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Abstract

We present explicit constructions of centrally symmetric 2-neighborly d-dimensional poly-
topes with about 3d/2 ≈ (1.73)d vertices and of centrally symmetric k-neighborly d-polytopes

with about 23d/20k
2
2
k

vertices. Using this result, we construct for a fixed k ≥ 2 and arbi-
trarily large d and N , a centrally symmetric d-polytope with N vertices that has at least
(

1− k2 · (γk)d
) (

N
k

)

faces of dimension k − 1, where γ2 = 1/
√
3 ≈ 0.58 and γk = 2−3/20k2

2
k

for

k ≥ 3. Another application is a construction of a set of 3⌊d/2−1⌋ − 1 points in R
d every two

of which are strictly antipodal as well as a construction of an n-point set (for an arbitrarily
large n) in R

d with many pairs of strictly antipodal points. The two latter results significantly
improve the previous bounds by Talata, and Makai and Martini, respectively.

1 Introduction

1.1 Cs neighborliness

What is the maximum number of k-dimensional faces that a centrally symmetric d-dimensional
polytope with N vertices can have? While the answer in the class of all polytopes is classic by now
[15], very little is known in the centrally symmetric case. Here we present several constructions
that significantly improve existing lower bounds on this number.

Recall that a polytope is the convex hull of a set of finitely many points in R
d. The dimension of

a polytope P is the dimension of its affine hull. A polytope P ⊂ R
d is centrally symmetric (cs, for

short) if P = −P . A cs polytope P is k-neighborly if every set of k vertices of P no two of which
are antipodes forms the vertex set of a (k − 1)-face of P .

∗Research of the first and second authors is partially supported by NSF grant DMS-0856640
†Research of the third author is partially supported by NSF grant DMS-1069298
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It was proved in [12] that a cs 2-neighborly d-dimensional polytope cannot have more than 2d

vertices. On the other hand, a construction from [4] showed that there exist such polytopes with
about 3d/4 ≈ (1.316)d vertices. In Theorem 3.2(1) we present a construction of a cs 2-neighborly
d-polytope with about 3d/2 ≈ (1.73)d vertices.

More generally, it was verified in [3] that a cs d-dimensional polytope with N vertices cannot

have more than
(

1− 0.5d
)

N2

2 edges. However, a construction from [4] produced cs d-dimensional

polytopes with N vertices and about
(

1− 3−d/4
)

N2

2 ≈
(

1− 0.77d
)

N2

2 edges. In Theorem 3.2(2), we
improve this bound by constructing a cs d-dimensional polytope with N vertices (for an arbitrarily

large N) and at least
(

1− 3−⌊d/2−1⌋
) (N

2

)

≈
(

1− 0.58d
)

N2

2 edges.

For higher-dimensional faces even less is known. It follows from the results of [12] that no cs
k-neighborly d-polytope can have more than ⌊d · 2Cd/k⌋ vertices, where C > 0 is some absolute
constant. At the same time, papers [12, 16] used a randomized construction to prove existence of
k-neighborly cs d-dimensional polytopes with ⌊d · 2cd/k⌋ vertices for some absolute constant c > 0.
However, for k > 2 no deterministic construction of a d-dimensional k-neighborly cs polytope with
2Ω(d) vertices is known. In Theorem 5.2 and Remark 5.3 we present a deterministic construction
of a cs k-neighborly d-polytope with at least 2ckd vertices where ck = 3/20k22k. We then use this
result in Corollary 5.4 to construct for a fixed k and arbitrarily large N and d, a cs d-polytope with
N vertices that has a record number of (k − 1)-dimensional faces. Our construction relies on the
notion of k-independent families [1, 9] (see also [2]).

Through Gale duality m-dimensional subspaces of RN correspond to (N − m)-dimensional cs
polytopes with 2N vertices. If the subspace is “almost Euclidean” (meaning that the ratio of the ℓ1

and ℓ2 norms of nonzero vectors of the subspace remains within certain bounds, see [12] for technical
details), then the corresponding polytope turns out to be k-neighborly. Despite considerable efforts,
see for example [11], no explicit constructions of “almost Euclidean” subspaces is known for m
anywhere close to N . Our polytopes give rise to subspaces of RN of codimension O(logN) and it
would be interesting to find out if the resulting subspaces are indeed “almost Euclidean”.

