MATH 669: COMBINATORICS, GEOMETRY AND COMPLEXITY OF INTEGER POINTS

Alexander Barvinok

Abstract

These are rather condensed notes, not really proofread or edited, presenting key definitions and results of the course that I taught in Winter 2011 term. Problems marked by ${ }^{\circ}$ are easy and basic, problems marked by ${ }^{*}$ may be difficult.

Contents

1. Lattices: definition and examples 3
2. Lattice subspaces 4
3. A basis of a lattice 5
4. The determinant of a lattice 7
5. A sublattice of a lattice 9
6. Minkowski Theorem 11
7. The volume of a unit ball 13
8. An application: Lagrange's four squares theorem 14
9. An application: rational approximations of real numbers 16
10. Sphere packings 19
11. The Leech lattice 21
12. The Minkowski - Hlawka Theorem 24
13. The reciprocity relation for the packing radius 27
14. The Korkin-Zolotarev basis of a lattice 28
15. The covering radius of a lattice 30
16. An application: Kronecker's Theorem 33
17. The Poisson summation formula for lattices 34
18. The covering radius via the Poisson summation formula 36
19. The packing density via the Poisson summation formula 39
20. Approximating a convex body by an ellipsoid 40
21. The Flatness Theorem 42
22. The successive minima of a convex body 43
23. An almost orthogonal basis of the lattice 47
24. Successive minima via the Poisson summation formula 49
25. The Lenstra - Lenstra - Lovász basis of a lattice 52
26. Some applications of the Lenstra - Lenstra - Lovász basis 56
27. The algebra of polyhedra and the Euler characteristic 59
28. Linear transformations and polyhedra 62
29. Minkowski sum 64
30. The structure of polyhedra 65
31. Rational generating functions for integer points in polyhedra 69
32. Tangent cones 76
33. The Ehrhart polynomial of an integer polytope 79
34. The reciprocity relation for cones 82
35. The reciprocity relation for the Ehrhart polynomial 85
36. Polarity for cones 87
37. The constant term of the Ehrhart polynomial 90
38. Unimodular cones 92

1. Lattices: DEFINITION AND EXAMPLES

We work in a finite-dimensional real vector space V endowed with an inner product $\langle x, y\rangle$ (hence V is Euclidean space) and the corresponding Euclidean norm $\|x\|=\sqrt{\langle x, x\rangle}$.
(1.1) Definitions. A lattice $\Lambda \subset V$ is a discrete additive subgroup of V which spans V. That is, $\operatorname{span}(\Lambda)=V, x-y \in \Lambda$ for all $x, y \in \Lambda$ (additive subgroup) and there is an $\epsilon>0$ such that $B_{\epsilon} \cap \Lambda=\{0\}$, where $B_{\epsilon}=\{x \in V:\|x\| \leq \epsilon\}$ is the ball of radius ϵ (discrete). The dimension of the ambient space V is called the rank of lattice Λ and denoted $\operatorname{rank} \Lambda$.

Lattices $\Lambda_{1} \subset V_{1}$ and $\Lambda_{2} \subset V_{2}$ are isomorphic if there is an invertible linear transformation $\phi: V_{1} \longrightarrow V_{2}$ such that $\|\phi(x)\|=\|x\|$ for all $x \in V_{1}$ (so that ϕ is an isometry) and $\phi\left(\Lambda_{1}\right)=\Lambda_{2}$.
(1.2) Problem. Let $\Lambda \subset V$ be a lattice. Show that $\Lambda \cap K$ is a finite set for every bounded set $K \subset V$.

(1.3) Examples.

(1.3.1) Lattice \mathbb{Z}^{n}. Let $V=\mathbb{R}^{n}$ with the standard inner product

$$
\langle x, y\rangle=\sum_{i=1}^{n} x_{i} y_{i} \quad \text { where } \quad x=\left(x_{1}, \ldots, x_{n}\right) \quad \text { and } \quad y=\left(y_{1}, \ldots, y_{n}\right) .
$$

Let $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$ be the set consisting of the points with integer coordinates,

$$
\mathbb{Z}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): \quad x_{i} \in \mathbb{Z} \quad \text { for } \quad i=1, \ldots, n\right\} .
$$

(1.3.2) Lattice A_{n}. Let us identify V with the hyperplane $H \subset \mathbb{R}^{n+1}$ defined by the equation $x_{1}+\ldots+x_{n+1}=0$. We let

$$
A_{n}=\mathbb{Z}^{n+1} \cap H
$$

(1.3.3) Lattice D_{n}. Let $V=\mathbb{R}^{n}$ and let

$$
D_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}: \quad x_{1}+\ldots+x_{n} \equiv 0 \quad \bmod 2\right\} .
$$

(1.3.4) Lattice D_{n}^{+}. Suppose that n is even. Let $D_{n} \subset \mathbb{R}^{n}$ be the lattice of Example 1.3.3 and let us define $u \in \mathbb{R}^{n}$ by

$$
u=(\underbrace{\frac{1}{2}, \ldots, \frac{1}{2}}_{n \text { times }}) .
$$

We let

$$
D_{n}^{+}=D_{n} \cup\left(D_{n}+u\right)
$$

(1.3.5) Lattices E_{8}, E_{7} and E_{6}. We denote $E_{8}=D_{8}^{+}, E_{7}=E_{8} \cap H$, where $H \subset \mathbb{R}^{8}$ is the hyperplane defined by the equation $x_{1}+\ldots+x_{8}=0$, and $E_{6}=E_{8} \cap L$, where $L \subset \mathbb{R}^{8}$ is the subspace defined by the equations $x_{1}+x_{8}=x_{2}+x_{3}+x_{4}+$ $x_{5}+x_{6}+x_{7}=0$.
(1.4) Problem. Prove that $\mathbb{Z}^{n}, A_{n}, D_{n}, D_{n}^{+}, E_{8}, E_{7}$ and E_{6} are indeed lattices.

2. Lattice subspaces

(2.1) Definitions. Let $\Lambda \subset V$ be a lattice and let $L \subset V$ be a subspace. We say that L is a Λ-subspace or just a lattice subspace if L is spanned by points from Λ, or, equivalently, if $\Lambda \cap L$ is a lattice in L.

For a set $A \subset V$ and a point $x \in V$, we define the distance

$$
\operatorname{dist}(x, A)=\inf _{y \in A}\|x-y\|
$$

In what follows, we denote by $\lfloor\alpha\rfloor$ the largest integer not exceeding a real number α and we denote $\{\alpha\}=\alpha-\lfloor\alpha\rfloor$. Clearly,

$$
0 \leq\{\alpha\}<1 \quad \text { for all } \quad \alpha \in \mathbb{R}
$$

The main result of this section is that if $L \subset V$ is a lattice subspace such that $L \neq V$ then among all lattice points not in L there is a point nearest to L.
(2.2) Lemma. Let $\Lambda \subset V$ be a lattice and let $L \subset V$, $L \neq V$, be a Λ-subspace. Then there exists a point $v \in \Lambda \backslash L$ such that

$$
\operatorname{dist}(v, L) \leq \operatorname{dist}(w, L) \quad \text { for all } \quad w \in \Lambda \backslash L
$$

Proof. Let $k=\operatorname{dim} L$ and let u_{1}, \ldots, u_{k} be a basis of L consisting of lattice points, so $u_{i} \in \Lambda$ for $i=1, \ldots, k$. Let

$$
\Pi=\left\{\sum_{i=1}^{k} \lambda_{i} u_{i}: \quad 0 \leq \lambda_{i} \leq 1 \quad \text { for } \quad i=1, \ldots, k\right\}
$$

be the parallelepiped spanned by u_{1}, \ldots, u_{k}. We claim that among the lattice points that are not in L there is a point nearest to Π. For $\rho>0$, let us consider the ρ-neighborhood of Π,

$$
\Pi_{\rho}=\{x \in V: \quad \operatorname{dist}(x, \Pi) \leq \rho\}
$$

Clearly, Π_{ρ} is bounded and hence $\Pi_{\rho} \cap \Lambda$ is a finite set, cf. Problem 1.2. Let us choose a sufficiently large ρ so that

$$
\Pi_{\rho} \cap(\Lambda \backslash L) \neq \emptyset
$$

and let us choose a point $v \in \Pi_{\rho} \cap(\Lambda \backslash L)$ nearest to Π. Clearly,

$$
\begin{equation*}
\operatorname{dist}(v, \Pi) \leq \operatorname{dist}(w, \Pi) \quad \text { for all } \quad w \in \Lambda \backslash L \tag{2.2.1}
\end{equation*}
$$

Let us choose any $w \in \Lambda \backslash L$ and let $x \in L$ be the point such that

$$
\operatorname{dist}(w, L)=\|w-x\|
$$

We can write

$$
x=\sum_{i=1}^{k} \alpha_{i} u_{i}=u+y \quad \text { where } \quad u=\sum_{i=1}^{k}\left\lfloor\alpha_{i}\right\rfloor u_{i} \quad \text { and } \quad y=\sum_{i=1}^{k}\left\{\alpha_{i}\right\} u_{i} .
$$

Clearly, $u \in \Lambda \cap L$ and $y \in \Pi$. Moreover, $w-u \in \Lambda \backslash L$ and by (2.2.1)

$$
\begin{aligned}
\operatorname{dist}(w, L) & =\|w-x\|=\|(w-u)-(x-u)\|=\|(w-u)-y\| \geq \operatorname{dist}(w-u, \Pi) \\
& \geq \operatorname{dist}(v, \Pi) \geq \operatorname{dist}(v, L)
\end{aligned}
$$

which completes the proof.

(2.3) Problems.

1. Let $\Lambda \subset V$ be a lattice and let $L \subset V$ be a Λ-subspace. Let us consider a decomposition $V=L \oplus W$ and the projection $p r: V \longrightarrow W$ with the kernel L. Prove that $\operatorname{pr}(\Lambda)$ is a lattice in W.
2. Let $L \subset \mathbb{R}^{2}$ be a line with an irrational slope. Prove that there exist points $w \in \mathbb{Z}^{2} \backslash L$ arbitrarily close to L.
3. Let $L \subset \mathbb{R}^{2}$ be a line with an irrational slope and let $p r: \mathbb{R}^{2} \longrightarrow L$ be the orthogonal projection. Prove that $\operatorname{pr}\left(\mathbb{Z}^{2}\right)$ is dense in L.

3. A basis of a lattice

We prove the following main result.
(3.1) Theorem. Let V be a d-dimensional Euclidean space, $d>0$.
(1) Let $\Lambda \subset V$ be a lattice. Then there exist vectors $u_{1}, \ldots, u_{d} \in \Lambda$ such that every point $u \in \Lambda$ admits a unique representation

$$
u=\sum_{i=1}^{d} m_{i} u_{i} \quad \text { where } \quad m_{i} \in \mathbb{Z} \quad \text { for } \quad i=1, \ldots, d
$$

The set $\left\{u_{1}, \ldots, u_{d}\right\}$ is called a basis of Λ.
(2) Let u_{1}, \ldots, u_{d} be a basis of V and let

$$
\Lambda=\left\{\sum_{i=1}^{d} m_{i} u_{i} \quad \text { where } \quad m_{i} \in \mathbb{Z}\right\} .
$$

Then $\Lambda \subset V$ is a lattice.

Proof. We prove Part (1) by induction on d. Suppose that $d=1$ so that we identify $V=\mathbb{R}$. Since Λ is discrete, there exists the smallest positive number $a \in \Lambda$. We claim that every point $x \in \Lambda$ can be written as $x=m a$ for some $m \in \mathbb{Z}$. Replacing x by $-x$, if necessary, without loss of generality we may assume that $x>0$. Then we can write

$$
x=\mu a=\lfloor\mu\rfloor a+\{\mu\} a \quad \text { for some } \quad \mu>0
$$

We observe that $\lfloor\mu\rfloor a \in \Lambda$ and hence $\{\mu\} a \in \Lambda$. Since $0 \leq\{\mu\} a<a$ we must have $\{\mu\}=0$. Therefore μ is integer and a is a basis of Λ.

Suppose that $d>1$. Let us choose $d-1$ linearly independent lattice points and let L be the subspace spanned by those points. Hence L is a Λ-subspace and $L \cap \Lambda$ is a lattice in L. By the induction hypothesis, we can choose a basis u_{1}, \ldots, u_{d-1} of lattice $L \cap \Lambda$ in L. By Lemma 2.2, there is a point $u_{d} \in \Lambda \backslash L$ such that

$$
\operatorname{dist}\left(u_{d}, L\right) \leq \operatorname{dist}(w, L) \quad \text { for all } \quad w \in \Lambda \backslash L
$$

We claim that $u_{1}, \ldots, u_{d-1}, u_{d}$ is a basis of Λ. Indeed, let us choose any $u \in \Lambda$, so we can write

$$
u=\sum_{i=1}^{d} \alpha_{i} u_{i} \quad \text { for some } \quad \alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}
$$

Let

$$
v=u-\left\lfloor\alpha_{d}\right\rfloor u_{d}=\left\{\alpha_{d}\right\} u_{d}+\sum_{i=1}^{d-1} \alpha_{i} u_{i}
$$

Clearly, $v \in \Lambda$ and

$$
\operatorname{dist}(v, L)=\operatorname{dist}\left(\left\{\alpha_{d}\right\} u_{d}, L\right)=\left\{\alpha_{d}\right\} \operatorname{dist}\left(u_{d}, L\right)<\operatorname{dist}\left(u_{d}, L\right)
$$

from which it follows that $v \in L$. Hence $\left\{\alpha_{d}\right\}=0$ and $\alpha_{d} \in \mathbb{Z}$. Then $u-\alpha_{d} u_{d} \in$ $\Lambda \cap L$ and by the induction hypothesis we must have $\alpha_{1}, \ldots, \alpha_{d-1} \in \mathbb{Z}$, which completes the proof of Part (1).

To prove Part (2), let us consider the map $T: \mathbb{R}^{d} \longrightarrow V$,

$$
T\left(\alpha_{1}, \ldots, \alpha_{d}\right)=\sum_{i=1}^{d} \alpha_{i} u_{i}
$$

Then $\Lambda=T\left(\mathbb{Z}^{d}\right)$. Clearly, Λ is an additive subgroup of V which spans V, and since T is invertible, Λ is discrete.

(3.2) Problems.

1. Construct bases of lattices \mathbb{Z}^{n}, A_{n} and D_{n}, see Example 1.3.
2. Prove that

$$
\begin{aligned}
& u_{1}=(2,0,0,0,0,0,0,0), u_{2}=(-1,1,0,0,0,0,0,0), u_{3}=(0,-1,1,0,0,0,0,0), \\
& u_{4}=(0,0,-1,1,0,0,0,0), u_{5}=(0,0,0,-1,1,0,0,0), u_{6}=(0,0,0,0,-1,1,0,0), \\
& u_{7}=(0,0,0,0,0,0,-1,1,0), u_{8}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

is a basis of E_{8}, see Example 1.3.5.
3. Let $\Lambda \subset \mathbb{R}^{2}$ be a lattice. Prove that there is a basis u, v of Λ such that the angle α between u and v satisfies $\pi / 3 \leq \alpha \leq \pi / 2$.
4. Let Λ be a lattice. A set of vectors $u_{1}, \ldots, u_{k} \in \Lambda$ is called primitive if u_{1}, \ldots, u_{k} is a basis of $\Lambda \cap \operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}$. Prove that a primitive set can be appended to a basis of the lattice.

4. The determinant of a lattice

(4.1) Definition. Let $\Lambda \subset V$ be a lattice and let u_{1}, \ldots, u_{d} be a basis of Λ. The set

$$
\Pi=\left\{\sum_{i=1}^{d} \alpha_{i} u_{i}: \quad 0 \leq \alpha_{i}<1 \quad \text { for } \quad i=1, \ldots, d\right\}
$$

is called the fundamental parallelepiped of basis u_{1}, \ldots, u_{d} and a fundamental parallelepiped of lattice Λ.
(4.2) Lemma. Let $\Lambda \subset V$ be a lattice and let Π be a fundamental parallelepiped of Λ. Then every point $x \in V$ can be written uniquely as $x=u+y$ for $u \in \Lambda$ and $y \in \Pi$. In other words, lattice shifts $\{\Pi+u: u \in \Lambda\}$ cover the ambient space V without overlapping.
Proof. Let Π be the fundamental parallelepiped of a basis u_{1}, \ldots, u_{d} of Λ. An arbitrary point $x \in V$ can be written as

$$
x=\sum_{i=1}^{d} \alpha_{i} u_{i} \quad \text { for some } \quad \alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}
$$

Letting

$$
u=\sum_{i=1}^{d}\left\lfloor\alpha_{i}\right\rfloor u_{i} \quad \text { and } \quad y=\sum_{i=1}^{d}\left\{\alpha_{i}\right\} u_{i}
$$

we conclude that $x=u+y$, where $u \in \Lambda$ and $y \in \Pi$.
To prove uniqueness, suppose that $x=u_{1}+y_{1}=u_{2}+y_{2}$ where $u_{1}, u_{2} \in \Lambda$ and $y_{1}, y_{2} \in \Pi$. Therefore,

$$
y_{1}=\sum_{i=1}^{d} \alpha_{i} u_{i} \quad \text { and } \quad y_{2}=\sum_{i=1}^{d} \beta_{i} u_{i} \quad \text { for some } \quad 0 \leq \alpha_{i}, \beta_{i}<1 \quad \text { for } \quad i=1, \ldots, d .
$$

Then $y_{1}-y_{2}=u_{2}-u_{1} \in \Lambda$ from which we must have that $\alpha_{i}-\beta_{i} \in \mathbb{Z}$ for $i=1, \ldots, d$. Therefore, $\alpha_{i}=\beta_{i}$ for $i=1, \ldots, d$ and hence $y_{1}=y_{2}$ and $u_{1}=u_{2}$.
(4.3) Theorem. Let $\Lambda \subset V$ be a lattice. Then every fundamental parallelepiped Π of Λ has the same volume, called the determinant of Λ and denoted $\operatorname{det} \Lambda$. Furthermore, $\operatorname{det} \Lambda$ can be obtained as follows.

Let $B_{\rho}=\{x \in V: \quad\|x\| \leq \rho\}$ be the ball of radius ρ. Then

$$
\lim _{\rho \rightarrow+\infty} \frac{\left|\Lambda \cap B_{\rho}\right|}{\operatorname{vol} B_{\rho}}=\frac{1}{\operatorname{det} \Lambda} .
$$

In other words, det Λ is "the volume per lattice point". More generally, if $x \in V$ is a point and $x+\Lambda=\{x+u: u \in \Lambda\}$ is a translation of Λ then

$$
\lim _{\rho \longrightarrow+\infty} \frac{\left|(x+\Lambda) \cap B_{\rho}\right|}{\operatorname{vol} B_{\rho}}=\frac{1}{\operatorname{det} \Lambda} .
$$

Proof. Let Π be a fundamental parallelepiped of Λ. Let

$$
X_{\rho}=\bigcup_{u \in B_{\rho} \cap \Lambda}(\Pi+u) .
$$

By Lemma 4.2, we have

$$
\operatorname{vol} X_{\rho}=\left|B_{\rho} \cap \Lambda\right| \operatorname{vol} \Pi .
$$

Since Π is bounded, we have $\Pi \subset B_{\alpha}$ for some $\alpha>0$ and so $X_{\rho} \subset B_{\rho+\alpha}$. On the other hand, by Lemma 4.2 every point in $B_{\rho-\alpha}$ lies in some translation $\Pi+u$, where necessarily $\|u\| \leq \alpha$. Hence $B_{\rho-\alpha} \subset X_{\rho}$.

Summarizing,

$$
\operatorname{vol} B_{\rho-\alpha} \leq \operatorname{vol} X_{\rho}=\left|B_{\rho} \cap \Lambda\right| \operatorname{vol} \Pi \leq B_{\rho+\alpha}
$$

Since

$$
\begin{equation*}
\lim _{\rho \rightarrow+\infty} \frac{\operatorname{vol} B_{\rho \pm \alpha}}{\operatorname{vol} B_{\rho}}=\lim _{\rho \longrightarrow+\infty}\left(\frac{\rho \pm \alpha}{\rho}\right)^{\operatorname{dim} V}=1 \tag{4.3.1}
\end{equation*}
$$

we conclude that

$$
\lim _{\rho \rightarrow+\infty} \frac{\left|B_{\rho} \cap \Lambda\right|}{\operatorname{vol} B_{\rho}}=\frac{1}{\operatorname{vol} \Pi} .
$$

In particular vol Π does not depend on the choice of the fundamental parallelepiped Π.

More generally, for an arbitrary $x \in V$ and $\xi=\|x\|$, we have

$$
x+\left(B_{\rho-\xi} \cap \Lambda\right) \subset B_{\rho} \cap(x+\Lambda) \subset x+\left(B_{\rho+\xi} \cap \Lambda\right)
$$

from which

$$
\left|B_{\rho-\xi} \cap \Lambda\right| \leq\left|B_{\rho} \cap(x+\Lambda)\right| \leq\left|B_{\rho+\xi} \cap \Lambda\right|
$$

Using (4.3.1), we conclude that

$$
\lim _{\rho \longrightarrow+\infty} \frac{\left|B_{\rho} \cap(x+\Lambda)\right|}{\operatorname{vol} B_{\rho}}=\lim _{\rho \longrightarrow+\infty} \frac{\left|B_{\rho} \cap \Lambda\right|}{\operatorname{vol} B_{\rho}}=\frac{1}{\operatorname{det} \Lambda} .
$$

(4.4) Problems.

1. Let $\Lambda \subset V$ be a lattice and let

$$
\Phi=\{x \in V: \quad\|x\| \leq\|x-u\| \quad \text { for all } \quad u \in \Lambda\}
$$

Prove that $\operatorname{vol} \Phi=\operatorname{det} \Lambda$.
2. Let $\Lambda \subset V$ be a lattice and let us define

$$
\Lambda^{*}=\{x \in V:\langle x, u\rangle \in \mathbb{Z}\}
$$

Prove that Λ^{*} is a lattice (it is called dual or reciprocal) to Λ and that

$$
\left(\operatorname{det} \Lambda^{*}\right)(\operatorname{det} \Lambda)=1
$$

3. Prove that $\left(\Lambda^{*}\right)^{*}=\Lambda$.
4. Prove that $\left(\mathbb{Z}^{n}\right)^{*}=\mathbb{Z}^{n}$ and that $E_{8}^{*}=E_{8}$.

5. A sublattice of a lattice

(5.1) Definitions. Let $\Lambda \subset V$ be a lattice. Suppose that $\Lambda_{0} \subset \Lambda$ is another lattice in V, so $\operatorname{rank} \Lambda_{0}=\operatorname{rank} \Lambda$. Then Λ_{0} is a subgroup of Λ (we say that Λ_{0} is a sublattice of Λ). We consider cosets $a+\Lambda_{0}=\left\{a+u: \quad u \in \Lambda_{0}\right\}$ for $a \in \Lambda$. Every two cosets either coincide or do not intersect. The cosets form an abelian group under addition, called the quotient and denoted Λ / Λ_{0}. The order $\left|\Lambda / \Lambda_{0}\right|$ of the quotient is called the index of Λ_{0} in Λ.
(5.2) Theorem. Let Λ be a lattice and let $\Lambda_{0} \subset \Lambda$ be a sublattice. Let Π be a fundamental parallelepiped of Λ_{0}. Then the set $\Pi \cap \Lambda_{0}$ contains each coset Λ / Λ_{0} representative exactly once. Furthermore,

$$
|\Pi \cap \Lambda|=\left|\Lambda / \Lambda_{0}\right|=\frac{\operatorname{det} \Lambda_{0}}{\operatorname{det} \Lambda}
$$

In particular, the index $\left|\Lambda / \Lambda_{0}\right|$ is finite.
Proof. By Lemma 4.2, for every $x \in \Lambda$ there is a unique pair of $y \in \Pi$ and $u \in \Lambda_{0}$ such that $x=y+u$. Hence we must have that $y \in \Lambda$, so y is a coset representative of x in Π. This proves that $|\Pi \cap \Lambda|=\left|\Lambda / \Lambda_{0}\right|$.

Let S be a set of the coset representatives, so

$$
\Lambda=\bigcup_{s \in S}\left(s+\Lambda_{0}\right)
$$

Let B_{ρ} be a ball of radius ρ. Hence

$$
\left|B_{\rho} \cap \Lambda\right|=\sum_{s \in S}\left|B_{\rho} \cap\left(s+\Lambda_{0}\right)\right| .
$$

By Theorem 4.3,

$$
\lim _{\rho \rightarrow+\infty} \frac{\left|B_{\rho} \cap \Lambda\right|}{\operatorname{vol} B_{\rho}}=\frac{1}{\operatorname{det} \Lambda} \quad \text { and } \quad \lim _{\rho \longrightarrow+\infty} \frac{\left|B_{\rho} \cap\left(s+\Lambda_{0}\right)\right|}{\operatorname{vol} B_{\rho}}=\frac{1}{\operatorname{det} \Lambda_{0}} .
$$

which proves that

$$
\frac{\operatorname{det} \Lambda_{0}}{\operatorname{det} \Lambda}=\left|\Lambda / \Lambda_{0}\right|
$$

(5.3) Problems.

1°. Let $u_{1}, \ldots, u_{d} \in \mathbb{Z}^{d}$ be linearly independent integer vectors and let

$$
\Pi=\left\{\sum_{i=1}^{d} \alpha_{i} u_{i}: \quad 0 \leq \alpha_{i}<1 \quad \text { for } \quad i=1, \ldots, d\right\}
$$

Prove that $\left|\Pi \cap \mathbb{Z}^{d}\right|=\operatorname{vol} \Pi$.
2. Prove that linearly independent vectors $u, v \in \mathbb{Z}^{2}$ form a basis of \mathbb{Z}^{2} if and only if the triangle with the vertices $0, u, v$ does not contain any point from \mathbb{Z}^{2} other than $0, u$ and v.
3. Construct an example of linearly independent vectors $u, v, w \in \mathbb{Z}^{3}$ with an arbitrary large volume of the tetrahedron with the vertices $0, u, v$ and w and no integer points in the tetrahedron other than $0, u, v$ and w.
4. Prove Pick's formula: if $P \subset \mathbb{R}^{2}$ is a convex polygon with integer vertices and non-empty interior then

$$
\left|P \cap \mathbb{Z}^{2}\right|=\operatorname{vol} P+\frac{1}{2}\left|\partial P \cap \mathbb{Z}^{2}\right|+1
$$

where ∂P is the boundary of P.
5. Let u_{1}, \ldots, u_{d} be a basis of lattice $\Lambda \subset V$ and let $v_{1}, \ldots, v_{d} \in V$ be some vectors. Let $v_{i}=\sum_{j=1}^{d} \mu_{i j} u_{j}$ for $i=1, \ldots, d$ and let $M=\left(\mu_{i j}\right)$ be the $d \times d$ matrix of the coefficients $\mu_{i j}$. Prove that v_{1}, \ldots, v_{d} is a basis of M if and only if M is an integer matrix and $\operatorname{det} M= \pm 1$.
6. Prove the existence of the Smith normal form: if Λ_{0} is a sublattice of Λ then there exists a basis u_{1}, \ldots, u_{d} of Λ and positive integers m_{1}, \ldots, m_{d} such that m_{i} divides m_{i+1} for $i=1, \ldots, d-1$ and $v_{1}=m_{1} u_{1}, \ldots, v_{d}=m_{d} u_{d}$ is a basis of Λ_{0}.
7. Let a_{1}, \ldots, a_{d} be coprime integers and let n be a positive integer. Let $\Lambda \subset \mathbb{Z}^{d}$ be the set of points $\left(m_{1}, \ldots, m_{d}\right)$ defined by the congruence

$$
a_{1} m_{1}+\ldots+a_{d} m_{d} \equiv 0 \quad \bmod n
$$

Prove that Λ is a sublattice of \mathbb{Z}^{d} and that $\operatorname{det} \Lambda=n$.
8. Let a_{1}, \ldots, a_{d+1} be coprime integers and let V be the d-dimensional Euclidean space identified with the hyperplane $H \subset \mathbb{R}^{d+1}$ defined by the equation $a_{1} x_{1}+$ $\ldots+a_{d+1} x_{d+1}=0$. Let $\Lambda=\mathbb{Z}^{d+1} \cap H$. Prove that Λ is a lattice in V and that $\operatorname{det} \Lambda=\sqrt{a_{1}^{2}+\ldots+a_{d+1}^{2}}$.
9. For lattices of Example 1.3 prove that $\operatorname{det} \mathbb{Z}^{n}=1$, $\operatorname{det} A_{n}=\sqrt{n+1}$, $\operatorname{det} D_{n}=$ $2, \operatorname{det} D_{n}^{+}=1, \operatorname{det} E_{7}=\sqrt{2}$ and $\operatorname{det} E_{6}=\sqrt{3}$.
10. For $k \leq d$ let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a linearly independent subset of \mathbb{Z}^{d}. Let us consider the $k \times d$ matrix M whose (i, j)-th entry is the j-th coordinate of v_{i}. Prove that the set $\left\{v_{1}, \ldots, v_{k}\right\}$ is primitive (see Problem 4 of Section 3.2) if and only if the greatest common divisor of all $k \times k$ minors of M is 1 .

6. Minkowski Theorem

We start with a lemma, also known as Blichfeldt's Theorem.
(6.1) Lemma. Let $\Lambda \subset V$ be a lattice and let X be a measurable set such that $\operatorname{vol} X>\operatorname{det} \Lambda$. Then there are points $x, y \in X$ such that $x-y \in \Lambda \backslash\{0\}$.
Proof. Let us choose a fundamental parallelepiped Π of Λ. For $u \in \Lambda$ let us define

$$
X_{u}=\{z \in \Pi: z+u \in X\}=((\Pi+u) \cap X)-u
$$

By Lemma 4.2, the set X is a disjoint union

$$
X=\bigcup_{u \in \Lambda}\left(X_{u}+u\right)
$$

and hence

$$
\sum_{u \in \Lambda} \operatorname{vol} X_{u}=\operatorname{vol} X>\operatorname{det} \Lambda=\operatorname{vol} \Pi
$$

Therefore, there are two points $u, v \in \Lambda$ such that $X_{u} \cap X_{v} \neq \emptyset$ and $u \neq v$. Therefore, there is a point $z \in \Pi$ such that $x=z+u \in X$ and $y=z+v \in X$. Then we have $x-y=u-v \in \Lambda \backslash\{0\}$.

(6.2) Problems.

1. Let $X \subset V$ be a measurable set such that $\operatorname{vol} X>m \operatorname{det} \Lambda$ for some positive integer m. Prove that there exist $m+1$ distinct points $x_{1}, \ldots, x_{m+1} \in X$ such that $x_{i}-x_{j} \in \Lambda$ for all i and j.
2. Let $f: V \longrightarrow \mathbb{R}$ be a non-negative integrable function and let $\Lambda \subset V$ be a lattice. Prove that there is a $z \in V$ such that

$$
\sum_{u \in \Lambda} f(u+z) \geq \frac{1}{\operatorname{det} \Lambda} \int_{V} f(x) d x
$$

3. Let $X \subset V$ be a compact set such that $\operatorname{vol} X=\operatorname{det} \Lambda$. Prove that there are points $x, y \in X$ such that $x-y \in \Lambda \backslash\{0\}$. Give an example showing that the statement is not true if X is not compact.
(6.3) Definitions. A set $A \subset V$ is called convex if for every $x, y \in A$, we have $[x, y] \subset A$, where $[x, y]=\{\alpha x+(1-\alpha) y: 0 \leq \alpha \leq 1\}$ is the interval with the endpoints x and y. A set $A \subset V$ is called symmetric if $-x \in A$ whenever $x \in A$ (we write $A=-A$ in this case).

Now we prove the famous Minkowski Theorem.
(6.4) Theorem. Let $\Lambda \subset V$ be a lattice and let $\operatorname{dim} V=d$. Let $A \subset V$ be a symmetric convex set such that $\operatorname{vol} A>2^{d} \operatorname{det} \Lambda$. Then there exists a point $u \in$ $\Lambda \backslash\{0\}$ such that $u \in A$.

Proof. Let

$$
X=\frac{1}{2} A=\left\{\frac{1}{2} x: x \in A\right\}
$$

Then $\operatorname{vol} X=2^{-d} \operatorname{vol} A>\operatorname{det} \Lambda$ and hence by Lemma 6.1 there are points $x, y \in X$ such that $x-y=u \in \Lambda \backslash\{0\}$. Hence

$$
u=\frac{1}{2}(2 x)+\frac{1}{2}(-2 y) .
$$

We have $2 x, 2 y \in A$ and since A is symmetric, we also have $-2 y \in A$. Finally, since A is convex, we conclude that $u \in A$.

(6.5) Problems.

1. Prove that if $\operatorname{vol} A=2^{d} \operatorname{det} \Lambda$ and if A is convex, symmetric and compact then A contains a non-zero lattice point.
2. Let $\Lambda \subset V$ be a lattice and let $A \subset V$ be a symmetric convex set such that $\operatorname{vol} A>m 2^{d} \operatorname{det} \Lambda$, where $d=\operatorname{dim} V$ and m is a positive integer. Prove that A contains at least m pairs of distinct non-zero lattice points $\pm u_{i}$ for $i=1, \ldots, m$.
3. Let $\Lambda \subset V$ be a lattice, where $\operatorname{dim} V=d$ and let

$$
K=\{x \in V:\|x\| \leq\|x-u\| \quad \text { for all } \quad u \in \Lambda\} .
$$

Let $A=2 K$. Prove that A is convex, symmetric, that $\operatorname{vol} A=2^{d} \operatorname{det} \Lambda$ and that A does not contain a non-zero lattice point in its interior.
4. Let Λ be a lattice of rank d and let $X \subset \Lambda$ be set such that $|X|>2^{d}$. Prove that there are two distinct points $x, y \in X$ such that $(x+y) / 2 \in \Lambda$.
5. A set $X \subset \Lambda$ is called lattice-convex if $X=\Lambda \cap A$, where $A \subset V$ is a convex set. Let $\operatorname{rank} \Lambda=d$ and let $\left\{X_{i}\right\}$ be a finite family of lattice-convex sets such that the intersection of every 2^{d} of the sets is non-empty. Prove that the intersection of all sets X_{i} is non-empty (Doignon's Theorem).
6^{*}. Let $A \subset V$ be a compact symmetric convex set such that $\operatorname{vol} A=2^{d} \operatorname{det} \Lambda$ and A does not contain a non-zero lattice point in its interior. Prove that there are $n \leq 2^{d}-1$ vectors $u_{i} \in \Lambda \backslash\{0\}$ and real numbers $\alpha_{i}, i=1, \ldots, n$ such that

$$
A=\left\{x \in V:\left|\left\langle u_{i}, x\right\rangle\right|<\alpha_{i} \quad \text { for } \quad i=1, \ldots, n\right\}
$$

(Minkowski's Theorem).
7^{*}. Let $A \subset \mathbb{R}^{d}$ be a compact symmetric convex set which does not contain a non-zero point of \mathbb{Z}^{d}. Prove that

$$
2^{d}=\operatorname{vol} A+4^{d}(\operatorname{vol} A)^{-1} \sum_{u \in \mathbb{Z}^{d} \backslash\{0\}}\left|\int_{\frac{1}{2} A} \exp \{-2 \pi i\langle u, x\rangle\} d x\right|^{2}
$$

(Siegel's Theorem).
Hint: Define the indicator $[X]$ of a set $X \subset \mathbb{R}^{d}$ as the function $[X]: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ where

$$
[X](x)= \begin{cases}1 & \text { if } x \in X \\ 0 & \text { if } x \notin X\end{cases}
$$

Let

$$
\phi(x)=\sum_{u \in \mathbb{Z}^{d}}\left[u+\frac{1}{2} A\right]
$$

and apply Parseval's formula to ϕ.

