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Abstract. For a polynomial f : {−1, 1}n −→ C, we define the partition function as

the average of eλf(x) over all points x ∈ {−1, 1}n, where λ ∈ C is a parameter. We
present a quasi-polynomial algorithm, which, given such f , λ and ǫ > 0 approximates

the partition function within a relative error of ǫ in NO(lnn−ln ǫ) time provided

|λ| ≤ (2L
√
deg f)−1, where L = L(f) is a parameter bounding the Lipschitz constant

of f from above and N is the number of monomials in f . As a corollary, we obtain

a quasi-polynomial algorithm, which, given such an f with coefficients ±1 and such
that every variable enters not more than 4 monomials, approximates the maximum

of f on {−1, 1}n within a factor of O
(

δ−1
√
deg f

)

, provided the maximum is Nδ for

some 0 < δ ≤ 1. If every variable enters not more than k monomials for some fixed
k > 4, we are able to establish a similar result when δ ≥ (k − 1)/k.

1. Introduction and main results

(1.1) Polynomials and partition functions. Let {−1, 1}n be the n-dimensional
Boolean cube, that is, the set of all 2n n-vectors x = (±1, . . . ,±1) and let f :
{−1, 1}n −→ C be a polynomial with complex coefficients. We assume that f is
defined as a linear combination of square-free monomials:

f(x) =
∑

I⊂{1,... ,n}
αIx

I where αI ∈ C for all I

and xI =
∏

i∈I

xi for x = (x1, . . . , xn) ,
(1.1.1)

where we agree that x∅ = 1. As is known, the monomials xI for I ⊂ {1, . . . , n}
constitute a basis of the vector space of functions f : {−1, 1}n −→ C.
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We introduce two parameters measuring the complexity of the polynomial f in
(1.1.1). The degree of f is the largest degree of a monomial xI appearing in (1.1.1)
with a non-zero coefficient, that is, the maximum cardinality |I| such that αI 6= 0:

deg f = max
I: αI 6=0

|I|.

We also introduce a parameter which controls the Lipschitz constant of f :

L(f) = max
i=1,... ,n

∑

I⊂{1,... ,n}
i∈I

|αI |.

Indeed, if dist is the metric on the cube,

dist(x, y) =

n∑

i=1

|xi − yi| where x = (x1, . . . , xn) and y = (y1, . . . , yn)

then
|f(x)− f(y)| ≤ L(f) dist(x, y).

We consider {−1, 1}n as a finite probability space endowed with the uniform mea-
sure.

For λ ∈ C and a polynomial f : {−1, 1}n −→ C, we introduce the partition

function
1

2n

∑

x∈{−1,1}n

eλf(x) = E eλf .

Our first main result bounds from below the distance from the zeros of the
partition function to the origin.

(1.2) Theorem. Let f : {−1, 1}n −→ C be a polynomial and let λ ∈ C be such

that

|λ| ≤ 0.55

L(f)
√
deg f

.

Then

E eλf 6= 0.

If, additionally, the constant term of f is 0 then

∣∣E eλf
∣∣ ≥ (0.41)n.

We prove Theorem 1.2 in Section 4. As a simple example, let f (x1, . . . , xn) =
x1 + . . .+ xn. Then

E eλf =
(
E eλx1

)
· · ·
(
E eλxn

)
=

(
eλ + e−λ

2

)n

.
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We have L(f) = deg f = 1 and Theorem 1.2 predicts that E eλf 6= 0 provided
|λ| ≤ 0.55. Indeed, the smallest in the absolute value root of E eλf is λ = πi/2
with |λ| = π/2 ≈ 1.57. If we pick f(x1, . . . , xn) = ax1 + . . . + axn for some real
constant a > 0 then the smallest in the absolute value root of E eλf is πi/2a with
|λ| inversely proportional to L(f), just as Theorem 1.2 predicts. It is not clear
at the moment whether the dependence of the bound in Theorem 1.2 on deg f is
optimal.

As we will see shortly, Theorem 1.2 implies that E eλf can be efficiently computed
if |λ| is strictly smaller than the bound in Theorem 1.2. When computing E eλf ,
we may assume that the constant term of f is 0, since

E eλ(f+α) = eλαE eλf

and hence adding a constant to f results in multiplying the partition function by
a constant.

For a given f , we consider a univariate function

λ 7−→ E eλf .

As follows from Theorem 1.2, we can choose a branch of

g(λ) = ln
(
E eλf

)
for |λ| ≤ 0.55

L(f)
√
deg f

such that g(0) = 0. It follows that g(λ) is well-approximated by a low degree Taylor
polynomial at 0.

(1.3) Theorem. Let f : {−1, 1}n −→ C be a polynomial with zero constant term

and let

g(λ) = ln
(
E eλf

)
for |λ| ≤ 0.55

L(f)
√
deg f

.

For a positive integer m ≤ 5n, let

Tm(f ;λ) =
m∑

k=1

λk

k!

dk

dλk
g(λ)

∣∣∣
λ=0

be the degree m Taylor polynomial of g(λ) computed at λ = 0. Then for n ≥ 2

|g(λ)− Tm(f ;λ)| ≤ 50n

(m+ 1)(1.1)m
+ e−n

provided

(1.3.1) |λ| ≤ 1

2L(f)
√
deg f

.

In Section 3, we deduce Theorem 1.3 from Theorem 1.2.
As we discuss in Section 3.1, for a polynomial f given by (1.1.1), the value of

Tm(f ;λ) can be computed in nNO(m) time, where N is the number of monomials in
the representation (1.1.1). Theorem 1.3 implies that as long as ǫ ≫ e−n, by choosing
m = O

(
lnn − ln ǫ

)
, we can compute the value of E eλf within relative error ǫ in

NO(lnn−ln ǫ) time provided λ satisfies the inequality (1.3.1). For ǫ exponentially
small in n, it is more efficient to evaluate E eλf directly from the definition.
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(1.4) Relation to prior work. This paper is a continuation of a series of papers
by the author [Ba15], [Ba16] and by the author and P. Soberón [BS14], [BS16] on
algorithms to compute partition functions in combinatorics, see also [Re15]. The
main idea of the method is that the logarithm of the partition function is well-
approximated by a low-degree Taylor polynomial at the temperatures above the
phase transition (the role of the temperature is played by 1/λ), while the phase
transition is governed by the complex zeros of the partition function, cf. [YL52],
[LY52].

