NOTES ON COMBINATORIAL APPLICATIONS
OF HYPERBOLIC POLYNOMIALS

ABSTRACT. These are notes on combinatorial applications of hyperbolic polynomials,
one of the topics covered in my course “Topics in Convexity” in Winter 2013.

1. HYPERBOLIC POLYNOMIALS AND THEIR HYPERBOLICITY CONES

(1.1) Definition. Let p : RY — R be a homogeneous polynomial of some degree
m > 0, and let u # 0 be a vector. We say that p is hyperbolic in the direction of u
if for every x € R? all the roots of the univariate polynomial

t— p(x — tu)
are real.
(1.2) Example. Let
plx)=x1---xq4 for x=(z1,...,24q)

and let

Then
ple—tu) = (zx1 —t) - (z, — 1)

and p is hyperbolic in the direction of u (as well as in any other direction).

(1.3) Example. Let R? = Sym,,, the space of real symmetric n X n matrices, let
p(X) = det X

and let
u =1, the identity matrix.

Then
p(x — tu) = det(X — tI)

and the roots are of the polynomial ¢ — det(X — tI) are the eigenvalues of X,
which are all real. Hence det X is hyperbolic in the direction of the identity matrix.
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(1.4) Differentiation. Let p be a homogeneous polynomial of degree m > 1,
hyperbolic in the direction of u = (uy, ... ,u,). We define a polynomial ¢ of degree

m — 1 by
d

Op op
q(x) = v Zul@x

i=1

It is then easy to see that ¢ is hyperbolic in the direction of u. Indeed,

d

Op(z — tu) d

q(x —tu) = Zuzi = ——p(x — tu)
i—1 6332 dt

and by Rolle’s Theorem all the roots of the polynomial ¢t — ¢(x — tu) are real and
interlace the roots of p.

(1.5) Example. Differentiating n — k times the polynomial of Example 1.2 we
conclude that the elementary symmetric polynomaial

p(x) = Z Ly + 0 Tgy,

1<11<i2<...<1, <N

is hyperbolic in the direction of u = (1,...,1) for any k = 1,... ,n (Exercise).

(1.6) Example. Differentiating n — k times the polynomial of Example 1.3 we
conclude that the polynomial

p(X)= >  detX,,

JC{1,...,n}
|J|=k

where the sum is taken over all k-subsets J C {1,...,n} and X is the k x k
submatrix of X, consisting of the entries in the rows and columns indexed by the
elements of J, is hyperbolic in the direction of I (Exercise).

(1.7) Definition. Let p : R — R be a polynomial hyperbolic in the direction of
u. We define the hyperbolicity cone by

K(p,u) = {:c € R?: the roots of the polynomial t — p(x — tu) are positive}.

Strictly speaking, K (p,u) is not a cone as we defined them, since K (p,u) may not

contain 0. It is not hard to show that the closure K (p, u) of K(p,u) can be defined
as

K(p,u) = {:C € R%: the roots of the polynomial ¢ — p(x —tu) are non—negative}

(Exercise). We obtain some familiar cones as K (p, u).

2



(1.8) Example. Let p=x1---x4and let u = (1,...,1), as in Example 1.2. Then
K(p,u) = int Ri,
the set of all vectors in R? with all coordinates positive and
K(p,u) =R{
is the non-negative orthant in R?.
(1.9) Example. Let p(X) = det X and let v = I, as in Example 1.3. Then
K(p,u) =int S,
the set of all positive definite n x n symmetric matrices and
K(p,u) =Sy
is the cone of positive semidefinite matrices.

It does not look easy to describe the cones K (p, ) in Example 1.5 (except when
k=1 or k= 2) and in Example 1.6 (except when k& = 1). It is clear though that
K(p,u) C K(q,u) if q is obtained from p as in Section 1.4 (Exercise).

(1.10) Dependence of roots of a polynomial on its coefficients. We will
often say that the roots of a univariate polynomial depend continuously on its
coefficients. More precisely, let

p(z) =ag+arz+...+apz"
be a complex polynomial, such that p # 0, so |ag| + ...+ |an| > 0. Let

D:{ZGC: |z—zo|<5}

be an open disk in the complex plane centered at zg and of radius 6 > 0 and let
S = 0D be the boundary circle of D. Suppose that p has exactly k roots, counting
multiplicity, in D and no roots on S. Then there is an € > 0 such that if

q(z) =byg+b1z+ ...+ b,2"
is a polynomial satisfying
la; —bj| <e for j=0,...,n

then ¢ also has exactly k£ roots, counting multiplicity, in D. Indeed, by Cauchy’s
formula the number of roots in D of a polynomial f with no roots in S is expressed
by the contour integral

1 [ f(2)

2mi Jo f(2)
and the integral depends on f continuously.

dz,

The following result was obtained by L. Garding [Ga59]. We follow the exposition
of J. Renegar [Re06].
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(1.11) Theorem. Letp:R? — R be a homogeneous polynomial of degree m > 0,
hyperbolic in the direction of w. Suppose that p(u) # 0. Then

(1) The set K(p,u) is the connected component of R\ {x : p(x) = 0} that
contains u;

(2) For any v € K(p,u), the polynomial p is hyperbolic in the direction of v;

(3) For any v € K(p,u) we have K(p,v) = K(p,u);

(4) The set K(p,u) is conver.

