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1. Basic definitions

We work in a finite-dimensional real vector space V . Once we choose a basis of
V , we may identify V = Rd.

(1.1) Definitions. For two points a, b ∈ V , we define the interval [a, b] ⊂ V by

[a, b] =
{

x ∈ V : x = λa+ (1− λ)b : 0 ≤ λ ≤ 1
}

.

A set X ⊂ V is convex if for all a, b ∈ X we have [a, b] ⊂ X . The empty set ∅ is
convex. Given points, a1, . . . , an ∈ V , a point

a =

n
∑

i=1

λiai where

n
∑

i=1

λi = 1 and λi ≥ 0 for i = 1, . . . , n

is called a convex combination of a1, . . . , an. The convex hull conv(A) of a set
A ⊂ V is the set of all convex combinations of points from A. A polytope is the
convex hull of a finite set of points.

Given a linear functional ℓ : V −→ R, not identically 0, and a real α ∈ R, the
set

H− =
{

x ∈ V : ℓ(x) ≤ α
}

is called a (closed) halfspace. A polyhedron is the intersection of finitely many
halfspaces.

(1.2) Problems.
1◦. Prove that conv(A) is the minimal under inclusion convex set containing A.

2◦. Prove that conv(conv(A)) = conv(A), that conv(A) ⊂ conv(B) provided
A ⊂ B and that conv(A) ∪ conv(B) ⊂ conv(A ∪ B). Prove that if u /∈ conv(A),
v /∈ conv(A), u ∈ conv

(

A ∪ {v}
)

and v ∈ conv
(

A ∪ {u}
)

then u = v.

3. Let us identify C = R2. Let f : C −→ C be a polynomial. Prove that the
zeros of the derivative f ′ of f lie in the convex hull of the zeros of f (Gauss - Lucas
Theorem).

4◦. Let e1, . . . , ed be the standard basis of Rd. Let us define:

∆d−1 = conv (e1, . . . , ed) , Od = conv (±e1, . . . ,±ed) and

Id = conv (±e1 ± e2 . . .± ed) .

Prove that ∆d−1, Od, and Id are polyhedra and find the minimal set of linear
inequalities defining each.

Polytope ∆d−1 is called the standard (d− 1)-dimensional simplex, polytope Od
is called the standard d-dimensional octahedron or cross-polytope and polytope Id
is called the standard d-dimensional cube.
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5∗. Prove that a polytope is a polyhedron and a bounded polyhedron is a
polytope (Weyl - Minkowski Theorem, to be proven later).

6∗. Prove that the set of diagonals of n× n symmetric matrices with the eigen-
values λ1, . . . , λn is the convex hull of the vectors in Rn whose coordinates are
permutations of λ1, . . . , λn (Schur-Horn Theorem, we will prove at least a part of
it later).

2. Carathéodory’s Theorem

(2.1) Theorem. Let dimV = d and let A ⊂ V be a set. Then every point x ∈
conv(A) is a convex combination of some d+ 1 points from A.

Proof. Let us choose a point x ∈ conv(A). Then x is a convex combination of some
points from A,

x =
n
∑

i=1

λiai where
n
∑

i=1

λi = 1

and where without loss of generality we may assume that

λi > 0 for i = 1, . . . , n.

If n ≤ d+ 1 we are done, since we can append the combination by 0s as needed. It
suffices to prove that if n > d+ 1 then we can represent x as a convex combination
of fewer ais.

Let us consider a homogeneous system of linear equations in real variables
α1, . . . , αn:

n
∑

i=1

αiai = 0 and

n
∑

i=1

αi = 0.

The number of equations is d+ 1, so there is a non-trivial solution α1, . . . , αn. In
particular, for some i we must have αi > 0. For t ≥ 0 let us define

λi(t) = λi − tαi for i = 1, . . . , n.

Clearly,

x =

n
∑

i=1

λi(t)ai and

n
∑

i=1

λi(t) = 1.

Let us choose

t = min
i: αi>0

λi
αi
.

Then λi(t) ≥ 0 and for some j we have λj(t) = 0. Hence we expressed x as a convex
combination of fewer points. �
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(2.2) Problems.
1. Suppose that the set A is path-connected. Prove that every point x ∈ conv(A)

is a convex combination of some d points from A.

2∗. Let A1, . . . , Ad+1 ⊂ V be sets, where dimV = d. Suppose that x ∈
conv (Ai) for i = 1, . . . , d + 1. Prove that there exist points ai ∈ Ai such that
x ∈ conv (a1, . . . , ad+1). This is the “colored Carathéodory Theorem” proved in
I. Bárány, A generalization of Carathéodory’s theorem, Discrete Math. 40 (1982),
no. 2-3, 141–152.

3. Radon’s Theorem

(3.1) Theorem. Let dimV = d and let A ⊂ V be a set with at least d+ 2 points,
|A| ≥ d + 2. Then one can find subsets R,B ⊂ A such that R ∩ B = ∅ and
conv(R) ∩ conv(B) 6= ∅.
Proof. Let a1, . . . , an, n ≥ d + 2 be some distinct points from A. Let us consider
the following system of homogeneous linear equations in real variables β1, . . . , βn:

n
∑

i=1

βiai = 0 and
n
∑

i=1

βi = 0.

The number of equations is d + 1 and since n > d + 1 there exists a non-trivial
solution to the system. In particular, for some i we have βi > 0 and for some j we
have βj < 0. Let

γ =
∑

i: βi>0

βi =
∑

i: βi<0

(−βi) > 0.

Let

R =
{

ai : βi > 0
}

and B =
{

ai : βi < 0
}

.

Clearly, R ∩B = ∅ and for the point

p =
∑

i: βi>0

βi
γ
ai =

∑

i: βi<0

(

−βi
γ

)

ai

we have p ∈ conv(R) ∩ conv(B). �

(3.2) Problem.
1∗. Suppose that dimV = d and that A ⊂ V is a set such that

|A| ≥ (d + 1)(k − 1) + 1 for some integer k. Prove that one can find pairwise
disjoint subsets A1, . . . , Ak ⊂ A such that

conv (A1) ∩ . . . ∩ conv (Ak) 6= ∅.

This is Tverberg’s Theorem, see H. Tverberg and S. Vrećica, On generalizations of
Radon’s theorem and the ham sandwich theorem, European J. Combin. 14 (1993),
no. 3, 259–264 for a relatively intuitive proof.
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4. Helly’s Theorem

(4.1) Theorem. Suppose that dimV = d and let S1, . . . , Sm ⊂ V be convex sets
such that

Si1 ∩ . . . ∩ Sid+1
6= ∅ for all 1 ≤ i1 < i2 < . . . < id+1 ≤ m.

Then
m
⋂

i=1

Si 6= ∅.

Proof. The proof is by induction on m. The case of m = d + 1 is tautological.
Suppose that m > d + 1. By the induction hypothesis, the intersection of every
(m−1) of sets Si is not empty. Therefore, for i = 1, . . . , m, there is a point pi such
that

pi ∈ Sj provided j 6= i.

If some two points pi1 and pi2 coincide, we will have constructed a point p =
pi1 = pi2 which belongs to every set Si. If the points p1, . . . , pm are distinct, we
apply Theorem 3.1 to the set A = {p1, . . . , pm} and claim that there are disjoint
subsets R,B ⊂ A such that conv(R) ∩ conv(B) 6= ∅. Let us choose a point p ∈
conv(R) ∩ conv(B). Let us consider a set Si. Then either pi /∈ R or pi /∈ B. If
pi /∈ R, we have R ⊂ Si and hence p ∈ Si since Si is convex. If pi /∈ B, we have
B ⊂ Si and hence p ∈ Si since Si is convex. In either case, p ∈ Si for i = 1, . . . , m.
�

(4.2) Problems.

1◦. Let {Si : i ∈ I} be a possibly infinite family of compact convex subsets
Si ⊂ V , dimV = d, such that the intersection of every d+1 of sets Si is non-empty.
Prove that the intersection of all sets Si is non-empty.

2. Let us fix a k ≤ d + 1 and let S1, . . . , Sm ⊂ V be convex sets such that the
intersection of every k of sets Si is non-empty. Let L ⊂ V be a subspace such that
dimL = d− k + 1. Prove that there exists a translation L+ x, x ∈ V , of L which
intersects every set Si.

3. Let S1, . . . , Sm;C ⊂ V be convex sets, dimV = d. Suppose that for every
d + 1 sets Si1 , . . . , Sid+1

there exists a translation C + x, x ∈ V , which intersects
every Si1 , . . . , Sid+1

. Prove that there exists a translation C + x which intersects
every set Si for i = 1, . . . , m.

4. In Problem 3, replace intersects by contains. Prove that the statement still
holds.

5. In Problem 3, replace intersects by is contained in. Prove that the statement
still holds.
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6. Let A ⊂ V , dimV = d, be a convex compact set. Prove that one can find a
u ∈ V such that (−1/d)A+ u ⊂ A. Here and elsewhere

αA =
{

αx : x ∈ A
}

and B + u =
{

x+ u : x ∈ B
}

for sets A,B ⊂ V , a vector u ∈ V and a number α ∈ R.

7. Let S ⊂ V be a finite set of points, dimV = d. Prove that there is a point
p ∈ V such that every closed halfspace containing p contains at least |S|/(d+ 1) of
the points from S.

8∗. Prove that for any 0 < α ≤ 1 there exists a β = β(α, d) > 0 with the
following property: if S1, . . . , Sm ⊂ V are convex sets in a d-dimensional space such
that for at least α

(

m
d+1

)

of (d+1)-tuples Si1 , . . . , Sid+1
we have Si1 ∩ . . .∩Sid+1

6= ∅
then there is a point p ∈ V which belongs to at least βm of the sets S1, . . . , Sm.
This is the Fractional Helly Theorem, the optimal value is β = 1 − (1 − α)1/(d+1)

whereas a weaker bound β ≥ α/(d+ 1) is much easier to prove, see Section 8.1 of
J. Matoušek, Lectures on Discrete Geometry, Graduate Texts in Mathematics, 212,
Springer-Verlag, New York, 2002.

5. Euler characteristic

(5.1) Definitions. Let V be a finite-dimensional real vector space. For a set
A ⊂ V we define the indicator of A as the function [A] : V −→ R such that

[A](x) =

{

1 if x ∈ A
0 if x /∈ A.

We define the following real vector spaces

C(V ) = span
{

[A] : A ⊂ V is a closed convex set
}

,

Cb(V ) = span
{

[A] : A ⊂ V is a compact convex set
}

,

P(V ) = span
{

[A] : A ⊂ V is a polyhedron
}

and

Pb(V ) = span
{

[A] : A ⊂ V is a bounded polyhedron
}

.

A linear functional, or more generally, a linear transformation defined on any of the
spaces C(V ), Cb(V ),P(V ) and Pb(V ) is called a valuation.

(5.2) Theorem. There exists a unique linear functional (valuation) χ : C(V ) −→
R, called the Euler characteristic, such that χ([A]) = 1 for every non-empty closed
convex set A ⊂ V .

Proof. The uniqueness is immediate: for f ∈ C(V ),

(5.2.1) f =
∑

i∈I

αi [Ai] ,
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where Ai ⊂ V are closed convex sets and αi are real numbers, we should have

(5.2.2) χ(f) =
∑

i∈I: Ai 6=∅

αi.

We need to prove the existence of χ.
First, we prove the existence of a linear functional χ : Cb(V ) −→ R such that

χ([A]) = 1 for every non-empty compact convex set A ⊂ V . We identify V = Rd

and proceed by induction on d.
For d = 0 we have V = {0}, so we define χ(f) = f(0) for all f ∈ Cb(V ). Suppose

we established the existence of χ for V = Rd. Our goal is to show that χ exists in
Rd+1.

Let Hτ ⊂ Rd+1 be the affine hyperplane consisting of the points with the last
coordinate τ . We have

Rd+1 =
⋃

τ∈R

Hτ .

By the induction hypothesis there is a linear functional χτ : Cb (Hτ ) −→ R such
that χτ ([A]) = 1 for all non-empty compact convex sets A ⊂ Hτ . For a function
f ∈ Cb

(

Rd+1
)

, let fτ be its restriction onto Hτ . Then, if f is defined by (5.2.1), we
have

fτ =
∑

i∈I

αi [Ai ∩Hτ ]

and hence fτ ∈ Cb (Hτ ). Next, we claim that for all f ∈ Cb
(

Rd+1
)

and τ ∈ R the
one-sided limit

(5.2.3) lim
ǫ−→0+

χτ−ǫ (fτ−ǫ)

exists and that for every f ∈ Cb
(

Rd+1
)

there are at most finitely many values of τ
where the limit (5.2.3) is not equal to χτ (fτ ). In view of (5.2.1) it suffices to check
the claim if f = [A], where A ⊂ Rd+1 is a non-empty compact convex set. Let τmin

be the minimum value of the last coordinate for a point in A and let τmax be the
maximum value of the last coordinate for a point in A.

Using (5.2.2), we obtain

(5.2.4)

lim
ǫ−→0+

χτ−ǫ (fτ−ǫ) =











0 if τ > τmax

1 if τmin < τ ≤ τmax

0 if τ ≤ τmin

and

χτ (fτ ) =











0 if τ > τmax

1 if τmin ≤ τ ≤ τmax

0 if τ < τmin,
8



which proves the claim. Now, for f ∈ Cb
(

Rd+1
)

, we define

(5.2.5) χ(f) =
∑

τ∈R

(

χτ (fτ )− lim
ǫ−→0+

χτ−ǫ (fτ−ǫ)

)

.

Since only finitely many terms of the sum (5.2.5) can be non-zero (namely, when
τ is the minimum coordinate of a point in one of the sets Ai in (5.2.1)), the sum
(5.2.5) is well-defined. By (5.2.4), it satisfies the requirements of the theorem.

Finally, we have to extend χ from Cb(V ) to C(V ). Let us identify V = Rd and
let

Br =

{

(x1, . . . , xd) :

d
∑

i=1

x2
i ≤ r2

}

be the ball of radius r centered at the origin. Then for every f ∈ C(V ) we have
f · [Br] ∈ Cb(V ) and hence χ (f · [Br]) is well-defined. We let

χ(f) = lim
r−→+∞

χ (f · [Br]) .

It is straightforward to check the limit exists and satisfies the conditions of the
theorem. �

In the course of the proof, we obtained the following important corollary.

(5.3) Corollary. Let f ∈ Cb
(

Rd
)

. Then

χ(f) =
∑

τ∈R

(

χ (fτ )− lim
ǫ−→0+

χ (fτ−ǫ)

)

,

where fτ is the restriction of f onto the affine hyperplane in Rd consisting of the
points with the last coordinate τ .

(5.4) Problems.
1◦. Show that the indicators [A], where A ⊂ V are non-empty closed convex

sets, do not form a basis of C(V ) unless dimV = 0.

2◦. Prove that the spaces C(V ), Cb(V ),P(V ) and Pb(V ) are closed under point-
wise multiplication of functions.

3◦. Prove the inclusion-exclusion formula for sets A1, . . . , Am ⊂ V :

[

m
⋃

i=1

Ai

]

=

m
∑

k=1

(−1)k−1
∑

1≤i1<...<ik≤m

[Ai1 ∩ . . . ∩ Aik ] .

4. Let A1, . . . , Am be closed convex sets such that their union is convex and the
intersection of any k of the sets is not empty. Prove that the intersection of some
k + 1 of the sets is not empty.
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5. Let ∆d−1 ⊂ Rd be the standard d-dimensional simplex defined by the equation
x1 + . . .+xd = 1 and inequalities xi ≥ 0 for i = 1, . . . , d. Let Fi ⊂ ∆d−1 be the i-th
facet of ∆d−1 defined by the equation xi = 0. Suppose that A1, . . . , Ad are closed
convex sets such that ∆ ⊂ A1 ∪ . . .∪Ad and such that Ai ∩Fi = ∅ for i = 1, . . . , d.
Prove that A1 ∩ . . . ∩Ad 6= ∅.

6. Let A1, . . . , Am be closed convex sets such that A1 ∩ . . . ∩ Am 6= ∅. Prove
that χ ([A1 ∪ . . . ∪Am]) = 1.

7. Let int Id be the interior of the standard d-dimensional cube in Rd defined by
the inequalities −1 < xi < 1 for i = 1, . . . , d. Prove that [int Id] ∈ C

(

Rd
)

and that

χ ([int Id]) = (−1)d.

8∗. Let θ be a function which associates with every polyhedron P ⊂ V a real
number θ(P ). Suppose that θ(∅) = 0 and that for every polyhedron P ⊂ V and
for every affine hyperplane H ⊂ V bounding the closed halfspaces H− and H+ we
have θ(P ) = θ (P ∩H+)+θ (P ∩H−)−θ (P ∩H). Prove that there exists a unique
valuation Θ : P(V ) −→ R such that Θ([P ]) = θ(P ) for every polyhedron P ⊂ V .
See H. Groemer, On the extension of additive functionals on classes of convex sets,
Pacific J. Math. 75 (1978), no. 2, 397–410.

6. Polyhedra and linear transformations

(6.1) Theorem. Let V and W be finite-dimensional real vector spaces and let
T : V −→W be a linear transformation. Then

(1) If P ⊂ V is a polyhedron then T (P ) ⊂W is a polyhedron;
(2) There is a unique linear transformation T : P(V ) −→ P(W ) such that
T ([P ]) = [T (P )] for any polyhedron P ⊂ V .

Proof. To prove Part (1), let us consider first the following model case. Suppose
that V = Rd, W = Rd−1 and T : (x1, . . . , xd) 7−→ (x1, . . . , xd−1) is the map
forgetting the last coordinate. Suppose that P ⊂ Rd is defined by a finite system
of linear inequalities:

d
∑

j=1

aijxj ≤ bi for i ∈ I.

Let

I+ =
{

i ∈ I : aid > 0
}

, I− =
{

i ∈ I : aid < 0
}

and I0 =
{

i ∈ I : aid = 0
}

.

Then (x1, . . . , xd−1) ∈ T (P ) if and only if

(6.1.1)

d−1
∑

j=1

aijxj ≤ bi for i ∈ I0
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and there exists xd ∈ R such that

xd ≤
bi
aid
−
d−1
∑

j=1

aij
aid

xj for i ∈ I+ and

xd ≥
bi
aid
−
d−1
∑

j=1

aij
aid

xj for i ∈ I−.

The system has a solution xd if and only if

(6.1.2)
bi1
ai1d

−
d−1
∑

j=1

ai1j
ai1d

xj ≤
bi2
ai2d

−
d−1
∑

j=1

ai2j
ai2d

xj for all i1 ∈ I− and i2 ∈ I+.

Hence the image T (P ) is defined by the finite set of linear inequalities (6.1.1)–
(6.1.2) in x1, . . . , xd−1, so T (P ) is a polyhedron. If I− = ∅ or I2 = ∅ there are no
inequalities (6.1.2) and if I0 = ∅ there are no inequalities (6.1.1). This procedure of
obtaining the inequalities for T (P ) from those for P is called the Fourier-Motzkin
elimination.

Next, we remark that if T : V −→ W is an isomorphism then T (P ) ⊂ W is
trivially a polyhedron and if kerT = {0} then T : V −→ T (V ) is an isomorphism
and T (P ) is a polyhedron in T (V ) and hence in W . Finally, we can represent an
arbitrary T as a composition of linear transformations

V −→ V ⊕W −→W, x 7−→ (x, Tx) 7−→ Tx.

The first transformation has zero kernel while the second is obtained by erasing
the first dimV coordinates and hence can be dealt with by an iteration of the
Fourier-Motzkin elimination procedure. This concludes the proof of Part (1).