The main work of the method consists of bounding the complex roots of the par-
tition function, as in Theorem 1.2. While the general approach of this paper looks
similar to the approach of [Ba15], [Ba16], [BS14] and [BS16] (a martingale type and
a fixed point type arguments), in each case bounding complex roots requires some
effort and new ideas. Once the roots are bounded, it is relatively straightforward
to approximate the partition function as in Theorem 1.3.

Another approach to computing partition functions, also rooted in statistical
physics, is the correlation decay approach, see [We06] and [BG08]. While we did
not pursue that approach, in our situation it could conceivably work as follows:
given a polynomial f : {−1, 1}n −→ R and a real λ > 0, we consider the Boolean
cube as a finite probability space, where the probability of a point x ∈ {−1, 1}n
is eλf(x)/E eλf . This makes the coordinates x1, . . . , xn random variables. We
consider a graph with vertices x1, . . . , xn and edges connecting two vertices xi and
xj if there is a monomial of f containing both xi and xj . This introduces a graph
metric on the variables x1, . . . , xn and one could hope that if λ is sufficiently small,
we have correlation decay: the random variable xi is almost independent on the
random variables sufficiently distant from xi in the graph metric. This would allow
us to efficiently approximate the probabilities P (xi = 1) and P (xi = −1) and then
recursively estimate E eλf .

While both approaches treat the phase transition as a natural threshold for
computability, the concepts of phase transition in our method (complex zeros of
the partition function) and in the correlation decay approach (non-uniqueness of
Gibbs measures) though definitely related and even equivalent for some spin systems
[DS87], in general are different.

Theorem 1.3 together with the algorithm of Section 3.1 below implies that to
approximate E eλf within a relative error of ǫ > 0, it suffices to compute moments
E fk for k = O

(
ln ǫ−1

)
. This suggests some similarity with one of the results

of [K+96], where (among other results) it is shown that the number of satisfying
assignments of a DNF on n Boolean variables is uniquely determined by the numbers
of satisfying assignments for all possible conjunctions of k ≤ 1 + log2 n clauses of
the DNF (though this is a purely existential result with no algorithm attached).
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Each conjunction of the DNF can be represented as a polynomial

φj(x) =
1

2|Sj |

∏

i∈Sj

(1 + ǫixi) where

Sj ⊂ {1, . . . , n} and ǫi ∈ {−1, 1},

and we let

f(x) =
m∑

j=1

φj(x).

Then the number of points x ∈ {−1, 1}n such that f(x) > 0 is uniquely determined
by various expectations Eφj1 · · ·φjk for k ≤ 1+log2 n. The probability that f(x) =
0 for a random point x ∈ {−1, 1}n sampled from the uniform distribution, can
be approximated by E e−λf for a sufficiently large λ > 0. The expectations are
precisely those that arise when we compute the moments E fk. It is not clear
at the moment whether the results of this paper can produce an efficient way to
compute the number of satisfying assignments.

2. Applications to optimization

(2.1) Maximizing a polynomial on the Boolean cube. Let f : {−1, 1}n −→
R be a polynomial with real coefficients defined by its monomial expansion (1.1.1).
As is known, various computationally hard problems of discrete optimization, such
as finding the maximum cardinality of an independent set in a graph, finding the
minimum cardinality of a vertex cover in a hypergraph and the maximum constraint
satisfaction problem can be reduced to finding the maximum of f on the Boolean
cube {−1, 1}n, see, for example, [BH02].

The problem is straightforward if deg f ≤ 1. If deg f = 2, it may already be quite
hard even to solve approximately: Given an undirected simple graph G = (V,E)

with set V = {1, . . . , n} of vertices and set E ⊂
(
V
2

)
of edges, one can express

the largest cardinality of an independent set (a set vertices no two of which are
connected by an edge of the graph), as the maximum of

f(x) =
1

2

n∑

i=1

(xi + 1)− 1

4

∑

{i,j}∈E

(1 + xi) (1 + xj)

on the cube {−1, 1}n. It is an NP-hard problem to approximate the size of the
largest independent set in a given graph on n vertices within a factor of n1−ǫ for
any 0 < ǫ ≤ 1, fixed in advance [H̊a01], [Zu07]. If deg f = 2 and f does not contain
linear or constant terms, the problem reduces to the max cut problem in a weighted
graph (with both positive and negative weights allowed on the edges), where there
exists a polynomial time algorithm achieving an O(lnn) approximation factor, see
[KN12] for a survey.
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If deg f ≥ 3, no efficient algorithm appears to be known that would outperform
choosing a random point x ∈ {−1, 1}n. The maximum of a polynomial f with
deg f = 3 and no constant, linear or quadratic terms can be approximated within
an O

(√
n/ lnn

)
factor in polynomial time, see [KN12]. Finding the maximum of

a general real polynomial (1.1.1) on the Boolean cube {−1, 1}n is equivalent to
the problem of finding the maximum weight of a subset of a system of weighted
linear equations over Z2 that can be simultaneously satisfied [HV04]. Assuming
that deg f is fixed in advance, f contains N monomials and the constant term of f
is 0, a polynomial time algorithm approximating the maximum of f within a factor
of O(

√
N) is constructed in [HV04]. More precisely, the algorithm from [HV04]

constructs a point x such that f(x) is within a factor of O(
√
N) from

∑
I |αI | for

f defined by (1.1.1). If deg f ≥ 3, it is unlikely that a polynomial time algorithm

exists approximating the maximum of f within a factor of 2(lnN)1−ǫ

for any fixed
0 < ǫ ≤ 1 [HV04], see also [H̊a01].

Let us choose

λ =
1

2L(f)
√
deg f

as in Theorem 1.3. As is discussed in Section 3.5, by successive conditioning, we
can compute in NO(lnn−ln ǫ) time a point y ∈ {−1, 1}n which satisfies

(2.1.1) eλf(y) ≥ (1− ǫ)E eλf

for any given 0 < ǫ ≤ 1.
How well a point y satisfying (2.1.1) approximates the maximum value of f on

the Boolean cube {−1, 1}n? We consider polynomials with coefficients −1, 0 and
1, where the problem of finding an x ∈ {−1, 1}n maximizing f(x) is equivalent to
finding a vector in Zn

2 satisfying the largest number of linear equations from a given
list of linear equations over Z2.