Proof. We prove Part 1 first. Since p(u —u) = 0 and p(u) # 0, the only root of the
polynomial
t — p(u—tu) = (1-1)"p(u)

is t = 1. Hence u € K(p,u). Let C be the connected component of R\ {z : p(z) =
0} that contains w. Since the roots of a polynomial depend continuously on the
polynomial (Section 1.10), for all z € C the roots of the polynomial ¢ — p(z — tu)
are positive, which proves that C' C K (p, ). It remains to show that the set K (p, u)
is path-connected.

Let us choose any v € K(p,u) and any real s > 0. Then v + su € K(p,u)
since if ¢g is a root of the polynomial ¢ — p(v 4+ su — tu) = p(v — (t — s)u) then
to — s is a root of the polynomial t — p(v — tu) and hence to — s > 0. Then
toZ(t0—8)+S>O.

Let us fix a v > 0 and let v € RY be a vector such that [|v|| < . For any s > 0
we can write

pv+su—tu)=s"p(sTv+u— (ts"u).

Since for any s > 0 the only root of the polynomial
t—p(u—(tsHu)

is t = s and
|s7to|| < v/s—0 as s— +oo,

by continuity (Section 1.10), we conclude that for all sufficiently large s > so(7)
the roots of the polynomial

t — p(v + su — tu)

are all positive and hence v 4+ su € K(p,u) for all sufficiently large s > so(7).

Now we are ready to present a path connecting any two points vy, ve € K(p,u).
Let us choose a 7 > 0 such that ||v1|],||v2|| < 7. Then |v]| < v for all v € [v1, v
and let so > 0 be a number such that v + sou € K(p,u) as long as ||v]| < . The
path consists of the three intervals:

[v1, v1 + sou], [v2, va+sou] and [v1 + sou, va + soul,

which concludes the proof of Part 1.



We prove Part 2 now. Let us choose any € R% and consider the polynomial
t — p(z —tv). We must show that it has real roots only. Let i = /—1 and a > 0.
Fix a real 8 > 0 and consider the polynomial

(1.11.1) t — p(Bz — tv + adu).

We claim that if ¢ € C is a root of the polynomial (1.11.1) then It > 0 (the
imaginary part of ¢ is positive). If § = 0, we get the equation p(aiu — tv) = 0. We
note that ¢t = 0 is not a root since p(u) # 0. By homogeneity, we can write the
equation as p (v — t_loziu) = 0 and since v € K (p, u), for every root t we must have
at~1i real and positive, from which it follows that ¢t = ~i for some v > 0. Now, if
3t < 0 for some [y > 0, by continuity (see Section 1.10), for some Gy > § > 0 the
polynomial (1.11.1) will have a real root ¢t. That would mean that —ai is a root
of the polynomial s — p(Bz — tv — su), which contradicts to the fact that p is
hyperbolic in the direction of w.

Choosing f =1 in (1.11.1), we conclude for all & > 0 the roots of the polynomial

t — p(x — tv + aiu)

satisfy &t > 0. Taking the limit as o — 0, by continuity (Section 1.10), we
conclude that St > 0 for all roots t of the polynomial ¢ — p(z — tv), which proves
that p is hyperbolic in the direction of v, since complex roots of a real polynomial
come in complex conjugate pairs a + bi.

Next, we prove Part 3. By Parts 1 and 2, both K (p,u) and K (p,v) are connected
components of R\ {x : p(z) = 0}. Since v € K(p,u) and v € K(p,v), we must
have K (p,u) = K(p,v).

Finally, we prove Part 4. Let us choose any vy,vs € K(p,u) and let v = av; +
(1 —a)vg for some 0 < o < 1. We have to prove v € K(p,u), that is, that the roots
of the polynomial

(1.11.2) t — p(avy + (1 — a)vy — tu)

are positive. Since v; € K(p,u), all roots of (1.11.2) are positive if &« = 1. Since
vy € K(p,u), all roots of (1.11.2) are positive if & = 0. Suppose that for some
0 < ap < 1 there is a non-positive root of (1.11.2). Since the roots of (1.11.2) are
real for all real a, by continuity (Section 1.10), there will be an 0 < o < 1 such
that ¢ = 0 is a root of (1.11.2), that is,

p(av1 + (1 — a)vg) = 0.
Then s = (o — 1)/« is a negative root of the polynomial
(1.11.3) s +— p(vg — svg)

However, by Part 2, the polynomial p is hyperbolic in the direction of vy and by
Part 3, we have K (p,vs) = K(p,u), so v1 € K (p,vz) and the roots of (1.11.3) are
all positive. 0



2. PERMANENTS AND STABLE POLYNOMIALS
We follow the exposition of L. Gurvits [Gu08].

(2.1) Definition. Let A = (a;5) be an n x n matrix and let S,, be the symmetric
group of all permutations of {1,... ,n}. The permanent of A is defined by

per A = Z Haw(i).

oceS, i=1

Another way to define per A is as follows. Let z1,...,z, be variables and let us
define a polynomial

n n
p(azl,... ,a:n) :H Zaijxj

i=1 \ j=1
Then
an

per 4 = 0xy -+ 0xy,

p.

