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Abstract. The notion of r-crossing and r-nesting of a complete

matching was introduced and a symmetry property was proved by Chen,

Deng, Du, Stanley and Yan in 2007. We consider random matchings of

large size and study the maximal crossing and the maximal nesting.

It is known that the marginal distribution of each of them converges

to the GOE Tracy-Widom distribution. We show that the maximal

crossing and the maximal nesting becomes independent asymptotically,

and evaluate the joint distribution for the Poissonized random matchings

explicitly to the first correction term. This leads to an evaluation of the

asymptotic of the covariance. Furthermore, we compute the explicit

second correction term in the distribution function of two objects: (a)

the length of the longest increasing subsequence of Poissonized random

permutation and (b) the maximal crossing, and hence also the maximal

nesting, of Poissonized random matching.

1. Introduction

LetMn be the set of complete matchings of [2n]. The size ofMn is (2n−
1)!!. It is well-known that the number of complete matchings of [2n] with no

crossings equals the nth Catalan number Cn, as is the number of complete

matchings with no nestings. In [15], a notation of r-crossing and r-nesting

was introduced: given a complete matching M = {(i1, j1), . . . , (in, jn)} ∈
Mn, {(is1 , js1), . . . , (isr , jsr)} is called an r-crossing if is1 < is2 < · · · <
isr < js1 < · · · < jsr and an r-nesting if is1 < is2 < · · · < isr < jsr < · · · <
js2 < js1 . Let crn(M) be the largest number k such that M has a k-crossing

(maximal crossing) and nen(M) denote the largest number j such that M

has a j-nesting (maximal nesting). See Figure 1 for an example. Various

combinatorial properties of crn and nen were studied by Chen, Deng, Stanley,

and Yan in [15]. This paper subsequently generated a flurry of research

concerning crossings and nestings of many combinatorial objects: see, for

example, [42] and also the survey article [48].

We may equip Mn with the uniform probability and regard crn and nen
as random variables. Let N be a Poisson random variable with parameter
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Figure 1. A complete matching M of [12]. In this sam-

ple cr6(M) = 4, achieved by {(1, 6), (2, 7), (4, 9), (5, 10)}, and

ne6(M) = 2, achieved by {(3, 11), (4, 9)}.

t2/2 and consider matchings of random size distributed as 2N . Let CRt and

NEt denote crN and neN , respectively. The object of this paper is to study

the asymptotics of CRt and NEt as t→∞.

One of the main results of [15] is that the joint distribution of crn and nen
are symmetric. Hence CRt and NEt are symmetrically distributed. The limit

of the marginal distribution of NEt can be obtained by noting a bijection be-

tween matchings and fixed-point-free involutions. Let Invn be the set of per-

mutations of size 2n consisting of only 2-cycles. To σ ∈ Invn whose cycles are

(i1, j1), . . . , (in, jn), associate the complete matching {(i1, j1), . . . , (in, jn)}.
This gives a natural bijection ϕ from Invn ontoMn. Moreover, if we define
˜̀
n(σ) as the length of the longest decreasing subsequence of σ ∈ Invn, it

is easy to check that ˜̀
n(σ)/2 = nen(ϕ(σ)). The limiting distribution of ˜̀

n,

and also of ˜̀N were obtained obtained earlier in [8, 9]. From this and the

symmetry of crn and nen, [15] concluded that for each x ∈ R,

(1) lim
n→∞

P

{
crn−

√
2n

2−1(2n)1/6
≤ x

}
= lim

n→∞
P

{
nen−

√
2n

2−1(2n)1/6
≤ x

}
= F (x),

where F (x) is the GOE Tracy-Widom distribution function from random

matrix theory [50] defined in (3) below. We also find a similar result for the

Poissonized version:

(2) lim
t→∞

P
{

CRt−t
2−1t1/3

≤ x
}

= lim
t→∞

P
{

NEt−t
2−1t1/3

≤ x
}

= F (x).

We note that the length `n(σ) of the longest increasing subsequence of

σ ∈ Invn has a different distribution from ˜̀
n. For example, while ˜̀

n(σ) is

always an even integer, `n(σ) can be both even or odd integers. Moreover,

it was shown in [9] that `n/2−
√

2n

2−1(2n)1/6
converges to a random variable whose

distribution function is different from F ; it is given by the so-called GSE

Tracy-Widom distribution. Hence the joint distribution of crn and nen can-

not be the joint distribution of `n/2 and ˜̀
n/2.
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1.1. Joint distribution. The first main result of this paper is the following

result for the joint distribution of CRt and NEt. Let F (x) denote the GOE

Tracy-Widom distribution defined by

F (x) := exp

[
1

2

∫ ∞

x

(
u(s)− q(s)

)
ds

]
, u(x) :=

∫ x

∞
q(s)2 ds,(3)

where q(s) is the unique solution of Painlevé II, q′′(s) = sq(s) + q(s)3, such

that q(s) ∼ Ai(s) as s → ∞ (where Ai denotes the Airy function). The

solution q(s) is called the Hastings-McLeod solution [32] (see also [27]).

Theorem 1.1. Set

(4) C̃Rt :=
CRt−t
2−1t1/3

, ÑEt =
NEt−t
2−1t1/3

.

We have

P
{

C̃Rt ≤ x, ÑEt ≤ x′
}

= P
{

C̃Rt < x
}
P
{

ÑEt < x′
}

+
F ′(x)F ′(x′)

t2/3
+O

(
t−1
)
.

(5)

This, together with a tail estimate, implies the asymptotics of the covari-

ance.

Corollary 1.1. The covariance of CRt and NEt satisfies

Cov (CRt,NEt) =
1

4
+O

(
t−1/3

)
.(6)

Hence, the correlation is asymptotically

ρ (CRt,NEt) =
1

σ2t2/3
+O

(
t−1
)

(7)

where σ2 = 1.6077810345 . . . is the variance of F (x) (c.f. p.862 of [12]).

We can also interpret CRt and NEt as ‘height’ and ‘depth’ of certain

non-intersecting random walks. See Section 2 below.

We may apply the de-Poissonization argument [33] to (5) to find a result

for the joint distribution of crn and nen. However, intuitively, for fixed n

and M ∈ Mn, any (i, j) ∈ M that is used to form the maximal crossing of

M can not be used for the maximal nesting of M . This indicates a negative

correlation of crn and nen for a fixed n, contrary to the positive correlation

of CRt and NEt found in the above Corollary. This is verified for small n by

direct computation: Table 1 shows exact calculation of the covariance and

correlation of crn and nen for small values of n. For large n, a sampling of

5000 pseudo-random matchings of [5000] yielded the sample covariance of

c̃r2500 and ñe2500 equal to −0.0420258 · · · . Therefore, a naive substitution of

t by
√

2n in (5) only yields the following weaker result. A further analysis is

needed to obtain the correction terms in the asymptotic behavior of crn and
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[2n] #Mn Cov(crn,nen) Cor(crn,nen)

4 3 -1/9 -1/2

6 15 -0.137777777 -0.418918919

8 105 -0.129614512 -0.362983698

10 945 -0.132998516 -0.331342276

12 10395 -0.143259767 -0.309871555

14 135135 -0.151180948 -0.293696032

Table 1. The exact correlation and covariance of crn and nen for

complete matchings of [2n] for the first few nontrivial n’s. Note

that both statistics are strictly negative.

nen. A heuristic explanation for the positive correlation of the Poissonized

random matchings is that when CRt is large, it most likely due to fact

that the size of the matching is large and hence the maximal nesting of the

matching is also likely to be large.

Corollary 1.2. Set

(8) c̃rn :=
crn−

√
2n

2−1(2n)1/6
, ñen =

nen−
√

2n

2−1(2n)1/6
.

For each x, x′ ∈ R,

P
{

c̃rn ≤ x, ñen ≤ x′
}

= P {c̃rn < x}P
{

ñen < x′
}

+O
(√

log n

n1/6

)
.(9)

We compare Theorem 1.1 with the result of [11] on the joint distribution

of the extreme eigenvalues of Gaussian unitary ensemble (GUE). Let λ
(n)
max

and λ
(n)
min denote the largest and the smallest eigenvalues of n × n GUE.

Setting

(10) λ̃(n)
max := 21/2n1/6(λ(n)

max −
√

2n), λ̃
(n)
min := 21/2n1/6(λ

(n)
min +

√
2n),

it was shown in [11] that

P
{
λ̃(n)

max ≤ x, λ̃(n)
min ≤ x′

}

= P
{
λ̃(n)

max < x
}
P
{
λ̃

(n)
min < x′

}
+
F ′GUE(x)F ′GUE(x′)

4n2/3
+O

(
n−4/3

)(11)

where FGUE is the GUE Tracy-Widom distribution function defined by

FGUE(x) := exp

[∫ ∞

x
u(s) ds

]
.(12)

It is interesting to study the joint distribution of the extreme eigenvalues

of Gaussian orthogonal ensemble (GOE) and compare the result with (5).
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This will be done in a separate paper. It might also be interesting to see if

the error term of (5) can be improved to O
(
t−4/3

)
as in (11) but we do not

pursue this in this paper.

1.2. Marginal distribution. We also evaluate the second order term in

the asymptotics expansion of the marginal distributions of CRt and NEt
explicitly. Let [a] denote the largest integer less than or equal to a.

Theorem 1.2. For x ∈ R and t > 0, define xt by

(13) xt :=
[t+ 2−1xt1/3]− t

2−1t1/3
+

1

t1/3
.

For each x ∈ R,

P
{

C̃Rt ≤ x
}

= P
{

ÑEt ≤ x
}

= F (xt)−
1

20t2/3

[
4F ′′(x) +

1

3
x2F ′(x)

]
+O

(
t−1
)
.

(14)

Note that since P {CRt ≤ x} has the same value for x ∈ [`, ` + 1) for a

given integer `, it is natural that the leading term F (xt) of (194) is expressed

in terms of xt, which contains [t+ 2−1xt1/3].

In addition to this integral part correction, there is an additional shift by

t−1/3 from x in the definition of xt. This is responsible for the absence of the

term of order t−1/3 in the expansion (194). For classical ensembles in random

matrix theory, there are several papers that showed that a fine scaling can

remove such a term (which looks like a natural term to be present.) See [24]

for the Laguerre unitary ensemble, [37] for Jacobi unitary and orthogonal

ensembles, [43] for the Laguerre orthogonal ensemble, and [38] for Gaussian

unitary and orthogonal ensembles. A similar result was obtained recently for

random growth models and intersecting particle systems in [25], including

the height of the so-called PNG model with flat initial condition. It is well-

known that this is precisely the length of the longest decreasing subsequence

of random fixed-point-free involution and hence NEt. The result of [25] in

the context of this paper is that P
{

ÑEt ≤ x
}

= F (xt) + O(t−2/3). The

above result finds the term of order O(t−2/3) explicitly.

As in the joint distribution, the evaluation of the second order term of

P {c̃rn ≤ x} does not immediately follow from the de-Poissonization argu-

ment in [33]. It remains an open problem to evaluate the the error terms of

P {c̃rn ≤ x} asymptotically.

1.3. Toeplitz minus Hankel with a discrete symbol. Set

(15) Gk,j(t) :=

∞∑

n=0

gk,j(n)
t2n

(2n)!
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where gk,j(n) := # {M ∈Mn : crn(M) ≤ k, nen(M) ≤ j} so that

P {CRt ≤ k,NEt ≤ j} =

∞∑

n=0

P {crN ≤ k, neN ≤ j|N = n}P {N = n}

= e−t
2/2Gk,j(t).

(16)

An explicit determinantal formula of Gk,j(t) was obtained in [15] which we

describe now.

Stanley had shown earlier that matchings are in bijection with oscillating

tableaux of empty shape and of length 2n (see section 5 of [15]). This

was further generalized to a bijection between partitions of a set and so-

called vacillating tableaux in [15]. In the same paper, it was shown that the

maximal crossing (resp. nesting) of a partition equals the maximal number

of rows (resp. columns) in any partitions appearing in the corresponding

vascillating tableau.

Since an oscillating tableau can be thought of as a walk in the chamber

of the affine Weyl group C̃n, gk,j(n) equals the number of walks with n

steps from (j, j − 1. . . . , 2, 1) to itself in the chamber 0 < xj < · · · < x2 <

x1 < j + k+ 1 where each step is a unit coordinate vector or its negative in

Zj . The number of such walks was evaluated by Grabnier in [31] using the

Gessel-Viennet method of evaluation of non-intersecting paths. This result

implies (see the displayed equation before (5.3) in [15]) that

(17) Gk,j(t) = det

[
1

m

2m−1∑

r=0

sin
(πra
m

)
sin

(
πrb

m

)
e2t cos(πr/m)

]j

a,b=1

where

(18) m := j + k + 1.

We prove Theorem 1.1 by analyzing the determinant (17) asymptotically.

For this purpose, we first re-formulate the determinant slightly. By writing

the product of the sine functions in terms of a sum of two cosine functions

and noting the realness of the entries, we find that

(19) Gk,j(t) = det [ha−b − ha+b]
j
a,b=1

where

(20) h` :=
1

2m

2m−1∑

r=0

e−iπr`/me2t cos(πr/m).

This is the determinant of a Toeplitz matrix minus a Hankel matrix. This

structure is important in the asymptotic analysis. An interesting feature of

the above determinant is that the measure for the Toeplitz determinant is

not an absolutely continuous measure but a discrete measure.



CROSSING AND NESTING 7

Let ω := eπi/m be the primitive 2mth root of unity. Define the discrete

measure

(21) dµm(z) :=
1

2m

2m−1∑

r=0

et(z+z
−1)δωr(z)

on the circle. Let πn,m(z) be the monic orthogonal polynomial of degree n

with respect to dµm, defined by the conditions

(22)

∮

|z|=1
z−`πn,m(z)dµm(z) = 0, 0 ≤ ` < n.

