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ABSTRACT. We establish approximate log-concavity for a wide family of combinato-
rially defined integer-valued functions. Examples include the number of non-negative
integer matrices (contingency tables) with prescribed row and column sums (mar-
gins), as a function of the margins and the number of integer feasible flows in a
network, as a function of the excesses at the vertices. As a corollary, we obtain
approximate log-concavity for the Kostant partition function of type A. We also
present an indirect evidence that at least some of the considered functions might be
genuinely log-concave.

1. INTRODUCTION

(1.1) The Brunn-Minkowski inequality. The famous Brunn-Minkowski in-
equality states that for bounded Borel sets 4, B C R¢ and non-negative numbers
«, 3 such that a« + 8 = 1 one has

vol(aA 4+ BB) > vol®(A) vol’(B),
where vol is the usual volume (Lebesgue measure) in Euclidean space R? and
aA+ B ={ax+py: x€ Aye B}

The inequality extends to finite families of sets in an obvious way: if A;,... , 4, C
R? are bounded Borel sets and o, ... ,y, are non-negative numbers such that
a1+ ...+ o, =1 then

p
(1.1.1) vol (a1 A1 + ... + a4, H vol™* (Ay) .
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The Brunn-Minkowski inequality plays an important role in almost all branches of
mathematics, see [Ga02] for a survey. Inequality (1.1.1) was extended and general-
ized in numerous direction. In particular, we need its functional version, known as
the Prékopa-Leindler inequality:

let aq,...,a, be non-negative numbers such that a; + ... + o, = 1 and let
g, hi,... hy: R? — R be Borel measurable non-negative functions such that

ho*(xg) for all my,...,r € R%

1~

gz + ...+ apxy) >

>
I

1
Then

(1.1.2) /Rdg(x) dz > k]:[l </R e () dx) ,

see for example, Section 6.1 of [Vi03] and Section 2.2 of [Le0l]. We note that
(1.1.1) is obtained from (1.1.2) by choosing hj to be the indicator function of Ay,
so that hx(x) = 1 if x € Ay and hi(z) = 0 if 2 ¢ Ay and g to be the indicator
of a1 A1 + ...+ apA,. The inequality (1.1.2) remains valid if dz is replaced by a
log-concave measure.

In this paper we obtain versions of inequality (1.1.1), respectively (1.1.2), for the
number of integer points, respectively for the number of weighted integer points, in
some special polytopes, known as flow polytopes.

(1.2) Contingency tables. Let R = (r1,... ,ry) and C = (¢1, ... ,¢,) be posi-
tive integer vectors such that

f:?“i :icj‘ = N.
j=1

i=1
An m X n non-negative integer matrix D = (d;;) with the row sums r1,...,7ry,
and the column sums cy,... ,c, is called a contingency table with margins R and

C'. Geometrically, one can think of the set of contingency tables with prescribed
margins as of the set of integer points in the transportation polytope P(R,C) of
m x n matrices X = (z;;) satisfying the equations

n m
Exij:ri for i=1,...,m, Exij:cj for j=1,...,n
j=1 i=1

and inequalities
x;; >0 forall 7,j.

The numbers of contingency tables with prescribed margins are of interest be-
cause of their applications in statistics, combinatorics, and representation theory,
see [DES85], [DG95], and [DGO4].

We consider the number of weighted tables, defined as follows.
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(1.3) Definition. Let W = (w;;) be an m X n non-negative matrix. For R =
(ri,...,rm) and C = (eq, ... ,¢p), we define

T(R,C; W) ZHw”

where the sum is taken over all m xn contingency tables D = (d;;) with the margins
(R,C). We agree that 0° = 1.

Geometrically, T(R,C;W) is the generating function over the set of integer
points in a transportation polytope. We get the number of points if we choose
W = 1, the matrix of all 1s.

