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Abstract. We prove that the logarithm of the permanent of an n× n real matrix

A and the logarithm of the hafnian of a 2n × 2n real symmetric matrix A can be
approximated within an additive error 1 ≥ ǫ > 0 by a polynomial p in the entries

of A of degree O(lnn − ln ǫ) provided the entries aij of A satisfy δ ≤ aij ≤ 1 for
an arbitrarily small δ > 0, fixed in advance. Moreover, the polynomial p can be

computed in nO(lnn−ln ǫ) time. We also improve bounds for approximating lnperA,

ln haf A and logarithms of multi-dimensional permanents for complex matrices and
tensors A.

1. Main results: permanents

We discuss analytic methods of efficient approximation of permanents and hafni-
ans of real and complex matrices as well as of their multi-dimensional versions, ob-
jects of considerable interest in connection with problems in combinatorics [LP09],
[Mi78], quantum physics [AA13], [Ka16], [KK14] and computational complexity
[Va79], [J+04].

(1.1) Permanent. Let A = (aij) be an n × n real or complex matrix. The
permanent of A is defined as

perA =
∑

σ∈Sn

n
∏

i=1

aiσ(i),

where Sn is the symmetric group of permutations of the set {1, . . . , n}. It is a #P -
hard problem to compute the permanent of a given 0-1 matrix A exactly [Va79],
although a fully polynomial randomized approximation scheme is constructed for
non-negative matrices [J+04]. The permanent of an n × n non-negative matrix A
can be approximated within a factor of en in deterministic polynomial time [L+00]
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and the factor was improved to 2n in [GS14] (with a conjectured improvement to
2n/2). If one assumes that

(1.1.1) δ ≤ aij ≤ 1 for all i, j

and some 0 < δ ≤ 1 fixed in advance, then the polynomial algorithm of [L+00]
actually results in an approximation factor of nO(1), where the implied constant in
the “O” notation depends on δ, see also [BS11]. Apart from that, deterministic
polynomial time algorithms are known for special classes of matrices. For exam-
ple, in [GK10], for any ǫ > 0, fixed in advance, a polynomial time algorithm is
constructed to approximate perA within a factor of (1 + ǫ)n if A is the adjacency
matrix of a constant degree expander. We also note that in [F+04] a simple ran-
domized algorithm is shown to approximate perA within a subexponential in n
factor provided (1.1.1) holds with some 0 < δ ≤ 1, fixed in advance.

In this paper, we present a quasi-polynomial deterministic algorithm, which,
given an n × n matrix A = (aij) satisfying (1.1.1) with some 0 < δ ≤ 1, fixed in

advance, and an ǫ > 0 approximates perA within a relative error ǫ in nO(lnn−ln ǫ)

time. The implied constant in the “O” notation depends on δ.
More precisely, we prove the following result.

(1.2) Theorem. For any 0 < δ ≤ 1 there exists γ = γ(δ) > 0 such that for any

positive integer n and any 0 < ǫ < 1 there exists a polynomial p = pn,δ,ǫ in the

entries aij of an n× n matrix A such that deg p ≤ γ (lnn− ln ǫ) and

|ln perA− p(A)| ≤ ǫ

for all n× n real matrices A = (aij) satisfying

δ ≤ aij ≤ 1 for all i, j.

We show that the polynomial p can be computed in quasi-polynomial time
nO(lnn−ln ǫ), where the implied constant in the “O” notation depends on δ alone.

Our approach continues a line of work started in [Ba16] and continued in [Ba15],
[BS16] and [Re15]. The main idea is to relate approximability of a polynomial with
its complex zeros. For a complex number z = a + ib, we denote by ℜ z = a and
ℑ z = b, the real and imaginary parts of z correspondingly. In what follows, we
always choose the standard branch of arcsin x, arccosx and arctanx for real x, so
that

−π

2
≤ arcsinx ≤ π

2
for − 1 ≤ x ≤ 1,

0 ≤ arccosx ≤ π for − 1 ≤ x ≤ 1 and

−π

2
< arctanx <

π

2
for x ∈ R.

We deduce Theorem 1.2 from the following result.
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(1.3) Theorem. Let us fix a real 0 ≤ η < 1 and let

τ = (1− η) sin
(π

4
− arctan η

)

> 0.

Let Z = (zij) be an n× n complex matrix such that

|1−ℜ zij | ≤ η and |ℑ zij | ≤ τ for all 1 ≤ i, j ≤ n.

Then perZ 6= 0.

There is an interest in computing permanents of complex matrices [AA13],
[KK14], [Ka16]. Ryser’s algorithm, see for example Chapter 7 of [Mi78], com-
putes the permanent of an n×n matrix A over an arbitrary field exactly in O(n2n)
time. Exact polynomial time algorithms are known for rather restricted classes of
matrices, such as matrices of a fixed rank [Ba96] or matrices for which the support
of non-zero entries is a graph of a fixed tree-width [CP16]. In [Fü00], a randomized
polynomial time algorithm is constructed which computes the permanent of a com-
plex matrix within a (properly defined) relative error ǫ > 0 in O

(

3n/2ǫ−2
)

time.
In [Gu05], a randomized algorithm is constructed which approximates perA for a
complex n×n matrix A within an additive error ǫ‖A‖n, where ‖A‖ is the operator
norm of A, in time polynomial in n and 1/ǫ, see also [AA13] for an exposition.

In this paper, we prove the following results.

(1.4) Theorem. Let Z = (zij) be an n× n complex matrix such that

|1− zij | ≤ 0.5 for all 1 ≤ i, j ≤ n.

Then perZ 6= 0.

Since perZ 6= 0, we can choose a branch of ln perZ when the conditions of
Theorem 1.4 are satisfied (for convenience, we always choose the branch for which
ln perZ is real if Z is a real matrix). We deduce from Theorem 1.4 the following
approximation result.

(1.5) Theorem. For every 0 ≤ η < 0.5 there exists a constant γ = γ(η) > 0
such that for every positive integer n and every real 0 < ǫ < 1 there exists a

polynomial p = pn,η,ǫ in the entries of an n×n complex matrix A = (aij) such that

deg p ≤ γ (lnn− ln ǫ) and

|ln perA− p(A)| ≤ ǫ

for n× n complex matrices A = (aij) satisfying

|1− aij | ≤ η for all i, j.

Moreover, the polynomial p can be computed in nO(lnn−ln ǫ) time, where the
implied constant in the “O” notation depends on η alone.

3



A version of Theorem 1.4 with a weaker bound of 0.195 instead of 0.5 and a
more complicated proof was obtained in [Ba16]. Theorem 1.5 is also implicit in
[Ba16]. We present its proof here since it serves as a stepping stone for the proof
of Theorem 1.2.

It is not known whether the bound 0.5 in Theorems 1.4 and 1.5 can be increased,
although one can show (see Section 4) that it cannot be increased to

√
2/2 ≈ 0.707.

Theorems 1.4 and 1.5 state, roughly, that the permanent behaves nicely as long
as the matrix is not too far in the ℓ∞-distance from from the matrix J of all
1s. Applied to an arbitrary n × n positive matrix A, Theorem 1.5 implies that
perA can be approximated deterministically within a relative error 0 < ǫ < 1
in quasi-polynomial time nO(lnn−ln ǫ) as long as the entries of A are within some
multiplicative factor γ < 3, fixed in advance, of each other.

Let A be an n × n complex matrix such that the ℓ∞-distance from A to the
complex hypersurface of n × n matrices Z satisfying perZ = 0 is at least δ0 > 0.
It follows from our proof that for any 0 < δ < δ0 and any 0 < ǫ < 1 there exists a
polynomial pA in the entries of an n×n matrix such that |ln perB − pA(B)| ≤ ǫ for
any matrix B within distance δ in the ℓ∞-distance from A and deg pA = O(lnn −
ln ǫ), where the implied constant in the “O” notation depends only on δ and δ0.
However, for a general A 6= J , finding the polynomial pA may be computationally
hard.

Theorems 1.2 and 1.3 are of a different nature: there we allow the entries aij
to be arbitrarily close to 0 but insist that the imaginary part of aij get smaller
as aij approach 0. Theorem 1.2 implies that for a positive n × n matrix A, the
value perA can be approximated deterministically within a relative error 0 < ǫ < 1
in quasi-polynomial time nO(lnn−ln ǫ) as long as the entries of A are within some
multiplicative factor γ ≥ 1, arbitrarily large, but fixed in advance, of each other. It
follows from our proofs that a similar to Theorem 1.2 approximation result holds
for complex matrices A = (aij) with δ ≤ ℜ aij ≤ 1 and |ℑaij| ≤ τ0 for some fixed
τ0 = τ0(δ) > 0.

So far, we approximated permanents of real or complex matrices that are close
to the matrix J of all 1s in the ℓ∞-distance. Next, we consider matrices that are
close to J in the maximum ℓ1-distance over all rows and columns.

(1.6) Theorem. Let α ≈ 0.278 be the real solution of the equation αe1+α = 1.
Let Z = (zij) be an n× n complex matrix such that

n
∑

j=1

|1− zij | ≤ αn

4
for i = 1, . . . , n

and
n
∑

i=1

|1− zij | ≤ αn

4
for j = 1, . . . , n.