(2.2) Definition. Let p: R™ — R be a real polynomial. We say that p is stable
if

p(z1,-..,2n) #0 provided Sz1,...,Sz, >0
(recall that Sz =0 for z = a + bi and i = /—1).

Suppose that p is homogeneous. It is easy to see that p is stable if and only if for
any vector u = (uq,...,u,) where uy,...,u, > 0, the polynomial p is hyperbolic
in the direction of u. Indeed, let us choose an x € R", and consider the univariate
polynomial

(2.2.1) t — p(x —tu),
where z = (21,...,2,), v = (u1,...,u,) and u; > 0 for j = 1,... ,n. If
p(z1,...,2,) =0 where z; = a; +ibj and b; >0 for j=1,... ,nthent=—iis a

root of (2.2.1) for x; = a; and u; = b;, so p is not hyperbolic in the direction of w.
If the polynomial (2.2.1) has a root with 3t # 0 then, since complex roots of real
polynomials come in pairs of complex conjugates, t = a + bi is root of (2.2.1) for
some a,b € R and b < 0. Then p(z1,...,2,) =0, where z; = (z; — au;) — (bu;)
for 7 =1,...,n and hence p is not stable.

(2.3) Lemma. Letp(zy,...,x,) be a stable polynomial.

(1) Suppose that p contains a monomial ax’ for some a # 0 and k > 0. Then
the polynomial

_ 9

1s stable.



(2) Lett € R be a number such that the polynomial

r(zo,...,xy) =p(t,x2,...,2Ty)
18 non-constant. Then r is stable.

Proof. To prove Part (1), let us fix any 2, ..., 2, such that Sz; > 0forj =2,... ,n
and consider a univariate polynomial

f(z)=p(z,22,... ,2n).

Then f is non-constant, and since p is stable, all roots z of f satisfy the inequality
$z <0.

By the Gauss-Lucas Theorem, it follows that all roots z of f' = q(z,29,...,2)
lie in the convex hull of the set of roots of f and hence also satisfy the inequality
Sz < 0. Therefore,

q(z1,22,...,2n) #0

if &z1,...,$82, > 0, and hence q is stable.
To prove Part (2), suppose that r (22, ... , z,) = 0 where Szs.... , 32, > 0. Since
7 is non-constant, for some (s, ... ,a,) € C*~1\ {0}, the univariate polynomial

fz2)=r(zm4+asz,... ,zn+anz) =p(t, 20+ asz, ..., 2p + an2)

is non-constant and z = 0 is a root of f. By continuity (Section 1.10), for all
sufficiently small ¢ > 0, the polynomial

f(2)=p{t+ie, 2o+ sz, ..., 2, + Qn2)

has a root w such that S (zo + aw), ..., (z, + a,w) > 0, which contradicts the
stability of p. O

(2.4) Lemma. Suppose that a bivariate quadratic polynomial p(z,y) = ax® +
2bxy + cy? is stable. Then b* > ac.

Proof. If b> < ac then the univariate polynomial az?+2bx +c has a pair of complex
conjugate roots a + fi for some  # 0 (and hence we may assume that 5 > 0). By
continuity (Section 1.10), for a sufficiently small € > 0, a point y = 1+e€i, x = a+Bi
with B > 0 is a root of the polynomial p(z,y), which contradicts the stability of p.
O

The following result is the consequence for permanents of the more general

Alexandrov-Fenchel inequality for mixed volumes of convex bodies.
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(2.5) Theorem. Let A be an n X n non-negative matriz and let ay, . .. ,a, be the
columns of A. Then

per? [a1,...,ay] > perla,...,an—2,an_1,0n_1]DEr[A1,... ,Gn_2,0n,ay].

Proof. By continuity, we may assume that the entries a;; of A are positive. Suppose
that $zq1,...,82, > 0 for some zq,...,2, € C. Then

& Zaijzj > (0 and hence Zaijzj # 0.

n
7j=1 j=1

Therefore,

p(’zlw"?zn)%o fOI' p(.’lfl,..~,fl3n):H ZCLUIIJ]

and hence p is a stable polynomial. Note that p contains all monomials of degree n
with positive coefficients. Repeatedly applying Part (1) of Lemma 2.3, we conclude
that the polynomial
8n—2
7= oz -+ -(9a:n_2p
is also stable. However, ¢ is a quadratic polynomial in x,,_; and z,,_o and it is not

hard to see that
q(Tp_1,T,) = ax®_| + 2bx,_1x, + cx?,

where
1 1
a =g per a1, ..., apn—2,apn_1,an_1], b= 5 per la1,...,a,] and
1
¢ =g per a1, ..., apn—2,an,ay] .
The proof now follows by Lemma 2.4. O

