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Abstract. We establish approximate log-concavity for a wide family of combinato-

rially defined integer-valued functions. Examples include the number of non-negative
integer matrices (contingency tables) with prescribed row and column sums (mar-

gins), as a function of the margins and the number of integer feasible flows in a
network, as a function of the excesses at the vertices. As a corollary, we obtain

approximate log-concavity for the Kostant partition function of type A. We also

present an indirect evidence that at least some of the considered functions might be
genuinely log-concave.

1. Introduction

(1.1) The Brunn-Minkowski inequality. The famous Brunn-Minkowski in-
equality states that for bounded Borel sets A,B ⊂ Rd and non-negative numbers
α, β such that α + β = 1 one has

vol(αA + βB) ≥ volα(A) volβ(B),

where vol is the usual volume (Lebesgue measure) in Euclidean space Rd and

αA + βB = {αx + βy : x ∈ A, y ∈ B}.

The inequality extends to finite families of sets in an obvious way: if A1, . . . , Ap ⊂
Rd are bounded Borel sets and α1, . . . , αp are non-negative numbers such that
α1 + . . . + αp = 1 then

(1.1.1) vol (α1A1 + . . . + αpAp) ≥
p∏

k=1

volαk (Ak) .
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The Brunn-Minkowski inequality plays an important role in almost all branches of
mathematics, see [Ga02] for a survey. Inequality (1.1.1) was extended and general-
ized in numerous direction. In particular, we need its functional version, known as
the Prékopa-Leindler inequality:

let α1, . . . , αp be non-negative numbers such that α1 + . . . + αp = 1 and let
g, h1, . . . , hp : Rd −→ R be Borel measurable non-negative functions such that

g (α1x1 + . . . + αpxp) ≥
p∏

k=1

hαk

k (xk) for all x1, . . . , xk ∈ Rd.

Then

(1.1.2)
∫

Rd

g(x) dx ≥
p∏

k=1

(∫
Rd

hk(x) dx

)αk

,

see for example, Section 6.1 of [Vi03] and Section 2.2 of [Le01]. We note that
(1.1.1) is obtained from (1.1.2) by choosing hk to be the indicator function of Ak,
so that hk(x) = 1 if x ∈ Ak and hk(x) = 0 if x /∈ Ak and g to be the indicator
of α1A1 + . . . + αpAp. The inequality (1.1.2) remains valid if dx is replaced by a
log-concave measure.

In this paper we obtain versions of inequality (1.1.1), respectively (1.1.2), for the
number of integer points, respectively for the number of weighted integer points, in
some special polytopes, known as flow polytopes.

(1.2) Contingency tables. Let R = (r1, . . . , rm) and C = (c1, . . . , cn) be posi-
tive integer vectors such that

m∑
i=1

ri =
n∑

j=1

cj = N.

An m × n non-negative integer matrix D = (dij) with the row sums r1, . . . , rm

and the column sums c1, . . . , cn is called a contingency table with margins R and
C. Geometrically, one can think of the set of contingency tables with prescribed
margins as of the set of integer points in the transportation polytope P (R,C) of
m× n matrices X = (xij) satisfying the equations

n∑
j=1

xij = ri for i = 1, . . . , m,
m∑

i=1

xij = cj for j = 1, . . . , n

and inequalities
xij ≥ 0 for all i, j.

The numbers of contingency tables with prescribed margins are of interest be-
cause of their applications in statistics, combinatorics, and representation theory,
see [DE85], [DG95], and [DG04].

We consider the number of weighted tables, defined as follows.
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(1.3) Definition. Let W = (wij) be an m × n non-negative matrix. For R =
(r1, . . . , rm) and C = (c1, . . . , cn), we define

T (R,C;W ) =
∑
D

∏
ij

w
dij

ij ,

where the sum is taken over all m×n contingency tables D = (dij) with the margins
(R,C). We agree that 00 = 1.