(1.4) Integer flows. Let G = (V, F) be a directed graph with the set V' of vertices,
the set E of edges, without multiple edges or loops. Suppose that an integer a(v),
called the excess v, is assigned to every vertex v € V' so that

Z a(v) = 0.
veV

A collection z(e) : e € E of non-negative integers is called an integer feasible flow
in GG if the balance condition is satisfied at every vertex

Z z(e) — Z z(e) =a(v) forall veV.

e: head(e)=v e: tail(e)=v

If G does not contain directed cycles v7; — v — ... — v — v then the set of
feasible flows is compact, so the number of integer feasible flows is finite.

Some interesting quantities can be defined as the number of integer feasible flows
in an appropriate network. For example we get the Kostant partition function (for

the A, _1 root system) if G = K,, is a complete graph with the set of vertices
={1,...,n} and edges £ = {i — j : i > j}, cf. [B+04]. Given an integer
vector a = (ai,...,a,) such that a; + ...+ a,, = 0, the number ¢(a) of integer

feasible flows in K,, with the excess at i equal a; is the value of the Kostant partition
function at a.

Given a directed graph G on |V| = n vertices and excesses a(v) at its vertices,
one can construct an n X n matrix W = (w;;) with w;; € {0,1}, a vector R =
(ri,...,ryn) of row sums and a vector C = (cq,...,¢,) of column sums so that
T(R,C;W) is equal to the number of integer feasible flows in G. To that end, we
identify V' = {1,... ,n}. Given the excess a; at the vertex i of G, we find an a
priori upper bound z; > 0 on the total incoming flow to ¢ and let r; = z; — a; and
¢i = z;. Finally, we let w;; = 11if i = j or ¢ — j is an edge of G and let w;; = 0
otherwise.

With a feasible flow {z.: e € E'} in G, we associate a contingency table D =
(di;) as follows: we let d;; = x(e) provided ¢ = head(e) and j = tail(e) and let

dig =15 — Z z(e) =c¢; — Z .:U(e).

e: tail(e)=1 e: head(e)=1



Further, we let d;; = 0 if w;; = 0. One can observe that this correspondence
is a bijection between the integer feasible flows in G and the contingency tables
enumerated by T'(R, C; W).

For example, for the Kostant partition function, we let w;; = 1 if ¢ > j and w;; =
0 otherwise and define ry =0, 7, =a1 +...+a;—1 fori >1landc; =a; +... +a;
for j > 1. Noticing that r; = ¢,, = 0, we cross out the first row and the nth column
and obtain the following description of the Kostant partition function.

Let us define the (n — 1) x (n — 1) matrix W = (w;;) by

{ 1 ifi>j53-1
Wis —
" 0 otherwise.

Let
k
rk:ck=2ak for k=1,... ,n—1.
i=1

Then the Kostant partition function ¢ satisfies

(b(al; s aan) = T(R’ Ca W)

A version of the integer flow enumeration problem involves positive integer ca-
pacities c(e) of edges and requires feasible flows to satisfy xz(e) < c(e). Given a
directed graph G with capacities one can construct a directed graph G’ without
capacities so that the integer feasible flows in G’ are in a bijection with the integer
feasible flows in G. For that, an extra vertex is introduced for every edge of G with
capacity, see [B4+04].

2. MAIN RESULTS

Our main result is the following inequality relating numbers T(R,C; W) of
weighted contingency tables for different margins R and C'.

(2.1) Theorem. For a positive integer vector B = (by,... b)) we define

l l b,
b’[:'b
|B|:§1:bi and w(B):Hbi!.

Let W = (w;;) be a non-negative m xn matriz, let Ry, ..., R, be positive integer
m-vectors and let Cy, ... ,C), be positive integer n-vectors such that

Ril=...= Ryl =|Ci| = ... = |G| = N.
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Suppose further that aq, . ..
us define

, 0 > 0 are numbers such that aq + ...+ o, = 1. Let

p p
R = Z Oszk and C = Z aka,

and suppose that R and C' are positive integer vectors.
Then

NN T (RCW ﬁ T (Ry,Cy; W) -
N w( Pt min{w(Ry), w(Ck)} '

Geometrically, for the transportation polytopes P(R,C) and P (Ry, Cy) we have
P(R, C) = (qu(Rl, Cl) + ...+ OépP (Rp,Cp) 5

cf. Section 1.2. On the other hand, the corresponding convex combination of integer
points in P (Ry, C)) does not have to be an integer point in P(R,C). Hence, the
existence of an a priori relation between the numbers of integer points in P (R, C)
and P (R, C) is not obvious (for a different approach to discrete Brunn-Minkowski
inequalities, see [GGO1]).