For every y ∈W the inverse image T−1(y) ⊂ V is an affine subspace in W . For
any f ∈ P(V ), we can write

f =
∑

i∈I

αi [Pi] and f
[

T−1(y)
]

=
∑

i∈I

αi
[

Pi ∩ T−1(y)
]

,

for some polyhedra Pi ⊂ V and some numbers αi ∈ R. Hence for any f ∈ P(V ) and
any y ∈W the product f

[

T−1
]

lies in P(V ). Let us define a function g : W −→ R

by
g(y) = χ

(

f
[

T−1(y)
])

.

If f = [P ] where P ⊂ V is a polyhedron then

g(y) =

{

1 if P ∩ T−1(y) 6= ∅
0 if P ∩ T−1(y) = ∅

and hence g = [T (P )]. Therefore, for every f ∈ P(V ) we have g ∈ P(W ) and the
transformation f 7−→ g is the desired transformation T . The uniqueness of T is
obvious. �
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(6.2) Corollary. Let P ⊂ V be a polytope. Then P is a polyhedron.

Proof. We can write P = conv (a1, . . . , an) for some a1, . . . , an ∈ V . Let

∆n−1 =

{

(λ1, . . . , λn) :

n
∑

i=1

λi = 1 and λi ≥ 0 for i = 1, . . . , n

}

be the standard (n − 1)-dimensional simplex. Clearly, ∆n−1 is a polyhedron. We
consider the linear transformation T : Rn −→ V ,

T (λ1, . . . , λn) =

n
∑

i=1

λiai.

Clearly, T (∆n−1) = P . By Theorem 6.1 P is a polyhedron. �

(6.3) Problems.

1◦. Construct an example of a closed convex set A ⊂ R2 and a linear transfor-
mation T : R2 −→ R such that T (A) is not closed.

2◦. It follows from the example of Problem 1 above that if A ⊂ V is defined
by a system of infinitely many linear inequalities and if T : V −→ W is a linear
transformation then T (A) doesn’t have to be defined by a system of infinitely many
linear inequalities. Where does the proof of Part (1) of Theorem 6.1 break down
for infinite sets of linear inequalities?

3◦. Prove a version of Theorem 6.1 replacing polyhedra by compact convex sets
and P(V ) by Cb(V ).

7. Minkowski sum

(7.1) Definitions. Let A ⊂ V be a set and let α ∈ R be a number. We define the
scaling

αA =
{

αx : x ∈ A
}

, αA ⊂ V.

Let A,B ⊂ V be sets. We define their Minkowski sum

A+B =
{

a+ b : a ∈ A, b ∈ B
}

, A+B ⊂ V.

(7.2) Theorem. Let V be a finite-dimensional space. Then

(1) If P1, P2 ⊂ V are polyhedra then P1 + P2 ⊂ V is a polyhedron;
(2) There exists a unique bilinear operation ∗ : P(V )× P(V ) −→ P(V ), called

convolution, such that [P1]∗ [P2] = [P1 + P2] for any two polyhedra P1, P2 ⊂
V .
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Proof. For polyhedra P1, P2 ⊂ V , let us define

P1 × P2 =
{

(x, y) : x ∈ P1, y ∈ P2

}

, P1 × P2 ⊂ V ⊕ V.
Clearly, P1 × P2 is a polyhedron. Let us define a linear transformation

T : V ⊕ V −→ V where T (x, y) = x+ y.

Then
P1 + P2 = T (P1 × P2)

and hence P1 + P2 is a polyhedron by Part (1) of Theorem 6.1, which proves Part
(1).

By Part (2) of Theorem 6.1, there is a map T : P(V ⊕ V ) −→ P(V ) such that

T ([P1]× [P2]) = [P1 + P2] .

For f, g ∈ P(V ) let us define f × g : V ⊕ V −→ V by

(f × g)(x, y) = f(x)g(y).

Clearly [P1] × [P2] = [P1 × P2] for polyhedra P1, P2 ⊂ V . Therefore, f × g ∈
P(V ⊕ V ) for f, g ∈ P(V ). Now we define

f ∗ g = T (f × g).
The proof of Part (2) now follows. �

(7.3) Problems.
1◦. Let A be a convex set and suppose that α, β ≥ 0. Prove that

(α+ β)A = αA+ βA.

2◦. Prove that
f ∗ [0] = [0] ∗ f = f

for all f ∈ P(V ).

3∗. Let P ⊂ Rd be a d-dimensional bounded polyhedron. Prove that [intP ] ∈
P(V ) and that

[P ] ∗ [− intP ] = (−1)d[0],

where intP is the interior of P .

4◦. Prove a version of Theorem 7.2 replacing polyhedra by convex compact sets
and P(V ) by Cb(V ).

5∗. Let Ki ⊂ V , i ∈ I, be a finite family of convex compact sets and let αi ∈ R

be numbers such that
∑

i∈I

αi [Ki] = 0.

Prove that
∑

i: αi>0

αiKi =
∑

i: αi<0

(−αi)Ki,

where in the latter identity the sum is understood as the Minkowski sum and the
products are understood as scalings.
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8. Examples of valuations

First, we consider valuations on Cb(V ). We consider a Euclidean structure on V .

(8.1) Intrinsic volumes. Clearly, volume of a convex compact set gives rise to a
valuation: if

∑

i∈I

αi [Ai] = 0

for some convex compact sets Ai ⊂ V and some real αi ∈ R then
∑

i∈I

αi vol (Ai) = 0.

Let L ⊂ V be a subspace, dimL = k, and let volk be the k-dimensional volume
in L. Denoting by Ai|L the orthogonal projection of Ai onto L, we deduce from
Problem 3◦ of Section 6.3 that

∑

i∈I

αi [Ai|L] = 0

and hence
∑

i∈I

αi volk (Ai|L) = 0.

Hence the volume of the orthogonal projection of a convex compact set onto a
subspace gives rise to a valuation. Let us define ωk(A) as the average k-dimensional
volume of the orthogonal projection of A onto a random k-dimensional subspace
(where the average is taken with respect to the Haar measure on the Grassmannian
Gk (Rn) of all k-dimensional subspaces in Rn). Then ωk, called the k-th intrinsic
volume of A, gives rise to a valuation: if

∑

i∈I

αi [Ai] = 0

for convex compact sets Ai ⊂ V and reals αi ∈ R then
∑

i∈I

αiωk (Ai) = 0.

(8.2) Problems.
1◦. Show that ωk(A) ≤ ωk(B) if A ⊂ B are convex compact sets, that ωk(αA) =

αkωk(A) for a convex compact set A and a number α ≥ 0 and that ωk(U(A)) =
ωk(A), where U is an isometry of V .

2◦ Show that ω0 is the Euler characteristic χ.

3. Suppose that dimV = d. Show that there is a constant c(d) such that

ωd−1(A) = c(d)
(

the surface area of A
)

for all convex compact sets A ⊂ V with a non-empty interior. In particular, c(2) =
1/π.

14



(8.3) Support function. Let us choose a linear functional ℓ : V −→ R. For a
convex compact set A ⊂ V let us define

h(A; ℓ) = max
x∈A

ℓ(x).

The value of h(A; ℓ) is called the support function of A in the direction of ℓ.

(8.4) Problems. 1. Show that h(A; ℓ) gives rise to a valuation: if Ai ⊂ V are
compact convex sets such that

∑

i∈I

αi [Ai] = 0

then
∑

i∈I

αih (Ai; ℓ) = 0

for any linear ℓ : V −→ R.

2◦. Let A,B ⊂ V be convex compact sets. Show that

h(A+B; ℓ) = h(A; ℓ) + h(B; ℓ)

for any linear ℓ : V −→ R.

Finally, we consider an interesting valuation on Pb
(

R3
)

.

(8.5) Dehn invariant. A function f : R −→ R is called additive if

f(a+ b) = f(a) + f(b) for all a, b ∈ R

(it does not have to be continuous or even measurable). Let us choose an additive
function f such that f(π) = 0. For a polytope P ⊂ R3, let us define a real number

Df (P ) =
∑

the edges of P

(length of the edge)f(the dihedral angle of P at the edge).

The number Df (P ) is called the Dehn invariant of P . Strictly speaking, the Dehn
invariantD(P ) is defined not as a real number but as an element of the module R⊗Z

(R/πZ), where both R and R/πZ are considered as additive groups and modules
over Z with the natural action, so

D(P ) =
∑

the edges of P

(length of the edge)

⊗Z (the dihedral angle of P at the edge mod π),

but we will work with Df (P ) instead.
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(8.6) Problems.
1. Let f : R −→ R be an additive function such that f(π) = 0. Show that

f(πx) = 0 for any x ∈ Q.

2. Let a ∈ R be a number such that a/π /∈ Q. Deduce from the axiom of choice
that there is an additive function f such that f(π) = 0 and f(a) 6= 0.

3∗. Show that Df (P ) gives rise to valuation: if Pi ⊂ R3 are polytopes and
αi ∈ R are real numbers such that

∑

i∈I

αi [Pi] = 0

then
∑

i∈I

αiDf (Pi) = 0

for every additive f such that f(π) = 0.

4◦. Let I ⊂ R3 be the standard 3-dimensional cube. Show that Df (I) = 0 for
any additive f such that f(π) = 0.

5◦. Let ∆ ⊂ R3 be a regular tetrahedron. Show that all dihedral angles of ∆

are equal to arccos
1

3
.

6∗. Show that
1

π
arccos

1

3
is an irrational number. See, for example, Chapter I of

M. Aigner and G.M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 2004.

7. Deduce from Problems 2–6 above that one cannot cut a regular cube into
finitely many polyhedral pieces to reassemble them into a regular tetrahedron (the
solution to Hilbert’s 3rd Poblem). Show that the axiom of choice (used in Problem
2) is not really needed to draw that conclusion.

8. Let P,Q ⊂ R2 be two polygons of equal area. Show that P can be cut into
finitely many polygonal pieces that can be reassembled into Q (Bolyai-Gerwien
Theorem).

9. The structure of polyhedra

(9.1) Definitions. Let V be a vector space and let A ⊂ V be a set. Let ℓ : V −→ R

be a linear function and let α ∈ R be a number. Suppose that ℓ(x) ≤ α for all
x ∈ A. The set

F =
{

x ∈ A : ℓ(x) = α
}

is called a face of A. We often treat ∅ and A as faces of A. Faces other than A and
∅ are called proper faces.

A point v ∈ A is called extreme if whenever v = (v1 + v2)/2 for some v1, v2 ∈ A,
we must have v1 = v2 = v. An extreme point of a polyhedron is called a vertex.
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Let

(9.1.1) P =
{

x ∈ V : ℓi(x) ≤ αi for i ∈ I
}

be a polyhedron. We assume that ℓi 6= 0 for all i ∈ I.
We say that the inequality ℓi(x) ≤ αi is active on x if we have in fact ℓi(x) = αi.
Let u ∈ V \ {0} be a non-zero vector and let a ∈ V be a point. The set

{

a+ τu : τ ∈ R

}

is called a line through a in the direction of u and the set

{

a+ τu : τ ≥ 0
}

is called a ray emanating from a in the direction of u.
The relative interior of a convex set A ⊂ V is the interior of A relative to the

smallest affine subspace containing A. The dimension dimA of a convex set A ⊂ V
is the dimension of the smallest affine subspace containing A.

(9.2) Lemma. Suppose that F is a face of A and that v is an extreme point of F .
Then v is an extreme point of A.

Proof. Let ℓ : V −→ R be a linear function and let α ∈ R be a number such that
ℓ(x) ≤ α for all x ∈ A and F =

{

x ∈ A : ℓ(x) = α
}

. Suppose that

v =
v1 + v2

2

for v1, v2 ∈ A. Then ℓ (v1) , ℓ (v2) ≤ α and

ℓ (v1) + ℓ (v2)

2
= ℓ(v) = α.

Hence we should have ℓ (v1) = ℓ (v2) = α and v1, v2 ∈ F . Since v is an extreme
point of F we must have v1 = v2 = v, which proves that v is an extreme point of
A. �

(9.3) Lemma. Let P ⊂ V be a polyhedron defined by (9.1.1) and let v ∈ P be a
point. Let

Iv =
{

i ∈ I : ℓi(x) = αi

}

be the set of indices of the inequalities active on v. Then v is a vertex of P if and
only if

span
{

ℓi : i ∈ Iv
}

= V ∗.
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Proof. Suppose that

span
{

ℓi : i ∈ Iv
}

= V ∗.

Let us write

v =
v1 + v2

2
for some v1, v2 ∈ P.

Then

ℓi (v1) , ℓi (v2) ≤ αi and
ℓi (v1) + ℓi (v2)

2
= ℓi (v) = αi for all i ∈ Iv.

Therefore,
ℓi (v1) = ℓi (v2) = ℓi(v) = αi for all i ∈ Iv.

Since the functions ℓi : i ∈ Iv span the dual space V ∗, the system of linear equations

ℓi(x) = αi for i ∈ Iv

has at most one solution in V , so we must have v1 = v2 = v and v is an extreme
point.

Suppose that

span
{

ℓi : i ∈ Iv
}

6= V ∗.

Then there exists u ∈ V , u 6= 0, such that

ℓi(u) = 0 for all i ∈ Iv.

Let

v1 = v − ǫu and v2 = v + ǫu so v =
v1 + v2

2
.

Since for i /∈ Iv we have ℓi(v) < αi, for all sufficiently small ǫ > 0 we have v1, v2 ∈ P ,
so v is not a vertex of P . �

In particular, a polyhedron defined by n linear inequalities in a d-dimensional
space does not have more than

(

n
d

)

vertices.

(9.4) Lemma. Let P ⊂ V be a polyhedron. Then either P contains an interior
point or P lies in a proper affine subspace of V .

Proof. Suppose that P is defined by the system (9.1.1). If for every i ∈ I there is
a point xi ∈ P such that ℓi (xi) < αi then the point

x =
1

|I|
∑

i∈I

xi

is an interior point of P . Otherwise, there is an i ∈ I such that ℓi(x) = αi for all
x ∈ P . �
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(9.5) Lemma. Let P ⊂ Rd be a polyhedron. Then P is bounded if and only if P
does not contain a ray.

Proof. Clearly, if P contains a ray then P is unbounded. Suppose that P is un-
bounded, so there is a sequence xn ∈ P such that ‖xn‖ ≥ n, where ‖ · ‖ is the
Euclidean norm. Suppose that P is defined by the system (9.1.1). Let

un =
xn
‖xn‖

, so ‖un‖ = 1.

We observe that
ℓi (un) ≤ αi

n
for all i ∈ I.

Let u be a limit point of un, so ‖u‖ = 1 and

ℓi(u) ≤ 0 for all i ∈ I.

Then for every x ∈ P the ray emanating from x in the direction of u is contained
in P .

Now we can prove the second part of the Weyl-Minkowski Theorem, cf. Corollary
6.2.

(9.6) Theorem. Let P ⊂ V be a bounded polyhedron. Then P is a polytope that
is the convex hull of the set of its vertices.

Proof. We need to prove that every point x ∈ P is a convex combination of vertices
of P . We proceed by induction on dimV .

The case of dimV = 0 is trivial.
Suppose that P is defined by the system (9.1.1). If ℓi(x) = αi for some i ∈ I then

x lies in a proper face F of P and the result follows by the induction hypothesis
and Lemma 9.2. If ℓi(x) < αi for all i ∈ I, let us consider a line L through x. Since
P is bounded, the intersection L ∩ P is a closed interval, so

L ∩ P = [a, b],

where a, b ∈ P necessarily lie in proper faces of P . Arguing as above, we conclude
that a and b are convex combinations of some vertices of P . Since x ∈ [a, b], point
x is also a convex combination of some vertices of P . �

(9.7) Theorem. Let P ⊂ V be a non-empty polyhedron. Then P contains a vertex
if and only if P does not contain a line.

Proof. Let P be defined by system (9.1.1). If P contains a line in the direction
u 6= 0 then, necessarily, ℓi(u) = 0 for all i ∈ I. Then for any v ∈ P we can write

v =
v1 + v2

2
where v1 = v + u and v2 = v − u,
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so P has no vertices.
Suppose that P contains no lines. We proceed by induction on dimV with the

trivial base of dimV = 0. Without loss of generality, by Lemma 9.4 we may assume
that P has a non-empty interior. Let us pick a point x in the interior of P and let
us consider a line L through x in any direction u. Since P contains no lines, the
intersection P ∩ L is either a non-empty closed interval or a ray. In either case, it
contains a point a which necessarily lies in a proper face F of P . Hence there is a
proper face F of P and the result follows by the induction hypothesis and Lemma
9.2. �

(9.8) Definitions. Let K ⊂ V be a polyhedron. Then K is called a cone if 0 ∈ K
and for every x ∈ K and every λ ≥ 0 we have λx ∈ K. Equivalently, K is a
polyhedral cone if K is defined by finitely many homogeneous linear inequalities:

(9.8.1) K =
{

x ∈ V : ℓi(x) ≤ 0 for i ∈ I
}

.

Let P ⊂ V be a polyhedron. The set

KP =
{

u ∈ V : x+ λu ∈ P for all x ∈ P and all λ ≥ 0
}

is called the recession cone of P . Equivalently, if P is defined by (9.1.1), cone KP

is defined by (9.8.1). A cone without lines (equivalently, for which 0 is the vertex)
is called pointed.

We say that a point u ∈ K, u 6= 0, spans an extreme ray of K if whenever
u = (u1 + u2) /2 with u1, u2 ∈ K, we must have u1 = λ1u and u2 = λ2u for some
λ1, λ2 ∈ R.

A vector

x =
n
∑

i=1

λiui where λi ≥ 0 for all i = 1, . . . , n

is called a conic combination of vectors u1, . . . , un. The set of all conic combinations
of vectors from a set A is called the conic hull of A and denoted co(A).

(9.9) Theorem. Let K ⊂ V be a pointed polyhedral cone such that K 6= {0}.
Then there exists an affine hyperplane H ⊂ V such that 0 /∈ H, P = K ∩ H is a
polytope and K = co(P ).

Proof. Suppose that K is defined by system (9.8.1). Let

ℓ =
∑

i∈I

ℓi.

Let us pick any u ∈ K \ {0}. We claim that ℓ(u) < 0. Indeed, if ℓ(u) = 0 we
necessarily have ℓi(u) = 0 for all i ∈ I and then the line through the origin in the
direction of u is contained in K, which is a contradiction.
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In particular, we conclude that ℓ 6= 0. Let us define

H =
{

x ∈ V : ℓ(x) = −1
}

.

Then H is an affine hyperplane not containing the origin and P = K ∩ H is a
polyhedron. Since for every x ∈ K \{0} we have ℓ(x) < 0, there exists a λ > 0 such
that ℓ(λx) = −1. It follows that K = co(P ). By Theorem 9.6, it remains to prove
that P is bounded and by Lemma 9.5 it remains to prove that P contains no rays.
Suppose that P contains a ray in the direction u 6= 0. Then, necessarily ℓi(u) ≤ 0
for all i ∈ I, so u ∈ K \ {0}. Additionally, since u is parallel to H, we must have
ℓ(u) = 0, which as we proved above is impossible. �

(9.10) Theorem. Let P ⊂ V be a non-empty polyhedron without lines. Then

P = M +KP ,

where M is the convex hull of the vertices of P and KP is the recession cone of P .

Proof. Clearly,
M +KP ⊂ P.

It remains to show the reverse inclusion. We prove it by induction on dimV .
The case of dimV = 0 is trivial. Let us pick a point x ∈ P . If x lies in a proper

face F of P then by the induction hypothesis x can be written as a sum of a vector
from KF and a convex combination of vertices of F . The result follows by Lemma
9.2 and the inclusion KF ⊂ KP .