7. The volume of a unit ball

We need the formula for the volume of the unit ball in \mathbb{R}^{d}. Recall that the Gamma function is defined by the formula

$$
\Gamma(x)=\int_{0}^{+\infty} t^{x-1} e^{-t} d t \quad \text { for } \quad x>0
$$

(7.1) Problems.

1. Prove that $\Gamma(x+1)=x \Gamma(x)$. Deduce that $\Gamma(x)=(x-1)$! for positive integer x.
2^{*}. Prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
3^{*}. Deduce Stirling's formula

$$
\Gamma(x+1)=\sqrt{2 \pi x} x^{x} e^{-x}\left(1+O\left(x^{-1}\right)\right) \quad \text { as } \quad x \longrightarrow+\infty .
$$

(7.2) Lemma. Let β_{d} be the volume of the unit ball

$$
\mathbb{B}^{d}=\left\{x \in \mathbb{R}^{d}:\|x\| \leq 1\right\}
$$

in \mathbb{R}^{d}. Then

$$
\beta_{d}=\frac{\pi^{d / 2}}{\Gamma\left(1+\frac{d}{2}\right)}
$$

Proof. Let

$$
\mathbb{S}^{d-1}(\rho)=\left\{x \in \mathbb{R}^{d}:\|x\|=\rho\right\}
$$

denote the sphere of radius ρ and let κ_{d-1} denote the surface area of the unit sphere $\mathbb{S}^{d-1}(1)$, so the surface area of $\mathbb{S}^{d-1}(\rho)$ is $\kappa_{d-1} \rho^{d-1}$. Let us denote temporarily

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\lambda
$$

Then, using the polar coordinates and a substitution $t=\rho^{2}$, we can write

$$
\begin{aligned}
\lambda^{d} & =\int_{\mathbb{R}^{d}} e^{-\|x\|^{2}} d x=\kappa_{d-1} \int_{0}^{\rho} e^{-\rho^{2}} \rho^{d-1} d \rho=\frac{\kappa_{d-1}}{2} \int_{0}^{+\infty} t^{(d-2) / 2} e^{-t} d t \\
& =\frac{\kappa_{d-1}}{2} \Gamma\left(\frac{d}{2}\right)
\end{aligned}
$$

from which

$$
\kappa_{d-1}=\frac{2 \lambda^{d}}{\Gamma\left(\frac{d}{2}\right)}
$$

Therefore,

$$
\beta_{d}=\int_{0}^{1} \kappa_{d-1} \rho^{d-1} d \rho=\frac{\kappa_{d-1}}{d}=\frac{\lambda^{d}}{\Gamma\left(1+\frac{d}{2}\right)}
$$

Since $\beta_{2}=\pi$ we conclude that $\lambda=\sqrt{\pi}$ and the proof follows.

8. An application: Lagrange's four squares theorem

As an application of Minkowski's Theorem (Theorem 6.4), we prove Lagrange's Theorem that every positive integer is a sum of four squares of integers. The proof below was given by Davenport.
(8.1) Lemma. Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}^{d} \backslash\{0\}$ be integer vectors, let m_{1}, \ldots, m_{k} be positive integers and let us define

$$
\Lambda=\left\{x \in \mathbb{Z}^{d}:\left\langle a_{i}, x\right\rangle \equiv 0 \quad \bmod m_{i} \quad \text { for } \quad i=1, \ldots, k\right\}
$$

Then Λ is a lattice in \mathbb{R}^{d} and $\operatorname{det} \Lambda \leq m_{1} \cdots m_{k}$.
Proof. Clearly, Λ is a discrete additive subgroup of \mathbb{Z}^{d}. Moreover, Λ spans \mathbb{R}^{d} since $m \mathbb{Z}^{d} \subset \Lambda$ for $m=m_{1} \cdots m_{k}$.

Let us estimate the index of Λ in \mathbb{Z}^{d}. A coset of \mathbb{Z}^{d} / Λ consists of the points $x \in \mathbb{Z}^{d}$ for which the values of $\left\langle a_{i}, x\right\rangle$ have prescribed remainders modulo m_{i}. Since the number of all possible k-tuples of remainders doesn't exceed $m_{1} \cdots m_{k}$, we conclude that $\left|\mathbb{Z}^{d} / \Lambda\right| \leq m_{1} \cdots m_{k}$. Since $\operatorname{det} \mathbb{Z}^{d}=1$, the proof follows by Theorem 5.2.
(8.2) Theorem. A positive integer n is a sum of four squares of integers.

Proof. Suppose first that n is a prime. We claim that one can find integers a and b such that

$$
a^{2}+b^{2}+1 \equiv 0 \quad \bmod n
$$

If $n=2$, we can choose $a=1$ and $b=0$. If n is an odd prime then the $(n+1) / 2$ numbers $a^{2}: 0 \leq a<n / 2$ must be distinct modulo n, since if $a_{1}^{2} \equiv a_{2}^{2} \bmod n$ for some $0 \leq a_{1}, a_{2}<n / 2$ we must have $\left(a_{1}-a_{2}\right)\left(a_{1}+a_{2}\right) \equiv 0 \bmod n$, which implies that $a_{1}=a_{2}$. Similarly, the $(n+1) / 2$ numbers $-1-b^{2}: 0 \leq b<n / 2$ must be distinct modulo n. Therefore, for some a and b we must have $a^{2} \equiv-1-b^{2} \bmod n$ or, equivalently, $a^{2}+b^{2}+1 \equiv \bmod n$.

Let us define a lattice $\Lambda \subset \mathbb{Z}^{4}$ by

$$
\Lambda=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{Z}^{4}: \begin{array}{l}
x_{1} \equiv a x_{3}+b x_{4} \bmod n \\
x_{2} \equiv b x_{3}-a x_{4} \bmod n
\end{array}\right\}
$$

By Lemma 8.1, Λ is indeed lattice and $\operatorname{det} \Lambda \leq n^{2}$.
Moreover, for any $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \Lambda$, we have

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \equiv\left(a^{2}+b^{2}+1\right) x_{3}^{2}+\left(a^{2}+b^{2}+1\right) x_{4}^{2} \equiv 0 \quad \bmod n .
$$

Let

$$
B=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}<2 n\right\}
$$

be the open ball of radius $\sqrt{2 n}$. By Lemma 7.2 , we have

$$
\operatorname{vol} B=2 \pi^{2} n^{2}>16 n^{2} \geq 2^{4} \operatorname{det} \Lambda
$$

Therefore, by Theorem 6.4, there is a non-zero vector $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in B \cap \Lambda$. Since we have

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \equiv 0 \quad \bmod n \quad \text { and } \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}<2 n,
$$

we must have

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=n,
$$

which is the desired representation.
Since every positive integer $n>1$ is a product of primes, the result for general integer n follows from the identity

$$
\begin{gathered}
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2} \quad \text { where } \\
z_{1}=x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}-x_{4} y_{4} \\
z_{2}=x_{1} y_{2}+x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3} \\
z_{3}=x_{1} y_{3}-x_{2} y_{4}+x_{3} y_{1}+x_{4} y_{2} \\
z_{4}=x_{1} y_{4}+x_{2} y_{3}-x_{3} y_{2}+x_{4} y_{1} .
\end{gathered}
$$

(8.3) Problems.

1. Let k be a positive integer. Prove that if there is a solution to the congruence $x^{2}+1 \equiv 0 \bmod k$ then k is the sum of two squares of integers. Deduce that every prime number $k \equiv 1 \bmod 4$ is the sum of two squares of integers.
2^{*}. Prove the Jacobi formula:

$$
\left(\sum_{k=-\infty}^{+\infty} q^{k^{2}}\right)^{4}=1+8 \sum_{k=1}^{+\infty} \frac{q^{k}}{\left(1+(-q)^{k}\right)^{2}}
$$

and deduce from it that the number of integer vector solutions $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of the equation

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=n,
$$

where n is a positive integer, is equal to 8 times the sum of the divisors of n that are not multiples of 4 .

Hint: For a short proof, see G. Andrews, S.B. Ekhad, and D. Zeilberger, A short proof of Jacobi's formula for the number of representations of an integer as a sum of four squares, Amer. Math. Monthly 100 (1993), no. 3, 274-276.

9. An application: Rational approximations of real numbers

Let us fix a real α. Then for any positive integer q we can find an integer p such that

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{2 q}
$$

It turns out that for infinitely many values of q we can do essentially better.
(9.1) Theorem. Let us choose a real α. Then, for any positive integer M there exists an integer $q \geq M$ and an integer p such that

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2}}
$$

Proof. Without loss of generality we assume that α is irrational. Let us choose a positive integer Q and consider the parallelogram A in \mathbb{R}^{2} defined by the inequalities $|x| \leq Q$ and $|\alpha x-y| \leq 1 / Q$. Then A is compact, convex, symmetric and $\operatorname{vol} A=4$. Therefore, A contains a non-zero integer point (q, p) (cf. Problem 1 of Section 6.5). We must have $q \neq 0$ since otherwise we necessarily have $p=0$. Since A is symmetric, we can always choose $q>0$. Then we have

$$
\begin{equation*}
\left|\alpha-\frac{p}{q}\right|_{16} \leq \frac{1}{q Q} \tag{9.1.1}
\end{equation*}
$$

and $0<q \leq Q$, from which it follows that

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2}}
$$

It remains to show that q can be chosen arbitrarily large. Since α is irrational, for any positive integer M we can choose a sufficiently large Q so that (9.1.1) cannot be satisfied with any $1<q<M$.

(9.2) Problem.

1. Prove that for any real $\alpha_{1}, \ldots, \alpha_{n}$ there exists an arbitrarily large integer $q>0$ and integers p_{1}, \ldots, p_{n} such that

$$
\left|\alpha_{k}-\frac{p_{k}}{q}\right| \leq \frac{1}{q^{1+\frac{1}{n}}} \quad \text { for } \quad k=1, \ldots, n .
$$

(9.3) Continued fractions. The following construction of continued fractions allows one to obtain approximations such that

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2} \sqrt{5}}
$$

for arbitrarily large q. The constant $1 / \sqrt{5}$ cannot be made smaller.
Given a real α, we let

$$
\alpha=\lfloor\alpha\rfloor+\{\alpha\} \quad \text { and } \quad a_{0}=\lfloor\alpha\rfloor
$$

If $\{\alpha\}=0$, we stop. Otherwise, we let

$$
\beta=\frac{1}{\{\alpha\}}, \quad \beta=\lfloor\beta\rfloor+\{\beta\} \quad \text { and } \quad a_{1}=\lfloor\beta\rfloor .
$$

If $\{\beta\}=0$, we stop, otherwise we update

$$
\beta:=\frac{1}{\{\beta\}}
$$

and proceed as above. In the end, we get a potentially infinite fraction

$$
\alpha=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots}}}
$$

We write

$$
\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right] .
$$

For example,

$$
\sqrt{2}=1+\sqrt{2}-1=1+\frac{1}{\sqrt{2}+1}=1+\frac{1}{2+\frac{1}{\sqrt{2}+1}}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\ldots}}} .
$$

We obtain the k-th convergent of α by cutting the continued fraction at a_{k} :

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ldots+\frac{1}{a_{k}}}}}=\frac{p_{k}}{q_{k}} .
$$

For example,

$$
[1 ; 2,2,2]=\frac{17}{12} \quad \text { and } \quad[1 ; 2,2,2,2]=\frac{41}{29}
$$

It turns out that convergents provide very good rational approximations to real numbers. Note, for example, that

$$
\sqrt{2}-\frac{17}{12} \approx-0.0025 \quad \text { and } \quad \sqrt{2}-\frac{41}{29} \approx 0.00042
$$

Similarly, $\pi=[3 ; 7,15,1, \ldots$,$] ,$
$[3,7]=\frac{22}{7}, \quad[3 ; 7,15,1]=\frac{355}{113} \quad$ and $\quad \pi-\frac{22}{7} \approx-0.0013, \quad \pi-\frac{355}{113} \approx 2.66 \times 10^{-7}$.

(9.4) Problems.

In the problems below, we let

$$
\alpha=\left[a_{0} ; a_{1}, \ldots, a_{k}, \ldots\right] \quad \text { and } \quad\left[a_{0} ; a_{1}, \ldots, a_{k}\right]=\frac{p_{k}}{q_{k}}
$$

1. Prove that

$$
p_{k}=a_{k} p_{k-1}+p_{k-2} \quad \text { and } \quad q_{k}=a_{k} q_{k-1}+q_{k-2} \quad \text { for } \quad k \geq 2
$$

2. Prove that

$$
p_{k-1} q_{k}-p_{k} q_{k-1}=(-1)^{k} \quad \text { for } \quad k \geq 1
$$

3. Prove that

$$
q_{k} p_{k-2}-p_{k} q_{k-2}=(-1)^{k-1} a_{k} \quad \text { for } \quad k \geq 2
$$

4. Prove that

$$
\left|\alpha-\frac{p_{k}}{q_{k}}\right| \leq \frac{1}{q_{k} q_{k+1}} \quad \text { for } \quad k \geq 0
$$

5^{*}. Prove that for $k \geq 2$ at least one of the three inequalities

$$
\left|\alpha-\frac{p_{k}}{q_{k}}\right| \leq \frac{1}{q_{k}^{2} \sqrt{5}}, \quad\left|\alpha-\frac{p_{k-1}}{q_{k-1}}\right| \leq \frac{1}{q_{k-1}^{2} \sqrt{5}} \quad \text { or } \quad\left|\alpha-\frac{p_{k-2}}{q_{k-2}}\right| \leq \frac{1}{q_{k-2}^{2} \sqrt{5}}
$$

holds.
6. Let $\alpha=\frac{1+\sqrt{5}}{2}$. Prove that $\alpha=[1 ; 1, \ldots, 1, \ldots]$ and that

$$
\left|\alpha-\frac{p_{k}}{q_{k}}\right|=\frac{1}{q_{k}^{2}\left(\sqrt{5}+\epsilon_{k}\right)},
$$

where $\epsilon_{k} \longrightarrow 0$ as $k \longrightarrow+\infty$.
See A. Ya. Khinchin, Continued Fractions, Dover Publication, Mineola, New York, 1997.

10. Sphere packings

(10.1) Definitions. Let $\Lambda \subset V$ be a lattice of rank d. The packing radius $\rho(\Lambda)$ of Λ is the largest number ρ such that for no two open balls of radius ρ centered at the lattice points intersect. Equivalently, $2 \rho(\Lambda)$ is the length of the shortest non-zero vector in Λ. The packing density $\sigma(\Lambda)$ is defined as

$$
\sigma(\Lambda)=\frac{\pi^{d / 2} \rho^{d}(\Lambda)}{\Gamma\left(1+\frac{d}{2}\right) \operatorname{det} \Lambda}
$$

In other words, the packing density of Λ is the proportion of the space occupied by the balls centered at the lattice points and of radius $\rho(\Lambda)$.

Lattices $\Lambda_{1} \subset V_{1}$ and $\Lambda_{2} \subset V_{2}$ are called similar (denoted $\Lambda_{1} \sim \Lambda_{2}$) if there is a constant $\gamma>0$ and a linear transformation $T: V_{1} \longrightarrow V_{2}$ such that $\|T(x)\|=\gamma\|x\|$ for all $x \in V_{1}$ and $\Lambda_{2}=T\left(\Lambda_{1}\right)$.

Lattices having high packing densities are of interest.

(10.2) Problems.

1. Prove that

$$
\begin{aligned}
& \rho\left(\mathbb{Z}^{n}\right)=\frac{1}{2}, \rho\left(A_{n}\right)=\rho\left(D_{n}\right)=\frac{\sqrt{2}}{2} \text { for } n \geq 2 \\
& \rho\left(D_{n}^{+}\right)=\frac{\sqrt{2}}{2} \text { for } n \geq 8 \\
& \rho\left(D_{2}^{+}\right)=\frac{1}{2 \sqrt{2}}, \rho\left(D_{4}^{+}\right)=\frac{1}{2}, \rho\left(D_{6}\right)=\sqrt{\frac{3}{8}} \text { and } \\
& \rho\left(E_{6}\right)=\rho\left(E_{7}\right)=\frac{\sqrt{2}}{2} .
\end{aligned}
$$

2. Prove that similar lattices have equal packing density.
3. Prove that $D_{2} \sim \mathbb{Z}^{2}$ that D_{3} is isomorphic to A_{3}, that D_{4}^{+}is isomorphic to \mathbb{Z}^{4} and that $D_{4}^{*} \sim D_{4}$.
4. Prove that

$$
\begin{aligned}
& \sigma(\mathbb{Z})=1, \sigma\left(A_{2}\right)=\frac{\pi}{\sqrt{12}} \approx 0.9069, \sigma\left(A_{3}\right)=\sigma\left(D_{3}\right)=\frac{\pi}{\sqrt{18}} \approx 0.7405 \\
& \sigma\left(D_{4}\right)=\frac{\pi^{2}}{16} \approx 0.6169, \sigma\left(D_{5}\right)=\frac{\pi^{2}}{15 \sqrt{2}} \approx 0.4653, \sigma\left(E_{6}\right)=\frac{\pi^{3}}{48 \sqrt{3}} \approx 0.3729 \\
& \sigma\left(E_{7}\right)=\frac{\pi^{3}}{105} \approx 0.2953 \quad \text { and } \quad \sigma\left(E_{8}\right)=\frac{\pi^{4}}{384} \approx 0.2537
\end{aligned}
$$

5. Check the inequalities

$$
\begin{aligned}
& \sigma\left(A_{2}\right)>\sigma\left(\mathbb{Z}^{2}\right) \\
& \sigma\left(A_{3}\right)=\sigma\left(D_{3}\right)>\sigma\left(\mathbb{Z}^{3}\right) \\
& \sigma\left(D_{4}\right)>\sigma\left(A_{4}\right)>\sigma\left(\mathbb{Z}^{4}\right) \\
& \sigma\left(D_{5}\right)>\sigma\left(A_{5}\right)>\sigma\left(\mathbb{Z}^{5}\right) \\
& \sigma\left(E_{6}\right)>\sigma\left(D_{6}\right)>\sigma\left(A_{6}\right)>\sigma\left(\mathbb{Z}^{6}\right) \\
& \sigma\left(E_{7}\right)>\sigma\left(D_{7}\right)>\sigma\left(A_{7}\right)>\sigma\left(\mathbb{Z}^{7}\right) \quad \text { and } \\
& \sigma\left(E_{8}\right)>\sigma\left(D_{8}\right)>\sigma\left(A_{8}\right)>\sigma\left(\mathbb{Z}^{8}\right)
\end{aligned}
$$

6. Let V be a d-dimensional Euclidean space and let X be an (infinite) set such that $\|x-y\| \geq 2$ for any $x, y \in X$ such that $x \neq y$. We define the density of the unit sphere packing with centers at X as

$$
\sigma(X)=\limsup _{r \longrightarrow+\infty} \frac{\pi^{d / 2}\left|B_{r} \cap X\right|}{\Gamma\left(1+\frac{d}{2}\right) \operatorname{vol} B_{r}}
$$

where B_{r} is the ball of radius r centered at the origin.
Prove that one can find such a set X so that $\sigma(X) \geq 2^{-d}$ (the Gilbert - Varshamov bound).
7. Let $\Lambda \subset \mathbb{R}^{3}$ be a lattice with basis

$$
(1,0,0),\left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right),\left(0,0, \sqrt{\frac{8}{3}}\right)
$$

and let

$$
u=\left(\frac{1}{2}, \frac{1}{\sqrt{12}}, \sqrt{\frac{2}{3}}\right)
$$

Let

$$
X=\Lambda \cup(u+\Lambda)
$$

Prove that X is not a lattice and that $\sigma(X)=\sigma\left(D_{3}\right)$.
8. Identify the 24 shortest non-zero vectors of D_{4}.
9. Identify the 240 shortest non-zero vectors of E_{8}.
10. Let

$$
\|x\|_{\infty}=\max _{i=1, \ldots, d}\left|x_{i}\right| \quad \text { for } \quad x=\left(x_{1}, \ldots, x_{d}\right) .
$$

Prove that for any lattice $\Lambda \subset \mathbb{R}^{d}$ there is a vector $x \in \Lambda \backslash\{0\}$ such that

$$
\|x\|_{\infty} \leq(\operatorname{det} \Lambda)^{1 / d}
$$

11. Prove that

$$
\rho(\Lambda) \leq \frac{1}{2} \sqrt{d}(\operatorname{det} \Lambda)^{1 / d}
$$

for a lattice Λ of rank d.

11. The Leech lattice

Our goal is to construct a remarkable lattice of rank 24, called the Leech lattice. We follow the construction of R. Wilson, Octonions and the Leech lattice, Journal of Algebra, 322(2009), 2186-2190.
(11.1) Octonions. We introduce the algebra of octonions, following H.S.M. Coxeter, Integral Cayley numbers, Duke Math. J., 13(1946), 561-578.

We define octonions as formal linear combinations

$$
x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}+x_{5} e_{5}+x_{6} e_{6}+x_{7} e_{7}
$$

where $x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \in \mathbb{R}$. We multiply octonions according to the following rules.

First,

$$
1 e_{i}=e_{i} 1=e_{i} \quad \text { and } \quad e_{i}^{2}=-1 \quad \text { for } \quad i=1, \ldots, 7
$$

Next,

$$
e_{i} e_{j}=-e_{j} e_{i} \quad \text { for all } i \neq j .
$$

Furthermore

$$
e_{1} e_{2}=e_{4}, e_{2} e_{3}=e_{5}, e_{3} e_{4}=e_{6}, e_{4} e_{5}=e_{7}, e_{5} e_{6}=e_{1}, e_{6} e_{7}=e_{2}, e_{7} e_{1}=e_{3}
$$

(note that the remaining six identities can be obtained from the first identity by a cyclic shift of the indices), and the products of the generators from the following seven triples are associative

$$
\begin{align*}
& \left\{e_{1}, e_{2}, e_{4}\right\},\left\{e_{2}, e_{3}, e_{5}\right\},\left\{e_{3}, e_{4}, e_{6}\right\},\left\{e_{4}, e_{5}, e_{7}\right\}, \tag{11.1.1}\\
& \left\{e_{5}, e_{6}, e_{1}\right\},\left\{e_{6}, e_{7}, e_{2}\right\},\left\{e_{7}, e_{1}, e_{3}\right\},
\end{align*}
$$

so, for example,

$$
\left(e_{1} e_{2}\right) e_{4}=e_{1}\left(e_{2} e_{4}\right), \quad \text { etc. }
$$

Finally, the product of any triple involving only two or one generator e_{i} is associative, so, for example,

$$
\left(e_{6} e_{3}\right) e_{6}=e_{6}\left(e_{3} e_{6}\right)
$$

These rules suffice to figure out any product $e_{i} e_{j}$. For example,

$$
\begin{aligned}
& e_{1} e_{6}=\left(e_{5} e_{6}\right) e_{6}=e_{5}\left(e_{6} e_{6}\right)=-e_{5}, \\
& e_{2} e_{6}=-e_{6} e_{2}=-e_{6}\left(e_{6} e_{7}\right)=-\left(e_{6} e_{6}\right) e_{7}=e_{7}, \\
& e_{3} e_{6}=e_{3}\left(e_{3} e_{4}\right)=\left(e_{3} e_{3}\right) e_{4}=-e_{4} \quad \text { and } \\
& e_{4} e_{6}=-e_{6} e_{4}=-\left(e_{3} e_{4}\right) e_{4}=-e_{3}\left(e_{4} e_{4}\right)=e_{3} .
\end{aligned}
$$

We define the conjugate

$$
\begin{array}{r}
\hline x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}+x_{5} e_{5}+x_{6} e_{6}+x_{7} e_{7}= \\
x_{0}-x_{1} e_{1}-x_{2} e_{2}-x_{3} e_{3}-x_{4} e_{4}-x_{5} e_{5}-x_{6} e_{6}-x_{7} e_{7}
\end{array}
$$

and the norm

$$
\begin{aligned}
& \left\|x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}+x_{5} e_{5}+x_{6} e_{6}+x_{7} e_{7}\right\|= \\
& \quad \sqrt{x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2}+x_{6}^{2}+x_{7}^{2}},
\end{aligned}
$$

thus making the space of octonions Euclidean space \mathbb{R}^{8}.

(11.2) Problems.

1°. Build a 7×7 multiplication table for $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}$ and e_{7}.
2°. Let $\{i, j, k\}$ be a triple of distinct indices, not equal to one of the triples of (11.1.1). Prove the anti-associativity relation:

$$
\left(e_{i} e_{j}\right) e_{k}=-e_{i}\left(e_{j} e_{k}\right)
$$

3. Prove that $\overline{(x \cdot y)}=\bar{y} \cdot \bar{x}$ for every two octonions x and y.
4. Prove the Moufang laws:

$$
\begin{aligned}
& z(x(z y))=((z x) z) y \\
& x(z(y z))=((x z) y) z \\
& (z x)(y z)=(z(x y)) z=z((x y) z)
\end{aligned}
$$

for every three octonions x, y and z.
5. Prove that the algebra generated by any two octonions is associative.
6. Prove that $\|x\|^{2}=x \bar{x}$ for every octonion x.
7. Prove that $\|x y\|=\|x\|\|y\|$ for every two octonions x and y.
(11.3) The Leech lattice. First, we construct a copy of lattice E_{8} in the space of octonions. As in Example 1.3.3, we define D_{8} as the lattice consisting of all points

$$
\begin{array}{r}
x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}+x_{5} e_{5}+x_{6} e_{6}+x_{7} e_{7}, \\
\text { where } x_{i} \in \mathbb{Z} \quad \text { for } \quad i=0, \ldots, 7 \quad \text { and } \\
x_{0}+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{7} \equiv 0 \bmod 2 .
\end{array}
$$

Next, we let

$$
u=\frac{1}{2}\left(-1+e_{1}+e_{2}+e_{3}+e_{4}+e_{5}+e_{6}+e_{7}\right)
$$

We let

$$
L=D_{8} \cup\left(u+D_{8}\right) .
$$

Now, we consider the space V of all triples (x, y, z), where x, y and z are octonions. We make it 24 -dimensional Euclidean space by introducing the norm

$$
\|(x, y, z)\|=\sqrt{\frac{\|x\|^{2}+\|y\|^{2}+\|z\|^{2}}{2}} .
$$

Now we define the Leech lattice $\Lambda_{24} \subset V$ as the set of all triples (x, y, z) such that

$$
\begin{aligned}
& x, y, z \in L \\
& x+y, x+z, y+z \in L \bar{u} \\
& x+y+z \in L u
\end{aligned}
$$

Here by $L u$, respectively $L \bar{u}$, we understand the lattice obtained by multiplying lattice L point-wise by u, respectively by \bar{u}.

(11.4) Problems.

1°. Check that L is isomorphic to E_{8}.
2. Prove that $L e_{i}=L$ for $i=1, \ldots, 7$ and that $L u \subset L$.
3°. Prove that if $(x, y, z) \in \Lambda_{24}$ then vectors $(x, z, y),(y, x, z),(y, z, x),(z, x, y)$ and (z, y, x) also lie in Λ_{24}.
4. Prove that $2 L \subset L u, 2 L \subset L \bar{u}$ and that $L u+L \bar{u} \subset L$ (in fact, $L u \cap L \bar{u}=2 L$ and $L u+L \bar{u}=L)$.
5. Prove that for every $x \in L$ we have

$$
\begin{aligned}
& (2 x, 0,0) \in \Lambda_{24} \\
& (x u, x,-x) \in \Lambda_{24} \\
& (x \bar{u}, x \bar{u}, 0) \in \Lambda_{24} .
\end{aligned}
$$

6. Prove that $\|x\|^{2}$ is an even integer for every $x \in \Lambda_{24}$. Deduce that $\Lambda_{24} \subset \Lambda_{24}^{*}$. 7^{*}. Prove that $\Lambda_{24}^{*}=\Lambda_{24}$.
7. Prove that $\|x\| \geq 2$ for all $x \in \Lambda_{24}$.

9*. Prove that if $(x, y, z) \in \Lambda_{24}$ then $\left(x, y e_{i}, z e_{i}\right) \in \Lambda_{24}$ for $i=1, \ldots, 7$. Deduce that if $(x, y, z) \in \Lambda_{24}$ then $(x, y,-z) \in \Lambda_{24}$.
10^{*}. Let us denote $1=e_{0}$. Prove that if x is a shortest non-zero vector in L then

$$
\begin{aligned}
& (2 x, 0,0) \in \Lambda_{24} \\
& \left(x \bar{u}, x \bar{u} e_{i}, 0\right) \in \Lambda_{24} \text { for } i=0, \ldots, 7 \text { and } \\
& \left((x u) e_{i}, x e_{j},\left(x e_{i}\right) e_{j}\right) \in \Lambda_{24} \quad \text { for } \quad i, j=0, \ldots, 7
\end{aligned}
$$

Accounting for permutations of the coordinates and sign changes, there are

$$
3 \cdot 240+3 \cdot 240 \cdot 16+3 \cdot 240 \cdot 16 \cdot 16=196,560
$$

shortest non-zero vectors of length 2 in Λ_{24}.
11°. Conclude from Problems 5, 7 and 8 above that $\rho\left(\Lambda_{24}\right)=1$, $\operatorname{det} \Lambda=1$ and hence

$$
\sigma\left(\Lambda_{24}\right)=\frac{\pi^{12}}{12!} \approx 0.001929574313
$$

12. The Minkowski - Hlawka Theorem

Our goal is to prove that there is a lattice of rank d with a high packing density. We will prove that for every d and $\sigma<2^{-d}$ there is a lattice of packing density at least σ. A simple modification of our construction improves the bound to any $\sigma<2^{-d+1}$ and then to $\sigma=2^{-d+1}$. There is a further (much more technical) improvement to $\sigma=\zeta(d) 2^{1-d}$ for $d \geq 2$, where $\zeta(d)=\sum_{n=1}^{+\infty} n^{-d}$.
(12.1) Lemma. Let $M \subset V$ be a Lebesgue measurable set, let $\Lambda \subset V$ be a lattice and let Π be a fundamental parallelepiped of Λ. For $x \in V$, let $x+\Lambda=$ $\{x+u: u \in \Lambda\}$ be the translation of Λ and let $|M \cap(x+\Lambda)|$ be the number of points from $x+\Lambda$ in M. Then

$$
\int_{\Pi}|M \cap(x+\Lambda)| d x=\operatorname{vol} M
$$

More generally, for an integer $k \neq 0$, we have

$$
\int_{\Pi}|M \cap(k x+\Lambda)| d x=\operatorname{vol} M
$$

Proof. For $u \in \Lambda$ let us introduce a function $f_{u}: \Pi \longrightarrow \mathbb{R}$ by

$$
f_{u}(x)= \begin{cases}1 & \text { if } x+u \in M \\ 0 & \text { if } x+u \notin M\end{cases}
$$

Then

$$
|M \cap(x+\Lambda)|=\sum_{u \in \Lambda} f_{u}(x)
$$

and hence

$$
\int_{\Pi}|M \cap(x+\Lambda)| d x=\sum_{u \in \Lambda} \int_{\Pi} f_{u}(x) d x=\sum_{u \in \Lambda} \operatorname{vol}((\Pi+u) \cap M)=\operatorname{vol} M
$$

where the last equality follows by Lemma 4.2.
To handle the general case, without loss of generality we assume that $k>0$ (if $k<0$ we consider the parallelepiped $-\Pi$ instead). Substituting $y=k x$, we obtain

$$
\int_{\Pi}|M \cap(k x+\Lambda)| d x=k^{-d} \int_{k \Pi}|M \cap(y+\Lambda)| d y \quad \text { for } \quad d=\operatorname{dim} V
$$

The parallelepiped $k \Pi$ is the union of k^{d} pairwise disjoint lattice translations $\Pi+u$: $u \in \Lambda$ of the parallelepiped Π. Since the function $g(y)=|M \cap(y+\Lambda)|$ satisfies $g(y+u)=g(y)$ for all $y \in \Lambda$, we conclude that

$$
k^{-d} \int_{k \Pi}|M \cap(y+\Lambda)| d y=\int_{\Pi}|M \cap(y+\Lambda)| d y=\operatorname{vol} M .
$$

The following is the Minkowski - Hlawka Theorem.
(12.2) Theorem. $M \subset \mathbb{R}^{d}$ be a bounded Jordan measurable set, where $d>1$. Then, for any $\delta>\operatorname{vol} M$ there is a lattice $\Lambda \subset V$ such that $\operatorname{det} \Lambda=\delta$ and $M \cap$ $(\Lambda \backslash\{0\})=\emptyset$.

Proof. Without loss of generality we assume that $\operatorname{vol} M<1$ and $\delta=1$. Let e_{1}, \ldots, e_{d} be the standard basis of \mathbb{R}^{d} and let H be the coordinate hyperplane $x_{d}=0$.

Let us choose a sufficiently small $\alpha>0$ (to be defined later) and consider the translations

$$
H_{k}=H+k \alpha e_{d}, \quad k \in \mathbb{Z}
$$

We denote $M_{k}=M \cap H_{k}$. We choose $\alpha>0$ in such a way that for every $x \in M$, $x=\left(x_{1}, \ldots, x_{d}\right)$, we have

$$
\begin{equation*}
\left|x_{i}\right|<\alpha^{-1 /(d-1)} \quad \text { for } \quad i=1, \ldots, d-1 \tag{12.2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha \sum_{k=-\infty}^{+\infty} \operatorname{vol}_{d-1} M_{k}<1 \tag{12.2.2}
\end{equation*}
$$

While (12.2.1) can be satisfied with a sufficiently small α since M is bounded, (12.2.2) can be satisfied since vol $M<1$ and M is Jordan measurable.

Let

$$
u_{i}=\alpha^{-1 /(d-1)} e_{i} \quad \text { for } \quad i=1, \ldots, d-1
$$

and let $\Lambda_{0} \subset H$ be the lattice with basis u_{1}, \ldots, u_{d-1}. Hence $\operatorname{det} \Lambda_{0}=1 / \alpha$ and $M \cap\left(\Lambda_{0} \backslash\{0\}\right)=\emptyset$ by (12.2.1).