3. STABLE POLYNOMIALS AND CAPACITY
We follow L. Gurvits [Gu08].

(3.1) Definition. Let p(x1,...,x,) be a real polynomial with non-negative coef-
ficients. The capacity of p is defined as

. p(xla"'vxn>
= f _.
Cap(p) mlw«l«ralmn>0 X1 Tp



(3.2) Lemma. Let R(t) be a univariate polynomial of degree k with non-negative
coefficients such that all roots of R are real. Then

R(0) > (E)H cap(R)

k
if k> 1 and
R'(0) = cap(R)
if k< 1.
Proof. If deg R < 1, so R(t) = rg + rit for some 1,71 > 0 then clearly
(3.2.1) %ggt_lR(t) =1 = R'(0)

(the infimum is attained as ¢ — +o00) Suppose that £ > 2. If R(0) = 0, so
R(t) = rit + ...+ rt* for some non-negative 71, ... , 73, we still have (3.2.1), only
that the infimum is attained as t — 0. Hence we can assume that R(0) > 0, and,
scaling R if necessary, we assume that R(0) = 1.

Since the coefficients of R are non-negative, all roots are necessarily negative.
Hence we can write

k
R(t) =[] (1 +ait)
=1

for some aq,...,ar > 0. Then

Applying the inequality between the arithmetic and geometric means, we conclude

that iy i
/
R(t) < (1+L]€'+akt) - (1+¥t> .

Then .
. - R'(0)
_ -1
cap(R) < %ggg(t) where g¢(t) =t (1 + . t) :
Clearly g(t) — +o0 if t — 400 or if £ — 0, so the infimum of ¢(t) is attained

at a critical point. Solving the equation ¢'(¢) = 0, we obtain

k k

k—1
t= H-DR©) and g¢g(t) = (m) R'(0),

which proves that



as desired. 0
(3.3) Remark. It is worth noting that

g(k) = (%)k_l

is a decreasing function of k£ > 1. Indeed, for
flx)=(r—1)In(z—1)—(z—1)Inx

we have

-1 1 1 1
f’(az):lnxx +E:1n<1—;)+;<0 for x> 1.

Therefore, in Lemma 3.2 we can write

k—1
R'(0) > (%) cap(R) provided degR < k.

(3.4) Theorem. Let p(xy,...,x,) be stable polynomial of degree n with non-
negative coefficients such that the coefficients of all monomials of degree n are

positive. Then
o" S n! ()
_— — ca .
Bxl---ﬁxnp - nn PP

Proof. We proceed by induction on n. For n = 1 we have p (z1) = azq + b where
a >0, b >0 and hence p’ = a and cap(p) = a.

Suppose that n > 1. Let us fix any xo,...,2z, > 0 and consider the univariate
polynomial R(t) = p(t,x2,...,x,). Then deg R = n and all roots of R are neces-
sarily real, since if R(z) = 0 for some z with Sz # 0 and complex roots come in pairs
of complex conjugates, we may assume that Sz > 0. Then, by continuity (Section
1.10), for a sufficiently small € > 0 the polynomial R(t) = p (t, o + i€, . .. , &y, + i€)
will have a root z with &z > 0, which contradicts the stability of p. By Lemma
3.2, we have

i R(t) n el ’
. . < ’
(3.4.1) i == < <n_1) ()
Let us define
nga—:fl and r<x27'~'73371):(](07332""’:1:71)'
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Hence, by (3.4.1) we can write

cap(p) = inf p—(xl, 2 Tn)
T1,...,Ln>0 Tl Ty

n—1
( n ) nf q(0,22,...,2n)
xr2,

n—1 ey Ty >0 To - Ty

- (ni 1)n_1 cap(r).

By Part (1) of Lemma 2.3, the polynomial ¢ is stable and by Part (2) of Lemma 2.3,
the polynomial r is stable of degree n — 1 such that the coefficients of all monomial
of degree n — 1 are positive. By the induction hypothesis

(3.4.2)

IN

(n o 1)n—1 8n—1 (n o 1)n—1 8”
4. < —
(3.4.3) cap(r) < (n—1)! 85(:2~-~(9an (n—1)! (9x1~-~8a:np

Combining (3.4.3) and (3.4.2), we conclude

) < ()0
PAP) = n—1 (n—1)! Bxl---ﬁxnp_nlaxl---ﬁxnp
and the proof follows. O
(3.5) Remark. Suppose that p (z1,...,xz,) is a stable homogeneous polynomial of

degree n with non-negative coefficients and that the degree of p in x; is k; for
i=1,...,n. One can show that
)k}i—l

Indeed, p is hyperbolic in any direction v = (uy, ... ,u,) where uy,...,u, > 0 (see
Definition 2.2) and hence by Theorem 1.11 so is its derivative dp/Ou. To prove
(3.5.1), in the proof of Theorem 3.4, instead of taking partial derivatives dp/0z;,
we take the derivative Op/du;, where the i-th coordinate of w; is 1 and all other
coordinates are € for some small € > 0 and notice that the coefficients of monomials
of R(t) of degree higher than k; are O(e), so taking the limit as ¢ — 0, at the i-th
step we can replace (3.4.1) by

inf 710 < ( ki )ki_lR’(O).

t>0 ¢t ki —1

5. L A—
(3.5.1) oo P 2 c® [T~

=1

om - (k;i—l

11



4. CAPACITY, PERMANENTS, AND DOUBLY STOCHASTIC MATRICES

We recall the definition of a convex function.

