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Abstract. Let us fix a function f(n) = o(n lnn) and reals 0 ≤ α < β ≤ 1. We

present a polynomial time algorithm which, given a directed graph G with n vertices,

decides either that one can add at most βn new edges to G so that G acquires a
Hamiltonian circuit or that one cannot add αn or fewer new edges to G so that G

acquires at least e−f(n)n! Hamiltonian circuits, or both.

1. Introduction and main results

Let G = (V,E) be a directed graph with set V of vertices and set E of edges.
A Hamiltonian circuit is a closed walk i1 → i2 → . . . → in → i1 that visits
every vertex of G exactly once. It is a classical NP-complete problem to determine
whether a given directed graph contains a Hamiltonian circuit (in which case the
graph is called Hamiltonian). In what follows, n denotes the number of vertices of
the graph, n = |V |.

The following version of the problem is also known to be NP-complete: Given
0 < β < 1, is it true that one can add at most βn new edges to a given directed
graph with n vertices so that the graph becomes Hamiltonian? In fact, for any
fixed β < 1/320, the problem is NP-complete, see [PY93] and [EK06].

Anastasios Sidiropoulos pointed out to the author that testing Hamiltonicity
does not become any easier if we are promised that should the directed graph be
Hamiltonian, it contains at least exp {−nǫ}n! Hamiltonian circuits for some fixed
ǫ > 0. Indeed, let G be a given directed graph with m vertices. Let us choose

k > 2/ǫ and construct a new directed graph Ĝ by attaching a complete directed
graph with mk vertices by two edges to two selected vertices u and v of G. Hence

the new graph Ĝ with n = m+mk vertices contains at least (mk −2)! Hamiltonian
circuits if and only if G contains a Hamiltonian path with endpoints u and v. If

there is no such path in G then Ĝ contains no Hamiltonian circuits.
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Let us choose a function f(n) = o(n lnn) and fix two numbers 0 ≤ α < β ≤ 1.
We present a polynomial time algorithm, which, given a directed graph G with n
vertices, outputs at least one of the following two statements a) and b):

a) one can add at most βn new edges to G so that G acquires a Hamiltonian
circuit;

b) one cannot add αn or fewer new edges toG so thatG acquires at least e−f(n)n!
Hamiltonian circuits.

For example, confronted with two directed graphs on n vertices one of which
contains at least 10−3nn! Hamiltonian circuits and the other doesn’t become Hamil-
tonian unless more than 10−3n new edges added to the graph, our algorithm will
be able to tell which graph is which in polynomial time. On the other hand, testing
whether one needs to add at least 10−3n new edges to a given directed graph on n
vertices so that the graph becomes Hamiltonian is an NP-hard problem and testing
whether a given directed graph on n vertices contains at least 10−3nn! Hamiltonian
circuits is also an NP-hard problem.

It may happen though that while the statements a) and b) are both true, the
algorithm outputs only one of them.

We note that even if we are told that the graph contains at least e−f(n)n! Hamil-
tonian circuits, it is not obvious how to construct any of the circuits efficiently
(deterministically or probabilistically). We also note some vague similarity with
property testing questions [G+98].

Our algorithm is based on computing permanents and their Hamiltonian ver-
sions.

(1.1) Permanents and Hamiltonian permanents. Let A = (aij) be an n× n
real matrix. The permanent of A is defined as

perA =
∑

σ∈Sn

n∏

i=1

aiσ(i),

where the sum is taken over the symmetric group Sn of permutations of the set
{1, . . . , n}. As is known, the problem of computing the permanent exactly is #P -
hard, even if the entries of A are restricted to be 0 and 1 [Va79]. For non-negative
matrices a fully polynomial randomized approximation scheme is available [J+04].
We, however, are interested in computing permanents of a rather restricted class
of matrices. Namely, let us suppose that

(1.1.1)
1

n0.1
≤ aij ≤ 1 for all i, j.