Let Π be the fundamental parallelepiped of u_{1}, \ldots, u_{d-1}. For $x \in \Pi$ let us define $u_{d}(x)=\alpha e_{d}+x$ and let $\Lambda(x) \subset \mathbb{R}^{d}$ be the lattice with basis $u_{1}, \ldots, u_{d-1}, u_{d}(x)$. Then $\operatorname{det} \Lambda(x)=1$ for all $x \in \Pi$. We have

$$
|M \cap \Lambda(x)|=\sum_{k=-\infty}^{+\infty}\left|M_{k} \cap \Lambda(x)\right| .
$$

Choosing the origin in H_{k} at $\alpha k e_{d}$, we identify $H_{k}=\mathbb{R}^{d-1}$ and $\Lambda(x) \cap H_{k}=k x+\Lambda_{0}$. Hence by Lemma 12.1, for $k \neq 0$ we have

$$
\int_{\Pi}\left|M_{k} \cap \Lambda(x)\right| d x=\int_{\Pi}\left|M_{k} \cap\left(k x+\Lambda_{0}\right)\right| d x=\operatorname{vol}_{d-1} M_{k-1}
$$

Since $\operatorname{vol}_{d-1} \Pi=1 / \alpha$, by (12.2.2), we conclude that

$$
\frac{1}{\operatorname{vol}_{d-1} \Pi} \int_{\Pi}\left(\sum_{k \in \mathbb{Z} \backslash\{0\}}\left|M_{k} \cap \Lambda(x)\right|\right) d x<1
$$

Therefore, there is an $x \in \Pi$ such that $\left|M_{k} \cap \Lambda(x)\right|=\emptyset$ for all $k \in \mathbb{Z} \backslash\{0\}$.
(12.3) Corollary. For any $\sigma<2^{-d}$ there is a lattice Λ of rank d with the packing density $\sigma(\Lambda)>2^{-d}$.
Proof. Let $B \subset \mathbb{R}^{d}$ be the standard Euclidean ball centered at the origin and of radius 1. By Theorem 12.2 , there is a lattice $\Lambda \subset \mathbb{R}^{d}$ such that $\Lambda \cap B=\{0\}$ and $\operatorname{det} \Lambda=\sigma^{-1} 2^{-d} \operatorname{vol} B$. Hence we have $\rho(\Lambda) \geq 1 / 2$ for the packing radius of Λ and

$$
\sigma(\Lambda)=\frac{\operatorname{vol} B \cdot \rho^{d}(\Lambda)}{\operatorname{det} \Lambda}=\sigma .
$$

Rescaling

$$
\Lambda^{\prime}=\left(\frac{2^{d} \sigma}{\operatorname{vol} B}\right)^{1 / d} \Lambda
$$

we obtain a lattice $\Lambda^{\prime} \subset \mathbb{R}^{d}$ with $\operatorname{det} \Lambda^{\prime}=1$ and

$$
\rho\left(\Lambda^{\prime}\right)=\frac{1}{2}\left(\frac{2^{d} \sigma}{\operatorname{vol} B}\right)^{1 / d} \approx \sqrt{\frac{d}{8 \pi e}}
$$

by Stirling's formula.

(12.4) Problems.

1. Let $\phi: V \longrightarrow \mathbb{R}$ be a Lebesgue integrable function and let $\Lambda \subset V$ be a lattice. Prove that there exists a $z \in V$ such that

$$
\sum_{u \in \Lambda} \phi(z+u) \leq \frac{1}{\operatorname{det} \Lambda} \int_{V} \phi(x) d x
$$

2. Let $\phi: V \longrightarrow \mathbb{R}$ be a Riemann integrable function vanishing outside a bounded region in V and let $\epsilon>0$ be a number. Prove that there exists a lattice $\Lambda \subset V$ such that $\operatorname{det} \Lambda=1$ and

$$
\sum_{u \in \Lambda \backslash\{0\}} \phi(u) \leq \epsilon+\int_{V} \phi(x) d x
$$

3. Let $M \subset V$ be a bounded symmetric (that is, $M=-M$) Jordan measurable set such that $\operatorname{vol} M<2$. Prove that there is a lattice $\Lambda \subset V$ such that $\operatorname{det} \Lambda=1$ and $M \cap(\Lambda \backslash\{0\})=\emptyset$.
4. The reciprocity relation for the packing radius
(13.1) Lemma. Let Λ be a lattice of rank d and let Λ^{*} be the dual lattice. Then for the packing radii of Λ and Λ^{*} we have

$$
\rho(\Lambda) \cdot \rho\left(\Lambda^{*}\right) \leq \frac{d}{4}
$$

Proof. It follows by the Minkowski Theorem (see Problem 11 of Section 10.2) that

$$
\rho(\Lambda) \leq \frac{1}{2} \sqrt{d}(\operatorname{det} \Lambda)^{1 / d} \quad \text { and } \quad \rho\left(\Lambda^{*}\right) \leq \frac{1}{2} \sqrt{d}\left(\operatorname{det} \Lambda^{*}\right)^{1 / d}
$$

Since $(\operatorname{det} \Lambda)\left(\operatorname{det} \Lambda^{*}\right)=1$ (see Problem 2 of Section 4.4), the proof follows.
More precisely, it follows by the Minkowski Theorem (Theorem 6.4) or, equivalently, from the fact that the packing density of a lattice does not exceed 1 , that

$$
\begin{aligned}
& \rho(\Lambda) \leq \frac{1}{\sqrt{\pi}}\left(\Gamma\left(1+\frac{d}{2}\right)\right)^{1 / d}(\operatorname{det} \Lambda)^{1 / d} \text { and } \\
& \rho\left(\Lambda^{*}\right) \leq \frac{1}{\sqrt{\pi}}\left(\Gamma\left(1+\frac{d}{2}\right)\right)^{1 / d}\left(\operatorname{det} \Lambda^{*}\right)^{1 / d},
\end{aligned}
$$

which implies that

$$
\rho(\Lambda) \cdot \rho\left(\Lambda^{*}\right) \leq \frac{d}{2 \pi e}\left(1+O\left(\frac{1}{d}\right)\right)
$$

(13.2) Problems.

1°. Show by example that $\rho(\Lambda) \cdot \rho\left(\Lambda^{*}\right)$ can be arbitrarily small.
2°. Let $\Lambda_{0} \subset \Lambda$ be a sublattice. Prove that

$$
\rho(\Lambda) \leq \rho\left(\Lambda_{0}\right) \leq\left|\Lambda / \Lambda_{0}\right| \rho(\Lambda)
$$

3°. Let Λ be a lattice of rank d and let u_{1}, \ldots, u_{d} be linearly independent vectors from Λ^{*}. Prove that for any $v \in \Lambda \backslash\{0\}$ we have

$$
\max _{i=1, \ldots, d}\|v\| \cdot\left\|u_{i}\right\| \geq 1
$$

14. The Korkin-Zolotarev basis of a lattice

(14.1) Lemma. Let $\Lambda \subset V$ be a lattice and let $\Lambda^{*} \subset V$ be the dual lattice. Let u_{1}, \ldots, u_{d} be a basis of Λ and let v_{1}, \ldots, v_{d} be vectors such that

$$
\left\langle u_{i}, v_{j}\right\rangle= \begin{cases}1 & \text { if } i+j=d+1 \\ 0 & \text { otherwise } .\end{cases}
$$

Then v_{1}, \ldots, v_{d} is a basis of Λ^{*}. Moreover, let $H=v_{1}^{\perp}$ be the orthogonal complement of v_{1} and let $\Lambda_{0} \subset H$ be the lattice with basis u_{1}, \ldots, u_{d-1}. Let $p r: V \longrightarrow H$ be the orthogonal projection. Then $\Lambda_{0}^{*}=\operatorname{pr}\left(\Lambda^{*}\right)$ and $\operatorname{pr}\left(v_{2}\right), \ldots, \operatorname{pr}\left(v_{d}\right)$ is a basis of Λ_{0}^{*}.

Proof. Clearly, $v_{1}, \ldots, v_{d} \in \Lambda^{*}$. Moreover, for any $v \in \Lambda^{*}$, we can write

$$
v=\sum_{i=1}^{d}\left\langle v, u_{i}\right\rangle v_{d+1-i}
$$

and hence v_{1}, \ldots, v_{d} is a basis of Λ^{*}.
For every $v \in \Lambda^{*}$ and every $u \in \Lambda_{0}$ we have

$$
\langle u, \operatorname{pr}(v)\rangle=\langle u, v\rangle \in \mathbb{Z}
$$

In particular, $\operatorname{pr}\left(v_{2}\right), \ldots, \operatorname{pr}\left(v_{d}\right) \in \Lambda_{0}^{*}$. Moreover, for every $v \in \Lambda_{0}^{*}$ we have

$$
v=\sum_{i=1}^{d-1}\left\langle v, u_{i}\right\rangle p r\left(v_{d+1-i}\right),
$$

and hence $\operatorname{pr}\left(v_{2}\right), \ldots, \operatorname{pr}\left(v_{d}\right)$ is indeed a basis of Λ_{0}^{*}.
The following pair of bases is of a particular interest.
(14.2) Definition. Let Λ be a lattice. An ordered basis u_{1}, \ldots, u_{d} constructed as in Theorem 3.1 is called a Korkin-Zolotarev basis of Λ. That is, u_{1} is a shortest non-zero vector in Λ, and for $k=2, \ldots, d$ vector u_{k} is a closest vector to $L_{k-1}=$ $\operatorname{span}\left(u_{1}, \ldots, u_{k-1}\right)$ among all vectors in $\Lambda \backslash L_{k-1}$. An ordered basis u_{1}, \ldots, u_{d} of Λ such that

$$
\left\langle u_{i}, v_{j}\right\rangle= \begin{cases}1 & \text { if } i+j=d+1 \\ 0 & \text { otherwise }\end{cases}
$$

where v_{1}, \ldots, v_{d} is a Korkin-Zolotarev basis of Λ^{*}, is called a reciprocal KorkinZolotarev basis of Λ.

Many interesting properties of Korkin-Zolotarev and reciprocal Korkin-Zolotarev bases of lattices are established in
J.C. Lagarias, H.W. Lenstra, Jr., C.-P. Schnorr, Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice, Combinatorica 10 (1990), no. $4,333-348$.

Here are some of them.

(14.3) Problems.

1°. Let u_{1}, \ldots, u_{d} be a Korkin-Zolotarev basis of lattice Λ. For $k<d$ let $L_{k}=\operatorname{span}\left(u_{1}, \ldots, u_{k}\right)$ and let $\Lambda_{k} \subset L_{k}$ be the lattice with basis u_{1}, \ldots, u_{k}. Prove that u_{1}, \ldots, u_{k} is a Korkin-Zolotarev basis of Λ_{k}.
2°. Let u_{1}, \ldots, u_{d} be a Korkin-Zolotarev basis of a lattice $\Lambda \subset V$. Let $H=u_{1}^{\perp}$ be the orthogonal complement to u_{1}, let $p r: V \longrightarrow H$ be the orthogonal projection and let $\Lambda^{\prime}=\operatorname{pr}(\Lambda)$ be a lattice, $\Lambda^{\prime} \subset H$. Let $u_{i}^{\prime}=\operatorname{pr}\left(u_{i+1}\right)$ for $i=1, \ldots, d-1$. Prove that $u_{1}^{\prime}, \ldots, u_{d-1}^{\prime}$ is a Korkin-Zolotarev basis of Λ^{\prime}.
3°. Let u_{1}, \ldots, u_{d} be a reciprocal Korkin-Zolotarev basis of lattice Λ. For $k<d$ let $L_{k}=\operatorname{span}\left(u_{1}, \ldots, u_{k}\right)$ and let $\Lambda_{k} \subset L_{k}$ be the lattice with basis u_{1}, \ldots, u_{k}. Prove that u_{1}, \ldots, u_{k} is a reciprocal Korkin-Zolotarev basis of Λ_{k}.
4. Let u_{1}, \ldots, u_{d} be a basis of a lattice Λ. Let

$$
L_{k}=\operatorname{span}\left(u_{1}, \ldots, u_{k}\right) \quad \text { for } \quad k=1, \ldots, d \quad \text { and let } \quad L_{0}=\{0\} .
$$

Prove that for any $u \in \Lambda \backslash\{0\}$ we have

$$
\|u\| \geq \min _{k=1, \ldots, d} \operatorname{dist}\left(u_{k}, L_{k-1}\right)
$$

In particular,

$$
\rho(\Lambda) \geq \frac{1}{2} \min _{k=1, \ldots, d} \operatorname{dist}\left(u_{k}, L_{k-1}\right)
$$

5. Let u_{1}, \ldots, u_{d} be a reciprocal Korkin-Zolotarev basis of a lattice Λ and let the subspaces L_{k} be defined as in Problem 4. Prove that

$$
\rho(\Lambda) \leq \frac{d}{2} \min _{k=1, \ldots, d} \operatorname{dist}\left(u_{k}, L_{k-1}\right) .
$$

Hint: Using Lemma 13.1 prove that

$$
\rho(\Lambda) \leq \frac{d}{2} \operatorname{dist}\left(u_{d}, L_{d-1}\right)
$$

Then use Problem 3 above.

15. The covering radius of a lattice

(15.1) Definition. Let $\Lambda \subset V$ be a lattice. The number

$$
\mu(\Lambda)=\max _{x \in V} \operatorname{dist}(x, \Lambda)
$$

is called the covering radius of the lattice.

(15.2) Problems.

1. Prove that

$$
\mu\left(\mathbb{Z}^{d}\right)=\frac{\sqrt{d}}{2}, \quad \mu\left(D_{3}\right)=1 \quad \text { and } \quad \mu\left(D_{n}\right)=\frac{\sqrt{n}}{2} \quad \text { for } \quad n \geq 4 .
$$

2. Prove that $\mu\left(E_{8}\right)=1$.
3. A point $x \in V$ at which the local maximum of the function $x \longmapsto \operatorname{dist}(x, \Lambda)$ is attained is called a hole of lattice Λ. If the maximum is global, the hole is called deep, otherwise it is called shallow.

Prove that $(1,0,0)$ is a deep hole of D_{3} (it is called an octahedral hole) and that $(1 / 2,1 / 2,1 / 2)$ is a shallow hole of D_{3} (it is called a tetrahedral hole).
4. Show that points $x=(1 / 2, \ldots, 1 / 2)$ and $y=(1,0, \ldots, 0)$ are holes of D_{n} and that x is deep and y is shallow if $n>4, x$ is shallow and y is deep, if $n<4$, and both x and y are deep if $n=4$.
5. Show that $(1,0,0,0,0,0,0,0)$ is a deep hole of E_{8}, while $(5 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6)$ is a shallow hole of E_{8}.
6. Show that $(1 / 4,1 / 4,1 / 4,1 / 4,1 / 4,1 / 4,-3 / 4,-3 / 4)$ is a deep hole of E_{7}.
7. Show that $(0,-2 / 3,-2 / 3,1 / 3,1 / 3,1 / 3,1 / 3,0)$ is a deep hole of E_{6}.

The following important result is known as a transference theorem. The proof is taken from J.C. Lagarias, H.W. Lenstra, Jr., C.-P. Schnorr, Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice, Combinatorica 10 (1990), no. 4, $333-348$.
(15.3) Theorem. Let Λ be a lattice of rank d and let Λ^{*} be the dual lattice. Then

$$
\frac{1}{4} \leq \mu(\Lambda) \rho\left(\Lambda^{*}\right) \leq c(d)
$$

where we can choose

$$
c(d)=\frac{1}{4} \sqrt{\sum_{k=1}^{d} k^{2}} \leq \frac{d^{3 / 2}}{4}
$$

Proof. We prove the lower bound first. Let us choose linearly independent vectors $u_{1}, \ldots, u_{d} \in \Lambda$ as follows: u_{1} is a shortest non-zero vector from Λ and for $k=2, \ldots, d$ we choose u_{k} to be a shortest vector form Λ such that vectors $u_{1}, \ldots, u_{k-1}, u_{k}$ are linearly independent. We claim that

$$
\begin{equation*}
\operatorname{dist}\left(\frac{1}{2} u_{d}, \Lambda\right)=\frac{1}{2}\left\|u_{d}\right\| . \tag{15.3.1}
\end{equation*}
$$

Indeed, suppose that for some $u \in \Lambda$ we have

$$
\left\|u-\frac{1}{2} u_{d}\right\|<\frac{1}{2}\left\|u_{d}\right\| .
$$

Then $\|u\|<\left\|u_{d}\right\|$ and hence we must have

$$
u \in \operatorname{span}\left(u_{1}, \ldots, u_{d-1}\right)
$$

But then we have

$$
2 u-u_{d} \in \Lambda \quad \text { and } \quad 2 u-u_{d} \notin \operatorname{span}\left(u_{1}, \ldots, u_{d-1}\right) .
$$

Moreover,

$$
\left\|2 u-u_{d}\right\|<\left\|u_{d}\right\|
$$

which is a contradiction with the choice of u_{d}. The contradiction proves that (15.3.1) indeed holds and hence

$$
\mu(\Lambda) \geq \frac{1}{2}\left\|u_{d}\right\|=\max _{i=1, \ldots, d} \frac{1}{2}\left\|u_{i}\right\| .
$$

Let v be a shortest non-zero vector from Λ^{*}. Then

$$
\left\langle u_{i}, v\right\rangle \in \mathbb{Z} \quad \text { for } \quad i=1, \ldots, d \quad \text { and } \quad\left\langle u_{i_{0}}, v\right\rangle \neq 0 \quad \text { for some } \quad i_{0} .
$$

This proves that $\|v\|\left\|u_{i_{0}}\right\| \geq 1$ and hence

$$
\mu(\Lambda) \rho\left(\Lambda^{*}\right) \geq \frac{1}{4}\|v\| \max _{i=1, \ldots, d}\left\|u_{i}\right\| \geq \frac{1}{4}
$$

as desired.

Now we prove the upper bound by induction on d. If $d=1$ then $\Lambda=\alpha \mathbb{Z}$ for some $\alpha>0$ and $\Lambda^{*}=\alpha^{-1} \mathbb{Z}$. Therefore, $\mu(\Lambda)=\alpha / 2$ and $\rho\left(\Lambda^{*}\right)=1 / 2 \alpha$, so the product is $1 / 4$, as required.

Suppose that $d>1$. Let us choose a shortest vector $u \in \Lambda \backslash\{0\}$, so $\|u\|=2 \rho(\Lambda)$. Let $H=u^{\perp}$ be the orthogonal complement to u and let $p r: V \longrightarrow H$ be the orthogonal projection. Let $\Lambda_{1}=\operatorname{pr}(\Lambda)$, so $\Lambda_{1} \subset H$ is a lattice, see Problem 1 of Section 2.3. Let $\Lambda_{1}^{*} \subset H$ be the dual lattice. Since for every $v \in \Lambda_{1}^{*}$ and every $x \in \Lambda$ we have

$$
\langle x, v\rangle=\langle p r(x), v\rangle \in \mathbb{Z},
$$

we have $\Lambda_{1}^{*} \subset \Lambda^{*}$ and hence $\rho\left(\Lambda_{1}^{*}\right) \geq \rho\left(\Lambda^{*}\right)$.
Let us choose an arbitrary $x \in V$ and let $y=p r(x)$. Let $y_{1} \in \Lambda_{1}$ be a closest lattice point to y so, $\left\|y-y_{1}\right\| \leq \mu\left(\Lambda_{1}\right)$. The line through y_{1} parallel to u intersects Λ by a set of equally spaced points, each being of distance $\|u\|$ from the next. Therefore, there is a point $w \in \Lambda$ such that $\operatorname{pr}(w)=v$ and

$$
\left\|\left(x+y_{1}-y\right)-w\right\| \leq \frac{1}{2}\|u\|=\rho(\Lambda)
$$

By the Pythagoras Theorem

$$
\|x-w\|^{2}=\left\|\left(x+y_{1}-y\right)-w\right\|^{2}+\left\|y-y_{1}\right\|^{2} \leq \rho^{2}(\Lambda)+\mu^{2}\left(\Lambda_{1}\right)
$$

Thus

$$
\mu^{2}(\Lambda) \leq \rho^{2}(\Lambda)+\mu^{2}\left(\Lambda_{1}\right)
$$

Applying Lemma 13.1 and the induction hypothesis, we conclude that

$$
\begin{aligned}
\mu^{2}(\Lambda) \rho^{2}\left(\Lambda^{*}\right) & \leq \rho^{2}(\Lambda) \rho^{2}\left(\Lambda^{*}\right)+\mu^{2}\left(\Lambda_{1}\right) \rho^{2}\left(\Lambda^{*}\right) \\
& \leq \rho^{2}(\Lambda) \rho^{2}\left(\Lambda^{*}\right)+\mu^{2}\left(\Lambda_{1}\right) \rho^{2}\left(\Lambda_{1}^{*}\right) \\
& \leq \frac{d^{2}}{16}+c^{2}(d-1)=c(d)
\end{aligned}
$$

(15.4) Problems.

1°. Let u_{1}, \ldots, u_{d} be linearly independent vectors in Λ. Prove that

$$
\mu(\Lambda) \leq \frac{1}{2} \sum_{i=1}^{d}\left\|u_{i}\right\|
$$

2. Let $\Lambda \subset V$ be a lattice with basis u_{1}, \ldots, u_{d}. Let $L_{0}=\{0\}, L_{k}=$ $\operatorname{span}\left(u_{1}, \ldots, u_{k}\right)$ and let w_{k} be the complement to the orthogonal projection of u_{k} onto L_{k-1} for $k=1, \ldots, d$. Prove that for any $x \in V$ there is $u \in \Lambda$ such that

$$
x-u=\sum_{i=1}^{d} \alpha_{i} w_{i} \quad \text { where } \quad\left|\alpha_{i}\right| \leq \frac{1}{2} \quad \text { for } \quad i=1, \ldots, d
$$

3. In Problem 2 above, prove that

$$
\operatorname{dist}(x, \Lambda) \geq \min _{i=0, \ldots, d}\left\|\frac{1}{2} w_{i}+\sum_{j=i+1}^{d} \alpha_{j} w_{j}\right\|,
$$

where we agree that $w_{0}=0$ and that $\sum_{j=i+1}^{d} \alpha_{j} w_{j}=0$ when $i=d$.
4. Suppose that in Problems 2 and 3 above, u_{1}, \ldots, u_{d} is a reciprocal KorkinZolotarev basis. Prove that

$$
\operatorname{dist}(x, \Lambda) \leq d^{3 / 2} \min _{i=0, \ldots, d}\left\|\frac{1}{2} w_{i}+\sum_{j=i+1}^{d} \alpha_{j} w_{j}\right\|
$$

Hint: See J.C. Lagarias, H.W. Lenstra, Jr., C.-P. Schnorr, Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice, Combinatorica 10 (1990), no. 4, 333 - 348.

16. An application: Kronecker's Theorem

The following result is Kronecker's Theorem.
(16.1) Theorem. Let $\theta_{1}, \ldots, \theta_{n}$ be real numbers such that if

$$
\sum_{i=1}^{n} m_{i} \theta_{i} \quad \text { is integer for integer } m_{1}, \ldots, m_{n}
$$

then necessarily

$$
m_{1}=\ldots=m_{n}=0
$$

Then for any real numbers

$$
0<\alpha_{1}, \ldots, \alpha_{n}<1
$$

and any $\epsilon>0$ there is an integer m such that

$$
\left|\alpha_{i}-\left\{m \theta_{i}\right\}\right| \leq \epsilon \quad \text { for } \quad i=1, \ldots, n
$$

Proof. For $\tau>0$ let us consider a lattice $\Lambda_{\tau} \subset \mathbb{R}^{n+1}$ with basis

$$
\begin{aligned}
& u_{1}=(1,0, \ldots, 0), u_{2}=(0,1,0, \ldots, 0), \ldots, u_{n}=(0, \ldots, 0,1,0) \text { and } \\
& u_{n+1}=\left(\theta_{1}, \ldots, \theta_{n}, \tau^{-1}\right)
\end{aligned}
$$

We need to show that as $\tau \longrightarrow+\infty$, we can find a point from Λ_{τ} arbitrarily close to $\left(\alpha_{1}, \ldots, \alpha_{n}, 0\right)$. The result will follow if we show that

$$
\begin{equation*}
\lim _{\tau \longrightarrow+\infty} \mu\left(\Lambda_{\tau}\right)=0 . \tag{16.1.1}
\end{equation*}
$$

By Theorem 15.3 it suffices to show that

$$
\begin{equation*}
\lim _{\tau \rightarrow+\infty} \rho\left(\Lambda_{\tau}^{*}\right)=+\infty \tag{16.1.2}
\end{equation*}
$$

Let $a \in \Lambda_{\tau}^{*} \backslash\{0\}$. Then $a=\left(m_{1}, \ldots, m_{n} ; \beta\right)$ for some integer m_{1}, \ldots, m_{n} such that

$$
m_{1} \theta_{1}+\ldots+m_{n} \theta_{n}+\beta \tau^{-1} \in \mathbb{Z}
$$

If $m_{1}=\ldots=m_{n}=0$ then necessarily $|\beta| \geq \tau$ and hence $\|a\| \geq \tau$. Suppose that $m_{1}^{2}+\ldots+m_{n}^{2}>0$. Let us choose an arbitrary $\gamma>0$ and let us consider the set of all integer combinations

$$
\begin{aligned}
m_{1} \theta_{1}+\ldots+m_{n} \theta_{n} \quad \text { where } \quad & m_{i} \in \mathbb{Z}, \quad m_{1}^{2}+\ldots+m_{n}^{2}>0 \text { and } \\
& \left|m_{i}\right|<\gamma \quad \text { for all } i=1, \ldots, n .
\end{aligned}
$$

This is a finite set of non-integer numbers and let $\delta=\delta(\gamma)>0$ be the minimum distance from an element of the set to an integer. Then we must have $\beta \geq \delta(\gamma) \tau$ and hence for any $a \in \Lambda_{\tau}^{*}$ and any $\gamma>0$ we have

$$
\|a\| \geq \min \{\tau, \delta(\gamma) \tau, \gamma\}
$$

This establishes (16.1.2) and hence (16.1.1).

17. The Poisson summation formula for lattices

(17.1) The Fourier transform and the Poisson summation formula. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{C}$ be a function from $L^{2}\left(\mathbb{R}^{n}, d x\right) \cap L^{1}\left(\mathbb{R}^{n}, d x\right)$. The Fourier transform \hat{f} of f is defined by the formula

$$
\hat{f}(y)=\int_{\mathbb{R}^{n}} e^{-2 \pi i\langle x, y\rangle} f(x) d x .
$$

We have then

$$
f(x)=\int_{\mathbb{R}^{n}} e^{2 \pi i\langle x, y\rangle} \hat{f}(y) d y
$$

In particular, we will use

$$
\begin{equation*}
\text { For } f(x)=e^{-\pi\|x\|^{2}} \quad \text { we have } \quad \hat{f}(y)=e^{-\pi\|y\|^{2}} \tag{17.1.1}
\end{equation*}
$$

Suppose that f and \hat{f} are decaying sufficiently fast, that is

$$
\begin{equation*}
|f(x)|,|\hat{f}(x)| \leq \frac{C}{(1+\|x\|)^{n+\delta}} \quad \text { for all } \quad x \in \mathbb{R}^{n} \tag{17.1.2}
\end{equation*}
$$

and some $C>0$ and $\delta>0$. Then the Poisson summation formula holds:

$$
\begin{equation*}
\sum_{m \in \mathbb{Z}^{n}} f(m)=\sum_{m \in \mathbb{Z}^{n}} \hat{f}(m) \tag{17.1.3}
\end{equation*}
$$

(17.2) Lemma. Let $\Lambda \subset \mathbb{R}^{n}$ be a lattice and let $\Lambda^{*} \subset \mathbb{R}^{n}$ be the dual lattice. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{C}$ be a function, let $\hat{f}: \mathbb{R}^{n} \longrightarrow \mathbb{C}$ be its Fourier transform and suppose that condition (17.1.2) holds. Then

$$
\sum_{m \in \Lambda} f(m)=\frac{1}{\operatorname{det} \Lambda} \sum_{l \in \Lambda^{*}} \hat{f}(l)
$$

Proof. Let e_{1}, \ldots, e_{n} be the standard basis of \mathbb{Z}^{n} and let u_{1}, \ldots, u_{n} be a basis of Λ. Let us define an operator $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ by $T\left(e_{i}\right)=u_{i}$ for $i=1, \ldots, n$. Then $T\left(\mathbb{Z}^{n}\right)=\Lambda$ and $\operatorname{det} T=\operatorname{det} \Lambda$.

Let us define a function $g: \mathbb{R}^{n} \longrightarrow \mathbb{C}$ by $g(x)=f(T(x))$. Substituting $x=$ $T^{-1}(z)$, we obtain

$$
\begin{aligned}
\hat{g}(y) & =\int_{\mathbb{R}^{n}} e^{-2 \pi i\langle x, y\rangle} g(x) d x=\int_{\mathbb{R}^{n}} e^{-2 \pi i\langle x, y\rangle} f(T(x)) d x \\
& =\frac{1}{\operatorname{det} \Lambda} \int_{\mathbb{R}^{n}} e^{-2 \pi i\left\langle T^{-1}(z), y\right\rangle} f(z) d z=\frac{1}{\operatorname{det} \Lambda} \int_{\mathbb{R}^{n}} e^{-2 \pi i\left\langle z,\left(T^{-1}\right)^{*} y\right\rangle} f(z) d z \\
& =\frac{1}{\operatorname{det} \Lambda} \hat{f}\left(\left(T^{-1}\right)^{*}(y)\right),
\end{aligned}
$$

where $\left(T^{-1}\right)^{*}$ denotes the conjugate linear operator to T^{-1}.
Let us denote

$$
v_{j}=\left(T^{-1}\right)^{*} e_{n-j+1} \quad \text { for } \quad j=1, \ldots, n
$$

Then

$$
\left\langle u_{i}, v_{j}\right\rangle=\left\langle T\left(e_{i}\right),\left(T^{-1}\right)^{*}\left(e_{n+j-1}\right)\right\rangle=\left\langle e_{i}, e_{n-j+1}\right\rangle= \begin{cases}1 & \text { if } i+j=n+1 \\ 0 & \text { otherwise }\end{cases}
$$

By Lemma 14.1 it follows that v_{1}, \ldots, v_{n} is a basis of Λ^{*} and hence

$$
\left(T^{-1}\right)^{*}\left(\mathbb{Z}^{n}\right)=\Lambda^{*}
$$

Applying formula (17.1.3) to g and \hat{g} (note that (17.1.2) still holds), we complete the proof.
(17.3) Lemma. Let V be a d-dimensional Euclidean space, let $\Lambda \subset V$ be a lattice and let $\Lambda^{*} \subset V$ be the dual lattice. Then for any $\tau>0$ and any $x \in V$, we have

$$
\tau^{d / 2} \sum_{m \in \Lambda} \exp \left\{-\pi \tau\|x-m\|^{2}\right\}=\frac{1}{\operatorname{det} \Lambda} \sum_{l \in \Lambda^{*}} \exp \left\{-\pi\|l\|^{2} / \tau+2 \pi i\langle l, x\rangle\right\}
$$

Proof. First, we observe that for any $\tau>0$ and $g(x)=f(\tau x)$ via substitution $z=\tau x$ we have

$$
\hat{g}(y)=\int_{\mathbb{R}^{n}} e^{-2 \pi i\langle x, y\rangle} f(\tau x) d x=\tau^{-n} \int_{\mathbb{R}_{2}^{n}} e^{-2 \pi i\left\langle z, \tau^{-1} y\right\rangle} f(z) d z=\tau^{-n} \hat{f}\left(\tau^{-1} y\right)
$$

In particular, choosing $f(x)=e^{-\pi\|x\|^{2}}, g(x)=f\left(\tau^{1 / 2} x\right)$ and using (17.1.1), we obtain:

$$
\text { For } g(x)=e^{-\pi \tau\|x\|^{2}} \quad \text { we have } \quad \hat{g}(y)=\tau^{-n / 2} e^{-\pi\|y\|^{2} / \tau} \text {. }
$$

Next, we observe that for any $a \in \mathbb{R}^{n}$ and $g(x)=f(x-a)$ via substitution $z=x-a$ we have

$$
\hat{g}(y)=\int_{\mathbb{R}^{n}} e^{-2 \pi i\langle x, y\rangle} f(x-a) d x=\int_{\mathbb{R}^{n}} e^{-2 \pi i\langle z+a, y\rangle} f(z) d z=e^{-2 \pi i\langle a, y\rangle} \hat{f}(y) .
$$

In particular, choosing $f(x)=e^{-\pi \tau\|x\|^{2}}$ and $g(x)=e^{-\pi \tau\|x-a\|^{2}}$, we obtain:

$$
\text { For } g(x)=e^{-\pi \tau\|x-a\|^{2}} \quad \text { we have } \quad \hat{g}(y)=\tau^{-n / 2} e^{-2 \pi i\langle a, y\rangle} e^{-\pi\|y\|^{2} / \tau} .
$$

The result now follows from Lemma 17.2 and the observation that both sides of the identity we intend to prove are invariant under the substitution $x \longmapsto-x$.
18. The covering radius via the Poisson summation formula

Our goal is to prove a better estimate of constant $c(d)$ in Theorem 15.3 using results of Section 17. We follow
W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers, Mathematische Annalen, 296 (1993), 625-635
with some modifications.
(18.1) Lemma. Let $\Lambda \subset V$ be a lattice of rank d. Then for all $0<\tau<1$ and for all $x \in V$ we have

$$
\sum_{m \in \Lambda} e^{-\pi \tau\|x-m\|^{2}} \leq \tau^{-d / 2} \sum_{m \in \Lambda} e^{-\pi\|m\|^{2}}
$$

Proof. Applying Lemma 17.3 twice, we obtain

$$
\begin{aligned}
\sum_{m \in \Lambda} e^{-\pi \tau\|x-m\|^{2}} & =\frac{1}{\tau^{d / 2} \operatorname{det} \Lambda} \sum_{l \in \Lambda^{*}} \exp \left\{-\pi\|l\|^{2} / \tau+2 \pi i\langle l, x\rangle\right\} \\
& \leq \frac{1}{\tau^{d / 2} \operatorname{det} \Lambda} \sum_{l \in \Lambda^{*}} \exp \left\{-\pi\|l\|^{2} / \tau\right\} \\
& \leq \frac{1}{\tau^{d / 2} \operatorname{det} \Lambda} \sum_{l \in \Lambda^{*}} \exp \left\{-\pi\|l\|^{2}\right\} \\
& =\tau^{-d / 2} \sum_{m \in \Lambda} e^{-\pi\|m\|^{2}}
\end{aligned}
$$

(18.2) Lemma. Let $\Lambda \subset V$ be a lattice of rank d and let $\gamma>1 / 2 \pi$ be a real number. Then for all $x \in V$ we have

$$
\sum_{\substack{m \in \Lambda: \\\|x-m\|>\sqrt{\gamma d}}} e^{-\pi\|x-m\|^{2}} \leq\left(e^{-\pi \gamma+\frac{1}{2}} \sqrt{2 \pi \gamma}\right)^{d} \sum_{m \in \Lambda} e^{-\pi\|m\|^{2}} .
$$

In particular,

$$
\sum_{\substack{m \in \Lambda: \\\|x-m\|>\sqrt{d}}} e^{-\pi\|x-m\|^{2}} \leq 5^{-d} \sum_{m \in \Lambda} e^{-\pi\|m\|^{2}} .
$$

Proof. For $0<\tau<1$, applying Lemma 18.1, we get

$$
\begin{aligned}
\sum_{\substack{m \in \Lambda: \\
\|x-m\|>\sqrt{\gamma d}}} e^{-\pi\|x-m\|^{2}} & \leq e^{-\pi \tau \gamma d} \sum_{\substack{m \in \Lambda: \\
\|x-m\|>\sqrt{\gamma d}}} e^{-\pi\|x-m\|^{2}} e^{\pi \tau\|x-m\|^{2}} \\
& \leq e^{-\pi \tau \gamma d} \sum_{m \in \Lambda} e^{-\pi(1-\tau)\|x-m\|^{2}} \\
& \leq e^{-\pi \tau \gamma d}(1-\tau)^{-d / 2} \sum_{m \in \Lambda} e^{-\pi\|m\|^{2}}
\end{aligned}
$$

Optimizing on τ, we choose

$$
\tau=1-\frac{1}{2 \pi \gamma}
$$

and obtain the desired estimate.
Now we can sharpen the upper bound in Theorem 15.3.
(18.3) Theorem. Let $\Lambda \subset V$ be a lattice of rank d. Then

$$
\mu(\Lambda) \rho\left(\Lambda^{*}\right) \leq \frac{d}{2}
$$

Proof. Suppose that for some lattice Λ of rank d we have

$$
\mu(\Lambda) \rho\left(\Lambda^{*}\right)>\frac{d}{2}
$$

If we scale $\Lambda_{1}=\alpha \Lambda$ for $\alpha>0$, the dual lattice gets scaled $\Lambda_{1}^{*}=\alpha^{-1} \Lambda_{1}^{*}$ and the covering and packing radii scale accordingly, $\mu\left(\Lambda_{1}\right)=\alpha \mu(\Lambda)$ and $\rho\left(\Lambda_{1}^{*}\right)=$ $\alpha^{-1} \rho\left(\Lambda_{1}\right)$. Hence, without loss of generality, we may assume that

$$
\mu(\Lambda)>\sqrt{d} \quad \underset{37}{\text { and }} \rho\left(\Lambda^{*}\right)>\frac{\sqrt{d}}{2} .
$$

Let $x \in V$ be a point such that $\operatorname{dist}(x, \Lambda)>\sqrt{d}$. Applying Lemma 18.2, we deduce

$$
\sum_{m \in \Lambda} e^{-\pi\|x-m\|^{2}}=\sum_{\substack{m \in \Lambda: \\\|x-m\|>\sqrt{d}}} e^{-\pi\|x-m\|^{2}} \leq 5^{-d} \sum_{m \in \Lambda} e^{-\pi\|m\|^{2}}
$$

Applying Lemma 17.3, we obtain

$$
\begin{equation*}
\sum_{m \in \Lambda} e^{-\pi\|x-m\|^{2}} \leq \frac{1}{5^{d} \operatorname{det} \Lambda} \sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}} \tag{18.3.1}
\end{equation*}
$$

Applying Lemma 18.2 to Λ^{*}, we conclude that

$$
\sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}}=1+\sum_{l \in \Lambda^{*} \backslash\{0\}} e^{-\pi\|l\|^{2}}=1+\sum_{\substack{l \in \Lambda^{*}: \\\|l\|>\sqrt{d}}} e^{-\pi\|l\|^{2}} \leq 1+5^{-d} \sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}}
$$

from which

$$
\begin{equation*}
\sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}} \leq \frac{5^{d}}{5^{d}-1} \quad \text { and } \quad \sum_{l \in \Lambda^{*} \backslash\{0\}} e^{-\pi\|l\|^{2}} \leq \frac{1}{5^{d}-1} \tag{18.3.2}
\end{equation*}
$$

Therefore, from (18.3.1) we conclude

$$
\begin{equation*}
\sum_{m \in \Lambda} e^{-\pi\|x-m\|^{2}} \leq \frac{1}{\left(5^{d}-1\right) \operatorname{det} \Lambda} \tag{18.3.3}
\end{equation*}
$$

Similarly, from (18.3.2),

$$
\left|\sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}+2 \pi i\langle l, x\rangle}\right| \geq 1-\sum_{l \in \Lambda^{*} \backslash\{0\}} e^{-\pi\|l\|^{2}} \geq \frac{5^{d}-2}{5^{d}-1}
$$

On the other hand, by Lemma 17.3,

$$
\sum_{m \in \Lambda} e^{-\pi\|x-m\|^{2}}=\frac{1}{\operatorname{det} \Lambda} \sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}+2 \pi i\langle l, x\rangle} \geq \frac{5^{d}-2}{\left(5^{d}-1\right) \operatorname{det} \Lambda}
$$

which contradicts (18.3.3).
(18.4) Problems.