(4.1) Definition. A function f:R? — R is called convex if
flaz+ (1 —a)y) < af(z)+(1-a)f(y)

for all x,yeRd and all 0<a<1.

(4.2) Lemma. Let A\y,...,\, be reals and let aq, ... ,a, be positive reals. Then

the function f: R — R,
=1In <Z akeAkt)
k=1
1S convez.

Proof. Tt suffices to check that f”(t) > 0 for all t € R. Writing

f(t) =1Ing(t) where g(t)= i aget
k=1

we compute

g(0)g'(t)

=90 gy = 8090

g"()g(t) = g'()g' (1) = Y Nawae™ A= 3" Nxjaiaehitr)t
ij=1 ij=1

{ig}
i#]

= Z <>\z — )\j)Z OéiOéje(AH_)\j)t Z 0

{i,5}
i#j

and the proof follows. O

(4.3) Corollary. Let p(x1,...,xzy,) be a real polynomial with non-negative coeffi-
cients. Then the function f: R" — R,

f(tr,...,ty) =1Inp (etl,... ,et”)
18 conver.

Proof. It suffices to prove that the restriction of f onto every line in R" is convex,
that is,
flar+ Bty ... ,an + But) =1np (eo‘leﬁlt, e ,eo‘"eﬁnt)

is a convex function of t € R. This follows now from Lemma 4.2. O
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(4.4) Definition. An n x n matrix A = (a;;) is called doubly stochastic if
Zamzl fOI' 7::]_,...,7’1,, Zam:l for j:]_,”.’n and
J=1 i=1
a;; > 0 forall 4,j.

(4.5) Lemma. Let A= (a;;) be an n x n doubly stochastic matriz and let

P(T1,. .. X)) = H Zaijxj
i=1 \j=1
Then
cap(p) = 1.

Proof. Since p is a homogeneous polynomial of degree n, we can write

Cap(p> - inf p(xla"' 7xn>'
T1yee ;T >0
T1Tp=1

Substituting x; = e'’, we conclude that

cap(p) = exp {t1+“i‘r4l_ft :of (t1,... ,tn)} where

f(t, ... ,tn):lnp(etl,... ,et”).

We claim that t; = ... =1t, = 0 is a critical point of f on the hyperplane ¢; +...

t, = 0. Computing the gradient of f at t; = ... =1, =0, we obtain

o n . otj
Ot; i D=1 i€

J

and hence

of

ot

n
= E Q5 = 1,
t1=...=t,=0

i=1

where in the first equality we used that the column sums of A are 1’s and in the

second equality we used that the row sums of A are 1’s.

Hence the gradient of f at t; = ... = t,, = 0 is orthogonal to the hyperplane
t14+...4+t, =0andsot; =...=t, = 01is a critical point of f(¢) on the hyperplane.
Since by Corollary 4.3 the function f is convex, we conclude that t; = ... =1¢, =0

is the minimum point of f on the hyperplane. Since f(0,...,0) = 0, the proof

follows.

+

O

Now we are ready to prove the famous van der Waerden inequality for perma-

nents.
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(4.6) Theorem. Let A be an n X n doubly stochastic matriz. Then

n!
perA > —.

nn

Proof. By continuity, without loss of generality we may assume that a;; > 0 for all
i,j. We define the polynomial p (z1,...,z,) as in Lemma 4.5. As in the proof of
Theorem 2.5, we establish that p is stable. By Lemma 4.5, we have cap(p) = 1, so
by Theorem 3.4,

A o" S n! () n!
erd= ——m—— — ca = —.
P Bxl---ﬁxnp - nn PP nn

U

(4.7) Remark. Suppose that A is doubly stochastic and contains not more than k
non-zero entries in every column. Then the degree of p in every variable xq,... ,z,
does not exceed k. Replacing every zero entry a;; by a small e > 0, and running the
proof of Theorem 3.4, we observe that in (3.4.1), the coefficients of R(t) of degree

n—1
k + 1 and higher are all O(¢). Therefore, as ¢ — 0, we can replace (ﬁ) in

k—1
(3.4.1) by (%) . Hence we get the inequality

E_1 (k—=1)n
perA > (T)

(A. Schrijver’s bound), see also Remark 3.5.