Suppose, therefore, that x lies in the interior of P . If KP = {0}, the result
follows by Theorem 9.6. If KP 6= {0}, let us pick a vector u ∈ KP \ {0} and
consider a line L through x in the direction of u. The intersection L ∩ P is a ray
{

a + τu : τ ≥ 0
}

. Point a lies in a proper face of P and as we argued above
belongs to M +KP . Hence x ∈M +KP as well. �

(9.11) Theorem. Let P ⊂ V be a polyhedron. Then P can be represented as the
Minkowski sum

P = L+M +K,

where L ⊂ V is a subspace, M ⊂ V is a polytope and K ⊂ V is a polyhedral cone
without lines.

Proof. Suppose that P is defined by system (9.1.1). We note that if a line
{

τu : τ ∈ R
}

lies in P then ℓi(u) = 0 for all i ∈ I. Hence

L =
{

u ∈ V : ℓi(u) = 0 for i ∈ I
}

is the largest under inclusion subspace contained in P .
Let us consider the projection pr : V −→ V/L and let Q = pr(P ). By Theorem

6.1, Q ⊂ V/L is a polyhedron. Furthermore, Q does not contain lines (since L is
the largest subspace contained in P ). Therefore, by Theorem 9.10, we can write
Q = M +K, where M is a polytope and K is a cone without lines. By introducing
a scalar product in V , we may identify V/L with a subspace of V . Since for all
x ∈ V/L, we have pr−1(x) = x+ L, we obtain that P = L+M +K. �
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(9.12) Theorem. Let P ⊂ V be a polyhedron defined by (9.1.1). For a point
v ∈ P , let Iv ⊂ I be the set of inequalities active on v. Let

Fv =
{

x ∈ P : ℓi(x) = αi for i ∈ Iv
}

.

Then

(1) Fv is a face of P ;
(2) If F ⊂ P is a non-empty face of P then F = Fv for any v in the relative

interior of F .

Proof. Let

ℓ =
∑

i∈Iv

ℓi and α =
∑

i∈Iv

αi.

Clearly, ℓ(x) ≤ α for all x ∈ P and

Fv =
{

x ∈ P : ℓ(x) = α
}

.

Hence Fv is a face, which proves Part (1).
To prove Part (2), suppose that a face F ⊂ P is defined by the equation

F =
{

x ∈ P : ℓ(x) = α
}

,

where ℓ : V −→ R is a linear function and α is a real number such that ℓ(x) ≤ α
for all x ∈ P . Let v ∈ F be a point in the relative interior and let Iv ⊂ I be the set
of inequalities active on v. We claim that

(9.12.1) ℓ ∈ span
{

ℓi : i ∈ Iv
}

.

Indeed, if (9.12.1) if violated, one can find a point u ∈ V such that ℓi(u) = 0 for
all i ∈ Iv and ℓ(u) 6= 0. Choosing −u, if necessary, we may assume that ℓ(u) > 0.
Then for all sufficiently small ǫ > 0 we have v′ = v + ǫu ∈ P and ℓ(v′) > ℓ(v) = α,
which is a contradiction. Hence (9.12.1) holds and

ℓ =
∑

i∈Iv

λiℓi and hence α =
∑

i∈Iv

λiαi

for some real λi. Therefore,
Fv ⊂ F.

Suppose now that there is a point w ∈ F \Fv. Then there exists a j ∈ Iv such that
ℓj(w) < αj . Therefore,

G =
{

x ∈ F : ℓj(x) = αj

}

is a proper face of F containing v, which is a contradiction, since v was chosen in
the relative interior of F . �
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(9.13) Problems.
1. Let us fix a linear functional ℓ : V −→ R. For a compact convex set A ⊂ V ,

let Fℓ(A) be the face of A in the direction of ℓ:

Fℓ(A) =
{

y ∈ A : ℓ(y) = max
x∈A

ℓ(x)
}

.

Prove that the correspondence A 7−→ Fℓ(A) gives rise to a valuation on Cb(V ): if
∑

i∈I

αi [Ai] = 0 then
∑

i∈I

αi [Fℓ (Ai)] = 0.

2. Construct examples of convex compact sets C ⊂ B ⊂ A such that B is a face
of A, C is a face of B but C is not a face of A.

3◦. Show that the intersection of every two faces of a set is a face of the set.

4◦. Prove that a vertex of a polyhedron is a face of the polyhedron.

5◦. Let P1, P2 ⊂ V be polyhedra and let Q = P1 + P2. Prove that every face of
Q is the Minkowski sum of a face of P1 and a face of P2.

6. Let P1, P2 ⊂ V be non-empty polyhedra and let Q = P1 ∩ P2. Prove that
every vertex v of Q can be written as v = F1 ∩F2, where F1 is a face of P1, F2 is a
face of P2 and dimF1 + dimF2 ≤ dimV .

7. Let A ⊂ V be a convex set, where V is a finite-dimensional space. Prove that
either A contains an interior point or lies in a proper affine subspace of V .

8. Let A ⊂ V be a closed convex set. Suppose that A has finitely many faces.
Prove that A is a polyhedron.

10. The Euler–Poincaré formula

(10.1) Lemma. Let P ⊂ Rk be a polytope with a non-empty interior intP . Then
[intP ] ⊂ Cb

(

Rk
)

and

χ ([intP ]) = (−1)k.

Proof. By Corollary 6.2, P is a bounded polyhedron and by Theorem 9.12 every
point of P lies in the relative interior of a face of P . Since faces of P are polyhedra
and the intersection of any number of faces of P is a face (possibly empty) of P ,
we have [intP ] ⊂ Cb

(

Rk
)

.
Now we use the induction on k. The case of k = 0 is obvious and for k > 0 we

use Corollary 5.3. Namely, let Hτ ⊂ Rk be the affine hyperplane consisting of the
points with the last coordinate τ . Then

χ ([intP ]) =
∑

τ∈R

(

χ ([intP ∩Hτ ])− lim
ǫ−→0+

χ ([intP ∩Hτ−ǫ])
)

.

By the induction hypothesis, for τ equal to the maximum value of the last coordinate
on P the corresponding summand is 0− (−1)k−1 = (−1)k, while for all other τ the
corresponding summand is 0. �

Now we can establish the Euler-Poincaré formula.
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(10.2) Theorem. Let P ⊂ Rd be a d-dimensional polytope and let fi(P ) denotes
the number of i-dimensional faces of P . Then

d−1
∑

i=0

(−1)ifi(P ) = 1 + (−1)d−1.

Proof. Using Theorem 9.12, we can write

[P ] = [intP ] +
∑

F

[intF ],

where the sum is taken over all proper faces F of P and intF is the relative interior
of F . Applying the Euler characteristic to the both parts of the identity and using
Lemma 10.1, we conclude

1 = (−1)d +
∑

F

(−1)dimF ,

from which the proof follows. �

(10.3) Problems.
1. Let P ⊂ V be an unbounded polyhedron without lines. Prove that

χ([intP ]) = 0.

2. Let P ⊂ Rd be a non-empty unbounded polyhedron without lines, let f0
i (P )

be the number of bounded i-dimensional faces of P and let f∞
i (P ) be the number

of unbounded i-dimensional faces of P . Prove that
d−1
∑

i=0

(−1)if0
i (P ) = 1 and

d
∑

i=1

(−1)i+1f∞
i (P ) = 1.

3. Let P ⊂ R3 be a 3-dimensional polytope. For a vertex v of P let us define
the curvature κ(v) at v as 2π minus the sum of the angles at v of the facets of P
containing v. Prove the Gauss-Bonnet formula

∑

v

κ(v) = 4π,

where the sum is taken over all vertices v of P .

11. The Birkhoff polytope

(11.1) Definitions. A doubly stochastic matrix is an n × n non-negative matrix
with all row sums and all column sums equal to 1. A permutation matrix π(σ)
corresponding to a permutation σ of the set {1, . . . , n} is the n × n matrix such
that

π(σ)ij =

{

1 if σ(j) = i

0 otherwise.

The set of all permutations σ of {1, . . . , n} is the symmetric group Sn. Let Rn×n

be the vector space of all n × n matrices. The Birkhoff polytope Bn is defined as
the bounded polyhedron in Rn×n that consists of all doubly stochastic matrices.
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(11.2) Theorem. The vertices of Bn are the n × n are the n × n permutation
matrices. Consequently,

Bn = conv
(

π(σ) : σ ∈ Sn
)

.

Proof. It is immediate that a permutation matrix is necessarily a vertex of Bn. Let
us prove that there are no other vertices.

We proceed by induction on n. The case of n = 1 is trivial.
Let A ⊂ Rn×n be the affine subspace of the n×n matrices with row and column

sums equal to 1. We claim that dimA = (n − 1)2. Indeed, every matrix x ∈ A,
x = (xij), is uniquely specified by its (n− 1)× (n− 1) upper left corner, since for
other entries we should have

xin =1−
n−1
∑

j=1

xij for i = 1, . . . , n− 1

xnj =1−
n−1
∑

i=1

xij for j = 1, . . . , n− 1 and

xnn =(2− n) +
∑

1≤i≤n−1
1≤j≤n−1

xij .

The polyhedron Bn ⊂ A is defined by n2 inequalities xij ≥ 0. Let us consider a
vertex v = (vij) of Bn. By Lemma 9.3, at least (n− 1)2 of the inequalities should
be active on v and hence at least (n − 1)2 = n2 − 2n + 1 entries vij should be
0. We observe that no row can have all zeros and that there must be a row with
(n − 1) zero, since otherwise the total number of zeros would have been at most
n(n − 2) < (n − 1)2. The remaining entry in a row with (n − 1) zero must be 1
and hence all other entries in the corresponding column with 1 must be 0. If we
cross out the row and the column containing 1, we obtain an (n − 1) × (n − 1)
doubly stochastic matrix w which should be a vertex of Bn−1. By the induction
hypothesis, w is a permutation matrix and hence v must also be a permutation
matrix. �

(11.3) Problems.
1. Consider a polytope of n × n symmetric doubly stochastic matrices. Prove

that every vertex of the polytope is either a permutation matrix or the average of
two permutation matrices.

2. Let G be a finite group acting in a finite-dimensional vector space V , let
A ⊂ V be a convex compact set such that g(A) = A for all g ∈ G and let L ⊂ V
be the subspace L =

{

x ∈ V : g(x) = x for all g ∈ G
}

. Prove that every extreme
point of A ∩ L is a convex combination of at most |G| extreme points of A.

3. Prove that the interval [π(σ), π(τ)] is an edge (1-dimensional face) of Bn if
and only if σ−1τ is a cycle (that is, a permutation consisting of a single cycle and
fixed points).
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12. The Schur-Horn Theorem

We prove the Schur part of the Schur–Horn Theorem.

(12.1) Theorem. Let A be an n × n real symmetric matrix with the eigenvalues
λ1, . . . , λn. Let l = (λ1, . . . , λn) and let a = (a11, . . . , ann) be the vector of the
diagonal entries of A. Then a lies in the convex hull of the vectors obtained from l
by a permutation of the coordinates:

a ∈ conv
(

π(σ)l : σ ∈ Sn
)

.

Proof. Matrix A can be written in the form A = UΛUT , where U = (uij) is an
orthogonal matrix and Λ is the diagonal matrix having λ1, . . . , λn on the diagonal.
Then

aii =
n
∑

j=1

λju
2
ij for i = 1, . . . , n.

Let C = (cij) be the matrix defined by cij = u2
ij . Since U is an orthogonal matrix,

C is doubly stochastic and we have a = Cl. By Theorem 11.2, matrix C can
be written as a convex combination of permutation matrices π(σ) and the proof
follows. �

(12.2) Problems.
1∗. Prove the Horn part of the Schur-Horn Theorem: for every vector a ∈

conv
(

π(σ)l : σ ∈ Sn
)

there is a real symmetric n× n matrix A with diagonal a

and the eigenvalues l = (λ1, . . . , λn).

2. Complete the following alternative proof of Theorem 12.1. Its advantage is
that it can be generalized to other situations, in particular, to the orbits of other
Lie groups.

Let V be the space of n×n symmetric matrices with the scalar product 〈A,B〉 =
trace(AB). Let W ⊂ V be the subspace consisting of the diagonal matrices. Con-
sider the orthogonal projection pr : V −→W that replaces the non-diagonal entries
of a matrix with zeros. Consider the orbit

O =
{

UΛUT : U is orthogonal
}

of a diagonal matrix Λ. Notice that O∩W consists of the diagonal matrices obtained
from Λ by permuting the entries on the diagonal. Our goal is to show that

pr(O) ⊂ conv
(

O ∩W
)

.

Argue that it suffices to show that for any B ∈ W the maximum of the linear
function ℓ(X) = trace(XB) is attained at a point of O∩W . Moreover, it is enough
to show that for B with distinct diagonal entries. Note that O is a smooth manifold
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and that the tangent space at X ∈ O consists of all matrices of the type XY −Y X
for a skew-symmetric Y : Y T = −Y . Then X is a critical point of ℓ if and only if

0 = trace
(

XY B − Y XB
)

= trace
(

Y BX − Y XB) = trace
(

Y (BX −XB)
)

for all skew-symmetric Y.

The last condition implies that BX −XB = 0 and since the diagonal entries of B
are distinct, X must be a diagonal matrix.

13. Transportation polyhedra

(13.1) Definition. Let G be a directed graph with a finite set V of vertices and
a finite set E of directed edges v → w for certain pairs v, w ∈ V . We forbid loops
v → v and multiple edges. Let b =

{

bv : v ∈ V
}

be real numbers assigned to the
vertices. If bv > 0, we call bv the demand at v, if bv < 0, we call bv the supply at
v. The pair (G, b) is called a transportation network. An assignment xe : e ∈ E of
non-negative numbers to the edges of G is called a feasible flow if at every vertex v
the balance condition is satisfied:

∑

e∈E:
e ends in v

xe −
∑

e∈E:
e begins in v

xe = bv for all v ∈ V.

We define the polyhedron T (G; b) ⊂ RE as the set of all feasible flows.

(13.2) Lemma. Suppose that x = (xe : e ∈ E) is a vertex of T (G; b). Let Ex ⊂ E
be the set of edges e where xe > 0. Then Ex contains no cycles, that is, configu-
rations of the type v1 − v2 − . . .− vm − v1 where “−” stands for an edge in either
direction.

Proof. Suppose that there is a cycle v1 − v2 − . . .− vm − v1 with positive flows on
the edges. We choose a sufficiently small ǫ > 0 and construct two feasible flows y
and z, where

flow y is obtained from x by adding ǫ to the flow on each edge of the type
vi → vi+1, vm → v1 and subtracting ǫ from the flow on each edge of the type
vi ← vi+1 and vm ← v1;

flow z is obtained from x by adding ǫ to the flow on each edge of the type
vi ← vi+1, vm ← v1 and subtracting ǫ from the flow on each edge of the type
vi → vi+1 and vm → v1.

Since x = (y + z)/2, flow x cannot be a vertex. �

(13.3) Theorem. Suppose that bv : v ∈ V are integer. Let x ∈ T (G; b) be a
vertex. Then xe is integer for all e ∈ E.

Proof. By Lemma 13.2 it suffices to prove the following statement:
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suppose that {xe} is a feasible flow in a transportation network with integer
demand/supplies and such that the set of edges e with xe > 0 has no cycles. Then
xe are integers.

We proceed by induction on the number of non-zero xe. If all xe = 0 then clearly
xe are all integers. If not all xe = 0 then there is a vertex v such that for only one
edge e incident to v we have xe > 0. Let w be the other vertex incident to e. We
modify the network by setting

bw := bw + bv and bv := 0,

modify the feasible flow by setting xe := 0 and apply the induction hypothesis. �

(13.4) Problems.
1◦. Show that the Birkhoff polytope of Section 11 is a transportation polyhedron.

2◦. Consider the polytope of m× n non-negative matrices with positive integer
row sums r1, . . . , rm and positive integer column sums c1, . . . , cn. Show that each
vertex of the polytope is an integer matrix.

3◦. Show that if T (G; b) is non-empty then
∑

v∈V bv = 0.

4. Suppose that T (G; b) is non-empty. Show that T (G; b) is bounded if and only
if G does not contain a directed cycle v1 → v2 → . . .→ vm → v1.

5∗. Consider the polytope Pn of all n× n× n non-negative arrays
{

xijk
}

with
all sectional sums equal to 1:

∑

j,k

xijk = 1 for i = 1, . . . , n;

∑

i,j

xijk = 1 for k = 1, . . . , n;

∑

i,k

xijk = 1 for j = 1, . . . , n.

Prove that for any sequence of rational numbers 1 > σ1 > . . . > σp > 0 one can
find a positive integer b such that the numbers (b − 1)/b > σ1 > . . . > σp > 1/b is
the set of values (without multiplicities) of the non-zero coordinates of a vertex of
Pn for some n.

See M.B. Gromova, The Birkhoff-von Neumann theorem for polystochastic ma-
trices [translation of Operations research and statistical simulation, No. 2 (Rus-
sian), 3–15, 149, Izdat. Leningrad. Univ., Leningrad, 1974]. Selected translations.
Selecta Math. Soviet. 11 (1992), no. 2, 145–158.

14. The permutation polytope

(14.1) Definitions. Let us fix a vector a = (a1, . . . , an). The convex hull of
all vectors in Rn obtained by permutations of the coordinates of a is called the
permutation polytope P (a):

P (a) = conv
(

(

aσ(1), . . . , aσ(n)

)

: σ ∈ Sn
)

= conv
(

π(σ)a : σ ∈ Sn
)

,
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see Definitions 11.1. By 〈x, y〉 we denote the standard scalar product of vectors
x, y ∈ Rn:

〈x, y〉 =
n
∑

i=1

xiyi for x = (x1, . . . , xn) and y = (y1, . . . , yn) .

(14.2) Lemma. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two real n-vectors.
Suppose that ai > aj and bi < bj for some i 6= j. Let b be the vector obtained from
b by swapping coordinates bi and bj. Then

〈b, a〉 > 〈b, a〉.

Proof. We have

〈b, a〉 − 〈b, a〉 = biaj + bjai − biai − bjaj = (bj − bi) (ai − aj) > 0.

�

(14.3) Theorem. Let us fix a vector a = (a1, . . . , an) where a1 > . . . > an and
let us consider the permutation polytope P (a). Then the (n− k)-dimensional faces
F of P (a) containing a are as follows:

we choose a partition of the integer interval 1, . . . , n into k non-empty consecu-
tive integer intervals I1, . . . , Ik and let

FI1,... ,Ik
= conv

{

π(σ)a : σ (Ij) = Ij for j = 1, . . . , k
}

.

Proof. Let b ∈ Rn be a vector defining a face F of P (a) containing a, so

〈b, a〉 = max
x∈P (a)

〈b, x〉 and F =
{

x ∈ P (a) : 〈b, x〉 = 〈b, a〉
}

.

By Lemma 14.2 we must have b1 ≥ b2 ≥ . . . ≥ bn. Suppose that

b1 = . . . = bm1
> bm1+1 = . . . = bm1+m2

> bm1+m2+1 . . .

and let us define the partition

I1 = {1, . . . , m1} , I2 = {m1 + 1, . . . , m1 +m2} . . .

In other words, the coordinate bi does not change as long as i stays within a
subinterval Ij of the partition and gets smaller when i moves from Ij to Ij+1. It
is now clear that the corresponding face F is the convex hull of all vectors π(σ)a,
where σ ranges over all permutations σ ∈ Sn that map each of the intervals Ij onto
itself. Geometrically, the face F = FI1,... ,Ik

is the direct product of permutation
polytopes in spaces RI1 , . . . ,RIk and hence dimF = n− k. �
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(14.4) Corollary. Let a = (a1, . . . , an) be a vector with distinct coordinates. Let
us choose a partition

{1, . . . , n} = S1 ∪ . . . ∪ Sk,
where Sj are non-empty pairwise disjoint subsets.

