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1. LATTICES: DEFINITION AND EXAMPLES

We work in a finite-dimensional real vector space V endowed with an inner
product (z,y) (hence V is Euclidean space) and the corresponding Euclidean norm

]l = v/ (, ).
(1.1) Definitions. A lattice A C V is a discrete additive subgroup of V' which
spans V. That is, span(A) =V, x —y € A for all z,y € A (additive subgroup) and
there is an € > 0 such that B.NA = {0}, where B, = {x € V : ||z| < €} is the ball
of radius € (discrete). The dimension of the ambient space V is called the rank of
lattice A and denoted rank A.

Lattices Ay C V4 and Ay C V5 are isomorphic if there is an invertible linear
transformation ¢ : V3 — V5 such that ||¢(z)|| = ||=|| for all z € V; (so that ¢ is an
isometry) and ¢ (A1) = As.

(1.2) Problem. Let A C V be a lattice. Show that AN K is a finite set for every
bounded set K C V.
(1.3) Examples.

(1.3.1) Lattice Z™. Let V = R"™ with the standard inner product

n
(a;,y)zZ:ciyi where x = (z1,...,2,) and y=(y1,-..,Yn)-

i=1

Let Z™ C R™ be the set consisting of the points with integer coordinates,
7" = {(331,... JETp): X, €Z for i=1,... ,n}.
(1.8.2) Lattice A,. Let us identify V with the hyperplane H C R"*! defined by
the equation z; + ...+ x, 41 = 0. We let
A, =7"""'NH.
(1.8.3) Lattice D,,. Let V =R" and let

Dn:{(zcl,...,:cn)EZ”: 1 +...+x, =0 m0d2}.

(1.3.4) Lattice D;. Suppose that n is even. Let D, C R™ be the lattice of
Example 1.3.3 and let us define u € R™ by

_(1 1)
u = 57 5)
—_——

n times
We let
DI =D, U (D, +u).

(1.8.5) Lattices Es, Bz and Eg. We denote Eg = Dy, E; = Eg N H, where
H C R8is the hyperplane defined by the equation z1+...+xg = 0, and Eg = EsNL,
where L C R® is the subspace defined by the equations 1 + g = @9 + T3 + 24 +
rs +x6 + 27 =0.

(1.4) Problem. Prove that Z", A,, D,, D}, Es, E; and Fg are indeed lattices.
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2. LATTICE SUBSPACES

(2.1) Definitions. Let A C V be a lattice and let L C V be a subspace. We say
that L is a A-subspace or just a lattice subspace if L is spanned by points from A,
or, equivalently, if AN L is a lattice in L.

For a set A C V and a point x € V', we define the distance

dist(z. A) = inf ||z — v
ist(z, A) ylgAHw yll

In what follows, we denote by |«] the largest integer not exceeding a real number
« and we denote {a} = a — |a]. Clearly,

0 < {a} <1 forall acR.

The main result of this section is that if L C V is a lattice subspace such that
L # V then among all lattice points not in L there is a point nearest to L.

(2.2) Lemma. Let A C V be a lattice and let L C V, L # V, be a A-subspace.
Then there exists a point v € A\ L such that

dist(v, L) < dist(w,L) forall we A\ L.

Proof. Let k = dim L and let uq,...,u, be a basis of L consisting of lattice points,
sou; € Afori=1,... k. Let

k
H:{Zmi: 0< X\ <1 for izl,...,k}
=1

be the parallelepiped spanned by uq,...,ur. We claim that among the lattice
points that are not in L there is a point nearest to II. For p > 0, let us consider
the p-neighborhood of I,

II, = {az eV dist(x, 1) < p}.

Clearly, II, is bounded and hence II, N A is a finite set, cf. Problem 1.2. Let us
choose a sufficiently large p so that

M, (ANL) #0
and let us choose a point v € II, N (A \ L) nearest to II. Clearly,

(2.2.1) dist(v,II) < dist(w,II) forall we A\ L.
4



Let us choose any w € A\ L and let x € L be the point such that
dist(w, L) = [|w — z||.

We can write

k k

k
T = ZO%U@' =u+y where wu= ZL%‘JUI‘ and y = Z{%}Uz
i=1

i=1 i=1
Clearly, w € AN L and y € II. Moreover, w —u € A\ L and by (2.2.1)

dist(w, L) =llw — z| = [[(w —u) = (z — u)|| = [[(w —u) —y[| > dist(w —u, II)
> dist(v, 1) > dist(v, L),

which completes the proof. O

(2.3) Problems.

1. Let A C V be a lattice and let L C V be a A-subspace. Let us consider a
decomposition V. = L & W and the projection pr : V.— W with the kernel L.
Prove that pr(A) is a lattice in W.

2. Let L C R? be a line with an irrational slope. Prove that there exist points
w € Z% \ L arbitrarily close to L.

3. Let L C R? be a line with an irrational slope and let pr : R?2 — L be the
orthogonal projection. Prove that pr (ZQ) is dense in L.
3. A BASIS OF A LATTICE
We prove the following main result.

(3.1) Theorem. Let V be a d-dimensional Euclidean space, d > 0.
(1) Let A C V be a lattice. Then there exist vectors uy,... ,uq € A such that
every point u € A admits a unique representation

d
u:Zmiui where m; €7 for i=1,...,d.

=1

The set {uy,... ,uq} is called a basis of A.
(2) Let uy,...,uq be a basis of V' and let

d
A= {Z m;u; where m; € Z} .

i=1

Then A C V is a lattice.



Proof. We prove Part (1) by induction on d. Suppose that d = 1 so that we identify
V = R. Since A is discrete, there exists the smallest positive number a € A. We
claim that every point z € A can be written as x = ma for some m € Z. Replacing
x by —ux, if necessary, without loss of generality we may assume that > 0. Then
we can write

r=pa = |pla+ {p}a for some p>0.

We observe that |u]a € A and hence {u}a € A. Since 0 < {u}a < a we must have
{p} = 0. Therefore p is integer and a is a basis of A.

Suppose that d > 1. Let us choose d — 1 linearly independent lattice points and
let L be the subspace spanned by those points. Hence L is a A-subspace and LN A
is a lattice in L. By the induction hypothesis, we can choose a basis u1,...,uq—1
of lattice LN A in L. By Lemma 2.2, there is a point ug € A\ L such that

dist (ugq, L) < dist(w,L) forall we A\ L.

We claim that uq,...,uq_1,uq is a basis of A. Indeed, let us choose any u € A, so
we can write
d
u = E au; for some aq,...,aq € R.
i=1
Let
d—1
v=u— |aglug ={aq}uqg+ E U
i=1

Clearly, v € A and
dist(v, L) = dist ({agq} ug, L) = {agq}dist (ug, L) < dist (ug, L),

from which it follows that v € L. Hence {ay} = 0 and ayg € Z. Then u — agug €
A N L and by the induction hypothesis we must have «aq,...,aq-1 € Z, which
completes the proof of Part (1).

To prove Part (2), let us consider the map T : R? — V|

d
T(Oq, NN ,ad) = Zalul
i=1

Then A =T (Zd). Clearly, A is an additive subgroup of V' which spans V', and
since T is invertible, A is discrete. L]

(3.2) Problems.
1. Construct bases of lattices Z", A,, and D,,, see Example 1.3.
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2. Prove that
ur = (2,0,0,0,0,0,0,0), us = (~1,1,0,0,0,0,0,0), us = (0,—1,1,0,0,0,0,0),
Ug = (0707 _17 170707070)7 Us = (070707_171707070)7 Ue = (07070707_1717070)7
1 11 1 1 1 1 1
'LL7—(0,0,0,0,0,0,—1,1,0), ug = <§7 57 57 57 57 57 57 5)
is a basis of Fg, see Example 1.3.5.

3. Let A C R? be a lattice. Prove that there is a basis u,v of A such that the
angle o between u and v satisfies 7/3 < o < 7/2.

4. Let A be a lattice. A set of vectors ui,...,ur € A is called primitive if
Uy, ...,ur is a basis of A Nspan{uy,...,ur}. Prove that a primitive set can be
appended to a basis of the lattice.

4. THE DETERMINANT OF A LATTICE

(4.1) Definition. Let A C V be a lattice and let uq, ... ,uq be a basis of A. The

set .
H:{Zaiui: 0<aq; <1 for izl,...,d}
i=1

is called the fundamental parallelepiped of basis uq, ... ,uq and a fundamental par-
allelepiped of lattice A.

(4.2) Lemma. Let A C V be a lattice and let I1 be a fundamental parallelepiped
of A. Then every point x € V can be written uniquely as x = u+y for u € A and
y € II. In other words, lattice shifts {I1+u: wu € A} cover the ambient space V
without overlapping.

Proof. Let II be the fundamental parallelepiped of a basis uq,...,uqs of A. An
arbitrary point x € V' can be written as

d
x:Zaiui for some «aq,...,aq € R.
i=1
Letting
d d
U:ZL%‘JW and y:Z{ai}Ui7
i=1 i=1

we conclude that x = u + y, where u € A and y € II.
To prove uniqueness, suppose that x = u; + y1 = ug + y2 where uy,us € A and
y1,y2 € II. Therefore,

d d
y1:Zaiui and y2:ZBiui for some 0<q;,B3; <1 for i=1,...,d.
i=1

i=1
Then y; — y2 = ugy — u; € A from which we must have that a; — 8; € Z for
1 =1,...,d. Therefore, a; = 3; for i = 1,...,d and hence y; = y> and u; = us.
O



(4.3) Theorem. Let A C V be a lattice. Then every fundamental parallelepiped
IT of A has the same volume, called the determinant of A and denoted det A. Fur-
thermore, det A can be obtained as follows.
Let B,={x €V : |z| < p} be the ball of radius p. Then
i AN B, 1
lim = .
p—+oo vol B, det A

In other words, det A is “the volume per lattice point”. More generally, if x € V is
apointandx+A={x+u: €A} isa translation of A then
ANB 1
lim (@ +A) N B, = )
p—r+o0 vol Bp det A

Proof. Let II be a fundamental parallelepiped of A. Let
X,= |J @d+uw).
ueB,NA

By Lemma 4.2, we have

vol X, = |B, N Al volII.
Since II is bounded, we have II C B, for some o > 0 and so X, C B,;,. On
the other hand, by Lemma 4.2 every point in B,_, lies in some translation IT + u,
where necessarily ||u|| < «. Hence B,_, C X,,.

Summarizing,
volB,_o < volX,=|B,NA|volll < Bjiq,.
Since
1B N + dimV
(4.3.1) lim —o—eke gy (229 — 1,
p—+oo  vol B, p—r—+00 p
we conclude that
: |B, N Al 1
lim = .
p—r+oo vol B, vol IT

In particular vol II does not depend on the choice of the fundamental parallelepiped
IT.
More generally, for an arbitrary z € V and £ = ||z||, we have
T+ (Bp—¢NA) C ByN(z+A) C x+ (BppeNA),
from which
By-eNAl < [B,N(@+A)] < [Byye Al
Using (4.3.1), we conclude that
|B, N (x+ A)| lim B, NAl 1

li = = .
p—1>m+oo vol B, p—+oco vol B, det A




(4.4) Problems.
1. Let A C V be a lattice and let

q):{xEV: |lz|| < ||z —ul| forall ueA}.

Prove that vol ® = det A.
2. Let A C V be a lattice and let us define

A= {xe Vi (z,u) GZ}.
Prove that A* is a lattice (it is called dual or reciprocal) to A and that

(det A*) (det A) = 1.

3. Prove that (A*)" = A.
4. Prove that (Z")" = Z™ and that Ef = Fg.

5. A SUBLATTICE OF A LATTICE

(5.1) Definitions. Let A C V be a lattice. Suppose that Ay C A is another
lattice in V', so rank Ay = rank A. Then A is a subgroup of A (we say that Ag
is a sublattice of A). We consider cosets a + Ag = {a +u: wu€ AO} for a € A.
Every two cosets either coincide or do not intersect. The cosets form an abelian
group under addition, called the quotient and denoted A/Ag. The order |A/Ag| of
the quotient is called the index of Ag in A.

(5.2) Theorem. Let A be a lattice and let Ag C A be a sublattice. Let II be a
fundamental parallelepiped of Ag. Then the set I1 N Ay contains each coset A/Ag
representative exactly once. Furthermore,

det AO
det A~

[N A] = [A/Ao| =

In particular, the index |A/Ao| is finite.

Proof. By Lemma 4.2, for every x € A there is a unique pair of y € I and u € Ay
such that z = y + u. Hence we must have that y € A, so y is a coset representative
of z in II. This proves that [IINA| = |A/Ao].

Let S be a set of the coset representatives, so

A= (s+M).

s€S
Let B, be a ball of radius p. Hence
By N A :Z|BPH(S+AO)|-

seS
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By Theorem 4.3,

lim |B,NAl 1 i |IB,N(s+Ao)| 1
p—r+oo vol B, ~ det A p—>+oo vol B, detAp’

which proves that
det AO

det A

= |A/Aol.

(5.3) Problems.
1°. Let ui, ... ,uq € Z% be linearly independent integer vectors and let

d
H:{Zaiui: 0<aq; <1 for izl,...,d}.
i=1

Prove that ‘H N Zd‘ = volII.

2. Prove that linearly independent vectors u,v € Z? form a basis of Z? if and
only if the triangle with the vertices 0,u,v does not contain any point from Z?2
other than 0, v and v.

3. Construct an example of linearly independent vectors u,v,w € Z3 with an
arbitrary large volume of the tetrahedron with the vertices 0,u,v and w and no
integer points in the tetrahedron other than 0, u,v and w.

4. Prove Pick’s formula: if P C R? is a convex polygon with integer vertices and
non-empty interior then

PN 77| :volP—l—%‘ﬁPﬂZQ‘ +1,

where OP is the boundary of P.

5. Let uq,...,uq be a basis of lattice A C V and let vq,...,v4 € V be some
vectors. Let v; = Z;l:l pijuj fori=1,... ,d andlet M = (p;;) be the d x d matrix
of the coefficients p;;. Prove that vy,...,vq is a basis of M if and only if M is an

integer matrix and det M = +1.

6. Prove the existence of the Smith normal form: if Ay is a sublattice of A then

there exists a basis uq, ... ,uq of A and positive integers my, ... ,mg such that m;
divides m;4q1 fori =1,...,d—1 and v1 = myuq,...,vq = mqug is a basis of Ag.

7. Let a1, ..., aq be coprime integers and let n be a positive integer. Let A C Z¢
be the set of points (my,...,mq) defined by the congruence

aimi+...+agmg =0 mod n.

Prove that A is a sublattice of Z% and that det A = n.
10



8. Let aq, ... ,aq+1 be coprime integers and let V' be the d-dimensional Euclidean
space identified with the hyperplane H C R¥*! defined by the equation a;z; +
coot+agr1rg41 = 0. Let A = 791 N H. Prove that A is a lattice in V and that

det A = \/a%—l—...—i—airl.

9. For lattices of Example 1.3 prove that det Z" =1, det A,, = vn + 1, det D,, =
2, det D}t =1, det E; = v/2 and det Eg = /3.

10. For k < d let {vi,...,v;} be a linearly independent subset of Z?. Let us
consider the k x d matrix M whose (i, j)-th entry is the j-th coordinate of v;. Prove

that the set {vi,...,vr} is primitive (see Problem 4 of Section 3.2) if and only if
the greatest common divisor of all k£ x k minors of M is 1.

6. MINKOWSKI THEOREM

We start with a lemma, also known as Blichfeldt’s Theorem.

(6.1) Lemma. Let A C V be a lattice and let X be a measurable set such that
vol X > det A. Then there are points x,y € X such that v —y € A\ {0}.

Proof. Let us choose a fundamental parallelepiped IT of A. For u € A let us define
Xy={zel: z4uex}=(M+u)nX)-u
By Lemma 4.2, the set X is a disjoint union

X = Xutuw),
ueA

and hence

Z vol X,, = vol X > det A = volIl.

u€eA
Therefore, there are two points u,v € A such that X, N X, # 0 and u # wv.
Therefore, there is a point z € Il such that t = z2+u € X andy =2+ v € X.
Then we have z —y =u —v € A\ {0}. O

(6.2) Problems.

1. Let X C V be a measurable set such that vol X > mdet A for some positive
integer m. Prove that there exist m+ 1 distinct points 1, ... , 2,41 € X such that
x; —x; € A for all 7 and j.

2. Let f: V — R be a non-negative integrable function and let A C V' be a
lattice. Prove that there is a 2z € V' such that

1
uezAf(u—f—z) > otk Vf(a:) dx.

3. Let X C V be a compact set such that vol X = det A. Prove that there are
points z,y € X such that x —y € A\ {0}. Give an example showing that the
statement is not true if X is not compact.

11



(6.3) Definitions. A set A C V is called conver if for every z,y € A, we have
[z,y] C A, where [z,y] = {az + (1 —a)y: 0 < « < 1} is the interval with the
endpoints z and y. A set A C V is called symmetric if —x € A whenever x € A
(we write A = —A in this case).

Now we prove the famous Minkowski Theorem.

(6.4) Theorem. Let A C V be a lattice and let dimV = d. Let A C V be a
symmetric convex set such that volA > 2%det A. Then there exists a point u €
A\ {0} such that u € A.

Proof. Let
1 1

Then vol X = 27%vol A > det A and hence by Lemma 6.1 there are points =,y € X
such that x —y =u € A\ {0}. Hence

1 1
= —(2 —(—2y).
w=5(20) + 5(~2)
We have 2z, 2y € A and since A is symmetric, we also have —2y € A. Finally, since
A is convex, we conclude that u € A. O

(6.5) Problems.

1. Prove that if volA = 2%det A and if A is convex, symmetric and compact
then A contains a non-zero lattice point.

2. Let A C V be a lattice and let A C V' be a symmetric convex set such that
vol A > m2%det A, where d = dimV and m is a positive integer. Prove that A
contains at least m pairs of distinct non-zero lattice points tu; for i =1,... ,m.

3. Let A C V be a lattice, where dim V' = d and let
K= {x eV: |z <z —u| forall wue A}.

Let A = 2K. Prove that A is convex, symmetric, that vol A = 2¢det A and that A
does not contain a non-zero lattice point in its interior.

4. Let A be a lattice of rank d and let X C A be set such that | X| > 2¢. Prove
that there are two distinct points z,y € X such that (z +vy)/2 € A.

5. A set X C A is called lattice-convex if X = AN A, where A C V is a convex
set. Let rank A = d and let {X;} be a finite family of lattice-convex sets such that
the intersection of every 2% of the sets is non-empty. Prove that the intersection of
all sets X; is non-empty (Doignon’s Theorem).

6*. Let A C V be a compact symmetric convex set such that vol A = 2¢det A
and A does not contain a non-zero lattice point in its interior. Prove that there are
n <249 — 1 vectors u; € A\ {0} and real numbers a4, i = 1,...,n such that

A:{:ceV: |(u;, )| < o for izl,...,n}
12



(Minkowski’s Theorem).

7*. Let A C R? be a compact symmetric convex set which does not contain a
non-zero point of Z¢. Prove that

2
27 = vol A + 4% (vol A) ™" Z / exp {—2mi(u, x)} dx
1A

u€eZ4\{0}

(Siegel’s Theorem).

Hint: Define the indicator [X] of a set X C R? as the function [X] : R — R

where
1 fzeX

[X](x):{o it zd X

Let

dx)=> [u—i— %A} ,

u€eZ4

and apply Parseval’s formula to ¢.

7. THE VOLUME OF A UNIT BALL

We need the formula for the volume of the unit ball in R%. Recall that the
Gamma function is defined by the formula

+oo
[(z) = / t*“le7tdt for x>0.
0

(7.1) Problems.
1. Prove that I'(x +1) = zI'(x). Deduce that I'(z) = (z — 1)! for positive integer
x.