Geometrically, T (R,C;W ) is the generating function over the set of integer
points in a transportation polytope. We get the number of points if we choose
W = 1, the matrix of all 1s.

(1.4) Integer flows. Let G = (V,E) be a directed graph with the set V of vertices,
the set E of edges, without multiple edges or loops. Suppose that an integer a(v),
called the excess v, is assigned to every vertex v ∈ V so that∑

v∈V

a(v) = 0.

A collection x(e) : e ∈ E of non-negative integers is called an integer feasible flow
in G if the balance condition is satisfied at every vertex∑

e: head(e)=v

x(e)−
∑

e: tail(e)=v

x(e) = a(v) for all v ∈ V.

If G does not contain directed cycles v1 → v2 → . . . → vk → v1 then the set of
feasible flows is compact, so the number of integer feasible flows is finite.

Some interesting quantities can be defined as the number of integer feasible flows
in an appropriate network. For example, we get the Kostant partition function (for
the An−1 root system) if G = Kn is a complete graph with the set of vertices
V = {1, . . . , n} and edges E = {i → j : i > j}, cf. [B+04]. Given an integer
vector a = (a1, . . . , an) such that a1 + . . . + an = 0, the number φ(a) of integer
feasible flows in Kn with the excess at i equal ai is the value of the Kostant partition
function at a.

Given a directed graph G on |V | = n vertices and excesses a(v) at its vertices,
one can construct an n × n matrix W = (wij) with wij ∈ {0, 1}, a vector R =
(r1, . . . , rn) of row sums and a vector C = (c1, . . . , cn) of column sums so that
T (R,C;W ) is equal to the number of integer feasible flows in G. To that end, we
identify V = {1, . . . , n}. Given the excess ai at the vertex i of G, we find an a
priori upper bound zi ≥ 0 on the total incoming flow to i and let ri = zi − ai and
ci = zi. Finally, we let wij = 1 if i = j or i → j is an edge of G and let wij = 0
otherwise.

With a feasible flow {xe : e ∈ E} in G, we associate a contingency table D =
(dij) as follows: we let dij = x(e) provided i = head(e) and j = tail(e) and let

dii = ri −
∑

e: tail(e)=i

x(e) = ci −
∑

e: head(e)=i

x(e).
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Further, we let dij = 0 if wij = 0. One can observe that this correspondence
is a bijection between the integer feasible flows in G and the contingency tables
enumerated by T (R,C;W ).

For example, for the Kostant partition function, we let wij = 1 if i ≥ j and wij =
0 otherwise and define r1 = 0, ri = a1 + . . . + ai−1 for i > 1 and cj = a1 + . . . + aj

for j ≥ 1. Noticing that r1 = cn = 0, we cross out the first row and the nth column
and obtain the following description of the Kostant partition function.

Let us define the (n− 1)× (n− 1) matrix W = (wij) by

wij =
{

1 if i ≥ j − 1
0 otherwise.

Let

rk = ck =
k∑

i=1

ak for k = 1, . . . , n− 1.

Then the Kostant partition function φ satisfies

φ(a1, . . . , an) = T (R,C;W ).

A version of the integer flow enumeration problem involves positive integer ca-
pacities c(e) of edges and requires feasible flows to satisfy x(e) ≤ c(e). Given a
directed graph G with capacities one can construct a directed graph G′ without
capacities so that the integer feasible flows in G′ are in a bijection with the integer
feasible flows in G. For that, an extra vertex is introduced for every edge of G with
capacity, see [B+04].

2. Main results

Our main result is the following inequality relating numbers T (R,C;W ) of
weighted contingency tables for different margins R and C.

(2.1) Theorem. For a positive integer vector B = (b1, . . . , bl) we define

|B| =
l∑

i=1

bi and ω(B) =
l∏

i=1

bbi
i

bi!
.