1.2 Antipodal points

Our results on cs polytopes provide new bounds on several problems related to strict antipodality.
Let X ⊂ R

d be a set that affinely spans R
d. A pair of points u, v ∈ X is called strictly antipodal

if there exist two distinct parallel hyperplanes H and H ′ such that X ∩H = {u}, X ∩H ′ = {v},
and X lies in the slab between H and H ′. Denote by A′(d) the maximum size of a set X ⊂ R

d

having the property that every pair of points of X is strictly antipodal, by A′
d(Y ) the number of

strictly antipodal pairs of a given set Y , and by A′
d(n) the maximum size of A′

d(Y ) taken over all
n-element subsets Y of Rd. (Our notation follows the recent survey paper [14].)

The notion of strict antipodality was introduced in 1962 by Danzer and Grünbaum [7] who
verified that 2d−1 ≤ A′(d) ≤ 2d and conjectured that A′(d) = 2d−1. However, twenty years later,
Erdős and Füredi [8] used a probabilistic argument to prove that A′(d) is exponential in d. Their
result was improved by Talata (see [6, Lemma 9.11.2]) who found an explicit construction showing
that for d ≥ 3,

A′(d) ≥ ⌊( 3
√
3)d/3⌋.

Talata also announced that ( 3
√
3)d/3 in the above formula can be replaced with ( 4

√
5)d/4. (It is

worth remarking that Erdős and Füredi established existence of an acute set in R
d that has an

exponential size in d. As every acute set has the property that all of its pairs of vertices are strictly
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antipodal, their result implied an exponential lower bound on A′(d). A significant improvement of
the Erdős–Füredi bound on the maximum size of an acute set in R

d was recently found by Harangi
[10].)

Regarding the value of A′
d(n), Makai and Martini [13] showed that for d ≥ 4,

(

1− const

(1.0044)d

)

n2

2
−O(1) ≤ A′

d(n) ≤
(

1− 1

2d − 1

)

n2

2
.

Here we observe that an appropriately chosen half of the vertex set of a cs d-polytope with many
edges has a large number of strictly antipodal pairs of points. Consequently, our construction of cs
d-polytopes with many edges implies — see Theorem 4.1 — that

A′(d) ≥ 3⌊d/2−1⌋ − 1 and A′
d(n) ≥

(

1− 1

3⌊d/2−1⌋ − 1

)

n2

2
−O(n) for all d ≥ 4.

The rest of the paper is structured as follows. In Section 2 we review several facts and definitions
related to the symmetric moment curve. In Section 3, we present our construction of a cs 2-
neighborly d-polytope with many vertices as well as that of a cs d-polytope with arbitrarily many
vertices and a record number of edges. Section 4 is devoted to applications of these results to
problems on strict antipodality. Finally, in Section 5 we provide a deterministic construction of
a cs k-neighborly d-polytope and of a cs d-polytope with arbitrarily many vertices and a record
number of (k − 1)-faces.

2 The symmetric moment curve

In this section we collect several definitions and results needed for the proofs. We start with the
notion of the symmetric moment curve on which all our constructions are based. The symmetric

moment curve Uk : R −→ R
2k is defined by

Uk(t) = (cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t) . (2.1)

Since

Uk(t) = Uk(t+ 2π) for all t,

from this point on, we consider Uk(t) to be defined on the unit circle S = R/2πZ. We note that t
and t+ π form a pair of antipodes for all t ∈ S and that

Uk(t+ π) = −Uk(t) for all t ∈ S.

The value of an affine function A : R2k −→ R on the symmetric moment curve Uk is represented
by a trigonometric polynomial of degree at most 2k − 1 that has the following form

f(t) = c+

k
∑

j=1

aj cos(2j − 1)t+

k
∑

j=1

bj sin(2j − 1)t, where aj, bj , c ∈ R.
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Starting with any trigonometric polynomial f : S −→ R, f(t) = c+
∑d

j=1 aj cos(jt)+
∑d

j=1 bj sin(jt)

of degree at most d and substituting z = eit gives rise to a complex polynomial

P(f)(z) := zd



c+

d
∑

j=1

aj
zj + z−j

2
+

d
∑

j=1

bj
zj − z−j

2i



 . (2.2)

This polynomial has degree at most 2d, it is self-inversive (that is, the coefficient of zj is conjugate
to that of z2d−j), and t∗ ∈ S is a root of f(t) if and only if eit

∗
is a root of P(f)(z) (see [3] and [5]

for more details). In particular, f(t) cannot have more than 2d roots (counted with multiplicities).

