĥ(x)dx = 0. (112)

Hence VQ → V∞ for a constant matrix V∞ defined as

V∞(z) =
(

0 1
−1 0

)
z ∈ Σ0 (113)

and V∞(z) = I for z ∈ Σ1 ∪ · · · ∪Σ4, where the convergence VQ → V∞ is in L∞(Σ0 ∪ · · · ∪Σ4) and also in
L2((Σ0 ∪ · · · ∪ Σ4) ∩ {|z − 1| > δ} ∩ {|z + 1| > δ}) for an arbitrary but fixed δ > 0. Let

β(z) =
(
z − 1
z + 1

)1/4

(114)

where the branch cut is [−1, 1] and β(z) ∼ 1 as z → +∞ on the real line, and define

Q∞(z) =
1
2

(
β + β−1 −i(β − β−1)
i(β − β−1) β + β−1

)
(115)

for z ∈ C \ Σ0. Then Q∞(z) is the solution to the RHP for the Q∞
+ = Q∞

−V∞ and Q∞(z) → I as
z →∞. As the convergence VQ → V∞ is not uniform near the points z = ±1, and hence it is not true that
Q(z) → Q∞(z) for all z, and one needs local parametrix for z in a neighborhood of ±1.

Let Ψ(z) be the matrix-valued function constructed from the Airy function and its derivatives as defined
in Proposition 7.3 of [20]. Let ε > 0. For z ∈ Ur := {z : |z − 1| < ε}, set

Sr(z) = E(z)Ψ
((

− 3
2
Ĥ(z)

)2/3
)
e−Ĥ(z)σ3 (116)

where

E(z) =
√
πe

π
6 i

(
1 −1
−i −i

)((
− 3

2Ĥ(z)
)1/6

β(z)−1 0
0

(
− 3

2Ĥ(z)
)−1/6

β(z)

)
. (117)

Note that E(z) is analytic in Ur if ε is chosen small enough. The matrix Sl(z) is defined in a similar way for
z ∈ Ul := {z : |z + 1| < ε}. Define

Qpar(z) =


Q∞(z) z ∈ C \ Ur ∪ Ul ∪ Σ
Sr(z) z ∈ Ur \ Σ
Sl(z) z ∈ Ul \ Σ.

(118)

¿From the basic theorem of RHP, the estimate in Lemma 5, and from the same argument of [20], one can
check that the jump matrix for Q−1

parQ converges to the identity in L2 ∩ L∞. Hence

Q(z) =
(
I +O(k−1)

)
Qpar(z). (119)

This holds uniformly for z outside an open neighborhood of the contours Σ ∪ ∂Ur ∪ ∂Ul. But a simple
deformation argument implies that the result is extended to z on the contours (see [20]). Hence by reversing
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the transformations Y → M → N → Q (see (93), (101) and (106)), the asymptotics of Y(z) for all z ∈ C
are obtained.

By plugging in the asymptotics of Y into (82), edge and bulk scaling limits of the Kk is obtained. See
[15, 21, 18] for details. For x0 such that

√
k(x0 − 1) lies in a compact subset of (

√
k(a− 1),

√
k(b− 1)), for

all ξ, η in a compact subset of R,

1
ψ(x0)

Kk

(
x0 +

ξ

ψ(x)
, x+

η

ψ(x0)

)
→ S(ξ, η) (120)

in trace norm for ξ, η ∈ where

S(ξ, η) =
sin(π(ξ − η))
π(ξ − η)

. (121)

Here we may replace ψ(x0) by Kk(x0, x0). The error is O(k−1) uniformly for ξ, η in a compact set. The
convergence is also in trace norm in the Hilbert space L2((−η, η)) for a fixed η > 0. From (80), by taking
x0 = e

2
k , the limit (30) in Proposition 2 is obtained.

At the edge of the support of ψ(x), set

Bk =
[
− 1

2

√
b− ah(b)

]2/3

∼ k7/6

√
2
. (122)

As k →∞,
1
Bk

Kk

(
b+

ξ

Bk
, b+

η

Bk

)
→ A(ξ, η) (123)

in trace norm in the Hilbert space L2((ξ,∞)) for a fixed ξ, where

A(ξ, η) =
Ai(ξ) Ai′(η)−Ai′(ξ) Ai(η)

ξ − η
(124)

is the Airy kernel. Hence from (80), the limit (31) in Proposition 2 is obtained.

4 Generalizations and Discussions

We comment on three issues in this section: The case in which the moment generating function does not
exist, finite dimensional distributions, and the connections of this work to q-orthogonal polynomials.

No moment generating function

In this paper we assumed the existence of the moment generating function for the random variable increments
of the non-intersecting random walks. This is simply to improve the estimates. For the case E|Xj

i |2+δ <∞,
δ > 0, there is a version of the KMT theorem which gives analogous estimates to those used in Section 2.
As one would expect for this case, Nk has to grow more quickly in k. Another method of achieving similar
results to those of this paper is by using Skorohod embedding in order to imbed the non-intersecting random
walks into Brownian motions. In order to achieve this one must assume that E|Xj

i |4 <∞.

Finite dimensional distributions

The results of this paper focus on the limiting distributions of the non-intersecting random walks at the
fixed time t = 1. It is also interesting to consider finite dimensional distributions of the process, i.e. in the
correct scaling t1, ..., tn ∈ [1−Ak− 1

3 , 1+Ak−
1
3 ] the finite dimensional distributions of the fluctuations of the

top random walk should converge to those of the Airy process. A similar but differently scaled result should
also be true in the bulk. (See for example, [43, 50, 1] and references in them about Airy process and other
processes from random matrix theory.) The methods of Section 2 are certainly applicable to this problem,
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however, the convergence of the finite dimensional distributions of the non-intersecting Brownian bridges
to Airy/sine processes does not follow immediately from the analysis of Section 3. However, one can use a
different approach based on the method of Eynard and Mehta [23, 14]. In this approach, an inversion of a
matrix is crucial. After the completion of this paper, Widom had communicated to us how to invert the
matrix. A work in this direction will appear in a future paper.

Stieltjes-Wigert weight and q-orthogonal polynomials

In section 3, the Riemann-Hilbert problems for the the orthogonal polynomials with respect to the Stieltjes-
Wigert weight (77) was analyzed in the Plancherel-Rotach asymptotic regime. The analysis yields the
asymptotics of the Stieltjes-Wigert polynomials in the entire complex plane. Since Stieltjest-Wigert polyno-
mials are examples of q-polynomials, this result also yields an asymptotic result for certain q-polynomials.
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