Let W = (wij) be a non-negative m×n matrix, let R1, . . . , Rp be positive integer
m-vectors and let C1, . . . , Cp be positive integer n-vectors such that

|R1| = . . . = |Rp| = |C1| = . . . = |Cp| = N.
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Suppose further that α1, . . . , αp ≥ 0 are numbers such that α1 + . . . + αp = 1. Let
us define

R =
p∑

k=1

αkRk and C =
p∑

k=1

αkCk

and suppose that R and C are positive integer vectors.
Then

NN

N !
T (R,C;W )
ω(R)ω(C)

≥
p∏

k=1

(
T (Rk, Ck;W )

min
{
ω(Rk), ω(Ck)

})αk

.

Geometrically, for the transportation polytopes P (R,C) and P (Rk, Ck) we have

P (R,C) = α1P (R1, C1) + . . . + αpP (Rp, Cp) ,

cf. Section 1.2. On the other hand, the corresponding convex combination of integer
points in P (Rk, Ck) does not have to be an integer point in P (R,C). Hence, the
existence of an a priori relation between the numbers of integer points in P (Rk, Ck)
and P (R,C) is not obvious (for a different approach to discrete Brunn-Minkowski
inequalities, see [GG01]).

What follows is a chain of weaker inequalities which are easier to parse.

(2.2) Corollary. Under the conditions of Theorem 2.1, let

R = (r1, . . . , rm) , C = (c1, . . . , cn) , a = min{m,n}, and

s = N/a where N =
m∑

i=1

ri =
n∑

j=1

cj .

Then we have
(1)

NN

N !
min


m∏

i=1

ri!
rri
i

,
n∏

j=1

cj !
c
cj

j

T (R,C;W ) ≥
p∏

k=1

Tαk (Rk, Ck;W ) .

(2)
NN

N !
Γa(s + 1)

sN
T (R,C;W ) ≥

p∏
k=1

Tαk (Rk, Ck;W ) .

(3) There is an absolute constant κ > 0 such that

(κs)
1
2 (a−1)T (R,C;W ) ≥

p∏
k=1

Tαk (Rk, Ck;W ) .
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Suppose that wij ∈ {0, 1} for all i, j. Then T (R,C;W ) is the number of integer
points in the flow polytope P (R,C;W ) defined in the space of m×n matrices (xij)
by the equations

n∑
j=1

xij = ri for i = 1, . . . , m

m∑
i=1

xij = cj for j = 1, . . . , n, and

xij = 0 whenever wij = 0

and inequalities
xij ≥ 0 provided wij = 1.

Generally speaking, the correction term (κs)(a−1)/2 is small compared to the value
of T (R,C;W ). If we scale R 7−→ tR, C 7−→ tC for a positive integer t, the
number of integer points in P (tR, tC;W ) grows as a polynomial of t of degree
d = dim P (R,C;W ), see, for example, Section 4.6 of [St97], which can be as high
as d = (m− 1)(n− 1) in the case of the transportation polytope (see Section 1.2)
with wij ≡ 1. On the other hand, the correction term (κs)(a−1)/2 is a polynomial
in t of degree only (min{m,n} − 1) /2.

As another extreme case, let us consider the situation when the numbers ri, cj are
uniformly bounded, while m and n grow. In this case, T (R,C;W ) grows roughly as
(κ1N)N , as long as the number of zeros in each row and column of the 0-1 matrix
W is uniformly bounded, cf. [Be74]. The correction term is about κN

2 for some
absolute constants κ1, κ2 > 0.

Let us choose an m × n matrix cij and let us define matrix W (t) = (wij(t)) by
wij(t) = exp {tcij}. One can observe that

lim
t−→+∞

t−1 lnT
(
R,C;W (t)

)
= max

∑
ij

cijxij : (xij) ∈ P (R,C) ∩ Zm×n

 .