1. Prove that

$$
\sum_{m \in \Lambda} e^{-\pi\|x-m\|^{2}} \geq e^{-\pi\|x\|^{2}} \sum_{m \in \Lambda} e^{-\pi\|m\|^{2}}
$$

2°. Let $\Lambda \subset V$ be a lattice and let $x \in V$ be a point. Prove that for any $v \in \Lambda^{*}$ we have

$$
\operatorname{dist}(x, \Lambda) \geq \frac{\operatorname{dist}(\langle x, v\rangle, \mathbb{Z})}{\|v\|}
$$

3. Let $\Lambda \subset V$ be a lattice of rank d. Prove that for every point $x \in V$ there is a vector $v \in \Lambda^{*} \backslash\{0\}$ such that

$$
\operatorname{dist}(x, \Lambda) \leq 6 d \frac{\operatorname{dist}(\langle x, v\rangle, \mathbb{Z})}{\|v\|}
$$

Hint: Without loss of generality we may assume that $\operatorname{dist}(x, \Lambda)=\sqrt{d}$. From Lemma 17.3 and Lemma 18.2 deduce that there is a $v \in \Lambda^{*} \backslash\{0\}$ such that $\|v\| \leq \sqrt{d}$ and $\operatorname{dist}(\langle x, v\rangle, \mathbb{Z}) \geq 1 / 6$.

19. The packing density via the Poisson summation formula

The following result is from
H. Cohn and N. Elkies, New upper bounds on sphere packings. I. Ann. of Math. (2) 157 (2003), no. 2, $689-714$.
(19.1) Theorem. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a measurable function such that

$$
|f(x)|,|\hat{f}(x)| \leq \frac{C}{(1+\|x\|)^{n+\delta}} \quad \text { for all } \quad x \in \mathbb{R}^{n}
$$

and some $C>0$ and $\delta>0$. Suppose further that

$$
f(x) \leq 0 \quad \text { provided } \quad\|x\| \geq 1
$$

and that

$$
\hat{f}(y) \geq 0 \quad \text { for all } \quad y \in \mathbb{R}^{n} .
$$

Then the packing density $\sigma(\Lambda)$ of every lattice $\Lambda \subset \mathbb{R}^{n}$ satisfies

$$
\sigma(\Lambda) \leq \frac{\pi^{\frac{n}{2}}}{\Gamma\left(1+\frac{n}{2}\right)} \frac{f(0)}{2^{n} \hat{f}(0)}
$$

Proof. Without loss of generality we may assume that $\rho(\Lambda)=1 / 2$ and hence

$$
\sigma(\Lambda)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(1+\frac{n}{2}\right) 2^{n} \operatorname{det} \Lambda}
$$

Applying Lemma 17.2, we conclude

$$
f(0) \geq \sum_{u \in \Lambda} f(u)=\frac{1}{\operatorname{det} \Lambda} \sum_{l \in \Lambda^{*}} \hat{f}(l) \geq \frac{\hat{f}(0)}{\operatorname{det} \Lambda}
$$

and hence

$$
\frac{1}{\operatorname{det} \Lambda} \leq \frac{f(0)}{\hat{f}(0)}
$$

(19.2) Problems.

1. Consider a sphere packing in \mathbb{R}^{n} such that the set of the centers of the spheres is a union of finitely many pairwise disjoint lattice shifts $x_{i}+\Lambda$ for some lattice $\Lambda \subset \mathbb{R}^{n}$ and some points $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ such that $x_{i}-x_{j} \notin \Lambda$ provided $i \neq j$. Prove that the packing density σ satisfies

$$
\sigma \leq \frac{\pi^{\frac{n}{2}}}{\Gamma\left(1+\frac{n}{2}\right)} \frac{f(0)}{2^{n} \hat{f}(0)}
$$

where f is a function of Theorem 19.1.
2. Deduce from Problem 1 above that the bound of Theorem 19.1 holds for any (lattice or non-lattice) sphere packing.
3. Let Λ be a lattice of rank d such that $\operatorname{det} \Lambda=1$. Prove that for any $\beta>(2 \pi)^{-1}$ there exists a positive integer $d_{0}=d_{0}(\beta)$ such that Λ contains a non-zero vector of length at most $\sqrt{\beta d}$ provided $d \geq d_{0}$.

Hint: Note that if the length of a shortest non-zero vector from Λ exceeds $\sqrt{\beta d}$ then the length of a shortest non-zero vector from the scaled lattice $\alpha \Lambda$ exceeds $\alpha \sqrt{\beta d}$. Use Lemma 18.2 and Lemma 17.3.
4. Deduce from Problem 3 above that for any $\gamma>0.5 \sqrt{e} \approx 0.824$ there exists $d_{1}=d_{1}(\gamma)$ such that the packing density of any lattice Λ of rank d satisfies $\sigma(\Lambda)<$ γ^{d} provided $d \geq d_{1}$.

20. Approximating a convex body by an Ellipsoid

(20.1) Definitions. Let V be Euclidean space. A convex body $K \subset V$ is a convex compact set with a non-empty interior. A ball $B \subset V$ is the set

$$
B=\left\{x \in V: \quad\left\|x-x_{0}\right\| \leq r\right\}
$$

where $x_{0} \in V$ is a point called the center of B and $r>0$ is the radius of B. An ellipsoid $E \subset V$ is a set $E=T(B)$, where $B \subset V$ is a ball and $T: V \longrightarrow V$ is an invertible linear transformation. Point $y_{0}=T\left(x_{0}\right)$, where x_{0} is the center of B, is called the center of E.

The main result of this section, known as F. John's Theorem, is that an arbitrary convex body can be reasonably well approximated by an appropriate ellipsoid.
(20.2) Theorem. Let V be a d-dimensional Euclidean space and let $K \subset \mathbb{R}^{d}$ be a convex body. Then there is an ellipsoid $E \subset V$ centered at some point $x_{0} \in K$ such that

$$
E \subset K \subset x_{0}+d\left(E-x_{0}\right)
$$

Sketch of Proof. We choose E to be the ellipsoid of the maximum volume among those contained in K. That such an ellipsoid exists (it is, in fact, unique) follows by a compactness argument.

Without loss of generality, we may assume that the center of E is the origin. Moreover, applying an invertible linear transformation (which results in all volumes scaled proportionately), we may assume that E is the unit ball

$$
E=\{x \in V:\|x\| \leq 1\}
$$

Our goal is to prove that $\|x\| \leq d$ for all $x \in K$. Assuming the contrary, we may identify $V=\mathbb{R}^{d}$ and assume that there is a point $x=(r, 0, \ldots, 0), x \in K$, for some $r>d$. We intend to obtain a contradiction by constructing an ellipsoid $E_{1} \subset K$ such that $\operatorname{vol} E_{1}>\operatorname{vol} E$.

We look for an ellipsoid E_{1} in the form

$$
\begin{aligned}
E_{1}= & \left\{\left(x_{1}, \ldots, x_{d}\right): \quad \frac{\left(x_{1}-\tau\right)^{2}}{\alpha^{2}}+\frac{1}{\beta^{2}} \sum_{i=2}^{d} x_{i}^{2} \leq 1\right\} \quad \text { where } \\
& \alpha=\tau+1 \quad \text { and } \quad \beta^{2}=\frac{(r-\tau)^{2}-(\tau+1)^{2}}{r^{2}-1} .
\end{aligned}
$$

We claim that for all $0 \leq \tau<(r-1) / 2$, ellipsoid E_{1} is contained in K. Because of symmetry, it suffices to check that the section of E_{1} by the (x_{1}, x_{2}) coordinate plane is contained in the section of K by the (x_{1}, x_{2}) coordinate plane, which is an elementary geometry problem.

Moreover,

$$
\ln \frac{\operatorname{vol} E_{1}}{\operatorname{vol} B}=(d-1) \ln \beta+\ln \alpha=\frac{d-1}{2} \ln \beta^{2}+\ln \alpha .
$$

For a sufficiently small $\tau>0$, we have

$$
\ln \alpha=\tau+O\left(\tau^{2}\right) \quad \text { and } \quad \ln \beta^{2}=-\frac{2 \tau}{r-1}+O\left(\tau^{2}\right)
$$

If $r>d$ then for a sufficiently small $\tau>0$ we get $\operatorname{vol} E_{1}>\operatorname{vol} E$, which is a contradiction.

(20.3) Problems.

1. Fill in the gaps in the proof of Theorem 20.2.
2. Prove that every convex body K contains a unique ellipsoid of the maximum volume.
3. Let K be a d-dimensional symmetric convex body, so $K=-K$ and let $E \subset K$ be the ellipsoid of the maximum volume contained in K. Prove that the center of E is the origin and that $K \subset \sqrt{d} E$.
4. Prove that every convex body K is contained in a unique ellipsoid E of the minimum volume. Prove that if x_{0} is the center of E then

$$
\frac{1}{d}\left(E-x_{0}\right)+x_{0} \subset K \subset E .
$$

5. Prove that for the minimum volume ellipsoid of Problem 4 we have

$$
\frac{1}{\sqrt{d}}\left(E-x_{0}\right)+x_{0} \subset K \subset E,
$$

if K is symmetric.

21. The Flatness Theorem

We rephrase Theorem 18.3 as follows.
(21.1) Lemma. Let $\Lambda \subset V$ be a lattice, where $\operatorname{dim} V=d$, and let

$$
B=\left\{x \in V:\left\|x-x_{0}\right\| \leq r\right\}
$$

be a ball centered at some point $x_{0} \in V$ and of radius r such that $B \cap \Lambda=\emptyset$. Then there exists a vector $v \in \Lambda^{*} \backslash\{0\}$ such that

$$
\max _{x \in B}\langle v, x\rangle-\min _{x \in B}\langle v, x\rangle \leq c(d)
$$

where one can choose $c(d)=2 d$.
Proof. Since $B \cap \Lambda=\emptyset$, we have $\mu(\Lambda)>r$. Therefore by Theorem 18.3 we have $\rho\left(\Lambda^{*}\right)<d / 2 r$ and hence there exists a vector $v \in \Lambda^{*} \backslash\{0\}$ such that $\|v\|<d / r$. Then

$$
\max _{x \in B}\langle v, x\rangle \leq\left\langle v, x_{0}\right\rangle+d \quad \text { and } \quad \min _{x \in B}\langle v, x\rangle \geq\left\langle v, x_{0}\right\rangle-d,
$$

from which the proof follows.
Next, we extend Lemma 21.1 to ellipsoids.
(21.2) Lemma. Let $\Lambda \subset V$ be a lattice, where $\operatorname{dim} V=d$, and let $E \subset V$ be an ellipsoid such that $E \cap \Lambda=\emptyset$. Then there exists a vector $v \in \Lambda^{*} \backslash\{0\}$ such that

$$
\max _{x \in E}\langle v, x\rangle-\min _{x \in E}\langle v, x\rangle \leq c(d)
$$

where one can choose $c(d)=2 d$.
Proof. Let $T: V \longrightarrow V$ be an invertible linear transformation and let $B \subset V$ be a ball such that $E=T(B)$. Let $\Lambda_{1}=T^{-1}(\Lambda)$. Then $\Lambda_{1} \subset V$ is a lattice and $B \cap \Lambda_{1}=\emptyset$. By Lemma 21.2, there exists a vector $w \in \Lambda_{1}^{*}$ such that

$$
\begin{equation*}
\max _{x \in B}\langle w, x\rangle-\min _{x \in B}\langle w, x\rangle \leq c(d) \tag{21.2.1}
\end{equation*}
$$

where one can choose $c(d)=2 d$.
Let $v=\left(T^{-1}\right)^{*}(w)$. For every $u \in \Lambda$ we have

$$
\langle u, v\rangle=\left\langle T^{-1}(u), w\right\rangle \in \mathbb{Z}
$$

and hence $v \in \Lambda^{*} \backslash\{0\}$. Moreover, for every $y \in E$ we have $y=T(x)$ for some $x \in B$ and hence

$$
\langle v, y\rangle=\left\langle T^{*}(v), x\right\rangle=\langle w, x\rangle
$$

and the proof follows by (21.2.1).
The following result is known as the Flatness Theorem.
(21.3) Theorem. Let $\Lambda \subset V$ be a lattice, where $\operatorname{dim} V=d$, and let $K \subset V$ be a convex body such that $K \cap \Lambda=\emptyset$. Then there is a vector $v \in \Lambda^{*} \backslash\{0\}$ such that

$$
\max _{x \in K}\langle v, x\rangle-\min _{x \in K}\langle v, x\rangle \leq c(d),
$$

where one can choose $c(d)=2 d^{2}$.
Proof. Let $E \subset K$ be the ellipsoid of Theorem 20.2, so $K \subset d\left(E-x_{0}\right)+x_{0}$. Since $E \cap \Lambda=\emptyset$, by Lemma 21.2 there exists a vector $v \in \Lambda^{*} \backslash\{0\}$ such that

$$
\max _{x \in E}\langle v, x\rangle-\min _{x \in E}\langle v, x\rangle \leq 2 d .
$$

Since

$$
\begin{aligned}
\max _{x \in K}\langle v, x\rangle & \leq \max _{x \in d\left(E-x_{0}\right)+x_{0}}\langle v, x\rangle
\end{aligned}=d \max _{x \in E}\langle v, x\rangle-(d-1)\left\langle v, x_{0}\right\rangle,
$$

the proof follows.

(21.4) Problems.

1. Let $P \subset \mathbb{R}^{2}$ be a convex polygon with vertices in \mathbb{Z}^{2}. Suppose that P does not contain any point from \mathbb{Z}^{2} other than its vertices. Prove that there exists a vector $w \in \mathbb{Z}^{2} \backslash\{0\}$ such that

$$
\max _{x \in P}\langle w, x\rangle-\min _{x \in P}\langle w, x\rangle \leq 1 .
$$

2^{*}. Let $P \subset \mathbb{R}^{3}$ be a convex polytope with vertices in \mathbb{Z}^{3}. Suppose that P does not contain any point from \mathbb{Z}^{3} other than its vertices. Prove that there exists a vector $w \in \mathbb{Z}^{3} \backslash\{0\}$ such that

$$
\max _{x \in P}\langle w, x\rangle-\min _{x \in P}\langle w, x\rangle \leq 1
$$

22. The successive minima of a convex body

(22.1) Definition. Let $K \subset V$ be a symmetric convex body and let $\Lambda \subset V$ be a lattice. Let $\operatorname{dim} V=d$. For $i=1, \ldots, d$ we define the i-th successive minimum

$$
\lambda_{i}=\lambda_{i}(K)=\inf \{\lambda>0: \quad \operatorname{dim} \operatorname{span}(\lambda K \cap \Lambda) \geq i\} .
$$

Clearly,

$$
\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{d}
$$

Minkowski's Theorem (see Theorem 6.4) states that

$$
\lambda_{1}^{d} \operatorname{vol} K \leq 2^{d} \operatorname{det} \Lambda
$$

In this section we prove a sharpening of this result, also due to Minkowski, that

$$
\lambda_{1} \cdots \lambda_{d} \operatorname{vol} K \leq 2^{d} \operatorname{det} \Lambda
$$

(22.2) Lemma. Let us consider the $\operatorname{map} \Phi_{n}: \mathbb{R}^{n} \longrightarrow[0,1)^{n}$,

$$
\Phi_{n}\left(x_{1}, \ldots, x_{n}\right)=\left(\left\{x_{1}\right\}, \ldots,\left\{x_{n}\right\}\right),
$$

where $\{\cdot\}$ denotes the fractional part of a number.
Let $X \subset \mathbb{R}^{n}$ be a Lebesgue measurable set. Then for every $z \in \mathbb{R}^{n}$, we have

$$
\operatorname{vol} \Phi_{n}(X+z)=\operatorname{vol} \Phi_{n}(X)
$$

Proof. It suffices to prove the identity when z has only one non-zero coordinate and that coordinate lies in the interval $(0,1)$. Hence without loss of generality we may assume that

$$
z=(0, \ldots, 0, \alpha)
$$

for some $0<\alpha<1$.
Let $X=X_{-} \cup X_{+}$, where

$$
X_{-}=\left\{x \in X: \quad\left\{x_{n}\right\}<1-\alpha\right\} \quad \text { and } \quad X_{+}=\left\{x \in X: \quad\left\{x_{n}\right\} \geq 1-\alpha\right\}
$$

Clearly,

$$
X_{-} \cap X_{+}=\emptyset \quad \text { and } \quad \operatorname{vol} X=\operatorname{vol} X_{-}+\operatorname{vol} X_{+} .
$$

Moreover,

$$
\begin{aligned}
& \Phi_{n}\left(X_{-}+z\right)=\Phi_{n}\left(X_{-}\right)+(0, \ldots, 0, \alpha) \quad \text { and } \\
& \Phi_{n}\left(X_{+}+z\right)=\Phi_{n}\left(X_{-}\right)+(0, \ldots, \alpha-1)
\end{aligned}
$$

and hence

$$
\operatorname{vol} \Phi_{n}\left(X_{-}+z\right)=\operatorname{vol} \Phi_{n}\left(X_{-}\right) \quad \text { and } \quad \operatorname{vol} \Phi_{n}\left(X_{+}+z\right)=\operatorname{vol} \Phi_{n}\left(X_{+}\right)
$$

Finally, $\Phi_{n}\left(X_{-}+z\right)$ and $\Phi_{n}\left(X_{+}+z\right)$ are disjoint sets, since for any vector $x=\left(x_{1}, \ldots, x_{n}\right)$ we have $\left\{x_{n}\right\} \geq \alpha$ if $x \in \Phi_{n}\left(X_{-}+z\right)$ and $\left\{x_{n}\right\}<\alpha$ if $x \in$ $\Phi_{n}\left(X_{+}+z\right)$. Since $\Phi_{n}\left(X_{+}\right)$and $\Phi_{n}\left(X_{-}\right)$are also disjoint, we have

$$
\begin{aligned}
\operatorname{vol} \Phi_{n}(X+z) & =\operatorname{vol} \Phi_{n}\left(X_{-}+z\right)+\operatorname{vol} \Phi_{n}\left(X_{+}+z\right) \\
& =\operatorname{vol} \Phi_{n}\left(X_{-}\right)+\operatorname{vol} \Phi_{n}\left(X_{+}\right) \\
& =\operatorname{vol} \Phi_{n}(X)
\end{aligned}
$$

(22.3) Lemma. Let $X \subset \mathbb{R}^{n}$ be a convex set. Then for any $\alpha \geq 1$ we have

$$
\operatorname{vol} \Phi_{n}(\alpha X) \geq \operatorname{vol} \Phi_{n}(X)
$$

Proof. Let $z \in \mathbb{R}^{n}$ be a point such that $0 \in X+z$. Then $(X+z) \subset \alpha(X+z)$ and so $\Phi_{n}(X+z) \subset \Phi_{n}(\alpha X+\alpha z)$. Applying Lemma 22.2, we get

$$
\operatorname{vol} \Phi_{n}(\alpha X)=\operatorname{vol} \Phi_{n}(\alpha X+\alpha z) \geq \operatorname{vol} \Phi_{n}(X+z)=\operatorname{vol} \Phi_{n}(X)
$$

(22.4) Lemma. For $1 \leq i \leq n$ let us consider the map $\Phi_{i}: \mathbb{R}^{n} \longrightarrow[0,1)^{i} \times \mathbb{R}^{n-i}$,

$$
\Phi_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(\left\{x_{1}\right\}, \ldots,\left\{x_{i}\right\}, x_{i+1}, \ldots, x_{n}\right)
$$

Let $X \subset \mathbb{R}^{n}$ be a convex set. Then for any $\alpha \geq 1$ we have

$$
\operatorname{vol} \Phi_{i}(\alpha X) \geq \alpha^{n-i} \Phi_{i}(X)
$$

Proof. Let pr : $\mathbb{R}^{n} \longrightarrow \mathbb{R}^{n-i}$ be the projection,

$$
\operatorname{pr}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{i+1}, \ldots, x_{n}\right)
$$

and let $Y=\operatorname{pr}(X)$. Then, by Fubini's Theorem,

$$
\begin{aligned}
\operatorname{vol} \Phi_{i}(X) & =\int_{Y} \operatorname{vol}_{i} \Phi_{i}\left(p r^{-1}(y) \cap X\right) d y \quad \text { and } \\
\operatorname{vol} \Phi_{i}(\alpha X) & =\int_{\alpha Y} \operatorname{vol}_{i} \Phi_{i}\left(p r^{-1}(y) \cap \alpha X\right) d y
\end{aligned}
$$

Making substitution $y=\alpha x$ in the second integral, we obtain

$$
\Phi_{i}(\alpha X)=\alpha^{n-i} \int_{Y} \operatorname{vol}_{i} \Phi_{i}\left(p r^{-1}(\alpha x) \cap \alpha X\right) d x
$$

which we formally rewrite as

$$
\Phi_{i}(\alpha X)=\alpha^{n-i} \int_{Y} \operatorname{vol}_{i} \Phi_{i}\left(p r^{-1}(\alpha y) \cap \alpha X\right) d y
$$

Now, $p r^{-1}(y) \cap X$ consists of all points $\left(x_{1}, \ldots, x_{i}, y_{i+1}, \ldots, y_{n}\right) \in X$ while $p r^{-1}(\alpha y) \cap \alpha X$ consists of all points $\left(\alpha x_{1}, \ldots, \alpha x_{i} ; \alpha y_{i+1}, \ldots, \alpha y_{n}\right) \in \alpha X$. Applying Lemma 22.3, we obtain

$$
\operatorname{vol}_{i} \Phi_{i}\left(p r^{-1}(\alpha y) \cap \alpha X\right) \geq \operatorname{vol}_{i} \Phi_{i}\left(p r^{-1}(y) \cap X\right) \quad \text { for all } \quad y \in Y
$$

and the proof follows.
Now we can prove Minkowski's Theorem.
(22.5) Theorem. Let $K \subset V$ be a symmetric convex body and let $\Lambda \subset V$ be a lattice. Then

$$
\lambda_{1} \cdots \lambda_{d} \operatorname{vol} K \leq 2^{d} \operatorname{det} \Lambda
$$

where $d=\operatorname{dim} V$ and $\lambda_{1}, \ldots, \lambda_{d}$ are the successive minima.
Proof. Applying a linear transformation, we may assume that $V=\mathbb{R}^{d}$ and $\Lambda=\mathbb{Z}^{d}$.
Let us consider dilations λK as $\lambda>0$ grows and let $u_{1}, \ldots, u_{d} \in \mathbb{Z}^{d}$ be linearly independent vectors in the order of appearance, where ties are broken arbitrarily. We choose a new basis b_{1}, \ldots, b_{d} of \mathbb{Z}^{d} in such a way that for $i=1, \ldots, d$ vectors b_{1}, \ldots, b_{i} constitute a basis of the lattice $\mathbb{Z}^{d} \cap \operatorname{span}\left(u_{1}, \ldots, u_{i}\right)$, cf. Problem 4 of Section 3.2.

The linear transformation that maps the standard basis vectors e_{1}, \ldots, e_{d} to b_{1}, \ldots, b_{d} does not change the volume of K or the lattice \mathbb{Z}^{d}. Hence we can assume additionally that the coordinates of u_{1}, \ldots, u_{d} look as follows:

$$
u_{1}=(*, 0, \ldots, 0), u_{2}=(*, *, 0, \ldots, 0), \ldots, u_{d}=(*, \ldots, *) .
$$

Let A be the interior of K, so $\operatorname{vol} A=\operatorname{vol} K$ and if $u \in \lambda_{i} A \cap \Lambda$ then the coordinates of u, starting with the i-th position, are 0's.

Let

$$
X=\frac{1}{2} A .
$$

Let Φ_{i} be the map of Lemma 22.4. Then $\Phi_{i}\left(\lambda_{i} X\right)$ is obtained from $\Phi_{i-1}\left(\lambda_{i} X\right)$ via the transformation $x_{i} \longmapsto\left\{x_{i}\right\}$. This transformation is one-to-one since if there are two distinct points $x, y \in \lambda_{i} X$ with the same image then

$$
u=x-y=2\left(\frac{1}{2} x+\frac{1}{2}(-y)\right) \in \lambda_{i} A
$$

and the i-th coordinate of u is a non-zero integer, while all other coordinates are 0 's, which is a contradiction. Then we can conclude from Lemma 22.4 that

$$
\begin{aligned}
\operatorname{vol} \Phi_{i}\left(\lambda_{i} X\right) & =\operatorname{vol} \Phi_{i-1}\left(\lambda_{i} X\right)=\operatorname{vol} \Phi_{i-1}\left(\left(\frac{\lambda_{i}}{\lambda_{i-1}}\right) \lambda_{i-1} X\right) \\
& \geq\left(\frac{\lambda_{i}}{\lambda_{i-1}}\right)^{d-i+1} \operatorname{vol} \Phi_{i-1}\left(\lambda_{i-1} X\right) .
\end{aligned}
$$

Similarly, the transformation $x_{i} \longmapsto\left\{x_{1}\right\}$ is one-to-one on $\lambda_{1} X$ and hence

$$
\operatorname{vol} \Phi_{1}\left(\lambda_{1} X\right)=\operatorname{vol} \lambda_{1} X=\lambda_{1}^{d} \operatorname{vol} X
$$

Summarizing,

$$
\operatorname{vol} \Phi_{n}\left(\lambda_{n} X\right) \geq \lambda_{1}^{d} \operatorname{vol} X \prod_{i=2}^{d}\left(\frac{\lambda_{i}}{\lambda_{i-1}}\right)^{d-i+1}=\lambda_{1} \cdots \lambda_{d} \operatorname{vol} X
$$

Therefore,

$$
\lambda_{1} \cdots \lambda_{d} \operatorname{vol} X \leq 1
$$

as claimed.

23. An almost orthogonal basis of the lattice

One corollary of Theorem 22.5 is that every lattice has an "almost orthogonal" basis.
(23.1) Lemma. Let Λ be a lattice of rank d and let u_{1}, \ldots, u_{d} be linearly independent vectors. Then there exists a basis v_{1}, \ldots, v_{d} of Λ such that

$$
\begin{aligned}
v_{k}= & \sum_{i=1}^{k} \alpha_{k i} u_{i} \quad \text { where } \\
& 0<\alpha_{k k} \leq 1 \quad \text { and } \quad\left|\alpha_{k i}\right| \leq \frac{1}{2} \quad \text { for } \quad i=1, \ldots, k-1 \quad \text { and } \quad k=1, \ldots, d .
\end{aligned}
$$

Proof. Let us define

$$
L_{k}=\operatorname{span}\left(u_{1}, \ldots, u_{k}\right) \quad \text { and } \quad \Lambda_{k}=\Lambda \cap L_{k} \quad \text { for } \quad k=1, \ldots, d
$$

We choose v_{1} to be a basis of Λ_{1}. Clearly, we must have $v_{1}=\alpha_{11} u_{1}$ for some $\left|\alpha_{11}\right| \leq 1$. If $\alpha_{11}<0$, we replace v_{1} by $-v_{1}$. Generally, having constructed v_{1}, \ldots, v_{k-1} as a basis of Λ_{k-1}, we append it to a basis v_{1}, \ldots, v_{k} of Λ_{k} (cf. the proof of Theorem 3.1). Hence we have

$$
\begin{equation*}
v_{k}=\sum_{i=1}^{k} \alpha_{k i} u_{i} \tag{23.1.1}
\end{equation*}
$$

If $\alpha_{k k}<0$, we replace

$$
v_{k}:=-v_{k} .
$$

Writing the right hand side of (23.1.1) as an integer linear combination of v_{1}, \ldots, v_{k}, we conclude that $\alpha_{k k} m=1$ for some integer m and hence $0<\alpha_{k k} \leq 1$, as required If $\left|\alpha_{k i}\right|>1 / 2$ for some $i<k$, we replace

$$
v_{k}:=v_{k}-m_{k i} u_{i},
$$

where $m_{k i}$ is the nearest integer to $\alpha_{k i}$. Since u_{i} is an integer combination of v_{1}, \ldots, v_{i} where $i<k$, we get a vector v_{k} from Λ_{k}. Moreover, the volume of the parallelepiped spanned by v_{1}, \ldots, v_{k} does not change, so we still have a basis of Λ_{k}.
(23.2) Theorem. Let $\Lambda \subset V$ be a lattice of rank d. Then there is a basis v_{1}, \ldots, v_{d} of Λ such that

$$
\prod_{i=1}^{d}\left\|v_{i}\right\| \leq C(d) \operatorname{det} \Lambda
$$

where one can choose

$$
C(d)=\frac{(d+1)!\Gamma\left(1+\frac{d}{2}\right)}{\pi^{d / 2}} .
$$

Proof. Let $B \subset V$ be the ball of radius 1 centered at the origin. Let us consider the dilations λB for $\lambda>0$ and let $u_{1}, \ldots, u_{d} \in \Lambda$ be linearly independent vectors, in the order of appearance, as λ grows, where the ties are broken arbitrarily. Hence

$$
\left\|u_{1}\right\| \leq\left\|u_{2}\right\| \leq \ldots \leq\left\|u_{d}\right\|
$$

and by Theorem 22.5 we have

$$
\begin{equation*}
\prod_{i=1}^{d}\left\|u_{i}\right\| \leq \frac{2^{d} \operatorname{det} \Lambda}{\operatorname{vol} B}=\frac{2^{d} \Gamma\left(1+\frac{d}{2}\right)}{\pi^{d / 2}} \operatorname{det} \Lambda . \tag{23.2.1}
\end{equation*}
$$

Now we construct a basis v_{1}, \ldots, v_{d} of Λ as in Lemma 23.2.
We note that

$$
\left\|v_{k}\right\| \leq\left\|u_{k}\right\|+\frac{1}{2} \sum_{i=1}^{k-1}\left\|u_{i}\right\| \leq \frac{(k+1)}{2}\left\|u_{k}\right\|
$$

and the proof follows by (23.2.1).

(23.3) Problems.