We emphasize the dependence on m since later we will use the notation πn,∞
to denote the case when ‘m =∞’; the orthogonal polynomials with respect

to the absolutely continuous measure et(z+z
−1) dz

2πiz . Note that dµm depends

on the parameter t and hence πn,m(z) also depends on t. When we wish to

emphasize this dependence on t, we write πn,m(z; t).

The fact that the t-dependence of the measure is from the factor et(z+z
−1)

implies the following basic formula, which is proved in Section 3 below.

Recall from (18) that m := j + k + 1.

Proposition 1.1. We have

(23) logP {CRt ≤ k,NEt ≤ j}

=

∫ t

0
π2j+1,m(0; τ) dτ +

∫ t

0

∫ s

0
Qmj (τ) dτ ds

where

(24) Qmj (τ) := −(π2j,m(0; τ)π2j+2,m(0; τ) + |π2j+1,m(0; τ)|2)

+ π2j,m(0; τ)π2j+2,m(0; τ)|π2j+1,m(0; τ)|2.

We obtain the asymptotics π2j+`,m(0, τ) for ` = 0, 1, 2 by using the asso-

ciated discrete version of the Riemann-Hilbert problem (see e.g. [6]). See

Sections 4, 5 and 6 below.

We compare the analysis of this paper based on the formula (23) with

the analysis of the determinant of a similar Toeplitz minus Hankel matrix

in [9]. Even though the determinant in [9] was for continuous measure

(which is precisely the one for the marginal distribution of NEt; see Section 3

below), the basic structure of the matrix is the same; a Toeplitz minus a

Hankel matrix. Denoting the matrix by Dj , the approach of [9] was to write

Dj = D∞
∏∞
n=j

Dn
Dn+1

where D∞ is the strong Szegö limit, which exists in

that particular case, and analyze Dn/Dn+1, which can be evaluated from the

Riemann-Hilbert problem for the nth orthogonal polynomial. For our case,

since the measure is discrete, the strong Szegö limit does not apply. Indeed
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Dn = 0 for all large enough n. Then alternatively one can still analyze Dj by

expressing Dj = D0
∏j
n=1

Dn
Dn−1

as was done in [3]. However, this expression

is more subtle to analyze since log(Dn/Dn+1) is not small when n is small

(indeed it grows as n decreases when t is proportional to j) and this requires

careful cancellations of the terms in the product. Though this was done for

the leading term in [3], the evaluation of the lower terms in the asymptotic

expansion in this method becomes more complicated. A particularly useful

point in using formula (23) is that we only need to consider the so-called full

band case (and the transitional case when a gap and a saturated region are

about to open up) in the Riemann-Hilbert analysis. This makes the analysis

much simpler and it becomes easier to evaluate the lower order terms. On

the contrary, if we use the expression Dj = D0
∏j
n=1

Dn
Dn−1

, then we need

to consider both the so-called void-band case and the saturation-band case,

including the transitional cases, in the Riemann-Hilbert analysis (and this

is the reason for the need of cancelations mentioned above.)

The continuous Riemann-Hilbert problem for πn,∞(z; t) was analyzed

asymptotically to the leading term in [4, 8, 3]. We expand this work to

the discrete counterpart and moreover, we improve the analysis so that

we compute explicit formulae for the first three terms in the expansion

of the solution in both the discrete and continuous cases. As a technical

note, we remark that we use a different local map for the so-called Painlevé

parametrix related to the local problem for the Riemann-Hilbert problem

from the previous cases [4, 19]. We adapt the map used in the recent paper

[14] for a different parametrix, which seems to be useful for further analy-

sis in other Riemann-Hilbert problems. For the purpose of this paper, we

only analyze the full band case (and the transitional case) of the discrete

Riemann-Hilbert problem. The analysis for the full parameter set of the

discrete Riemann-Hilbert problem will be discussed somewhere else in the

context of Ablowitz-Ladik equations and Schur flows in integrable systems.

A determinantal formula of the marginal distribution P {NEt ≤ j} can be

obtained from the joint distribution by taking k →∞ while keeping j fixed.

Then we find a Toeplitz minus a Hankel determinant with symbol et(z+z
−1).

Here too, the factor of et(z+z
−1) in the limiting measure implies a formula

for the marginal distribution analogous to (23). See Section 3 below.

The Toeplitz determinant with symbol et(z+z
−1) is known to be describe

the distribution of the length of the longest increasing subsequence of a

random permutation [29]. By using a formula similar to (23), the analysis

of this paper implies the following result.

1.4. Longest increasing subsequence of random permutation. Con-

sider the symmetric group Sn of permutations of size n and equip it with the
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uniform probability. Let ln(π) denote the length of the longest increasing

subsequence of π ∈ Sn. Let N1 be a Poisson random variable with param-

eter t2 and let Lt denotes lN1 . It was shown in [4] that Lt−2t
t1/3

converges to

the GUE Tracy-Widom distribution (12). We evaluate the next term of the

asymptotic expansion explicitly.

Theorem 1.3. For each x ∈ R,

(25) P
{
Lt − 2t

t1/3
≤ x

}
= FGUE(x(t))

− 1

10t2/3

[
F ′′GUE(x) +

1

6
x2F ′GUE(x)

]
+O

(
t−1
)
,

where

(26) x(t) :=
[2t+ xt1/3]− 2t

t1/3
.

The study in [25] also considered the height of the so-called PNG model

with the droplet initial condition, which is distributed precisely as Lt, and

showed that the above distribution function is FGUE(x(t)) + O(t−2/3). The

above theorem evaluates the error term explicitly.

For the Gaussian unitary ensemble, [17, 18] evaluated the distribution

of the largest eigenvalue explicitly up to the term of order O(n−2/3) which

corresponds to the term of order t−2/3 in the above expansion. It would be

interesting to compare the term in the above theorem with the formula of

[17, 18].

1.5. Organization of paper. In Section 2, we consider a non-intersecting

random process that gives rise to CRt and NEt. Proof of Proposition 3 is

given in Section 3. The Riemann-Hilbert problem is introduced in Section 4,

and is analyzed asymptotically in Sections 5 and 6. Theorem 1.1 and Corol-

lary 1.1 are proved in Secton 7, and Theorem 1.2 and Theorem 1.3 are proved

in Section 8. We prove Corollary 1.2 in Section 9 using a de-Poissonization

argument. Finally, the Riemann-Hilbert problem for the Painlevé II equa-

tions that are needed to model the local parametrix of the Riemann-Hilbert

problem for orthogonal polynomials are discussed in Section 10.
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2. Height and depth of non-intersecting continuous-time

simple random walks

In Section 1.3 we discussed a relation between crn and nen and a walk in

the chamber {0 < xj < · · · < x2 < x1 < j + k + 1} of the affine Weyl group

C̃n. In this section, we give an interpretation of CRt and NEt in terms of

the ‘height’ and ‘depth’ of continuous-time simple random walks.

Let N+(τ) and N−(τ) be two independent Poisson processes of rate 1

and set Z(τ) := N+(τ)−N−(τ) be a continuous-time simple random walk.

Then Z(τ) is an Z-valued Markov process with the transition probability

ps(a, b) = ps(a − b) where pt(a) = e−2t
∑

n∈Z
t2n+a

n!(n+a)! = pt(−a) for a ∈ Z.

Here we used the convention that 1/n! ≡ 0 if n < 0. Set

(27) φ(z) :=
∑

a∈Z

(
e−2tpt(a)

)
z−a = et(z+z

−1).

Then we have

(28) pt(a) = e−2tφ−a = e−2tφa, φa :=

∮

|z|=1
z−aφ(z)

dz

2πiz
.

Let Zi(τ), i = 0, 1, 2, . . . , be independent copies of Z(τ), and consider

the infinite system of processes Xi(τ) = Zi(τ) − i, i = 0, 1, 2, . . . . Fix a

number t > 0. We will consider the process conditioned on the event that

(a) Xi(t) = Xi(0) for all i and (b) Xi(τ) do not intersect in time [0, t],

i.e.X0(τ) > X1(τ) > . . . for all τ ∈ [0, t]. A precise interpretation will be

given below. Such non-intersecting continuous-time simple random walks

have been studied, for example, in [41, 2, 1].

Define the ‘height’ K := maxτ∈[0,t]X0(τ). and define the ‘depth’ J as the

smallest index such that Xi(τ) = i for all τ ∈ [0, t] and for all i = J, J+1, . . . .

In other words, only the top J processes moved in the interval [0, t]. We

are interested in the joint distribution of J and K conditional of the above

event satisfying (a) and (b).

Precisely, fix N ∈ N and let AN and BN be the events defined as

(29) AN := {Xi(t) = Xi(0) = −i, i = 0, 1, . . . , N − 1} ,

(30) BN := {X0(τ) > X1(τ) > · · · > XN−1(τ) ≥ −N + 1, τ ∈ [0, t]} .

The condition that XN−1(τ) ≥ −N + 1 for all τ ∈ [0, t] is natural because

J is likely to be a finite number and by definition of J , XJ−1(τ) ≥ XJ−1(0)

for all τ ∈ [0, t]. The joint distribution of K and J is interpreted as

(31) P (k, j) := lim
N→∞

P (K ≤ k, J ≤ j |AN ∩BN ) .
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Lemma 2.1. Let K and J be the ‘height’ and ‘depth’, respectively, defined

above. Then

(32) P (k, j) = e−t
2/2Gk,j(t)

where Gk,j(t) is given in (19).

Proof. We first evaluate P(AN ∩BN ). The condition that Xi(τ) > −N , i =

0, · · · , N−1, implies thatXi(τ) has an absorbing boundary at−N . Since the

transition probability of Xi with an absorbing boundary at −N is pt(a, b)−
pt(−2N−a, b), the Karlin-McGregor formula [40] of non-intersecting proba-

bility applied to continuous-time simple random walks (see e.g.[1, 2]) implies

then that

P (AN ∩BN ) = det [pt(−a,−b)− pt(−2N + a,−b)]N−1
a,b=0

= e−2tN det [φa−b − φa+b]
N
a,b=1 .

(33)

Secondly, we evaluate P ({K ≤ k, J ≤ j} ∩ AN ∩BN ). We assume that

N is large so that N ≥ j. By the definition of K and J , the desired

probability equals P(C ∩D) where C and D are independent events defined

as follows. C is the event that the top j processes, X0(τ), . . . , Xj−1(τ),

satisfy the two conditions (a) Xi(t) = Xi(0) for all i = 0, . . . , j − 1 and

(b) −j + 1 ≤ Xj−1(τ) < · · · < X0(τ) ≤ k for all τ ∈ [0, t] i.e.the j non-

intersecting paths are not absorbed at the boundaries −j and k + 1. D

is the event that Xi(τ) = −i for all i = j, j + 1, . . . , N − 1 and for all

τ ∈ [0, t] i.e.the bottom N − j processes stay put during the interval [0, t].

Clearly, P(D) =
(
e−2t

)N−j
. On the other hand, from the Karlin-McGregor

formula again, P(C) = det [p̂t(−a,−b)]j−1
a,b=0 where p̂t(a, b) is the transition

probability of Z(τ) in the presence of the absorbing walls at −j and k + 1

in time t. It is easy to see that

(34) p̂t(a, b) =
∑

n∈Z
[pt(a+ 2nm, b)− pt(−2j − a+ 2nm, b)]

where m := j + k + 1. Now consider the identity z−aφ(z) =
∑

n∈Z φa+nz
n.

Set ω := eπi/m. By inserting z = ωr, r = 0, 1, · · · , 2m−1 and summing over

r, we find that

(35)
2m−1∑

r=0

(ωr)−aφ(ωr) = 2m
∑

n∈Z
φa+2mn, ω := eπi/m.

Hence from (28), (34) becomes

(36) p̂t(a, b) = e−2t (ha−b − h−a−b+2j)
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where

(37) ha :=

∮

|z|=1
z−adµm(z), dµm(z) :=

1

2m

2m−1∑

r=0

φ(z)δωr(z).

Hence, for N ≥ j,
(38) P ({K ≤ k, J ≤ j} ∩ AN ∩BN ) = e−2tN det [ha−b − ha+b]

j
a,b=1 .

The strong Szegö limit theorem for Toeplitz minus Hankel determinants

(see for example [10]) implies that for the function φ(z) in (27), det [φa−b − φa+b]
N
a,b=1 →

et
2/2 as N →∞. Therefore, from (33) and (38) we find that

(39) P (j, k) = lim
N→∞

det [ha−b − ha+b]
j
a,b=1

det [φa−b − φa+b]
N
a,b=1

= e−t
2/2 det [ha−b − ha+b]

j
a,b=1 .

This is (32). �

Hence K and J have the same joint distribution as CRt and NEt. This

non-intersecting process interpretation of CRt and NEt provides some useful

information. As an example, note that the process considered above has a

natural dual process (see Figure 2). In the dual process the roles of K and

Figure 2. A non-intersecting continuous-time simple random

walks (left) and its dual walk (right).

J are reversed: the depth is K and height is J in the dual process. It follows

that K and J , and hence CRt and NEt, are symmetrically distributed.

In various non-intersecting processes, including the above model, the top

curve is shown to converge, after appropriate scaling, to the Airy process

in the long-time, many-walker limit (see e.g. [34, 36]). Then it is natural

to think that the leading fluctuation term of K is given by the maximum

of the Airy process. It is a well-known fact that the maximum of the Airy

process is distributed as the GOE Tracy-Widom distribution. This was first

proved indirectly in [35]. A direct proof was only recently obtained in [20].

(See also [44] for the distribution of the location of the maxima.) Hence the

leading term F (x) in (194) is as expected. Moreover, when t becomes large,

it is plausible to expect that the fluctuation of the top curve of the original

process (whose max is K) and the fluctuation of the bottom curve of the dual

process (whose min is −J) become independent at least to the leading order.
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The leading term of Theorem 1.1 is natural from this. Theorem 1.1 evaluates

the second term of the asymptotic expansion of their joint distribution.