What follows is a chain of weaker inequalities which are easier to parse.

(2.2) Corollary. Under the conditions of Theorem 2.1, let

R=(r1,...,rm), C=(c1,...,¢q), a=min{m,n}, and
s = N/a where N:Zri:ch.
i=1 j=1

Then we have

(1)

NN . i ?“i! - Cj! P
i=1 1 j=1"J k=1
(2) ,
NN Fa(s—l—l) T
~NT v [(R.CW) H ¢ (Ry, Ci; W) .

(3) There is an absolute constant k > 0 such that

p
(8)2 @ DT(R,C; W) > ] T (R, Cos W) .
k=1

(S8



Suppose that w;; € {0,1} for all ¢, j. Then T'(R,C; W) is the number of integer
points in the flow polytope P(R,C; W) defined in the space of m x n matrices (x;;)
by the equations

3

n
E xi; =1, for i1=1,...
i=1

m
E z;j=c; for j=1,...,n, and
z;; =0 whenever w;; =0

and inequalities
x;; > 0 provided w;; = 1.

Generally speaking, the correction term (ks)(@~1)/2 is small compared to the value
of T(R,C;W). 1If we scale R — tR, C' — tC for a positive integer ¢, the
number of integer points in P(tR,tC;W) grows as a polynomial of ¢ of degree
d = dim P(R, C; W), see, for example, Section 4.6 of [St97], which can be as high
as d = (m — 1)(n — 1) in the case of the transportation polytope (see Section 1.2)
with w;; = 1. On the other hand, the correction term (ks)(@=1D/2 is a polynomial
in ¢ of degree only (min{m,n} —1) /2.

As another extreme case, let us consider the situation when the numbers r;, ¢; are
uniformly bounded, while m and n grow. In this case, T'(R, C; W) grows roughly as
(k1N )N, as long as the number of zeros in each row and column of the 0-1 matrix
W is uniformly bounded, cf. [Be74]. The correction term is about k2 for some
absolute constants k1, ko > 0.

Let us choose an m x n matrix ¢;; and let us define matrix W (t) = (w;;(t)) by
w;;(t) = exp {tc;j}. One can observe that

,dim 17 YInT(R,C; W (t)) = max Z%xm: zi;) € P(R,C)NZ™"

In words: the limit is equal to the maximum value of the linear function defined
by matrix (c¢;;) on the set of integer points in the transportation polytope P(R,C),
see Section 1.2. Thus any estimate of the type

p
a(R,C)T(R,C; W) H * Ry, Cis W),

where a(R,C) is a factor depending on R and C alone, implies that if ) €
P(Ry, Cy) are integer points then the point ayzq1 + ...+, lies inside the convex
hull of the set of integer points of P(R,C'). This, of course, also follows from the
fact that the vertices of P(R, (') are integer.
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One can ask, naturally, whether the bound in Theorem 2.1 can be strengthened.
In particular, the following question is of interest:

e [s it true that under conditions of Theorem 2.1, one has
p
(2.3) T(R,C;W) > [[ T** (Re, Cx; W)?
k=1

Or, perhaps, does the above inequality hold in some interesting special cases, for
example, when W = 1, the m xn matrix of all 1s, so that T'(R, C'; W) is the number
of contingency tables with the row sums R and column sums C?

