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Abstract. We prove that the number of vertices of a polytope of a particular kind
is exponentially large in the dimension of the polytope. As a corollary, we prove that

an n-dimensional centrally symmetric polytope with O(n) facets has 2Ω(n) vertices
and that the number of r-factors in a k-regular graph is exponentially large in the

number of vertices of the graph provided k ≥ 2r+1 and every cut in the graph with

at least two vertices on each side has more than k/r edges.

1. Introduction and main results

Let R
n be Euclidean space with the standard scalar product 〈·, ·〉 and the as-

sociated Euclidean norm ‖ · ‖. A polytope P ⊂ R
n is the convex hull of a finite

set of points. We say that P is n-dimensional if P has a non-empty interior. The
intersection of P with a supporting affine hyperplane is called a face of P . Faces of
P of dimension 0 are called vertices and faces of codimension 1 are called facets of
P .

In this paper we prove the following result.

(1.1) Theorem. For every α, β ≥ 1 there is γ = γ (α, β) > 0 independent of n
such that the following holds.

Suppose that P ⊂ R
n is a polytope containing the set

{

x ∈ R
n : |〈x, ui〉| ≤ 1 for i = 1, . . . , m

}

where ‖ui‖ ≤ 1 for i = 1, . . . , m and m ≤ αn. Suppose further that P lies inside

the ball
{

x ∈ R
n : ‖x‖ ≤ β

√
n
}

.
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Then P has at least exp{γn} vertices.

We obtain the following estimate of γ = γ(α, β) from our proof. Let us choose
any 0 < ǫ < 1 and let ρ > 0 be any number such that the following two inequalities
hold:

α ln

(

1− exp

{

−ρ2

2

})

> −ǫ2

4
and

γ =
(1− ǫ)2

2β2ρ2

(

1− exp

{

−ρ2

2

})

+ α ln

(

1− exp

{

−ρ2

2

})

> 0.

Then γ defined by the second formula satisfies the conclusion of Theorem 1.1 for
all sufficiently large n.

Our first corollary is a lower bound for the number of vertices of a centrally

symmetric polytope P , that is, a polytope P satisfying P = −P .

(1.2) Corollary. For every α ≥ 1 there exists γ = γ(α) > 0 such that if P is an

n-dimensional centrally symmetric polytope with not more than αn facets then P
has at least 2γn vertices.

By duality, an n-dimensional centrally symmetric polytope with O(n) vertices
has 2Ω(n) facets. In [F+77] Figiel, Lindenstrauss and Milman, as a corollary of
a powerful new method, proved that for an n-dimensional centrally symmetric
polytope with v vertices and f facets the inequality

(1.2.1) (log v) · (log f) ≥ γn

holds for some absolute constant γ > 0. More generally, they obtained (1.2.1) for
any polytope, symmetric or not, which contains the unit ball and is contained in
a ball of radius O (

√
n). We note that if f = O(n) then inequality (1.2.1) implies

that v = 2Ω(n/ logn) and hence the estimate of Corollary 1.2 is sharper than (1.2.1)
in this case.

Our second application is combinatorial.
Let G be a k-regular graph with a finite set V of vertices and the set E of edges.

Thus every vertex v ∈ V is incident to precisely k edges of G (we do not allow
multiple edges or loops). An r-regular subgraph H of G with the same set V of
vertices is called an r-factor of G. In particular, a 1-factor is also known as a
perfect matching in G. For a set U ⊂ V of vertices, we denote by δ(U) ⊂ E the cut

associated with U , that is, the set of edges of G with exactly one endpoint in U .
We denote by |X | the cardinality of a finite set X .

We prove that the number of r-factors in a k-regular graph without cuts of small
size is exponentially large in the number of vertices of the graph.

(1.3) Corollary. For any positive integers k and r with k ≥ 2r + 1 there is a

constant γ = γ(k, r) > 0 such that the following holds.
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Every k-regular graph G with vertex set V , such that all cuts δ(U) with 2 ≤
|U | ≤ |V | − 2 have size at least

∣

∣δ(U)
∣

∣ >
k

r
,

has at least 2γ|V | distinct r-factors.