In words: the limit is equal to the maximum value of the linear function defined
by matrix (cij) on the set of integer points in the transportation polytope P (R,C),
see Section 1.2. Thus any estimate of the type

α(R,C)T (R,C;W ) ≥
p∏

k=1

Tαk (Rk, Ck;W ) ,

where α(R,C) is a factor depending on R and C alone, implies that if xk ∈
P (Rk, Ck) are integer points then the point α1x1 + . . .+αpxp lies inside the convex
hull of the set of integer points of P (R,C). This, of course, also follows from the
fact that the vertices of P (R,C) are integer.
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One can ask, naturally, whether the bound in Theorem 2.1 can be strengthened.
In particular, the following question is of interest:

• Is it true that under conditions of Theorem 2.1, one has

(2.3) T (R,C;W ) ≥
p∏

k=1

Tαk (Rk, Ck;W )?

Or, perhaps, does the above inequality hold in some interesting special cases, for
example, when W = 1, the m×n matrix of all 1s, so that T (R,C;W ) is the number
of contingency tables with the row sums R and column sums C?

There is some circumstantial evidence that the T (R,C;1) might indeed satisfy
(2.3). We note that the value of T (R,C;1) does not change if the entries of R and
and C are arbitrarily permuted. Let a = (α1, . . . , αn) and b = (β1, . . . , βn) be
integer vectors such that

α1 ≥ α2 ≥ . . . ≥ αn and β1 ≥ β2 ≥ . . . ≥ βn.

We say that a dominates b (denoted a D b) if

k∑
i=1

αi ≥
k∑

i=1

βi and k = 1, . . . , n− 1 and
n∑

i=1

αi =
n∑

i=1

βi.

Equivalently, a D b if b is a convex combination of vectors obtained from a by
permutations of coordinates.

One can show that

(2.4) T (R1, C1;1) ≥ T (R2, C2;1) provided R2 D R1 and C2 D C1.

The proof consists of two steps. First, assuming that R = (r1 ≥ r2 ≥ . . . ≥ rm) and
C = (c1 ≥ c2 ≥ . . . ≥ cn) we express T (R,C;1) in terms of Kostka numbers,

T (R,C;1) =
∑
A

KARKAC ,

where the sum is taken over all A = (a1 ≥ a2 ≥ . . . ≥ as), see Section 6.I of [Ma95].
Then we apply the inequality

KAB2 ≤ KAB1 provided B2 D B1,

see Section 7.I of [Ma95]. Inequality (2.4) is consistent with the hypothesis (2.3).

To prove Theorem 2.1, we represent T (R,C;W ) as the expectation of the per-
manent of a random N ×N matrix A with exponentially distributed entries using
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a result from [Ba05]. Then using the theory of matrix scaling [MO68], [RS89],
[L+00], we represent perA as the product of a “large and tame” and a “small and
wild” factors. The “tame” factor contributes the bulk to the expectation and it
satisfies the conditions of the Prékopa-Leindler inequality (1.1.2), the fact that ul-
timately results in the inequality of Theorem 2.1. The “wild” factor is harder to
analyze, but it does not vary much since it lies within the low bound provided by
the van der Waerden estimate [Eg81], [Fa81] and the upper bound provided by the
Bregman-Minc estimate [Br73]. It contributes to the correction term in Theorem
2.1 and Corollary 2.2.

We discuss preliminaries in Section 3 and present the proofs of Theorem 2.1 and
Corollary 2.2 in Section 4.

3. A permanental representation of T (R,C;W )

Recall that the permanent of an N ×N matrix A = (aij) is defined by

perA =
∑

σ∈SN

N∏
i=1

aiσ(i),

where SN is the symmetric group of all permutations of {1, . . . , N}. We say that
a random variable γ has the standard exponential distribution if

P(γ > t) =
{

e−t if t > 0
1 otherwise.

The following result expressing T (R,C;W ) as the expectation of the permanent of
a random matrix was proved in [Ba05].