Then perZ 6= 0.
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Since perZ 6= 0, we can choose a branch of ln perZ when the conditions of
Theorem 1.6 are satisfied. We obtain the following result.

(1.7) Theorem. For every 0 ≤ η < α/4, where α ≈ 0.278 is the constant in

Theorem 1.6, there exists a constant γ = γ(η) > 0 such that for every positive

integer n and every real 0 < ǫ < 1 there exists a polynomial p = pn,η,ǫ in the entries

of an n× n matrix A = (aij) such that deg p ≤ γ(lnn− ln ǫ) and

|ln perA− p(A)| ≤ ǫ

for n× n complex matrices A = (aij) satisfying

n
∑

j=1

|1− aij | ≤ ηn for i = 1, . . . , n

and
n
∑

i=1

|1− aij | ≤ ηn for j = 1, . . . , n.

Again, the polynomial pn,η,ǫ can be constructed in nO(lnn−ln ǫ) time, where the
implied constant in the “O” notation depends on η only. Note that Theorem 1.7 is
applicable to 0-1 matrices having not too many (not more than 7%) zeros in every
row and column as well as to real matrices with some positive and some negative
entries. It is not known whether the bound in Theorems 1.6 and 1.7 are optimal.

2. Main results: hafnians

Some of our results immediately extend from permanents to hafnians.

(2.1) Hafnian. Let A = (aij) be a 2n × 2n symmetric real or complex matrix.
The hafnian of A is defined as

haf A =
∑

{i1,j1},... ,{in,jn}

ai1j1 · · ·ainjn ,

where the sum is taken over (2n)!/2nn! unordered partitions of the set {1, . . . , 2n}
into n pairwise disjoint unordered pairs {i1, j1}, . . . , {in, jn}, see for example, Sec-
tion 8.2 of [Mi78]. Just as the permanent of the biadjacency matrix of a bipartite
graph enumerates the perfect matchings in the graph, the hafnian of the adjacency
matrix of a graph enumerates the perfect matchings in the graph. In fact, for any
n× n matrix A we have

haf

(

0 A
AT 0

)

= perA,

and hence computing the permanent of an n× n matrix reduces to computing the
hafnian of a symmetric 2n× 2n matrix.
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Computationally, the hafnian appears to be a more complicated object than
the permanent. No fully polynomial (randomized or deterministic) approximation
scheme is known to compute the hafnian of a non-negative symmetric matrix and
no deterministic polynomial time algorithm to approximate the hafnian of a 2n×2n
non-negative matrix within an exponential factor of cn for some absolute constant
c > 1 is known (though there is a randomized polynomial time algorithm achieving
such an approximation [Ba99], see also [R+16] for cases when the algorithm ap-
proximates within a subexponential factor). On the other hand, if the entries aij
of the matrix A = (aij) satisfy (1.1.1) for some δ > 0, fixed in advance, there is

a polynomial time algorithm approximating haf A within a factor of nO(1), where
the implied constant in the “O” notation depends on δ [BS11].

In this paper, we prove the following versions of Theorem 1.2 and 1.3.

(2.2) Theorem. For any 0 < δ ≤ 1 there exists γ = γ(δ) > 0 such that for any

positive integer n and any 0 < ǫ < 1 there exists a polynomial p = pn,δ,ǫ in the

entries aij of a 2n× 2n symmetric matrix A such that deg p ≤ γ(lnn− ln ǫ) and

|ln haf A− p(A)| ≤ ǫ

for all 2n× 2n real symmetric matrices A = (aij) satisfying

δ ≤ aij ≤ 1 for all i, j.

The polynomial pn,δ,ǫ can be computed in nO(lnn−ln ǫ) time, where the implied
constant in the “O” notation depends on δ alone. Consequently, we obtain a de-
terministic quasi-polynomial algorithm to approximate the hafnian of a positive
matrix A = (aij) satisfying (1.1.1) within any given relative error ǫ > 0.

As is the case with permanents, we deduce Theorem 2.2 from a result on the
complex zeros of the hafnian.

(2.3) Theorem. Let us fix a real 0 ≤ η < 1 and and let

τ = (1− η) sin
(π

4
− arctan η

)

> 0.

Let Z = (zij) be an 2n× 2n symmetric complex matrix such that

|1−ℜ zij | ≤ η and |ℑ zij | ≤ τ for all 1 ≤ i, j ≤ n.

Then haf Z 6= 0.

We also obtain the following versions of Theorems 1.4 and 1.5.

(2.4) Theorem. Let Z = (zij) be an 2n×2n symmetric complex matrix such that

|1− zij | ≤ 0.5 for all i, j.

Then haf Z 6= 0.

As before, for matrices Z satisfying the condition of Theorem 2.4, we choose a
branch of ln haf Z in such a way so that ln haf Z is real if Z is a real matrix. We
obtain the following result.
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(2.5) Theorem. For any 0 ≤ η < 0.5 there exists γ = γ(η) > 0 and for any

positive integer n and real 0 < ǫ < 1 there exists a polynomial p = pn,η,ǫ in

the entries of 2n × 2n complex symmetric matrix A = (aij) such that deg p ≤
γ(lnn− ln ǫ) and

|ln haf A− p(A)| ≤ ǫ

provided

|1− aij | ≤ η for all i, j.

As before, the polynomial pn,η,ǫ can be computed in nO(lnn−ln ǫ) time, where the
implied constant in the “O” notation depends on η alone.

Our approach can be extended to a variety of partition functions [Ba15], [BS16].
In Section 3, we show how to extend it to multi-dimensional permanents of tensors.

3. Main results: multi-dimensional permanents

(3.1) Multi-dimensional permanent. Let A = (ai1...id) be a d-dimensional
n × . . . × n array (tensor) filled with nd real or complex matrices. We define the
permanent of A by

PERA =
∑

σ2,... ,σd∈Sn

n
∏

i=1

aiσ2(i)...σd(i).

In particular, if d = 2 then A is an n×n matrix and PERA = perA. If d ≥ 3 it
is an NP-complete problem to tell PERA from 0 if A is a tensor with 0-1 entries,
since the problem reduces to finding whether a given d-partite hypergraph has a
perfect matching.

We define a slice of A as the array of nd−1 entries of A with one of the indices
i1, . . . , id fixed to a particular value and the remaining (d − 1) indices varying
arbitrarily. Hence A has altogether nd slices. If d = 2 and A is a matrix then a
slice is a row or a column.

We note that for d > 2 there are several different notions of the permanent of a
tensor, cf., for example, [LL14].

We obtain the following extension of Theorem 1.4.

(3.2) Theorem. For an integer d ≥ 2, let us choose

ηd = sin
θ

2
cos

(d− 1)θ

2

for some θ = θd > 0 such that (d − 1)θ < 2π/3. Hence 0 < ηd < 1 and we can

choose η2 = 0.5, η3 =
√
6/9 ≈ 0.272, η4 ≈ 0.184 and ηd = Ω

(

1
d

)

.

Let Z = (zi1...id) be a d-dimensional complex n× . . .× n array such that

|1− zi1...id | ≤ ηd for all i1 . . . id.
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Then PERZ 6= 0.

A version of Theorem 3.2 with weaker bounds η2 = 0.195, η3 = 0.125 and
η4 = 0.093 and a more complicated proof was obtained in [Ba16].

Since PERZ 6= 0, we can choose a branch of lnPERZ when the conditions of
Theorem 3.2 are satisfied (as before, we choose the branch for which lnPERZ is
real if Z is a real tensor). As a corollary, we obtain the following approximation
result.

(3.3) Theorem. For an integer d ≥ 2, let us choose 0 ≤ η < ηd, where ηd is the

constant in Theorem 3.2. Then there exists γ = γ(d, η) > 0 and for every integer

n and real 0 < ǫ < 1 there exists a polynomial p = pd,η,ǫ,n in the entries of a d-
dimensional n× . . .×n complex tensor A = (ai1...id) such that deg p ≤ γ(lnn− ln ǫ)
and

|ln PERA− p(A)| ≤ ǫ

provided

|1− ai1...id | ≤ η for all 1 ≤ i1, . . . , id ≤ n.

The polynomial pd,η,ǫ,n can be computed in nO(lnn−ln ǫ) time, where the implied
constant in the “O” notation depends only on d and η.

While we were unable to obtain exact equivalents of Theorems 1.2 and 2.2,
our approach produces the following approximation result for multi-dimensional
permanents.

(3.4) Theorem. For an integer d ≥ 2, let

ηd = tan
π

4(d− 1)

so that η2 = 1, η3 =
√
2− 1 ≈ 0.414, η4 = 2−

√
3 ≈ 0.268, etc.

For any 0 ≤ η < ηd there is a constant γ = γ(d, η) and for any positive integer n
and real 0 < ǫ < 1 there is a polynomial p = pd,η,ǫ,n is the entries of a d-dimensional

n× · · · × n tensor such that deg p ≤ γ(lnn− ln ǫ) and

|ln PERA− p(A)| ≤ ǫ

for any d-dimensional n× . . .× n real tensor A = (ai1...id) satisfying

|1− ai1...id | ≤ η for all 1 ≤ i1, . . . , id ≤ n.