1. Let $\left\{\Lambda_{n} \subset V, \quad n=1,2, \ldots\right\}$ be a sequence of lattices and let $\Lambda \subset V$ be yet another lattice. We say that

$$
\lim _{n \rightarrow+\infty} \Lambda_{n}=\Lambda
$$

if there exist bases $u_{n 1}, \ldots, u_{n d}$ of Λ_{n} and a basis u_{1}, \ldots, u_{d} of Λ such that

$$
\lim _{n \longrightarrow+\infty} u_{n i}=u_{i} \quad \text { for } \quad i=1, \ldots, d
$$

Prove the following Mahler's Compactness Theorem:
Let $\left\{\Lambda_{i} \subset V: \quad i \in I\right\}$ be an infinite family of lattices such that $\operatorname{det} \Lambda_{i} \leq C$ for all $i \in I$ and some real C and $\rho\left(\Lambda_{i}\right) \geq \delta$ for all $i \in I$ and some $\delta>0$, where ρ is the packing radius. Prove that the family contains a sequence converging to some lattice $\Lambda \subset V$.
2. Let $\left\{\Lambda_{n} \subset V\right\}$ be a sequence of lattices and let $\Lambda \subset V$ be a lattice such that

$$
\lim _{n \xrightarrow{2}+\infty} \Lambda_{n}=\Lambda .
$$

Prove that

$$
\lim _{n \longrightarrow+\infty} \rho\left(\Lambda_{n}\right)=\rho(\Lambda) \quad \text { and } \quad \lim _{n \longrightarrow+\infty} \mu\left(\Lambda_{n}\right)=\mu(\Lambda)
$$

for the packing and covering radii.
3. Let $U=u_{1}, \ldots, u_{d}$ be a basis of a lattice Λ, let

$$
L_{0}=\{0\} \quad \text { and } \quad L_{k}=\operatorname{span}\left(u_{1}, \ldots, u_{k}\right) \quad \text { for } \quad k=1, \ldots, d
$$

and let w_{k} be the orthogonal complement to the projection of u_{k} onto L_{k-1} for $k=1, \ldots, d$. Hence we can write

$$
u_{k}=w_{k}+\sum_{i=1}^{k-1} \alpha_{k i} w_{i} .
$$

The basis is called reduced if

$$
\left|\alpha_{k i}\right| \leq \frac{1}{2} \quad \text { for } \quad i=1, \ldots, k-1 \quad \text { and } \quad k=2, \ldots, d
$$

Prove that for every basis u_{1}, \ldots, u_{d} of Λ there is a reduced basis v_{1}, \ldots, v_{d} such that

$$
\begin{aligned}
& \operatorname{span}\left(v_{1}, \ldots, v_{k}\right)=L_{k} \quad \text { and } \quad \operatorname{dist}\left(u_{k}, L_{k-1}\right)=\operatorname{dist}\left(v_{k}, L_{k-1}\right) \\
& \quad \text { for } \quad k=1, \ldots, d
\end{aligned}
$$

4. Let u_{1}, \ldots, u_{d} be a reduced Korkin-Zolotarev basis (see Section 14) of Λ. Prove that

$$
\left\|u_{k}\right\|^{2} \leq \frac{k+3}{4} \lambda_{k}^{2}(\Lambda) \quad \text { for } \quad k=1, \ldots, d
$$

where $\lambda_{k}(\Lambda)$ is the k-th successive minimum with respect to the unit ball. Deduce that one can choose

$$
C(d)=\frac{\sqrt{(d+3)!} \Gamma\left(1+\frac{d}{2}\right)}{\pi^{d / 2} \sqrt{6}} \operatorname{det} \Lambda
$$

in Theorem 23.2.
5. Let u_{1}, \ldots, u_{d} be a reduced Korkin-Zolotarev basis of Λ. Prove that

$$
\left\|u_{k}\right\|^{2} \geq \frac{4}{k+3} \lambda_{k}^{2}(\Lambda) \quad \text { for } \quad k=1, \ldots, d
$$

24. Successive minima via the Poisson summation formula

The following result is also known as a transference theorem. We follow
W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers, Mathematische Annalen, 296 (1993), 625 - 635
with some modifications, as we don't pursue the best possible constants.
For a lattice $\Lambda \subset V$, we denote by $\lambda_{i}(\Lambda)$ the i-th successive minimum of Λ with respect to the Euclidean ball in V of radius 1.
(24.1) Theorem. Let $\Lambda \subset V$ be a lattice of rank d. Then

$$
1 \leq \lambda_{k}(\Lambda) \lambda_{d-k+1}\left(\Lambda^{*}\right) \leq 2 d \quad \text { for } \quad k=1, \ldots, d
$$

Proof. Let $u_{1}, \ldots, u_{d} \in \Lambda$ and $v_{1}, \ldots, v_{d} \in \Lambda^{*}$ be linearly independent vectors in the order of increasing length, so

$$
\left\|u_{1}\right\| \leq \ldots \leq\left\|u_{d}\right\| \text { and }\left\|v_{1}\right\| \leq \ldots \leq\left\|v_{d}\right\|
$$

and

$$
\lambda_{k}(\Lambda)=\left\|u_{k}\right\| \quad \text { and } \quad \lambda_{d-k+1}\left(\Lambda^{*}\right)=\left\|v_{d-k+1}\right\| .
$$

Since

$$
\operatorname{dim} \operatorname{span}\left(u_{1}, \ldots, u_{k}\right)=k \quad \text { and } \quad \operatorname{dim} \operatorname{span}\left(v_{1}, \ldots, v_{d-k+1}\right)=d-k+1
$$

there are vectors u_{i} with $i \leq k$ and v_{j} with $j \leq d-k+1$ such that $\left\langle u_{i}, v_{j}\right\rangle \neq 0$. Then $\left|\left\langle u_{i}, v_{j}\right\rangle\right| \geq 1$, since the scalar product is necessarily an integer. Thus we have

$$
\lambda_{k}(\Lambda) \cdot \lambda_{d-k+1}\left(\Lambda^{*}\right)=\left\|u_{k}\right\| \cdot\left\|v_{d-k+1}\right\| \geq\left\|u_{i}\right\| \cdot\left\|v_{j}\right\| \geq\left|\left\langle u_{i}, v_{j}\right\rangle\right| \geq 1
$$

Next, we prove the upper bound. First, we note that by Lemma 18.2,

$$
\sum_{\substack{l \in \Lambda^{*} \\\|l\|>\sqrt{d}}} e^{-\pi\|l\|^{2}} \leq 5^{-d} \sum_{l \in \Lambda} e^{-\pi\|l\|^{2}}
$$

and hence

$$
\sum_{\substack{l \in \Lambda^{*}: \\\|l\| \leq \sqrt{d}}} e^{-\pi\|l\|^{2}}=\sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}}-\sum_{\substack{l \in \Lambda^{*}: \\\|l\|>\sqrt{d}}} e^{-\pi\|l\|^{2}} \geq\left(1-5^{-d}\right) \sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}} .
$$

Seeking a contradiction, let us suppose that $\lambda_{k}(\Lambda) \lambda_{d-k+1}\left(\Lambda^{*}\right)>2 d$. Scaling $\Lambda:=\alpha \Lambda$ and $\Lambda^{*}:=\alpha^{-1} \Lambda^{*}$ for $\alpha>0$, we may assume that $\lambda_{k}(\Lambda)>2 \sqrt{d}$ and $\lambda_{d-k+1}\left(\Lambda^{*}\right)>\sqrt{d}$. Then we have

$$
\begin{aligned}
& \operatorname{dim} \operatorname{span}(u \in \Lambda:\|u\| \leq 2 \sqrt{d}) \leq k-1 \quad \text { and } \\
& \operatorname{dim} \operatorname{span}\left(v \in \Lambda^{*}:\|v\| \leq \sqrt{d}\right) \leq d-k
\end{aligned}
$$

Therefore there is an $x \in V,\|x\|=\sqrt{d}$, such that x is orthogonal to all vectors of Λ of length at most $2 \sqrt{d}$ and x is orthogonal to all vectors of Λ^{*} of length at most
\sqrt{d}. Therefore we have

$$
\begin{align*}
\left|\sum_{l \in \Lambda^{*}} e^{-\pi\|l l\|^{2}+2 \pi i\langle l, x\rangle}\right| & =\left|\sum_{\substack{l \in \Lambda^{*}: \\
\|l l\| \leq \sqrt{d}}} e^{-\pi\|l\|^{2}+2 \pi i\langle l, x\rangle}+\sum_{\substack{l \in \Lambda^{*}: \\
\|l\|>\sqrt{d}}} e^{-\pi\|l\|^{2}+2 \pi i\langle l, x\rangle}\right| \\
& =\left|\sum_{\substack{l \in \Lambda^{*}: \\
\|l\| \leq \sqrt{d}}} e^{-\pi\|l\|^{2}}+\sum_{\substack{l \in \Lambda^{*}: \\
\|l\|>\sqrt{d}}} e^{-\pi\|l\|^{2}+2 \pi i\langle l, x\rangle}\right| \tag{24.1.1}\\
& \geq \sum_{\substack{l \in \Lambda^{*}: \\
\|l\| \leq \sqrt{d}}} e^{-\pi\|l\|^{2}}-\sum_{\substack{l \in \Lambda^{*}: \\
\|l l\|>\sqrt{d}}} e^{-\pi\|l\|^{2}} \\
& \geq\left(1-2 \cdot 5^{-d}\right) \sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}} .
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\sum_{\substack{m \in \Lambda: \\
\|x-m\| \leq \sqrt{d}}} e^{-\pi\|x-m\|^{2}} & \leq \sum_{\substack{m \in \Lambda: \\
\|m\| \leq 2 \sqrt{d}}} e^{-\pi\|x-m\|^{2}}=\sum_{\substack{m \in \Lambda: \\
\|m\| \leq 2 \sqrt{d}}} e^{-\pi\|x\|^{2}-\pi\|m\|^{2}} \\
& \leq e^{-\pi d} \sum_{m \in \Lambda} e^{-\pi\|m\|^{2}}
\end{aligned}
$$

and from Lemma 18.2

$$
\begin{align*}
\sum_{m \in \Lambda} e^{-\pi\|x-m\|^{2}}= & \sum_{\substack{m \in \Lambda: \\
\|x-m\| \leq \sqrt{d}}} e^{-\pi\|x-m\|^{2}}+\sum_{\substack{m \in \Lambda: \\
\|x-m\|>\sqrt{d}}} e^{-\pi\|x-m\|^{2}} \tag{24.1.2}\\
\leq & \left(e^{-\pi d}+5^{-d}\right) \sum_{m \in \Lambda} e^{-\pi\|m\|^{2}} .
\end{align*}
$$

Finally, by Lemma 17.3, we have

$$
\begin{aligned}
& \sum_{m \in \Lambda} e^{-\pi\|x-m\|^{2}}=\frac{1}{\operatorname{det} \Lambda} \sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}+2 \pi i\langle l, x\rangle} \quad \text { and } \\
& \sum_{m \in \Lambda} e^{-\pi\|m\|^{2}}=\frac{1}{\operatorname{det} \Lambda} \sum_{l \in \Lambda^{*}} e^{-\pi\|l\|^{2}}
\end{aligned}
$$

which, together with (24.1.1) and (24.1.2) implies

$$
e^{-\pi d} \geq 1-3 \cdot 5^{-d}
$$

which is a contradiction.

25. The Lenstra - Lenstra - Lovász basis of a lattice

In this section, we describe a construction by A.K. Lenstra, H.W. Lenstra Jr. and L. Lovász of a particularly convenient basis of a given lattice (also called the LLL basis or an LLL-reduced basis). The construction is computationally efficient (both in theory and in practice) and the resulting basis is "almost orthogonal" in the sense of Theorem 23.2 and has some other useful properties.
(25.1) Definitions. Let Λ be a lattice of rank d and let u_{1}, \ldots, u_{d} be its basis. We define the subspaces

$$
L_{0}=\{0\} \quad \text { and } \quad L_{k}=\operatorname{span}\left(u_{1}, \ldots, u_{k}\right) \quad \text { for } \quad k=1, \ldots, d
$$

For $k=1, \ldots, d$, let w_{k} be the orthogonal complement to the projection of u_{k} onto L_{k-1}. Vectors w_{1}, \ldots, w_{d} are also called the Gram-Schmidt orthogonalization (without normalization) of u_{1}, \ldots, u_{d}. Hence we can write

$$
\begin{equation*}
u_{k}=w_{k}+\sum_{i=1}^{k-1} \alpha_{k i} w_{i} \tag{25.1.1}
\end{equation*}
$$

We say that the basis u_{1}, \ldots, u_{d} is weakly reduced if

$$
\begin{equation*}
\left|\alpha_{k i}\right| \leq \frac{1}{2} \quad \text { for all } \quad 1 \leq i<k \leq d \tag{25.1.2}
\end{equation*}
$$

We say that the basis u_{1}, \ldots, u_{d} is Lenstra-Lenstra-Lovász reduced or LLL-reduced if

$$
\begin{equation*}
\operatorname{dist}^{2}\left(u_{k}, L_{k-1}\right) \leq \frac{4}{3} \operatorname{dist}^{2}\left(u_{k+1}, L_{k-1}\right) \quad \text { for } \quad k=1, \ldots, d-1 \tag{25.1.3}
\end{equation*}
$$

(25.2) Constructing an LLL basis. Given a basis u_{1}, \ldots, u_{d} of a lattice Λ, we modify it by repeating the following two steps until we get an LLL-reduced basis.

Step 1. We compute vectors w_{1}, \ldots, w_{d} and check if conditions (25.1.2) are satisfied. If (25.1.2) is violated for some k, we choose the largest i where it is violated, let

$$
u_{k}^{\prime}:=u_{k}-m_{k i} u_{i}
$$

where $m_{k i}$ is the nearest integer to $\alpha_{k i}$ so that $\left|\alpha_{k i}-m_{k i}\right| \leq 1 / 2$, and replace u_{k} by u_{k}^{\prime} in the basis. This transformation produces a basis of Λ and does not change the subspaces of L_{0}, \ldots, L_{d} of V or the vectors w_{1}, \ldots, w_{d}. In (25.1.1) it changes the coefficients $\alpha_{k j}$ with $j \leq i$. Therefore, applying the transformation at most $d(d-1) / 2$ times, we enforce (25.1.2). Then we go to Step 2.

Step 2. If conditions (25.1.3) are satisfied, we stop and output the current basis u_{1}, \ldots, u_{d}. If (25.1.3) is violated for some k, we interchange u_{k} and u_{k+1} in the basis, that is, we let

$$
\begin{equation*}
u_{k}^{\prime}:=u_{k+1} \quad \text { and } \quad u_{k+1}^{\prime}:=u_{k} \tag{25.2.1}
\end{equation*}
$$

and replace u_{k} and u_{k+1} in the basis by u_{k}^{\prime} and u_{k+1}^{\prime} respectively. This transformation may violate (25.1.2), so we go to Step 1, if necessary.

Clearly, if the algorithm ever stops, it produces an LLL-reduced basis. To show that it indeed stops, for a given basis u_{1}, \ldots, u_{d} we introduce the lattices

$$
\Lambda_{k}=\Lambda \cap L_{k} \quad \text { for } \quad k=1, \ldots, d-1
$$

and the quantity

$$
D\left(u_{1}, \ldots, u_{d}\right)=\prod_{k=1}^{d-1} \operatorname{det} \Lambda_{k}
$$

We note that

$$
\operatorname{det} \Lambda_{k}=\prod_{i=1}^{k}\left\|w_{i}\right\|
$$

and that

$$
\left\|w_{k}\right\|=\operatorname{dist}\left(u_{k}, L_{k-1}\right)
$$

Step 1 does not change subspaces L_{k} and hence does not change the value of $D\left(u_{1}, \ldots, u_{d}\right)$. Switch (25.2.1) on Step 2 changes the subspace L_{k} and does not change any other subspaces L_{i}. Since (25.1.3) is violated, we have

$$
\left\|w_{k}^{\prime}\right\|=\operatorname{dist}\left(u_{k+1}, L_{k-1}\right)<\frac{\sqrt{3}}{2} \operatorname{dist}\left(u_{k}, L_{k-1}\right)=\left\|w_{k}\right\|
$$

and hence $\operatorname{det} \Lambda_{k}$ decreases by at least a factor of $2 / \sqrt{3}$. Consequently, the value of $D\left(u_{1}, \ldots, u_{d}\right)$ decreases by at least a factor of $2 / \sqrt{3}$.

Therefore, it remains to show that $D\left(u_{1}, \ldots, u_{d}\right)$ cannot get arbitrarily small. Let λ be the length of a shortest non-zero vector in Λ. Then the length of a non-zero vector in Λ_{k} is at least λ and hence

$$
\operatorname{det} \Lambda_{k} \geq\left(\frac{\lambda}{\sqrt{k}}\right)^{k} \quad \text { for } \quad k=1, \ldots, d
$$

which proves that

$$
D\left(u_{1}, \ldots, u_{d}\right) \geq \lambda^{d(d-1) / 2} \prod_{k=1}^{d-1} k^{-k / 2}
$$

Consequently, Step 2 of the algorithm can be performed only finitely many times and hence the algorithm stops and outputs an LLL-reduced basis.

In fact, the algorithm works in polynomial time and is very efficient in practice.
Here is a useful property of an LLL-reduced basis.
(25.3) Lemma. Let u_{1}, \ldots, u_{d} be an LLL-reduced basis and let w_{1}, \ldots, w_{d} be the vectors defined in Section 25.1, so

$$
\left\|w_{k}\right\|=\operatorname{dist}\left(u_{k}, L_{k-1}\right) \quad \text { where } \quad L_{k}=\operatorname{span}\left(u_{1}, \ldots, u_{k-1}\right) .
$$

Then

$$
\left\|w_{k+1}\right\|^{2} \geq \frac{1}{2}\left\|w_{k}\right\|^{2} \quad \text { for } \quad k=1, \ldots, d-1
$$

Proof. From (25.1.1)-(25.1.3), we have

$$
\begin{aligned}
\left\|w_{k}\right\|^{2} & =\operatorname{dist}^{2}\left(u_{k}, L_{k-1}\right) \leq \frac{4}{3} \operatorname{dist}^{2}\left(u_{k+1}, L_{k-1}\right) \\
& =\frac{4}{3}\left\|w_{k+1}+\alpha_{k+1 k} w_{k}\right\|^{2}=\frac{4}{3}\left\|w_{k+1}\right\|^{2}+\frac{4}{3} \alpha_{k+1 k}^{2}\left\|w_{k}\right\|^{2} \\
& \leq \frac{4}{3}\left\|w_{k+1}\right\|^{2}+\frac{1}{3}\left\|w_{k}\right\|^{2}
\end{aligned}
$$

and the proof follows.
(25.4) Corollary. Let Λ be a lattice of rank d and let u_{1}, \ldots, u_{d} be its LLL-reduced basis.

Then
(1)

$$
\prod_{k=1}^{d}\left\|u_{k}\right\| \leq 2^{\frac{d(d-1)}{4}} \operatorname{det} \Lambda
$$

$$
\begin{equation*}
\left\|u_{1}\right\| \leq 2^{\frac{d-1}{2}} \min _{u \in \Lambda \backslash\{0\}}\|u\|, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left\|u_{1}\right\| \leq 2^{\frac{d-1}{4}}(\operatorname{det} \Lambda)^{1 / d} \tag{3}
\end{equation*}
$$

Proof. From (25.1.1)-(25.1.2) and Lemma 25.3, we have

$$
\begin{aligned}
\left\|u_{k}\right\|^{2} & =\left\|w_{k}\right\|^{2}+\sum_{i=1}^{k-1} \alpha_{k i}^{2}\left\|w_{i}\right\|^{2} \leq\left\|w_{k}\right\|^{2}+\frac{1}{4} \sum_{i=1}^{k-1}\left\|w_{i}\right\|^{2} \\
& \leq\left\|w_{k}\right\|^{2}\left(1+\frac{1}{4} \sum_{i=1}^{k-1} 2^{k-i}\right) \leq 2^{k-1}\left\|w_{k}\right\|^{2} .
\end{aligned}
$$

Since

$$
\operatorname{det} \Lambda=\prod_{\substack{k=1 \\ 54}}^{d}\left\|w_{k}\right\|
$$

the proof of Part (1) follows.
By Problem 4 of Section 14.3 and Lemma 25.3, for all $u \in \Lambda \backslash\{0\}$ we have

$$
\|u\| \geq \min _{k=1, \ldots, d} \operatorname{dist}\left(u_{k}, L_{k-1}\right)=\min _{k=1, \ldots, d}\left\|w_{k}\right\| \geq 2^{\frac{1-d}{2}}\left\|w_{1}\right\|=2^{\frac{1-d}{2}}\left\|u_{1}\right\|
$$

and the proof of Part (2) follows.
Finally, by Lemma 25.3,

$$
\operatorname{det} \Lambda=\prod_{k=1}^{d}\left\|w_{k}\right\| \geq\left\|w_{1}\right\|^{d} \prod_{k=1}^{d} 2^{\frac{1-k}{2}}=\left\|u_{1}\right\|^{d} 2^{\frac{(1-d) d}{4}}
$$

and the proof of Part (3) follows.

(25.5) Problems.

1. Let Λ be a lattice and let u_{1}, \ldots, u_{d} be an LLL-reduced basis of Λ. Let $u \in \Lambda \backslash\{0\}$ be a shortest non-zero lattice vector. Suppose that

$$
u=\sum_{k=1}^{d} m_{k} u_{k}
$$

for some integer m_{1}, \ldots, m_{d}. Prove that we must have

$$
\left|m_{k}\right| \leq 3^{d} \quad \text { for } \quad k=1, \ldots, d
$$

2. Let Λ be a lattice and let u_{1}, \ldots, u_{d} be an LLL-reduced basis of Λ. Let v_{1}, \ldots, v_{d} be the reciprocal basis of Λ^{*}, so that

$$
\left\langle u_{i}, v_{j}\right\rangle= \begin{cases}1 & \text { if } i+j=d+1 \\ 0 & \text { otherwise }\end{cases}
$$

Prove that

$$
\sum_{k=1}^{d}\left\|u_{k}\right\| \cdot\left\|v_{d-k+1}\right\|<\left(\frac{3}{\sqrt{2}}\right)^{d} .
$$

3^{*}. Let $\Lambda \subset V$ be a lattice and let u_{1}, \ldots, u_{d} be an LLL-reduced basis of Λ. Given a point $x \in V$, let us write

$$
x=\sum_{k=1}^{d} \mu_{k} u_{k}
$$

for some real μ_{1}, \ldots, μ_{d}. Let m_{1}, \ldots, m_{d} be integers such that

$$
\left|\mu_{k}-m_{k}\right| \leq \frac{1}{2} \quad \text { for } \quad k=1, \ldots, d
$$

and let

$$
u=\sum_{k=1}^{d} m_{k} u_{k}
$$

Prove that

$$
\|u-x\| \leq\left(\frac{3}{\sqrt{2}}\right)^{d} \operatorname{dist}(x, \Lambda)
$$

Hint: This result is due to L. Babai, see L. Babai, On Lovász lattice reduction and the nearest lattice point problem, Combinatorica 6 (1986), no. 1, 1-13.
4. Let Λ be a lattice and let u_{1}, \ldots, u_{d} be an LLL-reduced basis of Λ. Prove that

$$
2^{\frac{(1-k)}{2}} \lambda_{k}(\Lambda) \leq\left\|u_{k}\right\| \leq 2^{\frac{(d-1)}{2}} \lambda_{k}(\Lambda)
$$

where $\Lambda_{k}(\Lambda)$ is the k-th successive minimum of Λ.
Hint: See A.K. Lenstra, H.W. Lenstra Jr. and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, 261(1982), 515-534.
26. Some applications of the Lenstra - Lenstra - Lovász basis

We sketch below some of the applications.
(26.1) Rational approximations of reals. By Problem 1 of Section 9.2 for any real $\alpha_{1}, \ldots, \alpha_{n}$ there exists an arbitrarily large integer $q>0$ and integers p_{1}, \ldots, p_{n} such that

$$
\left|\alpha_{k}-\frac{p_{k}}{q}\right| \leq \frac{1}{q^{1+\frac{1}{n}}} \quad \text { for } \quad k=1, \ldots, n
$$

Using the LLL algorithm, one can construct p_{1}, \ldots, p_{n} and q efficiently, so that

$$
\begin{equation*}
\left|\alpha_{k}-\frac{p_{k}}{q}\right| \leq \frac{2^{(n+1) / 4}}{q^{1+\frac{1}{n}}} \quad \text { for } \quad k=1, \ldots, n \tag{26.1.1}
\end{equation*}
$$

Here is how: let us choose a small $\epsilon>0$ and let us consider the lattice $\Lambda \subset \mathbb{R}^{n+1}$ with the basis e_{1}, \ldots, e_{n} and

$$
v=\left(-\alpha_{1}, \ldots,-\alpha_{n}, \epsilon^{n+1}\right),
$$

where e_{1}, \ldots, e_{n} is the standard basis vectors. In particular,

$$
\operatorname{det} \Lambda=\epsilon^{n+1}
$$

Let us construct an LLL basis of Λ and let u_{1} be the first vector of the basis. By Part (3) of Corollary 25.4, we have

$$
\left\|u_{1}\right\| \leq 2_{56}^{n / 4} \epsilon
$$

We can write

$$
u_{1}=p_{1} e_{1}+\ldots+p_{n} e_{n}+q v
$$

for some integer p_{1}, \ldots, p_{n} and q. Hence

$$
\begin{equation*}
\left|p_{k}-q \alpha_{k}\right| \leq 2^{n / 4} \epsilon \quad \text { for } \quad k=1, \ldots, n \tag{26.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
|q| \leq 2^{\frac{n}{4}} \epsilon^{-n} \tag{26.1.3}
\end{equation*}
$$

If $\epsilon<2^{-n / 4}$ we must have $q \neq 0$ and by switching to $-u_{1}$, if necessary, we can assure that $q>0$. From (26.1.3), we have

$$
\epsilon \leq \sqrt{2} q^{-\frac{1}{n}}
$$

and from (26.1.2) we deduce (26.1.1). To show that q can be made arbitrarily large, we note that this is certainly the case if all $\alpha_{1}, \ldots, \alpha_{n}$ are rational. If some α_{k} is irrational, then by choosing a sufficiently small $\epsilon>0$ we can make sure that (26.1.2) does not hold unless q is sufficiently large.

This construction is from A.K. Lenstra, H.W. Lenstra Jr. and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, 261(1982), 515-534.
(26.2) Testing linear independents over integers. Let $\alpha_{1}, \ldots, \alpha_{n}$ be real numbers. We want to find out if there are integers m_{1}, \ldots, m_{n}, not all equal 0 , such that

$$
\begin{equation*}
m_{1} \alpha_{1}+\ldots+m_{n} \alpha_{n}=0 \tag{26.2.1}
\end{equation*}
$$

Let $t>0$ be a real number and let us define

$$
\Lambda_{t}=\left\{\left(m_{1}, \ldots, m_{n}, t \sum_{i=1}^{n} \alpha_{i} m_{i}\right): \quad m_{1}, \ldots, m_{n} \in \mathbb{Z}\right\}
$$

Then Λ_{t} is a lattice of rank n (with the ambient space $V_{t}=\operatorname{span}\left(\Lambda_{t}\right)$). Moreover, if (26.2.1) implies $m_{1}=\ldots=m_{n}=0$ then

$$
\begin{equation*}
\lim _{t \longrightarrow+\infty} \rho\left(\Lambda_{t}\right)=+\infty \tag{26.2.2}
\end{equation*}
$$

whereas if (26.2.1) for some m_{1}, \ldots, m_{n}, not all equal 0 , then the packing radius $\rho\left(\Lambda_{t}\right)$ stays bounded even as t grows. The length of first basis vector u_{1} of an LLL basis of Λ approximates the length of the shortest non-zero vector in Λ_{t} within a factor of $2^{(n-1) / 2}$, which is independent of t. This suggests a way to test whether (26.2.2) holds.

In particular, if $\alpha_{i}=\alpha^{i-1}$ for $i=1, \ldots, n$, we can check whether α is a root of an integer polynomial with degree $n-1$. If α is an algebraic number, all the computations can be carried out efficiently in the field $Q(\alpha)$. This, in turn, leads to a polynomial time algorithm for factoring of rational polynomials, see also A.K. Lenstra, H.W. Lenstra Jr. and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, 261(1982), 515-534.
(26.3) Solving the knapsack problem. Given (large) positive integers a_{1}, \ldots, a_{n} and a (large) positive integer b we want to find a subset $S \subset\{1, \ldots, n\}$ such that

$$
\begin{equation*}
\sum_{i \in S} a_{i}=b \tag{26.3.1}
\end{equation*}
$$

This is a way to encrypt a $0-1$ vector x, where $x_{i}=1$ if $i \in S$ and $x_{i}=0$ if $i \notin S$ by a set $\left(a_{1}, \ldots, a_{n} ; b\right)$ in the "knapsack code".

While the problem is NP-complete in general, the following strategy works under certain circumstances. We define a lattice Λ of rank $n-1$ by

$$
\Lambda=\left\{\left(m_{1}, \ldots, m_{n}, k\right) \in \mathbb{Z}^{n+1}: \quad m_{1} a_{1}+\ldots+m_{n} a_{n}-k b=0\right\}
$$

construct an LLL basis and look at the first basis vector u_{1}. If there is a solution to (26.3.1), by Part (3) of Corollary 25.4, we will have

$$
\left\|u_{1}\right\| \leq 2^{(n-1) / 2} \sqrt{n+1}
$$

and hence every coordinate of u_{1} will not exceed $2^{(n-1) / 2}$ in the absolute value.
Under a certain "general position" condition, there is a unique $0-1$ solution to the equation

$$
m_{1} a_{1}+\ldots+m_{n} a_{n}-k b=0
$$

and every solution which is not an integer multiple of that unique solution has at least one coordinate which is bigger than 2^{n} in the absolute value. This happens, for example, if we choose a subset S, choose a_{1}, \ldots, a_{n} independently at random from the interval $[1: N]$ with $N>2^{(n+2) n}$ and let $b=\sum_{k \in S} a_{k}$.

This result is from J.C. Lagarias and A.M. Odlyzko, Solving low-density subset sum problems, J. Assoc. Comput. Mach. 32 (1985), no. 1, 229246.
(26.4) Computationally efficient flatness theorem. Given a convex body $K \subset \mathbb{R}^{d}$ such that $K \cap \mathbb{Z}^{d}=\emptyset$, we want to construct efficiently a vector $v \in \mathbb{Z}^{d}$ such that

$$
\max _{x \in K}\langle v, x\rangle-\min _{x \in K}\langle v, x\rangle \leq c(d)
$$

for some constant $c(d)$. We don't discuss here how the body K is "given".
Analyzing the proof of the Flatness Theorem (Theorem 21.3), we realize that to construct the required vector $v \in \Lambda^{*}$ for a given convex body K efficiently, we have to construct the approximating ellipsoid E of K (which can be done though we don't discuss how), apply a linear transformation T which transfers E into a ball and lattice \mathbb{Z}^{d} into some other lattice Λ, then find a shortest non-zero vector w in Λ^{*} and let $v=T^{*}(w)$. If instead of the shortest vector w, we find a reasonably short vector, such as the first vector in an LLL-reduced basis, we get a computationally efficient flatness theorem with a different constant $c(d)$. From Part (2) of Corollary 25.4, we conclude that we can have $c(d)=d^{O(1)} 2^{(d+1) / 2}$. This is the idea of H.W. Lenstra's polynomial time algorithm in integer programming in fixed dimension, see H.W. Lenstra Jr. Integer programming with a fixed number of variables, Math. Oper. Res. 8 (1983), no. 4, $538-548$.

(26.5) Problem.

1. Construct an efficient (polynomial time) algorithm to find a basis in the lattice Λ of Section 26.3.

27. The algebra of polyhedra and the Euler characteristic

(27.1) Definitions. Let V be Euclidean space. A polyhedron $P \subset V$ is the set of solutions to a system of finitely many linear inequalities:

$$
P=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq \alpha_{i} \quad \text { for } \quad i \in I\right\},
$$

where I is a finite set, $c_{i} \in V$ and $\alpha_{i} \in \mathbb{R}$ for all $i \in I$.
Let us fix a lattice $\Lambda \subset V$. A polyhedron is called Λ-rational if $c_{i} \in \Lambda^{*}$ and $\alpha_{i} \in \mathbb{Z}$ for all $i \in I$. In the most common case, we'll have $V=\mathbb{R}^{d}$ and $\Lambda=\mathbb{Z}^{d}$, in which case the polyhedron is called rational.

For a set $A \subset V$ we define its indicator as a function $[A]: V \longrightarrow \mathbb{R}$, where

$$
[A](x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

We define the algebra of polyhedra $\mathcal{P}(V)$ as a vector space (over \mathbb{R}) spanned by the indicators $[P]$ of polyhedra $P \subset V$. Similarly, we define the algebra of rational polyhedra $\mathcal{P}\left(\mathbb{Q}^{d}\right)$ as a vector space (over \mathbb{R}) spanned by the indicators of rational polyhedra $P \subset \mathbb{R}^{d}$. We define the algebra of closed convex sets $\mathcal{C}(V)$ as a vector space (over \mathbb{R}) spanned by the indicators $[A]$ of closed convex sets $A \subset V$ and we define the algebra of compact convex sets $\mathcal{C}_{b}(V)$ as a vector space (over \mathbb{R}) spanned by the indicators $[A]$ of compact convex sets $A \subset V$.

Let W be a real vector space. A linear transformation

$$
\mathcal{T}: \mathcal{P}(V), \mathcal{P}\left(\mathbb{Q}^{d}\right), \mathcal{C}(V), \mathcal{C}_{b}(V) \longrightarrow W
$$

is called a valuation on the corresponding algebra.
(27.2) Theorem. There exists a unique valuation $\chi: \mathcal{C}(V) \longrightarrow \mathbb{R}$, called the Euler characteristic, such that $\chi([A])=1$ for all non-empty closed convex sets $A \subset V$.

Proof. Clearly, χ is unique, if exists: we must have

$$
\begin{equation*}
\chi(f)=\sum_{i \in I: A_{i} \neq \emptyset} \alpha_{i} \quad \text { provided } \quad f=\sum_{i \in I} \alpha_{i}\left[A_{i}\right], \tag{27.2.1}
\end{equation*}
$$

where $A_{i} \subset V$ are closed convex sets and $\alpha_{i} \in \mathbb{R}$.
First, we prove the existence of $\chi: \mathcal{C}_{b}(V) \longrightarrow \mathbb{R}$ with the required properties. We proceed by induction on $\operatorname{dim} V$. If $\operatorname{dim} V=0$ then we define $\chi(f)=f(0)$.

Suppose now that $d>1$. Let us choose a non-zero vector $c \in V$ and let us slice V into affine hyperplanes

$$
H_{\tau}=\{x \in V: \quad\langle c, x\rangle=\tau\} \quad \text { for } \quad \tau \in \mathbb{R}
$$

Hence each affine hyperplane can be identified with a ($d-1$)-dimensional Euclidean space and there exists the Euler characteristic $\chi_{\tau}: \mathcal{C}_{b}\left(H_{\tau}\right) \longrightarrow \mathbb{R}$.