Let sj = |Sj | for j = 1, . . . , k and let us define consecutive subintervals

I1 = {1, . . . , s1} , I2 = {s1 + 1, . . . , s1 + s2} , . . . ,
Ik = {s1 + . . .+ sk−1 + 1, . . . , n} ,

so that |Ij| = |Sj | for j = 1, . . . , k.
Let F = FS1,... ,Sk

be the convex hull of the vectors x = (x1, . . . , xn) such that
for all j = 1, . . . , k, the set of the coordinates {xi : i ∈ Sj} coincides with the set
of the coordinates {ai : i ∈ Ij}. Then F is a face of P (a) of dimension n− k and
all (n− k)-faces of P (a) appear this way.

�

(14.5) Problems.
1◦. Let P be a polytope and let F ⊂ P be a face of P . Prove that F is the

convex hull of the vertices of P that belong to F .

2◦. Suppose that the coordinates a1, . . . , an of a are not all equal. Prove that
dimP (a) = n− 1.

3◦. Suppose that a1 > . . . > an. Prove that two vertices of P (a) are the
endpoints of an edge (a face of dimension 1) if and only if one vertex is obtained
from the other by swapping the coordinates with two adjacent values ai and ai+1

for i = 1, . . . , n− 1.

4. Let a = (a1, . . . , an) where a1 ≥ a2 ≥ . . . ≥ an. Prove that P (a) is defined in
Rn by the inequalities

∑

i∈S

xi ≤
|S|
∑

i=1

ai for all S ⊂ {1, . . . , n}, 0 < |S| < n

and the equation
n
∑

i=1

xi =

n
∑

i=1

ai.

5. Let a = (a1, . . . , an) where a1 ≥ a2 ≥ . . . ≥ an and let x = (x1, . . . , xn)
where x1 ≥ x2 ≥ . . . ≥ xn. Prove that x ∈ P (a) if and only if

k
∑

i=1

xi ≤
k
∑

i=1

ai for k = 1, . . . , n− 1 and

n
∑

i=1

xi =

n
∑

i=1

ai

(Rado’s Theorem).
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6. Let a = (1, . . . , n) and let e1, . . . , en be the standard basis of Rn. Prove that
P (a) is a translation of the Minkowski sum of

(

n
2

)

intervals
[

ei − ej
2

,
ej − ei

2

]

for i > j.

15. Cyclic polytopes

(15.1) Definitions. Let t be a real parameter. The curve

γ(t) =
(

t, t2, . . . , td
)

∈ Rd

is called the moment curve.
Let us pick numbers

0 < t1 < . . . < tn

and let
vi = γ(ti) for i = 1, . . . , n.

The polytope

P = conv
(

v1, . . . , vn

)

is called the cyclic polytope. Often, we suppress the dependence on the choice of
parameters t1, . . . , tn in the notation for P and denote it just by C(d, n).

(15.2) Theorem. Let k ≤ d/2 and let vi1 , . . . , vik be distinct vertices of C(d, n).
Then

F = conv (vi1 , . . . , vik)

is a face of C(d, n).

Proof. Let us consider a polynomial

p(t) = td−2k (t− ti1)2 · · · (t− tik)
2
.

Thus

p (ti1) = . . . = p (tik) = 0 and p(t) > 0 for t 6= ti1 , . . . , tik ; t > 0.

Since deg p = d, we can write

p(t) = α0 − α1t− . . .− αdtd.
Let a = (α1, . . . , αd). Then

p(t) = α0 − 〈a, γ(t)〉.
Hence

〈a, vi1〉 = . . . = 〈a, vik〉 = α0 and 〈a, vi〉 < α0 for i 6= i1, . . . , ik,

which concludes the proof. �
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(15.3) Problems.
1. Prove that any affine hyperplane in Rd intersects the moment curve γ(t) in

not more than d points.

2. Prove the Gale’s eveness condition: the convex hull of
{

vi : i ∈ I
}

is a facet
of C(d, n) (that is, a face of dimension d − 1) if and only if |I| = d and any two
indices not in I are separated by an even number of indices in I.

3. Describe the faces of C(4, n).

4. Suppose that d = 2m is even. Consider the trigonometric moment curve

ω(t) = (cos t, sin t, cos 2t, sin 2t, . . . , cosmt, sinmt) , 0 ≤ t < 2π

in Rd. Prove that any affine hyperplane in Rd intersects ω(t) in not more than d
points.

5. Let ω(t) be the trigonometric moment curve of Problem 2, let 0 ≤ t1 < t2 <

. . . < tn < 2π and let vi = ω(ti) for i = 1, . . . , n. Consider P = conv
(

v1, . . . , vn

)

.

Prove that the convex hull of every k ≤ d/2 vertices of P is a face of P .

6. Consider letter “Y”, that is, three intervals joined at an endpoint. Prove
that one cannot embed “Y” in Rd by a continuous embedding so that every affine
hyperplane intersects the image in at most d points.

7. Let P ⊂ Rd be a polytope with n vertices and let k > d/2. Suppose that every
k vertices of P are the vertices of some proper face of P . Prove that n ≤ d+ 1.

16. Polarity

(16.1) Definition. Let V be Euclidean space with the scalar product 〈·, ·〉 and
the corresponding norm ‖ · ‖ and let A ⊂ V be a non-empty set. The polar A◦ of
A is defined by

A◦ =
{

c ∈ V : 〈c, x〉 ≤ 1 for all x ∈ A
}

.

(16.2) Lemma. Let A ⊂ V be a non-empty closed convex set and let b /∈ A be a
point. Then there exists a vector c ∈ A and a number α ∈ R such that 〈c, x〉 < α
for all x ∈ A and 〈c, b〉 > α.

Proof. First, we prove that there exists a point a ∈ A such that ‖a− b‖ ≤ ‖x− b‖
for all x ∈ A. Indeed, let us choose a ball centered at b of a sufficiently large radius
r,

Br =
{

x ∈ V : ‖x− b‖ ≤ r
}

,

which intersects A. Since A is closed, the intersection A∩Br is compact and hence
the function x 7−→ ‖x− b‖ attains its minimum on A∩Br, which is necessarily the
minimum on A. Let

c = b− a 6= 0 and α =
1

2
〈b− a, b+ a〉.
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Since A is convex, for every x ∈ A and every 0 ≤ t ≤ 1, we have tx+ (1− t)a ∈ A
and therefore

‖tx+ (1− t)a− b‖2 ≥ ‖a− b‖2.
Since

‖tx+(1− t)a−b‖2 = ‖t(x−a)+(a−b)‖2 = ‖a−b‖2 +2t〈x−a, a−b〉+ t2‖x−a‖2,

we conclude that
〈c, x− a〉 ≤ 0 for all x ∈ A

and hence

(16.2.1) 〈c, x〉 ≤ 〈c, a〉 for all x ∈ A.

On the other hand,
〈c, b〉 − 〈c, a〉 = ‖c‖2 > 0,

and hence

(16.2.2) 〈c, b〉 > 〈c, a〉.

Since α is the average of 〈c, a〉 and 〈c, b〉, the proof follows by (16.2.1) and (16.2.2).
�

(16.3) Theorem.

(1) Let A ⊂ V be a closed convex set containing 0. Then

(A◦)
◦

= A;

(2) There exists a linear transformation D : C(V ) −→ C(V ) such that

D ([A]) = [A◦]

for all non-empty closed convex sets A ⊂ V ;
(3) Let P ⊂ V be a non-empty polyhedron. Then P ◦ is a polyhedron.

Proof. Let us choose an x ∈ A. Then 〈c, x〉 ≤ 1 for all c ∈ A◦ and hence x ∈ (A◦)
◦
.

Suppose that there exists a b ∈ (A◦)
◦

such that b /∈ A. Since A is closed and convex,
by Lemma 16.2 there is a vector c ∈ V and a number α ∈ R such that 〈c, x〉 < α
for all x ∈ A and 〈c, b〉 > α. Since 0 ∈ A we conclude that α > 0. Scaling, if
necessary, c 7−→ α−1c, we may assume that α = 1. Then c ∈ A◦ and 〈c, b〉 > 1,
which contradicts that b ∈ (A◦)

◦
. Hence Part (1) is proven.

For ǫ > 0 let us define a function Gǫ : V × V −→ R by

Gǫ(x, y) =

{

1 if 〈x, y〉 < 1 + ǫ

0 otherwise.
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We claim that for all f ∈ C(V ) and all y ∈ V

the function gy,ǫ(x) = f(x)Gǫ(x, y) lies in C(V ) and

the limit h(y) = limǫ−→0+ χ (gy,ǫ) exists.

By linearity, it suffices to check the above statements for f = [A], where A is a
non-empty closed convex set. Let

Hy,ǫ =
{

x ∈ V : 〈x, y〉 ≥ 1 + ǫ
}

.

Thus Hy,ǫ is a closed halfspace and

gy,ǫ = [A]− [A ∩Hy,ǫ] ,

so gy,ǫ ∈ C(V ). Therefore,

χ (gy,ǫ) =

{

1 if 〈x, y〉 < 1 + ǫ for all x ∈ A
0 otherwise.

Hence

h(y) =

{

1 if 〈x, y〉 ≤ 1 for all x ∈ A
0 otherwise.

Finally, we claim that the linear transformation D : f 7−→ h maps C(V ) into C(V )
and maps the indicator of a non-empty closed convex set to the indicator of its
polar. Indeed, if f = [A] then h = [A◦] and the proof of Part (2) follows.

By Theorem 9.11 there is a decomposition

P = L+K +M,

where L ⊂ V is a subspace, K ⊂ V is a pointed polyhedral cone and M is a
polytope.

We observe that

L◦ =
{

c ∈ V : 〈c, x〉 = 0 for all x ∈ L
}

,

so L◦ is the orthogonal complement of L. Indeed, if 〈c, x〉 6= 0 for some x ∈ L then
by scaling x 7−→ λx for an appropriate λ ∈ R we find x ∈ L such that 〈c, x〉 > 1, so
c /∈ L◦.

Next, we claim that

K◦ =
{

c ∈ V : 〈c, x〉 ≤ 0 for all x ∈ K
}

.

Indeed, if 〈c, x〉 > 0 for some x ∈ K then by scaling x 7−→ λx for an appropriate
λ > 0 we find x ∈ K such that 〈c, x〉 > 1, so c /∈ K◦.
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By Theorem 9.9, we can write

K = co
(

ui : i = 1, . . . , m
)

for some vectors u1, . . . , um ∈ V . Then

K◦ =
{

c ∈ V : 〈c, ui〉 ≤ 0 for i = 1, . . . , m
}

.

Assuming that

M = conv
(

vi : i = 1, . . . , n
)

,

we conclude that

M◦ =
{

c ∈ V : 〈c, vi〉 ≤ 1 for i = 1, . . . , m
}

.

In particular, L◦, K◦ and M◦ are polyhedra. We claim that

P ◦ = L◦ ∩K◦ ∩M◦.

Indeed, any x ∈ P can be represented as a sum x = u+w+y, where u ∈ L, w ∈ K
and y ∈M . Then, for every c ∈ L◦ ∩K◦ ∩M◦, we have

〈c, x〉 =〈c, u〉+ 〈c, w〉+ 〈c, y〉
= 〈c, w〉+ 〈c, y〉
≤ 〈c, y〉
≤ 1

and hence c ∈ P ◦. Suppose that c ∈ P ◦. Let us choose a point x ∈ P . Then, for
any u ∈ L and any λ ∈ R we have x + λu ∈ P and so we must have 〈c, u〉 = 0, so
c ∈ L◦. Similarly, for any u ∈ K and any λ ≥ 0 we have x + λu ∈ P , so we must
have 〈c, u〉 ≤ 0 and c ∈ K◦. Finally, M ⊂ P , so we must have c ∈M◦. �

(16.4) Problems.
1◦. Find the polars of the origin, the whole space, the unit ball, the standard

cube and octahedron, see Problem 4 of Section 1.2.

2◦. Show that A ⊂ B implies B◦ ⊂ A◦, that
(
⋃

i∈I Ai
)◦

=
⋂

i∈I A
◦
i and that

(αA)◦ = α−1A◦ for α > 0.

3. Let K1, K2 ⊂ V be two polyhedral cones. Show that (K1 +K2)
◦

= K◦
1 ∩K◦

2

and that (K1 ∩K2)
◦

= K◦
1 +K◦

2 .

4. Let I ∪J = {1, . . . , d} be a partition, I ∩J = ∅. Let K1, K2 ⊂ Rd be two sets
defined by

K1 =
{

(x1, . . . , xd) : xi ≥ 0 for i ∈ I and xj > 0 for j ∈ J
}

,

K2 =
{

(x1, . . . , xd) : xi ≤ 0 for i ∈ I and xj > 0 for j ∈ J
}

.

Prove that D ([K1]) = (−1)|J| [K2].
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17. Polytopes and polarity

(17.1) Theorem. Let V be Euclidean space, dimV = d, and let P ⊂ V be a
polytope containing the origin in its interior. Let Q = P ◦ ⊂ V . For a proper face
F of P let us define F̂ ⊂ Q by

F̂ =
{

c ∈ Q : 〈c, x〉 = 1 for all x ∈ F
}

.

Then

(1) Q is a polytope containing the origin in its interior;

(2) F̂ is a face of Q;

(3) dimF + dim F̂ = d− 1;

(4) If G is a proper face of P such that F ⊂ G then Ĝ ⊂ F̂ ;
(5) Let G be a proper face of Q. Let

F =
{

x ∈ P : 〈x, c〉 = 1 for all c ∈ G
}

.

Then F is a proper face of P and F̂ = G.

Proof. Let

P = conv
(

vi, i = 1, . . . , n
)

,

where v1, . . . , vn are the vertices of P . Then

(17.1.1) Q =
{

c ∈ V : 〈c, vi〉 ≤ 1 for i = 1, . . . , n
}

.

In particular, Q is a polyhedron. For ρ > 0 let

Bρ =
{

x ∈ V : ‖x‖ ≤ ρ
}

be the ball of radius ρ centered at the origin. Since for some ǫ > 0 we have

Bǫ ⊂ P ⊂ B1/ǫ,

we have
Bǫ ⊂ Q ⊂ B1/ǫ

and so Q is a bounded polyhedron containing the origin in its interior. Part (1)
now follows.

Suppose that

(17.1.2) F = conv
(

vi : i ∈ I
)

.
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Then
F̂ =

{

c ∈ Q : 〈c, vi〉 = 1 for all i ∈ I
}

.

Let

u =
1

|I|
∑

i∈I

vi

be the average of the vertices vi on the face F . Because of (17.1.1), we can write

F̂ =
{

c ∈ Q : 〈c, u〉 = 1
}

.

Therefore, F̂ is a face of Q, so Part (2) follows.
Since F is a proper face of P there exists a c ∈ V and a number α such that

〈c, x〉 ≤ α for all x ∈ P and F =
{

x ∈ P : 〈c, x〉 = α
}

.

Since P contains the origin in its interior, α > 0 and by scaling c 7−→ α−1c we can
assume that α = 1. Hence by (17.1.2),

(17.1.3) 〈c, vi〉 = 1 for i ∈ I and 〈c, vi〉 < 1 for i ∈ I.
In particular, c ∈ F̂ . Let L = span(F ) and let L⊥ be the orthogonal complement to
L. Thus dimL = dimF + 1 and dimL⊥ = d− dimF − 1. We observe that for any
w ∈ L⊥ and a sufficiently small ǫ > 0 the perturbation c 7−→ c+ǫw satisfies (17.1.3)

and hence lies in F̂ . Therefore, dim F̂ ≥ d− dimF − 1. Moreover, for any c′ ∈ F̂
and any x ∈ F we have 〈c−c′, x〉 = 0 and hence dim F̂ ≤ d−dimL = d−dimF −1.
This concludes the proof of Part (3).

Part (4) is obvious.
By Part (1) of Theorem 16.3, we have P = Q◦. We conclude that F is a proper

face of P by exchanging the roles of P and Q and by Part (2) of the Theorem, so

F = Ĝ. Moreover, by Part (3) of the Theorem, we have dimF = d − dimG − 1

and hence dim F̂ = dimG. Clearly, G ⊂ F̂ . Let us pick a point x in the relative
interior of G and hence in the relative interior of F̂ . By Theorem 9.12, both F̂ and
G are defined by turning the inequalities of Q active on x into equations, and hence
G = F̂ , which proves Part (5). �

(17.2) Face figure. Let P ⊂ V be a d-dimensional polytope containing the origin
in its interior and let F ⊂ P be a k-dimensional face of P , 0 ≤ k ≤ d − 1. Let
Q = P ◦, let F̂ be the face of Q constructed in Theorem 17.1 and let H be the
polar of F̂ computed in the affine span of F̂ with respect to the origin chosen in
the relative interior of F̂ . Hence H is a polytope and dimH = d− 1− k. Theorem
17.1 implies that there is an inclusion-preserving bijection between the faces G of
P containing F and the faces of H, where F itself corresponds to the empty face of
H and P corresponds to H. The partially ordered (by inclusion) set of all faces G
of P containing F is called the face figure of F in P and denoted P/F . Hence the
face figure P/F is isomorphic to the partially ordered (by inclusion) set of all faces
of a (d− k − 1)-dimensional polytope H (the empty face and H itself included).
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(17.3) Problems.
1◦. Let P be a d-dimensional polytope and let F ⊂ G be two faces of P such

that dimG− dimF = 2. Prove that there are precisely two faces H1, H2 of P such
that F ⊂ H1, H2 ⊂ G and the inclusions are proper.

2. Let P be a d-dimensional polytope and let intP be its interior. Prove that

(−1)d[intP ] =
∑

F

(−1)dimF [F ],

where the sum is taken over all faces F of P , including P but not including the
empty face.

3. Let e1, e2, e3, e4 be the standard basis of R4 and let

P = conv
(

ei + ej , −ei − ej , ei − ej for 1 ≤ i 6= j ≤ 4
)

.

Prove that P ◦ can be obtained from P by an invertible linear transformation (such
polytopes are called self-dual).

18. Regular triangulations and subdivisions

(18.1) Definitions. Points v1, . . . , vm ∈ V are called affinely independent if when-
ever α1v1 + . . .+αmvm = 0 for some real α’s such that α1 + . . .+αm = 0, one must
have α1 = . . . = αm = 0. Equivalently, v1, . . . , vm are affinely independent if and
only if the vectors wi = (vi, 1) ∈ V ⊕R, i = 1, . . . , m, are linearly independent. The
convex hull of a set of affinely independent points is called a simplex. Equivalently,
a simplex is the image T (∆m−1) of the standard simplex ∆m−1 (see Problem 4 of
Section 1.2), where T is a composition of a translation and a linear transformation
with zero kernel.

Let P ⊂ Rd−1 be a (d − 1)-dimensional polytope. A triangulation of P is a
representation of P as a finite union of (d − 1)-dimensional simplices such that
every two simplices are either disjoint or intersect by a common proper face. We
are interested in triangulations without new vertices, that is, when the vertices of
the simplices of the triangulation are vertices of the polytope P . More generally, a
polytopal subdivision is a representation of P as a finite union of (d−1)-dimensional
polytopes such that every two polytopes are either disjoint or intersect by a common
proper face (again, we are interested in subdivisions without new vertices). We say
that subdivision S1 refines subdivision S2 if every polytope of subdivision S2 is a
union of polytopes of subdivision S1.

(18.2) Lemma. Let v1, . . . , vd+1 ∈ Rd−1 be points. Suppose that there exist real
τ1, . . . , τd+1 such that the points wi = (vi, τi) ∈ Rd, i = 1, . . . , d + 1, are affinely
independent. Then the set of such vectors t = (τ1, . . . , τd+1) is open and dense in
Rd+1.