1
2*. Prove that I' <§) = /.

3*. Deduce Stirling’s formula

(z+1)=V2rzz®e ™ (1+0 (z7")) as z— +o0.

(7.2) Lemma. Let 84 be the volume of the unit ball
BY={zeR?: ||z <1}

in R%. Then

/2

I'(1+4)
13
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Proof. Let
§(p) = {w € R : Jlal| = p)

denote the sphere of radius p and let k4_1 denote the surface area of the unit sphere
S4=1(1), so the surface area of S¥=!(p) is kg_1p?~ . Let us denote temporarily

+oo 5
/ e dxr =M\

Then, using the polar coordinates and a substitution t = p?, we can write
P P +oo
\d :/Rd ozl gy — Kd_lf e g/ H(d-2)/2,-t g4
0

2 0
Rd—1 d
= ' —
rr(2)

from which

- 224
d—1 = =7av-

r(s)
Therefore,

' d—1 Kd—1 A7
defﬁd—p‘dpz — = ~
o d T(1+9)

Since 8, = ™ we conclude that A = /7 and the proof follows. O

8. AN APPLICATION: LAGRANGE’S FOUR SQUARES THEOREM

As an application of Minkowski’s Theorem (Theorem 6.4), we prove Lagrange’s
Theorem that every positive integer is a sum of four squares of integers. The proof
below was given by Davenport.

(8.1) Lemma. Let ai,...,a, € Z%\ {0} be integer vectors, let my,... ,my be
positive integers and let us define

A:{erd: (a;,z)y =0 mod m; for izl,...,k:}.

Then A is a lattice in R* and det A < myq - - -my.

Proof. Clearly, A is a discrete additive subgroup of Z¢. Moreover, A spans R? since
mZ* C A for m =myq - --my.

Let us estimate the index of A in Z¢. A coset of Z9/A consists of the points
x € Z% for which the values of {a;, x) have prescribed remainders modulo m;. Since
the number of all possible k-tuples of remainders doesn’t exceed my ---my, we
conclude that |Z¢/A| < my ---my. Since det Z? = 1, the proof follows by Theorem
5.2. 0

14



(8.2) Theorem. A positive integer n is a sum of four squares of integers.

Proof. Suppose first that n is a prime. We claim that one can find integers a and
b such that
a2+ +1=0 modn.

If n = 2, we can choose a = 1 and b = 0. If n is an odd prime then the (n + 1)/2

numbers a? : 0 < a < n/2 must be distinct modulo n, since if a? = a3 mod n for

some 0 < aj,as < n/2 we must have (a1 — az)(a; + az) =0 mod n, which implies
that a; = ao. Similarly, the (n + 1)/2 numbers —1 — 4% : 0 < b < n/2 must be
distinct modulo n. Therefore, for some a and b we must have a?> = —1 —b?> mod n
or, equivalently, a2 +b%> +1 = mod n.

Let us define a lattice A C Z* by

r1 = axs + bry mod n}

( 1,42,4L3, 4) [1’;2Ebl’3—&$4 mod n

By Lemma 8.1, A is indeed lattice and det A < n?.
Moreover, for any (x1,z2,z3,24) € A, we have

i+ a3 +a;+zi=(®+0°+1) 2l + (a®+b°+1)2f =0 modn.
Let
B = {(.’131,.’132,.’133,.’134) cR*: 2 tadtaiial< 2n}
be the open ball of radius v/2n. By Lemma 7.2, we have
vol B = 27212 > 16n? > 2* det A.

Therefore, by Theorem 6.4, there is a non-zero vector (z1, z2, 3, x4) € BNA. Since
we have

2?2t +ri4+23=0 modn and 27+ 23+ 23+ 27 < 2n,
we must have
24 424 224 02
x] + x5+ 23 +7) =n,

which is the desired representation.
Since every positive integer n > 1 is a product of primes, the result for general
integer n follows from the identity

(21 + @3 + a5 +23) (Y1 +y2 +y5 +yi) =21 + 25 + 25 + 2 where
21 = T1Y1 — T2Y2 — T3Y3 — T4l4,
29 = X1Y2 + T2Y1 + T3Ys — T4Y3,
23 = X1Y3 — T2Y4 + T3Y1 + TaY2,

Z4 = X1Y4 + T2Ys — T3Y2 + T4Y1.

15



(8.3) Problems.

1. Let k be a positive integer. Prove that if there is a solution to the congruence
22 +1 =0 mod k then k is the sum of two squares of integers. Deduce that every
prime number £ =1 mod 4 is the sum of two squares of integers.

2*. Prove the Jacobi formula:

+oo 4 +oo
k? ¢*
(£ ) it
e

k=—oc — (1+ (—)*)*

and deduce from it that the number of integer vector solutions (zi,x2, 3, x4) of
the equation

2 2 2 2
r]+x3+x3+x5 =n,

where n is a positive integer, is equal to 8 times the sum of the divisors of n that
are not multiples of 4.

Hint: For a short proof, see G. Andrews, S.B. Ekhad, and D. Zeilberger, A short
proof of Jacobi’s formula for the number of representations of an integer as a sum
of four squares, Amer. Math. Monthly 100 (1993), no. 3, 274-276.

9. AN APPLICATION: RATIONAL APPROXIMATIONS OF REAL NUMBERS

Let us fix a real a. Then for any positive integer ¢ we can find an integer p such
that

o — —

It turns out that for infinitely many values of ¢ we can do essentially better.

(9.1) Theorem. Let us choose a real ae. Then, for any positive integer M there
exists an integer ¢ > M and an integer p such that

Q
I
|
IA

1
q_2 .

Proof. Without loss of generality we assume that « is irrational. Let us choose a
positive integer @ and consider the parallelogram A in R? defined by the inequalities
|z|] < @ and |ax —y| < 1/Q.Then A is compact, convex, symmetric and vol A = 4.
Therefore, A contains a non-zero integer point (q,p) (cf. Problem 1 of Section
6.5). We must have g # 0 since otherwise we necessarily have p = 0. Since A is
symmetric, we can always choose ¢ > 0. Then we have

(9.1.1)

p ’ 1
q



and 0 < g < @, from which it follows that

1
q_2 .

o
I
|
IA

It remains to show that ¢ can be chosen arbitrarily large. Since « is irrational,
for any positive integer M we can choose a sufficiently large @ so that (9.1.1) cannot

be satisfied with any 1 < ¢ < M. O
(9.2) Problem.
1. Prove that for any real aq,...,«, there exists an arbitrarily large integer

q > 0 and integers pq, ... ,p, such that

1
ap ——| < —= for k=1,... n.
q gt

(9.3) Continued fractions. The following construction of continued fractions
allows one to obtain approximations such that

‘ <
o — —

for arbitrarily large g. The constant 1/4/5 cannot be made smaller.
Given a real o, we let

a=|al+{a} and ap=|¢]
If {a} = 0, we stop. Otherwise, we let

_
Aoy

If {8} = 0, we stop, otherwise we update

B B=18]+{B} and ay=|[f].

1
5;@

and proceed as above. In the end, we get a potentially infinite fraction

1
a = ag+ 1

Gt
az + —

We write
a = [ag;ar,az,...].
17



For example,

1 1 1
V2=14V2-1=1+ =14+ — =1+
V2+1 9 1

V241

2
+2—I—...

We obtain the k-th convergent of o by cutting the continued fraction at ag:

1 p

lag; a1, as, ... ax] = ag + - _ Pr

CLl —|— 1 qk}
a2+ =
ce o+ —
ag

For example,

17 41

1:2,2,2] = —~ and [1;2,2,2,2] = —.
[ ]=15 and | =5
It turns out that convergents provide very good rational approximations to real
numbers. Note, for example, that

17 41
— — ~ —0.002 — — 0. 42.
V2 o 0.0025 and V2 59 0.000

Similarly, 7 = [3;7,15,1,...,],

29 355 22 355
3.7 == [3:7,15,1] = — d 7—2~ —0.0013 — T~ 266%x1077.
3,7 == B715 1= g and mo— T 113 %

(9.4) Problems.
In the problems below, we let

Pk
a = |ap;a1,...,ak,...] and [agp;ai,...,ar] =—.

gk
1. Prove that
Dk = QpPrk—1 + Pr—2 and qp = apqr—1 +qp—2 for k>2.
2. Prove that
Pho1Qk — PrQr—1 = (1) for k> 1.
3. Prove that

QGPh—2 — PrQr—2 = (=) tay  for k> 2.

18



4. Prove that

1
'a _ P < for k> 0.
qk qrdk+1
5*. Prove that for k£ > 2 at least one of the three inequalities
Dk 1 Pk—1 1 ‘ Dk—2 1
a——| < , o — < or |a— <
ar |~ Vb Qr-1] " q2_V5 —2| " ¢} ,V5
holds.
1 5
6. Let o = +2\/_. Prove that o = [1;1,...,1,...] and that
o Pel__ L
Ak a} (V5 +er) ’

where ¢, — 0 as kK — +o00.

See A. Ya. Khinchin, Continued Fractions, Dover Publication, Mineola, New
York, 1997.

10. SPHERE PACKINGS

(10.1) Definitions. Let A C V be a lattice of rank d. The packing radius p(A) of
A is the largest number p such that for no two open balls of radius p centered at the
lattice points intersect. Equivalently, 2p(A) is the length of the shortest non-zero
vector in A. The packing density o(A) is defined as

d/2 d
o(A) = —~ /;(A) .
F(1+§)detA

In other words, the packing density of A is the proportion of the space occupied by
the balls centered at the lattice points and of radius p(A).

Lattices A C V7 and As C V5 are called similar (denoted Aq ~ Ag) if there is a
constant v > 0 and a linear transformation 7" : V7 — V; such that ||T'(z)|| = || z||
for all z € Vi and Ay =T (Ay).

Lattices having high packing densities are of interest.

(10.2) Problems.
1. Prove that

p@) = 1 04 =p(D) =2 for n>2,
p(DF) =2 for n>s

p(DF) = 5= p(DF) = 5. p(De) =[5 and
p(Es) = p (Br) = L.



2. Prove that similar lattices have equal packing density.

3. Prove that Dy ~ Z? that D5 is isomorphic to As, that DI is isomorphic to
Z* and that D} ~ Dy.

4. Prove that

o(Z) =1, o (As) = \/% ~ 0.9069, o (A3) = o (Ds) = \/Ll_S ~ 0.7405
w2 2 3
7 (D) = §5 = 06169, 0 (Ds) = 155 = 0,465, 0 (Ey) = 2z =~ 0.3729,
3 4
o(E7) = T8 ~ 0.2953 and o (Fg) = 381~ 0.2537.
5. Check the inequalities
o (As) > 0 (2?)
0 (A3) =0 (D3) > 0 (Z°)
o (Dy) > 0 (Asg) > 0 (Z*)
0(Ds) >0 (A45) >0 (Z5)
o(Eg) >0 (Dg) >0 (A) >0 (ZG)
o(E7) >0 (D7) >0(A7) >0 (Z") and
o (Eg) > o (Dg) > o (As) > o (Z°).

6. Let V be a d-dimensional Euclidean space and let X be an (infinite) set such
that ||z — y|| > 2 for any =,y € X such that = # y. We define the density of the
unit sphere packing with centers at X as

9/21B.NX
o(X) = limsup — |dr | :
r—-+4oo F (]_ -l- 5) VOIBT

where B, is the ball of radius r centered at the origin.
Prove that one can find such a set X so that o(X) > 27¢ (the Gilbert - Var-
shamov bound).

7. Let A C R? be a lattice with basis

(1,0,0), <%,?,O>, <0,0, \/g)
1 1 2
(b ).
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Let
X=AU(u+A).
Prove that X is not a lattice and that o(X) = o (D3).
8. Identify the 24 shortest non-zero vectors of Dy.

9. Identify the 240 shortest non-zero vectors of Eg.
10. Let

||x||w:‘_r{1axd|xi| for == (x1,...,2q).

) )

Prove that for any lattice A C R? there is a vector x € A\ {0} such that
|2]loe < (det A)Y?.
11. Prove that 1
p(A) < 5V&(det AV
for a lattice A of rank d.

11. THE LEECH LATTICE

Our goal is to construct a remarkable lattice of rank 24, called the Leech lattice.
We follow the construction of R. Wilson, Octonions and the Leech lattice, Journal
of Algebra, 322(2009), 2186-2190.

(11.1) Octonions. We introduce the algebra of octonions, following H.S.M. Cox-
eter, Integral Cayley numbers, Duke Math. J., 13(1946), 561-578.
We define octonions as formal linear combinations

To + XT1€1 + Toa + T3€3 + Ta€y + T5€5 + TgCg + Trer,

where g, 21,22, 3, 24,25, 26,27 € R. We multiply octonions according to the
following rules.

First,
le; = e;1=¢; and e?:—l for i=1,...,7.
Next,
eie;j = —eje; forall i # j.
Furthermore

€1€2 = €4, €2€3 = €5, €364 = €5, €4€5 = €7, €5€5 = €1, €6€7 = €2, €7€1 = €3

(note that the remaining six identities can be obtained from the first identity by a
cyclic shift of the indices), and the products of the generators from the following
seven triples are associative

{61762764}7 {62763765}7 {63764766}7 {64765767}7

{657 €6, 61} ) {667 €7, 62} ) {677 €1, 63} )
21
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so, for example,
(e1e2) es = €1 (ezeq), ete.

Finally, the product of any triple involving only two or one generator e; is associa-
tive, so, for example,

(6663) €g — €4 (6366) .

These rules suffice to figure out any product e;e;. For example,

e1es = (es€6) €6 = €5 (eses) = —es,

e2e6 = —egea = —eg (eger) = — (egeq) 7 = er,
eseg = e3 (egeq) = (eszez) eq = —eq  and

egeg = —egey = — (ezeq) e4 = —es (eqe4) = e3.

We define the conjugate

To + x1€1 + Toeo + T3€3 + Ty€q4 + Ts€5 + Tees + Tre7 =

Ty — X1€1 — T2€2 — X3€3 — XT4€4 — T5€65 — Te€e — T7€7
and the norm

|lxo + z1€1 + xoea + x3es + xaeq4 + xres + xoe + xre7|| =

xd + 23 + a3 + of + xf + 2 + af + 23,

thus making the space of octonions Euclidean space R3.

(11.2) Problems.
1°. Build a 7 x 7 multiplication table for eq, es, €3, e4, €5, €6 and e7.

2°. Let {i,j,k} be a triple of distinct indices, not equal to one of the triples of
(11.1.1). Prove the anti-associativity relation:

(eiej) e, = —e; (ejex) .

3. Prove that (z-y) =7 -7 for every two octonions x and .

4. Prove the Moufang laws:

z(w(zy)) = (
z(2(y2)) = (
(z2)(yz) = (2(2y))z = 2((xy)=)
for every three octonions x,y and z.
5. Prove that the algebra generated by any two octonions is associative.

6. Prove that ||z||*> = 2T for every octonion .

7. Prove that ||xzy| = ||=||||y|| for every two octonions x and y.
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(11.3) The Leech lattice. First, we construct a copy of lattice Fg in the space of
octonions. As in Example 1.3.3, we define Dg as the lattice consisting of all points

To + X1€1 + T2 + T3€3 + T4€4 + T5€5 + T + Trl7,
where xz; €Z for i=0,...,7 and
To+x1 +x2+23+2T4+ x5 +26 +27+27 =0 mod 2.

Next, we let

1
U:§<—1+61+62+63+64+65+66+€7).

We let
L:D8U(U+D8).

Now, we consider the space V' of all triples (z,y, z), where z,y and z are octonions.
We make it 24-dimensional Euclidean space by introducing the norm

\/IIIEIIQ + llyll* + [l=[
5 .

Iz, y, 2)| =

Now we define the Leech lattice Aoy C V as the set of all triples (z,y, z) such that

Y,z € L7
r+y,r+z,y+2z € Lu;
r+y+z € Lu.

Here by Lu, respectively Lu, we understand the lattice obtained by multiplying
lattice L point-wise by u, respectively by .

(11.4) Problems.
1°. Check that L is isomorphic to Fg.
2. Prove that Le; = L for i =1,...,7 and that Lu C L.

3°. Prove that if (x,y, z) € Agg then vectors (z, z,y), (y,z, 2), (y, 2, 2), (2,2,y)
and (z,y,x) also lie in Agy.

4. Prove that 2L C Lu, 2L C Lu and that Lu + Lu C L (in fact, LuN Lu = 2L
and Lu+ Lu = L).

5. Prove that for every x € L we have

(233, 0, O) € A24
(.CC’LL, T, _'CC) < A24
(zw, zu, 0) € Agy.

6. Prove that ||z|? is an even integer for every x € Agy. Deduce that Aoy C AJ,.

7*. Prove that A3, = Aay.
23



8. Prove that ||z|| > 2 for all x € Agy.

9*. Prove that if (x,y, z) € Aoy then (z,ye;, ze;) € Aoy for i =1,...,7. Deduce
that if (x,y, z) € Agg then (z,y, —2) € Aay.

10*. Let us denote 1 = eg. Prove that if = is a shortest non-zero vector in L
then

(2{13, O, 0) € A24,
(zu, zue;, 0) € Ayy for i=0,...,7 and

((zu)e;, xej, (xej)ej) € Aoy for 4,j=0,...,7.
Accounting for permutations of the coordinates and sign changes, there are
3-2404+3-240-16+3-240-16 - 16 = 196, 560

shortest non-zero vectors of length 2 in Agy.

11°. Conclude from Problems 5, 7 and 8 above that p (Agy) =1, det A = 1 and

hence
12

o (Agy) = % ~ 0.001929574313.

12. THE MINKOWSKI - HLAWKA THEOREM

Our goal is to prove that there is a lattice of rank d with a high packing density.
We will prove that for every d and o < 279 there is a lattice of packing density
at least 0. A simple modification of our construction improves the bound to any
o < 279! and then to ¢ = 2791, There is a further (much more technical)

+oo
improvement to o = ((d)2'~9 for d > 2, where ((d) = Z n=.
n=1

(12.1) Lemma. Let M C V be a Lebesque measurable set, let A C V be a lat-
tice and let 11 be a fundamental parallelepiped of A. For x € V, let x + A =
{r+u: ue A} be the translation of A and let |M N (x + A)| be the number of
points from x + A in M. Then

/ |M N (x+ A)| de = vol M.
Il
More generally, for an integer k # 0, we have
/ |M N (kxz+ A)| de = vol M.
Il

Proof. For u € A let us introduce a function f, : [ — R by

1 fzt+uecM

0 ifet+ud¢g M.
24
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Then
M (z+A)| =) fulx)

u€EA

and hence

/H|Mﬁ(az—i—A)|da::Z/Hfu(a:) dr = vol((Il +u) N M) = vol M,

u€EA u€EA

where the last equality follows by Lemma 4.2.
To handle the general case, without loss of generality we assume that k& > 0 (if
k < 0 we consider the parallelepiped —II instead). Substituting y = kz, we obtain

/|Mﬂ(ka:+A)|dx:k_d/ IMN(y+A)|dy for d=dimV.
i kIT

The parallelepiped k11 is the union of k¢ pairwise disjoint lattice translations IT+u :
u € A of the parallelepiped II. Since the function g(y) = |M N (y + A)| satisfies
gy +u) =g(y) for all y € A, we conclude that

k—d/k |Mm<y+A>|dy:/|Mm<y+A>|dy:V01M,
II II

The following is the Minkowski - Hlawka Theorem.

(12.2) Theorem. M C R? be a bounded Jordan measurable set, where d > 1.
Then, for any & > vol M there is a lattice A C V' such that det A = 6 and M N

(AN{0}) =0.
Proof. Without loss of generality we assume that volM < 1 and 0 = 1. Let
e1,...,eq be the standard basis of R? and let H be the coordinate hyperplane
Tqg = 0.