Note that the complement to an r-factor is a (k − r)-factor, so our result also
produces an estimate for the number of factors of degree greater than one half of
the degree of the graph.

The most tantalizing situation is that of k = 3 and r = 1, when Corollary 1.3
asserts that the number of perfect matchings of a 3-regular (also known as cubic)
graph is exponentially large in the number |V | of vertices of the graph, provided
∣

∣δ(U)
∣

∣ ≥ 4 as long as 2 ≤ |U | ≤ |V | − 2. This falls short of the recent result

of [E+11], where it is proven that it suffices to have
∣

∣δ(U)
∣

∣ ≥ 2, and hereby the
Lovász-Plummer conjecture is confirmed. We hope, however, that our method
can be sharpened to provide an alternative (and, perhaps, simpler) proof of the
conjecture.

We prove Theorem 1.1 and Corollary 1.2 in Section 2 and Corollary 1.3 in Section
3.

The idea of the proof of Theorem 1.1 is, roughly, as follows. We consider the
maximum of a random linear function on P . We argue that if the number of vertices
of P is small, then the maximum is also small. We then argue that if we go from
the origin along a random direction then we stay long enough inside P . This proves
that the maximum of a random linear function on P is large enough and hence P
has sufficiently many vertices. A similar argument is used in Section VI.8 of [Ba02]
in the proof of the Figiel-Lindenstrauss-Milman inequality (1.2.1). M. Rudelson
pointed out to the author that a proof of Theorem 1.1, although with a weaker
bound for γ, can also be obtained using volume estimates of [Gl88].

To prove Corollary 1.2, we apply a linear transformation so that the image of P
satisfies the conditions of Theorem 1.1.

To prove Corollary 1.3, we consider a polytope Pr(G) whose vertices correspond
to r-factors of G and then apply Theorem 1.1. N. Alon pointed out to the author
that if k and r are both even then, using an Eulerian trail in G, one can deduce
the existence of exponentially many distinct r-factors in a k-regular graph from
the Van der Waerden bound in the bipartite case (see, for example, Theorem 8.1.3
of [LP86]), just as one can deduce the existence of a single r-factor in Petersen’s
Theorem, see Theorem 6.2.4 in [LP86]. An attempt to apply a similar decompo-
sition argument to other values of k and r seems to require a higher connectivity
of G than that assumed by Corollary 1.3. For example, for k = 5 and r = 2 no
combinatorial argument seems to be readily available.

The paper [BS07] describes a general method of asymptotic counting of combi-
natorial structures through optimization of a random linear function.
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2. Proofs of Theorem 1.1 and of Corollary 1.2

Let us fix the standard Gaussian probability measure in R
n with density

1

(2π)n/2
exp

{

−‖x‖2
2

}

for x ∈ R
n.

(2.1) Lemma.

(1) For any 0 < ǫ < 1 we have

Pr
(

y ∈ R
n : ‖y‖2 ≤ (1− ǫ)n

)

≤ exp

{

−ǫ2n

4

}

.

(2) Let a ∈ R
n be a point, then for any τ ≥ 0

Pr
(

y ∈ R
n :

〈

y, a
〉

≥ τ
)

≤ 1

2
exp

{

− τ2

2‖a‖2
}

.

(3) For any ρ ≥ 0 and any vectors u1, . . . , um ∈ R
n such that ‖ui‖ ≤ 1 for

i = 1, . . . , m, we have

Pr
(

y ∈ R
n : |〈ui, y〉| ≤ ρ for i = 1, . . . , m

)

≥
(

1− exp

{

−ρ2

2

})m

.

Proof. The inequality of Part (1) can be found, for example, in Corollary V.5.5 of
[Ba02].

The function y 7−→ 〈y, a〉 is a centered Gaussian random variable with variance
‖a‖2 and Part (2) follows by the standard Gaussian tail estimate.