(3.1) Theorem. Given a positive integer m-vector R = (r1, . . . , rm) and a positive
integer n-vector C = (c1, . . . , cn) such that

m∑
i=1

ri =
n∑

j=1

cj = N,

and an m×n matrix W = (wij), we construct an N×N random matrix A as follows:
the set of rows of A is represented as a disjoint union of m subsets of cardinalities
r1, . . . , rm whereas the set of columns of A is represented as a disjoint union of n
subsets of cardinalities c1, . . . , cn, so that A is represented as a block matrix of mn
blocks ri×cj. Let let G = (gij) be the m×n matrix with gij = wijγij, where γij are
independent standard exponential random variables. We fill the (i, j)th block ri× cj

of A = A(G) by the copies of gij. Then

T (R,C;W ) =
E perA

r1! · · · rm!c1! · · · cn!
.

For the sake of completeness, we present a proof of Theorem 3.1 in Section 5.
Next, we need some results on matrix scaling, in particular as described in

[MO68] and [RS89].
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(3.2) Matrix scaling. Let G = (gij) be a positive m×n matrix and let r1, . . . , rm

and c1, . . . , cn be positive numbers such that

m∑
i=1

ri =
n∑

j=1

cj = N.

Then there exist a unique positive m × n matrix L = (lij) and positive numbers
µ1, . . . , µm and λ1, . . . , λn such that

n∑
j=1

lij = ri for i = 1, . . . , m,

m∑
i=1

lij = cj for j = 1, . . . , n

and such that
gij = lijµiλj for all i, j.

Moreover, the numbers λi, µj are unique up to a scaling

µi 7−→ µiτ, λj 7−→ λjτ
−1 for some τ > 0 and all i, j

and can be obtained as follows.
Let

F (G;x, y) =
m∑

i=1

n∑
j=1

gijξiηj for

x = (ξ1, . . . , ξm) and y = (η1, . . . , ηn) .

Then F (G;x, y) attains a unique minimum on the set of pairs (x, y) of vectors
defined by the equations

m∏
i=1

ξri
i = 1 and

n∏
j=1

η
cj

j = 1

and inequalities

ξi > 0 for i = 1, . . . , m and ηj > 0 for j = 1, . . . , n.

Assuming that x∗ = (ξ∗1 , . . . , ξ∗m) and y∗ = (η∗1 , . . . , η∗n) is the minimum point, we
may let

µi =
F (G;x∗, y∗)

Nξ∗i
and λj =

1
η∗j

for all i, j,

see [RS89] and [MO68].
Finally, we need some estimates for permanents.
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(3.3) Estimates for permanents. Recall that an N × N matrix B = (bij) is
called doubly stochastic if it is non-negative

bij ≥ 0 for i, j = 1, . . . , N

and all row and column sums are equal to 1:

N∑
j=1

bij = 1 for i = 1, . . . , N and

N∑
i=1

bij = 1 for j = 1, . . . , N.

The van der Waerden conjecture proved by G.P. Egorychev [Eg81] and D.I. Falik-
man [Fa81] asserts that

(3.3.1) perB ≥ N !
NN

if B is a doubly stochastic N ×N matrix, see also Chapter 12 of [LW01].
The following upper bound was conjectured by H. Minc and proved by L.M.

Bregman [Br73], see also Chapter 11 of [LW01].
Let B = (bij) be an N ×N matrix such that bij ∈ {0, 1} for all i, j and let

N∑
j=1

bij = si for i = 1, . . . , N.

Then

perB ≤
N∏

i=1

(si!)
1/si .

We will need the following corollary of the Bregman-Minc inequality, see [So03].
Let B = (bij) be an N ×N matrix such that

N∑
j=1

bij = 1 for i = 1, . . . , N and

0 ≤ bij ≤
1
si

for j = 1, . . . , N

and positive integers s1, . . . , sN . Then

(3.3.2) per B ≤
N∏

i=1

(si!)1/si

si
.

Of course, similar estimates hold if we interchange rows and columns.
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4. Proofs

In this section, we prove Theorem 2.1 and Corollary 2.2.