Then a version of the scaling algorithm of [L+00], see also [BS11], approximates
perA in polynomial in n time within an O

(
exp

{
n0.35

})
factor. The algorithm is

deterministic and easy to implement. We review the algorithm in Section 3.
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Let Hn ⊂ Sn be the subset of (n− 1)! permutations consisting of a single cycle.
We define the Hamiltonian permanent by

hamA =
∑

σ∈Hn

n∏

i=1

aiσ(i).

If A is a 0-1 matrix then it is an NP-complete problem to tell hamA from 0, as the
problem is equivalent to testing Hamiltonicity of the directed graph with adjacency
matrix A. It turns out, however, that when (1.1.1) holds, perA and hamA have
the same logarithmic order.

(1.2) Theorem. Let A = (aij) be an n× n matrix such that

ǫ ≤ aij ≤ 1

for some ǫ > 0 and all i, j. Let

r =

⌊
4 lnn

ǫ2

⌋
+ 6.

Then
1

2r

( ǫ
n

)r
perA ≤ hamA ≤ perA.

In particular, if we choose ǫ = n−0.1 then perA approximates hamA within an
O
(
exp

{
n0.3

})
factor.

We prove Theorem 1.2 in Section 2.
In a different setting, the relation between the permanent and Hamiltonian per-

manent of the adjacency matrix of a k-regular graph was used in [Vi12] while the
first use of permanents to bound the number of Hamiltonian circuits in tournaments
goes back to [A90].

(1.3) Testing Hamiltonicity of graphs. Let us fix a function f(n) = o(n lnn)
and real numbers 0 ≤ α < β ≤ 1. Given a directed graph G = (V,E), we identify
V = {1, . . . , n} and construct an n× n matrix A = A(G), A = (aij), as follows:

aij =

{
1 if (i → j) ∈ E

n−0.1 otherwise.

Using Theorem 1.2 and the algorithm of Section 3, we compute hamA within a
factor of O

(
exp

{
n0.4

})
. If G does not become Hamiltonian unless more than βn

new edges are added to G, then

(1.3.1) hamA ≤ n−0.1βnn!.
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If, however, one can add αn or fewer edges to G so that G acquires at least e−f(n)n!
Hamiltonian circuits then

(1.3.2) hamA ≥ n−0.1αne−f(n)n!.

The ratio of the lower bound in (1.3.2) to the upper bound in (1.3.1) is

n0.1(β−α)ne−f(n) = n0.1(β−α)n−o(n)

and hence for all sufficiently large n ≥ N(f, α, β) we will be able to conclude that
either (1.3.1) is violated, or (1.3.2) is violated, or both are violated. For finitely
many n < N(f, α, β) one can enumerate the Hamiltonian circuits in G directly, in
constant time. If (1.3.1) is violated, then the statement

a) one can add at most βn new edges to G so that G becomes Hamiltonian

is true and if (1.3.2) is violated, then the statement

b) one cannot add αn or fewer new edges toG so thatG acquires at least e−f(n)n!
Hamiltonian circuits

is true. Hence the algorithm will output at least one of the statements a) and b).
On the other hand, if a) is true we may still have (1.3.1) and if b) is true we may
still have (1.3.2). Hence it may happen that although a) and b) are both true, the
algorithm outputs only one of a) and b).

2. Proof of Theorem 1.2

Let us fix an n× n matrix A = (aij) such that

ǫ ≤ aij ≤ 1

for some ǫ > 0 and all i, j. We consider the symmetric group Sn as a finite proba-
bility space, where we let

P (σ) = (perA)
−1

(
n∏

i=1

aiσ(i)

)
for σ ∈ Sn.