Proof. Points w1, . . . , wd+1 are affinely independent if and only if the determinant
of the (d+1)× (d+1) matrix with the columns (w1, 1) , . . . , (wd+1, 1) is not 0. The
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last condition can be written as p(t) 6= 0, t = (τ1, . . . , τd+1), for some polynomial

p : Rd+1 −→ R. We have either p(t) ≡ 0 for t ∈ Rd+1 or the set
{

t ∈ Rd : p(t) 6=
0
}

is open and dense in Rd+1. �

(18.3) Regular subdivisions. Let P ⊂ Rd−1 be a polytope with the vertices
v1, . . . , vn. We assume that dimP = d − 1. For t = (τ1, . . . , τn) we construct a
polyhedron Q(t) ⊂ Rd = Rd−1 ⊕ R as follows.

Let wi = (vi, τi) for i = 1, . . . , n and let

Q(t) =
{

(x, σ) : (x, τ) ∈ conv (w1, . . . , wn) for some τ ≥ σ
}

.

Alternatively,
Q(t) = conv (w1, . . . , wn) +R,

where R is the ray
{

(0, τ) : τ ≤ 0
}

⊂ Rd−1 ⊕ R. We call Q(t) a lifting of P .

For any x ∈ P , the line
{

(x, τ) : −∞ < τ < +∞
}

intersects the boundary of
Q(t) at a single point which lies in some bounded face ofQ(t). Hence the projections
of the bounded facets (faces of dimension (d− 1)) of Q(t) form a subdivision of P ,
which is called a regular subdivision. If each bounded facet of Q(t) is a simplex, we
get a triangulation of P , called a regular triangulation.

(18.4) Problems.
1◦. Prove that the set of all vectors t = (τ1, . . . , τn), t ∈ Rn, such that all

bounded facets of Q(t) are simplices is open and dense in Rn.

2. Prove that every subdivision of a convex polygon P ⊂ R2 by its non-
intersecting diagonals is a regular subdivision.

19. The secondary polytope

(19.1) Definitions. Let P ⊂ Rd−1 be a polytope with the vertices v1, . . . , vn.
We assume that dimP = d − 1. Following I.M. Gelfand, M. Kapranov and A.
Zelevinsky, we define its secondary polytope Σ(P ) ⊂ Rn. First, we interpret Rn as
the space of all real-valued functions ψ on the vertices of the polytope with the
scalar product

〈φ, ψ〉 =
n
∑

i=1

φ (vi)ψ (vi) .

Then, for each triangulation T of P we define φT ∈ Rn by

φT (v) =
∑

∆∈T :
v∈∆

vol∆.

In words: the value of φT on a vertex v is the sum of the volumes of the simplices
of the triangulation T that contain v. We define

Σ(P ) = conv
(

φT : T is a triangulation of P
)

.
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We consider only triangulations without new vertices.
A function g : P −→ R is called concave if

g

(

n
∑

i=1

αivi

)

≥
n
∑

i=1

αig (vi)

whenever

n
∑

i=1

αi = 1 and αi ≥ 0 for i = 1, . . . , n.

Gelfand, Kapranov and Zelevinsky defined the secondary polytope Σ(A) more
generally, for any set A ⊂ Rd−1 of points spanning Rd−1 affinely, not necessarily
the set of vertices of a convex polytope.

(19.2) Lemma. Let ∆ ⊂ Rd−1 be a (d− 1)-dimensional simplex with the vertices
v1, . . . , vd and let f : Rd−1 −→ R be an affine function (a linear function plus a
constant). Then

∫

∆

f(x) dx =
vol∆

d

d
∑

i=1

f (vi) .

Proof. Applying an invertible affine transformation, we may assume that

∆ = conv
(

0, e1, . . . , ed−1

)

,

where e1, . . . , ed−1 is the standard basis of Rd−1. If f(x) is a constant, the formula
obviously holds. If f(x) = xi, the left hand side of the formula evaluates to

1

(d− 2)!

∫ 1

0

x(1− x)d−2 dx =
1

(d− 2)!

∫ 1

0

(1− x)xd−2 dx

=
1

(d− 2)!

(

1

d− 1
− 1

d

)

=
1

d!

and so does the right hand side. �

(19.3) Lemma. For a function ψ ∈ Rn and a triangulation T of P , let us define
a function gψ,T : P −→ R as follows: if ∆ = conv (vi : i ∈ I) is a simplex of T
containing x and

x =
∑

i∈I

αivi where
∑

i∈I

αi = 1 and αi ≥ 0 for i ∈ I,

we define

gψ,T (x) =
∑

i∈I

αiψ (vi) .
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Then

〈ψ, φT 〉 = d

∫

P

gψ,T (x) dx.

Proof. Since the restriction of gψ,T on every simplex ∆ of the triangulation is an
affine function which coincides with ψ on the vertices of ∆, by Lemma 19.2 we
obtain:

d

∫

P

gψ,T (x) dx =d
∑

∆∈T

∫

∆

gψ,T (x) dx =
∑

∆∈T

(vol∆) ·
(

∑

v is a vertex of ∆

ψ(v)

)

=

n
∑

i=1

ψ(vi)







∑

∆∈T :
vi∈∆

vol∆






= 〈ψ, φT 〉.

�

(19.4) Lemma. Let us choose a function ψ ∈ Rn, let t = (ψ(v1), . . . , ψ(vn)), let
Q(t) be a lifting of P and let S be the corresponding regular polytopal subdivision
of P as in Section 18.3.

(1) Let T be a triangulation of P such that gψ,T is concave. Then for any
triangulation T ′ of P we have

gψ,T (x) ≥ gψ,T ′(x) for all x ∈ P ;

(2) Let T be a triangulation which refines S. Then gψ,T is concave;
(3) Let T ′ be a triangulation which does not refine S. Then for some x ∈ P we

have gψ,T ′(x) < gψ,T (x), where T is a triangulation which refines S.

Proof. Let x ∈ P be a point and let ∆ = conv (vi : i ∈ I) be a simplex of triangu-
lation T ′ such that x ∈ ∆. Then

(19.4.1) x =
∑

i∈I

αivi for some αi ≥ 0 such that
∑

i∈I

αi = 1.

Since gψ,T is concave, we have

gψ,T (x) ≥
∑

i∈I

αigψ,T (vi) =
∑

i∈I

αiψ(vi) = gψ,T ′(x)

and Part (1) follows.
Let

x =
n
∑

i=1

αivi where
n
∑

i=1

αi = 1 and αi ≥ 0 for i = 1, . . . , n.
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Then for

τ =
n
∑

i=1

αiψ(vi)

we have

(x, τ) ∈ conv (w1, . . . , wn) wi = (vi, ψ (vi)) for i = 1, . . . , n.

Therefore, for some σ ≥ τ the point (x, σ) lies in a bounded facet of Q(t). Let
∆ = conv (vi : i ∈ I) be a simplex of triangulation T containing x. If T refines S
then the point (x, σ) lies in the convex hull conv (wi : i ∈ I) and

gσ,T (x) = σ ≥ τ =
n
∑

i=1

αiψ(vi) =
n
∑

i=1

αigψ,T (vi),

and Part (2) follows.
Suppose that T ′ does not refine S. Then there exists a simplex ∆ of T ′, ∆ =

(vi : i ∈ I) such that conv (wi : wi ∈ I) does not lie in a bounded facet of Q(t).
Then, for some x ∈ ∆ as in (19.4.1) and

τ =
∑

i∈I

αiψ(vi),

the point (x, τ) ∈ Q(t) does not lie in a bounded facet of Q(t). Therefore, for some
σ > τ the point (x, σ) lies in a bounded facet of Q(t) and hence

gψ,T ′(x) = τ < σ = gψ,T (x)

and Part (3) follows. �

(19.5) Theorem. Let P ⊂ Rd−1 be a (d− 1)-dimensional polyhedron with n ver-
tices v1, . . . , vn and let Σ(P ) ⊂ Rn be its secondary polytope. Then the vertices of
Σ(P ) ⊂ Rn are the vectors φT , where T is a regular triangulation of P . Moreover,
the faces of Σ(P ) are the sets

conv (φT : T refines S) ,

where S is a regular polytopal subdivision of P .

Proof. Let us choose a vector ψ ∈ Rn. By Lemma 19.3,

〈ψ, φT 〉 = d

∫

P

gψ,T dx.

By Lemma 19.4, the maximum of the integral is attained when T refines the
regular polyhedral subdivision S of P obtained from the lifting Q(t) for t =
(ψ(v1), . . . , ψ(vn)). By Lemma 18.2, for ψ from an open dense set the subdivision
S is a triangulation, and hence there is a unique, necessarily regular, triangulation
T maximizing 〈ψ, φT 〉. �
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(19.6) Problems.
1. Prove that dimΣ(P ) = n − d, where n is the number of vertices of P and

d− 1 is the dimension of P .

2. Let P ⊂ R2 be a polygon. The polytope Σ(P ) is called an associahedron.
Describe the faces of Σ(P ) and compute their dimensions.

20. Fiber polytopes

We discuss an alternative construction of the secondary polytope due to L. Billera
and B. Sturmfels, see L.J. Billera and B. Sturmfels, Fiber polytopes, Ann. of Math.
(2) 135 (1992), no. 3, 527–549.

Let P ⊂ Rd−1 be a (d − 1)-dimensional polytope with the vertices v1, . . . , vn
and let ∆n−1 ⊂ Rn be the standard simplex, ∆n−1 = conv (e1, . . . , en), where
e1, . . . , en is the standard basis of Rn. Let us consider the linear transformation
π : Rn −→ Rd−1 defined by

π

(

n
∑

i=1

αiei

)

=

n
∑

i=1

αivi.

Hence
π (∆n−1) = P.

A map γ : P −→ ∆n−1 is called a section of π if

π (γ(x)) = x for all x ∈ P.

We consider only Lebesgue measurable sections, so that we can define the integral

∫

P

γ(x) dx

as a point in Rn.

(20.1) Theorem. We have

Σ(P ) =

{

d

∫

P

γ(x) dx : γ is a section of π

}

.

Proof. It is clear that the set

(20.1.1)

{

d

∫

P

γ(x) dx : γ is a section of π

}

is convex.
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For a triangulation T of P we construct a particular section γT as follows. Let
∆ be a simplex of the triangulation, ∆ = conv (vi : i ∈ I). Then for every x ∈ ∆
there is a unique representation

x =
∑

i∈I

αivi where
∑

i∈I

αi = 1 and αi ≥ 0 for i ∈ I.

We define
γT (x) =

∑

i∈I

αiei.

Since γT is a linear function on every simplex ∆ of the triangulation T , applying
Lemma 19.2, we get

d

∫

P

γT (x) dx =
∑

∆∈T

d

∫

∆

γT (x) dx =
∑

∆∈T

(vol∆)

(

∑

i: vi∈∆

ei

)

=
n
∑

i=1

(

∑

∆: vi∈∆

vol∆

)

ei = φT ,

as defined by Definition 19.1. Hence the set (20.1.1) contains vectors φT .
Let us choose a vector ψ ∈ Rn (which we interpret as a function on the vertices

of P ) and find a section γ(x) maximizing

〈

ψ,

∫

P

γ(x) dx

〉

=

∫

P

〈

ψ, γ(x)
〉

dx.

Clearly, it suffices to maximize
〈

ψ, γ(x)
〉

for each x ∈ P . Let

(20.1.2) γ(x) =
n
∑

i=1

αiei where
n
∑

i=1

αi = 1 and α1, . . . , αn ≥ 0.

Since π(γ(x)) = x, we must have

(20.1.3) x =

n
∑

i=1

αivi.

Besides,

(20.1.4)
〈

ψ, γ(x)
〉

=

n
∑

i=1

αiψ (vi) .

Hence our goal is to choose α1, . . . , αn in (20.1.2) in such a way that (20.1.3) holds
and (20.1.4) is maximized.
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For i = 1, . . . , n let wi = (vi, ψ (vi)) ∈ Rd be the lifting of the vertices vi. Thus
the maximum value of (20.1.4) is the largest τ ∈ R such that

(x, τ) ∈ conv (w1, . . . , wn) .

Now it is clear how to construct γ(x): we let t = (ψ(v1), . . . , ψ(vn)), consider the
lifting Q(t) of P as in Section 18.3, pick a traingulation T refining the regular
subdivision produced by Q(t) and let γ = γT , in which case as we have shown

d

∫

P

γT (x) dx = φT .

Hence we proved that the convex set (20.1.1) contains all vectors φT , where T is
a triangulation of P , and that for every ψ ∈ Rn the linear function θ 7−→ 〈ψ, θ〉
attains its maximum on (20.1.1) at some vector φT , possibly among other points.
It follows that (20.1.1) contains Σ(P ).

Suppose that (20.1.1) contains a point φ /∈ Σ(P ). Since Σ(P ) is a polyhedron,
there exists ψ ∈ Rn such that

〈ψ, φ〉 > 〈ψ, φT 〉 for all φT .

But as we proved, the maximum of the linear function θ 7−→ 〈ψ, θ〉 is attained, in
particular, at some φT , which is a contradiction. �

Theorem 20.1 suggests the following more general construction of the fiber poly-
tope. Let P ⊂ Rd be a d-dimensional polytope, let Q ⊂ Rn be an n-dimensional
polytope and let π : Rn −→ Rd be a linear transformation such that π(Q) = P . A
function γ : P −→ Q is called a section if π(γ(x)) = x for all x ∈ P . We consider
Lebesgue measurable sections only. The set

Σ(Q,P ) =

{
∫

P

γ(x) dx : γ is a section

}

is called the fiber polytope associated with the map π : Q −→ P .

(20.2) Problems.
1. Prove that Σ(Q,P ) is indeed a polytope of dimension n− d.
2∗. Let ∆n−1 ⊂ Rn be the standard simplex, let π : Rn −→ R be a map,

π (x1, . . . , xn) = a1x1 + . . .+ anxn,

where a1, . . . , an are distinct numbers, and let P = π (∆n−1).
Prove that Σ (∆n−1, P ) is an (n− 2)-dimensional parallelepiped.

3∗. Let Q ⊂ Rn be the n-dimensional cube,

Q =
{

(x1, . . . , xn) : 0 ≤ xi ≤ 1 for i = 1, . . . , n
}

,

let π : Rn −→ R be the map

π (x1, . . . , xn) = x1 + . . .+ xn

and let P = π(Q). Prove that Σ(Q,P ) is a permutation polytope.
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21. Identities modulo polyhedra with lines

(21.1) Definitions. Let P ⊂ V be a polyhedron and let v ∈ P be a point. The
set

fcone(P, v) =
{

u ∈ V : v + ǫu ∈ P for some ǫ > 0
}

is called the cone of feasible directions of P at v. Alternatively, if P is defined by
a set of linear inequalities,

P =
{

x ∈ V : ℓi(x) ≤ αi, i ∈ I
}

and

Iv =
{

i ∈ I : ℓi(v) = αi

}

are the inequalities active on v, then

fcone(P, v) =
{

u ∈ V : ℓi(u) ≤ 0 for all i ∈ Iv
}

.

The set
tcone(P, v) = v + fcone(P, v)

is called the tangent cone of P at v. Alternatively,

tcone(P, v) =
{

x ∈ V : ℓi(x) ≤ αi for all i ∈ Iv
}

.

Note that the tangent cone is not really a cone since its vertex does not have to be
at the origin.

Let P(V ) be the algebra of polyhedra and let Pl(V ) ⊂ P(V ) be the subspace
spanned by the indicators of polyhedra with lines. For two functions f, g ∈ P(V ),
we say that

f ≡ g modulo polyhedra with lines

provided
f − g ∈ Pl(V ).

(21.2) Theorem. Let P ⊂ V be a polyhedron. Then

[P ] ≡
∑

v

[tcone(P, v)] modulo polyhedra with lines,

where the sum is taken over all vertices v of P .

Proof. First, we prove the theorem assuming that P is a polytope. In this case,
without loss of generality, we assume that V is Euclidean space with scalar product
〈·, ·〉 and P contains the origin in its interior. Let v1, . . . , vn be the vertices of P .
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Let Q = P ◦ be the polar of P , so Q is a polytope (see Theorem 17.1). For a
vertex vi, let us compute tcone(P, vi)

◦. We have

tcone(P, vi) = vi + co
(

vj − vi : for all j 6= i
)

.

Then

tcone(P, vi)
◦ =

{

c ∈ V : 〈c, vi〉 ≤ 1 and 〈c, vi〉 ≥ 〈c, vj〉 for all j 6= i
}

.

In other words,

tcone(P, vi)
◦ =

{

c ∈ V : 1 ≥ 〈c, vi〉 = max
x∈P
〈c, x〉

}

.

Let v̂i ⊂ Q be the facet of Q dual to vi, see Theorem 17.1. Then tcone(P, vi)
◦ is

the pyramid over v̂i with the vertex at 0,

tcone(P, vi)
◦ = conv

(

0, v̂i

)

.

Now, we have

[Q]−
n
∑

i=1

[conv(0, v̂i)] =
∑

j

αj [Kj ] ,

where Kj = conv(0, Fj) for a face Fj of Q with dimFj ≤ dimQ − 2 and αj ∈ R.
Hence Kj are polyhedra lying in proper subspaces of V . Applying Theorem 16.3,
we conclude that

[P ]−
n
∑

i=1

[tcone(P, vi)] =
∑

j

αj
[

K◦
j

]

.

Since K◦
j contains a line orthogonal to span(Kj), the proof follows.

Suppose now that P ⊂ V is an unbounded polyhedron. If P contains a line then
by Theorem 9.7 polyhedron P has no vertices and the result holds trivially. Suppose
that P does not contain a line. Then by Theorem 9.10 we can write P = M +KP ,
where M is the convex hull of the vertices of P and KP is the recession cone of P .
As we proved,

[M ] ≡
∑

v

[tcone(M, v)] modulo polyhedra with lines,

where the sum is taken over all vertices v of P . By Theorem 7.2, we have

[P ] = [M +KP ] ≡
∑

v

[tcone(M, v) +KP ] modulo polyhedra with lines.

It remains to notice that

[tcone(M, v) +KP ] = [tcone(P, v)] .

�
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(21.3) Problems.
1◦. Suppose that v = 0. Prove that

tcone(P, v) = fcone(P, v) =
⋃

t≥0

tP.

2◦. Let T : V −→ W be a linear transformation, let P ⊂ V be a polyhedron,
and let v ∈ P be a point. Prove that

T
(

tcone(P, v)
)

= tcone
(

T (P ), T (v)
)

.

3◦. Let P be a polyhedron with the recession cone KP and let M be the convex
hull of the set of vertices of P . Prove that for a vertex v of P we have

tcone(P, v) = tcone(M, v) +KP .

4. Let P be a polytope. Prove that
∑

v

[fcone(P, v)] ≡ [0] modulo polyhedra with lines,

where the sum is taken over all vertices v of P .

5. Let P be a polyhedron. Prove that
∑

v

[fcone(P, v)] ≡ [KP ] modulo polyhedra with lines,

where KP is the recession cone of P and the sum is taken over all vertices v of P .

6◦. Let P be a polytope with the vertices v1, . . . , vn. Prove that

fcone(P, vi) = co
(

vj − vi : j 6= i
)

.

7. Let P be a polytope with the vertices v1, . . . , vn. Prove that

fcone(P, vi) = co
(

vj − vi : conv(vj , vi) is an edge of P
)

.

8◦. Check that Pl(V ) ⊂ P(V ) is an ideal with respect to the convolution ∗: if
f ∈ Pl(V ) then f ∗ g ∈ Pl(V ) for all g ∈ P(V ), cf. Theorem 7.2.