5. MATRIX SCALING AND PERMANENTS

(5.1) Theorem. Let A = (a;;) be an n x n matriz such that a;; > 0 for all i,j.
Then there exists a doubly stochastic matriz B = (b;j) and positive A1, ..., A, and
Wiy b Such that

Qi = blj)\l,u] fOT all 2,]

Proof. As in the proof of Lemma 4.5, we define a function f : R™ — R by

n n
f(tl,... ,tn):ZIH Zaijetj
=1 J=1

and consider its minimum on the hyperplane H C R™ defined by the equation
t1 +...+t, =0. First, we claim that the minimum of f on H is attained at some
point. Let
1,7 Aij
14



If t; > M for some j, we have f(t1,...,t,) > f(0,...,0). On the other hand,
since t1 +...+1t, =0, if t; < —nM for some j then t;, > M for some k # j. Hence
the minimum of f on the compact set

{(t1,...,tn): [tj|<nM for j=1,...,n}NH

is the minimum of f on H.

Let t* = (t1,... ,t}) be the minimum point. Then the gradient of f at ¢t* should
be proportional to the normal vector to H and hence for some «
0 ¢
(5.1.1) 9f = L—a for 7=1,...,n
Ot li=t~ Zk | Gike'k
Since

D) DI
- "

j=1i= 1Zk  aige's

we conclude that o = 1.
Let us define

A= Zaiket; and p; = et for all i,7.

k=1

Then
t*
Qi€

Qi = blj)\llul,‘7 where bij = ﬁ
k=1 Qik€

Clearly, B = (b;j) us a non-negative matrix and

n
Zbijzl for i=1,... ,n.
=1

From (5.1.1) with a = 1 we get

Zbijzl for j=1,...,n
i=1

U

(5.2) Scaling and permanents. Given a positive n x n matrix A, let us compute
the numbers Aq,..., A\, and pq, ..., uy, as in Theorem 5.1. Then

perAz(ﬁ)w) ﬁ,uj per B

i=1 j=1
and
— < perB < 1.
nn
This allows us to estimate per A within a factor of n!/n" ~ e™".
15



Exercises.
Prove that the numbers Aq,..., A\, and puq,...,u, in Theorem 5.1 are unique
up to an obvious rescaling;:

1

)\i = /\iT, Hy = ;LjT_ for all Z,j

This allows us to define a function F' on positive n x n matrices by

ra = (1) (1T

Prove that F'is log-concave:

F(%A-l—%B) > /F(A)F(B)

for any two positive n x n matrices A and B.

6. RAMIFICATIONS: MIXED DISCRIMINANTS

We follow mostly L. Gurvits and A. Samorodnitsky [GS02] and L. Gurvits
[Gu08|.

(6.1) Definition. Let Qq,...,Q, be n x n real symmetric matrices. Then

p<x17"' 7:1:71) = det (lel + +ann)

is a homogeneous polynomial of degree n and the mixed term

871

—p=D vor s, Qn

81131'-~8:13np (Ql Q )
is called the mized discriminant of Q+,...,Q.,.
(6.2) Lemma. Suppose that the matrices Q1,...,Q, are positive semidefinite.
Then

D(Ql?"' 7Qn) Z 0.

Proof. Since D (Q1,...,Qy) is a continuous function of @1, ... ,Q,, without loss
of generality we may assume that Q); = 0 for ¢ =1,... ,n. We proceed by induction

on n. Clearly, the statement is true for n = 1. Suppose that n > 1. Since @1 > 0,
we can write Q1 = TT™ for some invertible n x n matrix 7" and then

D(Qr. s Qu) = (et T)* D (I,T71Qa (T%) " . T7'Qu (1)),
16



where I is an n xn identity matrix and the matrices Q' = T~1Q; (T"‘)_1 are positive
semidefinite. Thus is suffices to prove that

D(I,Qsz,...,Q,) >0 whenever Qa,...,Q, = 0.

It is not hard to see that

D(I,QQ,...,Qn): Z D(QZ(J)77QH(J))7

Jc{1,...,n}
|J|=n—1
where the sum is taken over all (n — 1)-subsets of {1,...,n} and Q;(J) is the
(n—1) x (n—1) submatrix of @Q); consisting of the entries with the row and column
in J. Since Q;(J) > 0 provided Q; > 0, the proof follows. O
Exercises.
1. Let uq,...,u, be vectors from R™. Prove that

D(uy @ uq, ... un ®@uy) = (det [ug, ..., un])?,

where [uy, ... ,u,] is the n X n matrix with columns uq, ..., u,.

2. Let G be a connected graph with n vertices and m edges, colored with n — 1
different colors. We introduce an arbitrary orientation on the edges of G and define
the incidence matriz of G as an n x m matrix A = (a;;) where

1 if vertex ¢ is the beginning of edge j,
a;; = —1 if vertex i is the end of edge j,

0 elsewhere.

Let us remove an arbitrary row of A and let aq,...,a,, be the columns of the
resulting matrix, interpreted as vectors from R"”~!. For k = 1,...,n — 1, let
Jr C {1,...,n} be the set of edges of G colored with the k-th color and let
Qr = Z a; @ aj.
JE€Jk
Prove that D (Q1,...,Q,—1) is the number of spanning trees in G having exactly

1 edge of each color.