There is some circumstantial evidence that the T'(R, C;1) might indeed satisfy
(2.3). We note that the value of T'(R, C;1) does not change if the entries of R and
and C are arbitrarily permuted. Let a = (aq,...,ay) and b = (f1,...,0,) be
integer vectors such that

a12a2>...2an and ﬁ12ﬁ222ﬁn

We say that a dominates b (denoted a &> b) if

k k n n
ZaiZZ@ and k=1,...,n—1 and Zai:Zﬁi.
i=1 i=1 i=1 i=1

Equivalently, a > b if b is a convex combination of vectors obtained from a by
permutations of coordinates.
One can show that

(2.4) T(Ry,C1;1) > T (Re,C5;1) provided Ry > R; and Csy > (.

The proof consists of two steps. First, assuming that R = (r; > ro > ... > r,,) and
C=(c1>ca>...>c¢p) weexpress T(R,C;1) in terms of Kostka numbers,

T<R7 Ca 1) - Z KARKA07
A
where the sum is taken over all A = (a1 > as > ... > ay), see Section 6.1 of [Ma95].
Then we apply the inequality
Kap, < Kap, provided By> By,
see Section 7.I of [Ma95]. Inequality (2.4) is consistent with the hypothesis (2.3).

To prove Theorem 2.1, we represent T'(R,C; W) as the expectation of the per-
manent of a random N x N matrix A with exponentially distributed entries using
7



a result from [Ba05]. Then using the theory of matrix scaling [MOG68], [RS89],
[L400], we represent per A as the product of a “large and tame” and a “small and
wild” factors. The “tame” factor contributes the bulk to the expectation and it
satisfies the conditions of the Prékopa-Leindler inequality (1.1.2), the fact that ul-
timately results in the inequality of Theorem 2.1. The “wild” factor is harder to
analyze, but it does not vary much since it lies within the low bound provided by
the van der Waerden estimate [Eg81], [Fa81] and the upper bound provided by the
Bregman-Minc estimate [Br73]. It contributes to the correction term in Theorem
2.1 and Corollary 2.2.

We discuss preliminaries in Section 3 and present the proofs of Theorem 2.1 and
Corollary 2.2 in Section 4.

3. A PERMANENTAL REPRESENTATION OF T(R,C; W)

Recall that the permanent of an N x N matrix A = (a;;) is defined by

N
per A = Z Haia(i)7

ceSN =1

where Sy is the symmetric group of all permutations of {1,..., N}. We say that
a random variable v has the standard exponential distribution if

et ift>0
P(y>1t) =

1 otherwise.
The following result expressing T'(R, C'; W) as the expectation of the permanent of
a random matrix was proved in [Ba05].

(3.1) Theorem. Given a positive integer m-vector R = (r1,... ,ry) and a positive
integer n-vector C = (cy,... ,cy,) such that

m n
E r, = E Cj = N,
i=1 j=1

and an mxn matrix W = (w;;), we construct an N xN random matriz A as follows:
the set of rows of A is represented as a disjoint union of m subsets of cardinalities
r1,...,Tm whereas the set of columns of A is represented as a disjoint union of n
subsets of cardinalities c1, ... ,cy,, so that A is represented as a block matrixz of mn
blocks r; x c;j. Let let G = (g;;) be the m xn matriz with g;; = w;;7.;, where v;; are
independent standard exponential random variables. We fill the (i, j)th block r; X ¢;
of A = A(G) by the copies of g;j. Then

E per A

T(R,C§ W) = rleerple! e,

For the sake of completeness, we present a proof of Theorem 3.1 in Section 5.
Next, we need some results on matrix scaling, in particular as described in
[MOG68] and [RS89].
8



(3.2) Matrix scaling. Let G = (g;;) be a positive m x n matrix and let rq,... ,7p,
and cq,...,c, be positive numbers such that

m n
E Ty = E Cj = N.
i=1 j=1

Then there exist a unique positive m x n matrix L = (I;;) and positive numbers
Piye s b and Mg, ..., A, such that

n
E lij=mr; for ¢=1,...,m,
j=1

Zlijzcj for jzl,...,n
=1

and such that
9ij = lijps Ay for all i, 7.