9. Let P be a polytope. For a non-empty face F of P let us define the tangent
cone tcone(P, F ) as follows: we pick a point v in the relative interior of F and let
tcone(P, v) = tcone(P, F ). Prove that the tangent cone so defined does not depend
on the choice of v and that

[P ] =
∑

F

(−1)dimF [tcone(P, F )],

where the sum is taken over all faces F of P , including F = P (the Brianchon-Gram
Theorem).
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22. The exponential valuation

(22.1) Definition. A cone K ⊂ V is called simple if K = co (u1, . . . , un) where
u1, . . . , un is a basis of V .

For a polyhedron P ⊂ V , where V is Euclidean space with the scalar product
〈·, ·〉, we consider the integral

∫

P

e〈c,x〉 dx

as a function of c ∈ V .

(22.2) Examples.
a) Let V = Rn and let

K = Rn+ =
{

(x1, . . . , xn) : xi ≥ 0 for i = 1, . . . , n
}

.

Let c = (c1, . . . , cn). Then

∫

Rn
+

e〈c,x〉 dx =

n
∏

i=1

∫ +∞

0

ecixi dxi =

n
∏

i=1

1

−ci
,

provided ci < 0 for i = 1, . . . , n, in which case the integral converges absolutely
and uniformly on compact subsets of − int Rn+

b) Let K = co (u1, . . . , un), where u1, . . . , un is a basis of V . This example
reduces to a) by a change of variables, and we obtain

∫

K

e〈c,x〉 dx = |u1 ∧ . . . ∧ un|
n
∏

i=1

1

〈−c, ui〉
,

where |u1 ∧ . . . ∧ un| denotes the volume of the parallelepiped

{

n
∑

i=1

αiui : 0 ≤ αi ≤ 1 for i = 1, . . . , n

}

spanned by u1, . . . , un. The integral converges absolutely for all c ∈ intK◦ uni-
formly on compact subsets of intK◦.

c) Let K ⊂ V be a pointed polyhedral cone. By Theorem 9.9, we may write K =
co(P ), where P is a polytope in an affine hyperplane not containing 0. Triangulating
P (see Section 18), we may write

[K] ≡
∑

i∈I

[Ki] modulo lower-dimensional cones,
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where Ki ⊂ V are simple cones as in b). Hence

∫

K

e〈c,x〉 dx =
∑

i∈I

∫

Ki

e〈c,x〉 dx.

Therefore,
∫

K

e〈c,x〉 dx =
∑

i∈I

αi

n
∏

j=1

1

〈−c, uij〉
,

where αi > 0 and ui1, . . . , uin is a basis of V for all i ∈ I. The integral converges
absolutely for c ∈ intK◦ uniformly on all compact subsets of intK◦. It follows
form the proof of Theorem 9.9 that intK◦ 6= ∅.

The following result was proved by J. Lawrence and independently by A. Kho-
vanskii and A. Pukhlikov at about the same time, c. 1990.

(22.3) Theorem. Let V be Euclidean space and letM(V ) be the space of functions
on V that are finite linear combinations of functions

c 7−→ e〈c,v〉

〈c, u1〉 · · · 〈c, un〉
,

where v ∈ V and u1, . . . , un is a basis of V . There exists a unique linear transfor-
mation

Φ : P(V ) −→M(V )

such that

(1) If P ⊂ V is a polyhedron without lines and KP its recession cone then for
all c ∈ intK◦

P the integral

∫

P

e〈c,x〉 dx

converges absolutely and uniformly on compact subsets of intK◦
P to a func-

tion φ(P ; c) ∈M(V ) such that Φ([P ]) = φ(P ; c).
(2) If P contains a line then Φ([P ]) = 0.

Proof. We proceed by induction on n = dimV . For n = 0 the result is trivial.
Suppose that n > 0. The proof consists of three steps.

Step 1. We prove that if P is a polyhedron without lines then for all c ∈ intK◦
P

the integral
∫

P

e〈c,x〉 dx

converges absolutely and uniformly for compact subsets of intK◦
P to a function

φ(P ; c) ∈M(V ).
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Let us pick a sufficiently generic unit vector u ∈ intK◦
P and let us slice V by

affine hyperplanes

Ht =
{

x : 〈−u, x〉 = t
}

, t ∈ R.

By Theorem 9.10 it follows that the function x −→ 〈−u, x〉 attains its finite mini-
mum t0 on P , so we can write

(22.3.1)

∫

P

e〈c,x〉 dx =

∫ +∞

t0

(
∫

Pt

e〈c,x〉 dx

)

dt,

where Pt = P ∩ Ht. By Lemma 9.5, Pt is a bounded and hence is a polytope.
We choose u in such a way that u is not orthogonal to any face of P of positive
dimension. In this case, every k-dimensional face of Pt is the intersection of Ht and
a (k+1)-dimensional face of P . In particular, every vertex of Pt is the intersection
of Ht and an edge of P . Let t1 < . . . < tk be the values of t for which Ht

passes through a vertex of P . Then for every open interval (tj , tj+1), and, if P is
unbounded, for the open ray (tk,+∞), the vertices v1(t), . . . , vm(t) of Pt change
linearly with t:

vi(t) = ai + twi for i = 1, . . . , m

while the cone of feasible directions Ki = fcone(Pt, vi(t)) doesn’t change. For a
given c we can always choose u in such a way that the function x −→ 〈c, x〉 is not
constant on the edges of Pt.

By Theorem 21.2,

[Pt] ≡
m
∑

i=1

[vi(t) +Ki] modulo polyhedra with lines

and hence by the induction hypothesis

(22.3.2)

∫

Pt

e〈c,x〉 dx =
m
∑

i=1

e〈c,vi(t)〉fi(c),

where fi(c) is a linear combination of functions of the type

1

〈c, w1〉 · · · 〈c, wn−1〉
,

cf. Example 22.2.
It remains to notice that for v(t) = a+ tw we have

(22.3.3)

∫ tj+1

tj

e〈c, v(t)〉 dt =
e〈c,v(tj+1)〉 − e〈c,v(tj)〉

〈c, w〉
and that

∫ +∞

tk

e〈c, v(t) dt =
e〈c,v(tk)〉

〈−c, w〉
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since in the latter case w is the direction of an unbounded edge of P , so w ∈ KP

and since c ∈ intK◦
P , we have 〈c, w〉 < 0, so the integral converges.

Using (22.3.1)–(22.3.3), we conclude Step 1.

Step 2. We prove that there is a unique valuation Φ : P(V ) −→ M(V ) such
that Φ([P ]) = φ(P ; c) if P is a polyhedron without lines and φ(P ; c) is the function
constructed at Step 1.

Let us write

[V ] =
∑

j∈J

βj [Qj] ,

where βj ∈ R and Qj are some polyhedra without lines. Then, for any polyhedron
P we have

[P ] = [P ][V ] =
∑

j∈J

βj [P ∩Qj] .

It follows that P(V ) is spanned by the indicators of polyhedra without lines.
Suppose now that

(22.3.4)
∑

i∈I

αi [Pi] = 0,

where αi ∈ R and Pi are polyhedra without lines. Multiplying (22.3.4) by [Qj] we
obtain

∑

i∈I

αi [Pi ∩Qj] = 0.

For the recession cones we have KPi∩Qj
⊂ KQj

and hence K◦
Qj
⊂ K◦

Pi∩Qj
. There-

fore, for all c ∈ intK◦
Qj

we have

∑

i∈I

αi

∫

Pi∩Qj

e〈c,x〉 dx = 0

and all the integrals converge absolutely and uniformly on compact subsets of
intK◦

Qj
. Hence we have

∑

i∈I

αiφ(Pi ∩Qj ; c) = 0 for all c ∈ intK◦
Qj
.

Since the above identity holds for a non-empty open set of c and functions φ are
meromorphic, we get

(22.3.5)
∑

i∈I

αiφ(Pi ∩Qj ; c) = 0 for all j ∈ J.
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Similarly, we have

[Pi] =
∑

j∈J

βj [Pi ∩Qj ]

and hence
∫

Pi

e〈c,x〉 dx =
∑

j∈J

βj

∫

Pi∩Qj

e〈c,x〉 dx for all c ∈ intK◦
Pi
,

which implies that

(22.3.6) φ(Pi; c) =
∑

j∈J

βjφ(Pi ∩Qj ; c).

Then, using (22.3.5) and (22.3.6) we deduce from (22.3.4) that

∑

i∈I

αiφ(Pi; c) =
∑

i∈I

αi





∑

j∈J

βjφ(Pi ∩Qj; c)



 =
∑

j∈J

βj

(

∑

i∈I

αiφ(Pi ∩Qj ; c)
)

= 0.

Hence the correspondence [P ] 7−→ φ(P ; c) preserves linear relations among the
indicators of polyhedra without lines and therefore can be extended uniquely to a
valuation Φ : P(V ) 7−→ M(V ), which concludes Step 2.

Step 3. We prove that Φ([P ]) = 0 if P is a polyhedron with a line.
Let P ⊂ V be a polyhedron without lines, let u ∈ V be a vector and let P + u

be the translation of P . Then KP+u = KP and for all c ∈ intK◦
P we have

∫

P+u

e〈c,x〉 dx = e〈c,u〉
∫

P

e〈c,x〉 dx.

Therefore,

φ(P + u; c) = e〈c,u〉φ(P ; c) and Φ([P + u]) = e〈c,u〉Φ([P ]).

By linearity, the same identity holds if P is any polyhedron. If P contains a line
then there is a vector u 6= 0 such that P + u = P . Then we have

Φ([P ]) = Φ([P + u]) = e〈c,u〉Φ([P ]),

from which Φ([P ]) = 0. �

(22.4) Problems.
1. Let P ⊂ Rn be a polytope. Prove that

∑

v

Φ[fcone(P, v)] = 0,

where the sum is taken over all vertices v of P .

2. Let P ⊂ Rn be a polytope with integer vertices (that is, the coordinates of
each vertex are integer). Let c ∈ Rn be an integer vector which is not orthogonal
to any edge of P . Prove that

∫

P

e2πi〈c,x〉 dx = 0.
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23. A formula for the volume of a polytope

Let V be Euclidean n-dimensional space and let P ⊂ V be a polytope. Using
Theorem 22.3, we may write

(23.1)

∫

P

e〈c,x〉 dx =
∑

v

φ(tcone(P, v); c) =
∑

v

e〈c,v〉φ(fcone(P, v); c),

where sum is taken over all vertices v of P and φ(fcone(P, v); c) is a rational function
of c of degree −n obtained by extending the integral

∫

fcone(P,v)

e〈c,x〉 dx

by an analytic continuation in c from its domain of convergence, which is the interior
of fcone(P, v)◦.

Identity (23.1) is known as Brion’s Theorem.
Substituting c = 0 in the left hand side of (23.1) we obtain the volume of P .

However, c = 0 is the pole of every term in the right hand side of (23.1). This
difficulty can be handled as follows.

Let t be a small parameter and let us replace c by tc in (23.1). We get
∫

P

et〈c,x〉 dx =
∑

v

et〈c,v〉t−nφ(fcone(P, v); c).

Using the standard expansion

ez = 1 + z +
z2

2
+ . . .+

zn

n!
+ . . .

we observe that the left hand side of (23.1) is an analytic function of t and volP is
its constant term. Each summand is a meromorphic function of t and its constant
term is

〈c, v〉n
n!

φ(fcone(P, v); c).

Hence we obtain the formula

(23.2) volP =
∑

v

〈c, v〉n
n!

φ(fcone(P, v); c).

Curiously, the right hand side is a function of c while the left hand side is just a
constant. When the cone of feasible directions at each vertex v of P is simple,

fcone(P, v) = co
(

u1v, . . . , unv

)

for some basis u1v, . . . , unv of V , we obtain

(23.3) volP =
∑

v

〈c, v〉n
n!

|u1v ∧ . . . ∧ unv|
1

〈−c, u1v〉 · · · 〈−c, unv〉
,

where the sum is taken over all vertices v on P and c is any vector not orthogonal
to any of the edges of P . Formula (23.3) is due to J. Lawrence.
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Problem.
1◦. Prove that

∑

v

〈c, v〉k
k!

φ(fcone(P, v); c) = 0 for k = 0, . . . , n− 1.

24. Simple polytopes and their h-vectors

(24.1) Definitions. Let P be a polytope. Vertices v and u of P are called neigh-
bors if [v, u] is an edge of P . A polytope P is called simple if for every vertex v
of P the cone of feasible directions fcone(P, v) is simple, that is, the conic hull of
linearly independent vectors. For a d-dimensional polytope P we define fk(P ) as
the number of k-dimensional faces of P , where we agree that fd(P ) = 1. The vector
(f0(P ), . . . , fd(P )) is called the f -vector of P . For a simple polytope P we define

hk(P ) =

d
∑

i=k

(−1)i−k
(

i

k

)

fi(P ) for k = 0, . . . , d.

The vector (h0(P ), . . . , hd(P )) is called the h-vector of P .

(24.2) Lemma. Let P be a simple d-dimensional polytope. Then

(1) Every vertex v has exactly d neighbors.
(2) For every vertex v and for every 0 ≤ k ≤ d of its neighbors there is a unique

k-dimensional face of P containing v and the k neighbors of v.
(3) Every k-dimensional face F of P containing a vertex v of P contains exactly

k neighbors of v and fcone(F, v) is a simple k-dimensional cone.
(4) The intersection of any 0 ≤ k ≤ d facets of P containing v is a (d − k)-

dimensional face of P .
(5) Let v be a vertex of P , let ℓ be a linear function such that ℓ(u) < ℓ(v) for

every neighbor u of v. Then the maximum of ℓ on P is attained at v and
only at v.

(6) Every face of P is a simple polytope.

Proof. Parts (1)–(5) deal with a particular vertex v of P . Without loss of generality,
we may assume that P ⊂ Rd, that v = 0 and that

(24.2.1) tcone(P, v) = fcone(P, v) = Rd+.

Then the neighbors u1, . . . , ud of v are points ui = αiei, where ei is the i-th standard
basis vector and αi > 0. The k-dimensional face containing v and ui1 , . . . , uik is
defined by the inequality

∑

i6=i1,... ,ik
xi ≥ 0 which is active on v and ui1 , . . . , uik .

Let F is a k-dimensional face of P containing v. Then F = P ∩H where H is a
hyperplane H = {x : ℓ(x) = 0} such that ℓ(x) ≤ 0 for all x ∈ P . That is, ℓ(x) =
c1x1 + . . . + cdxd, where ci ≤ 0 for i = 1, . . . , d. Then fcone(F, v) = tcone(F, v)
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is the cone consisting of the points (x1, . . . , xd) with xi = 0 whenever ci < 0 and
xi ≥ 0 whenever ci = 0. This is a simple cone of dimension k = dimF and hence
the number of coordinates i with ci = 0 is k. Then F contains ui with ci = 0. The
i-th facet containing v is defined by the coordinate inequality xi ≥ 0 and hence
the intersection of the facets defined by the inequalities xi1 ≥ 0, . . . , xik ≥ 0 is the
face defined by the inequality

∑

i∈{i1,... ,ik}
xi ≥ 0. If ℓ(ui) < ℓ(v) for i = 1, . . . , d

then ℓ(x) = c1x1 + . . .+ cdxd, where ci < 0 for i = 1, . . . , d and since P ⊂ Rd+, the
maximum of ℓ on P is attained at v = 0. This proves Parts (1)–(5).

Part (6) follows from Part (3). �

(24.3) Lemma. Let a0, . . . , ad and b0, . . . , bd be numbers. Then the two systems
of linear equations

bk =

d
∑

i=k

(−1)i−k
(

i

k

)

ai for k = 0, . . . , d

and

ai =

d
∑

k=i

(

k

i

)

bk for i = 0, . . . , d

are equivalent.
In particular,

fi(P ) =

d
∑

k=i

(

k

i

)

hk(P ) for i = 0, . . . , d.

Proof. Let us introduce two polynomials

a(t) =
d
∑

i=0

ait
i and b(t) =

d
∑

k=0

bkt
k.

Then the first system is equivalent to the identity b(t) = a(t−1) whereas the second
system is equivalent to the identity a(t) = b(t+ 1). �

(24.4) Theorem. Let P be a simple d-dimensional polytope and let ℓ be a linear
function which is not constant on any edge of P . For a vertex v we define the index
of v with respect to ℓ as the number of neighbors u of v such that ℓ(u) < ℓ(v). Then
for k = 0, . . . , d the number of vertices of P of index k is equal to hk(P ) and, in
particular, does not depend on ℓ.

Proof. Let hk(P ; ℓ) be the number of vertices of index k with respect to ℓ. Since ℓ
is not constant on the edges of P , on every face F of P the function ℓ attains its
maximum at a unique vertex v of F which is necessarily a vertex of P .
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Let us consider the correspondence

ψi : i-dimensional faces of P 7−→ vertices of P ,

which with every i-dimensional face F of P associates the vertex v of P where the
maximum of ℓ on F is attained. Let us compute the number of i-dimensional faces
F mapped to the same vertex v of index k. Thus at exactly k of the d neighbors
of v the function ℓ attains a smaller value than it does at v. By Parts (2), (3)
and (5) of Lemma 24.2, we uniquely select an i-dimensional face F of P such that
ψi(F ) = v by selecting i neighbors from the set of k neighbors of v with the smaller
value of ℓ. Therefore,

∣

∣ψ−1
i (v)

∣

∣ =

(

k

i

)

provided the index of v is k.

This gives us the equation

fi(P ) =

d
∑

k=i

(

k

i

)

hk(P ; ℓ) for i = 0, . . . , d.

By Lemma 24.3, the equations are equivalent to

hk(P ; ℓ) =
d
∑

i=k

(−1)i−k
(

i

k

)

fi(P ) = hk(P ) for k = 0, . . . , d.

�

(24.5) Corollary. Let P be a d-dimensional simple polytope. Then

hk(P ) = hd−k(P ) for k = 0, . . . , d.

Proof. Let us pick a linear function ℓ not constant on any edge of P . Then, by
Theorem 24.4, the number of vertices of P of index k with respect to ℓ is hk(P ).
On the other hand, every vertex of index k with respect to ℓ has index d− k with
respect to −ℓ. Since the number of vertices having index d− k with respect to −ℓ
is hd−k(P ), the proof follows. �

The formulas of Corollary 24.5 are called the Dehn-Sommerville equations.

(24.6) Problems.

1◦. Prove that hk(P ) ≥ 1 provided d ≥ 1 and that
∑d
k=0 hk(P ) = f0(P ).

2◦. Check that h0(P ) = hd(P ) is the Euler-Poincaré formula.

3◦. Check that for d = 3 the Dehn-Sommerville equations are equivalent to
f0(P )− f1(P ) + f2(P ) = 2 and 3f0(P )− 2f1(P ) = 0.
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4◦. Check that for d = 4 the Dehn-Sommerville equations are equivalent to
f0(P )− f1(P ) + f2(P )− f3(P ) = 0 and f1(P ) = 2f0(P ).

5◦. Let P be a d-dimensional simplex. Prove that hk(P ) = 1 for 0 ≤ k ≤ d.
6◦. Let P be a d-dimensional cube. Prove that P is simple and that hk(P ) =

(

d
k

)

.

7. Let P be a 3-dimensional simple polytope and let pk be the number of k-gons
among its facets. Prove that

3p3 + 2p4 + p5 = 12 +
∑

k≥7

(k − 6)pk.

8. For a permutation σ of the set {1, . . . , n}, let us define a descent as a number
i = 2, . . . , n such that σ(i) < σ(i−1). Let E(n, k) be the number of permutations σ
having precisely k− 1 descents, k = 1, . . . , n. Let a = (a1, . . . , an) be a point with
distinct coordinates and let P = P (a) be the corresponding permutation polytope.
Prove that P is simple, that hk(P ) = E(n, k+ 1) and that E(n, k) = E(n− k + 1)
for k = 1, . . . , n.