Given a function $f \in \mathcal{C}_{b}(V)$, we consider its restriction $f_{\tau}: H_{\tau} \longrightarrow \mathbb{R}$. We claim that for every $f \in \mathcal{C}_{b}(V)$ we have $f_{\tau} \in \mathcal{C}_{b}\left(H_{\tau}\right)$ and there is a one-sided limit

$$
\lim _{\epsilon \longrightarrow 0+} \chi_{\tau-\epsilon}\left(f_{\tau-\epsilon}\right) .
$$

Moreover, we claim that for every $f \in \mathcal{C}_{b}(V)$ there are at most finitely many values of τ where the one-sided limit is not equal to $\chi_{\tau}\left(f_{\tau}\right)$.

Indeed,

$$
f_{\tau}=\sum_{i \in I} \alpha_{i}\left[A_{i} \cap H_{\tau}\right] \quad \text { provided } \quad f=\sum_{i \in I} \alpha_{i}\left[A_{i}\right]
$$

where $A_{i} \subset V$ are convex compact sets and $\alpha_{i} \in \mathbb{R}$, which proves that $f_{\tau} \in \mathcal{C}_{b}\left(H_{\tau}\right)$. Given $f \in \mathcal{C}_{b}(V)$ as above, let

$$
J_{\tau}=\left\{i \in I: \quad A_{i} \neq \emptyset \quad \text { and } \quad \min _{x \in A_{i}}\langle c, x\rangle=\tau\right\} .
$$

It follows from (27.2.1) that

$$
\chi_{\tau}\left(f_{\tau}\right)-\lim _{\epsilon \rightarrow 0+} \chi_{\tau-\epsilon}\left(f_{\tau-\epsilon}\right)=\sum_{i \in J_{\tau}} \alpha_{i} .
$$

We define $\chi: \mathcal{C}_{b}(V) \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
\chi(f)=\sum_{\tau \in \mathbb{R}}\left(\chi_{\tau}\left(f_{\tau}\right)-\lim _{\epsilon \rightarrow 0+} \chi_{\tau-\epsilon}\left(f_{\tau-\epsilon}\right)\right) . \tag{27.2.2}
\end{equation*}
$$

The sum (27.2.2) is well-defined since only finitely many terms are non-zero. By the induction hypothesis, it follows that χ is a valuation. Moreover, if $f=[A]$, where $A \subset V$ is a non-empty compact convex set then $\chi([A])=1$, since the only non-zero term in (27.2.2) corresponds to $\tau=\min _{x \in A}\langle c, x\rangle$ and equals $1-0=1$.

It remains to extend χ onto $\mathcal{C}(V)$. Let $B_{r} \subset V$ denote the closed ball of radius r centered at the origin. For $f \in \mathcal{C}(V)$ we define

$$
\begin{equation*}
\chi(f)=\lim _{r \longrightarrow+\infty} \chi\left(f \cdot\left[B_{r}\right]\right) \tag{27.2.3}
\end{equation*}
$$

We note that

$$
f \cdot\left[B_{r}\right]=\sum_{i: A_{i} \cap B_{r} \neq \emptyset} \alpha_{i} \quad \text { provided } \quad f=\sum_{i \in I} \alpha_{i}\left[A_{i}\right],
$$

from which it follows that $f \cdot\left[B_{r}\right] \in \mathcal{C}_{b}(V)$ and hence the limit (27.2.3) is well-defined and satisfies (27.2.1).

(27.3) Problems.

1°. Show that the indicators of closed convex sets in V are not linearly independent if $\operatorname{dim} V \geq 1$.
2°. Check that the spaces $\mathcal{P}(V), \mathcal{P}\left(\mathbb{Q}^{d}\right), \mathcal{C}(V)$ and $\mathcal{C}_{b}(V)$ are closed under pointwise multiplication of functions.
3. Prove the inclusion exclusion formula

$$
\left[\bigcup_{i=1}^{n} A_{i}\right]=\sum_{\substack{I \subset\{1, \ldots, n\} \\ I \neq \emptyset}}(-1)^{|I|-1}\left[\bigcap_{i \in I} A_{i}\right]
$$

for sets $A_{i} \subset V$.
4. Let $A_{i}, i=1, \ldots, n$ be a family of closed convex sets in V such that $\bigcup_{i=1}^{n} A_{i}$ is convex. Suppose that the intersection of any $k<n$ sets A_{i} is not empty. Prove that the intersection of some $k+1$ sets A_{i} is not empty.
5. Let $\Delta \subset \mathbb{R}^{n}$ be the standard ($n-1$)-dimensional simplex defined by the equation $x_{1}+\ldots+x_{n}=1$ and inequalities $x_{i} \geq 0$ for $i=1, \ldots, n$. For $i=$ $1, \ldots, n$, let let $F_{i} \subset \Delta$ be the facet of Δ defined by the equation $x_{i}=0$. Let $A_{1}, \ldots, A_{n} \subset \mathbb{R}^{n}$ be closed convex sets such that

$$
\Delta \subset \bigcup_{i=1}^{n} A_{i} \quad \text { and } \quad A_{i} \cap F_{i}=\emptyset \quad \text { for } \quad i=1, \ldots, n
$$

Prove that

$$
\bigcap_{i=1}^{n} A_{i} \neq \emptyset
$$

6. Let $P \subset V$ be a bounded polyhedron with a non-empty interior int P. Prove that $[\operatorname{int} P] \in \mathcal{P}(V)$ and that $\chi([\operatorname{int} P])=(-1)^{d}$, where $d=\operatorname{dim} V$.

Hint: Use (27.2.2).
7^{*}. For an affine hyperplane $H=\{x \in V:\langle c, x\rangle=\alpha\}$, where $c \neq 0$, let us define the closed halfspaces

$$
H_{+}=\{x \in V: \quad\langle c, x\rangle \geq \alpha\} \quad \text { and } \quad H_{-}=\{x \in V: \quad\langle c, x\rangle \leq \alpha\} .
$$

Let W be a real vector space and suppose that with every polyhedron $P \subset V$ we associate an element $\phi(P) \in W$ such that

$$
\phi(P)=\phi\left(P \cap H_{+}\right)+\phi\left(P \cap H_{-}\right)-\phi(P \cap H)
$$

for every affine hyperplane H. Prove that there is a valuation $\Phi: \mathcal{P}(V) \longrightarrow W$ such that $\Phi([P])=\phi(P)$ for every polyhedron $P \subset V$.

28. LINEAR TRANSFORMATIONS AND POLYHEDRA

(28.1) Definition. A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is called rational, if the matrix of T in the standard bases of \mathbb{R}^{n} and \mathbb{R}^{m} is rational.
(28.2) Lemma. Let $T: \mathbb{R}^{d} \longrightarrow \mathbb{R}^{d-1}$ be the projection

$$
T\left(x_{1}, \ldots, x_{d}\right)=\left(x_{1}, \ldots, x_{d-1}\right) .
$$

If $P \subset \mathbb{R}^{d}$ is a (rational) polyhedron then $T(P) \subset \mathbb{R}^{d-1}$ is a (rational) polyhedron.
Proof. Suppose that P is defined by a system of linear inequalities

$$
\sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad \text { for } \quad i=1, \ldots, n
$$

Let

$$
I_{+}=\left\{i: a_{i d}>0\right\}, \quad I_{-}=\left\{i: a_{i d}<0\right\} \quad \text { and } \quad I_{0}=\left\{i: a_{i d}=0\right\}
$$

Then, for $x=\left(x_{1}, \ldots, x_{d-1}\right)$ we have $x \in T(P)$ if and only if

$$
\begin{equation*}
\sum_{j=1}^{d-1} a_{i j} x_{j} \leq b_{i} \quad \text { for all } \quad i \in I_{0} \tag{28.2.1}
\end{equation*}
$$

and there exists $x_{d} \in \mathbb{R}^{d}$ such that

$$
\begin{aligned}
& x_{d} \leq \frac{b_{i}}{a_{i d}}-\sum_{j=1}^{d-1} \frac{a_{i j}}{a_{i d}} x_{j} \quad \text { for all } \quad i \in I_{+} \quad \text { and } \\
& x_{d} \geq \frac{b_{i}}{a_{i d}}-\sum_{j=1}^{d-1} \frac{a_{i j}}{a_{i d}} x_{j} \quad \text { for all } \quad i \in I_{-} .
\end{aligned}
$$

Hence $x \in T(P)$ if and only if (28.2.1) holds and

$$
\begin{equation*}
\frac{b_{i_{1}}}{a_{i_{1} d}}-\sum_{j=1}^{d-1} \frac{a_{i_{1} j}}{a_{i_{1} d}} x_{j} \leq \frac{b_{i_{2}}}{a_{i_{2} d}}-\sum_{j=1}^{d-1} \frac{a_{i_{2} j}}{a_{i_{2} d}} \quad \text { for every } \quad i_{i} \in I_{-}, i_{2} \in I_{+} \tag{28.2.2}
\end{equation*}
$$

If I_{0} is empty then there are no equations (28.2.1) and if either of I_{-}and I_{+}is empty then there are no equations (28.2.2).

The proof now follows.
(28.3) Theorem. Let $T: V \longrightarrow W$ be a linear transformation. Then for every polyhedron $P \subset V$ the image $T(P) \subset W$ is a polyhedron. Furthermore, there is a unique valuation $\mathcal{T}: \mathcal{P}(V) \longrightarrow \mathcal{P}(W)$ such that $\mathcal{T}([P])=[T(P)]$ for any polyhedron $P \subset V$.

If $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$ and $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a rational linear transformation and if $P \subset \mathbb{R}^{n}$ is a rational polyhedron then $T(P) \subset \mathbb{R}^{m}$ is a rational polyhedron.
Proof. If $T: V \longrightarrow W$ is an isomorphism and

$$
P=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq \alpha_{i} \quad \text { for } \quad i \in I\right\}
$$

then

$$
T(P)=\left\{y \in W: \quad\left\langle\left(T^{*}\right)^{-1} c_{i}, y\right\rangle \leq \alpha_{i} \quad \text { for } \quad i \in I\right\}
$$

is a polyhedron. Furthermore, if T is rational and P is rational then $T(P)$ is rational.

If $T: V \longrightarrow W$ satisfies $\operatorname{ker} T=\{0\}$ and hence $T: V \longrightarrow$ image T is an isomorphism. Hence if $P \subset V$ is a polyhedron then $T(P)$ is a polyhedron. If T and P are rational then $T(P)$ is rational.

Finally, if $T: V \longrightarrow W$ is an arbitrary linear transformation then T is a composition of a linear transformation $V \longrightarrow W \oplus V, x \longmapsto(T x, x)$ with the trivial kernel and a sequence of the coordinate projections $W \oplus V \longrightarrow W$. Using Lemma 28.2, we conclude that if P is a (rational) polyhedron and T is a (rational) linear transformation, then $T(P)$ is (rational) polyhedron.

Clearly, $\mathcal{T}: \mathcal{P}(V) \longrightarrow \mathcal{P}(W)$ is unique, if it exists. To prove existence, we note that for any $f \in \mathcal{P}(V)$ and any $x \in W$ we have

$$
f \cdot\left[T^{-1}(x)\right]=\sum_{i \in I} \alpha_{i}\left[A_{i} \cap T^{-1}(x)\right] \quad \text { where } \quad f=\sum_{i \in I} \alpha_{i}\left[A_{i}\right]
$$

and $A_{i} \subset V$ are polyhedra and $\alpha_{i} \in \mathbb{R}$ are reals. Hence $f \cdot\left[T^{-1}(x)\right] \in \mathcal{P}(V)$ and we define

$$
\begin{equation*}
h=\mathcal{T}(f) \quad \text { where } \quad h(x)=\chi\left(f \cdot\left[T^{-1}(x)\right]\right) . \tag{28.3.1}
\end{equation*}
$$

It is straightforward to check that $\mathcal{T}([A])=[T(A)]$ for a polyhedron $A \subset V$ and hence $\mathcal{T}: \mathcal{P}(V) \longrightarrow \mathcal{P}(W)$ is the required valuation.
(28.4) Problems.

1. Let $T: V \longrightarrow W$ be a linear transformation. Prove that if $A \subset V$ is a compact convex set then $T(A) \subset W$ is a compact convex set and that there exists a unique valuation $\mathcal{T}: \mathcal{C}_{b}(V) \longrightarrow \mathcal{C}_{b}(W)$ such that $\mathcal{T}([A])=[T(A)]$ for any non-empty compact convex set $A \subset V$.
2. Construct an example of a linear transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ and a closed convex set $A \subset \mathbb{R}^{2}$ such that $T(A)$ is not closed.
3. Minkowski sum
(29.1) Definition. Let V be a vector space and let $A, B \subset V$ be sets. The Minkowski sum of A and B is defined as the set

$$
A+B=\{a+b: \quad a \in A, b \in B\} .
$$

(29.2) Theorem. Let V be Euclidean space.
(1) If $P_{1}, P_{2} \subset V$ are polyhedra then $P_{1}+P_{2}$ is a polyhedron.
(2) There exists a unique bilinear operation

$$
\text { *: } \quad \mathcal{P}(V) \times \mathcal{P}(V) \longrightarrow \mathcal{P}(V),
$$

called convolution, such that $\left[P_{1}\right] *\left[P_{2}\right]=\left[P_{1}+P_{2}\right]$ for any two non-empty polyhedra $P_{1}, P_{2} \subset V$.

Proof. Let $P_{1}, P_{2} \subset V$ be polyhedra. Let us consider the set $P_{1} \times P_{2} \subset V \oplus V$ defined by

$$
P_{1} \times P_{2}=\left\{(x, y): \quad x \in P_{1}, y \in P_{2}\right\} .
$$

Clearly, P is a polyhedron.
Let us consider a linear transformation

$$
\begin{equation*}
T: V \oplus V \longrightarrow V, \quad T(x, y)=x+y \tag{29.2.1}
\end{equation*}
$$

Then $P_{1}+P_{2}=T\left(P_{1} \times P_{2}\right)$ and hence $P_{1}+P_{2}$ is a polyhedron by Theorem 28.3.
Clearly, convolution $*$ is unique, if exists. For functions $f, g \in \mathcal{P}(V)$, we define

$$
f \times g: V \oplus V \longrightarrow \mathbb{R} \quad \text { where } \quad(f \times g)(x, y)=f(x) g(y)
$$

Hence if

$$
f=\sum_{i \in I} \alpha_{i}\left[P_{i}\right] \quad \text { and } \quad g=\sum_{j \in J} \beta_{j}\left[Q_{j}\right]
$$

then

$$
f \times g=\sum_{\substack{i \in I \\ j \in J}} \alpha_{i} \beta_{j}\left[P_{i} \times Q_{j}\right]
$$

from which it follows that $f \times g \in \mathcal{P}(V \oplus V)$.
Let $\mathcal{T}: \mathcal{P}(V \oplus V) \longrightarrow \mathcal{P}(V)$ be the valuation associated with linear transformation (29.2.1) via Theorem 28.3. We define

$$
f * g=\mathcal{T}(f \times g)
$$

(29.3) Problems.

1°. Let $T: V \longrightarrow W$ be a linear transformation and let $\mathcal{T}: \mathcal{P}(V) \longrightarrow \mathcal{P}(W)$ be the associated valuation. Prove that $\mathcal{T}(f * g)=\mathcal{T}(f) * \mathcal{T}(g)$.
2°. Prove that $f *[0]=f$ for all $f \in \mathcal{P}(V)$.
3^{*}. Let $P \subset \mathbb{R}^{d}$ be a bounded polyhedron with a non-empty interior int P. Prove that

$$
[P] *[-\operatorname{int} P]=(-1)^{d}[0]
$$

where $-X=\{-x: x \in X\}$.
4. Prove that the Minkowski sum of compact convex sets is a compact convex set and that there exists a unique bilinear operation $*: \mathcal{C}_{b}(V) \times \mathcal{C}_{b}(V) \longrightarrow \mathcal{C}_{b}(V)$, called convolution, such that $[A] *[B]=[A+B]$ for any non-empty convex compact sets $A, B \subset V$.

5*. Let $\left\{A_{i} \subset V: i \in I\right\}$ be a finite family of convex compact sets and let $\left\{\alpha_{i}: i \in I\right\}$ be a finite family of real numbers such that

$$
\sum_{i \in I} \alpha_{i}\left[A_{i}\right]=0 .
$$

Prove that

$$
\sum_{i: \alpha_{i}>0} \alpha_{i} A_{i}=\sum_{i: \alpha_{i}<0}\left(-\alpha_{i}\right) A_{i},
$$

where $\alpha X=\{\alpha x: x \in X\}$ and the sums on both sides are the Minkowski sums.

30. The structure of polyhedra

(30.1) Definitions. Let V be a vector space and let $a, u \in V$ be vectors, where $u \neq 0$. The ray emanating from a in the direction of u is the set

$$
\{a+t u: \quad t \geq 0\} .
$$

The line through a in the direction of u us the set

$$
\{a+t u: \quad t \in \mathbb{R}\} .
$$

Recall that the interval with the endpoints a and b is the set

$$
[a, b]=\{t a+(1-t) b: \quad 0 \leq t \leq 1\}
$$

where $a, b \in V$.
A point $a \in P$ is called a vertex of a polyhedron P if whenever $a=(b+c) / 2$ where $b, c \in P$, we must have $a=b=c$.

A point $b \in V$ is a convex combination of a finite set of points $\left\{a_{i}: i \in I\right\} \subset V$ if b can be written as

$$
b=\sum_{i \in I} \lambda_{i} a_{i} \quad \text { where } \quad \sum_{i \in I} \lambda_{i}=1 \quad \text { and } \quad \lambda_{i} \geq 0 \quad \text { for all } \quad i \in I .
$$

The set of all convex combinations of points from a given set $A \subset V$ is called the convex hull of A and denoted $\operatorname{conv}(A)$. The convex hull of a finite set is called a polytope.
(30.2) Lemma. Let V be Euclidean space and let $P \subset V$ be a polyhedron. Then P is unbounded if and only if it contains a ray.

Proof. Clearly, if P contains a ray then P is unbounded. Suppose that

$$
P=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq \alpha_{i}, i \in I\right\} .
$$

Since P is unbounded, there is a sequence of points $x_{n} \in P, n=1,2, \ldots$ such that $\left\|x_{n}\right\| \longrightarrow+\infty$. Let $y_{n}=x /\left\|x_{n}\right\|$. Then $\left\|y_{n}\right\|=1$ and hence there exists a unit vector $u \in V$ which is a limit point of the sequence $\left\{y_{n}\right\}$. Then necessarily $\left\langle c_{i}, u\right\rangle \leq 0$ for all $i \in I$ and hence for any $a \in P$ the ray emanating from a in the direction of u lies in P.
(30.3) Lemma. A polytope is a polyhedron. The convex hull of a finite set of rational points (that is, points with rational coordinates) in \mathbb{R}^{d} is a rational polyhedron.

Proof. Let $P=\operatorname{conv}\left(v_{1}, \ldots, v_{n}\right)$, where $v_{1}, \ldots, v_{n} \in V$ are points. Let $\Delta \subset \mathbb{R}^{n}$ be the standard simplex defined by the equation $x_{1}+\ldots+x_{n}=1$ and inequalities $x_{i} \geq 0$ for $i=1, \ldots, n$. Then Δ is a polyhedron and also a polytope that is the convex hull of the standard basis vectors e_{1}, \ldots, e_{n}. Let us define a linear transformation $T: \mathbb{R}^{n} \longrightarrow V$ by $T\left(e_{i}\right)=v_{i}$ for $i=1, \ldots, n$. Then $P=T(\Delta)$ and the proof follows by Theorem 28.3.
(30.4) Lemma. Let $P \subset V$ be a non-empty polyhedron. Then P contains a vertex if and only if P does not contain a line.
Proof. Let $P=\left\{x \in V:\left\langle c_{i}, x\right\rangle \leq \alpha_{i}, i \in I\right\}$ be a polyhedron. Suppose that P contains a line in the direction u. Then $\left\langle c_{i}, u\right\rangle=0$ for all $i \in I$. If $x \in P$ is a point then $x \pm u \in P$ and $x=((x+u)+(x-u)) / 2$, which proves that x is not a vertex.

To prove that if P does not contain lines it contains a vertex, we proceed by induction on $\operatorname{dim} V$. If $\operatorname{dim} V \leq 1$, the statement is clear. If $\operatorname{dim} V>1$, let us consider a line l having a non-empty intersection with P. Since $l \not \subset P$, the intersection $P \cap l$ is either a ray emanating from some point $a \in P$ or an interval with an endpoint $a \in P$. In any case, we must have $\left\langle c_{j}, a\right\rangle=\alpha_{j}$ for some $j \in I$. Let $Q=P \cap H$, where $H \subset V$ is the affine hyperplane defined by the equation $\left\langle c_{j}, x\right\rangle=\alpha_{j}$. Identifying H with a $(d-1)$-dimensional Euclidean space, we conclude that there is a vertex v of Q. Suppose that $v=(u+w) / 2$, where $u, w \in P$. Since $\left\langle c_{j}, u\right\rangle,\left\langle c_{j}, w\right\rangle \leq \alpha_{j}$ and $\langle c, v\rangle=\alpha_{j}$ we must have $\left\langle c_{j}, u\right\rangle=\left\langle c_{j}, w\right\rangle=\alpha_{j}$ and hence $u, w \in Q$. Therefore, $u=w$ and v is a vertex of Q.
(30.5) Lemma. Let

$$
P=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq \alpha_{i}, i \in I\right\}
$$

be a polyhedron and let $v \in P$ be a point. Let

$$
I_{v}=\left\{i \in I: \quad\left\langle c_{i}, v\right\rangle=\alpha_{i}\right\}
$$

(the inequalities indexed by $i \in I_{v}$ are called active on v). Then v is a vertex of P if and only if $\operatorname{span}\left(c_{i}: i \in I_{v}\right)=V$. In particular, the set of vertices of a polyhedron is finite and if P is a rational polyhedron then the vertices of P are rational points. Proof. Suppose that $v=(u+w) / 2$ for some $u, w \in P$. Since $\left\langle c_{i}, u\right\rangle,\left\langle c_{i}, w\right\rangle \leq \alpha_{i}$ and $\left\langle c_{i}, v\right\rangle=\alpha_{i}$ for $i \in I_{v}$, we must have $\left\langle c_{i}, u\right\rangle=\left\langle c_{i}, w\right\rangle=\alpha_{i}$ for all $i \in I_{v}$. Hence if $\operatorname{span}\left(c_{i}: i \in I_{v}\right)=V$ then necessarily $u=w=v$ and v is a vertex. If $\operatorname{span}\left(c_{i}: \quad i \in I_{v}\right) \neq V$ then there is a $u \neq 0$ such that $\left\langle c_{i}, u\right\rangle=0$ for all $i \in I_{v}$. Then for a sufficiently small $\epsilon>0$ we have $v \pm \epsilon u \in P$ and $v=((v+\epsilon u)+(v-\epsilon u)) / 2$ and hence v is not a vertex.
(30.6) Lemma. Let $P \subset V$ be a bounded polyhedron. Then P is the convex hull of the set of its vertices and hence is a polytope.

Proof. By Lemma 30.5, the set of vertices of P is finite and hence the convex hull of the set of vertices is a polytope. It remains to prove that every point $y \in P$ can be written as a convex combination of vertices of P. We proceed by induction of $\operatorname{dim} V$. If $\operatorname{dim} V=0$, the result is clear. Suppose that $\operatorname{dim} V>0$ and let

$$
P=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq \alpha_{i}, i \in I\right\} .
$$

If $\left\langle c_{j}, y\right\rangle=\alpha_{j}$ for some $j \in I$, we consider the affine hyperplane H defined by the equation $\left\langle c_{j}, x\right\rangle=\alpha_{j}$ and let $Q=P \cap H$. By the induction hypothesis, x is a convex combination of vertices of Q and, arguing as in the proof of Lemma 30.4, we conclude that the vertices of Q are also vertices of P.

If $\left\langle c_{i}, y\right\rangle<\alpha_{i}$ for all $i \in I$, we consider a line l through y. Since P is bounded, the intersection $l \cap P$ is an interval $[a, b]$ where $y \in[a, b]$ and $\left\langle c_{j}, a\right\rangle=\alpha_{j}$ and $\left\langle c_{k}, b\right\rangle=\alpha_{k}$ for some $j, k \in I$. Arguing as above, we prove that a and b are convex combinations of vertices of P and so is y.
(30.7) Definition. Let $K \subset V$ be a polyhedron. Then K is called a polyhedral cone (or just a cone) if $0 \in K$ and for every $x \in K$ and $\lambda \geq 0$ we have $\lambda x \in K$. Equivalently, K is a polyhedral cone, if

$$
K=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq 0, i \in I\right\},
$$

where I is a finite set.
(30.8) Lemma. Let

$$
K=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq 0, i \in I\right\}
$$

be a polyhedral cone and let

$$
c=\sum_{i \in I} c_{i} .
$$

Suppose that $K \neq\{0\}$ and that K does not contain lines. Then
(1) For any $x \in K \backslash\{0\}$ we have $\langle c, x\rangle<0$;
(2) Let $Q=\{x \in K: \quad\langle c, x\rangle=-1\}$. Then Q is a polytope and every vector $x \in K \backslash\{0\}$ can be uniquely written as $x=\lambda y$ for some $\lambda>0$ and $y \in Q$;
(3) The set W of vectors $w \in V$ such that $\langle w, x\rangle<0$ for all $x \in K \backslash\{0\}$ is non-empty and open.

Proof. Clearly, $\langle c, x\rangle \leq 0$ for all $x \in K$. Suppose that $\langle c, x\rangle=0$ for some $x \neq 0$. Then $\left\langle c_{i}, x\right\rangle=0$ for all $i \in I$ and K contains a line through the origin in the direction of x, which is a contradiction. This also proves that $x=\lambda y$ for some $\lambda>0$ and $y \in Q$. Hence it remains to prove that Q is a polytope. Clearly, Q is a polyhedron and in view of Lemma 30.3 it remains to show that Q is bounded. In view of Lemma 30.2, it suffices to show that Q does not contain rays. Indeed, if Q contains a ray in the direction of u for some $u \neq 0$ then we must have $\left\langle c_{i}, u\right\rangle \leq 0$ for all $i \in I$ and $\langle c, u\rangle=0$, from which it follows that $\left\langle c, u_{i}\right\rangle=0$ for all $i \in I$ and K contains a line in the direction of u, which is a contradiction.

The set W is non-empty since it contains c. Moreover, by Part (2) we have $w \in W$ if and only if $\langle w, v\rangle<0$ for every vertex v of Q, from which W is open.
(30.9) Theorem. Let $P \subset V$ be a non-empty polyhedron not containing lines and let

$$
K_{P}=\{u \in V: \quad x+\lambda u \in V \quad \text { for all } \quad x \in P \quad \text { and all } \quad \lambda \geq 0\}
$$

Let R be the polytope that is the convex hull of the set of vertices of P. Then K_{P} is a polyhedral cone without lines, called the recession cone of P and $P=K+R$.

Proof. Suppose that

$$
P=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq \alpha_{i}, i \in I\right\} .
$$

It is easy to check that

$$
K_{P}=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq 0, i \in I\right\}
$$

so K_{P} is indeed a polyhedral cone. Since P does not contain lines, K_{P} does not contain lines as well.

Clearly, $K+R \subset P$. It remains to show that every point $a \in P$ can be written as a sum of $x=u+b$ where $b \in R$ and $u \in K$. We proceed by induction on $\operatorname{dim} V$. If $\operatorname{dim} V=0$, the result is clear. Let us assume that $\operatorname{dim} V>0$. If $K_{P}=\{0\}$ then by Lemma 30.2 polyhedron P is bounded and the result follows by Lemma 30.6. If $K_{P} \neq\{0\}$, let us choose $u \in K_{P} \backslash\{0\}$. Then the intersection of a line through a in the direction of u with P is a ray $y+t u, t \geq 0$, where $\left\langle c_{j}, y\right\rangle=\alpha_{j}$ for some $j \in I$. Let H be the affine hyperplane defined by the equation $\left\langle c_{j}, x\right\rangle=\alpha_{j}$ and let $Q=P \cap H$. By the induction hypothesis, we can write $y=b+w$, where b is a convex combination of vertices of Q and $w \in K_{Q}$. As in the proof of Lemma 30.4, the vertices of Q are also vertices of P and hence $b \in R$. It is not hard to see that $K_{Q} \subset K_{P}$ and hence $w \in K_{P}$. Finally, we can write $a=y+w+t u$ for some $t \geq 0$. Since $w+t y \in K_{P}$, the proof follows.

(30.10) Problems.

Let $A \subset V$ be a closed convex set. A set $F \subset A$ is called a face of A if there is a vector $c \in V$ and a number $\alpha \in \mathbb{R}$ such that $\langle c, x\rangle \leq \alpha$ for all $x \in A$ and $F=\{x \in V:\langle c, x\rangle=\alpha\}$.

1. Prove that a polyhedron has finitely many faces.
2^{*}. Prove that if a closed convex set $A \subset V$ has finitely many faces then A is a polyhedron.
2. Let $P_{1}, P_{2} \subset V$ be non-empty polyhedra and let $P=P_{1}+P_{2}$. Prove that every face F of P can be written as $F=F_{1}+F_{2}$ where F_{1} is a face of P_{1} and F_{2} is a face of P_{2}.
3. Let $P_{1}, P_{2} \subset V$ be non-empty polyhedra and let $P=P_{1} \cap P_{2}$. Prove that every vertex v of P can be written as $v=F_{1} \cap F_{2}$, where F_{1} is a face of P_{1}, F_{2} is a face of P_{2} and $\operatorname{dim} F_{1}+\operatorname{dim} F_{2} \leq \operatorname{dim} V$.
4. Rational generating functions for integer points in polyhedra
(31.1) Definitions. For an integer point $m=\left(m_{1}, \ldots, m_{d}\right)$ and a vector $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{d}\right)$ we denote

$$
\mathbf{x}^{m}=x_{1}^{m_{1}} \cdots x_{d}^{m_{d}}
$$

a Laurent monomial in x_{1}, \ldots, x_{d}.
For a vector $c=\left(c_{1}, \ldots, c_{d}\right)$, we denote

$$
\mathbf{e}^{c}=\left(e^{c_{1}}, \ldots, e^{c_{d}}\right)
$$

(31.2) Lemma. Let $u_{1}, \ldots, u_{k} \in \mathbb{Z}^{d}$ be linearly independent vectors and let

$$
K=\left\{\sum_{i=1}^{k} \alpha_{i} u_{i}: \quad \alpha_{i} \geq 0 \quad \text { for } \quad i=1, \ldots, k\right\}
$$

(such a set K is called a simple rational cone). Let

$$
\Pi=\left\{\sum_{i=1}^{k} \alpha_{i} u_{i}: \quad 0 \leq \alpha_{i}<1 \quad \text { for } \quad i=1, \ldots, k\right\}
$$

Then the set

$$
W=\left\{\mathbf{x} \in \mathbb{C}^{d}: \quad\left|\mathbf{x}^{u_{i}}\right|<1 \quad \text { for } \quad i=1, \ldots, k\right\}
$$

is non-empty and open and for all $\mathbf{x} \in W$ the series

$$
\sum_{m \in K \cap \mathbb{Z}^{d}} \mathbf{x}^{m}
$$

converges absolutely and uniformly on compact subsets of W to a rational function

$$
f(K, \mathbf{x})=\left(\sum_{n \in \Pi \cap \mathbb{Z}^{d}} \mathbf{x}^{n}\right) \prod_{i=1}^{k} \frac{1}{1-\mathbf{x}^{u_{i}}}
$$

Proof. Clearly, W is open. Since vectors u_{1}, \ldots, u_{k} are linearly independent, there exists a $c \in \mathbb{R}^{d}$ such that $\left\langle c, u_{i}\right\rangle<0$ for $i=1, \ldots, k$. Then $\mathbf{e}^{c} \in W$, so W is non-empty.

We claim that every point $m \in K \cap \mathbb{Z}^{d}$ can be uniquely written as

$$
\begin{equation*}
m=n+\sum_{i=1}^{k} \mu_{i} u_{i} \tag{31.2.1}
\end{equation*}
$$

for some $n \in \Pi \cap \mathbb{Z}^{d}$ and non-negative integers μ_{1}, \ldots, μ_{k}.
Indeed, given

$$
m=\sum_{i=1}^{k} \alpha_{i} u_{i} \quad \text { where } \quad \alpha_{i} \geq 0 \quad \text { for } \quad i=1, \ldots, k
$$

we let

$$
\mu_{i}=\left\lfloor\alpha_{i}\right\rfloor \text { for } i=1, \ldots, k
$$

and

$$
n=\sum_{i=1}^{k}\left\{\alpha_{i}\right\} u_{i}=m-\sum_{i=1}^{k} \mu_{i} u_{i}
$$

cf. also the proof of Theorem 3.1. Note that n is a difference of two integer vectors and hence is an integer vector and that $n \in \Pi$ since $0 \leq\left\{\alpha_{i}\right\}<1$ for $i=1, \ldots, k$. The representation (31.2.1) is unique since if

$$
m=n_{1}+\sum_{i=1}^{k} \mu_{i} u_{i}=n_{2}+\sum_{i=1}^{k} \lambda_{i} u_{i}
$$

where $n_{1}, n_{2} \in \Pi$ and λ_{i}, μ_{i} are non-negative integers then $n_{1}-n_{2}$ is an integer combination of u_{1}, \ldots, u_{k}. On the other hand,

$$
n_{1}-n_{2}=\sum_{i=1}^{k} \beta_{i} u_{i} \quad \text { where } \quad-1<\beta_{i}<1 \quad \text { for } \quad i=1, \ldots, k
$$

Since vectors u_{1}, \ldots, u_{k} are linearly independent, we conclude that $\beta_{i}=0$ for $i=1, \ldots, k$. Therefore, $n_{1}=n_{2}$ and hence $\lambda_{i}=\mu_{i}$ for $i=1, \ldots, k$.