(4.1) Notation. Given an m× n positive matrix G = (gij), let us define

F (G;x, y) =
m∑

i=1

n∑
j=1

gijξiηj for

x =(ξ1, . . . , ξm) and y = (η1, . . . ηn) .

For positive vectors R = (r1, . . . , rm) and C = (c1, . . . , cn), we define

f(G;R,C) =minF (G;x, y)

for x = (ξ1, . . . , ξm) and y = (η1, . . . , ηn)

subject to
m∏

i=1

ξri
i =

n∏
j=1

η
cj

j = 1 and

ξi, ηj > 0 for i = 1, . . . , m and j = 1, . . . , n,

see Section 3.2. We recall notation

|R| =
m∑

i=1

ri and |C| =
n∑

j=1

cj .

First, we establish a certain convexity property of f(G;R,C).

(4.2) Lemma. Let G1, . . . , Gp be positive m× n matrices, let R1, . . . , Rp be pos-
itive m-vectors, and let C1, . . . , Cp be positive n-vectors such that

|R1| = . . . = |Rp| = |C1| = . . . = |Cp|.

Suppose further that α1, . . . , αp ≥ 0 are numbers such that α1 + . . . + αp = 1. Let
us define

G =
p∑

k=1

αkGk, R =
p∑

k=1

αkRk, and C =
p∑

k=1

αkCk.

Then

f(G;R,C) ≥
p∏

k=1

fαk (Gk;Rk, Ck) .

Proof. Suppose that

Rk = (r1k, . . . , rmk) , Ck = (c1k, . . . , cnk) , R = (r1, . . . , rm) , and

C = (c1, . . . , cn) .
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In particular,

(4.2.1)

ri =
p∑

k=1

αkrik for i = 1, . . . , m and

cj =
p∑

k=1

αkcjk for j = 1, . . . , n.

Let x = (ξ1, . . . , ξm) and y = (η1, . . . , ηn) be positive vectors such that

(4.2.2)
m∏

i=1

ξri
i =

n∏
j=1

η
cj

j = 1.

Then

F (G;x, y) =
p∑

k=1

αkF (Gk;x, y) ≥
p∏

k=1

Fαk(Gk;x, y).

Let

tk =

(
m∏

i=1

ξrik
i

)1/|R|

and sk =

 n∏
j=1

η
cjk

j

1/|C|

for k = 1, . . . , p.

Then
F (Gk;x, y) = tkskF

(
Gk; t−1

k x, s−1
k y

)
≥ tkskf (Gk;Rk, Ck) ,

since vectors t−1
k x and s−1

k y satisfy (4.2.2) with ri and cj replaced by rik and cjk

respectively. Therefore,

F (G;x, y) ≥
p∏

k=1

tαk

k sαk

k fαk (Gk;Rk, Ck) .

On the other hand, by (4.2.1) and (4.2.2), we have

p∏
k=1

tαk

k =

(
m∏

i=1

ξ
Pp

k=1 αkrik

i

)1/|R|

=

(
m∏

i=1

ξri
i

)1/|R|

= 1,

and, similarly,

p∏
k=1

sαk

k =

 n∏
j=1

η
Pp

k=1 αkcjk

j

1/|C|

=

 n∏
j=1

η
cj

j

1/|C|

= 1.

Since the inequality

F (G;x, y) ≥
p∏

k=1

fαk (Gk;Rk, Ck)

holds for any positive x and y satisfying (4.2.2), the proof follows. �

Next, we consider block matrices A as in Theorem 3.1.
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(4.3) Lemma. Let G = (gij) be an m × n positive matrix. Let R = (r1, . . . , rm)
and C = (c1, . . . , cn) be positive integer vectors such that |R| = |C| = N . Let us
consider the N ×N block matrix A, where the (i, j)th block of size ri × cj is filled
by copies of gij. Then there exists an N × N block matrix B with the same block
structure as A and such that

(1) Matrix B is doubly stochastic;
(2) The entries in the (i, j)th block of B do not exceed min{1/ri, 1/cj};
(3) We have

perA = N−NfN (G;R,C)

(
m∏

i=1

rri
i

) n∏
j=1

c
cj

j

perB;

(4)

N !
NN

≤ perB ≤ min


m∏

i=1

ri!
rri
i

,
n∏

j=1

cj !
c
cj

j

 .