By the Šidak Lemma, see, for example, [Ba01], we have

Pr
(

y ∈ R
n : |〈ui, y〉| ≤ ρ for i = 1, . . . , m

)

≥
m
∏

i=1

Pr
(

y ∈ R
n : |〈ui, y〉| ≤ ρ

)

(informally, the Šidak Lemma states that “slabs” are positively correlated with
respect to the Gaussian measure). Since y 7−→ 〈ui, y〉 is a centered Gaussian random
variable of variance ‖ui‖2 ≤ 1, the proof of Part (3) follows from Part (2). �

(2.2) Proof of Theorem 1.1.
Let us choose any 0 < ǫ < 1 and a sufficiently large ρ = ρ(α, β, ǫ) > 0 such that

the following two inequalities hold:

(2.2.1) α ln

(

1− exp

{

−ρ2

2

})

> −ǫ2

4
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and

(2.2.2) γ =
(1− ǫ)2

2β2ρ2

(

1− exp

{

−ρ2

2

})

+ α ln

(

1− exp

{

−ρ2

2

})

> 0

We prove that the conclusion of Theorem 1.1 holds with γ defined by (2.2.2) for all
sufficiently large n > n0(α, β, ǫ, ρ).

Let us consider the polyhedron

Q =
{

y ∈ R
n : |〈y, ui〉| ≤ ρ for i = 1, . . . , m

}

.

By Part (3) of Lemma 2.1 we have

Pr
(

y : y ∈ Q
)

≥
(

1− exp

{

−ρ2

2

})m

≥
(

1− exp

{

−ρ2

2

})αn

.

By Part (1) of Lemma 2.1 and (2.2.1) we conclude that

(2.2.3) Pr
(

y : y ∈ Q and ‖y‖2 ≥ (1− ǫ)n
)

≥ 1

2

(

1− exp

{

−ρ2

2

})αn

for all sufficiently large n > n0(α, β, ǫ, ρ).
We consider the maximum value of the linear function x 7−→ 〈x, y〉 on P . Since

for every y ∈ Q we have ρ−1y ∈ P we conclude that

max
x∈P

〈x, y〉 ≥
〈

ρ−1y, y
〉

= ρ−1‖y‖2 for all y ∈ Q.

Therefore, from (2.2.3) we have

(2.2.4) Pr

(

y : max
x∈P

〈x, y〉 ≥ ρ−1(1− ǫ)n

)

≥ 1

2

(

1− exp

{

−ρ2

2

})αn

for all sufficiently large n > n0(α, β, ǫ, ρ).
On the other hand, the maximum value of a linear function on a polytope is

attained, in particular, at a vertex of P . Therefore, taking W to be the set of
vertices of P , from Part (2) of Lemma 2.1, we conclude that

Pr

(

y : max
x∈P

〈x, y〉 ≥ τ

)

≤
∑

a∈W

Pr
(

y : 〈y, a〉 ≥ τ
)

≤ 1

2

∑

a∈W

exp

{

− τ2

2‖a‖2
}

≤ |W |
2

exp

{

− τ2

2β2n

}

.

Substituting
τ = ρ−1(1− ǫ)n,

we obtain

(2.2.5) Pr

(

y : max
x∈P

〈x, y〉 ≥ ρ−1(1− ǫ)n

)

≤ |W |
2

exp

{

−(1− ǫ)2n

2ρ2β2

}

.

Combining (2.2.5) and (2.2.4) and using (2.2.2), we conclude that

|W | ≥ exp

{

(1− ǫ)2n

2ρ2β2

}(

1− exp

{

−ρ2

2

})αn

≥ exp {γn}

for all sufficiently large n, as desired. �
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(2.3) Proof of Corollary 1.2.
We can write

P =
{

x ∈ R
n : |〈ui, x〉| ≤ δi for i = 1, . . . , m

}

,

where u1, . . . , um are the unit normals to the facets of P and δi > 0. Applying to P
an invertible linear transformation, we may assume, additionally, that P contains
the unit ball and is contained in the ball of radius

√
n, where both balls are centered

at the origin (see, for example, Sections V.2 and VI.8 of [Ba02]). Since P contains
the unit ball, we must have δi ≥ 1 for all i = 1, . . . , m and the proof follows by
Theorem 1.1. �

3. Proof of Corollary 1.3

(3.1) The polytope. Let G be a graph with the set V of vertices and the set
E of edges. We denote by R

E the Euclidean space of all real-valued functions
x : E −→ R. We use the standard scalar product

〈x, y〉 =
∑

e∈E

x(e)y(e) for all x, y ∈ R
E

and the corresponding Euclidean norm ‖x‖ =
√

〈x, x〉.
For a subset H ⊂ E we consider a vector (indicator function) [H] ∈ R

E defined
as follows:

[H](e) =

{

1 if e is an edge of H

0 otherwise.