Therefore, we have the identity of formal power series

$$
\begin{align*}
\sum_{m \in K \cap \mathbb{Z}^{d}} \mathbf{x}^{m} & =\left(\sum_{n \in \Pi \cap \mathbb{Z}^{d}} \mathbf{x}^{n}\right) \sum_{\substack{\mu_{1}, \ldots, \mu_{k} \in \mathbb{Z} \\
\mu_{1}, \ldots, \mu_{k} \geq 0}} \mathbf{x}^{\mu_{1} u_{1}+\ldots+\mu_{k} u_{k}} \tag{31.2.2}\\
& =\left(\sum_{n \in \Pi \cap \mathbb{Z}^{d}} \mathbf{x}^{n}\right) \prod_{j=1}^{k} \sum_{\substack{\mu \in \mathbb{Z} \\
\mu \geq 0}} \mathbf{x}^{\mu u_{j}}
\end{align*}
$$

Now we observe that (31.1.2) converges absolutely for all $\mathbf{x} \in W$ and uniformly on compact subsets of W.
(31.3) Lemma. Let

$$
K=\left\{x \in \mathbb{R}^{d}: \quad\left\langle c_{i}, x\right\rangle \leq 0, i=1, \ldots, k\right\}
$$

where $c_{i} \in \mathbb{Z}^{d}$ for $i=1, \ldots, k$, a rational cone without lines. Then there are points $u_{1}, \ldots, u_{n} \in K \cap \mathbb{Z}^{d}$ such that the set

$$
W=\left\{\mathbf{x} \in \mathbb{C}^{d}: \quad\left|\mathbf{x}^{u_{i}}\right|<1 \quad \text { for } \quad i=1, \ldots, n\right\}
$$

is non-empty and open and for all $\mathbf{x} \in W$ the series

$$
\sum_{m \in K \cap \mathbb{Z}^{d}} \mathbf{x}^{m}
$$

converges absolutely and uniformly on compact subsets of W to a rational function

$$
f(\mathbf{x})=\sum_{j \in J} \epsilon_{j} \frac{p_{j}(\mathbf{x})}{q_{j}(\mathbf{x})},
$$

where $\epsilon_{j}= \pm 1$,

$$
p_{j}(\mathbf{x})=\sum_{n \in A_{j}} \mathbf{x}^{n} \quad \text { and } \quad q_{j}(\mathbf{x})=\prod_{i \in B_{j}}\left(1-\mathbf{x}^{u_{i}}\right)
$$

for some finite sets $A_{j} \subset K \cap \mathbb{Z}^{d}$ and $B_{j} \subset\{1, \ldots, n\}$, where $\left|B_{j}\right| \leq d$.
Sketch of Proof. Without loss of generality we assume that $K \neq\{0\}$. Let

$$
c=\sum_{i=1}^{k} c_{i}
$$

and let

$$
Q=\{x \in K: \quad\langle c, x\rangle=-1\} .
$$

We note that Q is a polytope with rational vertices and by Lemma 30.8 every $x \in K \backslash\{0\}$ can be uniquely written as $x=\lambda y$ for some $y \in Q$ and $\lambda>0$. Scaling $Q^{\prime}=t Q$ for some integer t we obtain a polytope Q^{\prime} with integer vertices u_{1}, \ldots, u_{n} and such that every $x \in K \backslash\{0\}$ can be uniquely written as $x=\lambda y$ for some $y \in Q^{\prime}$ and $\lambda>0$. Triangulating Q^{\prime} we represent K as a union of simple rational cones as in Lemma 31.2. By Lemma 30.8 there is a vector $c \in \mathbb{R}^{d}$ such that $\left\langle c, u_{i}\right\rangle<0$ for all $i=1, \ldots, k$. Then $\mathbf{e}^{c} \in W$, so W is non-empty. Clearly, W is open. The proof now follows from Lemma 31.2 and the inclusion-exclusion formula.
(31.4) Lemma. Let $P \subset \mathbb{R}^{d}$ be a rational polyhedron without lines. Then there exists a non-empty open set $U \subset \mathbb{C}^{d}$ such that for every $\mathbf{x} \in U$ the series

$$
\sum_{m \in P \cap \mathbb{Z}^{d}} \mathbf{x}^{m}
$$

converges absolutely and uniformly on compact subsets of W to a rational function

$$
f(P, \mathbf{x})=\sum_{i \in I} \frac{p_{i}(\mathbf{x})}{q_{i}(\mathbf{x})},
$$

where $p_{i}(\mathbf{x})$ are Laurent polynomials in \mathbf{x} and $q_{i}(\mathbf{x})=\left(1-\mathbf{x}^{u_{i 1}}\right) \cdots\left(1-\mathbf{x}^{u_{i k}}\right)$ for some vectors $u_{i j} \in \mathbb{Z}^{d} \backslash\{0\}$.

Proof. Let us identify \mathbb{R}^{d} with the affine hyperplane H defined by the equation $x_{d+1}=1$ in \mathbb{R}^{d+1}. Let

$$
P=\left\{x \in \mathbb{R}^{d}: \quad\left\langle c_{i}, x\right\rangle \leq \alpha_{i}, i=1, \ldots n\right\}
$$

where $c_{i} \in \mathbb{Z}^{d}$ and $\alpha_{i} \in \mathbb{Z}$ for $i=1, \ldots, d$. Let us define a rational cone $K \subset \mathbb{R}^{d+1}$ as

$$
K=\left\{(x, \tau): \quad\left\langle c_{i}, x\right\rangle-\alpha_{i} \tau \leq 0 \quad \text { for } \quad i=1, \ldots, n \quad \text { and } \quad \tau \geq 0\right\}
$$

Then $P=K \cap H$.
We claim that K does not contain lines. Indeed, if K contains a line in the direction $u=(u, \beta)$, for some $u \in \mathbb{R}^{d}$ and some $\beta \in \mathbb{R}$, we must have $\beta=0$ since
the last coordinate of every point in K is non-negative. Hence $u \neq 0$ and we must have $\left\langle c_{i}, u\right\rangle=0$ for $i=1, \ldots, n$. This, however, contradicts the assumption that P contains no lines.

We apply Lemma 31.3 to K. We note that the last coordinate of every integer point $n \in K$ is non-negative. Therefore, if a particular point $\mathbf{z}=(\mathbf{x}, y)$ lies in the non-empty open set $W \subset \mathbb{C}^{d+1}$, the existence of which is asserted by Lemma 31.3 , then any point (\mathbf{x}, \tilde{y}) with $|\tilde{y}| \leq|y|$ lies in W as well. We define $U \subset \mathbb{C}^{d}$ as the projection of W onto the first d coordinates and conclude that

$$
f(P, \mathbf{x})=\left.\frac{\partial}{\partial y} f(K,(\mathbf{x}, y))\right|_{y=0}
$$

The following remarkable result was proved by A. Khovanskii and A. Pukhlikov, and, independently, by J. Lawrence in early 1990s.
(31.5) Theorem. Let $R(\mathbf{x})$ be the real vector space of rational functions in $\mathbf{x} \in \mathbb{C}^{d}$ and let $\mathcal{P}\left(\mathbb{Q}^{d}\right)$ be the algebra of rational polyhedra. There exists a valuation

$$
\mathcal{F}: \mathcal{P}\left(\mathbb{Q}^{d}\right) \longrightarrow R(\mathbf{x})
$$

such that
(1) If $P \subset \mathbb{R}^{d}$ is a rational polyhedron without lines then $\mathcal{F}([P])=f(P, \mathbf{x})$, where $f(P, \mathbf{x})$ is a rational function of Lemma 31.4;
(2) If $P \subset \mathbb{R}^{d}$ is a rational polyhedron with lines then $\mathcal{F}([P])=0$.

Proof. First, we claim that $\mathcal{P}\left(\mathbb{Q}^{d}\right)$ is spanned by the indicators [P], where $P \subset \mathbb{R}^{d}$ is a rational polyhedron not containing lines. To establish this, it suffices to show that the indicator $[P]$ of any rational polyhedron $P \subset \mathbb{R}^{d}$ is a linear combination of indicators of polyhedra without lines.

Let us represent

$$
\begin{equation*}
\left[\mathbb{R}^{d}\right]=\sum_{i \in I} \epsilon_{i}\left[Q_{i}\right] \tag{31.5.1}
\end{equation*}
$$

where $\epsilon_{i} \in\{-1,1\}$ and $Q_{i} \subset \mathbb{R}^{d}$ are rational polyhedra without lines (for example, we can cut \mathbb{R}^{d} into orthants and use the inclusion-exclusion formula). Then

$$
\begin{equation*}
[P]=[P] \cdot\left[\mathbb{R}^{d}\right]=\sum_{i \in I} \epsilon_{i}\left[Q_{i} \cap P\right] \tag{31.5.2}
\end{equation*}
$$

and $Q_{i} \cap P$ are rational polyhedra without lines.
Next, we prove that the correspondence $P \longrightarrow f(P, \mathbf{x})$ preserves linear relations among indicators of rational polyhedra without lines. Namely, if

$$
\begin{equation*}
\sum_{j \in J} \alpha_{j}\left[P_{j}\right]=0 \tag{31.5.3}
\end{equation*}
$$

for some real α_{j} and some rational polyhedra $P_{j} \subset \mathbb{R}^{d}$ then necessarily

$$
\begin{equation*}
\sum_{j \in J} \alpha_{j} f\left(P_{j}, \mathbf{x}\right)=0 \tag{31.5.4}
\end{equation*}
$$

We use decomposition (31.5.1). Multiplying (31.5.3) by $\left[Q_{i}\right]$ we get

$$
\sum_{j \in J} \alpha_{j}\left[P_{j} \cap Q_{i}\right]=0
$$

By Lemma 31.4, there is a non-empty open set $U_{i} \subset \mathbb{C}^{d}$ such that for all $\mathbf{x} \in U_{i}$ the series

$$
\sum_{m \in Q_{i} \cap \mathbb{Z}^{d}} \mathbf{x}^{m}
$$

converges absolutely and uniformly on compact subsets of W to a rational function $f\left(P_{i}, \mathbf{x}\right)$. Then the series

$$
\sum_{m \in P_{j} \cap Q_{i} \cap \mathbb{Z}^{d}} \mathbf{x}^{m}
$$

also converges uniformly on compact subsets of W necessarily to a rational function $f\left(P_{i} \cap Q_{j}, \mathbf{x}\right)$. Besides,

$$
\begin{equation*}
\sum_{j \in J} \alpha_{j} f\left(P_{j} \cap Q_{i}, \mathbf{x}\right)=0 \tag{31.5.5}
\end{equation*}
$$

since the same identity holds for power series.
Similarly, from (31.5.2) we obtain

$$
\begin{equation*}
f\left(P_{j}, \mathbf{x}\right)=\sum_{i \in I} \epsilon_{i} f\left(P_{j} \cap Q_{i}, \mathbf{x}\right) \tag{31.5.6}
\end{equation*}
$$

Combining (31.5.5) and (31.5.6), we obtain

$$
\begin{aligned}
\sum_{j \in J} \alpha_{j} f\left(P_{j}, \mathbf{x}\right) & =\sum_{j \in J} \alpha_{j}\left(\sum_{i \in I} \epsilon_{i} f\left(P_{j} \cap Q_{i}, \mathbf{x}\right)\right)=\sum_{\substack{i \in I \\
j \in J}} \epsilon_{i} \alpha_{j} f\left(P_{j} \cap Q_{i}, \mathbf{x}\right) \\
& =\sum_{i \in I} \epsilon_{i}\left(\sum_{j \in J} \alpha_{j} f\left(P_{j} \cap Q_{i}, \mathbf{x}\right)\right)=0
\end{aligned}
$$

which proves (31.5.4).
Therefore, the correspondence $P \longmapsto f(P, \mathbf{x})$ extends to a valuation \mathcal{F}. It remains to prove that $\mathcal{F}([P])=0$ if P contains a line. First, we note that if $n+P$ is an integer translation of P then

$$
\begin{equation*}
\underset{74}{\mathcal{F}([n+P])=\mathbf{x}^{n} \mathcal{F}([P]) .} \tag{31.5.7}
\end{equation*}
$$

Indeed, it suffices to check (31.5.7) for polyhedra without lines, where it is obvious. Next, we observe that if a rational polyhedron P contains a line, it contains a rational line and hence there is $n \in \mathbb{Z}^{d} \backslash\{0\}$ such that $P+n=P$. This proves that for such a polyhedron we have

$$
\mathcal{F}([P])=\mathbf{x}^{n} \mathcal{F}([P]),
$$

and hence $\mathcal{F}([P])=0$.

(31.6) Problems.

1. Let $P \subset \mathbb{R}^{d}$ be a rational polyhedron without lines and let $K_{P} \subset \mathbb{R}^{d}$ be its recession cone (see Theorem 30.9). Let

$$
W=\left\{\mathbf{x} \in \mathbb{C}^{d}: \quad\left|x^{u}\right|<1 \quad \text { for all } \quad u \in K \backslash\{0\}\right\}
$$

Prove that for every $\mathbf{x} \in W$ the series

$$
\sum_{m \in P \cap \mathbb{Z}^{d}} \mathbf{x}^{m}
$$

converges absolutely and uniformly on compact subsets of W to a rational function $f(P ; \mathbf{x})$.
2. Let $u_{1}, \ldots, u_{k} \in \mathbb{Z}^{d}$ be linearly independent vectors, let cone K be defined as in Lemma 3.2 and let

$$
\operatorname{int} K=\left\{\sum_{i=1}^{k} \alpha_{i} u_{i}: \quad \alpha_{i}>0 \quad \text { for } \quad i=1, \ldots, k\right\}
$$

be the relative interior of K. Let

$$
\bar{\Pi}=\left\{\sum_{i=1}^{k} \alpha_{i} u_{i}: \quad 0<\alpha_{i} \leq 1\right\}
$$

and let us define a set $W \subset \mathbb{C}^{d}$ as in Lemma 31.2. Prove that the series

$$
\sum_{m \in K \cap \mathbb{Z}^{d}} \mathbf{x}^{m}
$$

absolutely converges for all $\mathbf{x} \in W$ uniformly on compact subsets of W to a rational function

$$
f(\operatorname{int} K, \mathbf{x})=\left(\sum_{\substack{n \in \bar{\Pi} \cap \mathbb{Z}^{d} \\ 75}} \mathbf{x}^{n}\right) \prod_{i=1}^{k} \frac{1}{1-\mathbf{x}^{u_{i}}}
$$

Deduce that

$$
f\left(\operatorname{int} K, \mathbf{x}^{-1}\right)=(-1)^{k} f(\operatorname{int} K, \mathbf{x})
$$

3. Let a and b be coprime positive integers and let $S \subset \mathbb{Z}$ be the set of all linear combinations of a and b with non-negative integer coefficients. Prove that

$$
\sum_{m \in S} x^{m}=\frac{1-x^{a b}}{\left(1-x^{a}\right)\left(1-x^{b}\right)} \quad \text { for } \quad|x|<1
$$

4*. Let a, b and c be coprime positive integers and let $S \subset \mathbb{Z}$ be the set of all linear combinations of a, b and c non-negative integer coefficients. Prove that there exist positive integers $p_{1}, p_{2}, p_{3}, p_{4}$ and p_{5}, not necessarily distinct, such that

$$
\sum_{m \in S} x^{m}=\frac{1-x^{p_{1}}-x^{p_{2}}-x^{p_{3}}+x^{p_{4}}+x^{p_{5}}}{\left(1-x^{a}\right)\left(1-x^{b}\right)\left(1-x^{c}\right)} \quad \text { for } \quad|x|<1
$$

32. Tangent cones

(32.1) Definitions. Let $P \subset V$ be a polyhedron and let $v \in P$ be a point. The cone of feasible directions of P at v is defined as

$$
\text { fcone }(P, v)=\{x \in V: \quad v+\epsilon x \in P \quad \text { for all sufficiently small } \quad \epsilon>0\} .
$$

Equivalently, if

$$
P=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq \alpha_{i}, i \in I\right\}
$$

and

$$
I_{v}=\left\{i \in I: \quad\left\langle c_{i}, v\right\rangle=\alpha_{i}\right\}
$$

then

$$
\text { fcone }(P, v)=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq 0 \quad \text { for } \quad i \in I_{v}\right\}
$$

The tangent cone of P at v is

$$
\operatorname{tcone}(P, v)=v+\operatorname{fcone}(P, v)
$$

or, equivalently,

$$
\operatorname{tcone}(P, v)=\left\{x \in V: \quad\left\langle c_{i}, x\right\rangle \leq \alpha_{i} \quad \text { for } \quad i \in I_{v}\right\} .
$$

Let $f, g \in \mathcal{P}(V)$. We say that

$$
f \equiv g \quad \text { modulo polyhedra with lines }
$$

if

$$
f-g=\sum_{i} \alpha_{i}\left[P_{i}\right]
$$

where $P_{i} \subset V$ are polyhedra with lines. For $f, g \in \mathcal{P}\left(\mathbb{Q}^{d}\right)$ we say that

$$
f \equiv g \quad \text { modulo rational polyhedra with lines }
$$

if

$$
f-g=\sum_{i} \alpha_{i}\left[P_{i}\right]
$$

where $P_{i} \subset \mathbb{R}^{d}$ are rational polyhedra without lines.
(32.2) Lemma. Let $T: V \longrightarrow W$ be a linear transformation, let $P \subset V$ be a polyhedron, let $Q=T(P)$, let $v \in P$ be a point and let $w=T(v) \in Q$ be its image. Then

$$
T(\operatorname{tcone}(P, v))=\operatorname{tcone}(Q, w)
$$

Proof. Without loss of generality we may assume that $v=0$, in which case $w=0$,

$$
\operatorname{tcone}(P, v)=\bigcup_{t \geq 0} t P \quad \text { and } \quad \operatorname{tcone}(Q, w)=\bigcup_{t \geq 0} t Q
$$

Since $T(t P)=t T(P)=t Q$, the proof follows.
Here is the main result of this section.
(32.3) Theorem. Let $P \subset \mathbb{R}^{d}$ be a (rational) polyhedron. Then

$$
[P] \equiv \sum_{v}[\operatorname{tcone}(P, v)] \quad \text { modulo (rational) polyhedra with lines, }
$$

where the sum is taken over all vertices of P.
Proof. Let A be the affine hyperplane in \mathbb{R}^{n} defined by the equation $x_{1}+\ldots+x_{n}=1$ and let $H_{i} \subset A$ be the halfspace defined by the inequality $x_{i} \geq 0$ for $i=1, \ldots, n$. Then

$$
\Delta=\bigcap_{i=1}^{n} H_{i}
$$

is the standard simplex, which is also the convex hull of the standard basis vectors e_{1}, \ldots, e_{n}. We note that

$$
A=\bigcup_{\substack{i=1 \\ 77}}^{n} H_{i}
$$

and hence by the inclusion-exclusion formula

$$
\begin{equation*}
[A]=\sum_{\substack{I \subset\{1, \ldots, n\} \\ I \neq \emptyset}}(-1)^{|I|-1}\left[H_{I}\right] \quad \text { where } \quad H_{I}=\bigcap_{i \in I} H_{i} . \tag{32.3.1}
\end{equation*}
$$

Thus if $I=\{1, \ldots, n\}$ then $H_{I}=\Delta$ and if $I=\{1, \ldots, n\} \backslash\left\{e_{i}\right\}$ then $H_{I}=$ tcone $\left(\Delta, e_{i}\right)$. If $i, j \notin I$ for some $i \neq j$ then H_{I} contains a line in the direction of $e_{i}-e_{j}$. Hence

$$
\Delta \equiv \sum_{i=1}^{n}\left[\operatorname{tcone}\left(\Delta, e_{i}\right)\right] \quad \text { modulo rational polyhedra with lines. }
$$

Suppose now that P is a (rational) polytope, that is,

$$
P=\operatorname{conv}\left(v_{1}, \ldots, v_{n}\right)
$$

where $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$ are the vertices of P. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{d}$ be a linear transformation such that $T\left(e_{i}\right)=v_{i}$ for $i=1, \ldots, n$. Hence $T(\Delta)=P$. By Theorem 28.3, from (32.3.1) we conclude

$$
[T(A)]=\sum_{\substack{I \subset\{1, \ldots, n\} \\ I \neq \emptyset}}(-1)^{|I|-1}\left[T\left(H_{I}\right)\right]
$$

Hence $T\left(H_{I}\right)=P$ if $I=\{1, \ldots, n\}$, by Lemma 32.2

$$
T\left(H_{I}\right)=T\left(\operatorname{tcone}\left(\Delta, e_{i}\right)=\operatorname{tcone}\left(P, v_{i}\right)\right.
$$

if $I=\{1, \ldots, n\} \backslash\{i\}$ and $T\left(H_{I}\right)$ contains a line in the direction $v_{i}-v_{j} \neq 0$ if $i, j \notin I$ for $i \neq j$. Hence

$$
[P] \equiv \sum_{i=1}^{n}\left[\operatorname{tcone}\left(P, v_{i}\right)\right] \quad \text { modulo rational polyhedra with lines. }
$$

Finally, we consider the case of an arbitrary (rational) polyhedron P. If P contains a line then by Lemma 30.4 polyhedron P has no vertices and the identity holds trivially. If P contains a line then by Theorem 30.9 we may write $P=Q+K_{P}$, where Q is the convex hull of the set of vertices of P and K_{P} is the recession cone of P. Since we have already proved the desired identity for polytopes, we can write

$$
[Q] \equiv \sum_{v}[\operatorname{tcone}(Q, v)] \quad \text { modulo (rational) polyhedra with lines. }
$$

Using Theorem 29.2, we obtain

$$
[P] \equiv \sum_{v}\left[\operatorname{tcone}(Q, v)+K_{P}\right] \quad \text { modulo (rational) polyhedra with lines. }
$$

It remains to show that for every vertex v of P we have

$$
\begin{equation*}
\operatorname{tcone}(Q, v)+K_{P}=\operatorname{tcone}(P, v) \tag{32.3.2}
\end{equation*}
$$

Indeed, let us consider the direct product $Q \times K_{P} \subset \mathbb{R}^{2 d}$ and a linear transformation $T: \mathbb{R}^{2 d} \longrightarrow \mathbb{R}^{d}$

$$
Q \times K_{P}=\left\{(x, y): \quad x \in Q, y \in K_{P}\right\}, \quad T(x, y)=x+y
$$

Hence $P=Q+K_{P}=T\left(Q \times K_{P}\right), T(v, 0)=v$ and it is easy to check that

$$
\operatorname{tcone}\left(Q \times K_{P},(v, 0)\right)=\operatorname{tcone}(Q, v) \times K_{P}
$$

Applying Lemma 32.2, we deduce (32.3.2) and hence the theorem.
We obtain the following corollary also known as Brion's Theorem, after M. Brion who proved it in 1988 using methods of algebraic geometry.
(32.4) Corollary. Let $P \subset \mathbb{R}^{d}$ be a rational polyhedron and let \mathcal{F} be the valuation of Theorem 31.5. Then

$$
\mathcal{F}([P])=\sum_{v} \mathcal{F}([\operatorname{tcone}(P, v)])
$$

where the sum is taken over all vertices v of P. If the vertices of P are integer vectors then

$$
\mathcal{F}([P])=\sum_{v} \mathbf{x}^{v} \mathcal{F}([\operatorname{fcone}(P, v)])
$$

Proof. Follows by Theorem 31.5 and Theorem 32.3.

33. The Ehrhart polynomial of an integer polytope

(33.1) Definition. A polytope $P \subset \mathbb{R}^{d}$ is called integer if the vertices of P are integer vectors.
(33.2) Theorem. Let $P \subset \mathbb{R}^{d}$ be an integer polytope. For a positive integer n let $n P$ be the dilation of P, so that

$$
n P=\{n x: \quad x \in P\}
$$

Then there exists a polynomial $p(n)$, called the Ehrhart polynomial of P, such that

$$
p(n)=\left|n P \cap \mathbb{Z}^{d}\right|
$$

for positive integer m.
Proof. Let $v_{i}, i \in I$, be the vertices of P and let

$$
K_{i}=\operatorname{fcone}\left(P, v_{i}\right) \quad \text { for } \quad i \in I
$$

be the cone of feasible directions of P at v_{i}. Then $n v_{i}, i \in I$, are the vertices of $n P$ and

$$
\text { fcone }\left(n P, v_{i}\right)=K_{i} \quad \text { for } \quad i \in I
$$

By Corollary 32.4, we have

$$
\begin{equation*}
\mathcal{F}([n P])=\sum_{i \in I} \mathbf{x}^{n v_{i}} \mathcal{F}\left(\left[K_{i}\right]\right) \tag{33.2.1}
\end{equation*}
$$

We have

$$
\mathcal{F}([n P])=\sum_{m \in(n P) \cap \mathbb{Z}^{d}} \mathbf{x}^{m}
$$

and hence the number of integer points in $n P$ is the value of $\mathcal{F}([n P])$ at $\mathbf{x}=$ $(1, \ldots, 1)$. Using Lemma 31.3, we can write $\mathcal{F}\left(\left[K_{i}\right]\right)=f\left(K_{i}, \mathbf{x}\right)$ as sums of functions of the type $p(\mathbf{x}) / q(\mathbf{x})$, where $p(\mathbf{x})$ is a Laurent polynomials in \mathbf{x} and

$$
q(\mathbf{x})=\left(1-\mathbf{x}^{u_{1}}\right) \cdots\left(1-\mathbf{x}^{u_{d}}\right)
$$

for some $u_{1}, \ldots, u_{d} \in \mathbb{Z}^{d} \backslash\{0\}$. We note that $\mathbf{x}=(1, \ldots, 1)$ is a pole of $f\left(K_{i}, \mathbf{x}\right)$.
Let us choose a vector $c \in \mathbb{R}^{d}$ such that $\left\langle c, u_{i j}\right\rangle \neq 0$ for all i and j. We choose $\mathbf{x}(t)=\mathbf{e}^{t c}$ in (33.2.1). Then the value of the left hand side is

$$
\sum_{m \in(n P) \cap \mathbb{Z}^{d}} e^{t\langle c, m\rangle}
$$

which is an analytic function of t and the constant term of its Taylor series expansion in a neighborhood of $t=0$ is the number $\left|n P \cap \mathbb{Z}^{d}\right|$ of integer points in $n P$.

We observe that

$$
\begin{equation*}
\mathbf{x}(t)^{n v_{i}}=e^{t\left\langle n c, v_{i}\right\rangle}=\sum_{k=0}^{+\infty} \frac{\left\langle c, v_{i}\right\rangle^{k}}{k!} n^{k} t^{k} . \tag{33.2.2}
\end{equation*}
$$

Next, we observe that

$$
\prod_{j=1}^{d} \frac{1}{1-\mathbf{x}^{u_{j}}(t)}=\prod_{8=1}^{d} \frac{1}{1-e^{t\left\langle c, u_{i j}\right\rangle}}
$$

Since the function

$$
\frac{t}{1-e^{t}}
$$

is analytic at $t=0$, the function

$$
t^{d} f\left(K_{i}, \mathbf{x}(t)\right)
$$

is analytic at $t=0$ and we obtain the Laurent expansion in the neighborhood of $t=0$

$$
\begin{equation*}
f\left(K_{i}, \mathbf{x}(t)\right)=t^{-d} \sum_{k=0}^{+\infty} \alpha_{k i} t^{k} \tag{33.2.3}
\end{equation*}
$$

where the coefficients $\alpha_{k i}$ depend only on the cone of feasible directions of P at v_{i}. From (33.2.2) and (33.2.3) we conclude that the constant term of the Laurent expansion of the right hand side of (33.2.1) in a neighborhood of $t=0$ is

$$
\sum_{i \in I} \sum_{\substack{k_{1}, k_{2} \geq 0 \\ k_{1}+k_{2}=d}} \frac{\left\langle c, v_{i}\right\rangle^{k_{1}}}{k_{1}!} n^{k_{1}} \alpha_{k_{2} i}
$$

which is a polynomial in n.

(33.3) Problems.

1. Prove that $\operatorname{deg} p=\operatorname{dim} P$.
2. Let $\left\{P_{\alpha}: \alpha \in A\right\}$ be a family of d-dimensional polytopes,

$$
P_{\alpha}=\operatorname{conv}\left(v_{1}(\alpha), \ldots, v_{n}(\alpha)\right)
$$

where $v_{i}(\alpha) \in \mathbb{Z}^{d}$ and the cones of feasible directions at $v_{i}(\alpha)$ do not depend on α :

$$
\operatorname{fcone}\left(P_{\alpha}, v_{i}(\alpha)\right)=K_{i} \quad \text { for } \quad i=1, \ldots, n
$$

and all $\alpha \in A$. Prove that there exists a polynomial

$$
p: \underbrace{\mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d}}_{n \text { times }} \longrightarrow \mathbb{R}
$$

such that

$$
\left|P_{\alpha} \cap \mathbb{Z}^{d}\right|=p\left(v_{1}(\alpha), \ldots, v_{n}(\alpha)\right)
$$

for all $\alpha \in A$.
3. Let $P \subset \mathbb{R}^{d}$ be a rational polytope such that $k P$ is an integer polytope for some positive integer k. Prove that for a positive integer n

$$
\left|n P \cap \mathbb{Z}^{d}\right|=\sum_{j=0}^{d} b_{j}(n) n^{j}
$$

where

$$
b_{j}(n)=b_{j}(n+k)
$$

for all positive integer n and all $0 \leq j \leq d$. In other words, the number of integer points in $n P$ is a quasi-polynomial, called the Ehrhart quasi-polynomial of P.

34. The reciprocity relation for cones

(34.1) Lemma. Let $P \subset \mathbb{R}^{d}$ be a (rational) polytope with a non-empty interior int P. Then $[\operatorname{int} P] \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ (respectively, $[\operatorname{int} P] \in \mathcal{P}\left(\mathbb{Q}^{d}\right)$, if P is rational) and

$$
\chi([\operatorname{int} P])=(-1)^{d} .
$$

Proof. By Lemma 30.3 polytope P is a (rational) polyhedron, so

$$
P=\left\{x \in \mathbb{R}^{d}: \quad\left\langle c_{i}, x\right\rangle \leq \alpha_{i}, i=1, \ldots, n\right\}
$$

Then $P \backslash \operatorname{int} P$ is a union of lower-dimensional (rational) polytopes lying in the affine hyperplanes

$$
H_{j}=\left\{x: \quad\left\langle c_{j}, x\right\rangle=\alpha_{j}\right\} .
$$

Hence the inclusions

$$
[\operatorname{int} P] \subset \mathcal{P}\left(\mathbb{R}^{d}\right), \mathcal{P}\left(\mathbb{Q}^{d}\right)
$$

follow by induction on d.
To compute the Euler characteristic of int P we use formula (27.2.2) and induction on d. Clearly, the formula holds for $d=1$. For $d>1$, let $H_{\tau} \subset \mathbb{R}^{d}$ be the affine hyperplane defined by the equation $x_{d}=\tau$. Then, by (27.2.2), we have

$$
\begin{equation*}
\chi([\operatorname{int} P])=\sum_{\tau \in \mathbb{R}}\left(\chi\left(\operatorname{int} P \cap H_{\tau}\right)-\lim _{\epsilon \longrightarrow 0+} \chi\left(\operatorname{int} P \cap H_{\tau-\epsilon}\right)\right) . \tag{34.1.1}
\end{equation*}
$$

By Lemma 30.6, for every τ the intersection $\operatorname{int} P \cap H_{\tau}$ is either empty or the interior of a $(d-1)$-dimensional polytope. Therefore, by the induction hypothesis, the only non-zero term of (34.1.1) corresponds to

$$
\tau=\max _{\left(x_{1}, \ldots, x_{d}\right) \in P} x_{d}
$$

and equals

$$
0-(-1)^{d-1}=(-1)^{d} .
$$

The following result is known as the reciprocity relation.
(34.2) Theorem. Let $K \subset \mathbb{R}^{d}$ be a (rational) polyhedral cone with a non-empty interior int K. Then

$$
[K] \equiv(-1)^{d}[-\operatorname{int} K] \quad \text { modulo (rational) polyhedra with lines, }
$$

where

$$
-\operatorname{int} K=\left\{\begin{array}{r}
-x: \quad x \in \operatorname{int} K\} . \\
82
\end{array}\right.
$$

Proof. First, we consider the special case of the non-negative orthant \mathbb{R}_{+}^{n}. For $i=1, \ldots, n$ let H_{i}^{+}be the closed halfspace defined by the inequality $x_{i} \geq 0$ and let H_{i}^{-}be the complementary open halfspace defined by the inequality $x_{i}<0$. Then

$$
\begin{align*}
{\left[\mathbb{R}_{+}^{n}\right]=\prod_{i=1}^{n}\left[H_{i}^{+}\right]=} & \prod_{i=1}^{n}\left(\left[\mathbb{R}^{n}\right]-\left[H_{i}^{-}\right]\right)=\sum_{I \subset\{1, \ldots, n\}}(-1)^{|I|}\left[H_{I}^{-}\right] \tag{34.2.1}\\
& \text {where } H_{I}^{-}=\bigcap_{i \in I} H_{i}^{-}
\end{align*}
$$

If $I=\{1, \ldots, n\}$ then $H_{I}=-\operatorname{int} \mathbb{R}_{+}^{n}$. If $j \notin I$ for some j then $\left[H_{I}\right]$ is a linear combination of indicators of polyhedra containing a line in the direction of the j-th basis vector e_{j}, and hence we conclude that

$$
\left[\mathbb{R}_{+}^{n}\right] \equiv(-1)^{n}\left[-\operatorname{int} \mathbb{R}_{+}^{n}\right] \quad \text { modulo rational polyhedra with lines. }
$$

Suppose now that $K \subset \mathbb{R}^{d}$ is a (rational) polyhedra cone with no lines and with a non-empty interior. By Lemma 30.8, we can write

$$
K=\left\{\sum_{i=1}^{n} \alpha_{i} u_{i}: \quad \alpha_{i} \geq 0 \quad \text { for } \quad i=1, \ldots, n\right\}
$$

and some u_{1}, \ldots, u_{n} such that $Q=\operatorname{conv}\left(u_{1}, \ldots, u_{n}\right)$ is a polytope contained in an affine hyperplane not passing through the origin. If K is rational, we may additionally choose $u_{i} \in \mathbb{Z}^{d} \backslash\{0\}$ for $i=1, \ldots, n$.

Let us consider a linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{d}$ such that $T\left(e_{i}\right)=u_{i}$ for $i=1, \ldots, n$. Then

$$
T\left(\mathbb{R}_{+}^{n}\right)=K
$$

By Theorem 28.3, there is a unique valuation

$$
\mathcal{T}: \mathcal{P}\left(\mathbb{R}^{n}\right), \mathcal{P}\left(\mathbb{Q}^{n}\right) \longrightarrow \mathcal{P}\left(\mathbb{R}^{d}\right), \mathcal{P}\left(\mathbb{Q}^{d}\right)
$$

such that $\mathcal{T}([P])=[T(P)]$ for any (rational) polyhedron $P \subset \mathbb{R}^{n}$. In particular,

$$
\begin{equation*}
\mathcal{T}\left[\mathbb{R}_{+}^{n}\right]=[K] \tag{34.2.2}
\end{equation*}
$$

Let us compute $h=\mathcal{T}\left(\left[-\operatorname{int} \mathbb{R}_{+}^{n}\right]\right)$. From (28.3.1) we have

$$
h(x)=\chi\left(\left[\left(-\operatorname{int} \mathbb{R}_{+}^{n}\right) \cap T^{-1}(x)\right]\right) \quad \text { for all } \quad x \in \mathbb{R}^{d}
$$

We observe that for all $x \in-\operatorname{int} K$ the intersection $\left(-\operatorname{int} \mathbb{R}_{+}^{n}\right) \cap T^{-1}(x)$ is the interior of a $(n-d)$-dimensional polytope while for all other x the intersection is empty. From Lemma 34.1, we conclude that

$$
h=(-1)^{n-d}[-\operatorname{int} K] .
$$

Finally, if P is a (rational) polyhedron containing a line in the direction of a basis vector e_{j} then $T(P)$ is a (rational) polyhedron containing a line in the direction of vector u_{j}. Applying \mathcal{T} to (34.2.1), we conclude that

$$
[K] \equiv(-1)^{n} \cdot(-1)^{n-d}[-\operatorname{int} K] \equiv(-1)^{d}[-\operatorname{int} K]
$$

modulo (rational) polyhedra with lines,
as desired.
Finally, if K contains a line then

$$
[K] \equiv[-\operatorname{int} K] \equiv 0 \quad \text { modulo rational polyhedra with lines. }
$$

(34.3) Theorem. Let $P \subset \mathbb{R}^{d}$ be a (rational) polytope with a non-empty interior int P. Then

$$
[\operatorname{int} P] \equiv \sum_{v}[\operatorname{int} \operatorname{tcone}(P, v)] \quad \text { modulo (rational) polyhedra with lines, }
$$

where the sum is taken over all vertices v of P.
Proof. The proof combines the approaches of Theorem 32.3 and Theorem 34.2. First, we establish the identity for the standard simplex and then use a suitable projection.