Let us choose a sufficiently small & > 0 (to be defined later) and consider the

translations
H, = H+ kaey, k€.

We denote My = M N Hy,. We choose o > 0 in such a way that for every z € M,
x = (x1,...,xq), we have

(12.2.1) zi| < o V@D for i=1,...,d-1
and

+o0
(12.2.2) a Y volg_y My < 1.

k=—0c0

25



While (12.2.1) can be satisfied with a sufficiently small «a since M is bounded,
(12.2.2) can be satisfied since vol M < 1 and M is Jordan measurable.
Let
u; = oz_l/(d_l)ei for i=1,...,d—1

and let Ag C H be the lattice with basis uy,...,uq—1. Hence det Ay = 1/a and
M N (Mg \ {0}) =0 by (12.2.1).

Let II be the fundamental parallelepiped of uq,... ,uq_1. For € II let us define
uq(r) = aeq + x and let A(z) C R? be the lattice with basis u1, ..., uq_1, uq(z).
Then det A(x) =1 for all x € II. We have

+oo
IMNA() = Y M Az)].

k=—o0

Choosing the origin in Hy at akeg, we identify Hj, = R~ and A(z)NH}, = kx+Ao.
Hence by Lemma 12.1, for k # 0 we have

/ |MkﬂA($>| dl’:/ |Mkﬁ(k$+A0>| dl‘:VOId_l Mk—l-
II II

Since voly_1 IT = 1/, by (12.2.2), we conclude that

1
I H—— M A d 1.
Vold_IH/H S MrnA)] ] de <
keZ\{0}
Therefore, there is an = € II such that |My N A(z)| =0 for all k € Z \ {0}. O

(12.3) Corollary. For any o < 2% there is a lattice A of rank d with the packing
density o(A) > 279,

Proof. Let B C R? be the standard Euclidean ball centered at the origin and of

radius 1. By Theorem 12.2, there is a lattice A C R? such that A N B = {0} and

det A = 071279 vol B. Hence we have p(A) > 1/2 for the packing radius of A and
vol B - p4(A)

o(A) = Ry e 0.

Rescaling

g (2o . A
- \volB
we obtain a lattice A’ € R? with det A’ = 1 and

g\ 1/d
pW) =3 (25) ~fem
2 \vol B 8me

by Stirling’s formula.
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(12.4) Problems.

1. Let ¢ : V.— R be a Lebesgue integrable function and let A C V be a lattice.
Prove that there exists a z € V such that

Z d(z+u) < 1 o(x) dx.

oA - detA \a

2. Let ¢ : V — R be a Riemann integrable function vanishing outside a
bounded region in V' and let € > 0 be a number. Prove that there exists a lattice
A C V such that det A =1 and

> et [ o) an

ueA\{0}

3. Let M C V be a bounded symmetric (that is, M = —M) Jordan measurable
set such that vol M < 2. Prove that there is a lattice A C V such that det A =1
and M N (A\ {0}) =0.

13. THE RECIPROCITY RELATION FOR THE PACKING RADIUS

(13.1) Lemma. Let A be a lattice of rank d and let A* be the dual lattice. Then
for the packing radii of A and A* we have

A ESY

p(A)-p(A7) <
Proof. 1t follows by the Minkowski Theorem (see Problem 11 of Section 10.2) that
1 1
p(A) < gVd(det )" and p(A7) < SV (det A7)

Since (det A) (det A*) =1 (see Problem 2 of Section 4.4), the proof follows. O

More precisely, it follows by the Minkowski Theorem (Theorem 6.4) or, equiva-
lently, from the fact that the packing density of a lattice does not exceed 1, that

p(A) < % (r <1+g))1/d (det )4 and

p(A*) < % (r <1+g))1/d(detA*)1/d,

which implies that



(13.2) Problems.
1°. Show by example that p (A) - p (A*) can be arbitrarily small.

2°. Let Ag C A be a sublattice. Prove that
p(A) < p(Ao) < [A/Aofp(A).

3°. Let A be a lattice of rank d and let uq, ... ,uq be linearly independent vectors
from A*. Prove that for any v € A\ {0} we have

gees

14. THE KORKIN-ZOLOTAREV BASIS OF A LATTICE
(14.1) Lemma. Let A C V be a lattice and let A* C V be the dual lattice. Let

Uy, ... ,uq be a basis of A and let vy,... ,vq be vectors such that

1 ifi+j=d+1
<ui7 Uj) = .
0 otherwise.

Then vy, ... ,vq is a basis of A*. Moreover, let H = vi- be the orthogonal comple-
ment of v1 and let Ag C H be the lattice with basis uy, ... ,uq_1. Letpr:V — H
be the orthogonal projection. Then A§ = pr (A*) and pr(ve),...,pr(vq) is a basis
of Aj.
Proof. Clearly, vq,...,vq € A*. Moreover, for any v € A*, we can write
d
v = Z@, Ui)Vd41—i)

i=1

and hence vq,...,v, is a basis of A*.

For every v € A* and every u € Ag we have
(u, pr(v)) = (u,v) € Z.
In particular, pr (ve),...,pr (va) € A§. Moreover, for every v € Aj we have
d—1

v="Y (v,u)pr (vas1-i),

1

)

and hence pr(va),...,pr(vg) is indeed a basis of Aj.

The following pair of bases is of a particular interest.
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(14.2) Definition. Let A be a lattice. An ordered basis uq,... ,uq constructed
as in Theorem 3.1 is called a Korkin-Zolotarev basis of A. That is, uy is a shortest

non-zero vector in A, and for k£ = 2, ... ,d vector uy is a closest vector to Ly_1 =
span (ug, ... ,ur—1) among all vectors in A\ Ly_1. An ordered basis uy, ... ,uq of
A such that

1 ifi+5=d+1
<ui7 Uj) = .
0 otherwise,

where vq,...,vq is a Korkin-Zolotarev basis of A*, is called a reciprocal Korkin-
Zolotarev basis of A.

Many interesting properties of Korkin-Zolotarev and reciprocal Korkin-Zolotarev
bases of lattices are established in

J.C. Lagarias, H.W. Lenstra, Jr., C.-P. Schnorr, Korkin-Zolotarev bases and
successive minima of a lattice and its reciprocal lattice, Combinatorica 10 (1990),
no. 4, 333 — 348.

Here are some of them.

(14.3) Problems.

1°. Let uy,...,uq be a Korkin-Zolotarev basis of lattice A. For k < d let
Ly = span (uq,...,ux) and let Ay C Ly be the lattice with basis uy, ... ,ui. Prove
that uq,...,uy is a Korkin-Zolotarev basis of Aj.

2°. Let uy, ... ,uq be a Korkin-Zolotarev basis of a lattice A C V. Let H = ui

be the orthogonal complement to uy, let pr : V.— H be the orthogonal projection
and let A" = pr(A) be a lattice, A" C H. Let u, = pr(u;j+1) fori =1,...,d— 1.

Prove that uf,...,u/,_; is a Korkin-Zolotarev basis of A’.

3°. Let uq,...,uq be a reciprocal Korkin-Zolotarev basis of lattice A. For k < d
let Ly = span (uy,...,ur) and let Ay C Lj be the lattice with basis ug, ..., ug.
Prove that uq,...,u; is a reciprocal Korkin-Zolotarev basis of Ay.

4. Let uq,...,uq be a basis of a lattice A. Let

Ly =span (uy,...,ux) for k=1,...,d andlet Ly={0}.
Prove that for any u € A\ {0} we have

|ul] > kix?igddist(uk, Ly—1).

) )

In particular,

1
> — i i 1)
p(A) > 5 k::(?’l?’ddlst (ug, Lk—1)
5. Let uy,...,uq be a reciprocal Korkin-Zolotarev basis of a lattice A and let

the subspaces L be defined as in Problem 4. Prove that

U

p(A) < 5 k:nll’i?’ddist (ug, Lk—1)-
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Hint: Using Lemma 13.1 prove that
d ..
p(A) < 3 dist (ug, Lg—1)-

Then use Problem 3 above.

15. THE COVERING RADIUS OF A LATTICE

(15.1) Definition. Let A C V be a lattice. The number

w(A) = max dist(z, A)

is called the covering radius of the lattice.

(15.2) Problems.
1. Prove that

“(Zd):ﬁ: p(Ds)=1 and p(D,)=

5 for n > 4.

2
2. Prove that p(Eg) = 1.

3. A point z € V at which the local maximum of the function x — dist(x, A)
is attained is called a hole of lattice A. If the maximum is global, the hole is called
deep, otherwise it is called shallow.

Prove that (1,0,0) is a deep hole of D3 (it is called an octahedral hole) and that
(1/2,1/2,1/2) is a shallow hole of D3 (it is called a tetrahedral hole).

4. Show that points x = (1/2,...,1/2) and y = (1,0, ... ,0) are holes of D,, and
that = is deep and y is shallow if n > 4, x is shallow and y is deep, if n < 4, and
both z and y are deep if n = 4.

5. Show that (1,0,0,0,0,0,0,0) is a deep hole of Ej,

while (5/6,1/6,1/6,1/6,1/6,1/6,1/6,1/6) is a shallow hole of Es.

6. Show that (1/4,1/4,1/4,1/4,1/4,1/4,—-3/4,—3/4) is a deep hole of Ex.

7. Show that (0,—-2/3,-2/3,1/3,1/3,1/3,1/3,0) is a deep hole of Eg.

The following important result is known as a transference theorem. The proof
is taken from J.C. Lagarias, H.W. Lenstra, Jr., C.-P. Schnorr, Korkin-Zolotarev
bases and successive minima of a lattice and its reciprocal lattice, Combinatorica
10 (1990), no. 4, 333 — 348.

(15.3) Theorem. Let A be a lattice of rank d and let A* be the dual lattice. Then

< p(A)p (A7) < cd).
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where we can choose
d3/2

Proof. We prove the lower bound first. Let us choose linearly independent vec-

tors uy,...,uq € A as follows: wu; is a shortest non-zero vector from A and
for Kk = 2,...,d we choose up to be a shortest vector form A such that vectors
Ui, ..., Ux—1,ur are linearly independent. We claim that

. 1 1
(15.3.1) dist 5 Ud; A= §||ud||

Indeed, suppose that for some u € A we have

1
U — —Uqg

< Yyual
—lW .
2 o 1M

Then ||u|| < ||uq|| and hence we must have
u € span (U, ... ,Ug—1) -
But then we have
2u—ug €A and 2u—ug ¢ span (uy, ... ,Ug—1) -

Moreover,
120 — ugl] < fluqll,

which is a contradiction with the choice of uy. The contradiction proves that
(15.3.1) indeed holds and hence

1 1
> = — sl
pA) > Jluall = max Suil

Let v be a shortest non-zero vector from A*. Then
(uj,v)y €Z for i=1,...,d and (u;,,v)#0 forsome .

This proves that ||v||||u;,|| > 1 and hence

1 1
N > - m . >
p(M)p (A7) = Zloll, max fluill = 7,

)

W

as desired.
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Now we prove the upper bound by induction on d. If d = 1 then A = «oZ for
some o > 0 and A* = a~'Z. Therefore, u(A) = /2 and p (A*) = 1/2a, so the
product is 1/4, as required.

Suppose that d > 1. Let us choose a shortest vector u € A\ {0}, so ||u|| = 2p(A).
Let H = u' be the orthogonal complement to u and let pr : V. — H be the
orthogonal projection. Let A; = pr(A), so A; C H is a lattice, see Problem 1 of
Section 2.3. Let A] C H be the dual lattice. Since for every v € A} and every
x € A we have

<$,U> = (pr(a:),v) € Z,

we have A} C A* and hence p (A]) > p (A¥).

Let us choose an arbitrary x € V and let y = pr(x). Let y; € A; be a closest
lattice point to y so, ||y —y1]| < ©(A1). The line through y; parallel to u intersects
A by a set of equally spaced points, each being of distance ||u| from the next.
Therefore, there is a point w € A such that pr(w) = v and

1
1@ +y1 —y) —wl < Sllull = p(4).
By the Pythagoras Theorem
lz = wl® = [[(z +y1 —y) —w]* +ly = > < p*(A) + 4 (A1)

Thus
p2(A) < pP(A) + 4 (M)

Applying Lemma 13.1 and the induction hypothesis, we conclude that

12 (N)p? (A*) < p*(A)p* (A*) + p? (A1) p* (A¥)
< pP(A)p* (M) + 12 (A1) p* (A)
< @ +c%(d—1) = c(d).

— 16
O
(15.4) Problems.
1°. Let uq,...,uq be linearly independent vectors in A. Prove that
1
p(A) < 53 ull
i=1
2. Let A C V be a lattice with basis wuy,...,uq. Let Ly = {0}, Ly =
span (uq,...,u;) and let wy be the complement to the orthogonal projection of
ur onto Li_1 for k=1,...,d. Prove that for any x € V there is © € A such that
d 1
x—u:;aiwi where o] < 5 for i=1,...,d.
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3. In Problem 2 above, prove that

d
. . 1
dist(x,A) > Jin §wi+ .Zﬂajwj )
j=t

where we agree that wy = 0 and that Z;l:i“ ajw; = 0 when i = d.

4. Suppose that in Problems 2 and 3 above, ui,...,uq is a reciprocal Korkin-
Zolotarev basis. Prove that

d
1
. 3/2 .
dist(z,A) < d% Jnin §wi+ 'Z;rlajwj
j=i

Hint: See J.C. Lagarias, H.W. Lenstra, Jr., C.-P. Schnorr, Korkin-Zolotarev
bases and successive minima of a lattice and its reciprocal lattice, Combinatorica
10 (1990), no. 4, 333 — 348.

16. AN APPLICATION: KRONECKER'S THEOREM
The following result is Kronecker’s Theorem.

(16.1) Theorem. Let 04,...,0, be real numbers such that if
n
Z m;0; is integer for integer my, ..., My,
i=1
then necessarily

my=...=m, =0.

Then for any real numbers
O<ag,...,q, <1

and any € > 0 there is an integer m such that

lo; — {mb;}| <e for i=1,...,n.

Proof. For T > 0 let us consider a lattice A, C R"*! with basis
up = (1,0,...,0), us =(0,1,0,...,0), ..., u, =(0,...,0,1,0) and

Un+1 = (91,... ,Qn,T_l).

We need to show that as 7 — 400, we can find a point from A, arbitrarily close

to (aq,...,ap,0). The result will follow if we show that
(16.1.1) Tgrrioou (A;) =0.
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By Theorem 15.3 it suffices to show that
(16.1.2) lim p(AY) = +oo.

T—>+00

Let a € A2\ {0}. Then a = (my,...,my; ) for some integer my, ... ,m, such that
m191+...+mn9n+57_1 € 7.

If my = ... = m, = 0 then necessarily |#| > 7 and hence ||a|| > 7. Suppose that
m2 +...+m?2 > 0. Let us choose an arbitrary v > 0 and let us consider the set of

all integer combinations

*4+...4+m2 >0 and

|m;| <~y forall i=1,..., n.

mib, +...+m,0, where m; €Z, m

This is a finite set of non-integer numbers and let § = §(y) > 0 be the minimum
distance from an element of the set to an integer. Then we must have § > 6(v)7
and hence for any a € A% and any 7 > 0 we have

lal = min{7, 6(v)7, 7}.
This establishes (16.1.2) and hence (16.1.1). O

17. THE POISSON SUMMATION FORMULA FOR LATTICES

(17.1) The Fourier transform and the Poisson summation formula. Let
f:R"™ — C be a function from L? (R",dx) N L' (R",dx). The Fourier transform

f of f is defined by the formula

fo) = [ e pia) da,

We have then
f@) = [ fy) dy

In particular, we will use
(17.1.1) For f(z)=e™1"1° wehave F(y)=e "IWI*,

Suppose that f and f are decaying sufficiently fast, that is
A C
(17.1.2) |f(@)], [f(z)] £ ————=5 forall zeR"
(1 + []])
and some C' > 0 and § > 0. Then the Poisson summation formula holds:

(17.1.3) Y fm)y= > f(m).

mezr mezr
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(17.2) Lemma. Let A C R" be a lattice and let A* C R"™ be the dual lattice. Let

f:R"™ — C be a function, let f : R™ — C be its Fourier transform and suppose
that condition (17.1.2) holds. Then

1 .
> fm) = g 2 A

meA

Proof. Let eq1,...,e, be the standard basis of Z" and let uq,...,u, be a basis of
A. Let us define an operator 7' : R® — R" by T'(e;) = u; for i = 1,... ,n. Then
T(Z™) = A and det T' = det A.

Let us define a function g : R” — C by g(z) = f(T(x)). Substituting x =
T~1(2), we obtain

i) = [ e Fegla) da = [ D {7 () do

1 (7 1 iy
~ ot A /n e~2mi{T 7 (2), y>f(z) dz = et A /n e~ 2mifz (T77) y>f(z) dz

1 ¢ —1y\*
iy (T~ (),

where (T _1)* denotes the conjugate linear operator to T~ !.
Let us denote

vj = (T_l)*en_j+1 for ] = ]_,. ...
Then
* 1 ifi+5j=n+1
3y ;) = T i) T_l n—+j— >: 2y n—j =
{uis vj) < (e:) ( ) (en+s=1) (eir en—j1) { 0 otherwise.

By Lemma 14.1 it follows that v1,... ,v, is a basis of A* and hence

(771" (z") = A~
Applying formula (17.1.3) to g and ¢ (note that (17.1.2) still holds), we complete
the proof. O

(17.3) Lemma. LetV be a d-dimensional Euclidean space, let A C'V be a lattice
and let A* C 'V be the dual lattice. Then for any 7 > 0 and any x € V', we have

74/2 Z exp {—n7|z —m|?} = ﬁ Z exp {—n||l||?/7 + 2mi(l, z) } .

meA leA™

Proof. First, we observe that for any 7 > 0 and g(z) = f(7x) via substitution
z = T we have

9y) = / et f(r) dp =77 / e 25 ) 2y de = 7 f (r1y).

n
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In particular, choosing f(z) = e ™I7I°, g(z) = f (71/22) and using (17.1.1), we
obtain: ] 2
For g(z)=e ™ I#I"  we have g(y) =7/ 2e IWI"/7

Next, we observe that for any a € R™ and ¢g(z) = f(z —a) via substitution z = z—a
we have

9(y) = / 2 f(o — a) do = / eI f(2) dz = TP f(y).

In particular, choosing f(z) = eIzl and g(z) = e=lz=all® e obtain:
For g(z) = e Tl=all® e have 9(y) = /2 =2milay) o= llyl® /7

The result now follows from Lemma 17.2 and the observation that both sides of the
identity we intend to prove are invariant under the substitution x — —x. 0

18. THE COVERING RADIUS VIA THE POISSON SUMMATION FORMULA

Our goal is to prove a better estimate of constant ¢(d) in Theorem 15.3 using
results of Section 17. We follow

W. Banaszczyk, New bounds in some transference theorems in the geometry of
numbers, Mathematische Annalen, 296 (1993), 625-635

with some modifications.

(18.1) Lemma. Let A CV be a lattice of rank d. Then for all 0 < 7 < 1 and for
all x € V we have

2 2
S emnrlamml? < pmdf2 §7 el

meA meA

Proof. Applying Lemma 17.3 twice, we obtain

—77||z—m|? 1 )
Y emmrllemml® < -y Y > exp {—al|lf?/7 + 2mi(l, z) }
leA™

meA

1 2
< —372 dot A l;;* exp {_WHZH /T}

1 2
< mg; exp {—|1]|?}

_ _ 2
D L

meA
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(18.2) Lemma. Let A C V be a lattice of rank d and let v > 1/27 be a real
number. Then for all x € V we have

d
S el < (e—m+% /—gm> S el

meA: meA
le—m|>v/~d

In particular,

S el < 5a 3 gmnlmi

meA: meA
|z—m|>Vd

Proof. For 0 < 7 < 1, applying Lemma 18.1, we get

. 2 . . 2 2
2 e w||z—m|| <e Tryd § e 7llx—m|| eTrTHx ml|

meA: meA:

lz—m||>+/~vd lz—m||>v/~d
< e~V Z e—7r(1—7‘)”1’—m||2
meA
<e ™41 — T)_d/2 Z e=liml®,
meA
Optimizing on 7, we choose
1
T=1——
27y
and obtain the desired estimate. O

Now we can sharpen the upper bound in Theorem 15.3.