The following result concerning the convex hull of the symmetric moment curve was proved
in [5]. In what follows we talk about exposed faces, that is, intersections of convex bodies with
supporting affine hyperplanes.

Theorem 2.1. Let Bk ⊂ R
2k,

Bk = conv (Uk(t) : t ∈ S) ,

be the convex hull of the symmetric moment curve. Then for every positive integer k there exists a

number
π

2
< αk < π

such that for an arbitrary open arc Γ ⊂ S of length αk and arbitrary distinct n ≤ k points t1, . . . , tn ∈
Γ, the set

conv (Uk (t1) , . . . , Uk (tn))

is a face of Bk.

For k = 2 with α2 = 2π/3 this result is due to Smilansky [17].

We also frequently use the following well-known fact about polytopes: if T : Rd′ −→ R
d′′ is a

linear transformation and P ⊂ R
d′ is a polytope, then Q = T (P ) is also a polytope and for every

face F of Q the inverse image of F ,

T−1(F ) = {x ∈ P : T (x) ∈ F} ,

is a face of P ; this face is the convex hull of the vertices of P mapped by T into vertices of F .

3 Centrally symmetric polytopes with many edges

In this section we provide a construction of a cs 2-neighborly polytope of dimension d and with
about 3d/2 ≈ (1.73)d vertices as well a construction of a cs d-polytope with N vertices (for an
arbitrarily large N) that has about

(

1− 3−d/2
) (

N
2

)

≈
(

1− 0.58d
) (

N
2

)

edges. Our construction is a
slight modification of the one from [4]; however our new trick allows us to halve the dimension of
the polytope from [4] while keeping the number of vertices almost the same as before.

For an integer m ≥ 1, consider the curve

Φm : S −→ R
2(m+1), where Φm(t) :=

(

cos t, sin t, cos 3t, sin 3t, . . . , cos(3mt), sin (3mt)
)

. (3.1)

Note that Φ1 = U2, see eq. (2.1). The key to our construction is the following observation.
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Lemma 3.1. For an integer m ≥ 1 and a finite set C ⊂ S, define

P (C,m) = conv (Φm(t) : t ∈ C) .

Then P (C,m) is a polytope of dimension at most 2(m + 1) that has |C| vertices. Moreover, if the

elements of C satisfy

3it1 6≡ 3it2 mod 2π for all t1, t2 ∈ C such that t1 6= t2, and all i = 1, 2, . . . ,m− 1, (3.2)

then for every pair of distinct points t1, t2 ∈ C that lie on an open arc of length π(1 − 1
3m ), the

interval [Φm(t1),Φm(t2)] is an edge of P (C,m).

Proof: To show that P (C,m) has |C| vertices, we consider the projection R
2(m+1) −→ R

4 that
forgets all but the first four coordinates. Since Φ1 = U2, the image of P (C,m) is the polytope

P (C, 1) = conv (U2(t) : t ∈ C) .

By Theorem 2.1, the polytope P (C, 1) has |C| distinct vertices: U2(t) for t ∈ C. Furthermore,
the inverse image of each vertex U2(t) of C(m, 1) in P (C,m) consists of a single vertex Φm(t) of
P (C,m). Therefore, Φm(t) for t ∈ C are all the vertices of Pm without duplicates.

To prove the statement about edges, we proceed by induction on m. As Φ1 = U2, the m = 1
case follows from [17] (see Theorem 2.1 above and the sentence following it).

Suppose now that m ≥ 2. Let t1, t2 be two distinct elements of C that lie on an open arc of
length π(1− 1

3m ). There are two cases to consider.

Case I: t1, t2 lie on an open arc of length 2π/3. In this case, the above projection of R2(m+1) onto
R
4 maps P (C,m) onto P (C, 1), and according to the base of induction, [Φ1(t1),Φ2(t2)] is an edge

of P (C, 1). Since the inverse image of a vertex Φ1(t) of P (C, 1) in P (C,m) consists of a single
vertex Φm(t) of P (C,m), we conclude that [Φm (t1) , Φm (t2)] is an edge of P (C,m).