(2.1) Lemma. Let us define random variables

li : Sn −→ R for i = 1, . . . , n,

where li(σ) is the length of the cycle of σ ∈ Sn containing i. Then

P
(
σ ∈ Sn : li(σ) = m

)
≤

1

ǫ2(n−m)
for i = 1, . . . , n

and m = 1, . . . , n− 1.
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Proof. Without loss of generality, we assume that i = 1. With the set of permuta-
tions σ ∈ Sn such that l1(σ) = m we associate a set Σ ⊂ Sn. Each permutation σ
with l1(σ) = m contributes n−m permutations τ to Σ as follows.

We write the cycle of σ containing 1 as

1 = j1 → j2 → . . . → jm → 1.

We pick any of the n − m numbers, say r, not in the cycle. We write the cycle
containing r as

r = jm+1 → jm+2 → . . . → jm+k → r

and produce a permutation τ ∈ Σ by merging the two cycles together:

1 = j1 → j2 → . . . → jm → r = jm+1 → jm+2 → . . . → jm+k → 1.

Since ǫ ≤ aij ≤ 1, we have

(2.1.1) P (τ) ≥ ǫ2P (σ).

Thus each permutation σ contributes n − m permutations τ ∈ Σ depending on
the choice of r. The set Σ consists of all permutations τ thus obtained from all
permutations σ with l1(σ) = m.

We observe that every τ ∈ Σ is obtained from a unique permutation σ. To
reconstruct σ from τ , we choose the cycle of τ containing 1, write it as

1 → j1 → j2 → · · · → jm+k → 1

for some k > 0 and split it into the two cycles,

1 → j1 → j2 → . . . → jm → 1 and jm+1 → . . . → jm+k → jm+1.

Since every permutation σ ∈ Sn with l1(σ) = m gives rise to n −m permutations
τ ∈ Σ, using (2.1.1) we obtain

P
(
σ ∈ Sn : l1(σ) = m

)
≤

1

ǫ2(n−m)
P
(
τ ∈ Σ

)
≤

1

ǫ2(n−m)
,

as desired. �

(2.2) Corollary. We have

E
(
l−1
i

)
≤

2 lnn

nǫ2
+

3

n
for i = 1, . . . , n.
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Proof. We have

E
(
l−1
i

)
=

n∑

m=1

1

m
P (σ : li(σ) = m)

=
∑

m: m≤n/3

1

m
P (σ : li(σ) = m) +

∑

m: m>n/3

1

m
P (σ : li(σ) = m)

≤
2

nǫ2

∑

m: m≤n/3

1

m
+

3

n

∑

m: m>n/3

P (σ : li(σ) = m)

≤
2 lnn

nǫ2
+

3

n
.

�

(2.3) Lemma. Let c(σ) be the number of cycles in a permutation σ ∈ Sn. Then

∑

σ∈Sn:
c(σ) < 4ǫ−2 lnn+6

n∏

i=1

aiσ(i) ≥
1

2
perA.

Proof. We consider c : Sn −→ R as a random variable. Let li be the random
variables of Lemma 2.1 and Corollary 2.2. Then

c(σ) =
n∑

i=1

l−1
i (σ),

since the sum of l−1
i (σ) over all i in a particular cycle of σ is equal to 1. Therefore,

by Corollary 2.2,

E c =
n∑

i=1

E
(
l−1
i

)
≤

2 lnn

ǫ2
+ 3.

By the Markov inequality

P

(
σ ∈ Sn : c(σ) ≥

4 lnn

ǫ2
+ 6

)
≤

1

2

and the proof follows. �

(2.4) Proof of Theorem 1.2. Clearly,

hamA ≤ perA.

Let
X =

{
σ ∈ Sn : c(σ) < 4ǫ−2 lnn+ 6

}
,

6



so by Lemma 2.3

(2.4.1)
∑

σ∈X

n∏

i=1

aiσ(i) ≥
1

2
perA.