(18.3) Theorem. Let A C 'V be a lattice of rank d. Then

p(A)p (A7) <

o

Proof. Suppose that for some lattice A of rank d we have

p(M)p (A7) >

|

If we scale A; = aA for a > 0, the dual lattice gets scaled A} = a~!A} and
the covering and packing radii scale accordingly, (A1) = aup(A) and p(A]) =
a~1p(Ay). Hence, without loss of generality, we may assume that

w(A) > Vd and p(A*) > @.

2
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Let 2 € V be a point such that dist(z, A) > v/d. Applying Lemma 18.2, we deduce

2 2 2
S emmllemmlt SN mallemml? ¢ gmd § el

meA meA: meA
|lz—m||>+d

Applying Lemma 17.3, we obtain

—rl|z—ml|? 1 e
(18.3.1) D e < sk D e .
meA leA™

Applying Lemma 18.2 to A*, we conclude that

Z el — 1 4 Z el = 1 4 Z eI <1 4 5d Z e—TrIIZIIQ,

leA* leA\{0} lEA™: lEA~
l1]|>vd

from which

54 1
(18.3.2) S el < 7 end e < T
lEA* B leA*\{0} B

Therefore, from (18.3.1) we conclude

1
18.3.3 —rllz—m|® -
(18.3.3) %e = (59— 1)det A

Similarly, from (18.3.2),

2 .
Z e—7rHlH +2mi(l,x)

leA™

d
_ T R
> 1 Z € = 5d_1'
leA*\{0}

On the other hand, by Lemma 17.3,

d
—rllo—m)? _ L —rlP42mifle) O 2
Ze detAz:e — (54 —1)det A’
meA leA*

which contradicts (18.3.3). O

(18.4) Problems.
1. Prove that



2°. Let A C V be a lattice and let z € V' be a point. Prove that for any v € A*
we have

dist(z,A) > dlSt(<ﬁ3’ﬁ)>’ Z>.
v

3. Let A C V be a lattice of rank d. Prove that for every point x € V there is a
vector v € A* \ {0} such that
dist((z,v), Z)

dist(z,A) < 6d
o]

Hint: Without loss of generality we may assume that dist(z, A) = vd. From
Lemma 17.3 and Lemma 18.2 deduce that there is a v € A*\{0} such that ||v|| < vd
and dist({(z,v), Z) > 1/6.

19. THE PACKING DENSITY VIA THE POISSON SUMMATION FORMULA

The following result is from
H. Cohn and N. Elkies, New upper bounds on sphere packings. 1. Ann. of Math.
(2) 157 (2003), no. 2, 689 — 714.

(19.1) Theorem. Let f:R™ — R be a measurable function such that

5 C

and some C' > 0 and § > 0. Suppose further that
f(z) <0 provided |z| >1

forall x e R"

and that R
fly) >0 forall yeR"™

Then the packing density o(A) of every lattice A C R™ satisfies

50
Y (e YIS

Proof. Without loss of generality we may assume that p(A) = 1/2 and hence

n

T2

[ (14 %)2rdetA

o(A) =

Applying Lemma 17.2, we conclude

~

10 = S = o S jw) > 22
uEA leA
and hence
1 £(0)
det A £(0)
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(19.2) Problems.
1. Consider a sphere packing in R™ such that the set of the centers of the spheres
is a union of finitely many pairwise disjoint lattice shifts x; + A for some lattice

A C R™ and some points z1,...,2, € R™ such that x; — x; ¢ A provided @ # j.
Prove that the packing density o satisfies
T3 f(0)

Y

7S T+ 20

where f is a function of Theorem 19.1.

2. Deduce from Problem 1 above that the bound of Theorem 19.1 holds for any
(lattice or non-lattice) sphere packing.

3. Let A be a lattice of rank d such that det A = 1. Prove that for any 8 > (2r)~!
there exists a positive integer dyg = do(/3) such that A contains a non-zero vector of
length at most /3d provided d > dj.

Hint: Note that if the length of a shortest non-zero vector from A exceeds \/3d
then the length of a shortest non-zero vector from the scaled lattice aA exceeds
ay/fd. Use Lemma 18.2 and Lemma 17.3.

4. Deduce from Problem 3 above that for any v > 0.5y/e ~ 0.824 there exists
dy = d1(7) such that the packing density of any lattice A of rank d satisfies o(A) <
’yd provided d > d;.

20. APPROXIMATING A CONVEX BODY BY AN ELLIPSOID

(20.1) Definitions. Let V be Euclidean space. A convex body K C V is a convex
compact set with a non-empty interior. A ball B C V is the set

B:{xEV: ||:L'—:L'0||§r},

where zo € V is a point called the center of B and r > 0 is the radius of B. An
ellipsoid E C V isaset E =T(B), where BC Visaballand T:V — V is an
invertible linear transformation. Point yo = T'(z¢), where z( is the center of B, is
called the center of E.

The main result of this section, known as F. John’s Theorem, is that an arbitrary
convex body can be reasonably well approximated by an appropriate ellipsoid.

(20.2) Theorem. LetV be a d-dimensional Euclidean space and let K C R? be a
convex body. Then there is an ellipsoid E C V centered at some point xg € K such
that

F Cc K C ZL’O‘l‘d(E—QZ()).

Sketch of Proof. We choose E to be the ellipsoid of the maximum volume among
those contained in K. That such an ellipsoid exists (it is, in fact, unique) follows
by a compactness argument.
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Without loss of generality, we may assume that the center of F is the origin.
Moreover, applying an invertible linear transformation (which results in all volumes
scaled proportionately), we may assume that E is the unit ball

E:{xGV: ||x||§1}

Our goal is to prove that ||z|| < d for all z € K. Assuming the contrary, we may
identify V' = R? and assume that there is a point = = (r,0,...,0), x € K, for some
r > d. We intend to obtain a contradiction by constructing an ellipsoid E; C K
such that vol £y > vol E.

We look for an ellipsoid F; in the form

_ )2 1 d
Elz{(xl,...,xd): MJF@Z%Q < 1} where
o
i=2

(r—7)2—(r+1)?2
rz2 —1 ’

a=7+1 and B?=

We claim that for all 0 < 7 < (r — 1)/2, ellipsoid F; is contained in K. Because
of symmetry, it suffices to check that the section of E; by the (z1,z2) coordinate
plane is contained in the section of K by the (x1,z2) coordinate plane, which is an
elementary geometry problem.

Moreover,
volEy o d-1 9
In 1B =d-1)Inp+ha= In 5% + Ina.
For a sufficiently small 7 > 0, we have
2 2 27 2
lna:T—f—O(T) and Inp®=— 1+O(T).
T —_—

If r > d then for a sufficiently small 7 > 0 we get vol F; > vol E/, which is a
contradiction. U

(20.3) Problems.
1. Fill in the gaps in the proof of Theorem 20.2.

2. Prove that every convex body K contains a unique ellipsoid of the maximum
volume.

3. Let K be a d-dimensional symmetric convex body, so K = —K and let £ C K
be the ellipsoid of the maximum volume contained in K. Prove that the center of
F is the origin and that K C V/dE.

4. Prove that every convex body K is contained in a unique ellipsoid E of the
minimum volume. Prove that if z¢ is the center of £ then

1
E(E—l‘o)-}-l’o C K C E.
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5. Prove that for the minimum volume ellipsoid of Problem 4 we have
1
ﬁ(E—CCO)‘f’CCO Cc K C E,

if K is symmetric.

21. THE FLATNESS THEOREM

We rephrase Theorem 18.3 as follows.

(21.1) Lemma. Let A CV be a lattice, where dimV = d, and let
B = {er: |z — xo| Sr}

be a ball centered at some point xo € V and of radius v such that BOA = (). Then
there exists a vector v € A* \ {0} such that

max(v, z) — min(v,z) < c(d),

where one can choose c¢(d) = 2d.
Proof. Since BN A = (), we have u(A) > r. Therefore by Theorem 18.3 we have
p(A*) < d/2r and hence there exists a vector v € A* \ {0} such that ||v| < d/r.

Then

< i > _
:gleaé((v,x) < (v,zp) +d and :gélg(@,x) > (v, xo) —d,

from which the proof follows. U
Next, we extend Lemma 21.1 to ellipsoids.

(21.2) Lemma. Let A C V be a lattice, where dimV = d, and let E C V be an
ellipsoid such that ENA = 0. Then there exists a vector v € A*\ {0} such that

max{v, z) — min(v, z) < c(d),

where one can choose c¢(d) = 2d.
Proof. Let T : V. — V be an invertible linear transformation and let B C V be

a ball such that E = T(B). Let Ay = T~!(A). Then A; C V is a lattice and
BN A; =0. By Lemma 21.2, there exists a vector w € A} such that

2. — mi <
(21.2.1) gleaé((w,x) gélg(w,x) < ¢(d),

where one can choose ¢(d) = 2d.
Let v = (T_1)>k (w). For every u € A we have

(u,v) = (T (u),w) € Z

and hence v € A* \ {0}. Moreover, for every y € E we have y = T'(x) for some
x € B and hence

(v,y) = (T7(v), ) = (w, x),
and the proof follows by (21.2.1). O

The following result is known as the Flatness Theorem.
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(21.3) Theorem. Let A C V be a lattice, where dimV = d, and let K C V be a
convex body such that K N A = (). Then there is a vector v € A*\ {0} such that

max(v, z) — min(v,z) < c(d),

where one can choose c(d) = 2d?.

Proof. Let E C K be the ellipsoid of Theorem 20.2, so K C d(E — xg) + xo. Since
ENA =0, by Lemma 21.2 there exists a vector v € A* \ {0} such that

rmnea]%c@,x) %1}31(1},:(:) < 2d

Since
< =d —(d—-1
max(v, x) < sl ]gn_aﬁ)m@, z) = dmax{v, z) — (d — 1)(v, o)
and
i > i = dmi —(d-1
inel£<v7x> = mEd(EHilag))-i-mo(U,x) gélg<v7$> ( )<U,£B0>,
the proof follows. O

(21.4) Problems.

1. Let P C R? be a convex polygon with vertices in Z2. Suppose that P does
not contain any point from Z? other than its vertices. Prove that there exists a
vector w € Z2 \ {0} such that

rglea;dw,@ rxréllrjl(w,a:) <1

2*. Let P C R3 be a convex polytope with vertices in Z3. Suppose that P does
not contain any point from Z3 other than its vertices. Prove that there exists a
vector w € Z3 \ {0} such that

rmnea1§<w,x> Zglé}f)l(w,w) <1

22. THE SUCCESSIVE MINIMA OF A CONVEX BODY

(22.1) Definition. Let K C V be a symmetric convex body and let A C V be a
lattice. Let dimV =d. For ¢ = 1,...,d we define the i-th successive minimum

A = N (K) = inf{)\ >0: dimspan(AK NA) > 2}
Clearly,

A< A< <A

Minkowski’s Theorem (see Theorem 6.4) states that
Mvol K < 2%det A.

In this section we prove a sharpening of this result, also due to Minkowski, that

Al Agvol K < 2%det A.
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(22.2) Lemma. Let us consider the map ®,, : R™ — [0,1)",

D, (x1,...,xn) = {z1}, ..., {z0}),

where {-} denotes the fractional part of a number.
Let X C R™ be a Lebesgue measurable set. Then for every z € R™, we have

vol @, (X + z) = vol &, (X).

Proof. 1t suffices to prove the identity when 2 has only one non-zero coordinate and
that coordinate lies in the interval (0,1). Hence without loss of generality we may
assume that

for some 0 < o < 1.
Let X = X_ U X, where

X_:{xeX: {xn}<1—a} and X+:{a:€X: {xn}zl—a}.

Clearly,
X_-NX, =0 and volX =volX_ +vol X,.
Moreover,
¢, (X_4+2)=2,(X_)+(0,...,0,) and
q)n(X++Z):q)n(X—)+(O7 ,Oé—].)
and hence

vol®, (X_ +2)=vol®, (X_) and vol®, (X;+z)=vold, (Xy).

Finally, &, (X_ +2) and &, (X4 + 2) are disjoint sets, since for any vector
x = (r1,...,%,) we have {z,} > aif v € &, (X_+2) and {z,} < aif z €
®,, (X4 + 2). Since @, (X4) and ®,, (X_) are also disjoint, we have

vol®, (X + 2) =vol®,, (X_ 4 2) + vol ®,, (X4 + 2)
—vol®, (X_) +vol &, (X )
=vol ®, (X).
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(22.3) Lemma. Let X C R"™ be a convex set. Then for any a > 1 we have

vol @, (aX) > vol®,(X).

Proof. Let z € R™ be a point such that 0 € X + 2. Then (X + 2) C a(X + z) and
so ©,(X + 2) C &, (aX + az). Applying Lemma 22.2, we get

vol @, (aX) =vol®,(aX + az) > vol®,(X + z) = vol @, (X).
O
(22.4) Lemma. For 1 <i <n let us consider the map ®; : R™ — [0,1)" x R"~%,
D, (x1,...,2n) = ({z1}y .o {xi}, g1, - - T0)
Let X C R™ be a convex set. Then for any o > 1 we have

vol ®;(aX) > " '®,(X).

Proof. Let pr: R — R™~% be the projection,
pr(z1, ..., 2n) = (Tig1,. .. , Tpn)

and let Y = pr(X). Then, by Fubini’s Theorem,
vol ®;(X) :/ vol; ®; (pr~'(y) N X) dy and
Y

vol ®;(aX) :/ vol; ®; (pr_l(y) NaX) dy.
aY

Making substitution ¥ = ax in the second integral, we obtain

D, (aX) = a”_i/Yvoli ®; (pr~(az) NaX) dz,
which we formally rewrite as

Pi(aX) =a"" /Yvoli ®; (pr~(ay) NaX) dy,

Now, pr=1(y) N X consists of all points (x1,...,%; Yit1,..-,Yn) € X while
pr~1(ay) N aX consists of all points (awy,...,or:;ayirl,. .. ,oqy,) € aX. Ap-
plying Lemma 22.3, we obtain

vol; ®; (pr_l(ozy) N aX) > vol; ®; (pr_l(y) N X) forall yeY

and the proof follows. O

Now we can prove Minkowski’s Theorem.
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(22.5) Theorem. Let K C V be a symmetric convex body and let A C V be a
lattice. Then
Ap-e-Agvol K < 2%det A,

where d = dimV and A1, ..., g are the successive minima.
Proof. Applying a linear transformation, we may assume that V = R? and A = Z<.
Let us consider dilations AK as A > 0 grows and let uq, ... ,uq € Z? be linearly
independent vectors in the order of appearance, where ties are broken arbitrarily.
We choose a new basis b1, ... ,bg of Z in such a way that for i = 1,... ,d vectors
bi,...,b; constitute a basis of the lattice Z¢ N span(uy, ... ,u;), cf. Problem 4 of
Section 3.2.
The linear transformation that maps the standard basis vectors e1,...,eq to
bi,...,bg does not change the volume of K or the lattice Z¢. Hence we can assume
additionally that the coordinates of uq, ... ,uq look as follows:

up = (%,0,...,0),u0 = (%,%,0,...,0),...,uq = (*,...,%).

Let A be the interior of K, so vol A = vol K and if u € A\; AN A then the coordinates
of u, starting with the i-th position, are 0’s.
Let

X =21a
2
Let ®; be the map of Lemma 22.4. Then ®; (A\;X) is obtained from ®;_; (\;X) via

the transformation x; — {x;}. This transformation is one-to-one since if there are
two distinct points z,y € \; X with the same image then

1 1
u:x—y:2<§x+§(—y)) e NA

and the i-th coordinate of u is a non-zero integer, while all other coordinates are
0’s, which is a contradiction. Then we can conclude from Lemma 22.4 that

Ai
vol qDZ ()\ZX) =vol q)i—l (>\1X) = vol q)i—l (()\ ) )\i—lX)
i—1

O\ ditl

Z ( : ) vol (I)i—l ()\1_1X) .
Ai—1

Similarly, the transformation x; — {z1} is one-to-one on A\; X and hence

vol @1 (A X) =vol \{ X = A4 vol X.

Summarizing,

d N\ i
Vol ®,, (A, X) > Aglvolxl‘[<A i ) — A\ Ay vol X
=g N7l

Therefore,
A1 Agvol X <1,

as claimed. 0
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23. AN ALMOST ORTHOGONAL BASIS OF THE LATTICE

One corollary of Theorem 22.5 is that every lattice has an “almost orthogonal”
basis.

(23.1) Lemma. Let A be a lattice of rank d and let uq, ... ,uq be linearly inde-
pendent vectors. Then there exists a basis vy, ... ,vq of A such that

k
Vg = E oR;u;  where
i=1

0<ap, <1 and |agl < for i=1,...,k—1 and k=1,...,d.

1
2
Proof. Let us define

Ly :span<u1,... ,uk) and Ap=ANLg for k=1,...,d.

We choose v to be a basis of A;. Clearly, we must have v; = ajiu; for some
o] < 1. If @33 < 0, we replace v; by —wv;. Generally, having constructed
V1,...,Uk_1 as a basis of Ax_1, we append it to a basis vq,...,v of Ay (cf. the
proof of Theorem 3.1). Hence we have

k
(23.1.1) V=Y it
=1

If agr < 0, we replace
Vi :— —Vg.

Writing the right hand side of (23.1.1) as an integer linear combination of vy, . .. , vg,
we conclude that agrm = 1 for some integer m and hence 0 < ayr < 1, as required
If || > 1/2 for some i < k, we replace

Vg = Vg — MUy,

where my; is the nearest integer to ay;. Since w; is an integer combination of

v1,...,v; where i < k, we get a vector vy from Ag. Moreover, the volume of the
parallelepiped spanned by w1,...,v; does not change, so we still have a basis of
Ag. O

(23.2) Theorem. Let A CV be a lattice of rank d. Then there is a basis vy, ... ,vq
of A such that

d
[Tlvill < C(d)det A,
=1
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where one can choose .
(d+ DT (1+9)
1d/2

O(d) =

Proof. Let B C V be the ball of radius 1 centered at the origin. Let us consider
the dilations AB for A > 0 and let uy,...,uq € A be linearly independent vectors,
in the order of appearance, as A grows, where the ties are broken arbitrarily. Hence

Jur || < flugll <. < uall

and by Theorem 22.5 we have

d 2ddet A 290 (14 9)
[Thull < =5 = —— 552 deta.

(23.2.1)

=1

Now we construct a basis vq,...,vq of A as in Lemma 23.2.
We note that

(k+1)
2

k—1
1

o]l < !lUk!|+§ZHUiH < [l
i=1

and the proof follows by (23.2.1). O

(23.3) Problems.
1. Let {A, CV, mn=1,2,...} be a sequence of lattices and let A C V be yet
another lattice. We say that

lim A, =A
n—--+4oo
if there exist bases u,1,... ,unq of A, and a basis uq,...,uq of A such that
lim wu,; =u; for i=1,....d.

n—-+oo

Prove the following Mahler’s Compactness Theorem:

Let {A; CV : i€ I} be an infinite family of lattices such that det A; < C for
all ¢ € I and some real C' and p (A;) > ¢ for all i € I and some 0 > 0, where p is
the packing radius. Prove that the family contains a sequence converging to some
lattice A C V.