Moreover, the numbers A;, ;1; are unique up to a scaling

1

Wi — T, A\j — X\;7~ forsome 7 >0 andall 4,7

and can be obtained as follows.
Let

F(Giz,y) = ZZgijﬁmj for

i=1 j=1
x=(&,-..,&n) and y=n1,...,0n).

Then F(G;x,y) attains a unique minimum on the set of pairs (x,y) of vectors
defined by the equations

ﬁffl =1 and ﬁn;?j =1
i=1 j=1

and inequalities
& >0 for i=1,...,m and n; >0 for j=1,...,n

Assuming that z* = (¢5,...,¢&),) and y* = (n7,... ,n};) is the minimum point, we
may let
_ P (G2t y7)

1
Wi = and \; = — forall i,j,

N¢; n;
see [RS89] and [MO68].
Finally, we need some estimates for permanents.
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(3.3) Estimates for permanents. Recall that an N x N matrix B = (b;;) is
called doubly stochastic if it is non-negative

bz]ZO for Z,jzl,,N

and all row and column sums are equal to 1:

N
» by=1 for i=1,...,N and

N
d by=1 for j=1,...,N.

The van der Waerden conjecture proved by G.P. Egorychev [Eg81] and D.I. Falik-
man [Fa81] asserts that

NI

(3.3.1) per B > W

if B is a doubly stochastic N x N matrix, see also Chapter 12 of [LWO01].

The following upper bound was conjectured by H. Minc and proved by L.M.
Bregman [Br73], see also Chapter 11 of [LWO1].

Let B = (b;;) be an N x N matrix such that b;; € {0,1} for all 7, j and let

Then

We will need the following corollary of the Bregman—Minc inequality, see [So03].
Let B = (b;;) be an N x N matrix such that

N
d by=1 for i=1,...,N and

1
OSbUS— for ]:1,,N

84
and positive integers s1,...,sy. Then
N 1/51
(3.3.2) per B < H

Of course, similar estimates hold if we interchange rows and columns.
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4. PROOFS
In this section, we prove Theorem 2.1 and Corollary 2.2.

(4.1) Notation. Given an m x n positive matrix G = (g;;), let us define

F(Giz,y) = Z Zgijfmj for
i=1 j=1
x=(&,...,&n) and y=N1,...7Mn).
For positive vectors R = (r1,... ,7y) and C = (c1,... ,¢,), we define
f(G;R,C) =min F(G; z,y)
fOI' x:(§17"’7€m) and y:(/I/Il’"'?nn)

m n
subject to Hff = Hn]c-j =1 and
i=1 j=1

&,n; >0 for i=1,...,m and j=1,...,n,

see Section 3.2. We recall notation
m n
|R|:Zri and \C\:ch.
i=1 j=1

First, we establish a certain convexity property of f(G; R, C).

(4.2) Lemma. Let Gy,...,G), be positive m X n matrices, let Ry, ... , R, be pos-

itive m-vectors, and let Cy,... ,C)p be positive n-vectors such that
|IRi|=...=|Rp| =|C1| = ... =|C,.

Suppose further that aq, ... ,a, > 0 are numbers such that aq + ...+, = 1. Let

us define

p p p
G:Zaka, R:ZakRk, and C:Zaka.

k=1 k=1 k=1
Then

F(GR,C) > T] £** (Gis B, Ch) .
k=1

Proof. Suppose that

Rr = (riky--- s"mk), Cr=(c1ky---sCnk), R=(r1,...,mm), and

C:(Cl,... ,Cn).
11



In particular,

(4.2.1) o
cj = Zakcjk for 7=1,...,n

Let © = (&1,...,&y) and y = (71, ... ,m,) be positive vectors such that

m n
Ty __ i _
(4.2.2) g =117 =
i=1 j=1
Then

p
F(Giz,y) =Y arF(Gi;x,y)
k=1

"(Gryx,y).