Case II: t1, t2 lie on an open arc of length π(1− 1
3m ), but not on an arc of length 2π/3. (Observe

that since 3t1 6≡ 3t2 mod 2π, the points t1 and t2 may not form an arc of length exactly 2π/3.)
Then 3t1 and 3t2 do not coincide and lie on an open arc of length π(1 − 1

3m−1 ). Consider the

projection of R2(m+1) onto R
2m that forgets the first two coordinates. The image of P (C,m) under

this projection is

P (3C,m − 1), where 3C := {3t mod 2π : t ∈ C} ⊂ S,

and since the pair (3C,m − 1) satisfies eq. (3.2), by the induction hypothesis, the interval

[Φm−1 (3t1) , Φm−1 (3t2)]

is an edge of P (3C,m− 1). By eq. (3.2), the inverse image of a vertex Φm−1(3t) of P (3C,m− 1) in
P (C,m) consists of a single vertex Φm(t) of P (C,m), and hence we infer that [Φm (t1) , Φm (t2)] is
an edge of P (C,m). �

We are now in a position to state and prove the main result of this section. We follow the
notation of Lemma 3.1.
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Theorem 3.2. Fix integers m ≥ 2 and s ≥ 2. Let Am ⊂ S be the set of 2(3m − 1) equally spaced

points:

Am =

{

π(j − 1)

3m − 1
: j = 1, . . . , 2(3m − 1)

}

,

and let Am,s ⊂ S be the set of 2(3m − 1) clusters of s points each, chosen in such a way that for all

j = 1, . . . , 2(3m − 1), the j-th cluster lies on an arc of length 10−m that contains the point
π(j−1)
3m−1 ,

and the entire set Am,s is centrally symmetric. Then

1. The polytope P (Am,m) is a centrally symmetric 2-neighborly polytope of dimension 2(m+1)
that has 2(3m − 1) vertices.

2. The polytope P (Am,s,m) is a centrally symmetric 2(m + 1)-dimensional polytope that has

N := 2s(3m − 1) vertices and at least N(N − s− 1)/2 > (1− 3−m)
(N
2

)

edges.

Proof: To see that P (Am,m) is centrally symmetric, note that the transformation

t 7→ t+ π mod 2π

maps Am onto itself and also that Φm(t+π) = −Φm(t). The same argument applies to P (Am,s,m).
We now show that the dimension of P (Am,m) is 2(m+1). If not, then the points Φm(t) : t ∈ Am

are all in an affine hyperplane in R
2(m+1), and hence the 2(3m − 1) elements of Am are roots of a

trigonometric polynomial of the form

f(t) = c+

m
∑

j=0

aj cos(3
jt) +

m
∑

j=0

bj sin(3
jt).

Moreover, am and bm cannot both be zero as by our assumption f(t) has at least 2(3m − 1) roots,
and so the degree of f(t) is at least 3m − 1 > 3m−1. Thus the complex polynomial P(f) defined by
eq. (2.2) is of the form

P(f)(z) = dmz2·3
m
+ dm−1z

3m+3m−1

+ dm−2z
3m+3m−2

+ · · · + cz3
m
+ · · · + dm, where dm 6= 0.

Note that since m > 1, 3m + 3m−1 < 2 · 3m − 2. In particular, the coefficients of z2·3
m−1 and

z2·3
m−2 are both equal to 0. Therefore, the sum of all the roots (counted with multiplicities) of

P(f) as well as the sum of their squares is 0. As degP(f) = 2 · 3m, the (multi)set of roots of
P(f) consists of {eit : t ∈ Am} together with two additional roots, denote them by ζ1 and ζ2. The
complex numbers eit : t ∈ Am form a geometric progression, and it is straightforward to check that

∑

t∈Am

eit = 0 and
∑

t∈Am

e2it = 0.

Hence for the sum of all the roots of P(f) and for the sum of their squares to be zero, we must
have

ζ1 + ζ2 = 0 and ζ21 + ζ22 = 0.

Thus ζ1 = ζ2 = 0, and so the constant term of P(f) is zero. This however contradicts the fact
that the constant term of P(f) equals dm, where dm 6= 0. Therefore, the polytope P (Am,m) is
full-dimensional.
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Finally, to see that P (Am,m) is 2-neighborly, observe that it follows from the definition of Am

that if t1, t2 ∈ Am are not antipodes, then they lie on a closed arc of length π(1− 1
3m−1), and hence

also on an an open arc of length π(1 − 1
3m ). In addition, since 3m − 1 is relatively prime to 3, we

obtain that for every two distinct elements t1, t2 of Am, 3it1 6≡ 3it2 mod 2π (for i = 1, . . . ,m− 1).
Part (1) of the theorem is then immediate from Lemma 3.1.