2. Let {A,, C V'} be a sequence of lattices and let A C V' be a lattice such that

lim A, =A.

n—-+4oo

Prove that

lim p(Ay) =p(A) and  lim p(An) = p(A)

n—-+oo n—--+4oo
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for the packing and covering radii.
3. Let U = uq,...,uq be a basis of a lattice A, let

Lo={0} and Lk:span<u1,...,uk> for k=1,....d

and let wy be the orthogonal complement to the projection of u; onto Li_1 for
k=1,...,d. Hence we can write

k—1
Up = Wk + Z Qe W -

i=1

The basis is called reduced if
1
logi| < 5 for i=1,...,k—1 and k=2,...,d.
Prove that for every basis uq,...,uq of A there is a reduced basis vq, ... ,vq such
that
span(vl, e ,vk) =Ly and dist (ug, Lr_1) = dist (vg, Lp_1)
for k=1,...,d.
4. Let uq,...,uq be a reduced Korkin-Zolotarev basis (see Section 14) of A.

Prove that

kE+3
4

where A;(A) is the k-th successive minimum with respect to the unit ball. Deduce
that one can choose

ug|* < Me(A) for k=1,....,d,

C(d) = d+ ii;rf(g +3) det A

in Theorem 23.2.
5. Let uy,...,uq be a reduced Korkin-Zolotarev basis of A. Prove that

4
k+3

|uel]® > A2(A) for k=1,...,d.

24. SUCCESSIVE MINIMA VIA THE POISSON SUMMATION FORMULA

The following result is also known as a transference theorem. We follow
W. Banaszczyk, New bounds in some transference theorems in the geometry of
numbers, Mathematische Annalen, 296 (1993), 625 — 635
with some modifications, as we don’t pursue the best possible constants.
For a lattice A C V', we denote by \;(A) the i-th successive minimum of A with
respect to the Euclidean ball in V' of radius 1.
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(24.1) Theorem. Let A C 'V be a lattice of rank d. Then

1 S )\k(A))\d—k—l—l(A*) S 2d fOT kIl,...,d.

Proof. Let uq,...,uq € A and vy,... ,v3 € A* be linearly independent vectors in
the order of increasing length, so

Jurll < .o < lugll and o]l <0 < lug

and
Ak(A) = [lugll and  Ag—p+1(A") = [Jvg—p1]]-

Since
dimspan(ul, . ,uk) =k and dimspan(vl, . ,”Ud—k+1) =d—k+1,

there are vectors u; with ¢ < k and v; with j < d — k + 1 such that (u;,v;) # 0.
Then |(u;,v;)| > 1, since the scalar product is necessarily an integer. Thus we have

Ae(A) - Aa—k41 (A) = Jlull - lva—rrall = fluall - flogl] = [{uis v5)] > 1.

Next, we prove the upper bound. First, we note that by Lemma 18.2,

S el < 5md 37 el

lEAN*: leA
||l||>\/a
and hence
2 2 _ 2 . _ 2
E eI — E e — E il > (1_5 d) E el
lEA*: leA leA™: leA*
U<vVd l>vd

Seeking a contradiction, let us suppose that A\g(A)Ag—_gr1(A*) > 2d. Scaling
A := aA and A* := o 'A* for @ > 0, we may assume that \;(A) > 2v/d and
MAd—k+1(A*) > v/d. Then we have

dimspan(u eAN: Jul < 2\/@ < k-1 and

dim span (vEA*: || g\/@ < d—k.

Therefore there is an z € V, ||z|| = V/d, such that x is orthogonal to all vectors of
A of length at most 2v/d and z is orthogonal to all vectors of A* of length at most
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V/d. Therefore we have

Ze—ﬂ|\l|\2—|—2ﬂ'i<l,m> _ Z e—7r||l||2+27'ri(l,m)+ Z e—7‘r|\l|\2+27'ri(l,m)
leA* leAN™: leN™:
1| <vVd il >vd
_ Z —7r||l|| + Z —7r||l|| +2mi(l,x)
24.1.1
(24.1.1) el el
i <vd 1] >Vd
S ST G T
leA™: leA™:
li<vd U >vd
(1—2-574) Y el
leA*

On the other hand,

_ e _ T _ 2_ 2
E e mllz—m|® < E e~ Tllz=—m|l® — E e~ Tlzl"=m|lm]l

meA: meA: meEA:
lo—ml|<v/a Iml|<2v/d Iml|<2+/d
o o 2
<e wd E : e w||m||
meA

and from Lemma 18.2

2 2 2
S emmleml® 3 emmlamml? SN el

meA meA: meA:
(24.1.2) HI m||<Vd |z—m|>Vd
< (1 5) 3 el
meA

Finally, by Lemma 17.3, we have

—rlle—m|®> _ 1 |22l
Z e = et A Z e and

meA lEA*
2
3 elml® = d — Z e—mlil?.
€
meA

which, together with (24.1.1) and (24.1.2) implies
e™ > 1-3.5"%

which is a contradiction.
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25. THE LENSTRA - LENSTRA - LOVASZ BASIS OF A LATTICE

In this section, we describe a construction by A.K. Lenstra, H-W. Lenstra Jr.
and L. Lovasz of a particularly convenient basis of a given lattice (also called the
LLL basis or an LLL-reduced basis). The construction is computationally efficient
(both in theory and in practice) and the resulting basis is “almost orthogonal” in
the sense of Theorem 23.2 and has some other useful properties.

(25.1) Definitions. Let A be a lattice of rank d and let uq,...,uq be its basis.
We define the subspaces

Lo ={0} and Lk:span<u1,...,uk> for k=1,...,d.

For £k = 1,...,d, let w; be the orthogonal complement to the projection of wuy
onto Li_1. Vectors wy, ... ,wyq are also called the Gram-Schmidt orthogonalization
(without normalization) of uq, ... ,uy. Hence we can write

k—1
(25.1.1) U, :wk-l—Zakiwi.

i=1
We say that the basis uq, ... ,uq is weakly reduced if

1 .

(25.1.2) lagi| < 5 forall 1<i<k<d.
We say that the basis uq, ... ,uq is Lenstra-Lenstra-Lovdsz reduced or LLL-reduced
if

4
(25.1.3) dist® (ug, Lp_1) < gdistQ(ukH,Lk_l) for k=1,...,d—1.

(25.2) Constructing an LLL basis. Given a basis u1, ... ,uq of a lattice A, we
modify it by repeating the following two steps until we get an LLL-reduced basis.

Step 1. We compute vectors wy, ... ,wg and check if conditions (25.1.2) are sat-
isfied. If (25.1.2) is violated for some k, we choose the largest ¢ where it is violated,
let

I
Up ‘= U — MEiUsg,

where my; is the nearest integer to ay; so that |ag; — my;| < 1/2, and replace uy
by u) in the basis. This transformation produces a basis of A and does not change
the subspaces of Ly, ..., Lq of V or the vectors wy, ... ,wy. In (25.1.1) it changes
the coefficients ay; with j < ¢. Therefore, applying the transformation at most
d(d — 1)/2 times, we enforce (25.1.2). Then we go to Step 2.
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Step 2. If conditions (25.1.3) are satisfied, we stop and output the current basis
Uy ..., ug. If (25.1.3) is violated for some k, we interchange uj and ugi1 in the
basis, that is, we let

(25.2.1) up = upyr and  up g = up

and replace uy and w11 in the basis by ) and ), 41 respectively. This transfor-
mation may violate (25.1.2), so we go to Step 1, if necessary.

Clearly, if the algorithm ever stops, it produces an LLL-reduced basis. To show
that it indeed stops, for a given basis uq, ... ,uq we introduce the lattices

Ap=ANL; for k=1,...,d—1
and the quantity

d—1
D (uy,...,uq) = HdetAk.
k=1

We note that i
det Ay, = [ Ifwsll
i=1

and that
||lwg|| = dist (ug, Lx—1) -

Step 1 does not change subspaces L and hence does not change the value of
D (uq,...,uq). Switch (25.2.1) on Step 2 changes the subspace Lj and does not
change any other subspaces L;. Since (25.1.3) is violated, we have

. V3
|w || = dist (ugs1, Lrg—1) < 5 dist (ug, Li—1) = |Jw]|

and hence det Aj, decreases by at least a factor of 2/4/3. Consequently, the value
of D (uy,...,uq) decreases by at least a factor of 2/+/3.

Therefore, it remains to show that D (uq,...,us) cannot get arbitrarily small.
Let A be the length of a shortest non-zero vector in A. Then the length of a non-zero
vector in Ay is at least A\ and hence

A\
detAp, > | — for k=1,...,d,
£ (ﬁ)
which proves that
d—1
D(uy,... ug) > XDETT R,
k=1

Consequently, Step 2 of the algorithm can be performed only finitely many times
and hence the algorithm stops and outputs an LLL-reduced basis.
In fact, the algorithm works in polynomial time and is very efficient in practice.
Here is a useful property of an LLL-reduced basis.
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(25.3) Lemma. Let uy,...,uq be an LLL-reduced basis and let wy, ... ,wq be the
vectors defined in Section 25.1, so

|wg|| = dist (ug, Lr—1) where Ly = span(ul, e ,uk_1>.

Then 1
Jonrl® > Sl for k=1, .d~1

Proof. From (25.1.1)—(25.1.3), we have
2 _ 142 4 . 2
|wg||* =dist” (ug, Lrg—1) < 3 dist® (ug+1, Lr—1)
4 4 4
=zllwess + arpipwnl® = Sllwen|® + gog ol
4 1
§§||wk+1||2 + §||wk||2

and the proof follows. O

(25.4) Corollary. Let A be a lattice of rank d and let uy, . .. ,uq be its LLL-reduced
basis.

Then
(1)
d d(d—1)
Tl < 2 detA,
k=1
(2) .
Jur]] < 27277 min ul,
ueA\{0}
(3)

lur| < 27 (det A)Y<.

Proof. From (25.1.1)—(25.1.2) and Lemma 25.3, we have

k—1 k—1
1
gl =lwel* + Y afillwill® < Jlwgl® + 1 > lwil?
=1 =1

k—1
1 ‘
< <1+ ;Z?’“") < 25
=1

Since

d
det A = [T llwxl,
k=1
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the proof of Part (1) follows.
By Problem 4 of Section 14.3 and Lemma 25.3, for all w € A\ {0} we have

|lul| >  min dist (ug, Lg—1) = min |wg| > 272 [Jwi]| =277 [Juq]|
k=1,....d k=1,....d

goee 5

and the proof of Part (2) follows.
Finally, by Lemma 25.3,

d d
1k -y
det A= [T llwell = ffwn|? ]2 = w27
k=1 k=1
and the proof of Part (3) follows. O

(25.5) Problems.
1. Let A be a lattice and let uq,...,uq be an LLL-reduced basis of A. Let
u € A\ {0} be a shortest non-zero lattice vector. Suppose that

d
u = E mireUg
k=1
for some integer my, ..., my. Prove that we must have

lmy| < 3% for k=1,...,d.

2. Let A be a lattice and let wuq,...,uq be an LLL-reduced basis of A. Let
v1,...,0q be the reciprocal basis of A*, so that

1 if i+j=d+1
<ui7 Uj> = .
0 otherwise.

Prove that
d d
S sl - okl < (i) .
P V2

3*. Let A C V be a lattice and let uq,...,uq be an LLL-reduced basis of A.
Given a point x € V, let us write

d
T = E HEUE
k=1

for some real p1,...,puq. Let mq, ..., mg be integers such that

—_

i —mi| < 5 for k=1,....d
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and let
d
U = Z mreilg.
k=1

Prove that

3\
u—zx| < [ —= | dist(x, A).
-l < () die(en)
Hint: This result is due to L. Babai, see L. Babai, On Lovész lattice reduction
and the nearest lattice point problem, Combinatorica 6 (1986), no. 1, 1-13.

4. Let A be a lattice and let uq,...,uq be an LLL-reduced basis of A. Prove
that

(1—k) (d—1)

277 Me(A) < lugll < 277 A(A),

where A (A) is the k-th successive minimum of A.

Hint: See A.K. Lenstra, H.W. Lenstra Jr. and L. Lovész, Factoring polynomials
with rational coefficients, Mathematische Annalen, 261(1982), 515-534.
26. SOME APPLICATIONS OF THE LENSTRA - LENSTRA - LOVASZ BASIS
We sketch below some of the applications.

(26.1) Rational approximations of reals. By Problem 1 of Section 9.2 for any

real o, ..., a, there exists an arbitrarily large integer ¢ > 0 and integers p1,... ,pn
such that )
ak—}ﬁ < — for k=1,...,n
q gt

Using the LLL algorithm, one can construct pq,...,p, and g efficiently, so that

2(n+1)/4
g'tn

Dk
o — —

(26.1.1) ;

for k=1,...,n.

Here is how: let us choose a small € > 0 and let us consider the lattice A ¢ R?*!
with the basis eq,... ,e, and

1
v = (—Oq,... , —Qy, €T ) ,
where eq, ... , e, is the standard basis vectors. In particular,
det A = "1,

Let us construct an LLL basis of A and let u; be the first vector of the basis. By
Part (3) of Corollary 25.4, we have

Jui]] < 2n/4e.
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We can write
up =piey + ...+ ppep +qu

for some integer pq,...,p, and q. Hence

(26.1.2) ok — qag| < 2"% for k=1,...,n
and

(26.1.3) g <2%e ™.

If € < 27™/* we must have ¢ # 0 and by switching to —u;, if necessary, we can
assure that ¢ > 0. From (26.1.3), we have

e < V2w

and from (26.1.2) we deduce (26.1.1). To show that ¢ can be made arbitrarily large,
we note that this is certainly the case if all aq,..., «a, are rational. If some «y is
irrational, then by choosing a sufficiently small € > 0 we can make sure that (26.1.2)
does not hold unless ¢ is sufficiently large.

This construction is from A.K. Lenstra, H-W. Lenstra Jr. and L. Lovész, Fac-
toring polynomials with rational coefficients, Mathematische Annalen, 261(1982),
515-534.

(26.2) Testing linear independents over integers. Let «1,...,a, be real
numbers. We want to find out if there are integers mq,...,m,, not all equal 0,
such that

(2621) miay + ...+ mpa, = 0.

Let ¢ > 0 be a real number and let us define

A = {(ml,... s My, tZaim,) oM, ..., My GZ}.
i=1

Then A; is a lattice of rank n (with the ambient space V; = span (A¢)). Moreover,

if (26.2.1) implies my = ... =m,, = 0 then
(26.2.2) tﬂfiloop (A¢) = +o0
whereas if (26.2.1) for some my,...,m,, not all equal 0, then the packing radius

p (A4) stays bounded even as t grows. The length of first basis vector u; of an LLL
basis of A approximates the length of the shortest non-zero vector in A; within a
factor of 2"=1/2 which is independent of ¢. This suggests a way to test whether
(26.2.2) holds.

In particular, if o; = o' for i = 1,...,n, we can check whether « is a root
of an integer polynomial with degree n — 1. If « is an algebraic number, all the
computations can be carried out efficiently in the field Q(«). This, in turn, leads
to a polynomial time algorithm for factoring of rational polynomials, see also A.K.
Lenstra, H-W. Lenstra Jr. and L. Lovasz, Factoring polynomials with rational
coefficients, Mathematische Annalen, 261(1982), 515-534.

57



(26.3) Solving the knapsack problem. Given (large) positive integers

ai,...,a, and a (large) positive integer b we want to find a subset S C {1,...,n}
such that
(26.3.1) > ai=b.

i€S

This is a way to encrypt a 0-1 vector x, where z; = 1ifi € Sand z; =0if i ¢ S
by a set (a1, ...,a,;b) in the “knapsack code”.

While the problem is NP-complete in general, the following strategy works under
certain circumstances. We define a lattice A of rank n — 1 by

A:{(ml,... ,mn,k)EZ”‘H: mlal—f—...—i—mnan—kb:O},

construct an LLL basis and look at the first basis vector uy. If there is a solution
to (26.3.1), by Part (3) of Corollary 25.4, we will have

g || < 2071/2/n+1

and hence every coordinate of u; will not exceed 2("~1/2 in the absolute value.
Under a certain “general position” condition, there is a unique 0-1 solution to
the equation
miai1 + ... +mpa, —kb=20

and every solution which is not an integer multiple of that unique solution has at
least one coordinate which is bigger than 2™ in the absolute value. This happens,
for example, if we choose a subset S, choose aq,... ,a, independently at random
from the interval [1 : N] with N > 22" and let b = Y, _ ¢ ax.

This result is from J.C. Lagarias and A.M. Odlyzko, Solving low-density subset
sum problems, J. Assoc. Comput. Mach. 32 (1985), no. 1, 229246.

(26.4) Computationally efficient flatness theorem. Given a convex body
K C R? such that K NZ¢ = (), we want to construct efficiently a vector v € Z¢
such that

—mi <
glg}(((v,@ JE%I%(U,QZ) < ¢(d)

for some constant ¢(d). We don’t discuss here how the body K is “given”.

Analyzing the proof of the Flatness Theorem (Theorem 21.3), we realize that to
construct the required vector v € A* for a given convex body K efficiently, we have
to construct the approximating ellipsoid E of K (which can be done though we
don’t discuss how), apply a linear transformation 7" which transfers E into a ball
and lattice Z¢ into some other lattice A, then find a shortest non-zero vector w in
A* and let v = T*(w). If instead of the shortest vector w, we find a reasonably short
vector, such as the first vector in an LLL-reduced basis, we get a computationally
efficient flatness theorem with a different constant ¢(d). From Part (2) of Corollary
25.4, we conclude that we can have c(d) = d°M2(@+1)/2 This is the idea of H.W.
Lenstra’s polynomial time algorithm in integer programming in fixed dimension,
see H.W. Lenstra Jr. Integer programming with a fixed number of variables, Math.
Oper. Res. 8 (1983), no. 4, 538 — 548.
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(26.5) Problem.
1. Construct an efficient (polynomial time) algorithm to find a basis in the lattice
A of Section 26.3.

27. THE ALGEBRA OF POLYHEDRA AND THE EULER CHARACTERISTIC

(27.1) Definitions. Let V' be Euclidean space. A polyhedron P C V is the set of
solutions to a system of finitely many linear inequalities:

P:{azeV: (c;yx) <y for ie[},

where [ is a finite set, ¢; € V and «; € R for all i € I.

Let us fix a lattice A C V. A polyhedron is called A-rational if ¢; € A* and
a; € Z for all i € I. In the most common case, we’ll have V = R? and A = Z%, in
which case the polyhedron is called rational.

For a set A C V we define its indicator as a function [A] : V — R, where

1 ifzeA
A ={ o
if v ¢ A.
We define the algebra of polyhedra P(V') as a vector space (over R) spanned by
the indicators [P] of polyhedra P C V. Similarly, we define the algebra of rational
polyhedra P (Qd) as a vector space (over R) spanned by the indicators of rational
polyhedra P C R?. We define the algebra of closed convexr sets C(V) as a vector
space (over R) spanned by the indicators [A] of closed convex sets A C V' and we
define the algebra of compact convex sets C,(V') as a vector space (over R) spanned
by the indicators [A] of compact convex sets A C V.
Let W be a real vector space. A linear transformation

T:P(V),P(Q%),C(V),Co(V) — W

is called a waluation on the corresponding algebra.

(27.2) Theorem. There exists a unique valuation x : C(V) — R, called the Euler
characteristic, such that x([A]) =1 for all non-empty closed convez sets A C V.

Proof. Clearly, x is unique, if exists: we must have

(27.2.1) X(f)= Y ai provided f=) oA,

i€l:A; #D el

where A; C V are closed convex sets and «; € R.
First, we prove the existence of x : Cp(V) — R with the required properties.
We proceed by induction on dimV. If dimV = 0 then we define x(f) = f(0).
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Suppose now that d > 1. Let us choose a non-zero vector ¢ € V and let us slice V
into affine hyperplanes

HT:{xEV: <c,:)3):7‘} for TeR.