(2.2) Theorem. Let

f(x) =
∑

I∈F
αIx

I

be a polynomial with zero constant term, where F is a family of non-empty subsets

of the set {1, . . . , n} and αI = ±1 for all I ∈ F . Let

max
x∈{−1,1}n

f(x) = δ|F| for some 0 ≤ δ ≤ 1.

Suppose further that every variable xi enters at most four monomials xI for I ∈ F .

Then

E eλf ≥ exp

{
3λ2δ2

16
|F|
}

for 0 ≤ λ ≤ 1.

Since E f = 0, the maximum of f is positive unless F = ∅ and f ≡ 0. It is not
clear whether the restriction on the number of occurrences of variables in Theorem
2.2 is essential or an artifact of the proof. We can get a similar estimate for any
number occurrences provided the maximum of f is sufficiently close to |F|.
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(2.3) Theorem. Let

f(x) =
∑

I∈F
αIx

I

be a polynomial with zero constant term, where F is a family of non-empty subsets

of the set {1, . . . , n} and αI = ±1 for all I ∈ F . Let k > 2 be an integer and

suppose that every variable xi enters at most k monomials xI for I ∈ F . If

max
x∈{−1,1}n

f(x) ≥ k − 1

k
|F|

then

E eλf ≥ exp

{
3λ2

16
|F|
}

for all 0 ≤ λ ≤ 1.

We prove Theorems 2.2 and 2.3 in Section 5.
Let f be a polynomial of Theorem 2.2 and suppose that, additionally, |I| ≤ d

for all I ∈ F , so that deg f ≤ d. We have L(f) ≤ 4 and we choose

λ =
1

8
√
d
.

Let y ∈ {−1, 1}n be a point satisfying (2.1.1). Then

f(y) ≥ 1

λ
lnE eλf +

ln(1− ǫ)

λ
≥ 3λδ2

16
|F|+ ln(1− ǫ)

λ
.

That is, if the maximum of f is at least δ|F| for some 0 < δ ≤ 1, we can approximate

the maximum in quasi-polynomial time within a factor ofO
(
δ−1

√
d
)
. Equivalently,

if for some 0 < δ ≤ 0.5 there is a vector in Zn
2 satisfying at least (0.5 + δ)|F|

equations of a set F of linear equations over Z2, where each variable enters at most
4 equations, in quasi-polynomial time we can compute a vector v ∈ Zn

2 satisfying

at least (0.5 + δ1)|F| linear equations from the system, where δ1 = Ω(δ2/
√
d) and

d is the largest number of variables per equation.
Similarly, we can approximate in quasi-polynomial time the maximum of f in

Theorem 2.3 within a factor of O(k
√
d) provided the maximum is sufficiently close

to |F|, that is, is at least k−1
k

|F|.
In Theorems 2.2 and 2.3, one can check in polynomial time whether the maximum

of f is equal to |F|, as this reduces to testing the feasibility of a system of linear
equations over Z2. However, for any fixed 0 < δ < 1, testing whether the maximum
is at least δ|F| is computationally hard, cf. [H̊a01].

H̊astad [H̊a00] constructed a polynomial time algorithm that approximates the
maximum of f within a factor of O(kd). In [B+15], see also [H̊a15], a polynomial

algorithm is constructed that finds the maximum of f within a factor of eO(d)
√
k,

provided f is an odd function. More precisely, the algorithm finds a point x such
that f(x) is within a factor of eO(d)

√
k from |F|.
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3. Computing the partition function

(3.1) Computing the Taylor polynomial of g(λ) = ln
(
E eλf

)
. First, we dis-

cuss how to compute the degree m Taylor polynomial Tm(f ;λ) at λ = 0 of the
function

g(λ) = ln
(
E eλf

)
,

see Theorem 1.3. Let us denote

h(λ) = E eλf and g(λ) = lnh(λ).

Then

g′ =
h′

h
and hence h′ = g′h.

Therefore,

(3.1.1) h(k)(0) =

k∑

j=1

(
k − 1

j − 1

)
g(j)(0)h(k−j)(0) for k = 1, . . . , m.

If we calculate the derivatives

(3.1.2) h(0), h(1)(0), . . . , h(m)(0),

then we can compute
g(0), g(1)(0), . . . , g(m)(0)

by solving a non-singular triangular system of linear equations (3.1.1) which has
h(0) = 1 on the diagonal. Hence our goal is to calculate the derivatives (3.1.2).

We observe that

h(k)(0) =
1

2n

∑

x∈{−1,1}n

fk(x) = E fk.

For a polynomial f defined by its monomial expansion (1.1.1) we have

E f = α∅.

We can consecutively compute the monomial expansion of f, f2, . . . , fm by using
the following multiplication rule for monomials on the Boolean cube {−1, 1}n:

xIxJ = xI∆J ,

where I∆J is the symmetric difference of subsets I, J ⊂ {1, . . . , n}. It follows then
that for a polynomial f : {−1, 1}n −→ C given by its monomial expansion (1.1.1)
and a positive integer m, the Taylor polynomial

Tm(f ;λ) =

m∑

k=1

λk

k!

dk

dλk
g(λ)

∣∣∣
λ=0

can be computed in nNO(m) time, where N is the number of monomials in f .
Our next goal is deduce Theorem 1.3 from Theorem 1.2. The proof is based on

the following lemma.
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(3.2) Lemma. Let p : C −→ C be a univariate polynomial and suppose that for

some β > 0 we have

p(z) 6= 0 provided |z| ≤ β.

Let 0 < γ < β and for |z| ≤ γ, let us choose a continuous branch of

g(z) = ln p(z).

Let

Tm(z) = g(0) +
m∑

k=1

zk

k!

dk

dzk
g(z)

∣∣∣
z=0

be the degree m Taylor polynomial of g(z) computed at z = 0. Then for

τ =
β

γ
> 1

we have

|g(z)− Tm(z)| ≤ deg p

(m+ 1)τm(τ − 1)
for all |z| ≤ γ.

Proof. Let n = deg p and let α1, . . . , αn be the roots of p, so we may write

p(z) = p(0)

n∏

i=1

(
1− z

αi

)
where |αi| ≥ β for i = 1, . . . , n.