Again, the polynomial pd,η,ǫ,n can be computed in nO(lnn−ln ǫ) time, where the
implied constant in the “O” notation depends only on d and η. For example, for
n×n×n tensors A with positive real entries, we obtain a quasi-polynomial algorithm
to approximate PERA if the entries of A are within a factor γ <

√
2 + 1 ≈ 2.414

of each other. Note that Theorem 3.3 for n × n × n tensors A with positive real
entries guarantees the existences of a quasi-polynomial algorithm to approximate
PERA if the entries of A are within a factor of (1 +

√
6/9)/(1−

√
6/9) ≈ 1.748 of

each other.
As before, the proof is based on the absence of zeros of PERA in a particular

domain. Namely, we deduce Theorem 3.4 from the following result.
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(3.5) Theorem. For an integer d ≥ 2, let ηd be the constant of Theorem 3.4. Let

us fix a real 0 ≤ η < ηd and let

τ = (1− η) sin

(

π

4(d− 1)
− arctan η

)

> 0.

Let Z = (zi1...id) be a d-dimensional tensor of complex numbers such that

|1−ℜ zi1...id | ≤ η and |ℑ zi1...id | ≤ τ

for all 1 ≤ i1, . . . , id ≤ n.
Then PERZ 6= 0.

Finally, we obtain multi-dimensional versions of Theorems 1.6 and 1.7.

(3.6) Theorem. Let α ≈ 0.278 be the real solution of the equation αe1+α = 1.
For an integer d ≥ 2, let

ηd =
αd−1(d− 1)d−1

dd
.

Let Z = (zi1...id) be a d-dimensional complex n × . . .× n array such that the sum

of |1− zi1...id | over each slice of Z does not exceed ηdn
d−1.

Then PERZ 6= 0.

In other words, PERZ 6= 0 if each slice of Z is sufficiently close to the array of
1s in the ℓ1-distance. While for each fixed d, the allowed distance is of the order of
nd−1, it decreases exponentially with d, unlike the allowed ℓ∞-distance in Theorem
3.2, which decreases as 1/d.

We obtain the following corollary.

(3.7) Theorem. For every integer d ≥ 2 and every 0 ≤ η < ηd, where ηd is

the constant of Theorem 3.6, there exists a constant γ = γ(d, η) > 0 such that for

any positive integer n and real 0 < ǫ < 1 there is a polynomial p = pd,η,ǫ,n in the

entries of a d-dimensional n× . . .× n tensor such that deg p ≤ γ(lnn− ln ǫ) and

|ln PERA− p(A)| ≤ ǫ

for any d-dimensional n × . . . × n tensor A = (ai1...id) for which the sum of

|1− ai1...id | over each slice of A does not exceed ηnd−1.

Again, the polynomial pd,η,ǫ,n can be computed in nO(lnn−ln ǫ) time, where the
implied constant in the “O” notation depends on d and η alone. Theorem 3.7 is
applicable to 0-1 tensors A, which contain a small (and exponentially decreasing
with d) fraction of 0s in each slice.

In Section 4, we prove Theorems 1.4, 2.4 and 3.2.
In Section 5, we prove Theorems 1.3, 2.3 and 3.4.
In Section 6, we prove Theorems 1.6 and 3.6.
In Section 7, we prove Theorems 1.5, 1.7, 2.5, 3.3 and 3.7.
In Section 8, we prove Theorems 1.2, 2.2 and 3.4.
Finally, in Section 9, we discuss possible ramifications and open questions.
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4. Proofs of Theorems 1.4, 2.4 and 3.2

We start with a simple geometric argument regarding angles between non-zero
complex numbers. We identify C = R2, thus identifying complex numbers with
vectors in the plane. We denote by 〈·, ·〉 the standard inner product in R2, so that

〈a, b〉 = ℜ
(

ab
)

for a, b ∈ C

and by | · | the corresponding Euclidean norm (the modulus of a complex number).

(4.1) Lemma. Let 0 ≤ θ < 2π/3 be real and let u1, . . . , un ∈ C be non-zero

complex numbers such that the angle between any two ui and uj does not exceed θ.
Let

u = u1 + . . .+ un.

Then

(1) We have

|u| ≥
(

cos
θ

2

) n
∑

j=1

|uj | .

(2) Let α1, . . . , αn and β1, . . . , βn be complex numbers such that

|1− αj | ≤ η and |1− βj | ≤ η

for some

0 ≤ η < cos
θ

2

and j = 1, . . . , n. Let

v =
n
∑

j=1

αjuj and w =
n
∑

j=1

βjuj .

Then v 6= 0, w 6= 0 and the angle between v and w does not exceed

2 arcsin
η

cos(θ/2)
.

Proof. Part (1) and its proof is due to Boris Bukh [Bu15]. If 0 is in the convex
hull of u1, . . . , un then, by the Carathéodory Theorem, we conclude that 0 is in
the convex hull of some three vectors ui, uj and uk and hence the angle between
some two vectors ui and uj is at least 2π/3, which is a contradiction. Therefore,
0 is not in the convex hull of u1, . . . , un and hence the vectors u1, . . . , un lie in a
cone K ⊂ C of measure at most θ with vertex at 0.
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Let us consider the orthogonal projection of each vector uj onto the bisector of
K. Then the length of the projection of uj is at least |uj | cos(θ/2) and hence the
length of the orthogonal projection of u onto the bisector of K is at least

(

cos
θ

2

) n
∑

j=1

|uj |.

Since the length of u is at least as large as the length of its orthogonal projection,
the proof of Part (1) follows.

To prove Part (2), we note that

|v − u| =

∣

∣

∣

∣

∣

∣

n
∑

j=1

(αj − 1)uj

∣

∣

∣

∣

∣

∣

≤ η

n
∑

j=1

|uj |.

From Part (1), we conclude that |v − u| < |u|. Therefore, v = (v − u) + u 6= 0 and
the angle between v and u does not exceed

arcsin
|v − u|
|u| ≤ arcsin

η

cos(θ/2)
.

Similarly, w = (w − u) + u 6= 0 and the angle between w and u does not exceed

arcsin
|w − u|
|u| ≤ arcsin

η

cos(θ/2)
.

Therefore, the angle between v and w does not exceed

2 arcsin
η

cos(θ/2)

and the proof of Part (2) follows. �

(4.2) Proof of Theorem 1.4. For a positive integer n, let Un be the set of n×n
complex matrices Z = (zij) such that

(4.2.1) |1− zij | ≤ 0.5 for all i, j.

We prove by induction on n the following statement:

For any Z ∈ Un we have perZ 6= 0 and, moreover, if A,B ∈ Un are two matrices
that differ in one row (or in one column) only then the angle between non-zero
complex numbers perA and perB does not exceed π/2.

The statement obviously holds for n = 1. Assuming that the statement holds
for matrices in Un−1 with n ≥ 2, let us consider two matrices A,B ∈ Un that
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differ in one row or in one column only. Since the permanent of a matrix does not
change when the rows or columns of the matrix are permuted or when the matrix
is transposed, without loss of generality we assume that B is obtained from A by
replacing the entries a1j of the first row by complex numbers b1j for j = 1, . . . , n.
Let Aj be the (n − 1) × (n − 1) matrix obtained from A by crossing out the first
row and the j-th column. Then

(4.2.2) perA =

n
∑

j=1

a1j perAj and perB =

n
∑

j=1

b1j perAj.

We observe that Aj ∈ Un−1 for j = 1, . . . , n and, moreover, any two matrices Aj1

and Aj2 after a suitable permutation of columns differ in one column only. Hence
by the induction hypothesis, we have perAj 6= 0 for j = 1, . . . , n and the angle
between any two non-zero complex numbers perAj1 and perAj2 does not exceed
π/2. Applying Part (2) of Lemma 4.1 with

θ =
π

2
, η =

1

2
, uj = perAj , αj = a1j and βj = b1j for j = 1, . . . , n,

we conclude that perA 6= 0, perB 6= 0 and the angle between non-zero complex
numbers perA and perB does not exceed

2 arcsin
0.5

cos(π/4)
= 2 arcsin

√
2

2
=

π

2
,

which concludes the induction step. �

One can observe that η = 0.5 is the largest value of δ for which the equation

θ = 2 arcsin
η

cos(θ/2)

has a solution θ < 2π/3 and hence the induction in Section 4.2 can proceed. It is
not known whether the constant 0.5 in Theorem 1.4 can be increased. Since

perA = 0 where A =

(

1+i
2

1−i
2

1−i
2

1+i
2

)

= 0,

the value of 0.5 in Theorem 1.4 cannot be replaced by
√
2/2 ≈ 0.707. Moreover, as

Boris Bukh noticed [Bu15], we have

per (A⊗ Jm) = 0,

where A is a matrix as above, m is odd and Jm is an m×m matrix filled with 1s.
12



(4.3) Proof of Theorem 2.4. The proof is very similar to that of Section 4.2. For
a positive integer n, we define Un as the set of 2n×2n symmetric complex matrices
Z = (zij) satisfying (4.2.1) and prove by induction on n that for any Z ∈ Un we
have haf Z 6= 0 and if A,B ∈ Un are two matrices that differ only in the k-th row
and in the k-th column for some unique k then the angle between non-zero complex
numbers haf A and haf B does not exceed π/2.