For a family of finitely many non-intersecting walks, it is interesting to

consider the maximum of the top curve and the minimum of the bottom

curve. It is curious to check if the joint distribution of them would have

the same expansion as in Theorem 1.1. This will be considered elsewhere.

Finally, we mention that the asymptotics of the distribution of the width of

non-intersecting processes was studied recently in [7].

3. Proof of Proposition 1.1

In this section, we give a proof of Proposition 1.1. We also obtain sim-

ilar formulas for the marginal distributions of CRt and NEt, and for the

distribution of Lt. They are stated at the end of this section.

Let dρ be a (either continuous or discrete) measure on the unit circle and

define a new measure dρ(z; t) which depends on a parameter t as

(40) dρ(z; t) := et(z+z
−1)dρ(z).

The measure (21) associated to the joint distribution of CRt,NEt is certainly

of this form, but the following algebraic steps apply to general dρ.

Let

(41) h`(t) :=

∮

|z|=1
z−`dρ(z; t).

We are interested in finding a simple formula for the second derivative of

the Toeplitz determinant Tn(t) and the Toeplitz - Hankel determinant Hn(t)

(see (19)) associated to the measure dρ(z; t):

(42) Tn(t) := det
[
ha−b(t)

]n
a,b=1

, Hn(t) = det
[
ha−b(t)− ha+b(t)

]n
a,b=1

.

We assume that when dρ is a discrete measure, n is smaller than the number

of points in the support of dρ.

Let πn(z; t) = zn + · · · , n = 0, 1, 2, · · · , be the monic orthogonal polyno-

mials defined by the conditions

(43) < πn, z
` >:=

∮

|z|=1
πn(z; t)z`dρ(z; t) = 0, 0 ≤ ` < n.

Set

(44) Nn(t) :=< πn, πn >=< πn, z
n > .

Then it is well-known that (see e.g. section 2 and 3 of [8] for the second

identity)

(45) Tj(t) =

j−1∏

n=0

Nn(t), Hj(t) =

j∏

n=1

N2n(t)(1− π2n(0; t))−1.
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Define (see [49])

(46) π∗n(z; t) := znπn(z−1; t) = 1 + an−1z + · · ·+ a1z
n−1 + πn(0; t)zn.

This polynomial satisfies the orthogonality properties

(47)
〈
π∗n, z

k
〉

= Nnδk,0, k = 0, 1, . . . , n.

Recall the Szegö recurrence relations [49]:

πn+1(z) = zπn(z) + πn+1(0)π∗n(z),

zπn(z) =
Nn

Nn+1

(
πn+1(z)− πn+1(0)π∗n+1(z)

)
.

(48)

The second relation, when we compare the coefficients of zn+1, gives rise to

the relation

(49)
Nn+1

Nn
= 1− |πn+1(0)|2 .

We now derive a differential equations for πn(0; t) and Nn(t). All the

differentiations are with respect to t and we use the notation f ′ for d
dtf . By

differentiating the formula
〈
πn, z

k
〉

= 0, k = 0, . . . , n − 1, we obtain, by

noting d
dt e

t(z+z−1) = (z+z−1)et(z+z
−1), that

〈
π′n, z

k
〉

+
〈
πn, z

k+1 + zk−1
〉

=

0. Then by using the orthogonality conditions, we find that
〈
π′n, z

k
〉

= 0, k = 1, . . . , n− 2,
〈
π′n, 1

〉
= −

〈
πn, z

−1
〉

= −〈zπn, 1〉 = πn+1(0)Nn,
〈
π′n, z

n−1
〉

= −〈πn, zn〉 = −Nn,

(50)

where the last equality in the second condition above follows from the first

recurrence in (48). From these relations, we conclude that, for n ≥ 1,

π′n(z; t) =
Nn(t)

Nn−1(t)
(πn+1(0; t)π∗n−1(z; t)− πn−1(z; t)).(51)

This can be checked by taking the difference and noting that the difference is

a polynomial of degree at most n−1 and is orthogonal to zk, k = 0, 1, · · · , n−
1. Evaluating (51) at z = 0, we obtain, using (49), for n ≥ 1.

π′n(0; t) = (πn+1(0; t)− πn−1(0; t))(1− |πn(0; t)|2).(52)

This equation is related to the Ablowitz-Ladik equations and the Schur flows

(see, for example, [45, 30]).

We also differentiate Nn(t) = 〈πn, πn〉 and obtain

N ′n = 2
〈
π′n, πn

〉
+ 2 〈zπn, πn〉 =< 2zπn, πn > .(53)

Using the first recurrence of (48),

(54) 〈zπn, πn〉 = 〈πn+1, πn〉−πn+1(0) 〈πn, π∗n〉 = −πn+1(0)πn(0) 〈πn, zn〉 .
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Hence, we obtain, for n ≥ 0,

N ′n(t) = −2πn+1(0; t)πn(0; t)Nn(t).(55)

We now evaluate the logarithmic derivatives of Tj and Hj . From (45)

and (55), we find that

(log Tj(t))
′ =

j−1∑

n=0

Nn(t)

Nn(t)
= −2

j−1∑

n=0

πn(0; t)πn+1(0; t).(56)

We take one more derivative. By using (52), for n ≥ 1,

(πn(0)πn+1(0))′ = Pn+1 − Pn,(57)

where Pn := |πn(0)|2+πn−1(0)πn+1(0)(1−|πn(0)|2). For n = 0, (π0(0)π1(0))′ =
π′1(0) = (π2(0) − 1)(1 − |π1(0)|2) = P1 − 1. Hence from a telescoping sum,

we obtain

(58)
1

2

(
log
(
e−t

2
Tj(t)

))′′
= −(πj−1(0)πj+1(0)+|πj(0)|2)+πj−1(0)πj+1(0)|πj(0)|2.

We now consider Hj(t) in (45). By taking the log derivative and using

(52), (55) and π0(z) = 1,

(logHj(t))
′ =

j∑

n=1

[
N ′2n
N2n

+
π′2n(0)

1− π2n(0)

]
= π2j+1(0)−

2j∑

n=0

πn(0)πn+1(0).

(59)

From (56), we find that

(logHj(t))
′ = π2j+1(0) +

1

2
(log T2j+1(t))′ .(60)

Proposition 1.1 is proven from (16), (19), (58), and (60) by noting that

πn(0; 0) = 0 for all n ≥ 1, and Tj(0) = 1 and Hj(0) = 1 for all j ≥ 1.

The marginal distribution of NEt is obtained from (16) by taking the

limit k → ∞. Then by taking m → ∞ in (19), we find that P{NEt ≤ j} =

e−t
2/2G∞,j where G∞,j(t) is same as (19) where the measure µm in (21) is

replaced by

(61) dµ∞(z) := et(z+z
−1) dz

2πiz
.

Then the above computation applies that

logP {NEt ≤ j} =

∫ t

0
π2j+1,∞(0; τ) dτ +

∫ t

0

∫ s

0
Q∞j (τ) dτ ds,(62)
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where πn,∞(z; t)) is the monic orthogonal polynomial of degree n with re-

spect to the measure (61) andQ∞j (τ) is same as (43) with πn,m(z; τ) replaced

by πn,∞(z; τ). Due to the symmetry, P{CRt ≤ j} = P{NEt ≤ j}.
Finally, it is well-known, [29, 46], that for the length Lt of the Poissonized

random permutation defined in Section 1.4, P{Lt ≤ `} = e−t
2
T`(t), where

Tj(t) is the determinant of the `× ` Toeplitz matrix (42) with respect to the

measure (61). Hence we have

logP {Lt ≤ `} = 2

∫ t

0

∫ s

0
Q∞̀−1

2

(τ) dτ ds.(63)

4. Orthogonal Polynomial Riemann-Hilbert Problems

We prove Theorems 1.1 and 1.2 by deriving asymptotic expansions of

πn,m(0; τ) and πn,∞(0; τ), n = 2j, 2j + 1, 2j + 2, τ ∈ (0, t), in the joint limit

t, j,m→∞ such that given any fixed x, x′ ∈ R:

(64) j = t+
x

2
t1/3, k = t+

x′

2
t1/3, m = j + k + 1.

The jumping off point for our analysis is the fact that πn,m(z; t) and πn,∞(z; t)

can be recovered from the solution of the following discrete and continuous

measure Riemann-Hilbert problems respectively.

Riemann-Hilbert Problem 4.1 for discrete OPs Find a 2× 2 matrix

Y(z; t, n,m) with the following properties:

1. Y(z; t, n,m) is an analytic function of z for z ∈ C\{ωr}2m−1
r=0 where ωr :=

ωr and ω := eiπ/m.

2. Y(z; t, n,m) = [I +O (1/z)] znσ3 as z →∞.

3. At each ωr, Y(z; t, n,m) has a simple pole satisfying the residue relation

(65) Resz=ωr Y(z; t, n,m) = lim
z→ωr

Y(z; t, n)

(
0 − z

2mz
−net(z+z

−1)

0 0

)
.

As is well-known (see e.g. [27], [6]), and may be verified directly, the

solution Y(z; t;n,m) is given by

(66) Y(z; t;n,m) =

(
πn,m(z; t) ∗

−π∗n−1,m(z; t)/Nn−1,m ∗

)

where we recall that π∗n,m is the reverse polynomial defined by (46) and

Y12(z; t, n,m) = − 1

2m

2m−1∑

r=0

πn,m(ωr; t)ω
−n+1
r et(ω

r+ω−r)

z − ωr
,

Y22(z; t, n,m) =
1

2m

2m−1∑

r=0

N−1
n−1,mπ

∗
n−1,m(ωr; t)ω

−n+1
r et(ω

r+ω−r)

z − ωr
.
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Hence, using the OP properties listed in (43)-(48) we can easily check that

(67) Y(0; t, n,m) =

(
πn,m(0) Nn,m

−1/Nn−1,m πn,m(0)

)
.

Note that the generic (2, 2)-entry would be πn,m(0) but as our weight et(z+z
−1)

is real πn,m(0) = πn,m(0).

The continuous RHP can be thought of as a limit of the discrete case when

m, the number of points in the support of the measure, goes to infinity.

Riemann-Hilbert Problem 4.2 for continuous OPs Find a 2× 2 ma-

trix Y∞(z; t, n) with the following properties:

1. Y∞(z; t, n) is an analytic function of z for z ∈ C\Σ, Σ := {z : |z| = 1}
oriented counterclockwise.

2. Y∞(z; t, n) = [I +O (1/z)] znσ3 as z →∞.

3. Y∞ takes continuous boundary values Y∞+ and Y∞− as z → Σ from the

left/right respectively satisfying the relation

(68) Y∞+ (z; t, n) = Y∞− (z; t, n)

(
1 z−net(z+z

−1)

0 1

)
, z ∈ Σ.

The solution Y∞ is related to the orthogonal polynomials πn,∞ with re-

spect to the measure µ∞ (61) and we have

(69) Y∞(0; t, n,m) =

(
πn,∞(0) Nn,∞
−1/Nn−1,∞ πn,∞(0)

)
.

Precisely this continuous Riemann-Hilbert problem was analyzed asymp-

totically in [4, 8, 6]. The steepest-descent analysis for discrete Riemann-

Hilbert problem was studied for general discrete measure on the real line in

[6]. Both works expand upon the continuous weight case studied in [21, 22].

In the course of proving Theorems 1.1 and 1.2 we improve these results as

follows: we expand the analysis of [6] to the case when a gap and saturated

region of the equilibrium measure (see the discussion below) are about to

open up, and we compute explicit formulae for the first three terms in the

expansion of the solution in both the discrete and continuous cases extending

the results of [4, 8, 6] where only leading terms were calculated.

One of the key steps in the steepest-descent analysis of Riemann-Hilbert

problems is the introduction of the so-called g-function. For the Riemann-

Hilbert problem 4.1 for discrete orthogonal polynomials, the g-function is

given by g(z) =
∫
|s|=1 log(z−s)dµ(s) where dµ(s) is the so-called equilibrium

measure satisfying 0 ≤ dµ(s) ≤ 2m
n

ds
2πis (see e.g. [6]). The upper-constraint

dµ(s) ≤ 2m
n

ds
2πis is due to the fact that the weight is discrete. The support of

dµ consists of three types of intervals, voids (where dµ = 0), bands (where

0 < dµ(s) < 2m
n

ds
2πis) and saturations (where dµ(s) = 2m

n
ds

2πis).
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For the continuous Riemann-Hilbert problem, the upper-constraint for the

equilibrium is not present and there are no saturations. For the Riemann-

Hilbert problem 4.2, it was shown in [4] that with γ = n
2t

1, the equilibrium

measure is supported on the entire unit circle, i.e., Σ is a single band when

γ > 1, and Σ consist of single void and band intervals with the void set

centered about z = −1 when γ < 1, .

In the discrete problem 4.1 the solution Y now depends on the three pa-

rameters (t, n,m) and as we shall see in Section 5, the equilibrium measure’s

support depends critically on the two parameters

(70) γ =
n

2t
and γ̃ =

2m− n
2t

.

As each of these parameters passes through the critical value γcrit = 1 a

transition occurs in the support of the equilibrium measure.