We define the r-factor polytope Pr(G) as the convex hull

Pr(G) = conv
(

[H] : H is an r-factor of G
)

.

We will need the following description of Pr(G) by a system of linear inequalities
(3.1.1)–(3.1.3), see Corollary 33.2a of [Sc03] :

(3.1.1) 0 ≤ x(e) ≤ 1 for all e ∈ E,

(3.1.2)
∑

e∈δ(v)

x(e) = r for all v ∈ V,

and

(3.1.3)

∑

e∈δ(U)\F

x(e)−
∑

e∈F

x(e) ≥ 1− |F | for all U ⊂ V, F ⊂ δ(U)

such that r|U |+ |F | is odd.

Our first goal is to show that if G is k-regular graph without small cuts then the
vector a ∈ R

E with a(e) = r/k for all e ∈ E lies sufficiently deep inside the polytope
Pr(G).
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(3.2) Lemma. Suppose that G is k-regular, that k ≥ 2r + 1 and that

∣

∣δ(U)
∣

∣ >
k

r

for all U ⊂ V such that 2 ≤ |U | ≤ |V | − 2. Let us define ǫ = ǫ(k, r) > 0 by

ǫ = min

{

r

k
− 1

⌈k+1
r

⌉
,

1

2k

}

.

Let a ∈ R
E be the vector such that

a(e) =
r

k
for all e ∈ E

and let y ∈ R
E be a vector such that

∑

e∈δ(v)

y(e) = 0 for all v ∈ V

and

|y(e)| ≤ ǫ for all e ∈ E.

Then for x = a+ y we have x ∈ Pr(G).

Proof. Clearly, vector x satisfies (3.1.1) and (3.1.2). Moreover,

2r − 1

2k
≤ x(e) ≤ 2r + 1

2k
for all e ∈ E.

If in (3.1.3) we increase |F | by 1 then the left hand side decreases at most by
(2r + 1)/k while the right hand side decreases by 1. Therefore, it suffices to check
(3.1.3) when |F | = 0. Furthermore, if |U | = 1 or if |V \ U | = 1, inequality (3.1.3)
follows by (3.1.2).

If |F | = 0 then the left hand side of (3.1.3) is at least

∣

∣δ(U)
∣

∣

( r

k
− ǫ

)

≥ 1

and (3.1.3) holds. �

(3.3) Proof of Corollary 1.3.
All implied constants in the O(·) and Ω(·) terms below may depend on k and r,

but not on n = |V |.
Since G is k-regular, we have |E| = k|V |/2. Let L ⊂ R

E be the subspace defined
by the equations

∑

e∈δ(v)

x(e) = 0 for all v ∈ V.
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Hence

n = dimL ≥ |E| − |V | =
(

k

2
− 1

)

|V | = Ω(V ).

We identify L with R
n. Let P = Pr(G) − a, where a is the vector of Lemma 3.2.

Then P ⊂ R
n by (3.1.2). Since

‖[H]‖ =

√

r|V |
2

for any r-factor H of G and

‖a‖ =
r

k

√

k|V |
2

,

we conclude that P lies in a ball of radius O (
√
n) centered at the origin.

Moreover, by Lemma 3.2, the polytope P contains the set

{

x ∈ R
n : |〈ue, x〉| ≤ ǫ for all e ∈ E

}

,

where ue is the orthogonal projection of [e] onto L. In particular, ‖ue‖ ≤ 1 for all
e ∈ E. Since |E| = O(n) and ǫ = Ω(1), the proof is obtained by applying Theorem
1.1 to the dilated polytope ǫ−1P . �
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