To compute the dimension of P (Am,s,m), note that if it is smaller than 2(m + 1), then
P (Am,s,m) is a subset of an affine hyperplane in R

2(m+1). As all vertices of this polytope lie
on the curve Φm, such a hyperplane corresponds to a trigonometric polynomial of degree 3m that
has at least N = 2s(3m − 1) ≥ 4(3m − 1) > 2 · 3m roots. This is however impossible, as no nonzero
trigonometric polynomial of degree D has more than 2D roots.

To finish the proof of Part (2), note that since each cluster of Am,s lies on an open arc of length

10−m <
π

2

(

1

3m − 1
− 1

3m

)

that contains the corresponding element of Am, and since multiplication by 3i modulo 2π maps Am

bijectively onto itself, it follows that

• 3it1 6≡ 3it2 mod 2π (for i = 1, . . . ,m− 1) holds for all distinct t1, t2 ∈ Am,s. (Indeed, for t1,
t2 from the same cluster, the points 3it1 and 3it2 of S do not coincide as 3m/10m < 2π, and
for t1, t2 from different clusters, 3it1 and 3it2 do not coincide as the distance between them
along S is at least π

3m−1 − 2·3m

10m > 0.)

• Every two points t1, t2 ∈ Am,s lie on an open arc of length π(1 − 1
3m ) as long as they do not

belong to a pair of opposite clusters.

Thus Lemma 3.1 applies and shows that the interval [Φm(t1), Φm(t2)] is an edge of P (Am,s,m) for
all t1, t2 ∈ Am,s that are not from opposite clusters. In other words, each vertex of P (Am,s,m) is
incident with at least N − s− 1 edges. This yields the promised bound on the number of edges of
P (Am,s,m) and completes the proof of Part (2). �

4 Applications to strict antipodality problems

In this section we observe that an appropriately chosen half of the vertex set of any cs 2k-neighborly
d-dimensional polytope has a large number of pairwise strictly antipodal (k− 1)-simplices. The re-
sults of the previous section then imply new lower bounds on questions related to strict antipodality.
Specifically, in the following theorem we improve both Talata’s and Makai–Martini’s bounds.

Theorem 4.1.

1. For every m ≥ 1, there exists a set Xm ⊂ R
2(m+1) of size 3m − 1 that affinely spans R

2(m+1)

and such that each pair of points of Xm is strictly antipodal. Thus, A′(d) ≥ 3⌊d/2−1⌋ − 1 for

all d ≥ 4.

2. For all positive integers m and s, there exists a set Ym,s ⊂ R
2(m+1) of size n := s(3m − 1)

that has at least
(

1− 1

3m − 1

)

· n
2

2

pairs of antipodal points. Thus, A′
d(n) ≥

(

1− 1
3⌊d/2−1⌋−1

)

· n2

2 −O(n) for all d ≥ 4 and n.
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One can generalize the notion of strictly antipodal points in the following way: for a set X ⊂ R
d

that affinely spans Rd, we say that two simplices, σ and σ′, spanned by the points of X are strictly
antipodal if there exist two distinct parallel hyperplanes H and H ′ such that X lies in the slab
defined by H and H ′, H ∩ conv(X) = σ, and H ′ ∩ conv(X) = σ′. Makai and Martini [13] asked
about the maximum number of pairwise strictly antipodal (k − 1)-simplices in R

d. The following
result gives a lower bound to their question.

Theorem 4.2. There exists a set of ⌊(d/2) · 2cd/k⌋ points in R
d with the property that every two

disjoint k-subsets of X form the vertex sets of strictly antipodal (k − 1)-simplices. In particular,

there exists a set of ⌊ d
2k · 2cd/k⌋ pairwise strictly antipodal (k− 1)-simplices in R

d. Here c > 0 is an

absolute constant.

The key to our proofs are results of Section 3 and paper [12] along with the following observation.

Lemma 4.3. Let P ⊂ R
d be a full-dimensional cs polytope on the vertex set V = X ⊔ (−X).

If U1, U2 are subsets of X such that U1 ∪ (−U2) is the vertex set of a (|U1| + |U2| − 1)-face of

P , then σ1 := conv(U1) and σ2 := conv(U2) are strictly antipodal simplices spanned by points of

X. In particular, if P is 2-neighborly, then every pair of vertices of X is strictly antipodal, and,

more generally, if P is 2k-neighborly, then every two disjoint k-subsets of X form a pair of strictly

antipodal (k − 1)-simplices.