It turns out that to prove Theorems 1.1–1.3 we only need to evaluate

Y(0; t, n,m) in two regimes: the ‘exponentially small regime’

(71) n ≥ 2t(1 + δ), 2m− n ≥ 2t(1 + δ)

for a fixed δ > 0, and the ‘Painlevé regime’

(72) 2t− Lt1/3 ≤ n ≤ 2t(1 + δ), 2t− Lt1/3 ≤ 2m− n ≤ 2t(1 + δ)

for fixed L > 0 and δ > 0. In the ‘exponential’ case γ, γ̃ ≥ 1+δ and the equi-

librium measure is supported on the whole of Σ, while in the ‘Painlevé’ case

γ, γ̃ ∈ [1− L
2 t
−2/3, 1 + δ] and the equilibrium measure is in the transitional

region where a void and saturation region are beginning to open at z = −1

and z = 1 respectively. As such we never need to consider cases in which

either a void or saturation have fully opened and we restrict our attention

to the full band (and the transitional) case only, focusing on obtaining the

three lower-order terms of the asymptotic expansion explicitly. In this case

the g-function is explicit and the transformations of the Riemenn-Hilbert

problem will be all stated explicitly without mentioning the g-function in

the subsequent sections.

There are many interesting related problems in which one needs an as-

ymptotic description of the πn,m for a whole range of degrees n; one such

example which we plan to study in the future is the Ablowtiz-Ladik equa-

tions. There we will fully describe the structure of the equilibrium measure

in the full range of parameter space.

The analysis of the discrete and continuous Riemann-Hilbert problems

have strong similarities and we analyze them simultaneously. The important

1This is actually the inverse of the parameter appearing in [4] which we find more

convenient to work with presently.
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fact, which we clarify in Sections 6.2-6.3, is that in the discrete Riemann-

Hilbert problem we can partition the solution into terms that come from

(two) continuous Riemann-Hilbert problem which correspond to the mar-

ginal distributions and the remaining ‘joint’ terms which contribute only to

the joint distribution.

5. The Exponentially Small Regime

The first steps of the steepest-descent analysis are the same for both

the exponentially small regime and the Painlevé regime. We begin by first

considering parameters (n,m, t) in the ‘exponentially small regime’ (71):

n ≥ 2t(1 + δ), 2m− n ≥ 2t(1 + δ)

for fixed δ > 0. We assume that δ < 1/2 (See the discussion before (90)).

We begin our analysis of RHP 4.1 by first introducing a transformation

Y 7→ Q such that the new unknown Q has no poles. Let Σ denote the unit

circle and let Σin and Σout denote positively oriented simple closed contours

enclosing the origin such that Σin ⊂ {z : |z| < 1} and Σout ⊂ {z : |z| > 1};
let Ω+ and Ω− denote the non-empty open sets enclosed between Σ and Σin

and Σ and Σout respectively. Define

W+

W-

S SoutSin

Figure 3. The contours and regions used to define the map Y 7→
Q. The contours Σin and Σout can be deformed as necessary pro-

vided they do not intersect Σ.

(73) Q(z) :=





Y(z)

(
1 z2m

z2m−1
z−net(z+z

−1)

0 1

)
z ∈ Ω+

Y(z)

(
1 1

z2m−1
z−net(z+z

−1)

0 1

)
z ∈ Ω−.

The triangular factors introduced in the above definition have poles at each

ωr and the residues are such that the new unknown Q(z) has no poles,

but is now piecewise holomorphic. Note that the residue of each triangular

factors at each z = ωr are the same since z2m = 1 at z = ωr. Two different
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extensions of Q as above were introduced in [39] (see also [6]). By explicit

computation Q(z) satisfies

Riemann-Hilbert Problem 5.1 for Q(z): Find a 2×2 matrix Q(z) such

that

1. Q(z) is analytic in C\(Σ ∪ Σin ∪ Σout).

2. Q(z) = [I +O (1/z)] znσ3 as z →∞.

3. Along each jump contour Q+(z) = Q−(z)VQ(z) where

(74) VQ(z) =





(
1 z−net(z+z

−1)

0 1

)
z ∈ Σ

(
1 −z2m

z2m−1
z−net(z+z

−1)

0 1

)
z ∈ Σin

(
1 1

z2m−1
z−net(z+z

−1)

0 1

)
z ∈ Σout

Once we transforms a RHP with poles to a ‘continuous’ RHP as Q, the

next step is to introduce a “g-function”. However, for the above RHP, when

the parameters are in the regimes (71) and (72), it turns out that the g-

function is simple and explicit. We proceed by explicitly defining

(75) S(z) :=





Q(z)

(
etz 0

0 e−tz

)(
0 −1

1 0

)
|z| < 1

Q(z)

(
z−netz

−1
0

0 zne−tz
−1

)
|z| > 1

Clearly Y(0) = S(0)

(
0 1

−1 0

)
and S(z) = I + O

(
z−1
)

for large z. Calcu-

lating the new jump matrices, we arrive at the following problem for S(z).

Riemann-Hilbert Problem 5.2 for S(z): Find a 2 × 2 matrix-valued

function S(z) such that

1. S(z) is analytic for z ∈ C\(Σ ∪ Σin ∪ Σout).

2. S(z) = I +O (1/z) as z →∞.
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3. The boundary values of S(z) satisfy the jump relation S+(z) = S−(z)VS(z)

where

(76) VS(z) =





(
1 0

(−1)ne−2tθ 1

)(
1 −(−1)ne2tθ

0 1

)
z ∈ Σ

(
1 0

−1
1−z2m e

−2tφ 1

)
z ∈ Σin

(
1 1

1−z−2m e
2tφ

0 1

)
z ∈ Σout

where

θ(z; γ) :=
1

2
(z − z−1) + γ log(−z), γ :=

n

2t
,

φ(z; γ̃) :=
1

2
(z − z−1)− γ̃ log z, γ̃ :=

2m− n
2t

.

(77)

Here the log is defined on the principal branch.

Now we assume that the parameters are in regime (71). Note that for

any eiα ∈ Σ, θ(eiα) ∈ iR. Also note that writing z = reiα, we have
d
dr

[
Re θ(reiα; γ)

]
r=1

= cosα+γ ≥ −1+γ ≥ δ > 0 and d2

dr2

[
Re θ(reiα; γ)

]
r=1

=

−r3 cosα − γr−2 ≤ r−3 − γr−2 < 0 if r > γ−1. Hence Re θ(reiα; γ) ≤
(−1+γ)(r−1) for r ∈ (γ−1, 1) and for all α ∈ (−π, π]. Therefore, for a given

δ > 0, there exist 0 < r1 < r2 < 1 and c > 0 such that Re
[

1
γ θ(re

iα; γ)
]
≤ −c

for all r ∈ [r1, r2], α ∈ (−π, π] and for the parameters (n,m, t) in the

regime (71). Note that this implies that

(78) |e2tθ(z;γ)| = e
nRe[ 1

γ
θ(reiα;γ)] ≤ e−cn, r1 ≤ |z| ≤ r2

for parameters (n,m, t) in the regime (71).

Similarly, Re
[

1
γ̃φ(1

re
iα; γ̃)

]
≤ −c for all r ∈ [r1, r2], α ∈ (−π, π] and for

the parameters (n,m, t) in the regime (71). This can be easily seen by noting

that φ(z; γ) = θ(−z−1; γ). Hence

(79) |e2tφ(z;γ̃)| = e
(2m−n) Re[ 1

γ
θ(reiα;γ)] ≤ e−c(2m−n) 1

r1
≤ |z| ≤ 1

r2

for parameters (n,m, t) in the regime (71).

Let Cin,−1, Cin,1, Cout,1, and Cout,−1 be the contours as depicted in Figure

4 such that Cin,−1 and Cin,1 lie in the annulus r1 < |z| < r2 and Cout,1 and

Cout,−1 lie in the annulus 1
r1
< |z| < 1

r2
. Make now the following change

of variables which moves the oscillations on Σ into regions of exponential
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Explicitly calculating the new jumps, the new unknown T (z) satisfies the following prob-
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3. The boundary values of S(z) satisfy the jump relation S+(z) = S−(z)VS(z) where

(5) VS(z) =


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where

θ = θ(z;n, t) =
1

2
(z − z−1) +

n

2t
log z

φ = φ(z;n, m, t) =
1

2
(z − z−1) − 2m − n

2t
log z

(6)

Each of the above phase functions satisfies the symmetry ϕ(z−1) = −ϕ(z) and are thus

purely imaginary for z ∈ Σ. Writing z = reiα, we have ∂ Re θ
∂r = cosα + n

2t and ∂ Reφ
∂r =

cosα − 2m−n
2t for |z| = 1. Thus if n > 2t − Lt1/3 for some constant L > 0, e2tθ decays

exponentially in a sufficiently thin annular sector {z = reiα : r0 < r < 1, |α| < α0}
where α0 = π − O

�
t−1/3

�
. Similarly, if 2m − n < 2t + L�t1/3 for some L� > 0, then

e2tφ decays exponentially in an annular sector {z = re−α : r0 < r < 1, |α| > α�
0} where

α�
0 = O

�
t−1/3

�
.

To Σin and Σout we add new contours denoted by Cin,−1, Cin,1, Cout,1, and Cout,−1 as de-
picted in Figure ?? and make the following change of variables which moves the oscillations
on Σ into regions of exponential decay.
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−e−2tφ 1
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z ∈ Ω+,1

S(z)

�
1 0
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1 0
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3. The boundary values of S(z) satisfy the jump relation S+(z) = S−(z)VS(z) where
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��
1 −e2tθ

0 1
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z ∈ Σ

�
1 0

−1
1−z2m e−2tφ 1

�
z ∈ Σin

�
1 1

1−z−2m e2tφ

0 1

�
z ∈ Σout

where

θ = θ(z;n, t) =
1

2
(z − z−1) +

n

2t
log z

φ = φ(z;n, m, t) =
1

2
(z − z−1) − 2m − n

2t
log z

(6)

Each of the above phase functions satisfies the symmetry ϕ(z−1) = −ϕ(z) and are thus

purely imaginary for z ∈ Σ. Writing z = reiα, we have ∂ Re θ
∂r = cosα + n

2t and ∂ Reφ
∂r =

cosα − 2m−n
2t for |z| = 1. Thus if n > 2t − Lt1/3 for some constant L > 0, e2tθ decays

exponentially in a sufficiently thin annular sector {z = reiα : r0 < r < 1, |α| < α0}
where α0 = π − O

�
t−1/3

�
. Similarly, if 2m − n < 2t + L�t1/3 for some L� > 0, then

e2tφ decays exponentially in an annular sector {z = re−α : r0 < r < 1, |α| > α�
0} where

α�
0 = O

�
t−1/3

�
.

To Σin and Σout we add new contours denoted by Cin,−1, Cin,1, Cout,1, and Cout,−1 as de-
picted in Figure ?? and make the following change of variables which moves the oscillations
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decay.

(80) T(z) =





S(z)

(
1 (−1)ne2tθ

0 1

)
z ∈ Ω+,0

S(z)

(
1 (−1)ne2tθ

0 1

)(
1 0

−e−2tφ 1

)
z ∈ Ω+,1

S(z)

(
1 0

(−1)ne−2tθ 1

)
z ∈ Ω−,0

S(z)

(
1 0

(−1)ne−2tθ 1

)(
1 −e2tφ

0 1

)
z ∈ Ω−,1

S(z) elsewhere

Note that Y(0) = T(0)

(
0 1

−1 0

)
. Explicitly calculating the new jumps, the

new unknown T(z) satisfies the following problem

Riemann-Hilbert Problem 5.3 for T(z): Find a 2 × 2 matrix-valued

function T(z) satisfying the following properties

1. T(z) is analytic in C\(Σin ∪ Σout ∪ Cin,±1 ∪ Cout,±1).

2. T(z) = I +O (1/z) as z →∞.
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3. The boundary values of T(z) satisfy the jump relation T+(z) = T−(z)VT (z)
where

VT (z) =

(
1 −(−1)ne2tθ

0 1

)
z ∈ Cin,−1(

1 0

(−1)ne−2tθ 1

)
z ∈ Cout,−1(

1 0

−e−2tφ 1

)
z ∈ Cin,1(

1 e2tφ

0 1

)
z ∈ Cout,1



(
1 0

−e−2tφ

1−z2m 1

)
z ∈ Σin,−1(

1 −(−1)ne−2tθ

1−z2m

0 1

)
(1− z2m)−σ3 z ∈ Σin,1

(1− z−2m)−σ3

(
1 0

(−1)ne−2tθ

1−z−2m 1

)
z ∈ Σout,1(

1 1
1−z−2m e2tφ

0 1

)
z ∈ Σout,−1

(81)

Then from (78) and (79), we find that VT (z) = I + O
(
e−cmax{n,2m−n})

uniformly for z on the contour. Hence we obtain the following result.

Proposition 5.1. Let Y(z; t, n,m) be the solution to the RHP (4.1). For

any δ > 0, there exists a constant c > 0 such that, if

(82) n ≥ 2t(1 + δ), 2m− n ≥ 2t(1 + δ),

then

(83) Y(0; t, n,m)

(
0 −1

1 0

)
= I +O

(
e−cmax{n,2m−n}

)
.

In particular,

(84) πn,m(0; t) = O
(
e−cmax{n,2m−n}

)
.

6. Painlevé Regime

We now consider the parameters (n,m, t) in the regime (72):

(85) 2t− Lt1/3 ≤ n ≤ 2t(1 + δ), 2t− Lt1/3 ≤ 2m− n ≤ 2t(1 + δ)

for fixed L > 0 and δ > 0. We assume that δ < 1/2 (see the discussion

before (90)).

Let S(z) be same as in the previous section. When γ ∈ [1 − δ, 1 + δ],

the estimate (78) does not hold any more. However, it is easy to check

using a similar calculation as before that the exponential decay still holds

in an annular sector away from the point z = −1. (Note that the (double)

critical point of θ(z; 1) is z = −1.) More precisely, one can check that given

δ ∈ (0, 1), there exist positive constants α1 ≥ O(δ1/2) > 0 and ρ1 ≥ O(δ1/2)

such that if γ ∈ [1 − δ, 1 + δ], then |e2θ(z;γ)| < 1 for z in the annular sector

Sin,−1 := {z = reiα : ρ1 < r < 1, |α| < π − α1}. Moreover, if z is in a
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Figure 5. The sign of Re θ(z; γ) for values of γ near γcrit = 1.