Proof. Let L = (lij) be the m×n positive matrix and let µi, i = 1, . . . , m, and λj ,
j = 1, . . . , n, be positive numbers such that

gij = lijµiλj for i = 1, . . . , m and j = 1, . . . , n

and such that
n∑

j=1

lij = ri for i = 1, . . . , m and

m∑
i=1

lij = cj for j = 1, . . . , n,

see Section 3.2.
Let us divide the entries in the (i, j)th block of A by the product µiriλjcj . We

get the matrix B with the entries in the (i, j)th block equal to lij/ricj . It is seen
now that B is doubly stochastic and that the entries in the (i, j)th block of B do
not exceed min{1/ri, 1/cj}. Furthermore,

perA =

(
m∏

i=1

(µiri)
ri

) n∏
j=1

(λjcj)
cj

perB.

On the other hand, if one computes µi and λj by optimizing F (G;x, y) as in Section
3.2, one gets

m∏
i=1

µri
i =

fN (G;R,C)
NN

and
n∏

j=1

λ
cj

j = 1,
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which completes the proof of Part (3).
Part (4) follows by Parts (1) and (2) and estimates (3.3.1) and (3.3.2). �

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Without loss of generality, we assume that wij > 0 for all
i, j.

In the space Mat(m,n) of m× n real matrices G = (gij), we consider the expo-
nential measure dG with the density∏

ij

w−1
ij exp {−gij/wij} if gij > 0 for all i, j

and 0 elsewhere.
We note that dG is a log-concave measure.
Given positive integer vectors R = (r1, . . . , rm) and C = (c1, . . . , cn) and a

positive m×n matrix G, let A(G;R,C) be the N ×N block matrix constructed as
in Theorem 3.1. Then, by Theorem 3.1,

T (R,C;W ) =

(
m∏

i=1

1
ri!

) n∏
j=1

1
cj !

∫
Mat(m,n)

perA(G;R,C) dG.

From Lemma 4.3,

T (R,C;W ) ≥ N !
NN

N−N

(
m∏

i=1

rri
i

ri!

) n∏
j=1

c
cj

j

cj !


×
∫

Mat(m,n)

fN (G;R,C) dG

=
N !
NN

N−Nω(R)ω(C)
∫

Mat(m,n)

fN (G;R,C) dG.

Similarly, letting Rk = (r1k, . . . , rmk) and Ck = (c1k, . . . , cnk), by Theorem 3.1
we obtain

T (Rk, Ck;Wk) =

(
m∏

i=1

1
rik!

) n∏
j=1

1
cjk!

∫
Mat(m,n)

perA(G;Rk, Ck) dG,

and from Lemma 4.3

T (Rk, Ck;W ) ≤N−N

(
m∏

i=1

rrik

ik

rik!

) n∏
j=1

c
cjk

jk

cjk!


×min


m∏

i=1

rik!
rrik

ik

,
n∏

j=1

cjk!
c
cjk

jk


∫

Mat(m,n)

fN (G;Rk, Ck) dG

=N−N min
{
ω(Rk), ω(Ck)

}∫
Mat(m,n)

fN (G;Rk, Ck) dG.

14



By Lemma 4.2, for any positive matrices G1, . . . , Gk we have

f(G;R,C) ≥
p∏

k=1

fαk (Gk;Rk, Ck) , where G =
p∑

k=1

αkGk.

Applying the Prékopa-Leindler inequality (1.1.2), we obtain∫
Mat(m,n)

fN (G;R,C) dG ≥
p∏

k=1

(∫
Mat(m,n)

fN (G;Rk, Ck) dG

)αk

.