Let

r =

⌊
4 lnn

ǫ2
+ 6

⌋

and for k = 1, . . . , r let

Xk =
{
σ ∈ Sn : c(σ) = k

}

and let Hn ⊂ Sn be the set of Hamiltonian cycles.
With every permutation σ ∈ Xk, we associate a set T (σ) ⊂ Hn as follows. We

order the k cycles of a permutation σ ∈ Xk arbitrarily, choose arbitrarily elements
j1, . . . , jk, one in each cycle, and patch the cycles into a Hamiltonian cycle τ by
replacing the edges

(2.4.2) i1 → j1, i2 → j2, . . . , ik → jk

in σ by the edges

(2.4.3) i1 → j2, i2 → j3, . . . , ik → j1.

Because of ǫ ≤ aij ≤ 1, we have

P (τ) ≥ ǫkP (σ) ≥ ǫrP (σ).

Let T (σ) be the set of all possible Hamiltonian cycles τ obtained in this way.
We observe that any τ ∈ Hn is obtained from at least one and at most

(
n
k

)

permutations σ ∈ Xk, since for any choice of j1, . . . , jk in τ ,

τ = j1 → . . . → i1 → j2 → . . . → i2 → j3 → . . . → ik−1 → jk → . . . → ik → j1

corresponds to at most one permutation σ ∈ Xk in which the edges (2.4.3) are
replaced by the edges (2.4.2). This proves that

nrP (Hn) ≥

(
n

k

)
P (Hn) ≥ ǫrP (Xk)

and the proof follows by (2.4.1). �
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3. Estimating the permanent

(3.1) Scaling a matrix to doubly stochastic. An n × n matrix B = (bij) is
called doubly stochastic if

n∑

j=1

bij = 1 for i = 1, . . . , n,

n∑

i=1

bij = 1 for j = 1, . . . , n

and

bij ≥ 0 for all i, j.

Let A = (aij) be n×n matrix such that aij > 0 for all i, j. Sinkhorn’s Theorem
[Si64] states that there exists a doubly stochastic matrix B = (bij) and positive
numbers λ1, . . . , λn and µ1, . . . , µn such that

aij = λiµjbij for all i, j.

The matrix B is unique whereas the numbers λi and µj are unique up to a rescaling
λi := λiτ , µj := µjτ

−1 for some τ > 0 and all i, j. We say that B is the doubly

stochastic scaling of A. We observe that

(3.1.1) perA =

(
n∏

i=1

λi

)


n∏

j=1

µj


perB.

The problem of computing the product of multipliers λi and µj in (3.1.1) within
relative error ǫ > 0 is a convex programming problem which can be solved in time
polynomial in n and ln(1/ǫ) [KK96].

In [L+00], formula (3.1.1) was used to compute permanents in strongly polyno-
mial time within a factor of e−n. We need more precision for matrices A with more
structure.

(3.2) Scaling of δ-balanced matrices. Let A = (aij) be an n×n positive matrix
and let 0 < δ < 1. We say that A is δ-balanced if

δakl ≤ aij for all i, j, k, l.

If B is a doubly stochastic scaling of a δ-balanced matrix A then B is δ3-balanced
(Lemma 4.1 of [BS11]).

We also need the following estimate (Lemma 5.1 of [B+10]).

(3.3) Lemma. Let B be an n× n doubly stochastic matrix such that

bij ≤
α

n
for all i, j
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and some α > 1 Then

n!

nn
≤ perB ≤

n!

nn
(2πn)α/2eα

2/12n.

The lower bound is, of course, the famous van der Waerden bound for permanents
of doubly stochastic matrices, cf. [L+00]. In particular, if B is δ3-balanced then

(3.2.1)
n!

nn
≤ perB ≤

n!

nn
(2πn)1/2δ

3

e1/12δ
6n.

The matrix A = A(G) of Section 1.3 is δ-balanced for δ = n−0.1 and hence its doubly
stochastic scaling B is n−0.3-balanced. Therefore, formula (3.2.1) approximates
perB within an O

(
exp

{
n0.35

})
factor. Hence the scaling algorithm of Section 3.1

approximates perA within an O
(
exp

{
n0.4

})
factor.
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