Note the sign change near z = −1 on either side of the transition.

compact subset of Sin,−1, then there exists c > 0 such that |e2θ(z;γ)| ≤ e−c

uniformly in γ ∈ [1− δ, 1 + δ], see Figure 5.

Similarly, from the symmetry φ(z; γ) = θ(−z−1; γ), under the same as-

sumptions, |e2φ(z;γ̃)| < 1 for z in the annular sector Sout,1 := {z = 1
re
iα :

ρ1 < r < 1, α1 ≤ |α| ≤ π}. Note the change of the condition on the angle

from Sin,−1; the (double) critical point of φ(z; 1) is z = 1. As before, if z is in

a compact subset of Sout,1, then there exists c > 0 such that |e2φ(z;γ)| ≤ e−c
uniformly in γ ∈ [1− δ, 1 + δ].

Now define T by (80) as before. In doing so, we take Cin,1 and Cin,−1

to lie in the annulus ρ1 < |z| < 1, and take Cout,1 and Cout,−1 to lie in the

annulus 1 < |z| < 1/ρ1. Then the jump matrix in (81) satisfies

(86) VT (z) = I +O
(
e−ct

)

uniformly for γ, γ̃ ∈ [1 − δ, 1 + δ] and for z in all the contours except for

(Cin,−1∪Cout,−1)∩{|arg(z)| > π−α1} and (Cin,1∪Cout,1)∩{|arg(z)| < α1}.
The parts of the contour where (86) is not valid are handled by introduc-

ing local parametrix that can be solved by the RHP for the Painlevé II

equation (see Section 10). Such a ‘Painlevé parametrix’ was introduced in

the analysis of [4] on a similar orthogonal polynomials but with a contin-

uous weight. A drawback of the analysis of [4] was that the parametrix

was solved asymptotically rather than exactly as in other cases such as

[21, 22]. The exactly matching Painlevé parametrix was constructed later

in [19]. The construction of [19] requires, in the context of this paper, that

γ ∈ [1 − Lt−2/3, 1 + Lt−2/3]. In a recent paper [14], a different approach

to the exact construction of the Painlevé parametrix was introduced. This

construction has the advantage that it works for all γ (and γ̃) in regime (72).
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We seek a global parametrix in the form

(87) A(z) =





A1(z) z ∈ U1

A−1(z) z ∈ U−1

I elsewhere

where U±1 are sufficiently small, fixed size, neighborhoods of ±1. Later we

will fix the size of U±1 first and then choose δ small enough so that U−1

contains (Cin,−1 ∪ Cout,−1) ∩ {|arg(z)| > π − α1} and U1 contains (Cin,1 ∪
Cout,1) ∩ {|arg(z)| < α1} so that (86) is valid for all z in the contour of T

except for in U±1.

6.1. Local Models near 1 and −1. In order to construct a exactly match-

ing parametrix A±1, we need to introduce Langer transformations which

map the local phase functions θ and φ to the Painlevé phase (213) in U−1

and U1 respectively.

The phase θ(z; γ) is analytic in z in the neighborhood |z + 1| < 1 (and

entire in γ) and admits the expansion,

(88) θ(z; γ) = (1−γ)(z+1)+
1− γ

2
(z+1)2 +

3− 2γ

6
(z+1)3 +O

(
(z + 1)4

)
.

At the critical value γ = 1 the expansion degenerates to a cubic at leading

order; for values of γ near 1 the cubic unfolds either into three real or one

real and two complex roots near z = −1. The double critical point–double

root of θ′(z; 1)–unfolds into a pair of simple critical points near z = −1:

dθ

dz
= 0 ⇒ z± = −γ ±

√
γ2 − 1(89)

Note that the relation φ(z; γ̃) = −θ(−z; γ̃) implies that φ admits a similar

expansion about z = 1 with the same structure.

As the cubic coefficient in (88) is bounded away from zero (note that

γ ≤ 1 + δ < 3/2) we make use of a classical result of [16] to introduce new

parameters a(γ) and b(γ) such that the relation

4

3
f(z; γ)3 + a(γ)f(z; γ) + b(γ) = −iθ(z; γ) z ∈ U−1(90)

defines an invertible conformal mapping f = f(z) from a sufficiently small,

γ-independent, neighborhood U−1 onto f(U1) such that the parameters a

and b depend continuously on γ near 1. It was shown in [16] (see also [28])

that there exist δ1 > 0 and a γ-independent neighborhood U−1 such that the

above map is conformal in U−1 for all γ ∈ [1− δ1, 1+δ1] if the critical points

f± = ±√−a/2 of the left hand side, seen as a function of f , correspond to

the critical points z± of θ(z; γ). This means that the left hand side of (90)
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Figure 6. Images of the contours near z = ±1 under ζ.

evaluated at f = f± should equal to the right hand side of (90) evaluated

at z = z±. These two conditions determine the parameters a and b as

b(γ) =
−i
2

[θ(z+; γ) + θ(z−; γ)] ,

(−a(γ))3/2 =
3i

2
(θ(z+; γ)− θ(z−; γ)) .

(91)

Since θ(z+; γ) = −θ(z−; γ) =
√
γ2 − 1− γ log(γ +

√
γ2 − 1), we have

(92) b(γ) = 0.

There are three choices of branch of a(γ). We choose the branch so that

a(γ) = −
[
3i
(√

γ2 − 1− γ log
(
γ +

√
γ2 − 1

))]2/3
(93)

satisfies the power series expansion

(94) a(γ) = 2(γ − 1)− 1

15
(γ − 1)2 +O

(
(γ − 1)3

)
.

To verify this, it is useful to note that d2

dγ2
[
√
γ2 − 1− γ log(γ+

√
γ2 − 1)] =

−(γ2 − 1)−1/2. With this choice of a, we have

(95) f(z; γ) =
i(γ − 1)

a
(z + 1) +

i(γ − 1)

2a
(z + 1)2

+
1

6i

(
3− 2γ

a
− 8

(γ − 1)3

a4

)
(z + 1)3 +O

(
(z + 1)4

)
.

Inserting (94), we obtain

(96) f(z; γ) =
i

2
(z + 1)

[
1 +

1

2
(z + 1) +

7

20
(z + 1)2 +O

(
(z + 1)3

)]

+
i

60
(γ − 1)(z + 1)

[
1 +

1

2
(z + 1) +O

(
(z + 1)2

)]
+O

(
(γ − 1)2(z + 1)

)
.
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Define the rescaled coordinates (Langer coordinates) ζ = ζ(z; γ) = t1/3f(z; γ)

for z ∈ U−1, and set

s = s(γ) = t2/3a(γ).(97)

Then (see (213))

(98) tθ(z; γ) = i

(
4

3
ζ3 + sζ

)
= iθPII(ζ, s), z ∈ U−1.

We note from (94) that for the parameters (n,m, t) in the regime (72),

(99) s(γ) ≥ −2L

for all large enough t. We also have

(100) s(γ) = 2t2/3(γ − 1)− (2t2/3(γ − 1))2

60
t−2/3 +O

(
t2/3(γ − 1)3

)
.

We introduce similar coordinates in U1. This can be easily achieved by

noting the symmetry φ(z, γ̃) = −θ(−z, γ̃). We set U1 = −U−1 and define

f(z; γ̃) := −f(−z; γ̃) for z ∈ U1. Then we find, with the same choice of a

and b,

4

3
f(z; γ̃)3 + a(γ̃)f(z; γ̃) = −iφ(z; γ̃), z ∈ U1.(101)

Defining ζ = ζ(z; γ) = t1/3f(z; γ), z ∈ U−1, and s = s(γ) = t2/3a(γ) as

before, we obtain

(102) tφ(z; γ̃) = i

(
4

3
ζ(z; γ̃)3 + s(γ̃)ζ(z; γ̃)

)
= iθPII(ζ, s), z ∈ U−1.

Note the symmetry

(103) ζ(z; γ̃) = −ζ(−z; γ̃), z ∈ U1.

We take δ such that δ < min{1/2, δ1} where δ1 we introduced in defining

f in (90). Then consider the parameters (n,m, t) satisfying (72).

Consider the image of U−1 under the map z 7→ ζ(z; γ). From (96), we find

that there exists δ2 > 0 such that for γ ∈ [1− δ2, 1 + δ2], ζ(U−1; γ) contains

a disk centered at 0 and of radius ≥ O
(
t1/3
)

in the ζ-plane. The same

holds for ζ(U1; γ̃). Note that from (96), the image contours ζ(C−1,in/out)

are oriented left-to-right and the image contours ζ(C1,in/out) are oriented

right-to-left as depicted in Figure 6.

We now use ζ to map the local contours and jump matrices inside U±1

onto the jumps of the Painlevé parametrix, RHP 10.1. We locally deform, if

necessary, the contours C±1,in/out so that the image contours ζ(C±1,in/out ∩
U±1) become the rays Γi, i = 1, 3, 4, 6 described in (206) and we extend

C±1,in/out ∩ (U−1 ∪ U1) to the rest of C±1,in/out so that the estimate (86)
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7

3. The boundary values of Ψ satisfy the jump relations

Ψ+ = Ψ−

�
1 0
1 1

�
, ζ ∈ C1,

Ψ+ = Ψ−

�
1 −1
0 1

�
, ζ ∈ C2.

(17)

4. Ψ is bounded near 0.

The solution Ψ(ζ, s) of RHP 1.5 depends on three parameters s, q = q(s), and r = r(s)
where q is the Hastings-McLeod solution of Painlevé II and r(z) = q�(s). Let P denote
the set of poles of q (of which there are infinitely many). Then Ψ(ζ, s) is defined and
analytic for ζ ∈ C\(C1 ∪C2) and s ∈ C\P. It is known that there are no poles of q on the
real line. From (15) and (10) s−1,t = y[1 + O ((z + 1)) and s1,t = ỹ[1 + O ((z − 1)). Let
δ(L) denote the distance from [−L, L] to the nearest point in P in the s-plane. Taking

U±1 =
�

z : |z ± 1| < �
Lδ(L)

�
for some sufficiently small � we ensure that A±1(z) exist for

all z ∈ U±1. Note, that U±1 depend only on L; they are independent of t.

1.2. Calculating the residual. We now form the ratio of the global parametric to the
exact problem T (z)

(18) R(z) = T (z)A−1(z).

The residual R(z) has jumps on the
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δ(L) denote the distance from [−L, L] to the nearest point in P in the s-plane. Taking

U±1 =
�

z : |z ± 1| < �
Lδ(L)

�
for some sufficiently small � we ensure that A±1(z) exist for

all z ∈ U±1. Note, that U±1 depend only on L; they are independent of t.

1.2. Calculating the residual. We now form the ratio of the global parametric to the
exact problem T (z)

(18) R(z) = T (z)A−1(z).

The residual R(z) has jumps on the

−1 1

7

3. The boundary values of Ψ satisfy the jump relations

Ψ+ = Ψ−

�
1 0
1 1

�
, ζ ∈ C1,

Ψ+ = Ψ−

�
1 −1
0 1

�
, ζ ∈ C2.

(17)

4. Ψ is bounded near 0.

The solution Ψ(ζ, s) of RHP 1.5 depends on three parameters s, q = q(s), and r = r(s)
where q is the Hastings-McLeod solution of Painlevé II and r(z) = q�(s). Let P denote
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Figure 7. The jump contours for the residual R(z). The dashed

lines represent contours on which the jumps are exponentially near

identity.

holds for z on the contour outside of U±1. The exact shape of the contours

are not important. Reorienting the image contours, if necessary, to go from

left-to-right and using (98) and (102) the image contours and jumps are,

up to a conjugation by a constant matrix, exactly those of the Painlevé

parametrix, RHP 10.1.

Let Ψ(ζ, s) be the solution of the Painlevé II model problem, RHP 10.1.

Set σ2 =
(

0 −i
i 0

)
and recall that σ3 =

(
1 0
0 1

)
. Taking into account the orien-

tation of ζ(C±1,in/out ∩ U±1), we define the local models

A−1(z) = A−1(z; γ) := σ2σ
n
3 Ψ(ζ(z; γ); s(γ))σn3σ2, z ∈ U−1

A1(z) = A1(z; γ̃) := σ2Ψ(ζ(z; γ̃); s(γ̃))σ2, z ∈ U1.
(104)

Note from the symmetries (214) and (103) that these two models are related

as

(105) A1(z, γ̃) = σ1σ
n
3 A−1(−z, γ̃)σn3σ1, z ∈ U1.

From (98) and (102), A±1(z) satisfies the same jump condition as T(z) in

U±1 respectively.

Define the ratio of the global parametrix to the exact problem T(z):

(106) R(z) = T(z)A−1(z).

Then R(z) has no jumps inside U±1 but gains jumps on the positively ori-

ented boundaries ∂U±1. Let Σ0
R = Σin ∪Σout ∪Cin,±1 ∪Cout,±1\(U1 ∪ U−1).

Then R satisfies the following problem

Riemann-Hilbert Problem 6.1 for R(z): Find a 2 × 2 matrix R(z)

such that

1. R(z) is analytic in C\ΣR where ΣR = Σ0
R ∪ ∂U1 ∪ ∂U−1.
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2. R(z)→ I as z →∞.

3. The boundary values of R satisfy the jump relation R+ = R−VR where

(107) VR(z) =





A1(z)−1 z ∈ ∂U1

A−1(z)−1 z ∈ ∂U−1

VT (z) z ∈ Σ0
R

The jumps of R(z) are now everywhere uniformly near identity. In fact,

for the parameters (n,m, t) in the regime (72), it follows from (86),

(108) ||VR − I||L∞(Σ0
R) = O

(
e−ct

)
,

and from (104) and (216) that (recall that ζ(U±1; γ) contains a disk of radius

≥ O
(
t1/3
)

for all γ ∈ [1− δ, 1 + δ])

(109) ||VR − I||L∞(U±1) = O
(
t−1/3

)
.