The statement obviously holds for n = 1. Suppose that n > 1. Since the
hafnian of the matrix does not change under a simultaneous permutation of rows
and columns, without loss of generality we may assume that A and B differ in the
first row and first column only. Instead of the Laplace expansion (4.2.2), we use
the recurrence

(4.3.1) haf A =
2n
∑

j=2

a1j haf Aj and haf B =
2n
∑

j=2

b1j haf Aj

where Aj is the (2n − 2) × (2n − 2) matrix obtained from A by crossing out the
first row and the first column and the j-th row and the j-th column. We observe
that, up to a simultaneous permutation of rows and columns, any two matrices Aj1

and Aj2 differ only in the k-th row and k-th column for some k and the induction
proceeds as in Section 4.2. �

(4.4) Proof of Theorem 3.2. By and large, the proof proceeds as in Section
4.2. For a positive integer n, we define Un as the set of n× . . .× n complex arrays
Z = (zi1...id) such that

|1− zi1...id | ≤ ηd for all i1, . . . , id.

We prove by induction on n the following statement:

For any Z ∈ Un we have PERZ 6= 0 and, moreover, if A,B ∈ Un are two tensors
that differ in one slice only, then the angle between non-zero complex numbers
PERA and PERB does not exceed θ.

If n = 1 then the angle between PERA and PERB does not exceed

2 arcsin ηd < 2 arcsin

(

sin
θ

2

)

= θ

and the statement holds. Assuming that n ≥ 2, let us consider two tensors A,B ∈
Un that differ in one slice only. Without loss of generality, we assume that B is
obtained from A by replacing the “top slice” numbers a1i2...id with numbers b1i2...id .
We use a d-dimensional version of the Laplace expansion:

PERA =
∑

1≤i2,... ,id≤n

a1i2...id PERAi2...id and

PERB =
∑

1≤i2,...id≤n

b1i2...id PERAi2...id ,
(4.4.1)

13



where Ai2...id is the (n−1)× . . .×(n−1) tensor obtained from A by crossing out the
d slices obtained by fixing the first index to 1, the second index to i2, . . . , the last
index to id. It remains to notice that any two tensors Ai2...id and Ai′

2
...i′

d
differ in at

most d− 1 slices, and hence by the induction hypothesis we have PERAi2...id 6= 0,
PERAi′

2
...i′

d
6= 0 and the angle between the two non-zero complex numbers does

not exceed (d−1)θ. Applying Part (2) of Lemma 4.1, we conclude that PERA 6= 0,
PERB 6= 0 and the angle between non-zero complex numbers PERA and PERB
does not exceed

2 arcsin
ηd

cos
(

(d−1)θ
2

) = θ,

which completes the induction. �

5. Proofs of Theorems 1.3, 2.3 and 3.5

As in Section 4, we start with a simple geometric lemma.

(5.1) Lemma. Let u1, . . . , un ∈ C be non-zero complex numbers such that the

angle between any two ui and uj does not exceed π/2. Let

v =

n
∑

j=1

αjuj and w =

n
∑

j=1

βjuj

for some complex numbers α1, . . . , αn and β1, . . . , βn.

(1) Suppose that α1, . . . , αn are non-negative real and that β1, . . . , βn are real

such that

|βj | ≤ αj for j = 1, . . . , n

Then |w| ≤ |v|.
(2) Suppose that α1, . . . , αn and β1, . . . , βn are real such that

|1− αj | ≤ η and |1− βj | ≤ η for j = 1, . . . , n

for some 0 ≤ η < 1. Then v 6= 0, w 6= 0 and the angle between v and w
does not exceed 2 arctan η.

(3) Suppose that

|1−ℜαj | ≤ η, |1− ℜ βj | ≤ η and

|ℑαj| ≤ τ, |ℑ βj | ≤ τ for j = 1, . . . , n

for some 0 ≤ η < 1 and some 0 ≤ τ < 1 − η. Then v 6= 0, w 6= 0 and the

angle between v and w does not exceed

2 arctan η + 2 arcsin
τ

1− η
.

14



Proof. Since
〈ui, uj〉 ≥ 0 for all i, j,

in Part (1) we obtain

|w|2 =
∑

1≤i,j≤n

βiβj〈ui, uj〉 ≤
∑

1≤i,j≤n

αiαj〈ui, uj〉 = |v|2

and the proof of Part (1) follows.
To prove Part (2), let

u =
v + w

2
=

n
∑

j=1

(

αj + βj
2

)

uj and x =
v − w

2
=

n
∑

j=1

(

αj − βj
2

)

uj ,

so that
v = u+ x and w = u− x.

For j = 1, . . . , n, we have

η (αj + βj)−(αj − βj) = βj(1+η)−αj(1−η) ≥ (1−η)(1+η)−(1+η)(1−η) ≥ 0,

from which it follows that
∣

∣

∣

∣

αj − βj
2

∣

∣

∣

∣

≤ η

(

αj + βj
2

)

for j = 1, . . . , n

and hence by Part (1) we have
|x| ≤ η|u|.

It follows that v 6= 0, w 6= 0 and that the angle between v and w is

arccos
〈v, w〉
|v||w| .

We have
〈v, w〉 = 〈u+ x, u− x〉 = |u|2 − |x|2 > 0

and
|v|2 + |w|2 = 〈u+ x, u+ x〉+ 〈u− x, u− x〉 = 2|u|2 + 2|x|2,

so that
|v||w| ≤ |u|2 + |x|2

with the equality attained when |v|2 = |w|2 = |u|2 + |x|2 and x is orthogonal to u.
Hence for given |u| and |x| the largest angle of

arccos
|u|2 − |x|2
|u|2 + |x|2
15



between v and w is attained when x is orthogonal to u and is equal to

2 arctan
|x|
|u| ≤ 2 arctan η,

which completes the proof of Part (2).
To prove Part (3), let

v′ =
n
∑

j=1

(ℜαj)uj , v′′ =
n
∑

j=1

(ℑαj) uj , w′ =
n
∑

j=1

(ℜ βj)uj

and w′′ =

n
∑

j=1

(ℑ βj)uj .

By Part (2), v′ 6= 0, w′ 6= 0 and the angle between v′ and w′ does not exceed
θ = 2 arctan η. Since

ℜαj, ℜ βj ≥ 1− η and |ℑ βj | , |ℑ βj | ≤ τ for j = 1, . . . , n,

from Part (1), we conclude that

|v′′| ≤ τ

1− η
|v′| and |w′′| ≤ τ

1− η
|w′| .

Since 0 ≤ τ < 1 − η, we have v = v′ + iv′′ 6= 0, w = w′ + iw′′ 6= 0 and the angle
between v and v′ and the angle between w and w′ do not exceed

ω = arcsin
τ

1− η
.

Therefore the angle between v and w does not exceed θ+2ω and the proof of Part
(3) follows. �

(5.2) Proof of Theorem 1.3. For a positive integer n, let Un be the set of n×n
complex matrices Z = (zij) such that

(5.2.1) |1− ℜ zij | ≤ η and |ℑ zij | ≤ τ for all i, j.

We prove by induction on n the following statement:

For any Z ∈ Un we have perZ 6= 0 and, moreover, if A,B ∈ Un are two matrices
that differ in one row (or in one column) only, then the angle between non-zero
complex numbers perA and perB does not exceed π/2.

Since τ < 1 − η, the statement holds for n = 1. Assuming that the statement
holds for matrices in Un−1 with n ≥ 2, let us consider two matrices A,B ∈ Un that

16



differ in one row or in one column only. As in Section 4.2, without loss of generality
we assume that B is obtained from A by replacing the entries a1j of the first row
by complex numbers b1j for j = 1, . . . , n. Let Aj be the (n − 1) × (n − 1) matrix
obtained from A by crossing out the first row and the j-th column. We observe
that Aj ∈ Un−1 for j = 1, . . . , n and, moreover, any two matrices Aj1 and Aj2

after a suitable permutation of columns differ in one column only. Hence by the
induction hypothesis, we have perAj 6= 0 for j = 1, . . . , n and the angle between
any two non-zero complex numbers perAj1 and perAj2 does not exceed π/2. Using
the Laplace expansion (4.2.2) and applying Part (3) of Lemma 5.1 with

uj = perAj , αj = a1j and βj = b1j for j = 1, . . . , n,

we conclude that perA 6= 0, perB 6= 0 and that the angle between non-zero complex
numbers perA and perB does not exceed

2 arctan η + 2 arcsin
τ

1− η
=

π

2
,

which completes the induction. �

(5.3) Proof of Theorem 2.3. The proof is very similar to that of Section 5.2. For
a positive integer n, we define Un as the set of 2n×2n symmetric complex matrices
Z = (zij) satisfying (5.2.1) and prove by induction on n that for any Z ∈ Un we
have haf Z 6= 0 and if A,B ∈ Un are two matrices that differ only in the k-th row
and in the k-th column for some unique k then the angle between non-zero complex
numbers haf A and haf B does not exceed π/2.