i ,’:]@

Let
1/1C|

m 1/|R| n
te = (H§f1k> and s = Hn?jk for k=1,...,p.
i=1 j=1

Then
F(Gk,.ﬁlﬁ',y) = tgspF (Gkht];lxa Slzly> > tkSkf (Gk’RkHCk);

since vectors t,:lw and s,zly satisfy (4.2.2) with r; and ¢; replaced by 7, and cjj
respectively. Therefore,

p

G x y H ak akfak GkaRkvc’k)

=1
On the other hand, by (4.2.1) and (4.2.2), we have

p m ) 1/|R| m 1/|R|
H tZk _ (H é'izkzl akﬁk) _ (H g;h) =1,
; =1

) . el o\ el

ag __ k1 MKCik _ Cj -1

11 = {117 =\ 17 -
5 =1

Since the inequality

p
F(G;x,y) > [ ] £** (Gi; Ri, Ci)

k=1
holds for any positive x and y satisfying (4.2.2), the proof follows. O

Next, we consider block matrices A as in Theorem 3.1.
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(4.3) Lemma. Let G = (gij) be an m X n positive matriz. Let R = (ri,... ,Ty)
and C = (c1,...,¢,) be positive integer vectors such that |R| = |C| = N. Let us
consider the N x N block matriz A, where the (i, j)th block of size r; x ¢; is filled
by copies of gi;. Then there exists an N x N block matriz B with the same block
structure as A and such that

(1) Matriz B is doubly stochastic;
(2) The entries in the (i,j)th block of B do not exceed min{1/r;, 1/c;};
(3) We have

per A= N"YfN(G;R,C) (Hr) Hc?j per B;

i=1 j=1

N! ! |
—~ < per B < min H Hi

T Cj

N i=1 ¢ j=1%j
Proof. Let L = (l;;) be the m x n positive matrix and let p;, ¢ =1,... ,m, and A,
j=1,...,n, be positive numbers such that

gijzlij,uikj for izl,...,m and jzl,...,n

and such that

n
Zlij:ri for i=1,...,m and
=1

Zlijzcj for jzl,...,n,
=1

see Section 3.2.

Let us divide the entries in the (4, j)th block of A by the product p;r;Ajc;. We
get the matrix B with the entries in the (7, j)th block equal to l;;/r;c;. It is seen
now that B is doubly stochastic and that the entries in the (i, 7)th block of B do
not exceed min{1/r;, 1/c;}. Furthermore,

per A = (H (,uim)”> H (Ajc;)? | per B.

i=1 j=1

On the other hand, if one computes p; and A\; by optimizing F(G;z,y) as in Section

3.2, one gets
H,u = # and H)\cj =

13



which completes the proof of Part (3).
Part (4) follows by Parts (1) and (2) and estimates (3.3.1) and (3.3.2). O

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality, we assume that w;; > 0 for all
i,].

In the space Mat(m,n) of m x n real matrices G = (g;;), we consider the expo-
nential measure dG with the density

Hwi—jl exp{—gij/wij} if gi; >0 forall i,j
ij
and 0 elsewhere.
We note that dG is a log-concave measure.
Given positive integer vectors R = (ry,...,r,) and C = (c1,...,¢,) and a
positive m x n matrix G, let A(G; R, C') be the N x N block matrix constructed as
in Theorem 3.1. Then, by Theorem 3.1,

m n

1 1
T(R,C;W) = <H F) HE /Mat(m ., per A(G; R, C) dG.

j=1"

From Lemma 4.3,
N! NvlTrre “ C;j
T(R,C;W) > N~ (HF) Ha

X / N(G;R,C) dG
Mat(m,n)

N!
=—N"Yw(R)w(C) / fN(G;R,0) dG.
N Mat(m,n)
Similarly, letting Ry = (r1k,... ,"mk) and Cx = (c1k, - - . , Cnk), by Theorem 3.1
we obtain

m

1 71
T(Rk,C’k;Wk) = (H m) H —' /Mat(m )perA(G; Rk,Ck) dG,
J i

Cip!
i=1 —1 Ik

and from Lemma 4.3

T (Ry,Cix; W) <NV (ﬁ ) H E;j

im1 Tzk C]k‘

. o Tzk! - Cjk' N .
X min HK ,Hc% /M N(G; Ry, Cy) dG
i1 =1 Gk at(m,n)
=N"Nmin{w(Ry), w(Cy)} fN(G; Ry, Cy) dG.