Then

g(z) = g(0) +
n∑

i=1

ln

(
1− z

αi

)
,

where we choose the branch of the logarithm which is 0 when z = 0. Using the
Taylor series expansion of the logarithm, we obtain

ln

(
1− z

αi

)
= −

m∑

k=1

zk

kαk
i

+ ζm provided |z| ≤ γ,

where

|ζm| =
∣∣∣∣∣−

+∞∑

k=m+1

zk

kαk
i

∣∣∣∣∣ ≤
+∞∑

k=m+1

γk

kβk
≤ 1

(m+ 1)τm(τ − 1)
.

Therefore,

g(z) = g(0)−
n∑

i=1

m∑

k=1

zk

kαk
i

+ ηm for |z| ≤ γ,
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where
|ηm| ≤ n

(m+ 1)τm(τ − 1)
.

It remains to notice that

Tm(z) = g(0)−
n∑

i=1

m∑

k=1

zk

kαk
i

.

�

Next, we need a technical bound on the approximation of ez by its Taylor poly-
nomial.

(3.3) Lemma. Let ρ > 0 be a real number and let m ≥ 5ρ be an integer. Then

∣∣∣∣∣e
z −

m∑

k=0

zk

k!

∣∣∣∣∣ ≤ e−2ρ for all z ∈ C such that |z| ≤ ρ.

Proof. For all z ∈ C such that |z| ≤ ρ, we have

∣∣∣∣∣e
z −

m∑

k=0

zk

k!

∣∣∣∣∣ =
∣∣∣∣∣

+∞∑

k=m+1

zk

k!

∣∣∣∣∣ ≤
+∞∑

k=m+1

ρk

k!
=

ρm+1

(m+ 1)!

+∞∑

k=0

ρk(m+ 1)!

(k +m+ 1)!

≤ ρm+1

(m+ 1)!

+∞∑

k=0

ρk

k!
=

ρm+1eρ

(m+ 1)!
≤ ρm+1eρ+m+1

(m+ 1)m+1
.

Since m ≥ 5ρ, we obtain

∣∣∣∣∣e
z −

+∞∑

k=0

zk

k!

∣∣∣∣∣ ≤ ρm+1eρ+m+1

5m+1ρm+1
=

eρ

(5/e)m+1
≤ eρ

(5/e)5ρ
≤ e−2ρ.

and the proof follows. �

(3.4) Proof of Theorem 1.3. Without loss of generality, we assume that L(f) =
1. Since the constant term of f is 0, for any x ∈ {−1, 1}n, we have

|f(x)| ≤
n∑

i=1

∑

I: i∈I

|αI | ≤ n.

Applying Lemma 3.3, we conclude that

(3.4.1)

∣∣∣∣∣e
λf(x) −

5n∑

k=0

(
λf(x)

)k

k!

∣∣∣∣∣ ≤ e−2n for all x ∈ {−1, 1}n
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provided |λ| ≤ 1. Let

p(λ) = 1 +

5n∑

k=1

λk

k!

dk

dλk

(
E eλf

) ∣∣∣
λ=0

be the degree 5n Taylor polynomial of the function λ 7−→ E eλf at λ = 0. From
(3.4.1) it follows that

∣∣E eλf − p(λ)
∣∣ ≤ e−2n provided |λ| ≤ 1.

From Theorem 1.2, we conclude that

p(λ) 6= 0 for all λ ∈ C such that |λ| ≤ 0.55√
deg f

and, moreover,

(3.4.2)
∣∣ln p(λ)− ln

(
E eλf

)∣∣ ≤ e−n provided |λ| ≤ 0.55√
deg f

and n ≥ 2.

Applying Lemma 3.2 with

β =
0.55√
deg f

, γ =
0.5√
deg f

and τ =
β

γ
= 1.1,

we conclude that for the Taylor polynomial of ln p(λ) at λ = 0,

Tm(λ) = ln p(0) +

m∑

k=1

λk

k!

dk

dλk
ln p(λ)

∣∣∣
λ=0

we have

(3.4.3) |Tm(λ)− ln p(λ)| ≤ 50n

(m+ 1)(1.1)m
provided |λ| ≤ 1

2
√
deg f

.

It remains to notice that the Taylor polynomials of degree m ≤ 5n of the functions

λ 7−→ ln
(
E eλf

)
and λ 7−→ ln p(λ)

at λ = 0 coincide, since both are determined by the firstm derivatives of respectively
E eλf and p(λ) at λ = 0, cf. Section 3.1, and those derivatives coincide. The proof
now follows by (3.4.2) – (3.4.3). �
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(3.5) Computing a point y in the cube with a large value of f(y). We
discuss how to compute a point y ∈ {−1, 1}n satisfying (2.1). We do it by successive
conditioning and determine one coordinate of y = (y1, . . . , yn) at a time. Let F+

and F− be the facets of the cube {−1, 1}n defined by the equations xn = 1 and
xn = −1 respectively for x = (x1, . . . , xn), x ∈ {−1, 1}n. Then F+ and F− can be
identified with the (n− 1)-dimensional cube {−1, 1}n−1 and we have

E eλf =
1

2
E
(
eλf |F+

)
+

1

2
E
(
eλf |F−) .

Moreover, for the restrictions f+ and f− of f onto F+ and F− respectively, con-
sidered as polynomials on {−1, 1}n−1, we have

deg f+, deg f− ≤ deg f and L(f+), L(f−) ≤ L(f).

Using the algorithm of Section 3.1 and Theorem 1.3, we compute E
(
eλf |F+

)
and

E
(
eλf |F−) within a relative error ǫ/2n, choose the facet with the larger computed

value, let yn = 1 if the value of E
(
eλf |F+

)
appears to be larger and let yn = −1 if

the value of E
(
eλf |F−) appears to be larger and proceed further by conditioning

on the value of yn−1. For polynomials with N monomials, the complexity of the
algorithm is NO(lnn).

4. Proof of Theorem 1.2

To prove Theorem 1.2, we consider restrictions of the partition function onto
faces of the cube.

(4.1) Faces. A face F ⊂ {−1, 1}n consists of the points x where some of the
coordinates of x are fixed at 1, some are fixed at −1 and others are allowed to
vary (a face is always non-empty). With a face F , we associate three subsets
I+(F ), I−(F ), I(F ) ⊂ {1, . . . , n} as follows:

I+(F ) =
{
i : xi = 1 for all x ∈ F, x = (x1, . . . , xn)

}
,

I−(F ) =
{
i : xi = −1 for all x ∈ F, x = (x1, . . . , xn)

}
and

I(F ) ={1, . . . , n} \ (I+(F ) ∪ I−(F )) .