Since τ < 1 − η, the statement holds for n = 1. Suppose that n > 1. As in
Section 4.3, without loss of generality we assume that A and B differ in the first
row and column only. Let Aj be the (2n − 2) × (2n − 2) matrix obtained from A
by crossing out the first row and the first column and the j-th row and the j-th
column. As in Section 4.3, we observe that, up to a simultaneous permutation of
rows and columns (which does not change the hafnian), any two matrices Aj1 and
Aj2 differ only in the k-th row and k-th column for some k. Using the expansion
(4.3.1), we complete the induction as in Section 5.2. �

(5.4) Proof of Theorem 3.5. By and large, the proof proceeds as in Section
5.2. For a positive integer n, we define Un as the set of n× . . .× n complex arrays
Z = (zi1...id) such that

|1− ℜ zi1...id | ≤ η and |ℑ zi1...id | ≤ τ

for all 1 ≤ i1, . . . , id ≤ n. We prove by induction on n the following statement:

For any Z ∈ Un we have PERZ 6= 0 and, moreover, if A,B ∈ Un are two tensors
that differ in one slice only, then the angle between non-zero complex numbers
PERA and PERB does not exceed π

2(d−1) .
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Since τ < 1 − η, the statement holds for n = 1. Assuming that n ≥ 2, let us
consider two tensors A,B ∈ Un that differ in one slice only. As in Section 4.4,
we assume that B is obtained from A by replacing the top slice numbers a1i2...id
with numbers b1i2...id and define the (n − 1) × . . . × (n − 1) tensor Ai2...id as the
tensor obtained from A by crossing out the d slices obtained by fixing the first
index to 1, the second index to i2, . . . , the last index to id. As in Section 4.4,
any two tensors Ai2...id and Ai′

2
...i′

d
differ in at most d − 1 slices, and hence by

the induction hypothesis we have PERAi2...id 6= 0, PERAi′
2
...i′

d
6= 0 and the angle

between the two non-zero complex numbers does not exceed π/2. Using the d-
dimensional version (4.4.1) of the Laplace expansion and Part (3) of Lemma 5.1,
we conclude that PERA 6= 0, PERB 6= 0 and the angle between non-zero complex
numbers PERA and PERB does not exceed

2 arctan η + 2 arcsin
τ

1− η
=

π

2(d− 1)
,

which completes the induction. �

6. Proofs of Theorems 1.6 and 3.6

Since Theorem 1.6 is a particular case of Theorem 3.6 for d = 2, we prove the
latter theorem. We use a combinatorial interpretation of the multi-dimensional
permanent in terms of matchings in a hypergraph.

(6.1) The matching polynomial of a hypergraph. Let us fix an integer d ≥ 2.

Let V be a finite set and let E ⊂
(

V
d

)

be a family of d-subsets of V . The pair
H = (V,E) is called a d-hypergraph with set V of vertices and set E of edges. An
unordered set e1, . . . , ek of pairwise disjoint edges of H is called a matching (we
agree that the empty set of edges is a matching). Given a map w : E −→ C that
assigns complex weights w(e) to the edges e ∈ E of H, we define the weight of a
matching e1, . . . , ek as the the product w(e1) · · ·w(ek) of weights of the edges of
the matching. We agree that the weight of the empty matching is 1. We define the
matching polynomial as the sum of weights of all matchings (including the empty
one) in H:

PH(w) =
∑

e1,... ,ek
is a matching

w(e1) · · ·w(ek).

(6.2) Lemma. Let H = (V,E) be a d-hypergraph and let w : E −→ C be complex

weights on its edges. Suppose that

∑

e∈E:
v∈e

|w(e)| ≤ (d− 1)d−1

dd
for all v ∈ V.

Then PH(w) 6= 0.
18



Proof. For a set S ⊂ V of vertices, we denote by H − S the hypergraph with set
V \ S of vertices and set E′ ⊂ E of edges that do not contain vertices from S.
Abusing notation, we denote the restriction of weights w : E −→ C onto E′ also
by w. We prove by induction on the number |V | of vertices that PH(w) 6= 0 and,
moreover, for every vertex v ∈ V we have

(6.2.1)

∣

∣

∣

∣

1− PH−{v}(w)

PH(w)

∣

∣

∣

∣

≤ 1

d− 1
.

If |V | < d then H has no edges and hence PH(w) = PH−v(w) = 1. Suppose now
that |V | ≥ d. We observe the following recurrence:

(6.2.2) PH(w) = PH−{v}(w) +
∑

e∈E:
v∈e

w(e)PH−e(w),

where the PH−{v}(w) accounts for the matchings in H not containing v and the
sum accounts for the matchings of H containing v. By the induction hypothesis,
PH−{v}(w) 6= 0, so we rewrite (6.2.2) as

(6.2.3)
PH(w)

PH−{v}(w)
= 1 +

∑

e∈E:
v∈e

w(e)
PH−e(w)

PH−{v}(w)
.

If there are no edges e containing v then PH(w) = PH−{v}(w) and (6.2.1) follows.
Otherwise, let e = {v, v2, . . . , vd} be an edge containing v. Telescoping, we obtain

(6.2.4)
PH−e(w)

PH−{v}(w)
=

PH−e(w)

PH−{v,v2... ,vd−1}(w)

PH−{v,v2,... ,vd−1}(w)

PH−{v,v2... ,vd−2}(w)
· · · PH−{v,v2}(w)

PH−{v}(w)
.

By the induction hypothesis, each ratio in the right hand side of (6.2.4) does not
exceed d/(d− 1) in the absolute value, and hence

∣

∣

∣

∣

PH−e(w)

PH−{v}(w)

∣

∣

∣

∣

≤
(

d

d− 1

)d−1

.

Therefore, from (6.2.3) we obtain

(6.2.5)

∣

∣

∣

∣

1− PH(w)

PH−{v}(w)

∣

∣

∣

∣

≤ (d− 1)d−1

dd

(

d

d− 1

)d−1

=
1

d
,

from which it follows that PH(w) 6= 0. Denoting

z =
PH−{v}(w)

PH(w)
,
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from (6.2.5) we have a chain of implications
∣

∣

∣

∣

1− 1

z

∣

∣

∣

∣

≤ 1

d
=⇒

∣

∣

∣

∣

z − 1

z

∣

∣

∣

∣

≤ 1

d
=⇒

∣

∣

∣

∣

z

z − 1

∣

∣

∣

∣

≥ d

=⇒
∣

∣

∣

∣

1

z − 1

∣

∣

∣

∣

≥ d− 1 =⇒ |1− z| ≤ 1

d− 1

proving (6.2.1). �

The bound of Lemma 6.2 and to some extent its proof agrees with those of
[HL72] for the roots of the matching polynomial of a graph.

Next, we need a weaker version on an estimate from [Wa03].

(6.3) Lemma. Let α ≈ 0.278 be the constant of Theorem 3.6, so that αe1+α = 1.
For a positive integer n, let

pn(z) =
n
∑

k=0

zk

k!
.

Then

pn(z) 6= 0 provided |z| ≤ αn.

Proof. We observe that if |z| ≤ α then
∣

∣ze1−z
∣

∣ ≤ |z|e1+|z| ≤ 1

and hence

∣

∣1− e−nzpn(nz)
∣

∣ =

∣

∣

∣

∣

∣

e−nz
∞
∑

k=n+1

(nz)k

k!

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

ze1−z
)n

e−n
∞
∑

k=n+1

nkzk−n

k!

∣

∣

∣

∣

∣

≤ e−n
∞
∑

k=n+1

nk

k!
< 1,

so that pn(nz) 6= 0. �

Finally, we need a theorem of Szegő, see for example, Chapter IV of [Ma66] and
also [BB09] for generalizations.

(6.4) Theorem. Let

f(z) =
n
∑

k=0

akz
k and g(z) =

n
∑

k=0

bkz
k

be complex polynomials. We define the Schur product h = f ∗ g by

h(z) =

n
∑

k=0

ckz
k where ck =

akbk
(

n
k

) for k = 0, . . . , n.

Suppose that f(z) 6= 0 whenever |z| ≤ r1 and g(z) 6= 0 whenever |z| ≤ r2 for some

r1, r2 > 0.
Then h(z) 6= 0 whenever |z| ≤ r1r2.
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(6.5) Proof of Theorem 3.6. Let H be the complete d-partite hypergraph with
set V of nd vertices, split into d parts and vertices in each part numbered 1 through
n. Each edge ofH consist of exactly one vertex from each part and we let the weight
of edge (i1, . . . , id) equal to wi1...id = zi1...id − 1. For k = 1, . . . , n, let Wk be the
total weight of all matchings in H consisting of exactly k edges. We write

PERZ =
∑

σ2,... ,σd∈Sn

n
∏

i=1

ziσ2(i)...σd(i) =
∑

σ2,... ,σd∈Sn

n
∏

i=1

(

1 + wiσ2(i)...σd(i)

)

=
∑

σ2,... ,σd∈Sn



1 +
n
∑

k=1

∑

1≤i1<...<ik≤n

wi1σ2(i1)...σd(i1) · · ·wikσ2(ik)...σd(ik)





=

n
∑

k=0

((n− k)!)
d−1

Wk.

Let us define a univariate polynomial

f(z) =
n
∑

k=0

Wkz
k.