Proof: Since τ1 := conv(U1 ∪ (−U2)) is a face of P , there exists a supporting hyperplane H1 of
P that defines τ1: specifically, P is contained in one of the closed half-spaces bounded by H1 and
P ∩H1 = τ1. As P is centrally symmetric, the hyperplane H2 := −H1 = {x ∈ R

d : −x ∈ H1} is
a supporting hyperplane of P that defines the opposite face, τ2 := conv((−U1)∪U2). Thus P , and
hence also X, is contained in the slab between H1 and H2. Moreover, since U1, U2 are subsets of
X, it follows that −U1 and −U2 are contained in −X, and hence disjoint from X. Therefore,

Hi ∩ conv(X) = Hi ∩ P ∩ conv(X) = τi ∩ conv(X) = conv(Ui) = σi for i = 1, 2.

The result follows. �

Proof of Theorem 4.1: Consider the sets Am and Am,s of Theorem 3.2. Define

A+
m = {t ∈ Am : 0 ≤ t < π},

and define A+
m,s by taking the union of those clusters of Am,s that lie on small arcs around the

points of A+
m. In particular, |A+

m| = 3m − 1 and |A+
m,s| = s(3m − 1). Let

Xm :=
{

Φm(t) : t ∈ A+
m

}

⊂ R
2(m+1) and Ym,s :=

{

Φm(t) : t ∈ A+
m,s

}

⊂ R
2(m+1).

Theorem 3.2 and Lemma 4.3 imply that each pair of points of Xm is strictly antipodal, and each
pair of points of Ym,s that are not from the same cluster is strictly antipodal. The claim follows. �

Proof of Theorem 4.2: It was proved in [12, 16] (by using a probabilistic construction) that if k,
d, and N satisfy

k ≤ cd

1 + log N
d

,

where c > 0 is some absolute constant, then there exists a d-dimensional cs polytope on 2N vertices
that is 2k-neighborly. Solving this inequality for N , implies existence of a d-dimensional cs polytope
on ⌊d · 2cd/k⌋ vertices that is 2k-neighborly. This together with Lemma 4.3 yields the result. �
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5 Constructing k-neighborly cs polytopes

The goal of this section is to present a deterministic construction of a cs k-neighborly d-polytope
with at least 2ckd for ck = 3/20k22k vertices. This requires the following facts and definitions.

A family F of subsets of [m] := {1, 2, . . . ,m} is called k-independent if for every k distinct
subsets I1, . . . , Ik of F all 2k intersections

k
⋂

j=1

Jj , where Jj = Ij or Jj = Icj := [m] \ Ij , are non-empty.

The crucial component of our construction is a deterministic construction of k-independent families
of size larger than 2m/5(k−1)2k given in [9].

For a subset I of [m] and a given number a ∈ {0, 1}, we (recursively) define a sequence x(I, a) =
(x0, x1, . . . , xm) of zeros and ones according to the following rule:

x0 = x0(I, a) := a and xn = xn(I, a) ≡
{

∑n−1
j=0 xj if n /∈ I

1 +
∑n−1

j=0 xj if n ∈ I
mod 2 for n ≥ 1. (5.1)

We also set

t(I, a) := π
m
∑

j=0

xj
3j

∈ S. (5.2)

A few observations are in order. First, it follows from (5.1) that x(I, a) 6= x(J, a) if I 6= J , and
that x(I, a) and x(Ic, 1− a) agree in all but the 0-th component, where they disagree. Hence

t(I, a) = t(Ic, 1− a) + π mod 2π.

Second, since
∑∞

j=1
1
3j

= 1
2 and since all components of x(I, a) are zeros and ones, we infer from

eq. (5.2) that for all 1 ≤ n ≤ m and all 0 ≤ ǫ ≤ 1/3m+1, the point 3n · (t(I, a) + πǫ) of S either lies
on the arc [0, π/2) or on the arc [π, 3π/2) depending on the parity of

n
∑

j=0

3n−jxj(I, a) ≡
n
∑

j=0

xj(I, a) mod 2.

As, by (5.1),
∑n

j=0 xj(I, a) is even if n /∈ I and is odd if n ∈ I, we obtain that

3n · (t(I, a) + πǫ) ∈ [π, 3π/2) mod 2π for all n ∈ I and a ∈ {0, 1}. (5.3)

The relevance of k-independent sets to cs k-neighborly polytopes is explained by the following
lemma along with Theorem 2.1.