Hence each affine hyperplane can be identified with a (d —1)-dimensional Euclidean
space and there exists the Euler characteristic x, : Cp (H,) — R.

Given a function f € C,(V'), we consider its restriction f; : H, — R. We claim
that for every f € Cp(V') we have f, € C, (H;) and there is a one-sided limit

61_1>n3+ Xr—e (fr—e)-

Moreover, we claim that for every f € Cy(V') there are at most finitely many values
of 7 where the one-sided limit is not equal to x- (f-).
Indeed,

fr=) oi[AinH;] provided f=3 ai[A],
iel icl
where A; C V are convex compact sets and «; € R, which proves that f. € C, (H,).
Given f € Cp(V) as above, let

JT:{iEI: A; #0 and min(c,x)zf}.

TEA;
It follows from (27.2.1) that
Xr (fT) - el—i>r%+ XT1—e (fT—E) = Z Q.
1eJ,
We define x : Cp(V) — R by

(27'2'2> X(f) = Z (XT (fT) - el—i>r%—|— Xr—e¢ (fT—E)) :

TER

The sum (27.2.2) is well-defined since only finitely many terms are non-zero. By
the induction hypothesis, it follows that x is a valuation. Moreover, if f = [4],
where A C V' is a non-empty compact convex set then x([A]) = 1, since the only
non-zero term in (27.2.2) corresponds to 7 = minge 4(c, x) and equals 1 — 0 = 1.

It remains to extend x onto C(V'). Let B, C V denote the closed ball of radius
r centered at the origin. For f € C(V') we define

(27.2.3) x(f)= lim x(f-[B:]).
We note that

f-[Br] = Z «; provided f= Z a; [Ad],
i: AN B0 i€l
from which it follows that f-[B,| € Cp(V') and hence the limit (27.2.3) is well-defined
and satisfies (27.2.1). O
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(27.3) Problems.
1°. Show that the indicators of closed convex sets in V' are not linearly indepen-
dent if dimV > 1.

2°. Check that the spaces P(V), P (Q?),C(V) and Cy(V) are closed under point-
wise multiplication of functions.

3. Prove the inclusion exclusion formula

= > (i

I1c{1,...,n}
I#£0Q

N

i€l

for sets A; C V.

4. Let A;,i =1,...,n be a family of closed convex sets in V such that | J_, 4;
is convex. Suppose that the intersection of any k < n sets A; is not empty. Prove
that the intersection of some k + 1 sets A; is not empty.

5. Let A C R™ be the standard (n — 1)-dimensional simplex defined by the

equation x1 + ...+ x, = 1 and inequalities x; > 0 for ¢ = 1,... ,n. For ¢ =
1,...,n, let let F; C A be the facet of A defined by the equation x; = 0. Let
Aq,..., A, CR"™ be closed convex sets such that

A C UAZ' and A,NE, =0 for 1=1,...,n.
i=1

Prove that

() Ai #0.
i=1

6. Let P C V be a bounded polyhedron with a non-empty interior int P. Prove
that [int P] € P(V) and that x([int P]) = (—=1)¢, where d = dim V.

Hint: Use (27.2.2).

7*. For an affine hyperplane H = {a: eV: (cx) = a}, where ¢ # 0, let us
define the closed halfspaces

Hi={zeV: (ca)>a} and H_={zeV: (cz)<a}.

Let W be a real vector space and suppose that with every polyhedron P C V we
associate an element ¢(P) € W such that

¢(P)=¢(PNHy)+¢(PNH-)—¢(PNH)

for every affine hyperplane H. Prove that there is a valuation ® : P(V) — W
such that ®([P]) = ¢(P) for every polyhedron P C V.
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28. LINEAR TRANSFORMATIONS AND POLYHEDRA

(28.1) Definition. A linear transformation 7' : R — R™ is called rational, if
the matrix of 7" in the standard bases of R™ and R™ is rational.

(28.2) Lemma. Let T : R — R~ be the projection
T(IIJl,... ,.’Ed) = ({131,... ,{IJd_l).

If P C R? is a (rational) polyhedron then T(P) C R4™1 is a (rational) polyhedron.

Proof. Suppose that P is defined by a system of linear inequalities

d
E Q5T < bz for iZl,...,TL.
j=1

Let
I ={i: a;a>0}, I-={i: aa<0} and Ip={i: a;q=0}.
Then, for x = (x1,... ,24-1) we have x € T'(P) if and only if
d—1
(28.2.1) Zaijxj < b; forall i€l
j=1

and there exists 4 € R? such that

d—1
bi Aij .
xq < - x; forall 7€, and
Qid Zaid !
7j=1
p A=l
Tq > — —Z Uasj forall 7€ 1_.
Gig = Gid

Hence = € T(P) if and only if (28.2.1) holds and

d—1 d—1

by iy b Gis | ,
(28.2.2) L Dy < =2 -y 2L forevery i, €1, iy € l;.
Qiyd i Qiyd Qiyd =1 Yizd

If Iy is empty then there are no equations (28.2.1) and if either of I_ and I, is
empty then there are no equations (28.2.2).
The proof now follows. l

62



(28.3) Theorem. Let T : V. — W be a linear transformation. Then for every
polyhedron P C V the image T(P) C W is a polyhedron. Furthermore, there is a
unique valuation T : P(V) — P(W) such that T ([P]) = [T'(P)] for any polyhedron
pPcV.

IfV=R" W=R"™ and T : R® — R™ s a rational linear transformation and
if P C R™ is a rational polyhedron then T'(P) C R™ is a rational polyhedron.

Proof. It T : V. — W is an isomorphism and
P:{xGV: (c;yx) < «; for ieI}

then
T(P) = {yEW: <(T*)_lcl~, y) < «; for ie[}

is a polyhedron. Furthermore, if T' is rational and P is rational then T'(P) is
rational.

If T :V — W satisfies kerT' = {0} and hence T' : V' — image T is an
isomorphism. Hence if P C V is a polyhedron then T'(P) is a polyhedron. If 7" and
P are rational then T'(P) is rational.

Finally, if T : V' — W is an arbitrary linear transformation then 7 is a com-
position of a linear transformation V.— W @ V| x —— (T'z,x) with the trivial
kernel and a sequence of the coordinate projections W &V — W. Using Lemma
28.2, we conclude that if P is a (rational) polyhedron and T is a (rational) linear
transformation, then 7'(P) is (rational) polyhedron.

Clearly, T : P(V) — P(W) is unique, if it exists. To prove existence, we note
that for any f € P(V) and any = € W we have

f- [T‘l(aj)} = Z o; [A; N T_l(a;)} where [ = Z a; [4;]

i€l i€l

and A; C V are polyhedra and a; € R are reals. Hence f - [T~!(z)] € P(V) and
we define

(28.3.1) h=T(f) where h(z)=x(f [T (z)]).

It is straightforward to check that 7 ([A]) = [T'(A)] for a polyhedron A C V and
hence T : P(V) — P(W) is the required valuation. O

(28.4) Problems.
1. Let T : V. — W be a linear transformation. Prove that if A C V is a compact

convex set then T'(A) C W is a compact convex set and that there exists a unique
valuation 7 : Cp(V) — Cp(W) such that T([A4]) = [T(A)] for any non-empty
compact convex set A C V.

2. Construct an example of a linear transformation 7' : R? — R and a closed
convex set A C R? such that T'(A) is not closed.
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29. MINKOWSKI SUM

(29.1) Definition. Let V be a vector space and let A, B C V be sets. The
Minkowski sum of A and B is defined as the set

A+B:{mun aeAbeB}

(29.2) Theorem. Let V' be Euclidean space.

(1) If P1, P, CV are polyhedra then Py + Py is a polyhedron.
(2) There exists a unique bilinear operation

x: PV)xPV)— PV),

called convolution, such that [Py] x [Pao] = [Py + Ps] for any two non-empty
polyhedra Py, P, C V.

Proof. Let Py, P, C V be polyhedra. Let us consider the set Py x P, C V&V
defined by

P, x Py = {(:c,y): x € P, yepg}.

Clearly, P is a polyhedron.
Let us consider a linear transformation

(29.2.1) T- VeV —V, Ty =z+y.

Then P, + P, = T(P; x Py) and hence P; + P» is a polyhedron by Theorem 28.3.
Clearly, convolution * is unique, if exists. For functions f,g € P(V'), we define

fxg: VeV —R where (fxg)(z,y)=f(x)g(y).

Hence if

f= Zai [P] and g= ZBJ (@]

i€l =
then
f Xg:zazﬂj [P x Qy],
i€l
JjeJ
from which it follows that f x g € P(V & V).
Let T:P(Va& V) — P(V) be the valuation associated with linear transforma-
tion (29.2.1) via Theorem 28.3. We define

fxg=T(fxg)
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(29.3) Problems.
1°. Let T': V. — W be a linear transformation and let 7 : P(V) — P(W) be
the associated valuation. Prove that T(f *g) = T(f) * T (g).

2°. Prove that f [0] = f for all f € P(V).

3*. Let P C R? be a bounded polyhedron with a non-empty interior int P. Prove
that
[P] + [~ int P] = (~1)7[0],

where —X = {—x: z € X}.

4. Prove that the Minkowski sum of compact convex sets is a compact convex
set and that there exists a unique bilinear operation * : Cp(V') x Cp(V) — Cp(V),
called convolution, such that [A]*[B] = [A+ B] for any non-empty convex compact
sets A, BCV.

5%. Let {A; CV : i€ I} be a finite family of convex compact sets and let
{a; : i € I} be a finite family of real numbers such that

Prove that

where aX = {aaj rrxe X } and the sums on both sides are the Minkowski sums.

30. THE STRUCTURE OF POLYHEDRA

(30.1) Definitions. Let V be a vector space and let a,u € V be vectors, where
u # 0. The ray emanating from a in the direction of u is the set

{a +tu: t2> 0}.
The line through a in the direction of u us the set
{a +tu: te ]R}.
Recall that the interval with the endpoints a and b is the set
la,b] = {ta+(1—t)b: 0<t< 1},

where a,b € V.
A point a € P is called a vertez of a polyhedron P if whenever a = (b+ ¢)/2
where b,c € P, we must have a = b = c.
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A point b € V is a convex combination of a finite set of points {a; : i € [} CV

if b can be written as
b= Z)\iai where Z)‘i =1 and X, >0 forall 7€l
icl il

The set of all convex combinations of points from a given set A C V is called the
convez hull of A and denoted conv(A). The convex hull of a finite set is called a
polytope.
(30.2) Lemma. Let V' be Euclidean space and let P C V be a polyhedron. Then
P is unbounded if and only if it contains a ray.

Proof. Clearly, if P contains a ray then P is unbounded. Suppose that
P:{xEV: (ci,x)y < ay, iel}.

Since P is unbounded, there is a sequence of points z, € P, n = 1,2,... such
that ||z,| — +o00. Let y, = x/||z,||. Then ||y,|| = 1 and hence there exists a
unit vector u € V which is a limit point of the sequence {y,}. Then necessarily
(ci,u) <0 for all i € I and hence for any a € P the ray emanating from a in the
direction of u lies in P. O

(30.3) Lemma. A polytope is a polyhedron. The convex hull of a finite set of
rational points (that is, points with rational coordinates) in RY is a rational poly-
hedron.

Proof. Let P = conv (vy,...,v,), where vy,...,v, € V are points. Let A C R"”
be the standard simplex defined by the equation ;1 + ...+ x,, = 1 and inequalities
x; > 0 for e = 1,...,n. Then A is a polyhedron and also a polytope that is

the convex hull of the standard basis vectors eq,...,e,. Let us define a linear
transformation 7 : R® — V by T'(e;) = v; for i = 1,... ,n. Then P = T(A) and
the proof follows by Theorem 28.3. 0

(30.4) Lemma. Let P C V be a non-empty polyhedron. Then P contains a vertex
if and only if P does not contain a line.

Proof. Let P = {:c eV (¢,x) <ay i € I} be a polyhedron. Suppose that P
contains a line in the direction u. Then (¢;,u) =0 for all i € I. If z € P is a point
then v +u € P and z = ((z +u) + (z — u))/2, which proves that z is not a vertex.

To prove that if P does not contain lines it contains a vertex, we proceed by
induction on dimV. If dimV < 1, the statement is clear. If dimV > 1, let
us consider a line [ having a non-empty intersection with P. Since | ¢ P, the
intersection P N[ is either a ray emanating from some point @ € P or an interval
with an endpoint a € P. In any case, we must have (c;,a) = «; for some j € I.
Let @ = PN H, where H C V is the affine hyperplane defined by the equation
(¢j, ) = a;. Identifying H with a (d—1)-dimensional Euclidean space, we conclude
that there is a vertex v of Q). Suppose that v = (u + w)/2, where u,w € P. Since
(¢j,u), (cj,w) < a; and (¢, v) = a; we must have (¢;,u) = (¢;,w) = a; and hence
u,w € Q). Therefore, u = w and v is a vertex of Q. O
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(30.5) Lemma. Let
P:{xGV: (ciyx) < ay, ie[}
be a polyhedron and let v € P be a point. Let
I, = {2 el: (c¢,v)= ai}

(the inequalities indexed by i € I, are called active on v). Then v is a vertex of P if
and only if span (ci S Iv> = V. In particular, the set of vertices of a polyhedron
is finite and if P is a rational polyhedron then the vertices of P are rational points.
Proof. Suppose that v = (u + w)/2 for some u,w € P. Since {(c¢;,u), (¢;,w) < oy
and (c¢;,v) = «; for i € I,, we must have (¢;,u) = (¢;,w) = «; for all i € I,.

Hence if span <ci D1 € IU) = V then necessarily © = w = v and v is a vertex. If

span(ci 1€ Iv> # V then there is a u # 0 such that (¢;,u) = 0 for all i € I,.

Then for a sufficiently small € > 0 we have vteu € P and v = ((v+eu)+(v—eu)) /2
and hence v is not a vertex. U

(30.6) Lemma. Let P C V be a bounded polyhedron. Then P is the convex hull
of the set of its vertices and hence is a polytope.

Proof. By Lemma 30.5, the set of vertices of P is finite and hence the convex hull
of the set of vertices is a polytope. It remains to prove that every point y € P can
be written as a convex combination of vertices of P. We proceed by induction of
dim V. If dim V = 0, the result is clear. Suppose that dimV > 0 and let

P:{xGV: (c;,z) < ay, iEI}.

If (cj,y) = o for some j € I, we consider the affine hyperplane H defined by the
equation (cj,z) = «; and let Q = PN H. By the induction hypothesis, z is a
convex combination of vertices of () and, arguing as in the proof of Lemma 30.4,
we conclude that the vertices of () are also vertices of P.

If (¢i,y) < o for all i € I, we consider a line [ through y. Since P is bounded,
the intersection [ N P is an interval [a,b] where y € [a,b] and (cj,a) = «; and
(ck,b) = ay, for some j, k € I. Arguing as above, we prove that a and b are convex
combinations of vertices of P and so is y. O

(30.7) Definition. Let K C V be a polyhedron. Then K is called a polyhedral
cone (or just a cone) if 0 € K and for every x € K and A > 0 we have \z € K.
Equivalently, K is a polyhedral cone, if

K:{xEV: <ci,x>§0,z’61},

where [ is a finite set.
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(30.8) Lemma. Let
K:{xGV: (c;yx) <0, ieI}

be a polyhedral cone and let
c= Z Ci-
il
Suppose that K # {0} and that K does not contain lines. Then
(1) For any xz € K \ {0} we have (c,z) < 0;
(2) Let Q = {x eK: (cz)= —1}. Then @ s a polytope and every vector
x € K\ {0} can be uniquely written as x = Ay for some A > 0 and y € Q;

(3) The set W of vectors w € V' such that (w,x) < 0 for all x € K \ {0} is
non-empty and open.

Proof. Clearly, (c,x) < 0 for all z € K. Suppose that (c,x) = 0 for some = # 0.
Then (¢;,z) = 0 for all ¢ € I and K contains a line through the origin in the
direction of x, which is a contradiction. This also proves that x = Ay for some
A >0 and y € (. Hence it remains to prove that @ is a polytope. Clearly, @ is a
polyhedron and in view of Lemma 30.3 it remains to show that ) is bounded. In
view of Lemma 30.2, it suffices to show that () does not contain rays. Indeed, if @
contains a ray in the direction of u for some u # 0 then we must have (¢;,u) <0
for all i € I and (c,u) = 0, from which it follows that (c,u;) = 0 for all ¢ € I and
K contains a line in the direction of u, which is a contradiction.

The set W is non-empty since it contains c¢. Moreover, by Part (2) we have
w € W if and only if (w,v) < 0 for every vertex v of @, from which W is open.
O

(30.9) Theorem. Let P C V be a non-empty polyhedron not containing lines and
let
Kp:{ueV: r+ eV forall e P and all )\20}.

Let R be the polytope that is the convex hull of the set of vertices of P. Then Kp
18 a polyhedral cone without lines, called the recession cone of P and P = K + R.

Proof. Suppose that
P:{xEV: (ci,z) < ay, ie[}.
It is easy to check that
Kp:{a:GV: (c;yx) <0, ieI},
so Kp is indeed a polyhedral cone. Since P does not contain lines, Kp does not

contain lines as well.
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Clearly, K + R C P. It remains to show that every point a € P can be written
as a sum of x = u+ b where b € R and v € K. We proceed by induction on dim V.
If dim V' = 0, the result is clear. Let us assume that dimV' > 0. If Kp = {0} then
by Lemma 30.2 polyhedron P is bounded and the result follows by Lemma 30.6.
If Kp # {0}, let us choose u € Kp \ {0}. Then the intersection of a line through
a in the direction of u with P is a ray y + tu, t > 0, where (c;,y) = a; for some
j € 1. Let H be the affine hyperplane defined by the equation (c;,z) = «; and let
(Q = PN H. By the induction hypothesis, we can write y = b + w, where b is a
convex combination of vertices of () and w € Kg. As in the proof of Lemma 30.4,
the vertices of () are also vertices of P and hence b € R. It is not hard to see that
Kg C Kp and hence w € Kp. Finally, we can write a = y +w + tu for some ¢ > 0.
Since w + ty € Kp, the proof follows. O

(30.10) Problems.

Let A C V be a closed convex set. A set F' C A is called a face of A if there
is a vector ¢ € V and a number o € R such that (c,z) < « for all z € A and
F={zeV: (cz)=a}.

1. Prove that a polyhedron has finitely many faces.

2*. Prove that if a closed convex set A C V has finitely many faces then A is a
polyhedron.

3. Let Pi, P, C V be non-empty polyhedra and let P = P; + P,. Prove that
every face F' of P can be written as F' = F; + F5 where Fj is a face of P, and Fy
is a face of Ps.

4. Let Py, P, C V be non-empty polyhedra and let P = P, N P,. Prove that
every vertex v of P can be written as v = F} N Fy, where I} is a face of Pp, Fy is a
face of P, and dim F; + dim F5, < dim V.