Then f(z) is the value of the matching polynomial PH on the scaled weights zwi1 ...id

and from Lemma 6.2 we conclude that

(6.5.1) f(z) 6= 0 provided |z| ≤ 1

(αn)d−1
.

Let pn be the polynomial of Lemma 6.3. Applying Lemma 6.3 and Theorem 6.4 to
the Schur product h = f ∗ pn ∗ · · · ∗ pn of f and d− 1 polynomials pn, we conclude
from (6.5.1) that

h(z) =

(

1

n!

)d−1 n
∑

k=0

((n− k)!)d−1Wkz
k 6= 0 provided |z| ≤ 1.

In particular, h(1) 6= 0 and hence PERZ 6= 0. �

7. Proofs of Theorems 1.5, 1.7, 2.5, 3.3 and 3.7

We need the following simple result first obtained in [Ba16]. For completeness,
we give its proof here.

(7.1) Lemma. Let g : C −→ C be a polynomial and let β > 1 be real such that

g(z) 6= 0 for all |z| ≤ β. Let us choose a branch of

f(z) = ln g(z) for |z| ≤ β
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and let

Tm(z) = f(0) +

m
∑

k=1

f (k)(0)

k!
zk

be the Taylor polynomial of f(z) of degree m computed at z = 0. Then

|f(1)− Tm(1)| ≤ deg g

(m+ 1)βm(β − 1)
.

Proof. Without loss of generality, we assume that n = deg g > 0. Let z1, . . . , zn ∈ C

be the roots of g, each root is listed with its multiplicity. Hence we can write

g(z) = g(0)

n
∏

j=1

(

1− z

zj

)

where |zj | > β for j = 1, . . . , n

and

f(z) = f(0) +
n
∑

j=1

ln

(

1− z

zj

)

for all |z| ≤ 1.

Using the Taylor series expansion for the logarithm, we obtain

ln

(

1− 1

zj

)

= −
m
∑

k=1

1

kzkj
+ ξj

where

|ξj| =
∣

∣

∣

∣

∣

−
∞
∑

k=m+1

1

kzkj

∣

∣

∣

∣

∣

≤ 1

m+ 1

∞
∑

k=m+1

1

βk
=

1

(m+ 1)βm(β − 1)
.

Since

Tm(1) = f(0)−
n
∑

j=1

m
∑

k=1

1

kzkj
,

the proof follows. �

It follows from Lemma 7.1 that as long as the roots of a polynomial g(z) stay at
distance at least β away from 0 for some fixed β > 1, then to approximate ln g(1)
within an additive error ǫ, we can use the Taylor polynomial of f(z) = ln g(z) at
z = 0 of degree m = O(ln deg g − ln ǫ), where the implied constant in the “O”
notation depends on β only.
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(7.2) Computing the derivatives. As is discussed in [Ba16], the computation
of the first m derivatives f (1)(0), . . . , f (m)(0) of f(z) = ln g(z) reduces to the com-
putation of the first m derivatives g(1)(0), . . . , g(m)(0) of g. Indeed,

f (1)(z) =
g(1)(z)

g(z)
and hence g(1)(z) = f (1)(z)g(z).

Therefore,

g(2)(z) =f (2)(z)g(z) + f (1)(z)g(1)(z),

g(3)(z) =f (3)(z)g(z) + 2f (2)(z)g(1)(z) + f (1)(z)g(2)(z)

and

(7.2.1) g(k)(0) =

k−1
∑

j=0

(

k − 1

j

)

g(j)(0)f (k−j)(0)

where g(0)(0) = g(0) 6= 0. Writing equations (7.2.1) for k = 1, . . . , m we obtain a
non-singular triangular system of linear equations in f (k)(0) with numbers g(0) 6= 0
on the diagonal from which the values of f (1)(0), . . . , f (m)(0) can be computed in
O(m2) time from the values of g(0), g(1)(0), . . . , g(m)(0). Thus

f (1)(0) =
g(1)(0)

g(0)
, f (2)(0) =

g(2)(0)− f (1)(0)g(1)(0)

g(0)
=

g(2)(0)

g(0)
−
(

g(1)(0)
)2

(g(0))2

f (3)(0) =
g(3)(0)− 2f (2)(0)g(1)(0)− f (1)(0)g(2)(0)

g(0)

=
g(3)(0)

g(0)
− 3g(2)(0)g(1)(0)

(g(0))2
+

2
(

g(1)(0)
)3

(g(0))3
,

and, generally, f (k)(0) is a linear combination of expressions of the type

g(k1)(0) · · · g(ks)(0)

(g(0))p
where k1 + . . .+ ks = k and p ≥ 1

with integer coefficients.
Note that computing f (k)(0) from g(k)(0) is akin to computing cumulants of a

distribution from its moments.

(7.3) Proof of Theorem 1.5. Let J = Jn be the n× n matrix filled with 1s and
let A = (aij) be an n× n complex matrix satisfying the conditions of the theorem.
We define a univariate polynomial

g(z) = per
(

J + z(A − J)
)

for z ∈ C.
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so that deg g ≤ n,

g(0) = per J = n! and g(1) = perA.

Moreover, by Theorem 1.4 we have

g(z) 6= 0 provided |z| ≤ β where β =
0.5

η
> 1.

Let us choose the branch of

f(z) = ln g(z) for |z| ≤ β

so that f(0) is real and let

Tm(z) = f(0) +

m
∑

k=1

f (k)(0)

k!
zk

be the Taylor polynomial of degree m computed at z = 0. It follows from Lemma
7.1 that for some constant γ = γ(η) > 0 and integer m ≤ γ(lnn− ln ǫ) we have

|ln perA− Tm(1)| = |f(1)− Tm(1)| ≤ ǫ.

It remains to show that Tm(1) is a polynomial p in the entries aij of the matrix
A of degree at most m. In view of Section 7.2 and the fact that g(0) = n!, it suffices
to check that g(k)(0) is a polynomial in the entries aij of the matrix A of degree at

most k which can be computed in nO(k) time, where the implied constant in the
“O” notation is absolute. We have

g(z) =
∑

σ∈Sn

n
∏

i=1

(

1 + z
(

aiσ(i) − 1
))

and hence for k ≥ 1

g(k)(0) =
∑

σ∈Sn

∑

(i1,... ,ik)

(

ai1σ(i1) − 1
)

· · ·
(

aikσ(ik) − 1
)

,

where the last sum is taken over all ordered sets (i1, . . . , ik) of distinct numbers
between 1 and n. By symmetry, we can further write

g(k)(0) = (n− k)!
∑

(i1,... ,ik)
(j1,... ,jk)

(ai1j1 − 1) · · · (aikjk − 1) ,

where the last sum is taken over all (n!/(n − k)!)2 ≤ n2k pairs of ordered sets
(i1, . . . , ik) and (j1, . . . , jk) of distinct numbers between 1 and n. �

It follows that the polynomial p of Theorem 1.5 can be computed in time
nO(lnn−ln ǫ), where the implied constant in the “O” notation depends on η alone.
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(7.4) Proof of Theorem 2.5. The proof is very similar to that of Section 7.3.
Let J = J2n be the 2n × 2n matrix filled with 1s and let A = (aij) be a 2n ×
2n symmetric complex matrix satisfying the conditions of theorem. We define a
univariate polynomial

g(z) = haf
(

J + z(A − J)
)

for z ∈ C,

so that deg g ≤ n,

g(0) = haf J =
(2n!)

2nn!
and g(1) = haf A.

Moreover, by Theorem 2.4, we have

g(z) 6= 0 provided |z| ≤ β where β =
0.5

η
> 1.

We write

g(z) =
∑

{i1,j1},... ,{in,jn}

(1 + z (ai1j1 − 1)) · · · (1 + z (ainjn − 1)) ,

where the sum is taken over all (2n)!/2nn! unordered partitions of the set
{1, 2, . . . , 2n} into n pairwise disjoint unordered pairs {i1, j1}, . . . , {in, jn}. Hence
for k > 0 we have

g(k)(0) =
k!(2n− 2k)!

2(n−k)(n− k)!

∑

{i1,j1},... ,{ik,jk}

(ai1j1 − 1) · · · (aikjk − 1) ,

where the sum is taken over all unordered collections {i1, j1}, . . . , {ik, jk} of pair-
wise disjoint unordered pairs.

The proof then proceeds as in Section 7.3. �

It follows that the polynomial p of Theorem 2.5 can be computed in time
nO(lnn−ln ǫ), where the implied constant in the “O” notation depends on η alone.

(7.5) Proof of Theorem 3.3. Let J = Jn,d be the d-dimensional n×. . .×n tensor
filled with 1s and let A be the tensor satisfying the conditions of the theorem. We
introduce a univariate polynomial

(7.5.1) g(z) = PER
(

J + z(A− J)
)

,

so that
g(0) = PER J = (n!)d−1 and g(1) = PERA.