Mat(m,n)
14



By Lemma 4.2, for any positive matrices Gy, ... , G we have

hS]

P
f(G;R,C) H £ (Gii Ry, Cx), where G =Y G,

_ k=1

Applying the Prékopa-Leindler inequality (1.1.2), we obtain

/ MG R,C) d H(/ fN(G;Rk,Ck)dG> :
Mat(m,n) Mat(m,n)

NNT (RCW P Ry, Ci; W) -
N w( 1;[ (mm{w (Rk), (Q:)})

and the proof follows.
Proof of Corollary 2.2. We use that the function
bb
— b
ST b0 >0

is log-convex. Therefore, the function

l
w(by,... b :HM

=1

Therefore,

bi

+1)

is log-convex on the positive orthant b; > 0,... ,b; > 0.
Thus we have

w(R) > [Jw™ (Re) and w(C) > []w™ (Cr).

Hence

from which Part (1) follows.
Similarly, since w is log-convex,

w(R) > w(|R|/m,...,|R|/m) and w(C)>w(|C|/n,...,|C|/n),

from which Part (2) follows.
Finally, by Stirling’s formula

(21s)1/2s%e %€ T < I'(s+1)< (27‘(’8)1/2886786%3

and Part(3) follows.
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5. APPENDIX: PROOF OF THEOREM 3.1

Let

{1,... ,N}: UROWZ' and {17... ,N}: UColj
i=1 j=1

be the partition of the set of rows, respectively the set of columns of A, into non-
overlapping blocks such that

Row; | = r;, Col;|=¢; for 2=1,...,m and j=1,....,n
| Row | | Col; | = ¢

and the Row; x Col; block of A is filled by the copies of g;; = w;;7vij-
Let ¢ : {1,... ,N} — {1,... , N} be a bijection. We denote by

N
ty = H Ak (k)
k=1

the corresponding term of per A and introduce the m X n contingency table D =
D(¢), called the pattern of ¢ as follows: we have D = (d;;) where d;; is the
number of indices k € Row; such that ¢(k) € Col;. Clearly, the row sums of D are

T1,...,7 ym while the column sums of D are ¢, ... ,c,.
Thus
E perA = ZEt¢ and Et¢ = H’wfjijdij!,
é j
where D = (d;;) is the pattern of ¢ and the sum is taken over all bijections

o : {1,... ,N} — {1,... ,N}. Here we use that E4% = d! for the standard
exponential random variable ~.

It remains to count the bijections ¢ having a given pattern D = (d;;). Let
D = (d;;) be a contingency table with the row sums rq,... ,7,, and the column
sums ¢y, ... ,c,. 1o choose a bijection ¢ with the pattern D, for each i =1,... ,m

we choose a partition

Row; = U Row;; where |ROWij { = d;;
j=1

and for each j = 1,... ,n we choose a partition
m
Col; = | J Col;;  where | Coly; | = dyj,
i=1

altogether in



ways. Finally, we identify ¢ by choosing bijections ¢;; : Row;; — Col;; altogether
in

I14:!

ij

ways. Therefore, there are

1

m

. _
T'Z'! HCj! Hd”'
1 =1 1

1=

bijections ¢ : {1, e ,N} — {1, e ,N} with the pattern D = (d;;). Summariz-
ing,

m n
E per A = Hri! ch! Zwajﬁ,
where the sum is taken over all contingency tables D = (d;;) with the row sums
r1,...,7r, and the column sums c¢q,... ,¢,, which completes the proof.
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