(We will use a better estimate for the latter below.) The above estimates

establishes that R falls into the class of small norm RHPs for any sufficiently

large t. Let C− : L2(ΣR) → L2(ΣR) denote the usual Cauchy projection

operator and define

(110) CVR [f ](z) := C− [f(w)(VR − I)] =
1

2πi

∫

ΣR

f(w)(VR(w)− I)

(w − z)−
dw,

and

(111) KR[f ](z) :=
1

2πi

∫

ΣR

f(w)(VR(w)− I)

(w − z) dw,

which maps f ∈ L2(ΣR) to an analytic function in C\ΣR. Then as C− is a

bounded L2 operator whose operator norm is uniformly bounded (see e.g.

[13]) and the contours ΣR are finite length it follows that ‖CVR‖L2→L2 =

O
(
t−1/3

)
for large t which guarantees the existence of a unique solution

to (1− CVR)µ = I. Once the existence of µ(z) is established it follows

immediately from the general theory of RHPs that

(112) R(z) := I +KR[µ](z) = I +
1

2πi

∫

ΣR

µ(w)(VR(w)− I)

w − z dw

is the solution of RHP 6.1.

Unfolding the series of transformations Y 7→ Q 7→ S 7→ T 7→ R we have

Y(0) = R(0)

(
0 1

−1 0

)
and from (67) it follows that

(113) πn,m(0; t) = −R12(0; t, n,m) = R21(0; t, n,m).

We now evaluate R(0; t, n,m) explicitly for the first three terms in the as-

ymptotic expansion. But we first consider the corresponding RHP for the
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continuous weight in the next subsection. We will compare the discrete

weight problem to the continuous weight problem.

6.2. Analysis of the continuous weight problem. A streamlined ver-

sion of the above procedure reducing the discrete problem, RHP 4.1, to

small-norm form can be used to study the continuous weight problem, RHP

4.2. Using the same g-function used in the discrete case we define Y∞ 7→ S∞

as in (75) replacing Q with Y∞. The new RHP for S∞ features the single

phase θ(z; γ) defined by (77) which we recall has a critical value at z = −1.

In the ‘exponentially small regime’ (71) estimate (78) holds and just as in

Proposition 5.1 we have in the end

(114) πn,∞(0; t) = O
(
e−cn

)
for (n, t) satisfying (71).

In the Painlevé regime (72), by introducing a simplified version of the trans-

formation (80), using only the factors appearing in Ω±,0 to open lenses, one

defines a transformation S∞ 7→ T∞. The problem for T∞ is then approx-

imated by a parametrix which is identity outside a neighborhood U−1 of

z = −1 and inside U−1 is approximated by the same model as the discrete

case, A−1(z) defined by (104). The result is a small norm problem R∞ for

the continuous case where

(115) R∞(z) = I +
1

2πi

∫

ΣR∞

µ∞(w)(VR∞(w)− I)

w − z dw

where,

(116) VR∞(z) =

{
A−1(z)−1 z ∈ ∂U−1

I +O
(
e−ct

)
z ∈ Σ∞R \∂U−1

Moreover, the continuous weight orthogonal polynomial π∞n (0) is given by

(117) πn,∞(0; t) = −R∞12(0; t, n) = R∞21(0; t, n) for (n, t) satisfying (72).

6.3. Expansion of R(0). In this section we calculate the asymptotic ex-

pansion of

(118) R(0) = I +KR[µ](0) = I +
1

2πi

∫

ΣR

µ(w)(VR(w)− I)

w
dw

up to order O
(
t−1
)
. We begin by representing µ using its Nuemann series

expansion,

(119) µ(z) = I +

∞∑

k=1

(CR)k[I],

which, due to (108) and (109) , convergences uniformly and absolutely. In

both (118) and (119) the dominant contribution to the integral comes from

the boundaries ∂U±1. In fact, denoting by P0 the projection operator onto
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ΣR\(∂U−1∪∂U1), we find from (108) that ‖CRP0‖L2(ΣR)→L2(ΣR) = O
(
e−ct

)

and ‖KRP0‖L2(ΣR)→L2(ΣR) = O
(
e−ct

)
.

Denoting by P±1 the projection operator onto ∂U± respectively, define

C±1 := CRP±1 and K±1 := KRP±1: for any f ∈ L2(ΣR),

C±1[f ](z) =
1

2πi

∮

∂U±1

f(w)(VR(w)− I)

(w − z)−
dw, z ∈ ΣR,

K±1[f ](z) =
1

2πi

∮

∂U±1

f(w)(VR(w)− I)

(w − z) dw, z /∈ ΣR.

(120)

Then we find

(121) R(0) = I + (K−1 +K1)[µ](0) +O
(
e−ct

)

where

(122) µ(z) = I +

∞∑

k=1

(C−1 + C1)k[I](z) +O
(
e−ct

)
.

Recall s(γ) defined in (97). Introduce the shorthands s = s(γ) and s̃ =

s(γ̃). Using (216), (217), and (104) we have

(123a)

VR(z)− I =





ϕ1(s)

t1/3f(z;γ)
+ ϕ2(s)

t2/3f(z;γ)2
+ ϕ3(s)

t−1f(z;γ)3
+O

(
e−c0|s|

3/2

t4/3

)
z ∈ ∂U−1

φ1(s̃)

t1/3f(z;γ̃)
+ φ2(s̃)

t2/3f(z;γ̃)2
+ φ3(s̃)

t−1f(z;γ̃)3
+O

(
e−c0|s|

3/2

t4/3

)
z ∈ ∂U1

with

ϕ1(s) =
1

2i

[ −u(s) −(−1)nq(s)

(−1)nq(s) u(s)

]
,

ϕ2(s) =
1

(2i)2

[
1
2u(s)2 − 1

2q(s)
2 (−1)n(q(s)u(s)− q′(s))

(−1)n(q(s)u(s)− q′(s)) 1
2u(s)2 − 1

2q(s)
2

]
,

ϕ3(s) =
1

(2i)3

[
α(s) (−1)nβ(s)

−(−1)nβ(s) −α(s)

]
(123b)

and,

(123c) φk(s̃) = σn3ϕk(s̃)σ
n
3 , k = 1, 2, 3,

where q is defined by (210) and u, α, and β are defined in (216c)– (216e).

It follows from inserting the above expansions into (121) and (122) that

each iteration of C1 or C−1 introduces a factor of t−1/3, thus we are led to

an expansion of the form.

R(0) = I +
N∑

k=1

R(k)t−k/3 +O
(
e−c0|s|

3/2

t(N+1)/3

)
,(124)
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where R(1) := t1/3(K1[I](0) +K−1[I](0)),

R(k) := tk/3
∑

~τ∈{−1,1}k−1

(K1 +K−1)C~τ [I](0), k ≥ 2.(125)

Here C~τ is a multi-index understood as follows: given ~τ = (τ1, τ2, . . . , τk) ∈
{−1, 1}k we define C~τ := Cτ1Cτ2 · · ·Cτk . Though we have suppressed the

dependence, each R(k) is a function of t. Moreover, since both s and the

coefficients in the expansion (95) depend on γ, each R(k) = O (1) with an

expansion in powers of t−1/3.

At each order we can split the composition of Cauchy integrals into three

parts. Define

R
(k)
1 = tk/3K1C

k−1
1 [I](0),

R
(k)
−1 = tk/3K−1C

k−1
−1 [I](0),

R
(k)
X = R(k) −R(k)

1 −R
(k)
−1 .

(126)

Note that from definition, R
(1)
X = 0. Intuitively, the first two “pure” terms

contain the expansions of the continuous weight polynomials related to the

marginal distributions while the last term contains the “cross” terms. This

can be made concrete as follows. Let R±1(0) and RX(0) denote the sum of

each type of contributions to R(0):

(127) Rp(0) := I +
∞∑

k=1

R
(k)
p

tk/3
, p = 1,−1, X.

Clearly, R1(0) and R−1(0) are the values at origin of normalized Riemann-

Hilbert problems whose jump conditions are

(128)
(R−1)+(z) = (R−1)−(z)A−1(z, γ)−1 z ∈ ∂U−1

(R1)+(z) = (R1)−(z)A1(z, γ̃)−1 z ∈ ∂U1

Recalling (115) and (116) we see that R−1(z) and R∞(z; t, n) have the same

jump condition up to the exponentially small contributions from ΣR∞\∂U−1.

Hence

R∞(0; t, n) =
[
I +O

(
e−ct

)]
R−1(0).(129)

Also from (105), the jump of R1(z) is same as that of σ1σ
n
3 R∞(0, t, 2m −

n)σn3σ1, and hence we find that

σ1σ
n
3 R∞(0, t, 2m− n)σn3σ1 =

[
I +O

(
e−ct

)]
R1(0).(130)
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Therefore, from (117) it follows that

πn,∞(0; t) = −(R−1)12(0) +O
(
e−ct

)
,

π2m−n,∞(0; t) = (−1)n(R1)12(0) +O
(
e−ct

)
,

(131)

and hence from (113), (124) and (127), we find that

πn,m(0; t) = πn,∞(0)− (−1)nπ2m−n,∞(0)− (RX)12(0) +O
(
e−ct

)
.(132)

From (127), we now need to evaluate R
(k)
p , p = −1, 1, X, k = 1, 2, 3. This

calculation is a straightforward but lengthy application of residue calculus.

We summarize the result of the calculations which follow directly from the

definitions (126), (120), (123), making use of the expansions (95) and (100).

It is helpful to note that the symmetry (105) between A1 and A−1 implies

that

K1 = TK(γ 7→γ̃)
−1 T, C1 = TC

(γ 7→γ̃)
−1 T,(133)

where K(γ 7→γ̃)
−1 and C

(γ 7→γ̃)
−1 denote K−1 and C−1 with γ replaced by γ̃ respec-

tively, and T is the operator defined by

Tf(z) := σ1σ
n
3 f(−z)σn3σ1.(134)

In particular, note that TI = I, R
(k)
1 = TR

(k)
−1 |γ→γ̃ .

Let Err and Ẽrr denote any terms satisfying

Err = O
(
e−c0|s(γ(τ))|3/2

)
, Ẽrr = O

(
e−c0|s(γ̃(τ))|3/2

)
.(135)

Denoting by [A,B] and {A,B} the commutator and anti-commutator of

matrices A and B respectively, we find from an explicit evaluation that

(making use of (217))

R
(1)
−1 = 2i

(
1− 1

30
(γ − 1))

)
ϕ1(s)− (2i)3

20t2/3
ϕ3(s)

+
(
|γ − 1|2 + t−2/3|γ − 1|+ t−1

)
Err,

R
(1)
1 = −2i

(
1− 1

30
(γ̃ − 1))

)
φ1(s̃) +

(2i)3

20t2/3
φ3(s̃)

+
(
|γ̃ − 1|2 + t−2/3|γ̃ − 1|+ t−1

)
Ẽrr,

(136a)
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R
(2)
−1 =

(2i)2

2
ϕ1(s)2 − (2i)3ϕ1(s)ϕ2(s)

20t1/3
+

(2i)3ϕ2(s)ϕ1(s)

10t1/3

+
(
|γ − 1|+ t−2/3

)
Err,

R
(2)
1 =

(2i)2

2
φ1(s̃)2 +

(2i)3σ1(s̃)φ2(s̃)

20t1/3
− (2i)3φ2(s̃)ϕ1(s̃)

10t1/3

+
(
|γ̃ − 1|+ t−2/3

)
Ẽrr,

(136b)

R
(3)
−1 =

3(2i)3

20
ϕ1(s)3 +

(
|γ − 1|+ t−1/3

)
Err,

R
(3)
1 = −3(2i)3

20
φ1(s̃)3 +

(
|γ̃ − 1|+ t−1/3

)
Ẽrr,

(136c)

(137a)

R
(2)
X = −(2i)2

2
{ϕ1(s), φ1(s̃)} − (2i)3

4

(
[ϕ2(s), φ1(s̃)] + [ϕ1(s), φ2(s̃)]

)
t−1/3

+
(
|γ − 1|+ t−2/3

)
Err +

(
|γ̃ − 1|+ t−2/3

)
Ẽrr,

(137b) R
(3)
X =

(2i)3

4
{ϕ1(s)φ1(s̃)} (φ1(s̃)− ϕ1(s))

+
(
|γ − 1|+ t−1/3

)
Err +

(
|γ̃ − 1|+ t−1/3

)
Ẽrr,

Recall that R
(1)
X = 0. Note that

(138) {ϕ1(s), φ1(s̃)} = 2(u(s)u(s̃)− (−1)nq(s)q(s̃))I.

From (131) and (132) using (123) and (136)–(137), we obtain

Proposition 6.1. Set

g1(y, ỹ) :=
1

2

(
u′(y)q(ỹ) + u(y)q′(ỹ)

)
,

g2(y, ỹ) :=
1

2

(
q(y)u′(ỹ) + q′(y)u(ỹ)

)
.

(139)

Let πn,m(z) be the orthogonal polynomial given in (67). Let πn,∞(z) be the

orthogonal polynomial given in (69). There exists δ > 0 such that for any

fixed L > 0, if

(140) 2t− Lt1/3 ≤ n ≤ 2t(1 + δ), 2t− Lt1/3 ≤ 2m− n ≤ 2t(1 + δ),
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then there exists constants c0 > 0 and t0 > 0 such that

πn,m(0; t) =πn,∞(0; t)− (−1)nπ2m−n,∞(0; t)

+
g1(s(γ), s(γ̃))− (−1)ng2(s(γ), s(γ̃))

t

+O
((
t−4/3 + t−2/3|γ − 1|+ t−2/3|γ̃ − 1|

)
e−c0(|s(γ)|3/2+|s(γ̃)|3/2)

)

(141)

for all t ≥ t0, where

(142) γ :=
n

2t
, γ̃ :=

2m− n
2t

and s(u) is defined in (97) which satisfies (see (100))

(143) s(u) = 2t2/3(u− 1)− (2t2/3(u− 1))2

60
t−2/3 +O

(
t2/3(u− 1)3

)
.