Moreover, by Theorem 3.2,

g(z) 6= 0 provided |z| ≤ β where β =
ηd
η

> 1.
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We write

g(z) =
∑

σ2,... ,σd∈Sn

n
∏

i=1

(

1 + z
(

aiσ2(i)...σd(i) − 1
))

,

so that
g(0) = PERJ = (n!)d−1

and for k > 0,

g(k)(0) =
∑

σ2,... ,σd∈Sn

∑

(i1,... ,ik)

(

ai1σ2(i1)...σd(i1) − 1
)

· · ·
(

aikσ2(ik)...σd(ik) − 1
)

,

where the last sum is taken over all ordered k-tuples (i1, . . . , ik) of distinct indices
1 ≤ ij ≤ n. By symmetry we can write

g(k)(0) = ((n− k)!)
d−1

×
∑

(i11,...ik1)
(i12,... ,ik2)
...............
(id1,... ,ikd)

(ai11i12...i1d − 1) (ai21i22...i2d − 1) · · · (aik1ik2...ikd
− 1) ,

where the last sum is taken over all (n!/(n − k)!)d ≤ nkd collections of d ordered
k-tuples (i1j , . . . , ikj) for j = 1, . . . , d of distinct indices 1 ≤ i1j , . . . , ikj ≤ n. The
proof then proceeds as in Section 7.3. �

The polynomial p can be computed in nO(lnn−ln ǫ) time, where the implied con-
stant in the “O” notation depends on η and d only.

(7.6) Proof of Theorems 1.7 and 3.7. As Theorem 1.7 is a particular case of
Theorem 3.7, we prove the latter theorem only. As in Section 7.5, we define the
univariate polynomial (7.5.1). By Theorem 3.6, we have

g(z) 6= 0 provided |z| ≤ β where β =
ηd
η

> 1,

and the proof follows as in Section 7.5. �

8. Proofs of Theorems 1.2, 2.2 and 3.4

Lemma 7.1 allows us to approximate the value of ln g(1) by a low degree Taylor
polynomial of ln g(z) at z = 0 provided the polynomial g(z) does not have zeros in
a disc of radius β > 1 centered at z = 0. In view of Theorems 1.3, 2.3 and 3.5, we
would like to construct a similar approximation under a weaker assumption that
g(z) 6= 0 for z in some neighborhood of the interval [0, 1] in the complex plane. To
achieve that, we first construct a polynomial φ such that φ(0) = 0, φ(1) = 1 and
such that φ maps the disc |z| ≤ β for some β > 1 inside the neighborhood. We
then apply Lemma 7.1 to the composition g(φ(z)). The following lemma provides
an explicit construction of such a polynomial φ.
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(8.1) Lemma. For 0 < ρ < 1, let us define

α =α(ρ) = 1− e−
1

ρ , β = β(ρ) =
1− e−1− 1

ρ

1− e−
1

ρ

> 1,

N =N(ρ) =

⌊(

1 +
1

ρ

)

e1+
1

ρ

⌋

≥ 14, σ = σ(ρ) =

N
∑

m=1

αm

m
and

φ(z) =φρ(z) =
1

σ

N
∑

m=1

(αz)m

m
.

Then φ(z) is a polynomial of degree N such that φ(0) = 0, φ(1) = 1,

−ρ ≤ ℜφ(z) ≤ 1 + 2ρ and |ℑφ(z)| ≤ 2ρ provided |z| ≤ β.

Proof. Clearly, φ(z) is a polynomial of degree N such that φ(0) = 0 and φ(1) = 1.
It remains to prove that φ maps the disc |z| ≤ β into the strip −ρ ≤ ℜ z ≤ 1 + 2ρ,
|ℑ z| ≤ 2ρ.

We consider the function

Fρ(z) = ρ ln
1

1− z
for |z| < 1.

Since

ℜ 1

1− z
>

1

2
if |z| < 1,

the function Fρ(z) is well-defined by the choice of a branch of the logarithm, which
we choose so that

Fρ(0) = ρ ln 1 = 0.

Then for |z| < 1 we have

(8.1.1) |ℑFρ(z)| ≤ πρ

2
and ℜFρ(z) ≥ −ρ ln 2.

In addition,

(8.1.2) Fρ(α) = 1 and ℜFρ(z) ≤ 1 + ρ provided |z| ≤ 1− e−1− 1

ρ .

Let

Pn(z) =

n
∑

m=1

zm

m
.

Then

∣

∣

∣

∣

ln
1

1− z
− Pn(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

m=n+1

zm

m

∣

∣

∣

∣

∣

≤ |z|n+1

(n+ 1)(1− |z|) provided |z| < 1.
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Therefore, for |z| ≤ β, we have

|Fρ(αz)− ρPN (αz)| ≤ ρ
(αβ)N+1

(N + 1)(1− αβ)

=
ρ

N + 1

(

1− e−1− 1

ρ

)N+1

e1+
1

ρ

≤ ρ

N + 1
≤ ρ

15
.

(8.1.3)

Combining (8.1.1) – (8.1.3), we conclude that for |z| ≤ β we have

(8.1.4) |ℑ ρPN (αz)| ≤ 1.64ρ and − 0.76ρ ≤ ℜ ρPN (αz) ≤ 1 + 1.07ρ.

Substituting z = 1 in (8.1.3) and using (8.1.2), we conclude that

(8.1.5) |1− ρPN (α)| ≤ ρ

15
.

We have

φ(z) =
PN (αz)

PN (α)
=

ρPN (αz)

ρPN (α)
,

where ρPN (α) is positive real, which by (8.1.5) satisfies

ρPN (α) ≥ 1− ρ

15
.

Since
(

1− ρ

15

)−1

≤ min

{

15

14
, 1 +

2ρ

15

}

for 0 ≤ ρ ≤ 1,

from (8.1.4) we conclude that

|ℑφ(z)| ≤ 2ρ and − ρ ≤ ℜφ(z) ≤ 1 + 2ρ provided |z| ≤ β.

�

(8.2) Proof of Theorem 1.2. Let A = (aij) be an n × n real matrix satisfying
the conditions of the theorem and let J = Jn be the n×n matrix filled with 1s. As
in Section 7.3, we define a univariate polynomial

r(z) = per
(

J + z(A− J)
)

for z ∈ C.

Suppose that

(8.2.1) −ξ ≤ ℜ z ≤ 1 + ξ and |ℑ z| ≤ ζ
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for some ξ > 0 and ζ > 0. Then the entries bij of the matrix B = J + z(A − J)
satisfy

|1−ℜ bij | ≤ (1 + ξ)(1− δ) and |ℑ bij | ≤ ζ(1− δ).

We choose ξ = ξ(δ) > 0 such that

η = (1 + ξ)(1− δ) < 1

and then choose ζ = ζ(δ) > 0 such that

ζ(1− δ) < (1− η) sin
(π

4
− arctan η

)

.

By Theorem 1.3, we have r(z) 6= 0 for z satisfying (8.2.1).
Using Lemma 8.1, we construct a univariate polynomial φ of some degree N =

N(δ) such that φ(0) = 0, φ(1) = 1 and φ maps the disc {z : |z| ≤ β} inside the
strip (8.2.1), where β = β(δ) > 1. Let

g(z) = r(φ(z)) for z ∈ C.

Then g(z) is a univariate polynomial such that deg g ≤ Nn,

g(0) = r(0) = per J = n! and g(1) = r(1) = perA.

Besides,
g(z) 6= 0 provided |z| ≤ β.

Let us define
f(z) = ln g(z) for |z| ≤ β,

where we chose the branch of the logarithm such that f(0) = lnn! is real. Let Tm(z)
be the Taylor polynomial of f(z) of degree m computed at z = 0. By Lemma 7.1,
we have

|Tm(1)− f(1)| = |Tm(1)− ln perA| ≤ ǫ,

for some m ≤ γ(lnn− ln ǫ) where γ = γ(δ) > 0 is a constant depending on δ alone.
It remains to show that Tm(1) is a polynomial in the entries of A of degree not
exceeding m.

For a univariate polynomial p(z), let p[m] be the polynomial obtained from p by
discarding all monomials of degree higher than m. Since φ(0) = 0, the constant
term of of φ is 0 and therefore

g[m] = (r(φ))[m] =
(

r[m]

(

φ[m]

))

[m]
.

In words: to compute the polynomial g[m] obtained from g by discarding the mono-
mials of degree higher than m, it suffices to compute the polynomials r[m] and φ[m]

obtained from r and φ respectively by discarding the monomials of degree higher
thanm, and then discard the monomials of degree higher thanm in the composition
r[m](φ[m]).

From Section 7.3, it follows that r(k)(0) is a polynomial of degree k in the entries
of the matrix A. It follows then that g(k)(0) is a polynomial in the entries of A
of degree at most k that can be computed in nO(k) time (the implied constant in
the “O” notation is absolute). From Section 7.2 it follows then that f (k)(0) is a
polynomial in the entries of A of degree at most k, which completes the proof. �
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(8.3) Proof of Theorem 2.2. Given a 2n×2n real symmetric matrix A satisfying
the conditions of the theorem, we define the univariate polynomial r(z) by

r(z) = haf
(

J + z(A− J)
)

,

where J = J2n is the 2n×2n matrix filled with 1s and the proof then proceeds as in
Section 8.2, only that the reference to Theorem 1.3 is replaced by the reference to
Theorem 2.3 and the reference to Section 7.3 is replaced by the reference to Section
7.4. �

(8.4) Proof of Theorem 3.4. Given a d-dimensional n×. . .×n tensor A satisfying
the conditions of the theorem, we define the univariate polynomial r(z) by

r(z) = PER(J + z(A− J)),

where J = Jd,n is the d-dimensional n × . . . × n tensor filled with 1s. Suppose
that (8.2.1) holds for some ξ > 0 and ζ > 0. Then the entries bi1...id of the tensor
B = J + z(A− J) satisfy

|1− ℜ bi1...id | ≤ (1 + ξ)η and |ℑ bi1...id | ≤ ζη.