Consequently,

F =
{
(x1, . . . , xn) where xi = 1 for i ∈ I+(F ) and

xi = −1 for i ∈ I−(F )
}
.

In particular, if I+(F ) = I−(F ) = ∅ and hence I(F ) = {1, . . . , n}, we have
F = {−1, 1}n. We call the number

dimF = |I(F )|
12



the dimension of F .

For a subset J ∈ {1, . . . , n}, we denote by {−1, 1}J the set of all points

x = (xj : j ∈ J) where xj = ±1.

Let F ⊂ {−1, 1}n be a face. For a subset J ⊂ I(F ) and a point ǫ ∈ {−1, 1}J ,
ǫ = (ǫj : j ∈ J), we define

F ǫ =
{
x ∈ F, x = (x1, . . . , xn) : xj = ǫj for j ∈ J

}
.

In words: F ǫ is obtained from F by fixing the coordinates from some set J ⊂ I(F )
of free coordinates to 1 or to −1. Hence F ǫ is also a face of {−1, 1}n and we think
of F ǫ ⊂ F as a face of F . We can represent F as a disjoint union

(4.1.1) F =
⋃

ǫ∈{−1,1}J

F ǫ for any J ⊂ I(F ).

(4.2) The space of polynomials. Let us fix a positive integer d. We identify
the set of all polynomials f as in (1.1.1) such that deg f ≤ d and the constant term
of f is 0 with CN , where

N = N(n, d) =

d∑

k=1

(
n

k

)
.

For δ > 0, we consider a closed convex set U(δ) ⊂ CN consisting of the polynomials
f : {−1, 1}n −→ C such that deg f ≤ d and L(f) ≤ δ. In other words, U(δ) consists
of the polynomials

f(x) =
∑

I⊂{1,... ,n}
1≤|I|≤d

αIx
I where

∑

I: i∈I

|αI | ≤ δ for i = 1, . . . , n.

(4.3) Restriction of the partition function onto a face. Let f : {−1, 1}n −→
C be a polynomial and let F ⊂ {−1, 1}n be a face. We define

E
(
ef |F

)
=

1

2dimF

∑

x∈F

ef(x).

We suppose that f is defined by its monomial expansion as in (1.1.1) and consider
13



E
(
ef |F

)
as a function of the coefficients αI . Using (4.1.1) we deduce

∂

∂αJ
E
(
ef |F

)
=

1

2dimF

∑

x∈F

xJef(x)

=
(−1)|I−(F )∩J|

2|I(F )|

×
∑

ǫ∈{−1,1}I(F)∩J

ǫ=(ǫj : j∈I(F )∩J)


 ∏

j∈I(F )∩J

ǫj


 ∑

x∈F ǫ

ef(x)

=
(−1)|I−(F )∩J|

2|I(F )∩J|

×
∑

ǫ∈{−1,1}I(F)∩J

ǫ=(ǫj : j∈I(F )∩J)


 ∏

j∈I(F )∩J

ǫj


E

(
ef |F ǫ

)
.

(4.3.1)

In what follows, we identify complex numbers with vectors in R
2 = C and

measure angles between non-zero complex numbers.

(4.4) Lemma. Let 0 < τ ≤ 1 and δ > 0 be real numbers and let F ⊂ {−1, 1}n be

a face. Suppose that for every f ∈ U(δ) we have E
(
ef |F

)
6= 0 and, moreover, for

any K ⊂ I(F ) we have

∣∣E
(
ef |F

)∣∣ ≥
(τ
2

)|K| ∑

ǫ∈{−1,1}K

∣∣E
(
ef , F ǫ

)∣∣ .

Given f ∈ U(δ) and a subset J ⊂ {1, . . . , n} such that |J | ≤ d, let f̂ ∈ U(δ) be the

polynomial obtained from f by changing the coefficient αJ of the monomial xJ in

f to −αJ and leaving all other coefficients intact. Then the angle between the two

non-zero complex numbers E
(
ef |F

)
and E

(
ef̂ |F

)
does not exceed

2|αJ |
τd

.

Proof. Without loss of generality, we assume that αJ 6= 0.

We note that for any f ∈ U(δ), we have f̂ ∈ U(δ). Since E
(
ef |F

)
6= 0 for all

f ∈ U(δ), we may consider a branch of lnE
(
ef |F

)
for f ∈ U(δ).

Let us fix coefficients αI for I 6= J in

(4.4.1) f(x) =
∑

I⊂{1,... ,n}
1≤|I|≤d

αIx
I

14



and define a univariate function

g(α) = lnE
(
ef |F

)
where |α| ≤ |αJ |

obtained by replacing αJ with α in (4.4.1).
We obtain

(4.4.2) g′(α) =
∂

∂αJ
lnE

(
ef |F

)
=

(
∂

∂αJ
E
(
ef |F

))/
E
(
ef |F

)
.

Let
k = |I(F ) ∩ J | ≤ |J | ≤ d.

Using (4.3.1) we conclude that

(4.4.3)

∣∣∣∣
∂

∂αJ
E
(
ef |F

)∣∣∣∣ ≤ 1

2k

∑

ǫ∈{−1,1}I(F)∩J

∣∣E
(
ef |F ǫ

)∣∣ .

On the other hand,

(4.4.4)
∣∣E
(
ef |F

)∣∣ ≥
(τ
2

)k ∑

ǫ∈{−1,1}I(F)∩J

∣∣E
(
ef |F ǫ

)∣∣ .

Comparing (4.4.2) - (4.4.4), we conclude that

|g′(α)| =
∣∣∣∣

∂

∂αJ
lnE

(
ef |F

)∣∣∣∣ ≤ 1

τk
≤ 1

τd
.