31. RATIONAL GENERATING FUNCTIONS FOR INTEGER POINTS IN POLYHEDRA

(31.1) Definitions. For an integer point m = (mq,...,mq) and a vector x =
(1,...,24) we denote
Xm — {1)1“1 lend,
a Laurent monomial in z1,...,z4.
For a vector ¢ = (¢1, ... ,¢q), we denote
e’ = (e, ..., e).
(31.2) Lemma. Let ui,...,u, € Z% be linearly independent vectors and let



(such a set K is called a simple rational cone). Let

Then the set

W:{XECd: |x“| <1 for i=1,... ,k:}
18 non-empty and open and for all x € W the series
> "
meKNZd

converges absolutely and uniformly on compact subsets of W to a rational function

k
n 1
F(K,x) = Z X Hl_xui'
nellNZd =1
Proof. Clearly, W is open. Since vectors uq, ... ,u; are linearly independent, there
exists a ¢ € R? such that (c,u;) < 0 for i = 1,...,k. Then e¢ € W, so W is

non-empty.
We claim that every point m € K NZ? can be uniquely written as

k
(31.2.1) m = n—f—Zuiui
i=1
for some n € IINZ% and non-negative integers piy, ... , ity

Indeed, given

k
m:Zaiui where «; >0 for ¢=1,...,k
i=1

we let
i = |lay| for i=1,...k

and i i
n = Z{ai}ui =m — Zﬂiui
i=1 i=1

cf. also the proof of Theorem 3.1. Note that n is a difference of two integer vectors
and hence is an integer vector and that n € Il since 0 < {o;} <1 fori=1,... k.
The representation (31.2.1) is unique since if

k k
m=mni + E il = o + E Aitli,
i=1 i=1
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where ni,no € Il and \;, u; are non-negative integers then n; — ny is an integer

combination of uq,...,u. On the other hand,
k
n1 —ngzz&ui where —1<pg;<1 for i1=1,...,k.
i=1
Since vectors uq,...,u; are linearly independent, we conclude that 8; = 0 for
i =1,...,k. Therefore, ny = ny and hence \; = u; fori=1,... k.

Therefore, we have the identity of formal power series

Z x" = Z x" Z XH1U1+--.+ukuk
meKNZ4 nellnzd 1y ik EZ
(3122) H;,... S >0
- Z x" H Z xHud
nellnzd Jj=1 uez
n=0

Now we observe that (31.1.2) converges absolutely for all x € W and uniformly on
compact subsets of W. 0

(31.3) Lemma. Let
K= {xERd: (e, ) <0, i=1,... k}

where ¢; € Z fori=1,...,k, a rational cone without lines. Then there are points
UL, ... un € KNZ®% such that the set

W:{XGCd: x"| <1 for i=1,...,n}

is non-empty and open and for all x € W the series
> X"
meKNZ4

converges absolutely and uniformly on compact subsets of W to a rational function

where €; = £1,



for some finite sets A; C KNZ% and B; C {1,... ,n}, where |B;| < d.
Sketch of Proof. Without loss of generality we assume that K # {0}. Let

k

C:ECi

i=1

and let
Q= {xeK: (c,x) = —1}.

We note that @) is a polytope with rational vertices and by Lemma 30.8 every
x € K\ {0} can be uniquely written as z = Ay for some y € @ and A > 0. Scaling
Q' = tQ for some integer ¢ we obtain a polytope )" with integer vertices uq, ... , uy,
and such that every = € K \ {0} can be uniquely written as z = Ay for some y € @’
and A > 0. Triangulating Q)" we represent K as a union of simple rational cones as
in Lemma 31.2. By Lemma 30.8 there is a vector ¢ € R? such that (c,u;) < 0 for
alli=1,... k. Then e® € W, so W is non-empty. Clearly, W is open. The proof
now follows from Lemma 31.2 and the inclusion-exclusion formula. 0

(31.4) Lemma. Let P C R? be a rational polyhedron without lines. Then there
exists a non-empty open set U C C? such that for every x € U the series

2, "

mePNZ4

converges absolutely and uniformly on compact subsets of W to a rational function

pi(x)

fiPx) = Z i (x)

i€l

Y

where p;(x) are Laurent polynomials in x and ¢;(x) = (1 —x"*) .- (1 —x"*) for
some vectors u;; € 2\ {0}.

Proof. Let us identify R¢ with the affine hyperplane H defined by the equation
Tger = 1in R Let

P:{xERd: (c;, ) < ay, izl,...n},

where ¢; € Z% and o; € Z for i = 1,... ,d. Let us define a rational cone K C R?*!
as
Kz{(az,f): (ci,x) —air < 0 for i=1,...,n and 720}.

Then P=KNH.
We claim that K does not contain lines. Indeed, if K contains a line in the
direction u = (u, B), for some u € R? and some 3 € R, we must have 3 = 0 since
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the last coordinate of every point in K is non-negative. Hence u # 0 and we must
have (c;,u) = 0 for i = 1,... ,n. This, however, contradicts the assumption that P
contains no lines.

We apply Lemma 31.3 to K. We note that the last coordinate of every integer
point n € K is non-negative. Therefore, if a particular point z = (x,y) lies in the
non-empty open set W C C4t1, the existence of which is asserted by Lemma 31.3,
then any point (x,7) with |j| < |y| lies in W as well. We define U C C? as the
projection of W onto the first d coordinates and conclude that

FPx) = 5L 7K. (x.p)

y=0'
U

The following remarkable result was proved by A. Khovanskii and A. Pukhlikov,
and, independently, by J. Lawrence in early 1990s.

(31.5) Theorem. Let R(x) be the real vector space of rational functions in x € C4
and let P (Qd) be the algebra of rational polyhedra. There exists a valuation

F:P (Qd) — R(x)

such that

(1) If P C R? is a rational polyhedron without lines then F([P]) = f(P,x),
where f(P,x) is a rational function of Lemma 31.4;
(2) If P C R? is a rational polyhedron with lines then F([P]) = 0.

Proof. First, we claim that P (@d) is spanned by the indicators [P], where P C RY
is a rational polyhedron not containing lines. To establish this, it suffices to show
that the indicator [P] of any rational polyhedron P C R? is a linear combination
of indicators of polyhedra without lines.

Let us represent

(31.5.1) [RY] = Ze [Qi]

where ¢; € {—1,1} and Q; C R? are rational polyhedra without lines (for example,
we can cut R? into orthants and use the inclusion-exclusion formula). Then

(31.5.2) [P]=[P]-[RY] =) &[Q:nP
el
and @; N P are rational polyhedra without lines.

Next, we prove that the correspondence P — f(P,x) preserves linear relations
among indicators of rational polyhedra without lines. Namely, if

(31.5.3) > a;[P] =0
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for some real o; and some rational polyhedra P; C R? then necessarily
(31.5.4) > a;f(P;,x)=0.

jed
We use decomposition (31.5.1). Multiplying (31.5.3) by [Q;] we get

ZO&j [Pj N Qz] =0.

jed
By Lemma 31.4, there is a non-empty open set U; C C? such that for all x € U;
the series

> X"

meQ,;NZ?

converges absolutely and uniformly on compact subsets of W to a rational function
f(P;,x). Then the series
>, X

meP;NQ,;NZ4

also converges uniformly on compact subsets of W necessarily to a rational function
f(P;NQ;,x). Besides,

(31.5.5) > ;i f(PNQix) =0,
JjeJ

since the same identity holds for power series.
Similarly, from (31.5.2) we obtain

(31.5.6) F(Pr,x) => e f(P;NQi,x).

i€l

Combining (31.5.5) and (31.5.6), we obtain

> aif(Px) =) <Z e f(P; N Qi,x>) = eaf (PN Qi x)

jed JeJ 1€l 1€l
jeJ
=> & | D> 0o f(PNQsx) | =0,

iel jeJ

which proves (31.5.4).

Therefore, the correspondence P — f(P,x) extends to a valuation F. It re-
mains to prove that F([P]) = 0 if P contains a line. First, we note that if n + P is
an integer translation of P then

(31.5.7) F([n + P)) = x"F([P)).
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Indeed, it suffices to check (31.5.7) for polyhedra without lines, where it is obvious.
Next, we observe that if a rational polyhedron P contains a line, it contains a
rational line and hence there is n € Z%\ {0} such that P +n = P. This proves that
for such a polyhedron we have

F([P]) = x"F([P]),

and hence F([P]) = 0. O

(31.6) Problems.
1. Let P C R? be a rational polyhedron without lines and let Kp C R? be its
recession cone (see Theorem 30.9). Let

W:{XE(Cd: |z%| <1 for all uEK\{O}}.

Prove that for every x € W the series
> X"
mePNZ3

converges absolutely and uniformly on compact subsets of W to a rational function
f(P;x).

2. Let uq,...,u; € Z% be linearly independent vectors, let cone K be defined as
in Lemma 3.2 and let

k
ﬁ:{Zaiui: 0<061§1}
and let us define a set W C C% as in Lemma 31.2. Prove that the series

2, X"

meKNZ4

absolutely converges for all x € W uniformly on compact subsets of W to a rational
function

k
f(int K, x) = Z x" Hl_lxui.
=1

n€ellNzd t
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Deduce that
f(int K,x ) = (=1)% f(int K, x).

3. Let a and b be coprime positive integers and let S C Z be the set of all linear
combinations of a and b with non-negative integer coefficients. Prove that

b

m 1—2°
Za: e a—a) for |z| < 1.

meS

4*. Let a,b and ¢ be coprime positive integers and let S C Z be the set of all
linear combinations of a, b and ¢ non-negative integer coefficients. Prove that there
exist positive integers p1, p2, p3, p4 and ps, not necessarily distinct, such that

Z m 1_xp1_xp2_ajp3 +xp4 +xp5
€T =

(1—2%) (1 —2b) (1 — 2°) for |z| < 1.

meS

32. TANGENT CONES

(32.1) Definitions. Let P C V be a polyhedron and let v € P be a point. The
cone of feasible directions of P at v is defined as

fcone(P,v) = {:c €eV: wv+ere P forall sufficiently small € > O}.

Equivalently, if
P:{xGV: (ciyx) < au, ie[}

and
I, = {z el: (¢,v)= ai}

then
fcone(P,v) = {:C eV: (¢,x)<0 for ie Iv}.

The tangent cone of P at v is
tcone(P, v) = v + fcone(P, v),
or, equivalently,

tcone(P,v) = {az eV: (e¢,xz)<a; for ic€ IU}.

Let f,g € P(V). We say that

f =g modulo polyhedra with lines
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if
f—gzzaz’[ﬂ],

where P; C V are polyhedra with lines. For f,g € P (@d) we say that

f =g modulo rational polyhedra with lines

if
f—gzzaz’[ﬂ],

where P; C R? are rational polyhedra without lines.

(32.2) Lemma. Let T : V. — W be a linear transformation, let P C 'V be a
polyhedron, let QQ = T(P), let v € P be a point and let w = T'(v) € Q be its image.
Then

T(tcone(P,v)) = tcone(Q, w).
Proof. Without loss of generality we may assume that v = 0, in which case w = 0,

tcone(P,v) = U tP and tcone(Q,w) = U tQ.

t>0 >0

Since T'(tP) = tT(P) = tQ, the proof follows. O
Here is the main result of this section.

(32.3) Theorem. Let P C R? be a (rational) polyhedron. Then

[P] = Z [tcone(P,v)] modulo (rational) polyhedra with lines,

v

where the sum is taken over all vertices of P.

Proof. Let A be the affine hyperplane in R" defined by the equation z1+...+z, =1
and let H; C A be the halfspace defined by the inequality z; > 0 fori =1,... ,n.
Then

is the standard simplex, which is also the convex hull of the standard basis vectors
€1,...,6en. We note that



and hence by the inclusion-exclusion formula

(32.3.1) A= > ()" [H] where H;=()H..
Ic{1,...,n} iel
I#£0

Thus if I = {1,...,n} then Hy = A and if I = {1,...,n} \ {e;} then H; =
tcone(A, e;). If i,j ¢ I for some i # j then H; contains a line in the direction of
e; — e;. Hence

n

A= Z [tcone(A, e;)] modulo rational polyhedra with lines.
i=1

Suppose now that P is a (rational) polytope, that is,
P =conv (vy,...,v,),

where v1,...,v, € R? are the vertices of P. Let T : R® — R? be a linear
transformation such that 7'(e;) = v; for i = 1,... ,n. Hence T(A) = P. By
Theorem 28.3, from (32.3.1) we conclude

[T(A]= >, (OIHT(HD)).
Ic{1,...,n}
I#0

Hence T (H;) = P if I ={1,... ,n}, by Lemma 32.2
T (H;) =T (tcone(A, e;) = tcone (P, v;)

if I ={1,...,n}\ {i} and T (H) contains a line in the direction v; — v; # 0 if
i,j ¢ I for i # j. Hence

n

[P] = Z [tcone(P,v;)] modulo rational polyhedra with lines.
i=1

Finally, we consider the case of an arbitrary (rational) polyhedron P. If P contains
a line then by Lemma 30.4 polyhedron P has no vertices and the identity holds
trivially. If P contains a line then by Theorem 30.9 we may write P = QQ + Kp,
where () is the convex hull of the set of vertices of P and Kp is the recession cone
of P. Since we have already proved the desired identity for polytopes, we can write

Q] = Z [tcone(Q,v)] modulo (rational) polyhedra with lines.

v
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Using Theorem 29.2, we obtain

[P] = Z [tcone(Q,v) + Kp| modulo (rational) polyhedra with lines.

v

It remains to show that for every vertex v of P we have
(32.3.2) tcone(Q,v) + Kp = tcone(P,v).

Indeed, let us consider the direct product Q x Kp C R?? and a linear transformation
T :R? — R

Qx Kp = {(w,y): wEQ,yer}, T(z,y) =z +y.
Hence P=Q+ Kp =T(Q x Kp), T(v,0) = v and it is easy to check that
tcone (Q x Kp, (v,0)) = tcone(Q,v) x Kp.

Applying Lemma 32.2, we deduce (32.3.2) and hence the theorem. O

We obtain the following corollary also known as Brion’s Theorem, after M. Brion
who proved it in 1988 using methods of algebraic geometry.

(32.4) Corollary. Let P C R be a rational polyhedron and let F be the valuation
of Theorem 31.5. Then

F([P]) = Z F ([tcone(P, v)]),

where the sum is taken over all vertices v of P. If the vertices of P are integer
vectors then

F([P]) = Z x" F ([fcone(P, v)]).

Proof. Follows by Theorem 31.5 and Theorem 32.3. O

33. THE EHRHART POLYNOMIAL OF AN INTEGER POLYTOPE

(33.1) Definition. A polytope P C R? is called integer if the vertices of P are
integer vectors.

(33.2) Theorem. Let P C RY be an integer polytope. For a positive integer n let
nP be the dilation of P, so that

nP:{m:: xEP}.
79



Then there exists a polynomial p(n), called the Ehrhart polynomial of P, such that
p(n) = |nPn Zd}

for positive integer m.

Proof. Let v;, 1 € I, be the vertices of P and let
K; = fcone (P,v;) for i€l

be the cone of feasible directions of P at v;. Then nv;, ¢ € I, are the vertices of nP

and
fcone (nP,v;) = K; for i€ l.

By Corollary 32.4, we have
(33.2.1) F([nP]) =Y _x""F([K,]).
i€l

We have
F(nP)= > x"

mée(nP)NZe

and hence the number of integer points in nP is the value of F([nP]) at x =
(1,...,1). Using Lemma 31.3, we can write F ([K;]) = f(Kj;, x) as sums of functions
of the type p(x)/q(x), where p(x) is a Laurent polynomials in x and

q(x) = (1 =x")--- (1 —x")

for some u1, ... ,uq € Z*\ {0}. We note that x = (1,...,1) is a pole of f(K;,x).
Let us choose a vector ¢ € R? such that (c,u;;) # 0 for all i and j. We choose
x(t) = €' in (33.2.1). Then the value of the left hand side is

Z et(c,m>,
mée(nP)NZ?

which is an analytic function of t and the constant term of its Taylor series expansion
in a neighborhood of ¢t = 0 is the number ‘nP N Zd‘ of integer points in nP.
We observe that

~ (e vi)* i
(33.2.2) x(t)" = etlnevi) = Lt
k=0 ’
Next, we observe that
) (R S
1—xui(t) 1171 —etleuy)’



Since the function ;

1—et

is analytic at ¢t = 0, the function

tdf(Kiv X(t))
is analytic at ¢t = 0 and we obtain the Laurent expansion in the neighborhood of
t=20

+o0
(33.2.3) FELx(t) =t apat”,
k=0

where the coefficients aj; depend only on the cone of feasible directions of P at
v;. From (33.2.2) and (33.2.3) we conclude that the constant term of the Laurent
expansion of the right hand side of (33.2.1) in a neighborhood of ¢t = 0 is

Nk
C,V
E E < 7k Z'> nkl ak2i,
1-

1€l ki,k2>0
ki+ko=d

which is a polynomial in n. U
(33.3) Problems.

1. Prove that degp = dim P.

2. Let {Pa D aE A} be a family of d-dimensional polytopes,

P, = conv(vl(oz), e ,vn(a)>,
where v;(a) € Z¢ and the cones of feasible directions at v;(a) do not depend on «:
fcone(Pa, fui(a)) =K; for i=1,...,n
and all &« € A. Prove that there exists a polynomial
p: Rix...xR?'—R
(S ——

n times

such that
[Pa 1127 = p(01(@), ..., va(a)
for all o € A.

3. Let P C R? be a rational polytope such that kP is an integer polytope for
some positive integer k. Prove that for a positive integer n

d
InP N Zd‘ = Z bj(n)n?,
j=0
where
bj(n) = bj(n + k)
for all positive integer n and all 0 < j < d. In other words, the number of integer
points in nP is a quasi-polynomial, called the Ehrhart quasi-polynomial of P.
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34. THE RECIPROCITY RELATION FOR CONES
(34.1) Lemma. Let P C R? be a (rational) polytope with a non-empty interior
int P. Then [int P] € P (R?) (respectively, [int P] € P (Q?), if P is rational) and
X ([int P]) = (~=1)%.
Proof. By Lemma 30.3 polytope P is a (rational) polyhedron, so

P:{a:E]Rd: (ci,z) < oy, izl,...,n}.

Then P\ int P is a union of lower-dimensional (rational) polytopes lying in the
affine hyperplanes

H; = {x c (e, ) = ozj}.
Hence the inclusions

[int P] P (RY), P (Q%)

follow by induction on d.

To compute the Euler characteristic of int P we use formula (27.2.2) and induc-
tion on d. Clearly, the formula holds for d = 1. For d > 1, let H, C R? be the
affine hyperplane defined by the equation x4 = 7. Then, by (27.2.2), we have

(34.1.1) x ([int P]) = TEE% (X (int POV Hy) = Tim o (int PO HH)) :

By Lemma 30.6, for every 7 the intersection int P N H, is either empty or the
interior of a (d — 1)-dimensional polytope. Therefore, by the induction hypothesis,
the only non-zero term of (34.1.1) corresponds to

T= max g4
(z1,...,xq)EP

and equals

The following result is known as the reciprocity relation.
(34.2) Theorem. Let K C R? be a (rational) polyhedral cone with a non-empty

interior int K. Then

[K] = (-1)¥[—int K] modulo (rational) polyhedra with lines,

where
—int K = {—a: i x € intK}.
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Proof. First, we consider the special case of the non-negative orthant R’ . For
i1=1,... ,nlet H Z+ be the closed halfspace defined by the inequality x; > 0 and let
H: be the complementary open halfspace defined by the inequality x; < 0. Then

n

R =[] =11 (R - [E7]) = > (-v[H7],
(34.2.1) i=1 i=1 Ic{1,...,n}
where Hf:ﬂHZ._.
iel

If I ={1,...,n} then Hy = —intR%}. If j ¢ I for some j then [H;] is a linear
combination of indicators of polyhedra containing a line in the direction of the j-th
basis vector e;, and hence we conclude that

[R%] =(-1)" [-intR"] modulo rational polyhedra with lines.

Suppose now that K C R9 is a (rational) polyhedra cone with no lines and with
a non-empty interior. By Lemma 30.8, we can write

K:{Zaiuiz a; >0 for z’:l,...,n}

and some uq,...,u, such that = conv (ul, e ,un> is a polytope contained in

an affine hyperplane not passing through the origin. If K is rational, we may
additionally choose u; € Z%\ {0} fori =1,...,n
Let us consider a linear transformation 7 : R® — R such that T'(e;) = u; for
t=1,...,n. Then
T(R}) =K.