25. The upper bound theorem

(25.1) Lemma. Let P be a d-dimensional simple polytope and let F be a facet of
P . Then

hk(F ) ≤ hk(P ) for k = 0, . . . , d.

Moreover, if the intersection of every k + 1 of facets of P is non-empty then

hk(F ) = hk(P ).

Proof. Since F is a facet there exists a linear function ℓ on the ambient space V
and a number α such that

ℓ(x) ≥ α for all x ∈ P and F =
{

x ∈ P : ℓ(x) = α
}

.

In particular, if u and v are vertices of P such that v ∈ F and u /∈ F then
ℓ(v) < ℓ(u). Let ℓ̃ be a sufficiently generic linear function sufficiently close to ℓ, so

that ℓ̃ is not constant on edges of P and ℓ̃(v) < ℓ̃(u) for any two vertices u and v
of P with v ∈ F and u /∈ F . Then the index of every vertex v of F with respect to
ℓ̃ is equal to the index of v as a vertex of P with respect to ℓ̃, so hk(F ) ≤ hk(P ).

Suppose that the intersection of every k + 1 facets of P is non-empty. Let v be
a vertex of P of index k with respect to ℓ̃. Numbering the neighbors u1, . . . , ud of
v in the increasing order of ℓ̃(ui), we obtain

ℓ̃(ui) > ℓ̃(v) for i = k + 1, . . . , d.
58



By Part (2) of Lemma 24.2, there exists a (d−k)-dimensional face G of P containing

v and uk+1, . . . , ud. By Part (5) of Lemma 24.2, we have ℓ̃(v) ≤ ℓ̃(x) for all x ∈ G.
On the other hand, G can be represented as the intersection of k facets of P ,
G = F1 ∩ . . . ∩ Fk (we obtain Fi as the unique facet containing v and all its
neighbors except ui). Since

G ∩ F = F ∩ F1 ∩ . . . ∩ Fk 6= ∅,
for a vertex u ∈ G∩F we must have ℓ̃(u) ≥ ℓ̃(v). This proves that v ∈ F and hence
hk(F ) = hk(P ). �

(25.2) Lemma. Let P be a d-dimensional simple polytope. Then
∑

F

hk(F ) = (d− k)hk(P ) + (k + 1)hk+1(P ) for k = 0, . . . , d− 1,

where the sum is taken over all facets F of P .

Proof. Let us choose a generic function ℓ not constant on edges of P and let v be
a vertex of P . If the index of v is smaller than k then the index of v on any facet
of P will be smaller than k. If the index of v is k then there are precisely (d− k)
facets containing v for which the index of v is k (such a facet contains v and all but
one neighbor u of v for which ℓ(u) > ℓ(v)). If the index of v is k+ 1 then there are
precisely k + 1 facets of P containing v for which the index of v is k (such a facet
contains v and all but one neighbor u of v for which ℓ(u) < ℓ(v)). If the index of v
is greater than k+ 1 then the index of v on every facet of P containing v is greater
than k. �

(25.3) Corollary. Let P be a d-dimensional simple polytope with n facets. Then

hk+1(P ) ≤ n− d+ k

k + 1
hk(P ) for k = 0, . . . , d− 1.

Moreover, if every k + 1 facets of P have a non-empty intersection then

hk+1(P ) =
n− d+ k

k + 1
hk(P ).

Proof. Follows by Lemma 25.1 and Lemma 25.2. �

(25.4) Corollary. Let P be a d-dimensional simple polytope with n facets. Then

hk(P ) ≤
(

n− d+ k − 1

k

)

for k = 0, . . . , d.

Moreover, if every k facets of P have a non-empty intersection then

hk(P ) =

(

n− d+ k − 1

k

)

.

Proof. Follows by Corollary 25.3 since h0(P ) = 1. �
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(25.5) Proposition. Let C(d, n) be the d-dimensional cyclic polytope and let
C(d, n)◦ be its polar with the origin chosen in the interior of C(d, n). Then C(d, n)◦

is a simple d-dimensional polytope with n facets and for every d-dimensional simple
polytope P with n facets, we have

hk(P ) ≤ hk (C(d, n)◦) for k = 0, . . . , d.

Proof. It is easy to show (see Problem 1 of Section 15.3, for example), that every
facet of C(d, n) is a (d − 1)-dimensional simplex. By Theorem 17.1, C(d, n)◦ is a
simple polytope with n facets. By Theorem 15.2, every k ≤ d/2 vertices of C(d, n)
are the vertices of a proper face of C(d, n). Therefore, by Theorem 17.1, every
k ≤ d/2 facets of C(d, n)◦ have a non-empty intersection. Therefore, by Corollary
25.4,

hk (C(d, n)◦) =

(

n− d+ k − 1

k

)

for 0 ≤ k ≤ d/2.

Since by Corollary 25.4

hk(P ) ≤
(

n− d+ k − 1

k

)

for k = 0, . . . , d,

we obtain
hk(P ) ≤ hk (C(d, n)◦) for 0 ≤ k ≤ d/2.

Since by Corollary 24.5,

hk(P ) = hd−k(P ) and hk (C(d, n)◦) = hd−k (C(d, n)◦) ,

the proof follows. �

(25.6) Theorem. Let C(d, n) be the d-dimensional cyclic polytope and let C(d, n)◦

be its polar with the origin chosen in the interior of C(d, n). Then for every d-
dimensional polytope P with n facets, we have

fi(P ) ≤ fi (C(d, n)◦) for i = 0, . . . , d.

Proof. We prove the theorem assuming, additionally, that P is simple (see Problem
2 of Section 25.8 below). In this case, the theorem follows by Proposition 25.5 since

fi(P ) =
d
∑

k=i

(

k

i

)

hk(P ) and fi (C(d, n)◦) =
d
∑

k=i

(

k

i

)

hk (C(d, n)◦) .

�
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(25.7) Theorem. Let C(d, n) be the d-dimensional cyclic polytope with n vertices.
Then for any d-dimensional polytope P with n vertices we have

fi(P ) ≤ fi
(

C(d, n)
)

for i = 0, . . . , d.

Proof. Follows from Theorem 25.6 and Theorem 17.1. �

Theorem 25.7 is known as the Upper Bound Theorem. It was proved by P.
McMullen and the proof of this section follows his approach.

(25.8) Problems.
1. Let P be a simple d-dimensional polytope. Prove that for d even,

f0(P ) ≤ fd/2(P ) + 2
d
∑

i=d/2

fi(P )

while for d odd,

fi(P ) ≤ 2
d
∑

i=(d+1)/2

fi(P ).

2∗. Let P be a d-dimensional polytope with n facets. Prove that there is a
simple d-dimensional polytope P̃ with n facets, such that

fi(P ) ≤ fi(P̃ ) for i = 0, . . . , d.

See, for example, Section 5.2 of B. Grünbaum, Convex Polytopes. Second edition.
Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler,
Graduate Texts in Mathematics, 221, Springer-Verlag, New York, 2003.

26. Balinski’s Theorem

(26.1) Definitions. Given a polyhedron P , we define its graph G(P ) as an undi-
rected graph whose vertices are the vertices of P and whose edges are the edges
(1-dimensional faces) of P .

(26.2) Lemma. Let P ⊂ V be a polytope, let ℓ : V −→ R be a linear function and
let v ∈ P be a vertex. Suppose that

ℓ(v) < max
x∈P

ℓ(x).

Then there exists a vertex u of P such that ℓ(u) > ℓ(v) and [u, v] is an edge of P .

Proof. Let us consider fcone(P, v). By Theorem 9.9 there exists an affine hyperplane
H, 0 /∈ H, such that Q = fcone(P, v) ∩H is a polytope and

fcone(P, v) = co(Q).

Clearly, we must have ℓ(w) > 0 for some vertex w of Q. Next, we note that the
vertices of Q are the intersections of the edges of fcone(P, v) with H. Therefore,
w + v lies on an edge of P , one endpoint of which is v while the other is u. �

The following theorem was proved by M.L. Balinski in 1961.
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(26.3) Theorem. Let P be a d-dimensional polytope. Then the graph G(P ) is
d-connected, that, is, the graph obtained from G(P ) by removing any d− 1 vertices
and adjacent edges is connected. Equivalently, for any two vertices of G(P ) there
exist d pairwise vertex-disjoint paths connected them.

Proof. The equivalence of two definitions of d-connectedness is a Graph Theory
result, which we don’t discuss here.

We proceed by induction on d. Clearly, the result holds for d = 1.
Suppose that P ⊂ V , where dimV = d. Let us choose any d − 1 vertices

v1, . . . , vd−1 which we remove from G(P ) with the adjacent edges, as well as yet
another vertex v0. Then there exists a non-zero linear functional ℓ : V −→ R and
a number α ∈ R such that

ℓ (vi) = α for i = 0, . . . , d.

Let
α+ = max

x∈P
ℓ(x) and α− = min

x∈P
ℓ(x).

Let us define the following two faces of P :

F+ =
{

x ∈ P : ℓ(x) = α+

}

and F− =
{

x ∈ P : ℓ(x) = α−

}

.

Since dimP = d, we have that F+ and F− are proper faces of P and that F+∩F− =
∅.

By Lemma 26.2, for every vertex v of P \ F+ there exists a path in G(P ) con-
necting v with a vertex of F+ such that the values of ℓ strictly increase along the
path and for every vertex v ∈ P \F− there exists a path in G(P ) connecting v with
a vertex of F− such that the values of ℓ strictly decrease along the path. We have
the following three cases:

Case 1. We have α− < α < α+. Then for every vertex v 6= v1, . . . , vd such that
ℓ(v) ≥ α there exists a path (possibly consisting of a single point) which does not
contain v1, . . . , vd and which connects v with a vertex of F+ and for every vertex
v 6= v1, . . . , vd such that ℓ(v) ≤ α there exists a path (possibly consisting of a single
point) which does not contain v1, . . . , vd and which connects v with a vertex of F−.
Note that for v0 both paths exist.

Case 2. We have α = α−. Then for every vertex v 6= v1, . . . , vd there exists a
path which does not contain v1, . . . , vd and which connects v with a vertex of F+.

Case 3. We have α = α+. Then for every vertex v 6= v1, . . . , vd there exists a
path which does not contain v1, . . . , vd and which connects v with a vertex of F−.

In any case, by the induction hypothesis, we conclude that the graph obtained
from G(P ) by removing v1, . . . , vd−1 and the adjacent edges is connected. �

(26.4) Problems.
1◦. Let P be an unbounded polyhedron without lines. Prove that G(P ) is

connected.

2◦. Let Id be the d-dimensional cube. Prove that graph G (Id) is not (d + 1)-
connected.
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27. Reconstructing a simple polytope from its graph

(27.1) Definitions. Let P be a polytope and let G(P ) be its graph. An acyclic
orientation O of G(P ) assigns to every edge [u, v] a direction u −→ v or v −→ u in
such a way that there are no directed cycles v1 −→ v2 −→ . . . −→ vn −→ v1. Let
S be a set of vertices of P and let O be an acyclic orientation of G(P ). A vertex v
is called a sink of S if all edges [u, v] with u, v ∈ S are directed u −→ v. The set S
is called an initial set if all edges [u, v] with u /∈ S and v ∈ S are directed v −→ u.
The index of a vertex v is the number of edges u −→ v. We identify a face F of P
with the set of its vertices in G(P ).

We present an algorithm, due to G. Kalai, to recover the facial structure of a
simple polytope P from its graph G(P ).

(27.2) Lemma. Let P be a d-dimensional simple polytope, let G(P ) be its graph
and let O be an acyclic orientation of G(P ). For k = 0, . . . , d let hOk (P ) be the
number of vertices of index k. Then

d
∑

k=0

2khOk (P ) ≥
d
∑

i=0

fi(P )

with the equality if and only if every face F of P (we count P as its own face) has
precisely one sink.

Proof. Since the orientation O is acyclic, every set S of vertices has at least one
sink. By Parts (2) and (3) of Lemma 24.2, every vertex of index k is a sink of
exactly 2k faces of P : for every set of vertices ui : i ∈ I such that ui −→ v there
is a unique face FI of P of dimension |I| that contains v and ui : i ∈ I. Since FI
contains no other neighbors of v, vertex v is a sink of F . Therefore,

d
∑

k=0

2khOk (P ) =
∑

v is a vertex of P

2index of v

=
∑

F is a face ofP

the number of sinks in F.

�

(27.3) Lemma. Let P be a d-dimensional simple polytope and let F be its face.
Then there exists an acyclic orientation O of G(P ) such that

(1) Face F is an initial set.
(2) Every face of P has a unique sink.

Proof. Since F is a face there exists a linear function ℓ and a number α such that
ℓ(x) ≥ α for all x ∈ P and

F =
{

x ∈ P : ℓ(x) = α
}

.
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Let ℓ̃ be a sufficiently generic linear function sufficiently close to ℓ so that ℓ̃ is not
constant on edges of P and ℓ̃(v) < ℓ̃(u) for any two vertices v and u of P such that
v ∈ F and u /∈ F , cf. proof of Lemma 25.1. Let us define O by directing u −→ v if
ℓ̃(v) > ℓ̃(u). �

(27.4) Reconstructing the faces of P from G(P ).

Input: Graph G(P ) of a d-dimensional simple polytope P .

Output: The list of faces of P .

The algorithm: For every acyclic orientation O of G(P ) we compute the number
hOk (P ) of vertices of index k and the quantity

fO =
d
∑

k=0

2khOk (P ).

We compute
f = min

O
fO,

where the minimum is taken over all acyclic orientations. We call an acyclic orien-
tation good if fO = f .

We output F as the set of vertices of a k-dimensional face of P if the subgraph
induced by F is connected and k-regular and F occurs as an initial set in some
good acyclic orientation F .

(27.5) Theorem. The algorithm is correct.

Proof. By Lemmas 27.2 and 27.3 for every good orientation O every face F of
P has a unique sink. If F is a k-dimensional face of P then by Theorem 26.3
the subgraph induced by F is connected while by Part (6) of Lemma 24.2 it is
k-regular. By Lemma 27.3, every k-dimensional face will be included in the output
of the algorithm.

Let O be a good acyclic orientation and let H be an initial set such that the
subgraph induced by H is connected and k-regular. Let us prove that H is the set
of vertices of a k-dimensional face of P .

Since O is acyclic, H contains a sink v. Since H is k-regular, v has k neighbors
u1, . . . , uk in H and we must have ui −→ v for i = 1, . . . , k. By Part (2) of Lemma
24.2 there is a k-dimensional face F of P which contains v and u1, . . . , uk. Then v
must be a sink of F and since orientation O is good, v must be the only sink of F .
Let w be a vertex of F . Since v is the unique sink of F , there is a directed path
w = w0 −→ w1 −→ . . . −→ wn = v in G(P ), where w1, . . . , wn are vertices of F . If
w /∈ H then for some i = 0, . . . , n− 2 we must have wi /∈ H and wi+1 ∈ H, which
is a contradiction since H is an initial set. Therefore F ⊂ H. Since the graphs
induced by F and H are both k-regular and connected, we must have F = H. �
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28. The diameter of the graph of a polyhedron

(28.1) Definitions. Let G be a connected graph. The length of a path in G is the
number of edges in the path. The distance between any two vertices of the graph
is the smallest length of a path connecting the vertices. The diameter of the graph
G is the largest distance between two vertices of the graph. Let ∆(d, n) be the
maximum diameter of G(P ) for a polyhedron P of dimension at most d and with
at most n facets. It follows by Problem 1 of Section 26.4 that ∆(d, n) < +∞. We
say that a path in G(P ) visits a facet F of P if the path contains a vertex of F .

The famous Hirsch Conjecture states that the diameter of the graph G(P ) of a
d-dimensional polytope P with n facets does not exceed n− d, see E.D. Kim and
F. Santos, An update on the Hirsch conjecture, preprint arXiv:0907.1186, 2009
and E.D. Kim and F. Santos, Companion to “An update on the Hirsch conjecture”,
preprint arXiv:0912.4235, 2009. Below we reproduce an upper bound on the the
diameter of G(P ), where P is a (possibly unbounded) polyhedron, due to G. Kalai
and D. Kleitman.

(28.2) Lemma. Let P be a d-dimensional polyhedron with n facets and without
lines. For a vertex w of P let us define kw as the largest integer such that the set
of facets of P that can be visited from w by a path of length at most kw contains
not more than n/2 facets. We let kw = −1 if w belongs to more than n/2 facets of
P . Then

(1) The distance in G(P ) between any two vertices u and v does not exceed

2 + ku + kv + ∆(d− 1, n− 1);

(2) Suppose that kw > 0. Let Qw be the polyhedron defined by the inequalities
that define the facets of P that can be visited by a path of length at most kw
from w. Then w is a vertex of Qw and every path in G(Qw) of length at
most kw is a path in G(P ).

(3) We have
kw ≤ ∆(d, n/2).

Proof. Since the set of facets visited by a path from u of length at most ku + 1
contains more than n/2 facets and the set of facets visited by a path from v of
length at most kv +1 contains more than n/2 facets, there is a facet F of P visited
by a path Πu from u of length at most ku+1 and by a path Πv from v of length at
most kv+1. Moreover, F is a (d−1)- dimensional polyhedron with at most (n−1)
facets. Connecting the endpoints of Πu and Πv in F , we obtain a path connecting
u and v of length at most 2 + ku + kv + ∆(d− 1, n− 1), which proves Part (1).

The inequalities that define the facets of P containing w are also inequalities
defining Qw. Therefore, tcone(P,w) = tcone(Qw, w), so w is a vertex of Qw. Let Π
be a path from w in G(Qw) of length k ≤ kw. We prove by induction on k that Π is
a path in G(P ). The case of k = 0 has been dealt with. Suppose that k > 1 and let
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us consider the path Π̂ ⊂ Π consisting of the first k−1 edges of Π. Suppose that the
other endpoint of Π̂ is u. Then the inequalities defining the facets of P containing u
are also inequalities defining Qw and hence tcone(P, u) = tcone(Qw, u). Therefore
the remaining edge of Π follows an edge e of P with one endpoint at u. Since this
edge is bounded in Qw, it is bounded in P and let v be the other endpoint of e in
G(P ). Then v is the intersection of e with a facet F of P and since k ≤ kw, the
inequality defining the facet F is also an inequality defining a facet of Qw. Then v
is a vertex of Qw and the remaining edge of Π is [u, v], which proves Part (2).

Let u be a vertex of P such that the distance between w and u in G(P ) is kw.
Such a vertex exists since otherwise all vertices and hence all facets of P can be
visited by a path from w of length at most kw, which is a contradiction. As follows
by Part (2), the distance between w and u in G(Qw) is also kw. Since Qw is defined
by at most n/2 inequalities, the proof of Part (3) follows. �

(28.3) Theorem. We have

∆(d, n) ≤ 2d log2 n+ n1+log2 d.

Proof. By Parts (1) and (3) of Lemma 28.2, we obtain

∆(d, n) ≤ 2 + 2∆(d, n/2) + ∆(d− 1, n− 1).

Iterating (d 7−→ d− 1), we obtain

∆(d, n) ≤ 2d+ 2d∆(d, n/2).

Iterating (n 7−→ n/2), we obtain

∆(d, n) ≤ 2d log2 n+ (2d)log2 n ≤ 2d log2 n+ n1+log2 d.

�

(28.4) Problem.
1. Let P be a d-dimensional polytope with n facets. Suppose that the vertices

of P are 0-1 vectors. Prove that the diameter of G(P ) does not exceed n− d.

29. Edges of a centrally symmetric polytope

(29.1) Definition. A polytope P is called centrally symmetric if P = −P .

The following result was proved by A. Barvinok and I. Novik.