Then

∣∣∣lnE
(
ef |F

)
− lnE

(
ef̂ |F

)∣∣∣ = |g (αJ)− g (−αJ )| ≤ 2|αJ | max
|α|≤|αJ |

|g′(α)| ≤ 2|αJ |
τd

and the proof follows. �

(4.5) Lemma. Let θ ≥ 0 and δ > 0 be real numbers such that θδ < π, let F ⊆
{−1, 1}n be a face such that dimF < n and suppose that E

(
ef |F

)
6= 0 for all

f ∈ U(δ). Assume that for any f ∈ U(δ), for any J ⊂ {1, . . . , n} such that |J | ≤ d,

and for the polynomial f̂ obtained from f by changing the coefficient αJ to −αJ

and leaving all other coefficients intact, the angle between non-zero complex numbers

E
(
ef |F

)
and E

(
ef̂ |F

)
does not exceed θ|αJ |.

Suppose that F̂ ⊂ {−1, 1}n is a face obtained from F by changing the sign of one

of the coordinates in I+(F )∪ I−(F ). Then G = F ∪ F̂ is a face of {−1, 1}n and for

τ = cos
θδ

2
15



we have ∣∣E
(
ef |G

)∣∣ ≥ τ

2

(∣∣E
(
ef |F

)∣∣+
∣∣∣E
(
ef |F̂

)∣∣∣
)

for any f ∈ U(δ).
Proof. Suppose that F̂ is obtained from F by changing the sign of the i-th coor-
dinate. Let f̃ be a polynomial obtained from f by replacing the coefficients αI by
−αI whenever i ∈ I and leaving all other coefficients intact. Then f̃ ∈ U(δ) and

the angle between E
(
ef |F

)
and E

(
ef̃ |F

)
does not exceed

θ
∑

I: i∈I

|αI | ≤ θδ.

On the other hand, E
(
ef̃ |F

)
= E

(
ef |F̂

)
and

E
(
ef |G

)
=

1

2
E
(
ef |F

)
+

1

2
E
(
ef |F̂

)
=

1

2
E
(
ef |F

)
+

1

2
E
(
ef̃ |F

)
.

Thus E
(
ef |G

)
is the sum of two non-zero complex numbers, the angle between

which does not exceed θδ < π. Interpreting the complex numbers as vectors in
R2 = C, we conclude that the length of the sum is at least as large as the length of
the sum of the orthogonal projections of the vectors onto the bisector of the angle
between them, and the proof follows. �

(4.6) Proof of Theorem 1.2. Let us denote d = deg f .
One can observe that the equation

2

cos

(
θβ

2

) = θ

has a solution θ ≥ 0 for all sufficiently small β > 0. Numerical computations show
that one can choose

β = 0.55,

in which case
θ ≈ 2.748136091.

Let

δ =
β√
d
=

0.55√
d
.

We observe that
0 < θδ ≤ θβ ≈ 1.511474850 < π.

Let

τ = cos
θδ

2
= cos

θβ

2
√
d
.

16



In particular,

τ ≥ cos
θβ

2
≈ 0.7277659962.

Next, we will use the inequality

(4.6.1)

(
cos

α√
d

)d

≥ cosα for 0 ≤ α ≤ π

2
and d ≥ 1.

One can obtain (4.6.1) as follows. Since tan(0) = 0 and the function tanα is convex
for 0 ≤ α < π/2, we have

√
d tan

α√
d

≤ tanα for 0 ≤ α <
π

2
.

Integrating, we obtain

d ln cos
α√
d

≥ ln cosα for 0 ≤ α <
π

2

and (4.6.1) follows.
Using (4.6.1), we obtain

(4.6.2)
2

(
cos θδ

2

)d =
2

(
cos

θβ
2
√
d

)d ≤ 2

cos
(
θβ
2

) = θ.

We prove by induction on m = 0, 1, . . . , n the following three statements.

(4.6.3) Let F ⊂ {−1, 1}n be a face of dimension m. Then, for any f ∈ U(δ), we
have E

(
ef |F

)
6= 0.

(4.6.4) Let F ⊂ {−1, 1}n be a face of dimension m, let f ∈ U(δ) and let f̂ be
a polynomial obtained from f by changing one of the coefficients αJ to −αJ and
leaving all other coefficients intact. Then the angle between two non-zero complex

numbers E
(
ef |F

)
and E

(
ef̂ |F

)
does not exceed θ|αJ |.

(4.6.5) Let F ⊂ {−1, 1}n be a face of dimension m and let f ∈ U(δ). Assuming
that m > 0 and hence I(F ) 6= ∅, let us choose any i ∈ I(F ) and let F+ and F− be
the corresponding faces of F obtained by fixing xi = 1 and xi = −1 respectively.
Then ∣∣E

(
ef |F

)∣∣ ≥ τ

2

(∣∣E
(
ef |F+

)∣∣+
∣∣E
(
ef |F−)∣∣) .

If m = 0 then F consists of a single point x ∈ {−1, 1}n, so

E
(
ef |F

)
= ef(x) 6= 0
17



and (4.6.3) holds. Assuming that f̂ is obtained from f by replacing the coefficient
αJ with −αJ and leaving all other coefficients intact, we get

E
(
ef |F

)

E
(
ef̂ |F

) = exp
{
2αJx

J
}
.

Since
|2αJx

J | = 2|αJ | ≤ θ|αJ |,

the angle between E
(
ef |F

)
andE

(
ef̂ |F

)
does not exceed θ|αJ | and (4.6.4) follows.

The statement (4.6.5) is vacuous for m = 0.
Suppose that (4.6.3) and (4.6.4) hold for faces of dimension m < n. Lemma 4.5

implies that if F is a face of dimension m+ 1 and F+ and F− are m-dimensional
faces obtained by fixing xi for some i ∈ I(F ) to xi = 1 and xi = −1 respectively,
then

∣∣E
(
ef |F

)∣∣ ≥
(
cos

θδ

2

) ∣∣E
(
ef |F+

)∣∣+
∣∣E
(
ef |F−)∣∣

2

=
τ

2

(∣∣E
(
ef |F+

)∣∣+
∣∣E
(
ef |F−)∣∣)

and the statement (4.6.5) holds for (m+ 1)-dimensional faces.
The statement (4.6.5) for (m + 1)-dimensional faces and the statement (4.6.3)

for m-dimensional faces imply the statement (4.6.3) for (m+ 1)-dimensional faces.
Finally, suppose that the statements (4.6.3) and (4.6.5) hold for all faces of

dimension at most m + 1. Let us pick a face F ⊂ {−1, 1}n of dimension m + 1,
where 0 ≤ m < n. Applying the condition of statement (4.6.5) recursively to the
faces of F , we get that for any K ⊂ I(F ),

∣∣E
(
ef |F

)∣∣ ≥
(τ
2

)|K| ∑

ǫ∈{−1,1}K

∣∣E
(
ef |F ǫ

)∣∣ .