(6.3) Lemma. Suppose that Q1,...,Q, > 0. Then the polynomial

p(xla--- 73711) = det (lel +---+ann>

18 a stable homogeneous polynomial of degree n and the coefficient of every monomial
of p of degree n is positive.
17



Proof. Let us choose any z1,... , 2, such that Sz; > 0 for j = 1,... ,n and suppose
that p(z1Q1 + ...+ 2,@Qy) = 0. Then the matrix

Q=) 7Q;
j=1

is not invertible and hence there is a vector x € C™ \ {0} such that Qx = 0. Let us
consider the standard inner product

n
i=1

in C™. Then .
0= (Qz,z) = Z 2i(Qiz, x).
i=1

On the other hand, (Q;z, x) are positive real numbers and we obtain a contradiction.
The coefficient of z{* --- 2% in p (z1,...,2,) is

D Ql)"')QE?"'?QTL?"'?QTL

' g

«1 times «, times

and hence by Lemma 6.2 is positive. U

(6.4) Lemma. Let Qq,...,Q, be n X n positive definite matrices such that

ZQi:I and tr@Q; =1 for i=1,...,n

i=1
Then, for
p(xla--- 73711) = det(lel +---+ann>:

we have
cap(p) = 1.

Proof. Let us define f : R” — R by

f(ti, .. ty) =Indet (i etiQi)

=1

and let H C R” be the hyperplane defined by the equation t; + ...+ ¢, = 0. By
Lemma 6.2 and Corollary 4.3, the function f is convex. It suffices to prove that the

minimum of f on H is attained at t; = ... ,t, = 0, for which it suffices to prove
18



that the gradient of f at t; = ... =1t, = 0 is proportional to the vector (1,...,1).
Since .
V(lndet X) = (X7)

denoting

S(t) = Zn: eti Qz
i=1

we conclude that

(6.4.1) O (e 5710 = e 1 (QuS (1)
Hence
o,
Ot lti=..=t,=0
and the proof follows. O

The following result confirms a conjecture of Bapat.

(6.5) Theorem. Let Q1,...,Q, ben Xxn positive semidefinite matrices such that

ZQi:I and tr@Q; =1 for i=1,...,n

i=1

Then
n!

D(Ql:"' 7Qn> Z —

n

Proof. Without loss of generality we assume that Q,...,Q, = 0. The proof
follows by Lemma 6.3, Theorem 3.4 and Lemma 6.4. O

Here is a version of scaling for mixed discriminants.

(6.6) Theorem. Let Q1,...,Q, ben X n positive definite matrices. Then there
are n X n positive definite matrices By, ..., B,, an invertible n X n matriz T and
positive reals A1, ..., A\, such that

ZBZ-:I, trB; =1 and Q;=NTB;T" for i=1,...,n.
i=1

Proof. As in the proof of Lemma 6.4, we define a convex function

f(ti, .. ty) =Indet (Z etiQi)
i=1

19



and the hyperplane H defined by the equation t; 4+ ...+ ¢, = 0. It is not hard to
see (cf. the proof of Theorem 5.1) that f attains its minimum on H at some point
T,...,t, at which point the gradient of f is proportional to the vector (1,...,1).
By (6.4.1), we obtain that for some « and

S = Zet:Qh
i=1
we have
(6.6.1) eli tr (QiS™') =a for i=1,...,n.

Since

no = Zetr tr (QiS_l) =tr (Z et?QiS_1> =tr (SS‘l) =n,
i=1 i=1

we conclude that
(6.6.2) a=1
Since S > 0, we can write S = TT™ for an invertible n x n matrix 7. Then
(6.6.3) tr(Qis™!) = tr (Qi (T71)" T7) = (T7'Qs (T7)")
and we define
B;=¢iT 1Q1( )* and N\ =e b for i=1,...,n.
Clearly, By, ..., B, are positive definite matrices and
Qi =\NTB,T" for i=1,...,n
By (6.6.1)—(6.6.3) we have
trB; =1 for i=1,... ,n.

Finally,
iBi:ieth_lQi(T (Ze Q) =T 1S(T*) =1
i=1 i=1

We note that

D(Ql:"':Qn detT (H)‘> le"':Qﬂ)'

Exercise.
Prove that D (Q1,...,Q,) <1, where Q1,...,Q, are positive semidefinite ma-
trices such that Q1+ ...+ @, = 1.
20



7. UPPER BOUNDS FOR PERMANENTS

Our goal is to prove the following inequality conjectured by Minc and proved by
Bregman.

(7.1) Theorem. Let A = (a;j) be an n x n matriz such that a;; € {0,1} for all i
and j and let

n
ri:E ajj for i=1,...,n
i=1

Then

If all r; are equal, the inequality is sharp, as the example of a block-diagonal
matrix with n/r diagonal r x r blocks filled by 1’s demonstrates.
The following corollary is due to A. Samorodnitsky.