Therefore,
NN

N !
T (R,C;W )
ω(R)ω(C)

≥
p∏

k=1

(
T (Rk, Ck;W )

min
{
ω(Rk), ω(Ck)

})αk

and the proof follows. �

Proof of Corollary 2.2. We use that the function

s 7−→ bb

Γ(b + 1)
, b > 0

is log-convex. Therefore, the function

ω (b1, . . . , bl) =
l∏

i=1

bbi
i

Γ(bi + 1)

is log-convex on the positive orthant b1 > 0, . . . , bl > 0.
Thus we have

ω(R) ≥
p∏

k=1

ωαk (Rk) and ω(C) ≥
p∏

k=1

ωαk (Ck) .

Hence

NN

N !
T (R,C;W )

ω(C)
≥

p∏
k=1

Tαk (Rk, Ck;W ) and

NN

N !
T (R,C;W )

ω(R)
≥

p∏
k=1

Tαk (Rk, Ck;W ) ,

from which Part (1) follows.
Similarly, since ω is log-convex,

ω(R) ≥ ω (|R|/m, . . . , |R|/m) and ω(C) ≥ ω (|C|/n, . . . , |C|/n) ,

from which Part (2) follows.
Finally, by Stirling’s formula

(2πs)1/2sse−se
1

12s+1 < Γ(s + 1) < (2πs)1/2sse−se
1

12s

and Part(3) follows. �
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5. Appendix: Proof of Theorem 3.1

Let {
1, . . . , N

}
=

m⋃
i=1

Rowi and
{
1, . . . , N

}
=

n⋃
j=1

Colj

be the partition of the set of rows, respectively the set of columns of A, into non-
overlapping blocks such that∣∣Rowi

∣∣ = ri,
∣∣Colj

∣∣ = cj for i = 1, . . . , m and j = 1, . . . , n

and the Rowi×Colj block of A is filled by the copies of gij = wijγij .
Let φ : {1, . . . , N} −→ {1, . . . , N} be a bijection. We denote by

tφ =
N∏

k=1

akφ(k)

the corresponding term of perA and introduce the m × n contingency table D =
D(φ), called the pattern of φ as follows: we have D = (dij) where dij is the
number of indices k ∈ Rowi such that φ(k) ∈ Colj . Clearly, the row sums of D are
r1, . . . , rm while the column sums of D are c1, . . . , cn.

Thus
E perA =

∑
φ

E tφ and E tφ =
∏
ij

w
dij

ij dij !,

where D = (dij) is the pattern of φ and the sum is taken over all bijections
φ :

{
1, . . . , N

}
−→

{
1, . . . , N

}
. Here we use that E γd = d! for the standard

exponential random variable γ.
It remains to count the bijections φ having a given pattern D = (dij). Let

D = (dij) be a contingency table with the row sums r1, . . . , rm and the column
sums c1, . . . , cn. To choose a bijection φ with the pattern D, for each i = 1, . . . , m
we choose a partition

Rowi =
n⋃

j=1

Rowij where
∣∣Rowij

∣∣ = dij

and for each j = 1, . . . , n we choose a partition

Colj =
m⋃

i=1

Colij where
∣∣Colij

∣∣ = dij ,

altogether in (
m∏

i=1

ri!
di1! · · · din!

) n∏
j=1

cj !
d1j ! · · · dmj !
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ways. Finally, we identify φ by choosing bijections φij : Rowij −→ Colij altogether
in ∏

ij

dij !

ways. Therefore, there are

(
m∏

i=1

ri!

) n∏
j=1

cj !

∏
ij

dij !

−1

bijections φ :
{
1, . . . , N

}
−→

{
1, . . . , N

}
with the pattern D = (dij). Summariz-

ing,

E perA =

(
m∏

i=1

ri!

) n∏
j=1

cj !

∑
D

∏
ij

w
dij

ij ,

where the sum is taken over all contingency tables D = (dij) with the row sums
r1, . . . , rm and the column sums c1, . . . , cn, which completes the proof.
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