Lemma 5.1. Let F be a k-independent family of subsets of [m], let ǫI ∈ [0, 1/3m+1] for I ∈ F ,

and let

V ǫ(F) =
⋃

I∈F

{t (I, 0) + πǫI , t (I
c, 1) + πǫI} ⊂ S.

Then for every k distinct points t1, . . . , tk of V ǫ(F) no two of which are antipodes, there exists an

integer n ∈ [m] such that the subset {3nt1, . . . , 3ntk} of S is entirely contained in [π, 3π/2).
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Proof: As t1, . . . , tk are elements of V ǫ(F), by relabeling them if necessary, we can assume that

tj =

{

t(Ij, 0) + πǫIj if 1 ≤ j ≤ q
t(Icj , 1) + πǫIj if q < j ≤ k

for some 0 ≤ q ≤ k and I1, . . . , Ik ∈ F . Moreover, the sets I1, . . . , Ik are distinct, since t1, . . . , tk
are distinct and no two of them are antipodes. As F is a k-independent family, the intersection
(∩q

j=1Ij)∩ (∩k
j=q+1I

c
j ) is non-empty. The result follows, since by eq. (5.3), for any element n of this

intersection, {3nt1, . . . , 3ntk} ⊂ [π, 3π/2). �

For I ∈ F , define ǫI = ǫIc :=
∑

i∈I 10
−i−m. Then

3nt1 6≡ 3nt2 mod 2π for all t1, t2 ∈ V ǫ(F) such that t1 6= t2, and all 1 ≤ n ≤ m. (5.4)

Indeed, if t1 and t2 are antipodes, then so are 3nt1 and 3nt2, and (5.4) follows. If t1 and t2 are
not antipodes, then there exist two distinct and not complementary subsets I, J of [m] such that
t1 = t(I, a) + πǫI and t2 = t(J, b) + πǫJ for some a, b ∈ {0, 1}. Hence, by definition of ǫI and ǫJ ,

π/102m < 3n · π|ǫI − ǫJ | < π(3/10)m,

while by definition of t(I, a) and t(J, b), the distance between the points 3n · t(I, a) and 3n · t(J, b)
of S along S is either 0 or at least π/3m. In either case, it follows that the distance between
3n (t(I, a) + πǫI) and 3n (t(J, b) + πǫJ) is positive, yielding eq. (5.4).

We are now in a position to present our construction of k-neighborly cs polytopes. The con-
struction is similar to that in Theorem 3.2, except that it is based on the set V ǫ(F) ⊂ S, where F
is a k-independent family of subsets of [m], instead of Am ⊂ S, and on a modification of Φm to a
curve that involves Uk instead of U2.

Let Uk : S −→ R
2k be the curve defined by eq. (2.1). In analogy with the curve Φm (see

eq. (3.1)), for integers m ≥ 0 and k ≥ 3, define the curve

Ψk,m : S −→ R
2k(m+1) by Ψk,m(t) :=

(

Uk(t), Uk(3t), Uk(3
2t), . . . , Uk(3

mt)
)

. (5.5)

Thus, Ψk,0 = Uk and Ψk,m(t+ π) = −Ψk,m(t).
The following theorem is the main result of this section. We use the same notation as in

Lemma 5.1. Also, mimicking the notation of Lemma 3.1, for a subset C of S, we denote by
Pk(C,m) the polytope conv(Ψk,m(t) : t ∈ C).

Theorem 5.2. Let m ≥ 1 and k ≥ 3 be fixed integers, let F be a k-independent family of subsets

of [m], and let ǫI =
∑

i∈I 10
−i−m for I ∈ F . Then the polytope

Pk(V
ǫ(F),m) := conv (Ψk,m(t) : t ∈ V ǫ(F))

is a cs k-neighborly polytope of dimension at most 2k(m+1)−2m⌊(k+1)/3⌋ that has 2|F| vertices.

Remark 5.3. For a fixed k and an arbitrarily large m, a deterministic algorithm from [9] produces

a k-independent family F of subsets of [m] such that |F| > 2m/5(k−1)2k . Combining this with

Theorem 5.2 results in a cs neighborly polytope of dimension d ≈ 4
3km and more than 23d/20k

22k

vertices. Of a special interest is the case of k = 3: the algorithm from [9] provides a 3-independent
family of size ≈ 20.092m, which together with Theorem 5.2 yields a deterministic construction of a
cs 3-neighborly polytope of dimension ≤ d and with about 20.023d vertices.
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Proof of Theorem 5.2: As in the proof of Theorem 3.2, the polytope Pk(V
ǫ(F),m) is centrally

symmetric since V ǫ(F) is a cs subset of S and since Ψk,m(t+ π) = −Ψk,m(t).