By Theorem 28.3, there is a unique valuation
T:P[R"), P@Q") — P (RY), P(Q7)
such that T([P]) = [T'(P)] for any (rational) polyhedron P C R™. In particular,
(34.2.2) T [R%] = [K].
Let us compute h = T ([~ int R%]). From (28.3.1) we have
hz) = x ([(-itR?)NT Hz)]) forall zeR%

We observe that for all € —int K the intersection (—intR}) NT~!(z) is the
interior of a (n — d)-dimensional polytope while for all other x the intersection is
empty. From Lemma 34.1, we conclude that

h=(-1)"""[—int K].
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Finally, if P is a (rational) polyhedron containing a line in the direction of a basis
vector e; then T'(P) is a (rational) polyhedron containing a line in the direction of
vector u;. Applying 7 to (34.2.1), we conclude that

[K]=(—1D)"- (=1)""[~int K] = (—1)[~ int K]
modulo (rational) polyhedra with lines,

as desired.
Finally, if K contains a line then

[K] = [—int K] =0 modulo rational polyhedra with lines.

O

(34.3) Theorem. Let P C R? be a (rational) polytope with a non-empty interior
int P. Then

[int P] = Z [int tcone(P,v)] modulo (rational) polyhedra with lines,

v

where the sum is taken over all vertices v of P.

Proof. The proof combines the approaches of Theorem 32.3 and Theorem 34.2.
First, we establish the identity for the standard simplex and then use a suitable
projection. U

(34.4) Corollary.

(1) Let K C R? be a rational cone with a non-empty interior int K and let
f(K,x) = F([K]) and f(int K,x) = F([int K]) be the corresponding ratio-
nal functions in x € C*. Then

f(int K,x) = (=1)%f (K, x_l) ,

where

x = (a:l_l,... ,a:;l) for x=(x1,...,2q).

(2) Let P C RY be a rational polytope with a non-empty interior. Then
F([P]) = F([int tcone(P,v)]),

where v ranges over all vertices of P. If the vertices of P are integer vectors
then
F([P)) = x"F([int feone(P, v)]).

Proof. Part (1) follows by Theorem 34.2, Theorem 31.5 and the observation that
) IECEIED DRI
me€int KNZ4 me— int KNZd4
Part (2) follows from Theorem 34.3 and Theorem 31.5. O
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35. THE RECIPROCITY RELATION FOR THE EHRHART POLYNOMIAL
The following result is called the reciprocity relation for Ehrhart polynomials.

(35.1) Theorem. Let P C RY be an integer polytope with a non-empty interior
int P and let p be its Ehrhart polynomial, so that

p(n) = |nPn Zd}
for positive integer n. Then
p(—n) = (=1)? |int(nP) N Z%|

for positive integer n.

Proof. We proceed as in the proof of Theorem 33.2. Let v;, 7 € I, be the vertices
of P and let
K; = fcone (P,v;) for i€l

be the cone of feasible directions of P at v;. From Corollaries 32.4 and 34.4, we get
F([nP)) =) _x™F([K]) and F([intnP])=> x""F ([int K;])
icl icl

and

F([nP]) = Z x™ and F([intnP]) = Z x",

me(nP)NZ? mée (int nP)NZ4

where the last identity follows since [int P] can be written as a linear combination
of indicators of polytopes (the polytope P and its faces). Denoting

f(Ki,x)=F(K;]) and f(int K;,x)=F ([int K;]),
from Corollary 34.4, we have

(35.1.1) f(int K, x) = (1) f (Ki,x 1)
As in the proof of Theorem 33.2, let us choose a vector ¢ € R? such that x(t) = e’
is a regular point of all functions f(K;,x) provided t # 0. Since x~1(t) = x(—t) it
follows by (35.1.1) that x(t) is a regular point of all functions f(int K;,x) as long
as t # 0.

As in the proof of Theorem 33.2, functions f(K;, x()) admit a Laurent expansion
in the neighborhood of ¢ = 0:

“+oo
FUEGx(8) =t apt™.
k=0
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Since x~1(t) = x(—t), from (35.1.1) we conclude that functions f(int K;,x(t))
admit the Laurent expansions in the neighborhood of ¢t = 0

“+oo
Fnt K, x (1) =t agi(—1).
k=0

As in the proof of Theorem 33.2, the number p(n) = |nP N Z?| of integer points in
nP is the constant term of the Taylor expansion of

Z et(c,m)
me(nP)NZ?
in a neighborhood of ¢t = 0 and equals

c,v;)k
(35.1.2) >y <k1'> nFrog,,;.

i€l ki+k22>0
ki+ko=d

Similarly, the number |intnP N Z%| of integer points in the interior of nP is the
constant term of the Taylor expansion of

Z et(c,m)
mée (int nP)NZ43
and equals

c,v;)k
(35.1.3) >y <k1'> nFr(=1)*2 ay,;.

i€l k1+ka>0
k1+ka=d

Comparing (35.1.2) and (35.1.3) we conclude that
lint(nP) NZ4| = (=1)%p(—n).
U

(35.2) Problem.
1. Let {P,: a € A} be a family of d-dimensional polytopes with non-empty
interiors,
P, = conv(vi(a),... ,v.(a)),

where v;(a) € Z¢ and the cones of feasible directions at v;(a) do not depend on «:
fcone (Py,vi(a)) = K; for i=1,...,n
and all @ € A. By Problem 2 of Section 33.3 there exists a polynomial p such that
|Pa Zd‘ =p(vi(@),...,vu(a))
for all « € A. Prove that one can choose a polynomial p so that, additionally,
‘int P, N Zd‘ = (—1)dp(—v1(a), =)

for all o € A.
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36. POLARITY FOR CONES

(36.1) Definition. Let K C V be a cone. The polar cone K° C V is defined by

KO:{xEV: (x,y) <0 for all yEK}.

(36.2) Theorem.

(1) Let K C R? be a (rational) polyhedral cone. Then K° C R? is a (rational)
polyhedral cone.

(2) We have (K°)° = K for any polyhedral cone K C RY.

(3) A polyhedral cone K contains a line (respectively, lies in a hyperplane) if
and only if K° lies in a hyperplane (respectively, contains a line).

(4) Let K (]Rd) cP (]Rd) be the subspace spanned by the indicators of polyhedral
cones. Then there exists a unique linear operator (valuation) D : K (Rd) —
K (Rd) such that

D((K]) = ([K°)

for any polyhedral cone K C R%.

Proof. To prove Part (1), first we consider the case when K has no lines. Then, by
Lemma 30.8 we have

KZ{Z%‘W where «; >0 for izl,...,n}

=1

for some vectors ui, ... ,u, € R% Moreover, if K is rational we can choose u; to
be integer vectors. Then

Koz{xeRd: (r,u;) <0 for z’zl,...,n}.
Suppose now that K contains lines. We assume that
K:{xeRd: (ci,z) <0 for ieI}

and let
L:{xeRd: (ci,x) =0 for ieI}

be the largest subspace contained in K. Let L+ C R be the orthogonal complement
to L and let K; C Lt be the orthogonal projection of K onto L. Using Theorem
28.3 we conclude that K is a (rational) polyhedral cone, necessarily without lines.
It is not hard to argue that K = K; + L and that K° = (K7) N L+, from which
Part (1) follows.
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If y € K then {(x,y) < 0 for all z € K° and hence y € (K°)°. Suppose that
y € (K°)° and suppose that

K:{xeRd: (c;,z) <0 for ieI.}.

We note that ¢; € K° for all i € I and hence (¢;,y) < 0 for all ¢ € I. It follows
then that y € K, which completes the proof of Part (2).

If K contains a line in the direction of v # 0 then K° lies in the hyperplane u*.
If K C H, where H C R? is a hyperplane then K° contains a line in the direction
orthogonal to H. Together with Part (2), this completes the proof of Part (3).

To prove Part (4), let us define G : R? x R — R

1 if (z,y) =1

0 otherwise.

G(z,y) = {

We claim that for every f € K (R?) and any y € R? the function g,(z) =
f(x)G(z,y) lies in P (R?). Indeed, by linearity it suffices to check this when
f = [K], where K C R? is a polyhedral cone, in which case g, = [K N H,], where
H, = {:c cR?: (z,y) = 1} is a hyperplane. This allows us to consider the Euler
characteristic of g, and hence to define a function h : R — R by

h(y) = x(f) = x(9)-
Next, we claim that if f = [K] then h = [K°]. Indeed, in this case x(f) = 1 while

1 if KNH,#0

X(gy):{o it KN H,=0.

If y € K° then clearly K N Hy, = 0 so h(y) = 1. If y ¢ K° then there is an
x € K such that (x,y) > 0 and by scaling x — Az for some \ > 0 we find a point
x € KN H,. Hence x(g,) =1 in this case and h(y) = 0 if y ¢ K°. Therefore we
can define a transformation

D: K(RY) — K(R?Y) where D(f)=nh.

The transformation is clearly linear and D ([K]) = [K°] for all polyhedral cones K.
O

(36.3) Theorem. Let P C R? be a (rational) polytope. Then

Z [fcone(P,v)] = [0] modulo (rational) polyhedra with lines,

v

where the sum is taken over all vertices v of P.
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Proof. For a vertex v of P let us define a cone
K, = {c eRY:  (c,v) > (c,w) for all vertices w #v of P}.
In other words, K, consists of all functions = — (¢, x) that attain their maximum

on P at v. Hence
K. =R,

where the union is taken over all vertices v of P. Moreover, the intersection of any
two or more of cones K, is a lower-dimensional cone since K,, N K,, lies in the
hyperplane (¢, v; — vy) = 0. Therefore,

(36.3.1) Z [K,] = [Rd] modulo cones in hyperplanes,

v

where the sum is taken over all vertices v of P. Next, it is not hard to see that
K, = (fcone(P, v)o.
Hence by Part (2) of Theorem 36.2 we conclude that
K; = fcone(P,v).

Applying the operator D of Part (4) of Theorem 36.2 to both parts of (36.3.1), we
complete the proof. O

(36.4) Corollary. Let P C R be a rational polytope. Then

Z F ([fcone(P,v)]) = 1,

where the sum is taken over all vertices v of P.
Proof. Follows from Theorem 31.5 and Theorem 36.3. O

(36.5) Problems.
1. Let D be the the operator of Theorem 36.2. Prove that

D(f*g) =D(f)D(g) andthat D(fg) = D(f)*D(g),
where x is the bilinear operation of Theorem 29.2.
2. Let P C V be a polyhedron without lines. Prove that

Z [fcone(P,v)] = Kp modulo polyhedra with lines,

v

where the sum is taken over all vertices v of P and Kp is the recession cone of P,
see Theorem 30.9.

3. Let us fix 1 < k < d and let
A:{(:L'l,...,xd): r1,...,2 >0 and xk+1,...,xd20}.

Prove that [4] € K (R?) and compute D([A]).
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37. THE CONSTANT TERM OF THE EHRHART POLYNOMIAL

(37.1) Theorem. Let P C RY be a non-empty integer polytope and let p be its

Ehrhart polynomial, so that
p(n) = |nPn A

for a positive integer n. Then
p(0) = 1.

Proof. Let v;, © € I be the vertices of P and let
K; = fcone (P,v;) for i€l.
As in the proof of Theorem 33.2, we conclude that

_ {c,v;)F
pn) = > ol

1€l ki,k2>0
ki1+ko=d

k
Nt gy,

where ¢ € R? is a sufficiently generic vector and

+oo
FELx(E) =t opit®, for x(t)=e' and f(K;,x)=F([Ki]).
k=0

Then
p(O) = Zadi =1
icl
since
> KL x(t) =1
iel
By Corollary 36.4. O

(37.3) Problems.
1. Let {P,: « € A} be a family of d-dimensional polytopes,

P, = conv(vl(oz), e ,vn(a)>,
where v;(a) € Z4 for i = 1,... ,n and

fcone (Py,vi(a)) = K;

independently of «, see Problem 2 of Section 33.3. Prove that one choose a poly-
nomial p in Problem 2, Section 33.3 and Problem 1 of Section 35.2, so that

[P, N Zd} =p(vi(),...,v,(a)) forall ae A
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and that
p(0,...,0)=1.

2. Let {P,: «¢€ A} be a family of polytopes as in Problem 1 above and let
Vi,...,Un € Z% are not necessarily distinct points such that in an arbitrary small

neighborhood of v; there is a point v; € R? such that for P’ = conv (vi, e v’)

Y n
one has
fcone(P,v) = K; for i=1,... n.

In other words, P, degenerates into an integer polytope P in such a way that
the facets of P, are moved parallel to themselves. Prove that one can choose a
polynomial p in Problem 1 above such that

}PﬂZd‘ =p(v1,...,0,)
and so that
|int PN Zd} = (=DFp(=v1,...,—v,),
where k = dim P and int P is the relative interior of P.

3*. Let Pi,..., P, C R? be integer polytopes. Prove that there exists a k-variate
polynomial p such that

‘(mlpl—f—...—f—mkPk) ﬁZd‘ :p(ml,... ,mk),

for all non-negative integer mq,...,my. Here “+” stands for the Minkowski sum
and multiplication by m; is a dilation. Moreover, prove that for P = miP; + ...+
my, P, one has .

}int PN Zd} = (=DM Pp (—my, o —my)
where my, ..., my are non-negative integers and int P is the relative interior of P.

4. Prove that for every positive integer k there exists a univariate polynomial p
of degree (k — 1)? such that for every positive integer m the value p(m) is equal to
the number of £ x k non-negative integer matrices with the row and column sums
equal to m. Prove that, additionally,

p(0) =1, p(-=1) =...=p(=k+1)=0 and p(—m)=(=1)*"'p(m — k)
for integer m > k.

5. Let P C R3 be the tetrahedron with the vertices (0, 0, 0), (1,0, 0), (0,1,0) and
(1,1,a), where a > 0 is an integer parameter and let p be its Ehrhart polynomial.
Prove that

6. Let us fix a polynomial p : R? — R and let {P,: « € A} be a family of
polytopes as in Problem 1. Prove that there exists a polynomial ¢ such that

Z p(m>ZQ(Ul(a)7"' :Un(a/»
meP,NZa

for all o € A.
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38. UNIMODULAR CONES

(38.1) Definition. Let uy,...,ur C Z? be a primitive set, that is, u,... ,uy is
a basis of the lattice Z¢ N span (ul, . ,uk>. The cone

k
K:{Zaiui: OéiZO for iZl,...,k’}

is called a unimodular cone. We say that K is spanned by uq, ... ,u; and denote it
as

cho(ul,... ,uk).

If K is a unimodular cone spanned by a primitive set of vectors uq, ... ,u; then
the fundamental parallelepiped

k
H:{Zaiui: 0<aq; <1 for izl,...,k}
i=1

contains no lattice points other than the origin (cf. Theorem 5.2) and by Lemma
31.2 for the generating function of integer points in K we have

k

f(K7X>:H

1

1 —xui

=1

(38.2) Decomposing a planar cone into unimodular cones using contin-
ued fractions. For d = 2, there is a rather efficient (polynomial time) algorithm
to write the indicator of a cone K C R? as an alternating sum of indicators of
unimodular cones and hence to compute the generating function f(K,x) of integer
points in K.

We compute one example. Suppose that K is spanned by vectors (1,0) and
(31,164). We write:

164 9 1 1
— =54+ —=5+—— =54+ —————
4 1 7
31 31 345 3+ —
94
+ 4
and hence we write 164
— =19;3,2,4].
31 [ ) Y b ]
Next, we compute the convergents:
1 37 1 16 5
[5;3,2]:5+—1:—, [5;3]=5+-=— and [5]=-.
34 7 1
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Then
(K] = [K_1] — [Ko] + [K1] — [Ka2] + [K3].

Besides, K_1, Ky, K1, K2 and K3 are unimodular cones since

s st -]t 2] --se[d ]

0 1 1 5 5 16 16 37
7 31
_det{:w 164}

Thus

fIK,x) =f(K_1,x) — f (Ko, x) + f (K1,x) — f (K2,%x) + f (K3,x)
1 1 1

TT-00-y 09—z -7y
1 1
(1 _ $3y16)(1 _ x7y37) + (]_ o $7y37)(1 o $31y164> :

We note that by changing coordinates, we can represent an arbitrary rational
cone in the form

(38.2.1) K:&(M’ BD

for some coprime integers p and q.

(38.3) Problems.
1. For the cone (38.2.1), assuming that p,q > 0 are coprime integers, consider
the continued fraction expansions

p_ .
- = [ao,al,... ,an].
q
For i =0,1,...,n consider convergents
. _ b
[a‘Oaa‘l?--- 7ai] -
qi
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and define cones

a1 ) moma (L) =
o[ 2]) e

Prove that each K; is a unimodular cone and that

(K] = i (-1)"* K] if n isodd

1=—1

and

[K]:[R]+g(—1)i+1 [K;] if n iseven where R:coqz‘i’;]).

Hint: Use Problem 2 of Section 9.4.

2. Let K C R? be a unimodular cone with a non-empty interior. Prove that K°
is a unimodular cone.

(38.4) Decomposing cones of higher dimensions. As long as the dimension
d remains fixed, there is a polynomial time algorithm to write a given rational cone
K as a signed combination of unimodular cones and hence to compute f(K,x) as
a rational function. We sketch the algorithm below.

First, we may assume that K C R? is a cone with a non-empty interior (other-
wise, we pass to the smallest subspace containing K'). Triangulating, if needed, we
reduce the case to that of a simple cone

cho(ul,... ,ud),

where u1, ... ,uq are linearly independent vectors. Let us define the index of K as
the volume of the parallelepiped spanned by uq, ... ,uq,

ind K = |u; A...Aug|.

Hence ind K = 1 if and only if K is unimodular. The algorithm consists in repeating
a procedure which represents a non-unimodular cone as a signed combination of
cones with smaller indices. The important feature of the procedure is that the
number of the cones increases exponentially with the number of steps while the
indices of the obtained cones decrease double exponentially.

Let us define

d
HOZ{ZOéiUiC lo;| < (indK)_l/d for z':l,...,d}.
i=1
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Then Il is a symmetric convex body and
vol Il = 2%

Hence by Minkowski Theorem (Theorem 6.4) there exists a non-zero vector v € II,
which then can be found efficiently with the help of the Lenstra-Lenstra-Lovasz
basis. For i € {1,...,d} let us define

Ki = CO(Ul, ooy Up—1, U, U414 - - - ,ud)
provided vectors uq,...,u;—1,V,Uit1,...,Uuq are linearly independent and ¢; = 1
if replacing u; by v in uq, ... ,ugq preserves the orientation and ¢; = —1 if replacing
u; by v in uq, ... ,uq reverses the orientation. Finally, let I be the set of all i for
which vectors uq, ... ,u;—1,v,U;41,...,uq are linearly independent.
We can write
(38.4.1) K] = Z ¢; [K;] modulo rational cones in hyperplanes
iel

and we note that
ind K; = |o;|ind K < (ind K)(d_l)/d .
If we iterate the procedure n times we obtain a decomposition of [K] (modulo low-
dimensional cone that can be handled separately) as a signed linear combination of
at most d” indicators of cones of indices not exceeding (ind K )(d%l> . Hence, if d
is fixed in advance, we will need only
n = O (loglogind K)
steps to achieve a unimodular decomposition (modulo lower-dimensional cones)
with
(log ind K)O(l)

cones.

The following “duality trick” allows one to discard lower-dimensional cones com-

pletely. Namely, let us apply the algorithm to the polar cone K°. Hence, from
(38.4.1), we obtain

[K°] = Z €¢; [K;] modulo rational cones in hyperplanes,
iel
where K; are unimodular cones. From Theorem 36.2, we get
(K] = Z €; [K;7] modulo rational cones with lines.
icl
Moreover, from Problem 2 of Section 38.3, we conclude that K7 are unimodular
cones. From Theorem 31.5, we obtain the corresponding identity for the generating

functions:
f<K7X) = Zeif(Kf7x) .
il
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