Then, by Lemma 4.4, the angle between two non-zero complex numbers E
(
ef |F

)

and E
(
ef̂ |F

)
does not exceed

2|αJ |
τd

=
2|αJ |(
cos θδ2

)d ≤ θ|αJ |

by (4.6.2), and the statement (4.6.4) follows for faces of dimension m+ 1.
This proves that (4.6.3) – (4.6.5) hold for faces F of all dimensions. Iterating

(4.6.5), we obtain that for any f ∈ U(δ), we have

∣∣E ef
∣∣ ≥

(τ
2

)n ∑

x∈{−1,1}n

|ef(x)|.

18



Since for any x ∈ {−1, 1}n and for any f ∈ U(δ), we have

|f(x)| ≤
n∑

i=1

∑

I⊂{1,... ,n}
i∈I

|αI | ≤ nδ ≤ βn,

we conclude that ∣∣E ef
∣∣ ≥ τne−βn ≥ (0.41)n.

The proof follows since if f : {−1, 1}n −→ C is a polynomial with zero constant
term and

|λ| ≤ 0.55

L(f)
√
deg f

,

then λf ∈ U(δ). �

5. Proofs of Theorems 2.2 and 2.3

The proofs of Theorems 2.2 and 2.3 are based on the following lemma.

(5.1) Lemma. Let

f(x) =
∑

I∈F
αIx

I

be a polynomial such that αI ≥ 0 for all I ∈ F . Then

E ef ≥
∏

I∈F

(
eαI + e−αI

2

)
.

Proof. Since

eαx =

(
eα + e−α

2

)
+ x

(
eα − e−α

2

)
for x = ±1,

we have

(5.1.1) E ef = E
∏

I∈F
eαIx

I

= E
∏

I∈F

((
eαI + e−αI

2

)
+ xI

(
eαI − e−αI

2

))
.

Since
eαI − e−αI

2
≥ 0 provided αI ≥ 0

and
E
(
xI1 · · ·xIk

)
≥ 0 for all I1, . . . , Ik,

expanding the product in (5.1.1) and taking the expectation, we get the desired
inequality. �

Next, we prove a similar estimate for functions f that allow some monomials
with negative coefficients.
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(5.2) Lemma. Let f(x) = g(x)− h(x) where

g(x) =
∑

I∈G
xI , h(x) =

∑

I∈H
xI , G ∩H = ∅.

Suppose that the constant terms of g and h are 0 and that every variable xi enters

not more than k monomials of f for some integer k > 0. Then

E eλf ≥ exp

{
3λ2

8
(|G| − (k − 1)|H|)

}
for 0 ≤ λ ≤ 1.

Proof. Since E f = 0, by Jensen’s inequality we have

E eλf ≥ 1

and the estimate follows if |G| ≤ (k − 1)|H|. Hence we may assume that |G| >
(k − 1)|H|.

Given a function f : {−1, 1}n −→ R and a set J ⊂ {1, . . . , n} of indices, we
define a function (conditional expectation) fJ : {−1, 1}n−|J| −→ R obtained by
averaging over variables xj with j ∈ J :

fJ (xi : i /∈ J) =
1

2|J|

∑

xj=±1
j∈J

f (x1, . . . , xn) .

In particular, fJ = f if J = ∅ and fJ = E f if J = {1, . . . , n}. We obtain the
monomial expansion of fJ by erasing all monomials of f that contain xj with
j ∈ J . By Jensen’s inequality we have

(5.2.1) E eλf ≥ E eλfJ for all real λ.

Let us choose a set J of indices with |J | ≤ |H| such that every monomial in h(x)
contains at least one variable xj with j ∈ J . Then every variable xj with j ∈ J is
contained in at most (k − 1) monomials of g(x) and hence fJ is a sum of at least
|G| − (k − 1)|H| monomials.

From (5.2.1) and Lemma 5.1, we obtain

E eλf ≥ E eλfJ ≥
(
eλ + e−λ

2

)|G|−(k−1)|H|
≥
(
1 +

λ2

2

)|G|−(k−1)|H|
.

Using that

(5.2.2) ln(1 + x) ≥ x− x2

2
= x

(
1− x

2

)
for x ≥ 0,

we conclude that

E eλf ≥ exp

{
λ2

2

(
1− λ2

4

)
(|G| − (k − 1)|H|)

}
≥ exp

{
3λ2

8
(|G| − (k − 1)|H|)

}

as desired. �

Now we are ready to prove Theorem 2.3.
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(5.3) Proof of Theorem 2.3. Let x0 ∈ {−1, 1}n, x0 = (ξ1, . . . , ξn) be a maxi-
mum point of f , so that

max
x∈{−1,1}n

f(x) = f(x0).

Let us define f̃ : {−1, 1}n −→ R by

f̃ (x1, . . . , xn) = f (ξ1x1, . . . , ξnxn) .

Then
max

x∈{−1,1}n
f(x) = max

x∈{−1,1}n
f̃(x), E eλf = E eλf̃

and the maximum value of f̃ on the cube {−1, 1}n is attained at u = (1, . . . , 1).
Hence without loss of generality, we may assume that the maximum value of f on
the cube {−1, 1}n is attained at u = (1, . . . , 1).

We write

f(x) = g(x)− h(x) where g(x) =
∑

I∈G
xI and h(x) =

∑

I∈H
xI

for some disjoint sets G and H of indices. Moreover,

max
x∈{−1,1}n

f(x) = f(u) = |G| − |H| ≥ k − 1

k
|F|.

Since
|G|+ |H| = |F|,

we conclude that

|G| ≥ 2k − 1

2k
|F| and |H| ≤ 1

2k
|F|.

By Lemma 5.2,

E eλf ≥ exp

{
3λ2

8
(|G| − (k − 1)|H|)

}
≥ exp

{
3λ2

16
|F|
}

as desired. �

To prove Theorem 2.2, we need to handle negative terms with more care.