We choose ξ = ξ(η) > 0 such that

η′ = (1 + ξ)η < tan
π

4(d− 1)

and then choose ζ = ζ(η) > 0 such that

ζη < (1− η′) sin

(

π

4(d− 1)
− arctan η′

)

.

By Theorem 3.5, we have r(z) 6= 0 for z satisfying (8.2.1) with ξ and ζ so chosen.
The proof then proceeds as in Section 8.2, only that the reference to Section 7.3 is
replaced by the reference to Section 7.5. �

9. Concluding remarks

(9.1) Numerical experiments. The algorithm of Theorem 1.5 for approximating
permanents of real and complex matrices was implemented by Kontorovich and
Wu [KW16], who conducted numerical experiments on approximating ln perA by
a polynomial of just degree 3. The experiments seem to show that the method a)
very fast, b) quite accurate on positive matrices with entries within a factor of 10
of each other and c) quite accurate on random 0-1 matrices with at most 10% of
zeros.
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(9.2) Connections to the Szegő curve. Let I = In be the n×n identity matrix,
let J = Jn be the n × n matrix of 1s and let r(z) = per(J + z(nI − J)) be the
polynomial of Section 8.2 for the matrix A = nI. We have

r(z) =per
(

znI + (1− z)J
)

= (1− z)n per

(

z

1− z
nI + J

)

=(1− z)n
n
∑

k=0

(

n

k

)(

z

1− z

)k

nk(n− k)! = (1− z)nn!
n
∑

k=0

(ny)k

k!
,

where y =
z

1− z
.

Kontorovich and Wu noticed [KW16] that the location of the complex zeros of r(z),
which is crucial for our analysis of the approximation of the permanent, for A = nI
can be determined from a result of Szegő, who showed in 1922 that as n −→ ∞,
the zeros of the polynomial

n
∑

k=0

(ny)k

k!

converge to the curve
{∣

∣ζe1−ζ
∣

∣ = 1, |ζ| ≤ 1
}

, now known as the Szegő curve, cf.
[Wa03]. It follows then that the roots of r(z) in the vicinity of the interval [0, 1] for
large n cluster around z = 0.5, so our method of interpolation from J to A = nI
works roughly “halfway”. The same is true if A = nP , where P is an n × n
permutation matrix, and there is some limited computational evidence that for
non-negative n × n matrices A with row and column sums n (such matrices are
convex combinations of matrices nP ) the polynomial r(z) = per(J + z(A− J)) has
no zeros in the vicinity of the interval [0, 0.5− ǫ] for any ǫ > 0 and all sufficiently
large n, so our method works “at least halfway” for all such matrices A, cf. also
[Mc14]. Combined with the scaling algorithm, see [L+00], this may lead to a useful
algorithm for approximating permanents of arbitrary non-negative matrices.

(9.3) Connections to the mixed characteristic polynomial. In their solu-
tion of the Kadison - Singer problem, Marcus, Spielman and Srivastava [M+15]
introduced and studied the mixed characteristic polynomial of n Hermitian n × n
matrices Q1, . . . , Qn,

pQ1,... ,Qn
(x) =

n
∏

i=1

(

1− ∂

∂zi

)

det

(

xI +
n
∑

i=1

ziQi

)

∣

∣

∣

z1=...=zn=0
,

where I is the n × n identity matrix. In particular, they showed that the roots
of p are necessarily non-negative real provided Q1, . . . , Qn are non-negative semi-
definite. An anonymous referee pointed out to a similarity between the mixed
characteristic polynomial and the polynomial r(z) = per(J +z(A−J)) used in this
paper. Given an n×n non-negative matrix A, let Qi be the diagonal matrix having
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the i-th row of A as the diagonal. Then Q1, . . . , Qn are non-negative semidefinite
matrices and the mixed characteristic polynomial can be written as

pA(−x) = (−1)n
n
∑

k=0

Wn−k(A)xk,

where Wk(A) is the sum of permanents of the k × k submatrices of A, so up to a
sign and a substitution x 7−→ −1/x, the polynomial pA is the matching polynomial
of Section 6 (and the fact that the roots of pA are non-negative real is a particular
case of the Heilmann - Lieb Theorem [HL72]). On the other hand,

r(z) = zn
n
∑

k=0

k!Wn−k(A)

(

1− z

z

)k

.

The relation between p and r is essentially used in the proof of Theorem 3.6, which
was absent in the version of the paper the referee commented on, but was obtained
before the author received the comment.

On the other hand, the general mixed characteristic polynomial may appear
useful for approximating the mixed discriminant of Q1, . . . , Qn, which, up to a sign
is just the constant term of pQ1,... ,Qn

.

(9.4) Approximation of general polynomials. Lemmas 7.1 and 8.1 suggest
the following general way of approximating combinatorially interesting polynomials.
Suppose that p(z) is a univariate polynomial such that deg p ≤ n. Suppose further
we want to approximate p(1) whereas p(0) is easily computable and the derivatives
p(k)(0) can be computed in nO(k) time. We can approximate p(1) within a relative
error ǫ > 0 in quasi-polynomial time nO(lnn−ln ǫ) provided we can find a “sleeve”
S ⊂ C in the complex plane such that 0 ∈ S, 1 ∈ S and p(z) 6= 0 for all z ∈ S.
The sleeve S should be wide enough, meaning that it contains a number N , fixed
in advance, of discs D1, . . . , DN of equal radii such that Di contains the center of
Di−1 for i = 2, . . . , N with D1 centered at 0 and DN centered at 1. An example
of such a sleeve is provided by the strip −δ ≤ ℜ z ≤ 1 + δ and |ℑ z| ≤ τ for some
δ > 0 and τ > 0, fixed in advance for the polynomial r(z) = per (J + z(A− J)) of
Section 8.2.

As another example, we consider the independence polynomial of graph. Let
G = (V,E) be a graph (undirected, without loops or multiple edges) with set V of
vertices and set E of edges. A set S ⊂ V is called independent if no two vertices
in S span an edge of G (the empty set S = ∅ is considered independent). The
independence polynomial of G is defined as

pG(z) =
∑

S⊂V
S is independent

z|S| =

|V |
∑

k=0

(the number of independent k-sets in V ) zk.
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Then pG(1) is the number of all independent sets in G, a quantity of considerable

combinatorial interest. On the other hand, the value of the derivative p
(k)
G (0) can

be computed in |V |O(k) time by a direct inspection of all k-subsets S ⊂ V .

Suppose we know that pG(z) 6= 0 provided |z| ≤ β for some β > 0 (for example,
β can be the Dobrushin bound, see [SS05] and [CF16]). Lemma 7.1 then implies
that for any 0 ≤ λ < 1, fixed in advance, the value of pG(z) can be approximated
within a relative error 0 < ǫ < 1 in quasi-polynomial time |V |O(ln |V |−ln ǫ) provided
|z| ≤ λβ, see [Re15] for many examples of this nature and also [We06] and [H+16]
for algorithms based on the “correlation decay” idea.

If, additionally, the zeros of pG(z) are known to be confined to a particular region
of the complex plane C, we can hope to do better by constructing a sleeve S ⊂ C

where pG(z) is not zero and interpolating pG(z) there. In an extreme case, when G
is claw-free, the roots of pG(z) are known to be negative real [CS07], which leads to
a quasi-polynomial algorithm for approximating pG(z) provided |π − arg z| > λ−1

(so that z stays away from the negative real axis) and |z| ≤ λβ where λ > 0 is
arbitrarily large, fixed in advance, see also [B+07] for an algorithm based on the
correlation decay approach.

On the other hand, for a general graph G there cannot be such a sleeve S unless
NP-complete problems admit a quasi-polynomial time algorithm. Indeed, generally,
it is an NP-hard problem to approximate pG(z) for a real z > λβ, where λ > 0 is
some absolute constant and β is the Dobrushin lower bound on the absolute value
of the roots of pG(z) [LV99]. This means that for a general graph G one can expect
the complex roots of pG(z) to “surround” the origin, so that there is no possibility
to squeeze a sleeve between them to connect 0 and 1.

Since the first version of this paper appeared as a preprint, this general direction
was pursued further in [PR16].

(9.5) Approximating multi-dimensional permanents better. It would be
interesting to extend the class of polynomials for which a version of Theorems 1.2
and 2.2 can be obtained. While we failed to obtain such a version for the multi-
dimensional permanent (see Section 3), there does not seem to be a computational
complexity obstacle for such an extension to exist. In [BS11] it is shown that the
d-dimensional permanent of a n × . . . × n tensor with positive entries between an
arbitrarily small δ > 0, fixed in advance, and 1 can be approximated within an
nO(1) factor in polynomial time, where the implicit constant in the “O” notation
depends only on d and δ, which can be viewed as an indirect evidence that Theorem
1.2 can indeed be extended to multi-dimensional permanents.
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