We also have

Proposition 6.2. For t ≥ t0,

(−1)nπn,∞(0; t) =
1

t1/3
q(s(γ))

(
1− γ − 1

30

)
+

1

t
h(s(γ))

+O
((
t−4/3 + t−2/3|γ − 1|

)
e−c0|s(γ)|3/2

)(144)

where

(145) h(y) :=
1

5
u(y)q′(y)− 1

5
q3 − 1

20
yq(y).

7. Proof of Theorem 1.1 and Corollary 1.1

We now evaluate the asymptotics of P {CRt ≤ k,NEt ≤ j} when

(146) j = [t+ 2−1xt1/3], k = [t+ 2−1x′t−1/3].

where x, x′ ∈ R are fixed, and [a] denotes the largest integer no larger than

a. We define xt and x′t by

(147) xt :=
(2j + 1)− 2t

t1/3
, x′t :=

(2k + 1)− 2t

t1/3

so that

(148) 2j + 1 = 2t+ xtt
1/3, 2k + 1 = 2t+ x′tt

1/3.

Then xt = x+O(t−1/3) and x′t = x′ +O(t−1/3).
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From Proposition 1.1, we have

(149) logP {CRt ≤ k,NEt ≤ j}

=

∫ t

0
π2j+1,m(0; τ) dτ +

∫ t

0

∫ s

0
Qmj (τ) dτ ds

where

Qmj (τ) = −Rmj (τ)− Smj (τ) +Rmj (τ)Smj (τ),(150)

and

Rmj (τ) := π2j,m(0; τ)π2j+2,m(0; τ), Smj (τ) := |π2j+1,m(0; τ)|2.(151)

From Proposition 5.1 (substituting τ for t in (84)), we find that the above

integrals away from the interval [(1 − ε)t, t], for any fixed ε > 0, are expo-

nentially small in t:

(152) logP {CRt ≤ k,NEt ≤ j}

=

∫ t

t(1−ε)
π2j+1,m(0; τ) dτ +

∫ t

t(1−ε)

∫ s

t(1−ε)
Qmj (τ) dτ ds+O(e−ct).

We can take ε > 0 small enough so that Proposition 6.1 is applicable to

π2j+`,m(0; τ) for ` = 0, 1, 2 and τ ∈ [(1− ε)t, t].
Now by the same argument, we have

(153) logP {NEt ≤ j}

=

∫ t

t(1−ε)
π2j+1,∞(0; τ) dτ +

∫ t

t(1−ε)

∫ s

t(1−ε)
Q∞j (τ) dτ ds+O(e−ct)

and

(154) logP {CRt ≤ k}

=

∫ t

t(1−ε)
π2k+1,∞(0; τ) dτ +

∫ t

t(1−ε)

∫ s

t(1−ε)
Q∞k (τ) dτ ds+O(e−ct).

Consider

(155) logP {CRt ≤ k,NEt ≤ j} − logP {NEt ≤ j} − logP {CR ≤ k} .
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We first consider the three single integrals. From (141) applied to n =

2j + 1 and t replaced by τ , we have

(156)

∫ t

t(1−ε)

[
π2j+1,m(0; τ)− π2j+1,∞(0; τ)− π2k+1,∞(0; τ)

]
dτ

=

∫ t

t(1−ε)

1

τ

[
g1(s(γ(τ), s(γ̃(τ))) + g2(s(γ(τ), s(γ̃(τ)))

]
dτ

+O
(∫ t

t(1−ε)
(τ−4/3 + τ−2/3|γ(τ)− 1|)e−c0|s(γ(τ))|3/2dτ

)

where

(157) γ(τ) :=
2j + 1

2τ
, γ̃(τ) :=

2k + 1

2τ
.

Changing the integration variable τ 7→ η as

(158) τ = t− 2−1ηt1/3.

the integral involving g1 in (156) becomes

(159)
1

2t2/3

∫ 2εt2/3

0
g1(s(γ(τ), s(γ̃(τ)))

dη

1− 2−1ηt−2/3
.

Note that from (100),

(160)

s(γ(τ)) = (xt + η) +O
(
η2t−2/3

)
, s(γ̃(τ)) = (x′t + η) +O

(
η2t−2/3

)
.

Also note that from its definition, g1(x0+η, x′0+η) is integrable for η ∈ [0,∞)

for any fixed x0, x
′
0 ∈ R. Thus, we obtain that the integral (159) equals

(161)
1

2t2/3

∫ ∞

0
g1(xt + η, x′t + η)dη +O

(
t−4/3

)
.

The integral involving g2 in (156) equals the same integral with g1 replaced

by g2. On the other hand, it is easy to see that the error term in (156) is

(162) O
(
t1/3

∫ ∞

0
t−4/3(1 + |xt + η|)e−c0|xt+η|3/2dη

)
= O

(
t−1
)
.

Thus, replacing xt and x′t by x and x′, which incurs an error of order

O
(
t−1/3

)
, (156) equals

1

2t2/3

∫ ∞

0

[
g1(x+ η, x′ + η) + g2(x+ η, x′ + η)

]
dη +O

(
t−1
)
.(163)

Now inserting the definition (139), we can perform the integration and we

find that (156) equals

−1

4t2/3
[
u(x)q(x′) + q(x)u(x′)

]
+O

(
t−1
)
.(164)
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We now consider the part of (155) that come from the three double inte-

grals. We need to evaluate Qmj (τ)−Q∞j (τ)−Q∞k (τ). Setting

γ±(τ) :=
2j + 1± 1

2τ
= γ(τ)± 1

2τ
,(165)

we see from (100) that

s(γ±(τ)) = s(γ(τ))± 1

τ1/3
+O(t−1/3(γ(τ)− 1)).(166)

Let us set

ξ := s(γ(τ)), ξ̃ := s(γ̃(τ))(167)

to ease the notational burden. Then, (144) implies, using (217), that

π2j+1±1,∞(0; τ) =− π2j+1,∞(0; τ)± q′(ξ) 1

τ2/3
+

1

2
q′′(ξ)

1

τ

+ τ−4/3Error.
(168)

where throughout the rest of this section we use the notation Error to

denote any term satisfying

Error =O
((

1 + τ2/3|γ(τ)− 1|
)
e−c0|s(γ(τ))|3/2

)

+O
((

1 + τ2/3|γ̃(τ)− 1|
)
e−c0|s(γ̃(τ))|3/2

)
.

(169)

Note that
∫ t

t(1−ε)

∫ t

t(1−ε)
Error dτds. = O(t2/3),(170)

Also, note that from (144), (168) implies, in particular, that

π2j+1±1,∞(0; τ) =q(ξ) + τ−2/3Error,(171)

and clearly the asymptotics (168) and (171) also hold when j is replaced by

k and ξ is replaced by ξ̃.

From (141),

|π2j+1,m(0; τ)|2 − |π2j+1,∞(0; τ)|2 − |π2k+1,∞(0; τ)|2

= 2π2j+1,∞(0; τ)π2k+1,∞(0; τ)

+
2

τ

[
g1(ξ, ξ̃) + g2(ξ, ξ̃)

][
π2j+1,∞(0; τ) + π2k+1,∞(0; τ)

]

+ τ−5/3Error.

(172)

Thus, from (144),

Smj (τ)− S∞j (τ)− S∞k (τ) = 2π2j+1,∞(0; τ)π2k+1,∞(0; τ)

− 2

τ4/3

[
g1(ξ, ξ̃) + g2(ξ, ξ̃)

][
q(ξ) + q(ξ̃)

]
+ τ−5/3Error.

(173)
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Similarly, using (141) and (171), we obtain

Rmj (τ)−R∞j (τ)−R∞k (τ)

= −π2j,∞(0; τ)π2k,∞(0; τ)− π2j+2,∞(0; τ)π2k+2,∞(0; τ)

+
2

τ4/3

[
g1(ξ, ξ̃)− g2(ξ, ξ̃)

][
q(ξ)− q(ξ̃)

]
+ τ−5/3Error.

(174)

and

Rmj (τ)Smj (τ)−R∞j (τ)S∞j (τ)−R∞k (τ)S∞k (τ)

=
−2

τ4/3
q(ξ)q(ξ̃) + τ−5/3Error.

(175)

Therefore, since

π2j,∞(0; τ)π2k,∞(0; τ) + π2j+2,∞(0; τ)π2k+2,∞(0; τ)

− 2π2j+1,∞(0; τ)π2k+1,∞(0; τ)

=
1

τ4/3

[
q(ξ)q′′(ξ̃) + q′′(ξ)q(ξ̃) + 2q′(ξ)q′(ξ̃)

]
+ τ−5/3Error,

(176)

we obtain, by using the definition of g1, g2 and by using the fact that q2 = u′

and 2qq′ = u′′, that

Qmj (τ)−Q∞j (τ)−Q∞k (τ) =
1

τ4/3
U(ξ, ξ̃) + τ−5/3Error(177)

where ξ := s(γ(τ)), ξ̃ := s(γ̃(τ)) are defined in (167) and we have set

U(ξ, ξ̃) :=u′′(ξ)u(ξ̃) + 2u′(ξ)u′(ξ̃) + u(ξ)u′′(ξ̃)

+ q′′(ξ)q(ξ̃) + 2q′(ξ)q′(ξ̃) + q(ξ)q′′(ξ̃).
(178)

We insert (177) into the integral
∫ t

t(1−ε)

∫ t

t(1−ε)

[
Qmj (τ)−Q∞j (τ)−Q∞k (τ)

]
dτds,(179)

and evaluate it by changing variables τ 7→ η, τ = t − 2−1ηt1/3 and s 7→ ζ,

s = t− 2−1ζt1/3, as was done for the single ingtegrals. Noting that

U(ξ + η, ξ̃ + η) :=
d2

dη2

[
u(ξ + η)u(ξ̃ + η) + q(ξ + η)q(ξ̃ + η)

]
,(180)

the integral can be evaluated and we find that (179) equals

1

4t2/3
[
u(x)u(x′) + q(x)q(x′)

]
+O

(
t−1
)
.(181)

The error term O
(
t−1
)

follows from (170).

Combining (164) and (181), we obtain

(182)

log

[
P{C̃Rt ≤ x, ÑEt ≤ x′}
P{C̃Rt ≤ x}P{ÑEt ≤ x′}

]
=

[q(x)− u(x)] [q(x′)− u(x′)]
4t2/3

+O
(
t−1
)
.
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This completes the proof of Theorem 1.1. We note that here the error term

is uniform for x, x′ in a compact subset of R (actually in any semi-infinite

interval [x0,∞).)

Corollary 1.1 follows if we show that Cov(C̃Rt, ÑEt) = t−2/3 + O
(
t−1
)
.

This is obtained from Theorem 1.1 by using the dominated convergence

theorem if we have tail estimates of P{C̃Rt ≤ x, ÑEt ≤ x′} − P{C̃Rt <

x}P{ÑEt < x′} as |x|, |x′| → ∞ since
∫∞
−∞ xdF

′(x) = −1. The tail as

x, x′ → +∞ can be obtained from the analysis of this paper. For the other

limits, we need an extension of the analysis of this paper but we skip the

details in this paper. See [4, 5] for a similar question about the convergence

of moments using Toeplitz determinant.

8. Proof of Theorems 1.2 and 1.3

Here we evaluate the asymptotics of the marginal distributions P{CRt ≤
j} for j as given by (146). We reuse as much as possible the calculations

in the previous section. Note that by symmetry we have P{NEt ≤ j} =

P{CRt ≤ j}. In the process of computing the marginal we will compute as

a by-product asymptotics for P{Lt ≤ `} along the way.

Our starting point is to introduce the change of variables

(183) τ = t− 2−1(η − xt)t1/3 s = t− 2−1(ζ − xt)t1/3

into (153) where, as in the previous section, xt is given by (148). Note that

this change of variables differs from (158) by a shift. Making the substitution

we have, with j and k defined by (146) (recall (148)),

logP {NEt ≤ j} = I1 + I2 +O
(
e−ct

)
,

logP {Lt ≤ 2j + 1} = 2I1 +O
(
e−ct

)
,

(184)

where

I1 =
t2/3

4

∫ xt+2εt2/3

xt

∫ xt+2εt2/3

ζ
Q∞j (τ) dη dζ,

I2 =
t1/3

2

∫ xt+2εt2/3

xt

π2j+1,∞(0; τ) dη.

(185)

From (63), there is an analogous formula for logP {Lt ≤ 2j}, and the analysis

below applies to this case too without much changes. We skip the details

for this case.

In order to compute expansions of the above integrals we need more de-

tailed calculations than the previous section. Inserting (183) into (157), we

have

γ(τ) = 1 +
1

2
ηt−2/3 +

1

4
(η2 − ηxt)t−4/3 +O

(
η3t−2

)
.(186)
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Then (143), with t replaced by τ , becomes

s(γ(τ)) = η +

(
3

20
η2 − 1

6
ηxt

)
t−2/3 +O

(
η3t−4/3

)
(187)

Inserting these into (144) we have

(188) − π2j+1,∞(0; τ) =

=
1

t1/3
q(η) +

1

t

[
h(η) +

(
3

20
η − 1

6
xt

)(
q(η) + ηq′(η)

)]

+O
(
t−4/3Error

)

and it follows from (150), (151) (when m =∞), and (a slight improvement

of) (168) that

(189) Q∞j (τ) = −2t−2/3q(η)2

− t−4/3

[
4q(η)h(η) +

(
3

5
η − 2

3
xt

)(
ηq′(η)q(η) + q(η)2

)

+ q(η)q′′(η)− q′(η)2 − q(η)4

]
+O

(
t−5/3Error

)
.