(34.4) Corollary.

(1) Let $K \subset \mathbb{R}^{d}$ be a rational cone with a non-empty interior int K and let $f(K, \mathbf{x})=\mathcal{F}([K])$ and $f(\operatorname{int} K, \mathbf{x})=\mathcal{F}([\operatorname{int} K])$ be the corresponding rational functions in $\mathbf{x} \in \mathbb{C}^{d}$. Then

$$
f(\operatorname{int} K, \mathbf{x})=(-1)^{d} f\left(K, \mathbf{x}^{-1}\right)
$$

where

$$
\mathbf{x}^{-1}=\left(x_{1}^{-1}, \ldots, x_{d}^{-1}\right) \quad \text { for } \quad \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right) .
$$

(2) Let $P \subset \mathbb{R}^{d}$ be a rational polytope with a non-empty interior. Then

$$
\mathcal{F}([P])=\sum_{v} \mathcal{F}([\operatorname{int} \operatorname{tcone}(P, v)]),
$$

where v ranges over all vertices of P. If the vertices of P are integer vectors then

$$
\mathcal{F}([P])=\sum_{v} \mathbf{x}^{v} \mathcal{F}([\operatorname{int} \operatorname{fcone}(P, v)]) .
$$

Proof. Part (1) follows by Theorem 34.2, Theorem 31.5 and the observation that

$$
\sum_{m \in \operatorname{int} K \cap \mathbb{Z}^{d}} \mathbf{x}^{m}=\sum_{m \in-\operatorname{int} K \cap \mathbb{Z}^{d}} \mathbf{x}^{-m} .
$$

Part (2) follows from Theorem 34.3 and Theorem 31.5.
35. The reciprocity relation for the Ehrhart polynomial

The following result is called the reciprocity relation for Ehrhart polynomials.
(35.1) Theorem. Let $P \subset \mathbb{R}^{d}$ be an integer polytope with a non-empty interior int P and let p be its Ehrhart polynomial, so that

$$
p(n)=\left|n P \cap \mathbb{Z}^{d}\right|
$$

for positive integer n. Then

$$
p(-n)=(-1)^{d}\left|\operatorname{int}(n P) \cap \mathbb{Z}^{d}\right|
$$

for positive integer n.
Proof. We proceed as in the proof of Theorem 33.2. Let $v_{i}, i \in I$, be the vertices of P and let

$$
K_{i}=\text { fcone }\left(P, v_{i}\right) \quad \text { for } \quad i \in I
$$

be the cone of feasible directions of P at v_{i}. From Corollaries 32.4 and 34.4 , we get

$$
\mathcal{F}([n P])=\sum_{i \in I} \mathbf{x}^{n v_{i}} \mathcal{F}\left(\left[K_{i}\right]\right) \quad \text { and } \quad \mathcal{F}([\operatorname{int} n P])=\sum_{i \in I} \mathbf{x}^{n v_{i}} \mathcal{F}\left(\left[\operatorname{int} K_{i}\right]\right)
$$

and

$$
\mathcal{F}([n P])=\sum_{m \in(n P) \cap \mathbb{Z}^{d}} \mathbf{x}^{m} \quad \text { and } \quad \mathcal{F}([\operatorname{int} n P])=\sum_{m \in(\operatorname{int} n P) \cap \mathbb{Z}^{d}} \mathbf{x}^{m}
$$

where the last identity follows since [int P] can be written as a linear combination of indicators of polytopes (the polytope P and its faces). Denoting

$$
f\left(K_{i}, \mathbf{x}\right)=\mathcal{F}\left(\left[K_{i}\right]\right) \quad \text { and } \quad f\left(\operatorname{int} K_{i}, \mathbf{x}\right)=\mathcal{F}\left(\left[\operatorname{int} K_{i}\right]\right),
$$

from Corollary 34.4, we have

$$
\begin{equation*}
f\left(\operatorname{int} K_{i}, \mathbf{x}\right)=(-1)^{d} f\left(K_{i}, \mathbf{x}^{-1}\right) \tag{35.1.1}
\end{equation*}
$$

As in the proof of Theorem 33.2, let us choose a vector $c \in \mathbb{R}^{d}$ such that $\mathbf{x}(t)=\mathbf{e}^{t c}$ is a regular point of all functions $f\left(K_{i}, \mathbf{x}\right)$ provided $t \neq 0$. Since $\mathbf{x}^{-1}(t)=\mathbf{x}(-t)$ it follows by (35.1.1) that $\mathbf{x}(t)$ is a regular point of all functions $f\left(\operatorname{int} K_{i}, \mathbf{x}\right)$ as long as $t \neq 0$.

As in the proof of Theorem 33.2, functions $f\left(K_{i}, \mathbf{x}(t)\right)$ admit a Laurent expansion in the neighborhood of $t=0$:

$$
f\left(K_{i}, \mathbf{x}(t)\right)=t^{d} \sum_{k=0}^{+\infty} \alpha_{k i} t^{k}
$$

Since $\mathbf{x}^{-1}(t)=\mathbf{x}(-t)$, from (35.1.1) we conclude that functions $f\left(\operatorname{int} K_{i}, \mathbf{x}(t)\right)$ admit the Laurent expansions in the neighborhood of $t=0$

$$
f\left(\operatorname{int} K_{i}, \mathbf{x}(t)\right)=t^{-d} \sum_{k=0}^{+\infty} \alpha_{k i}(-t)^{k}
$$

As in the proof of Theorem 33.2, the number $p(n)=\left|n P \cap \mathbb{Z}^{d}\right|$ of integer points in $n P$ is the constant term of the Taylor expansion of

$$
\sum_{m \in(n P) \cap \mathbb{Z}^{d}} e^{t\langle c, m\rangle}
$$

in a neighborhood of $t=0$ and equals

$$
\begin{equation*}
\sum_{i \in I} \sum_{\substack{k_{1}+k_{2} \geq 0 \\ k_{1}+k_{2}=d}} \frac{\left\langle c, v_{i}\right\rangle^{k_{1}}}{k_{1}!} n^{k_{1}} \alpha_{k_{2} i} \tag{35.1.2}
\end{equation*}
$$

Similarly, the number $\left|\operatorname{int} n P \cap \mathbb{Z}^{d}\right|$ of integer points in the interior of $n P$ is the constant term of the Taylor expansion of

$$
\sum_{m \in(\operatorname{int} n P) \cap \mathbb{Z}^{d}} e^{t\langle c, m\rangle}
$$

and equals

$$
\begin{equation*}
\sum_{\substack { i \in I \\
\begin{subarray}{c}{k_{1}+k_{2} \geq 0 \\
k_{1}+k_{2}=d{ i \in I \\
\begin{subarray} { c } { k _ { 1 } + k _ { 2 } \geq 0 \\
k _ { 1 } + k _ { 2 } = d } }\end{subarray}} \frac{\left\langle c, v_{i}\right\rangle^{k_{1}}}{k_{1}!} n^{k_{1}}(-1)^{k_{2}} \alpha_{k_{2} i} \tag{35.1.3}
\end{equation*}
$$

Comparing (35.1.2) and (35.1.3) we conclude that

$$
\left|\operatorname{int}(n P) \cap \mathbb{Z}^{d}\right|=(-1)^{d} p(-n)
$$

(35.2) Problem.

1. Let $\left\{P_{\alpha}: \alpha \in A\right\}$ be a family of d-dimensional polytopes with non-empty interiors,

$$
P_{\alpha}=\operatorname{conv}\left(v_{1}(\alpha), \ldots, v_{n}(\alpha)\right)
$$

where $v_{i}(\alpha) \in \mathbb{Z}^{d}$ and the cones of feasible directions at $v_{i}(\alpha)$ do not depend on α :

$$
\text { fcone }\left(P_{\alpha}, v_{i}(\alpha)\right)=K_{i} \quad \text { for } \quad i=1, \ldots, n
$$

and all $\alpha \in A$. By Problem 2 of Section 33.3 there exists a polynomial p such that

$$
\left|P_{\alpha} \cap \mathbb{Z}^{d}\right|=p\left(v_{1}(\alpha), \ldots, v_{n}(\alpha)\right)
$$

for all $\alpha \in A$. Prove that one can choose a polynomial p so that, additionally,

$$
\left|\operatorname{int} P_{\alpha} \cap \mathbb{Z}^{d}\right|=(-1)^{d} p\left(-v_{1}(\alpha), \ldots,-v_{n}(\alpha)\right)
$$

for all $\alpha \in A$.

36. Polarity for cones

(36.1) Definition. Let $K \subset V$ be a cone. The polar cone $K^{\circ} \subset V$ is defined by

$$
K^{\circ}=\{x \in V: \quad\langle x, y\rangle \leq 0 \quad \text { for all } \quad y \in K\}
$$

(36.2) Theorem.

(1) Let $K \subset \mathbb{R}^{d}$ be a (rational) polyhedral cone. Then $K^{\circ} \subset \mathbb{R}^{d}$ is a (rational) polyhedral cone.
(2) We have $\left(K^{\circ}\right)^{\circ}=K$ for any polyhedral cone $K \subset \mathbb{R}^{d}$.
(3) A polyhedral cone K contains a line (respectively, lies in a hyperplane) if and only if K° lies in a hyperplane (respectively, contains a line).
(4) Let $\mathcal{K}\left(\mathbb{R}^{d}\right) \subset \mathcal{P}\left(\mathbb{R}^{d}\right)$ be the subspace spanned by the indicators of polyhedral cones. Then there exists a unique linear operator (valuation) $\mathcal{D}: \mathcal{K}\left(\mathbb{R}^{d}\right) \longrightarrow$ $\mathcal{K}\left(\mathbb{R}^{d}\right)$ such that

$$
\mathcal{D}([K])=\left(\left[K^{\circ}\right]\right)
$$

for any polyhedral cone $K \subset \mathbb{R}^{d}$.
Proof. To prove Part (1), first we consider the case when K has no lines. Then, by Lemma 30.8 we have

$$
K=\left\{\sum_{i=1}^{n} \alpha_{i} u_{i} \quad \text { where } \quad \alpha_{i} \geq 0 \quad \text { for } \quad i=1, \ldots, n\right\}
$$

for some vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{d}$. Moreover, if K is rational we can choose u_{i} to be integer vectors. Then

$$
K^{\circ}=\left\{x \in \mathbb{R}^{d}: \quad\left\langle x, u_{i}\right\rangle \leq 0 \quad \text { for } \quad i=1, \ldots, n\right\} .
$$

Suppose now that K contains lines. We assume that

$$
K=\left\{x \in \mathbb{R}^{d}: \quad\left\langle c_{i}, x\right\rangle \leq 0 \quad \text { for } \quad i \in I\right\}
$$

and let

$$
L=\left\{x \in \mathbb{R}^{d}: \quad\left\langle c_{i}, x\right\rangle=0 \quad \text { for } \quad i \in I\right\}
$$

be the largest subspace contained in K. Let $L^{\perp} \subset \mathbb{R}^{d}$ be the orthogonal complement to L and let $K_{1} \subset L^{\perp}$ be the orthogonal projection of K onto L^{\perp}. Using Theorem 28.3 we conclude that K_{1} is a (rational) polyhedral cone, necessarily without lines. It is not hard to argue that $K=K_{1}+L$ and that $K^{\circ}=\left(K_{1}^{\circ}\right) \cap L^{\perp}$, from which Part (1) follows.

If $y \in K$ then $\langle x, y\rangle \leq 0$ for all $x \in K^{\circ}$ and hence $y \in\left(K^{\circ}\right)^{\circ}$. Suppose that $y \in\left(K^{\circ}\right)^{\circ}$ and suppose that

$$
K=\left\{x \in \mathbb{R}^{d}: \quad\left\langle c_{i}, x\right\rangle \leq 0 \quad \text { for } \quad i \in I .\right\} .
$$

We note that $c_{i} \in K^{\circ}$ for all $i \in I$ and hence $\left\langle c_{i}, y\right\rangle \leq 0$ for all $i \in I$. It follows then that $y \in K$, which completes the proof of Part (2).

If K contains a line in the direction of $u \neq 0$ then K° lies in the hyperplane u^{\perp}. If $K \subset H$, where $H \subset \mathbb{R}^{d}$ is a hyperplane then K° contains a line in the direction orthogonal to H. Together with Part (2), this completes the proof of Part (3).

To prove Part (4), let us define $G: \mathbb{R}^{d} \times \mathbb{R}^{d} \longrightarrow \mathbb{R}$

$$
G(x, y)= \begin{cases}1 & \text { if }\langle x, y\rangle=1 \\ 0 & \text { otherwise }\end{cases}
$$

We claim that for every $f \in \mathcal{K}\left(\mathbb{R}^{d}\right)$ and any $y \in \mathbb{R}^{d}$ the function $g_{y}(x)=$ $f(x) G(x, y)$ lies in $\mathcal{P}\left(\mathbb{R}^{d}\right)$. Indeed, by linearity it suffices to check this when $f=[K]$, where $K \subset \mathbb{R}^{d}$ is a polyhedral cone, in which case $g_{y}=\left[K \cap H_{y}\right]$, where $H_{y}=\left\{x \in \mathbb{R}^{d}: \quad\langle x, y\rangle=1\right\}$ is a hyperplane. This allows us to consider the Euler characteristic of g_{y} and hence to define a function $h: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ by

$$
h(y)=\chi(f)-\chi\left(g_{y}\right) .
$$

Next, we claim that if $f=[K]$ then $h=\left[K^{\circ}\right]$. Indeed, in this case $\chi(f)=1$ while

$$
\chi\left(g_{y}\right)= \begin{cases}1 & \text { if } K \cap H_{y} \neq \emptyset \\ 0 & \text { if } K \cap H_{y}=\emptyset\end{cases}
$$

If $y \in K^{\circ}$ then clearly $K \cap H_{y}=\emptyset$ so $h(y)=1$. If $y \notin K^{\circ}$ then there is an $x \in K$ such that $\langle x, y\rangle>0$ and by scaling $x \longmapsto \lambda x$ for some $\lambda>0$ we find a point $x \in K \cap H_{y}$. Hence $\chi\left(g_{y}\right)=1$ in this case and $h(y)=0$ if $y \notin K^{\circ}$. Therefore we can define a transformation

$$
\mathcal{D}: \quad \mathcal{K}\left(\mathbb{R}^{d}\right) \longrightarrow \mathcal{K}\left(\mathbb{R}^{d}\right) \quad \text { where } \quad \mathcal{D}(f)=h .
$$

The transformation is clearly linear and $\mathcal{D}([K])=\left[K^{\circ}\right]$ for all polyhedral cones K.
(36.3) Theorem. Let $P \subset \mathbb{R}^{d}$ be a (rational) polytope. Then

$$
\sum_{v}[\operatorname{fcone}(P, v)] \equiv[0] \quad \text { modulo (rational) polyhedra with lines },
$$

where the sum is taken over all vertices v of P.

Proof. For a vertex v of P let us define a cone

$$
K_{v}=\left\{c \in \mathbb{R}^{d}: \quad\langle c, v\rangle \geq\langle c, w\rangle \quad \text { for all vertices } w \neq v \text { of } P\right\} .
$$

In other words, K_{v} consists of all functions $x \longmapsto\langle c, x\rangle$ that attain their maximum on P at v. Hence

$$
\bigcup_{v} K_{v}=\mathbb{R}^{d}
$$

where the union is taken over all vertices v of P. Moreover, the intersection of any two or more of cones K_{v} is a lower-dimensional cone since $K_{v_{1}} \cap K_{v_{2}}$ lies in the hyperplane $\left\langle c, v_{1}-v_{2}\right\rangle=0$. Therefore,

$$
\begin{equation*}
\sum_{v}\left[K_{v}\right] \equiv\left[\mathbb{R}^{d}\right] \quad \text { modulo cones in hyperplanes } \tag{36.3.1}
\end{equation*}
$$

where the sum is taken over all vertices v of P. Next, it is not hard to see that

$$
K_{v}=\left(\operatorname{fcone}(P, v)^{\circ}\right.
$$

Hence by Part (2) of Theorem 36.2 we conclude that

$$
K_{v}^{\circ}=\operatorname{fcone}(P, v)
$$

Applying the operator \mathcal{D} of Part (4) of Theorem 36.2 to both parts of (36.3.1), we complete the proof.
(36.4) Corollary. Let $P \subset \mathbb{R}^{d}$ be a rational polytope. Then

$$
\sum_{v} \mathcal{F}([\operatorname{fcone}(P, v)])=1
$$

where the sum is taken over all vertices v of P.
Proof. Follows from Theorem 31.5 and Theorem 36.3.
(36.5) Problems.

1. Let \mathcal{D} be the the operator of Theorem 36.2. Prove that

$$
\mathcal{D}(f * g)=\mathcal{D}(f) \mathcal{D}(g) \quad \text { and that } \quad \mathcal{D}(f g)=D(f) * D(g)
$$

where $*$ is the bilinear operation of Theorem 29.2.
2. Let $P \subset V$ be a polyhedron without lines. Prove that

$$
\sum_{v}[\text { fcone }(P, v)] \equiv K_{P} \quad \text { modulo polyhedra with lines, }
$$

where the sum is taken over all vertices v of P and K_{P} is the recession cone of P, see Theorem 30.9.
3. Let us fix $1 \leq k \leq d$ and let

$$
A=\left\{\left(x_{1}, \ldots, x_{d}\right): \quad x_{1}, \ldots, x_{k}>0 \quad \text { and } \quad x_{k+1}, \ldots, x_{d} \geq 0\right\}
$$

Prove that $[A] \in \mathcal{K}\left(\mathbb{R}^{d}\right)$ and compute $\mathcal{D}([A])$.
37. The constant term of the Ehrhart polynomial
(37.1) Theorem. Let $P \subset \mathbb{R}^{d}$ be a non-empty integer polytope and let p be its Ehrhart polynomial, so that

$$
p(n)=\left|n P \cap \mathbb{Z}^{d}\right|
$$

for a positive integer n. Then

$$
p(0)=1
$$

Proof. Let $v_{i}, i \in I$ be the vertices of P and let

$$
K_{i}=\operatorname{fcone}\left(P, v_{i}\right) \quad \text { for } \quad i \in I
$$

As in the proof of Theorem 33.2, we conclude that

$$
p(n)=\sum_{i \in I} \sum_{\substack{k_{1}, k_{2} \geq 0 \\ k_{1}+k_{2}=d}} \frac{\left\langle c, v_{i}\right\rangle^{k_{1}}}{k_{1}!} n^{k_{1}} \alpha_{k_{2} i}
$$

where $c \in \mathbb{R}^{d}$ is a sufficiently generic vector and

$$
f\left(K_{i}, \mathbf{x}(t)\right)=t^{-d} \sum_{k=0}^{+\infty} \alpha_{k i} t^{k}, \quad \text { for } \quad \mathbf{x}(t)=\mathbf{e}^{t c} \quad \text { and } \quad f\left(K_{i}, \mathbf{x}\right)=\mathcal{F}\left(\left[K_{i}\right]\right)
$$

Then

$$
p(0)=\sum_{i \in I} \alpha_{d i}=1
$$

since

$$
\sum_{i \in I} f\left(K_{i}, \mathbf{x}(t)\right)=1
$$

By Corollary 36.4.

(37.3) Problems.

1. Let $\left\{P_{\alpha}: \quad \alpha \in A\right\}$ be a family of d-dimensional polytopes,

$$
P_{\alpha}=\operatorname{conv}\left(v_{1}(\alpha), \ldots, v_{n}(\alpha)\right)
$$

where $v_{i}(\alpha) \in \mathbb{Z}^{d}$ for $i=1, \ldots, n$ and

$$
\text { fcone }\left(P_{\alpha}, v_{i}(\alpha)\right)=K_{i}
$$

independently of α, see Problem 2 of Section 33.3. Prove that one choose a polynomial p in Problem 2, Section 33.3 and Problem 1 of Section 35.2, so that

$$
\left|P_{\alpha} \cap \mathbb{Z}^{d}\right|=p\left(v_{1}(\alpha), \ldots, v_{n}(\alpha)\right) \quad \text { for all } \quad \alpha \in A
$$

and that

$$
p(0, \ldots, 0)=1
$$

2. Let $\left\{P_{\alpha}: \quad \alpha \in A\right\}$ be a family of polytopes as in Problem 1 above and let $v_{1}, \ldots, v_{n} \in \mathbb{Z}^{d}$ are not necessarily distinct points such that in an arbitrary small neighborhood of v_{i} there is a point $v_{i}^{\prime} \in \mathbb{R}^{d}$ such that for $P^{\prime}=\operatorname{conv}\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)$ one has

$$
\operatorname{fcone}\left(P, v_{i}^{\prime}\right)=K_{i} \quad \text { for } \quad i=1, \ldots, n
$$

In other words, P_{α} degenerates into an integer polytope P in such a way that the facets of P_{α} are moved parallel to themselves. Prove that one can choose a polynomial p in Problem 1 above such that

$$
\left|P \cap \mathbb{Z}^{d}\right|=p\left(v_{1}, \ldots, v_{n}\right)
$$

and so that

$$
\left|\operatorname{int} P \cap \mathbb{Z}^{d}\right|=(-1)^{k} p\left(-v_{1}, \ldots,-v_{n}\right),
$$

where $k=\operatorname{dim} P$ and $\operatorname{int} P$ is the relative interior of P.
3^{*}. Let $P_{1}, \ldots, P_{k} \subset \mathbb{R}^{d}$ be integer polytopes. Prove that there exists a k-variate polynomial p such that

$$
\left|\left(m_{1} P_{1}+\ldots+m_{k} P_{k}\right) \cap \mathbb{Z}^{d}\right|=p\left(m_{1}, \ldots, m_{k}\right)
$$

for all non-negative integer m_{1}, \ldots, m_{k}. Here "+" stands for the Minkowski sum and multiplication by m_{i} is a dilation. Moreover, prove that for $P=m_{1} P_{1}+\ldots+$ $m_{k} P_{k}$ one has

$$
\left|\operatorname{int} P \cap \mathbb{Z}^{d}\right|=(-1)^{\operatorname{dim} P} p\left(-m_{1}, \ldots,-m_{k}\right),
$$

where m_{1}, \ldots, m_{k} are non-negative integers and int P is the relative interior of P.
4. Prove that for every positive integer k there exists a univariate polynomial p of degree $(k-1)^{2}$ such that for every positive integer m the value $p(m)$ is equal to the number of $k \times k$ non-negative integer matrices with the row and column sums equal to m. Prove that, additionally,

$$
p(0)=1, p(-1)=\ldots=p(-k+1)=0 \quad \text { and } \quad p(-m)=(-1)^{k-1} p(m-k)
$$

for integer $m \geq k$.
5. Let $P \subset \mathbb{R}^{3}$ be the tetrahedron with the vertices $(0,0,0),(1,0,0),(0,1,0)$ and $(1,1, a)$, where $a>0$ is an integer parameter and let p be its Ehrhart polynomial. Prove that

$$
p(n)=\frac{a}{6} n^{3}+n^{2}+\frac{12-a}{6} n+1 .
$$

6. Let us fix a polynomial $\rho: \mathbb{R}^{d} \longrightarrow \mathbb{R}$ and let $\left\{P_{\alpha}: \alpha \in A\right\}$ be a family of polytopes as in Problem 1. Prove that there exists a polynomial q such that

$$
\sum_{m \in P_{\alpha} \cap \mathbb{Z}^{d}} \rho(m)=q\left(v_{1}(\alpha), \ldots, v_{n}(\alpha)\right)
$$

for all $\alpha \in A$.

38. Unimodular cones

(38.1) Definition. Let $u_{1}, \ldots, u_{k} \subset \mathbb{Z}^{d}$ be a primitive set, that is, u_{1}, \ldots, u_{k} is a basis of the lattice $\mathbb{Z}^{d} \cap \operatorname{span}\left(u_{1}, \ldots, u_{k}\right)$. The cone

$$
K=\left\{\sum_{i=1}^{k} \alpha_{i} u_{i}: \quad \alpha_{i} \geq 0 \quad \text { for } \quad i=1, \ldots, k\right\}
$$

is called a unimodular cone. We say that K is spanned by u_{1}, \ldots, u_{k} and denote it as

$$
K=\operatorname{co}\left(u_{1}, \ldots, u_{k}\right)
$$

If K is a unimodular cone spanned by a primitive set of vectors u_{1}, \ldots, u_{k} then the fundamental parallelepiped

$$
\Pi=\left\{\sum_{i=1}^{k} \alpha_{i} u_{i}: \quad 0 \leq \alpha_{i}<1 \quad \text { for } \quad i=1, \ldots, k\right\}
$$

contains no lattice points other than the origin (cf. Theorem 5.2) and by Lemma 31.2 for the generating function of integer points in K we have

$$
f(K, \mathbf{x})=\prod_{i=1}^{k} \frac{1}{1-\mathbf{x}^{u_{i}}}
$$

(38.2) Decomposing a planar cone into unimodular cones using continued fractions. For $d=2$, there is a rather efficient (polynomial time) algorithm to write the indicator of a cone $K \subset \mathbb{R}^{d}$ as an alternating sum of indicators of unimodular cones and hence to compute the generating function $f(K, \mathbf{x})$ of integer points in K.

We compute one example. Suppose that K is spanned by vectors $(1,0)$ and $(31,164)$. We write:

$$
\frac{164}{31}=5+\frac{9}{31}=5+\frac{1}{3+\frac{4}{9}}=5+\frac{1}{3+\frac{1}{2+\frac{1}{4}}}
$$

and hence we write

$$
\frac{164}{31}=[5 ; 3,2,4]
$$

Next, we compute the convergents:

$$
[5 ; 3,2]=5+\frac{1}{3+\frac{1}{2}}=\frac{37}{7}, \quad[5 ; 3]=5+\frac{1}{3}=\frac{16}{3} \quad \text { and } \quad[5]=\frac{5}{1}
$$

Let

$$
\begin{aligned}
& K_{-1}=\operatorname{co}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right), \quad K_{0}=\operatorname{co}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
5
\end{array}\right]\right), \quad K_{1}=\operatorname{co}\left(\left[\begin{array}{l}
1 \\
5
\end{array}\right],\left[\begin{array}{c}
3 \\
16
\end{array}\right]\right) \\
& K_{2}=\operatorname{co}\left(\left[\begin{array}{c}
3 \\
16
\end{array}\right],\left[\begin{array}{c}
7 \\
37
\end{array}\right]\right) \quad \text { and } \quad K_{3}=\operatorname{co}\left(\left[\begin{array}{c}
7 \\
37
\end{array}\right],\left[\begin{array}{c}
31 \\
164
\end{array}\right]\right) .
\end{aligned}
$$

Then

$$
[K]=\left[K_{-1}\right]-\left[K_{0}\right]+\left[K_{1}\right]-\left[K_{2}\right]+\left[K_{3}\right] .
$$

Besides, $K_{-1}, K_{0}, K_{1}, K_{2}$ and K_{3} are unimodular cones since

$$
\begin{aligned}
1 & =\operatorname{det}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=-\operatorname{det}\left[\begin{array}{ll}
0 & 1 \\
1 & 5
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
1 & 3 \\
5 & 16
\end{array}\right]=-\operatorname{det}\left[\begin{array}{cc}
3 & 7 \\
16 & 37
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
7 & 31 \\
37 & 164
\end{array}\right] .
\end{aligned}
$$

Thus

$$
\begin{aligned}
f(K, \mathbf{x})= & f\left(K_{-1}, \mathbf{x}\right)-f\left(K_{0}, \mathbf{x}\right)+f\left(K_{1}, \mathbf{x}\right)-f\left(K_{2}, \mathbf{x}\right)+f\left(K_{3}, \mathbf{x}\right) \\
= & \frac{1}{(1-x)(1-y)}-\frac{1}{(1-y)\left(1-x y^{5}\right)}+\frac{1}{\left(1-x y^{5}\right)\left(1-x^{3} y^{16}\right)} \\
& \quad-\frac{1}{\left(1-x^{3} y^{16}\right)\left(1-x^{7} y^{37}\right)}+\frac{1}{\left(1-x^{7} y^{37}\right)\left(1-x^{31} y^{164}\right)}
\end{aligned}
$$

We note that by changing coordinates, we can represent an arbitrary rational cone in the form

$$
K=\operatorname{co}\left(\left[\begin{array}{l}
1 \tag{38.2.1}\\
0
\end{array}\right],\left[\begin{array}{l}
q \\
p
\end{array}\right]\right)
$$

for some coprime integers p and q.

(38.3) Problems.

1. For the cone (38.2.1), assuming that $p, q>0$ are coprime integers, consider the continued fraction expansions

$$
\frac{p}{q}=\left[a_{0} ; a_{1}, \ldots, a_{n}\right] .
$$

For $i=0,1, \ldots, n$ consider convergents

$$
\left[a_{0} ; a_{1}, \ldots, a_{i}\right]=\frac{p_{i}}{q_{i}}
$$

and define cones

$$
\begin{aligned}
& K_{-1}=\operatorname{co}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right), \quad K_{0}=\operatorname{co}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
p_{0}
\end{array}\right]\right) \quad \text { and } \\
& K_{i}=\operatorname{co}\left(\left[\begin{array}{l}
q_{i-1} \\
p_{i-1}
\end{array}\right],\left[\begin{array}{l}
q_{i} \\
p_{i}
\end{array}\right]\right) \quad \text { for } i=1, \ldots, n
\end{aligned}
$$

Prove that each K_{i} is a unimodular cone and that

$$
[K]=\sum_{i=-1}^{n}(-1)^{i+1}\left[K_{i}\right] \quad \text { if } \quad n \quad \text { is odd }
$$

and

$$
[K]=[R]+\sum_{i=1}^{n}(-1)^{i+1}\left[K_{i}\right] \quad \text { if } \quad n \quad \text { is even } \quad \text { where } \quad R=\operatorname{co}\left(\left[\begin{array}{l}
q_{n} \\
p_{n}
\end{array}\right]\right)
$$

Hint: Use Problem 2 of Section 9.4.
2. Let $K \subset \mathbb{R}^{d}$ be a unimodular cone with a non-empty interior. Prove that K° is a unimodular cone.
(38.4) Decomposing cones of higher dimensions. As long as the dimension d remains fixed, there is a polynomial time algorithm to write a given rational cone K as a signed combination of unimodular cones and hence to compute $f(K, \mathbf{x})$ as a rational function. We sketch the algorithm below.

First, we may assume that $K \subset \mathbb{R}^{d}$ is a cone with a non-empty interior (otherwise, we pass to the smallest subspace containing K). Triangulating, if needed, we reduce the case to that of a simple cone

$$
K=\operatorname{co}\left(u_{1}, \ldots, u_{d}\right)
$$

where u_{1}, \ldots, u_{d} are linearly independent vectors. Let us define the index of K as the volume of the parallelepiped spanned by u_{1}, \ldots, u_{d},

$$
\operatorname{ind} K=\left|u_{1} \wedge \ldots \wedge u_{d}\right| .
$$

Hence ind $K=1$ if and only if K is unimodular. The algorithm consists in repeating a procedure which represents a non-unimodular cone as a signed combination of cones with smaller indices. The important feature of the procedure is that the number of the cones increases exponentially with the number of steps while the indices of the obtained cones decrease double exponentially.

Let us define

$$
\Pi_{0}=\left\{\sum_{i=1}^{d} \alpha_{i} u_{i}: \quad\left|\alpha_{i}\right| \leq(\operatorname{ind} K)^{-1 / d} \quad \text { for } \quad i=1, \ldots, d\right\}
$$

Then Π_{0} is a symmetric convex body and

$$
\operatorname{vol} \Pi_{0}=2^{d}
$$

Hence by Minkowski Theorem (Theorem 6.4) there exists a non-zero vector $v \in \Pi$, which then can be found efficiently with the help of the Lenstra-Lenstra-Lovász basis. For $i \in\{1, \ldots, d\}$ let us define

$$
K_{i}=\operatorname{co}\left(u_{1}, \ldots, u_{i-1}, v, u_{i+1}, \ldots, u_{d}\right)
$$

provided vectors $u_{1}, \ldots, u_{i-1}, v, u_{i+1}, \ldots, u_{d}$ are linearly independent and $\epsilon_{i}=1$ if replacing u_{i} by v in u_{1}, \ldots, u_{d} preserves the orientation and $\epsilon_{i}=-1$ if replacing u_{i} by v in u_{1}, \ldots, u_{d} reverses the orientation. Finally, let I be the set of all i for which vectors $u_{1}, \ldots, u_{i-1}, v, u_{i+1}, \ldots, u_{d}$ are linearly independent.

We can write

$$
\begin{equation*}
[K] \equiv \sum_{i \in I} \epsilon_{i}\left[K_{i}\right] \quad \text { modulo rational cones in hyperplanes } \tag{38.4.1}
\end{equation*}
$$

and we note that

$$
\text { ind } K_{i}=\left|\alpha_{i}\right| \operatorname{ind} K \leq(\operatorname{ind} K)^{(d-1) / d}
$$

If we iterate the procedure n times we obtain a decomposition of $[K]$ (modulo lowdimensional cone that can be handled separately) as a signed linear combination of at most d^{n} indicators of cones of indices not exceeding (ind $\left.K\right)^{\left(\frac{d-1}{d}\right)^{n}}$. Hence, if d is fixed in advance, we will need only

$$
n=O(\log \log \operatorname{ind} K)
$$

steps to achieve a unimodular decomposition (modulo lower-dimensional cones) with

$$
(\log \operatorname{ind} K)^{O(1)}
$$

cones.
The following "duality trick" allows one to discard lower-dimensional cones completely. Namely, let us apply the algorithm to the polar cone K°. Hence, from (38.4.1), we obtain

$$
\left[K^{\circ}\right] \equiv \sum_{i \in I} \epsilon_{i}\left[K_{i}\right] \quad \text { modulo rational cones in hyperplanes, }
$$

where K_{i} are unimodular cones. From Theorem 36.2, we get

$$
[K] \equiv \sum_{i \in I} \epsilon_{i}\left[K_{i}^{\circ}\right] \quad \text { modulo rational cones with lines. }
$$

Moreover, from Problem 2 of Section 38.3, we conclude that K_{i}° are unimodular cones. From Theorem 31.5, we obtain the corresponding identity for the generating functions:

$$
f(K, \mathbf{x})=\sum_{i \in I} \epsilon_{i} f\left(K_{i}^{\circ}, \mathbf{x}\right) .
$$