(7.2) Corollary. Suppose that A = (a;j) is a stochastic n x n matriz, that is
a;; > 0 for alli,j and

(7.2.1) Zaij =1 foral i=1,...n
j=1
Suppose further that
1
(7.2.2) a;; < b for j=1,...,n
i
and some positive integer by, ... ,b,. Then

n A l/bi
perA < H (bl'g .
i=1 L

Proof. Let us fix all but the i-th row of an n x n matrix A. Then per A is a linear
function in a; = (a;1,...,a,). Let us consider the polytope P; of all n-vectors
a; = (a1, ... ,a;,) such that (7.2.1) and (7.2.2) hold. Then the maximum of per A
on P; is attained at an extreme point of P;, which necessarily has a;; € {0,1/b;;}
for all j. Indeed, if 0 < a;5, < 1/b; for some j; then there will be another j, # j;
such that 0 < a;5, < 1/b; (we use that b; is an integer) and the perturbation
aij, = i, T €, a;j, = a;j, F € shows that a; is not an extreme point of ;. Hence
the maximum point of per A on the matrices satisfying (7.2.1) and (7.2.2) is attained
at a matrix A where a;; € {0,1/b;;} for all ¢ and j. Let B be the matrix obtained
from A by multiplying the i-th row by b;. Then

| = .
per A = (H b_> per B and perB < H (bi!)l/bz
i=1 ¢ i=1

by Theorem 7.1. U
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(7.3) Permanents of doubly stochastic matrices with small entries.

Together with the van der Waerden bound (Theorem 4.6), the Bregman-Minc
bound (Theorem 7.1) implies that per A does not vary much if A is a doubly
stochastic matrix with small entries. Indeed, suppose that A is an n x n doubly
stochastic matrix. Then, by Theorem 4.6, we have

|
Inper A > 1n&:—n+0(lnn) as n — +00
n

by Stirling’s formula. Suppose additionally that

Qg < for all i,j

S| =

and some positive integer b. Then, by Corollary 7.2,

ninb

b

InperA < %lnb!—nlnb:—n—i—O( ) as b — +o0.

In other words, the permanent of an n x n doubly stochastic matrix with uniformly

small entries is close to e™ ™.

We present A. Schriver’s proof of Theorem 7.1 [ScT78].

(7.4) Lemma. For positive ty,... ,t, we have

r

T i=1tr T
(Z tr> < (r i=1 t’“) [T
=1 =1

Proof. We observe that f(z) = xlnx is convex for = > 0. Indeed, f'(z) =Inx + 1
and f”(x) = 1/x > 0. Therefore,

(5) < 1w

Exponentiating both sides of the inequality, we get the desired result. O
We will also use the following obvious row-expansion formula for the permanent.

(7.5) Lemma. Let A = (a;;) be an n x n matriz. For 1 < ik < mn, let A;; be
the (n — 1) x (n — 1) matriz obtained from A by crossing out the i-th row and k-th
column. Then, for any 1 <1 <n, we have

per A = Z a;r per A;i.
k=1
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(7.6) Proof of Theorem 7.1. We proceed by induction on n. The case of n =1
is clear. Suppose that n > 1. Without loss of generality, we may assume that
per A > 0. We bound the expression

n

(7.6.1) (per A)"PerA = H (per A)P" 4
i=1

To bound the i-th factor in the product, we use the i-th row expansion together
with Lemma 7.4. Since a;; € {0, 1}, from Lemma 7.5, we can write

per A = Z per A;i.
k: aikzl
Letting tp = per Ak, from Lemma 7.4 we obtain

(7.6.2) (per AP 4 < pper 4 H (per A, )P ik

k: a;r=1

Let S,, be the symmetric group of all permutations of the set {1,...,n} and let
S = {JGSn: iy =1 for i=1,... ,n}
be the set of all permutations contributing to per A. Then

{ per A;r,  ifa; =1

(7.6.3) |S|=perA and |{oc€S: o(i)=k}| = .
if (079% =0.

It follows from (7.6.3) that

(7.6.4) H (H 7 per Ay (; )> = rperA H (per Agp, )P ik |

oesS k: Aip= 1

Now we apply the induction hypothesis to each of the (n—1) x (n—1) matrix A;, ;.
The rows of A,,(;) are obtained from the rows of A by crossing out the (j, o (i))-th
entry of A for j # i and crossing out the i-th row entirely. Hence, applying the
induction hypothesis, we obtain

perdigy < [[ 0" [T (=1t
J g7 J g#i

ajo(:)=0 ajo(i)=1

Let us fix any permutation o € S. Then

(7.6.5) (H r; per Aw(i)> H H r;! )1/7”3‘ H (rj — 1)!1/(rj—1)
=1 =1 i J#i e
@jo(i)=0 @jo(i)=1
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Now, for any j = 1,...,n the number of indices i # j such that a;s;) = 0 is
precisely n —r; whereas the number of indices ¢ # j such that a4 ;) = 1 is precisely
r; — 1. Hence, for any o € S we have

i [T @) I (-
(7.6.6) LI Bian

I

I
—

J

(Tj ()" (i — 1)!> =TI
j=1

Combining (7.6.1)—(7.6.6), we obtain

nper A
(per A" P4 < T[T ) = | TT (0™ ,
oeS \j=1 j=1
and the proof follows. O
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