Here h is as given in (145). In both the above formulae the Error term is

as defined in (169) and we recall that its integral introduces terms of order

O
(
t2/3
)
. Now using the identity q4 = u+ (q′)2−ηq2 and using the fact that

q2 = u′, 2qq′ = u′′, and q′′ = ηq + 2q3 it is direct to check that the terms in

square brackets in (188) and (189) can be expressed as perfect derivatives.

We find that

−π2j+1,∞(0; τ) =
1

t1/3
q(η) +

1

t
U1(η) +O

(
t−4/3Error

)
,

Q∞j (τ) = − 2

t2/3
u′(η)− 1

t4/3
U2(η) +O

(
t−5/3Error

)
,

(190)

where

U1(η) :=
1

5

d

dη

[
u(η)q(η)− q′(η) +

1

12
(9η − 10xt) ηq(η)

]
,

U2(η) :=
1

5

d2

dη2

[
u(η)2 − q(η)2 +

1

6
(9η − 10xt) ηu(η)

]
.

(191)
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Inserting this formula into (185) and (184), we obtain with x(t) and xt defined

by (26) and (13) respectively,

(192) logP
{
Lt ≤ 2t+ t1/3x

}
= logFGUE(x(t))

− 1

10t2/3

[
u(x)2 − q(x)2 − 1

6
x2u(x)

]
+O

(
t−1
)

and

logP
{

NEt ≤ t+ 2−1t1/3x
}

= logF (xt) +
E(x)

t2/3
+O

(
t−1
)
,(193)

where E = E(x) equals

(194) E :=
1

20

[
−(u(x)− q(x))2 + 2

(
u′(x)− q′(x)

)
+

1

6
x2 (u(x)− q(x))

]
.

It is easy to check that 20E(x)F (x) = −4F ′′(x) − 1
3x

2F ′(x) and (u(x)2 −
q(x)2− 1

6x
2u(x))FGUE(x) = F ′′GUE(x)+ 1

6x
2F ′GUE(x).2 Theorems 1.2 and 1.3

follow immediately.

9. Proof of Corollary 1.2

For a sequence {an}∞n=0, consider its Poissonization

(195) φ(t) := e−t
2
∞∑

n=0

(t2)n

n!
an.

A de-Poissonization lemma is that if (a) 0 ≤ an ≤ 1 and (b) an+1 ≤ an for

all n, then we have for s ≥ 1 and n ≥ 2,

(196) φ(
√
µn)− 1

ns
≤ an ≤ φ(

√
νn) +

1

ns

where,

(197) µn := n+ 2
√
sn log n, νn = n− 2

√
sn log n.

Lemma 2.5 of [33] is stated for the case when s = 2, but the proof can be

modified in a straightforward way to obtain the above estimates.

The de-Poissonization lemma can be applied to an := P {crn ≤ k, nen ≤ j}
due to the following lemma.

Lemma 9.1. For each n ≥ 0, and k, j ≥ 0,

(198) P{crn+1 ≤ k, nen+1 ≤ j} ≤ P{crn ≤ k,nen ≤ j}.

2We would like to thank Craig Tracy for pointing out these relations. Relations like

these and many others can be found in [47].



CROSSING AND NESTING 43

Proof. Since P{crn ≤ k, nen ≤ j} =
gk,j(n)

(2n−1)!! , where

(199) gk,j(n) := # {M ∈Mn : crn(M) ≤ k,nen(M) ≤ j} ,

we need to show that gk,j(n + 1) ≤ (2n + 1)gk,j(n). The set Mn+1 of

complete matchings of [2(n + 1)] is the union of (2n + 1) disjoint subsets

M`
n+1, ` = 1, . . . , 2n + 1, where M `

n+1 is the set of complete matchings

of [2(n + 1)] such that 1 is paired with ` (i.e.(1, `) is an element of the

matching). By removing the two vertices 1 and `, and then relabelling the

vertices, there is a trivial bijection f` :M`
n+1 7→ Mn. Clearly, crn+1(M) ≥

crn(f`(M)) and nen+1(M) ≥ nen(f`(M)) for M ∈M`
n+1. This implies that

gk,j(n+ 1) ≤ (2n+ 1)gk,j(n). �

Hence, since (see (16))

P {CRt ≤ k,NEt ≤ j} = e−t
2/2

∞∑

n=0

(t2/2)n

n!
P {crn ≤ k,nen ≤ j} ,

P {CRt ≤ k} = e−t
2/2

∞∑

n=0

(t2/2)n

n!
P {crn ≤ k} ,

(200)

we find that for each s ≥ 1, n ≥ 2, and j, k ≥ 0,

P {crn ≤ k, nen ≤ j} − P {crn ≤ k}P {nen ≤ j}

≤ P
{

CR√2νn
≤ k,NE√2νn

≤ j
}
− P

{
CR√2µn ≤ k

}
P
{

NE√2µn ≤ j
}

+ 4n−s.

(201)

When k =
√

2n + 2−1x(2n)1/6 and j =
√

2n + 2−1x′(2n)1/6, from Theo-

rem 1.1, the right-hand-side of (201) is less than or equal to

P
{

CR√2νn
≤ k

}
P
{

NE√2νn
≤ j
}
− P

{
CR√2µn ≤ k

}
P
{

NE√2µn ≤ j
}

+ 4n−s +O
(
n−1/3

)
.

(202)

Now we use Theorem 1.2 to estimate each of the above probabilities. Note

that
√

2n+ 2−1x(2n)1/6 −√2νn

2−1(2νn)1/6
= x+

4
√
sn log n

(2n)1/6
+O

(√
log n

n1/2

)
.(203)

When νn is replaced by µn, then the first plus sign on the right-hand-side

is changed to the minus sign. From this, it follows that (202) is bounded

above by O
(√

logn
n1/6

)
+ 4n−s. The lower bound is similar. Thus we obtain

Corollary 1.2.
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10. A model RHP: Painlevé II

Consider the coupled pair of differential equations for 2×2 matrix Ψ(ζ, s):

i
dΨ

dζ
= (4ζ2 + s)[σ3,Ψ] +

(
2q2 4iζq − 2r

4iζq + 2r −2q2

)
Ψ,(204a)

i
dΨ

ds
= −ζ[σ3,Ψ] +

(
0 iq

iq 0

)
Ψ,(204b)

where σ3 denotes the Pauli matrix

(
1 0

0 −1

)
and [∗, ∗] is the commutator:

[A,B] = AB − BA. The compatibility condition for this overdetermined

system is that q = q(s) satisfy Painlevé II q′′ = sq+ 2q3 and r = q′(s). This

is a representation of the Lax-pair for Painlevé II equation introduced by

Flaschka and Newell [26].

G1

G2

G3

G4

G5

G6

S1S2

S3

S4 S5

S6

Figure 8. The contours Γj and regions Sj defining Ψ(ζ, s)

Any solution of (204a) is an entire function of ζ. Let Sj , j = 1, . . . , 6

denote the sectors

(205) Sj =

{
ζ ∈ C :

2j − 3

6
π < arg(ζ) <

2j − 1

6
π

}

and let Γj denote the outwardly oriented boundary rays:

(206) Γj =

{
ζ ∈ C : arg(ζ) =

2j − 1

6
π

}
.

There exist a unique solution Ψj of (204a) such that

(207) Ψj = I +O
(
ζ−1
)

as ζ →∞ in Sj ,
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and constants aj , j = 1, . . . , 6 such that for ζ ∈ Γj

Ψj+1(ζ) = Ψj(ζ)

(
1 0

aje
−2i( 4

3
ζ3+sζ) 1

)
, j odd,

Ψj+1(ζ) = Ψj(ζ)

(
1 aje

2i( 4
3
ζ3+sζ)

0 1

)
, j even.

(208)

Additionally, the constants aj satisfy

(209) aj+3 = aj , a1a2a3 + a1 + a2 + a3 = 0.

The parameters aj depend parametrically on s, q and r; in [26] Flaschka and

Newell showed that the isomonodromic deformations, i.e., the variations of

these parameters that keep the Stokes multipliers aj constant, are given by

solutions of the Painlevé II equation: q′′(s) = sq + 2q(s)3 and r(s) = q′(s).
Our particular interest is in the Hastings-McLeod solution of Painlevé II

[32], which is the unique solution such that

(210) q(s) = Ai(s) (1 + o (1)) as s→∞, q(s) ∼
√
−s

2
as s→ −∞

Let Ψ(ζ; s) be the solution of (204a) with parameters s, q = q(s) and

r = q′(s), where q(s) is the Hastings-McLeod solution, and let P denote

the set of poles of q (of which there are infinitely many). Then Ψ(ζ, s) is

defined and analytic for ζ ∈ C\(C1 ∪ C2) and s ∈ C\P. It is known that

there are no poles of q on the real line [32]. The Stokes multiplier for the

Hastings-McLeod solution are

(211) a1 = 1, a2 = 0, a3 = −1.

If we reverse the orientation of Γ3 and Γ4 and define C1 = Γ1 ∪ Γ3 and

C2 = Γ4 ∪ Γ6, then Ψ(ζ; s) solves the following RHP.

C1C1

C2C2

R

äR

Figure 9. The contours defining RHP 10.1 related to the

Hastings-McLeod solution of Painlevé II. The contours can be de-

formed to the dashed lines without changing the problem statement.



46 JINHO BAIK AND ROBERT JENKINS

Riemann-Hilbert Problem 10.1 (PII model RHP) Find a 2×2 matrix

Ψ(ζ; s) with the following properties.

1. Ψ(ζ; s) is an analytic function of ζ for ζ ∈ C\(C1 ∪ C2).

2. Ψ(ζ; s) = I +O
(
ζ−1
)

as ζ →∞ and bounded as ζ → 0.

3. The boundary values Ψ±(ζ; s) satisfy the jump conditions





Ψ+(ζ; s) = Ψ−(ζ; s)

(
1 0

e2iθPII 1

)
ζ ∈ C1,

Ψ+(ζ; s) = Ψ−(ζ; s)

(
1 −e−2iθPII

0 1

)
ζ ∈ C2.

(212)

where,

θPII = θPII(ζ, s) =
4

3
ζ3 + sζ(213)

We make two observations which we will need later. First, the symmetries

−C1 = C2 and θPII(−ζ, s) = −θPII(ζ, s) imply that the solution Ψ(ζ, s) of

RHP 10.1 satisfies the symmetry

(214) Ψ(−ζ, s) = σ1Ψ(ζ, s)σ1, σ1 := ( 0 1
1 0 ) .

The second fact is that Ψ admits a uniformly expansion in the limit as

ζ →∞ as described in [23]. Specifically, we have

(215) Ψ(ζ; s) = I +
ψ1(s)

ζ
+
ψ2(s)

ζ2
+
ψ3(s)

ζ3
+O

(
ζ−4
)
.

The error term O
(
ζ−4
)

here depends on s. For our purpose, we need the

dependence on s for s bounded below. An analysis similar to Section 6 of

[23] shows that given s0 > 0, there exists a constant c0 > 0 such that

(216a) Ψ(ζ; s) = I +
ψ1(s)

ζ
+
ψ2(s)

ζ2
+
ψ3(s)

ζ3
+O

(
e−c0|s|

3/2

ζ4

)
.

The moments ψj(s) can be calculated recursively from inserting the expan-

sion into (204b). The first three moments are

ψ1(s) =
1

2i

[−u(s) q(s)

−q(s) u(s)

]
,

ψ2(s) =
1

(2i)2

[
1
2u(s)2 − 1

2q(s)
2 q(s)u(s)− q′(s)

q(s)u(s)− q′(s) 1
2u(s)2 − 1

2q(s)
2

]
,

ψ3(s) =
1

(2i)3

[
α(s) −β(s)

β(s) −α(s)

]
,

(216b)
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where

u(s) =

∫ s

∞
q(ξ)2dξ,(216c)

α(s) =
q(s)2u(s)

2
− u(s)3

6
+ logF (s)2 −

∫ s

∞
q′(ξ)2dξ,(216d)

β(s) = q′(s)u(s)− q(s)
(
s+

q(s)2

2
+
u(s)2

2

)
.(216e)

We note that the asymptotic analysis of the RHP for the Painlevé equation

implies that for a given s0 > 0,

(217) ψj(s) = O
(
e−c0|s|

3/2
)
, j = 1, 2, 3,

where c0 can be taken as the same constant in the error term of (216a).

References

[1] M. Adler, P. Ferrari, and P. van Moerbeke. Non-intersecting random walks in the

neighborhood of a symmetric tacnode. arxiv.org/abs/1007.1163.

[2] J. Baik, A. Borodin, P. Deift, and T. Suidan. A model for the bus system in Cuer-

navaca (Mexico). J. Phys. A, 39(28):8965–8975, 2006.

[3] J. Baik, R. Buckingham, and J. DiFranco. Asymptotics of Tracy-Widom distributions
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Appl. Math., 48(3):277–337, 1995.

[24] N. El Karoui. A rate of convergence result for the largest eigenvalue of complex white

Wishart matrices. Ann. Probab., 34(6):2077–2117, 2006.

[25] P. Ferrari and R. Frings. Finite time corrections in KPZ growth models.

arxiv.org/abs/1104.2129.

[26] H. Flaschka and A. C. Newell. Monodromy- and spectrum-preserving deformations.

I. Comm. Math. Phys., 76(1):65–116, 1980.

[27] A. S. Fokas, A. R. Its, A. A. Kapaev, and V. Y. Novokshenov. Painlevé transcen-
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2007.
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