(5.4) Lemma. Let f(x) = g(x)− h(x) where

g(x) =
∑

I∈G
xI , h(x) =

∑

I∈H
xI , G ∩H = ∅

and

|G| ≥ |H|.
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Suppose that the constant terms of g and h are 0 and that the supports I ∈ H of

monomials in h(x) are pairwise disjoint. Then

E eλf ≥ exp

{
3λ2

8

(√
|G| −

√
|H|
)2}

for 0 ≤ λ ≤ 1.

Proof. By Jensen’s inequality we have

E eλf ≥ exp {λE f} = 1,

which proves the lemma in the case when |G| = |H|. Hence we may assume that
|G| > |H|.

If |H| = 0 then, applying Lemma 5.1, we obtain

E eλf = E eλg ≥
(
eλ + e−λ

2

)|G|
≥
(
1 +

λ2

2

)|G|
.

Using (5.2.2), we conclude that

E eλf ≥ exp

{
λ2

2

(
1− λ2

4

)
|G|
}

≥ exp

{
3λ2

8
|G|
}
,

which proves the lemma in the case when |H| = 0. Hence we may assume that
|G| > |H| > 0.

Since the supports I ∈ H of monomials in h are pairwise disjoint, we have

(5.4.1) E eλh =
∏

I∈H
E eλx

I

=

(
eλ + e−λ

2

)|H|
.

Let us choose real p, q ≥ 1, to be specified later, such that

1

p
+

1

q
= 1.

Applying the Hölder inequality, we get

E eλg/p = E
(
eλf/peλh/p

)
≤
(
E eλf

)1/p (
E eλqh/p

)1/q

and hence

E eλf ≥
(
E eλg/p

)p
(
E eλqh/p

)p/q .
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Applying Lemma 5.1 and formula (5.4.1), we obtain

E eλf ≥
(
eλ/p + e−λ/p

2

)|G|p(
eλq/p + e−λq/p

2

)−|H|p/q
.

Since

ex
2/2 ≥ ex + e−x

2
≥ 1 +

x2

2
for x ≥ 0,

we obtain

E eλf ≥
(
1 +

λ2

2p2

)|G|p
exp

{
−λ2q|H|

2p

}
.

Applying (5.2.2), we obtain

E eλf ≥ exp

{
λ2|G|
2p

− λ2q|H|
2p

− λ4|G|
8p3

}
.

Let us choose

p =

√
|G|√

|G| −
√
|H|

and q =

√
|G|√
|H|

.

Then

E eλf ≥ exp





λ2

2

(√
|G| −

√
|H|
)2

−
λ4
(√

|G| −
√

|H|
)3

8
√
|G|





= exp





λ2

2

(√
|G| −

√
|H|
)2

1−

λ2
(√

|G| −
√
|H|
)

4
√
|G|







≥ exp

{
3λ2

8

(√
|G| −

√
|H|
)2}

and the proof follows. �

(5.5) Lemma. Let f(x) = g(x)− h(x) where

g(x) =
∑

I∈G
xI , h(x) =

∑

I∈H
xI , G ∩H = ∅

and

|G| ≥ |H|.
Suppose that the constant terms of g and h are 0, that every variable xi enters at

most two monomials in h(x) and that if xi enters exactly two monomials in h(x)
then xi enters at most two monomials in g(x). Then for 0 ≤ λ ≤ 1, we have

E eλf ≥ exp

{
3λ2

8

(√
|G| −

√
|H|
)2}

.
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Proof. We proceed by induction on the number k of variables xi that enter exactly
two monomials in h(x). If k = 0 then the result follows by Lemma 5.4.

Suppose that k > 0 and that xi is a variable that enters exactly two monomials
in h(x) and hence at most two monomials in g(x). As in the proof of Lemma 5.2, let
fi : {0, 1}n−1 −→ R be the polynomial obtained from f by averaging with respect
to xi. As in the proof of Lemma 5.2, we have

E eλf ≥ E eλfi where fi(x) =
∑

I∈Gi

xI −
∑

I∈Hi

xI

and Gi, respectively Hi, is obtained from G, respectively H, by removing supports
of monomials containing xi. In particular,

|Hi| = |H| − 2 and |Gi| ≥ |G| − 2.

Applying the induction hypothesis to fi, we obtain

E eλf ≥ E eλfi ≥ exp

{
3λ2

8

(√
|Gi| −

√
|Hi|

)2}

≥ exp

{
3λ2

8

(√
|G| − 2−

√
|H| − 2

)2}
≥ exp

{
3λ2

8

(√
|G| −

√
|H|
)2}

and the proof follows. �

Finally, we are ready to prove Theorem 2.2.

(5.6) Proof of Theorem 2.2. As in the proof of Theorem 2.3 of Section 5.3,
without loss of generality we may assume that the maximum of f is attained at
u = (1, . . . , 1).

We write

f(x) = g(x)− h(x) where g(x) =
∑

I∈G
xI and h(x) =

∑

I∈H
xI

for some disjoint sets G and H of indices. Moreover,

max
x∈{−1,1}n

f(x) = f(u) = |G| − |H| = δ|F|.

Since
|G|+ |H| = |F|,

we conclude that

(5.6.1) |G| = 1 + δ

2
|F| and |H| = 1− δ

2
|F|.
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For i = 1, . . . , n let µ+
i be the number of monomials in g that contain variable i

and let µ−
i be the number of monomials in h that contain xi. Then

(5.6.2) µ+
i + µ−

i ≤ 4 for i = 1, . . . , n.

If for some i we have µ+
i < µ−

i then for the point ui obtained from u by switching
the sign of the i-th coordinate, we have

f(ui) =
(
|G| − 2µ+

i

)
−
(
|H| − 2µ−

i

)
= |G| − |H|+ 2

(
µ−
i − µ+

i

)
> f(u),

contradicting that u is a maximum point of f . Therefore,

µ+
i ≥ µ−

i for i = 1, . . . , n

and, in view of (5.6.2), we conclude that

µ−
i ≤ 2 for i = 1, . . . , n and if µ−

i = 2 then µ+
i = 2.

By Lemma 5.5,

E eλf ≥ exp

{
3λ2

8

(√
|G| −

√
|H|
)2}

.

Using (5.6.1), we deduce that

E eλf ≥ exp





3λ2

8

(√
1 + δ

2
−
√

1− δ

2

)2

|F|





= exp

{
3λ2

8

(
1−

√
1− δ2

)
|F|
}

≥ exp

{
3λ2δ2

16
|F|
}
,

which completes the proof. �
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