Also as in the proof of Theorem 3.2, the fact that Pk(V
ǫ(F),m) has 2|F| vertices follows by

considering the projection R
2k(m+1) −→ R

2k that forgets all but the first 2k coordinates. Indeed,
the image of Pk(V

ǫ(F),m) under this projection is the polytope

Pk(V
ǫ(F), 0) = conv (Uk(t) : t ∈ V ǫ(F)) ,

and this latter polytope has 2|F| vertices (by Theorem 2.1).

To prove k-neighborliness of Pk(V
ǫ(F),m), let t1, . . . , tk ∈ V ǫ(F) be k distinct points no two

of which are antipodes. By Lemma 5.1, there exists an integer 1 ≤ n ≤ m such that the points
3nt1, . . . , 3

ntk of S are all contained in the arc [π, 3π/2). Consider the projection R
2k(m+1) −→

R
2k(m+1−n) that forgets the first 2kn coordinates followed by the projection R

2k(m+1−n) −→ R
2k

that forgets all but the first 2k coordinates. The image of Pk(V
ǫ(F),m) under this composite

projection is

Pk(3
nV ǫ(F), 0) = conv(Uk(3

nt) : t ∈ V ǫ(F)),

and, since {3nt1, . . . , 3ntk} ⊂ [π, 3π/2), Theorem 2.1 implies that the set {Uk(3
nti) : i = 1, . . . , k} is

the vertex set of a (k−1)-face of this latter polytope. As, by eq. (5.4), the inverse image of a vertex
Uk(3

nt) of Pk(3
nV ǫ(F), 0) in Pk(V

ǫ(F),m) consists of a single vertex Ψk,m(t) of Pk(V
ǫ(F),m),

we obtain that {Ψk,m(ti) : i = 1, . . . , k} is the vertex set of a (k − 1)-face of Pk(V
ǫ(F),m). This

completes the proof of k-neighborliness of Pk(V
ǫ(F),m).

To bound the dimension of Pk(V
ǫ(F),m), observe that the third coordinate of Uk(t) coincides

with the first coordinate of Uk(3t) while the fourth coordinate of Uk(t) coincides with the second
coordinate of Uk(3t), etc. Thus Pk(V

ǫ(F),m) is in a subspace of R
2k(m+1), and to bound the

dimension of this subspace we must account for all repeated coordinates. This can be done exactly
as in [4, Lemma 2.3]. We leave details to our readers. �

Fix s ≥ 2, and let V ǫ(F , s) be a centrally symmetric subset of S obtained by replacing each
point t ∈ V ǫ(F) (in Theorem 5.2) with a cluster of s points that all lie on a sufficiently small open
arc containing t. Then the proof of Theorem 5.2 implies that the polytope Pk(V

ǫ(F , s),m) is a cs
polytope with N := 2s|F| vertices, of dimension at most 2k(m+1)− 2m⌊(k+1)/3⌋, and such that
every k vertices of this polytope no two of which are from opposite clusters form the vertex set of
a (k − 1)-face. Choose a k-element set from the union of these 2|F| clusters (of s points each) at
random from the uniform distribution. Then the probability that this set has no two points from
opposite clusters is at least

k−1
∏

i=0

(2|F| − i)s − i

2|F|s − i
≥

k−1
∏

i=0

(

1− i

|F|

)

≥ 1− k2

|F| .

Thus, the resulting polytope has at least

(

1− k2

|F|

)(

N

k

)

(k − 1)-faces. Combining this estimate with Remark 5.3, we obtain
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Corollary 5.4. For a fixed k and arbitrarily large N and d, there exists a cs d-dimensional polytope

with N vertices and at least
(

1− k2
(

2−3/20k22k
)d

)(

N

k

)

(k − 1)-faces.

This corollary improves [4, Cor. 1,4] asserting existence of cs d-polytopes with N vertices and
at least

(

1− (δk)
d
) (N

k

)

faces of dimension k − 1, where δk ≈ (1− 5−k+1)5/(24k+4).
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