(29.2) Theorem. Let P be a d-dimensional centrally symmetric polytope. Then

f1(P ) ≤ f2
0 (P )

2

(

1− 2−d
)

.
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Proof. Let us define

h =
∑

v

[P + v],

where the sum is taken over all vertices v of P . Clearly, P + v ⊂ 2P . Let us
normalize the Lebesgue measure on 2P in such a way that vol(2P ) = 1. Then
vol(P + v) = 2−d and

∫

2P

h dx =
∑

v

∫

2P

[P + v] dx = f0(P )2−d.

Therefore, by the Hölder inequality, we have
∫

2P

h2 dx ≥ f2
0 (P )2−2d.

On the other hand,
∫

2P

h2 dx =
∑

(v,u)

vol
(

(P + u) ∩ (P + v)
)

,

where the sum is taken over all unordered pairs u and v of vertices.

Suppose that vol
(

(P +u)∩(P +v)
)

> 0. Then there exist x, y ∈ intP such that

x+ u = y + v. Thus (u− v)/2 = (y − x)/2. Since P = −P , we have y,−x ∈ intP
and so (y − x)/2 ∈ intP . Therefore, the midpoint of the interval [u,−v] lies in the
interior of P and so [u,−v] is not an edge of P . Consequently,

∑

(v,u)

vol
(

(P + u) ∩ (P + v)
)

≤ 2−df0(P ) + 2−d+1

((

f0(P )

2

)

− f1(P )

)

.

Summarizing,

2−df0(P ) + 2−d+1

((

f0(P )

2

)

− f1(P )

)

≥ f2
0 (P )2−2d

and the proof follows. �

(29.3) Problems.
1◦. Recall that the standard octahedron On ⊂ Rn is defined as

On = conv
(

ei,−ei : i = 1, . . . , n
)

,

where e1, . . . , en is the standard basis in Rn. Prove that the (r − 1)-dimensional
faces of On are as follows: let S−, S+ ⊂ {1, . . . , n} be disjoint subsets such that
|S−|+ |S+| = r. Then

FS+,S−
=







(x1, . . . , xn) ∈ On :
xi ≥ 0 for i ∈ S+,
xi ≤ 0 for i ∈ S−,
xi = 0 for i /∈ S+ ∪ S−







.
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2. Let L ⊂ Rn be a subspace. Let us consider a projection pr : Rn −→ Rn/L
with the kernel L and let Q = pr(On), where On is the standard octahedron. Let
y ∈ L be a unique vector minimizing ‖u− x‖1 for u ∈ L, where

‖a‖1 =
n
∑

i=1

|ai| for a = (a1, . . . , an) .

Let

S+ =
{

i : yi > xi

}

and S− =
{

i : yi < xi

}

so that |S+| + |S−| = r. Prove that pr
(

FS+,S−

)

is an (r − 1)-dimensional face of
Q.

3. Let L ⊂ Rn be a subspace and let pr : Rn −→ Rn/L be a projection with
the kernel L. Let Q = pr(On) and suppose that the projection of every (r − 1)-
dimensional face of On is an (r − 1)-dimensional face of Q. Suppose further, that
there is a point y ∈ L such that y differ from x in r coordinates. Prove that y is
the unique minimum of ‖u− x‖1 for u ∈ L.

30. Approximating a convex body by an ellipsoid

(30.1) Definitions. Let V be Euclidean space, let B ⊂ V ,

B =
{

x ∈ V : ‖x‖2 ≤ 1
}

,

be the unit ball, let T : V −→ V be an invertible linear transformation and let
a ∈ V be a point. The set E = T (B) + a is called an ellipsoid and a is called its
center.

(30.2) Theorem. Let K ⊂ V be a centrally symmetric compact convex set with a
non-empty interior. Then there exists an ellipsoid E ⊂ V centered at 0 such that

E ⊂ K ⊂
(√

dimV
)

E.

Proof. We choose E to be the ellipsoid of the maximum volume among those
centered at 0 and contained in K (that such an ellipsoid exists is proven by a
standard compactness argument). Hence E ⊂ K and we have to prove that

K ⊂
(√

dimV
)

E. Without loss of generality we assume that K = B, the unit ball.

Suppose that there is a point x ∈ K such that ‖x‖ >
√

dimV . Let us introduce
a coordinate system in V , thus identifying V = Rd and x = (r, 0, . . . , 0), where

r >
√
d. Since K is symmetric and convex, we have conv(B, x,−x) ⊂ K. Our

goal is to inscribe an ellipsoid E ⊂ conv(B, x,−x) such that volE > volB thus
obtaining a contradiction with the existence of x.
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We look for E in the form

E =

{

(x1, . . . , xd) :
x2

1

α2
+

1

β2

d
∑

i=2

x2
i ≤ 1

}

,

where α > 1 and 0 < β < 1. Then

volE = αβd−1 volB.

To make sure that E ⊂ conv(B, x,−x) for some choice of α and β, by symmetry it
suffices to show the inclusion for d = 2, in which case we write x for x1 and y for
x2.

Suppose that d = 2 and let (a, b) ∈ ∂B be a point on the unit circle, so a2+b2 = 1.
The equation of the tangent line to B through (a, b) is ax+ by = 1 and if we insist
that the line passes through the point (r, 0), we obtain the equation

(30.2.1)
x

r
+
y
√
r2 − 1

r
= 1.

Similarly, the equation of the tangent line to E through a point (a, b) ∈ E such
that a2/α2 + b2/β2 = 1 is

(30.2.2)
a

α2
x+

b

β2
y = 1.

Hence we obtain a common tangent to B and E passing through (r, 0) when

a

α2
=

1

r
and

b

β2
=

√
r2 − 1

r
.

Therefore a = α2/r and b = β2
√
r2 − 1/r. Substituting a and b into the equation

a2/α2 + b2/β2 = 1, we obtain

(30.2.3) α2 = r2 − (r2 − 1)β2.

If β = 1 − ǫ for a sufficiently small ǫ > 0 and (α, β) satisfy (30.2.3) then E ⊂ K.
Letting β = 1− ǫ we obtain from (30.2.3) that α = 1+(r2−1)ǫ+O(ǫ2). Therefore,

αβd−1 = exp
{

lnα+ (d− 1) lnβ
}

= exp
{

(r2 − 1)ǫ− (d− 1)ǫ+O(ǫ2)
}

> 1

provided r >
√
d and ǫ > 0 is sufficiently small. The obtained contradiction shows

that in fact r ≤
√
d and K ⊂

√
dB. �
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(30.3) Problems.
1. Prove that for any centrally symmetric convex compact set K with a non-

empty interior there exists a unique ellipsoid E which has the maximum volume
among all ellipsoids inscribed in K and centered at the origin.

2. Let K be a convex compact (not necessarily symmetric) set with a non-empty
interior. Prove that there exists a unique ellipsoid E which has the maximum
volume among all ellipsoids inscribed in K.

3. Let E ⊂ K be the maximum volume ellipsoid of Problem 2 and suppose that
its center is at the origin. Prove that K ⊂ (dimK)E.

4. Let K be a centrally symmetric convex compact set with a non-empty interior.
Prove that there exists a unique ellipsoid E of the minimum volume among all
ellipsoids containing K and centered at the origin. Prove that (dimK)−1/2E ⊂ K.

5. Let K be a convex compact (not necessarily symmetric) set with a non-empty
interior. Prove that there exists a unique ellipsoid E of the minimum volume among
all ellipsoids containing K. Suppose that the center of E is at the origin. Prove
that (dimK)−1E ⊂ K.

31. Spherical caps

(31.1) Lemma. Let

Sn−1 =

{

(x1, . . . , xn) :

n
∑

i=1

x2
i = 1

}

be the unit sphere in Rn and let µ be the (unique) rotation invariant Borel probability
measure on Sn−1. For 0 ≤ ǫ ≤ 1 let us define the spherical cap

Cǫ =
{

(x1, . . . , xn) ∈ Sn−1 : x1 ≥ ǫ
}

.

Then

µ (Cǫ) ≤
1√
2

exp

{

−(n− 1)ǫ2

6

}

.

Proof. Let ν be the Gaussian probability measure on Rn with the density

1

πn/2
e−‖x‖2

.

Since ν is rotation invariant, the push-forward of ν under the radial projection
Rn \ {0}, x 7−→ x/‖x‖ is the measure µ on Sn−1.

Let

Aǫ =
{

(x1, . . . , xn) : x2
1 ≥ ǫ2‖x‖2

}

.
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Then

µ (Cǫ) =
1

2
ν (Aǫ)

and hence our goal is bound ν (Aǫ). We have

ν (Aǫ) =
1

πn/2

∫

Aǫ

e−‖x‖2

dx ≤ 1

πn/2

∫

Aǫ

e(x
2
1−ǫ

2‖x‖2)/2e−‖x‖2

dx

≤ 1

πn/2

∫

Rn

e(x
2
1−ǫ

2‖x‖2)/2e−‖x‖2

dx

=

(

1√
π

∫ +∞

−∞

e−‖x1‖
2/2 dx1

) n−1
∏

i=1

(

1√
π

∫ +∞

−∞

e−(1+ǫ2/2)x2
i dxi

)

=
√

2

(

1
√

1 + ǫ2/2

)n−1

=
√

2 exp

{

−(n− 1)

2
ln

(

1 +
ǫ2

2

)}

≤
√

2 exp

{

−(n− 1)ǫ2

6

}

and the proof follows. �

We will also need a lower bound on the measure of a (small) spherical cap.

(31.2) Lemma. Let

Sn−1 =

{

(x1, . . . , xn) :
n
∑

i=1

x2
i = 1

}

be the unit sphere in Rn and let µ be the (unique) rotation invariant Borel probability
measure on Sn−1. For 0 ≤ δ ≤ 2 and y ∈ Sn−1, let us define the spherical cap

Aδ(y) =
{

x ∈ Sn−1 : ‖x− y‖ ≤ δ
}

.

Then

µ (Aδ) ≥
δn

(2 + δ)n
.

Proof. Suppose that Σ ⊂ Sn−1 is a δ-net, that is, a finite set of points such that
every point x ∈ Sn−1 is within distance δ from some point y ∈ Σ. Then the caps
Aδ(y) for y ∈ Σ cover Sn−1 and hence

µ (Aδ(y)) ≥
1

|Σ| .
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Let us now construct a δ-net as follows. Let Σ be the maximal (under inclusion) set
Σ ⊂ Sn−1 such that the distance between any two points of Σ is at least δ. Clearly,
Σ is a δ-net. For y ∈ Σ, let

Bδ/2(y) =

{

x ∈ Rn : ‖x− y‖ ≤ δ

2

}

be the ball centered at y of radius δ/2. Hence the balls Bδ/2(y) are pairwise disjoint
and contained in the ball B1+δ/2(0). Therefore,

|Σ| · volBδ/2(y) ≤ volB1+δ/2(0)

and hence

|Σ| ≤ (2 + δ)n

δn
.

The proof now follows. �

(31.3) Problem.
1. Let B =

{

x ∈ Rn : ‖x‖ ≤ 1
}

be the unit ball. Prove that

volB =
πn/2

Γ(n/2 + 1)
.

32. An inequality for the number of

faces of a centrally symmetric polytope

The following result is due to V.D. Milman, T. Figiel and J. Lindenstrauss.

(32.1) Theorem. There exists a constant γ > 0 such that

ln f0(P ) · ln fd−1(P ) ≥ γd

for any d > 1 and any d-dimensional centrally symmetric polytope P .

Proof. By Theorem 30.2 there is an ellipsoid E centered at the origin such that
E ⊂ P ⊂

√
dE. Applying a linear transformation, if necessary, we assume that

E = B, the unit ball defined in the ambient space V by the inequality

B =
{

x ∈ V : ‖x‖ ≤ 1
}

.

Let vi, i = 1, . . . , fd−1(P ) be the vertices of P and let vi = vi/‖vi‖ be their radial
projections onto the unit sphere Sd−1. Let us choose an 0 < ǫ < 1 and let us
consider the spherical cap

Cǫ (vi) =
{

c ∈ Sd−1 : 〈c, vi〉 ≥ ǫ
}

for i = 1, . . . , fd−1(P ).
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Let µ the the rotation invariant Borel probability measure on Sd−1. By Lemma
31.1, we have

µ (Cǫ (vi)) ≤ exp

{

−(d− 1)ǫ2

6

}

.

We can choose

ǫ ≤ γ0

√

ln f0(P )

d

for some absolute constant γ0 > 0 such that

f0(P ) exp

{

−(d− 1)ǫ2

6

}

<
1

2
.

Letting

Xǫ =
⋃

i

Cǫ (vi) ,

we conclude that

(32.1.1) µ (Xǫ) <
1

2

and that for any c ∈ Sd−1 \Xǫ, we have

(32.1.2) max
x∈P
〈c, x〉 = max

i
〈c, vi〉 ≤

√
dmax

i
〈c, vi〉 ≤ ǫ

√
d ≤ γ0

√

ln f0(P ).

Suppose that P is defined by the inequalities

P =
{

x ∈ V : 〈uj , x〉 ≤ αj , j = 1, . . . , fd−1(P )
}

.

Since P contains the origin in its interior, we must have αj > 0 and, rescaling if
necessary, we assume that αj = 1 for j = 1, . . . , fd−1(P ).

Let uj = uj/‖uj‖ be the radial projections of uj onto the unit sphere Sd−1.
Since uj ∈ P , we conclude that ‖uj‖ ≤ 1 for j = 1, . . . , fd−1(P ). Let us choose a
0 < δ < 1 and let us consider the spherical cap

Cδ (uj) =
{

c ∈ Sd−1 : 〈c, uj〉 ≥ δ
}

for j = 1, . . . , fd−1(P ).

We can choose

δ ≤ γ1

√

ln fd−1(P )

d

for some absolute constant γ1 > 0 such that

fd−1(P ) exp

{

−(d− 1)δ2

6

}

<
1

2
.
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Letting

Yδ =
⋃

j

Cδ (uj) ,

we conclude that

(32.1.3) µ (Yδ) <
1

2
.

Moreover, for every c ∈ Sd−1 \ Yδ we have

|〈c, uj〉| ≤ |〈c, uj〉| ≤ δ for j = 1, . . . , fd−1(P )

and hence δ−1c ∈ P . Therefore, for every c ∈ Sd−1 \ Yδ we have

(32.1.4) max
x∈P
〈c, x〉 ≥ 〈c, δ−1c〉 = δ−1 ≥ γ−1

1

√

d

ln fd−1(P )
.

By (32.1.1) and (32.1.3), there exists a c ∈ Sd−1 such that c /∈ Xǫ and c /∈ Yδ.
For such a c, we have by (32.1.2) and (32.1.4)

γ−1
1

√

d

ln fd−1(P )
≤ max

x∈P
〈c, x〉 ≤ γ0

√

ln f0(P ).

Therefore,

ln f0(P ) · ln fd−1(P ) ≥ γd for γ = (γ0γ1)
−2,

as desired. �

(32.2) Problems.

1. Let P be a d-dimensional polytope such that B ⊂ P ⊂ ρB for the unit ball
B and some ρ > 1. Prove that

ln fd−1(P ) · ln f0(P ) ≥ γd2/ρ2,

for some absolute constant γ > 0.

2. Let P be a d-dimensional centrally symmetric polytope. Prove that

ln fl(P ) · ln fk(P ) ≥ γ(l − k) for all 0 ≤ k ≤ l ≤ d− 1

and some absolute constant γ > 0.
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33. Gale transforms and symmetric Gale transforms

Let P ⊂ Rd be a d-dimensional polytope with the vertices v1, . . . , vn. By trans-
lating P , we can assume that v1 + . . .+vn = 0. Moreover, by applying an invertible
linear transformation, we can represent P as the orthogonal projection of the stan-
dard simplex ∆n−1 ⊂ Rn onto a d-dimensional subspace L. We define L by its
basis consisting of the rows of the d× n matrix whose columns are v1, . . . , vn.

(33.1) Theorem. Let e1, . . . , en be the standard basis of Rn, let u = e1 + . . .+ en
and let L ⊂ Rn be a d-dimensional subspace orthogonal to u. Let vi be the orthogonal

projection of ei onto L and let P = conv (v1, . . . , vn). Let L̂ = (L⊕ Ru)
⊥

be the
(n−d−1)-dimensional subspace orthogonal to L and to u and let v̂i be the orthogonal
projection of ei onto L. Then

{

vi : i ∈ I
}

is the set of vertices of a proper face of
P if and only if

0 =
∑

i/∈I

λiv̂i for some λi > 0 for i /∈ I

or, equivalently, if

0 ∈ int conv
(

v̂i : i /∈ I
)

,

where by “ int ” we understand the relative interior (that is, the interior relative to
the affine span of the set v̂i : i /∈ I).

Proof. Suppose that
{

vi : i ∈ I
}

is the set of vertices of a proper face of P . Then
there exists a vector c ∈ L and a number α such that

〈c, vi〉 = α for i ∈ I and

〈c, vi〉 > α for i /∈ I.(33.1.1)

Since 〈c, vi〉 = 〈c, ei〉 for all i, we obtain

〈c− αu, ei〉 = 0 for i ∈ I and

〈c− αu, ei〉 > 0 for i /∈ I.(33.1.2)

Thus we can write

(33.1.3) c− αu =
∑

i/∈I

λiei for λi = 〈c− αu, ei〉 > 0.

Projecting the above identity onto L̂, we get

(33.1.4) 0 =
∑

i/∈I

λiv̂i where λi > 0 for all i /∈ I.
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Conversely, suppose that (33.1.4) holds. Then the vector
∑

i/∈I λiei lies in
(

L̂
)⊥

= L⊕Ru and hence for some α ∈ R we have (33.1.3) where

c ∈
(

L̂⊕Ru
)⊥

= L.

Then (33.1.2) and hence (33.1.1) hold and so
{

vi : i ∈ I
}

are the vertices of a
proper face of P . �

The correspondence

{

vi : i = 1, . . . , n
}

↔
{

v̂i : i = 1, . . . , n
}

is called the Gale transform after D. Gale.
The symmetric Gale transform was introduced by P. McMullen and G.C. Shep-

hard. It is based on representing a centrally symmetric polytope as the projection
of the octahedron On.

(33.2) Theorem. Let e1, . . . , en be the standard basis of Rn and let L ⊂ Rn be
a d-dimensional subspace. Let vi be the orthogonal projection of ei onto L and let
P = conv (v1, . . . , vn;−v1, . . . ,−vn). Let L⊥ ⊂ Rn be the orthogonal complement
to L and let vi be the orthogonal projection of ei onto L⊥. Then the set

{

ǫivi : i ∈
I
}

where ǫi ∈ {−1, 1} is the set of vertices of a proper face of P if and only if

∑

i∈I

ǫivi =
∑

i/∈I

δivi where |δi| < 1 for i /∈ I

or, equivalently, if

∑

i∈I

ǫivi ∈ int conv

(

∑

i/∈I

δivi : for δi ∈ {−1, 1}
)

,

where by “ int ” we understand the relative interior.

Proof. Suppose that
{

ǫivi : i ∈ I
}

is the set of vertices of a proper face of P . Then
there exists a vector c ∈ L and a number α > 0 such that

〈c, vi〉 = ǫiα for i ∈ I and

|〈c, vi〉| < α for i /∈ I.(33.2.1)

Since 〈c, vi〉 = 〈c, ei〉 for all i, we obtain

〈c, ei〉 = ǫiα for i ∈ I and

|〈c, ei〉| < α for i /∈ I.(33.2.2)
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Thus we can write

(33.2.3) c =
∑

i∈I

ǫiαei +
∑

i/∈I

λiei where |λi| < α for i /∈ I.

Projecting the above identity onto L⊥ and dividing by α, we obtain

(33.2.4)
∑

i∈I

ǫivi =
∑

i/∈I

δivi where |δi| < 1 for all i /∈ I.

Conversely, suppose that (33.2.4) holds. Then the vector
∑

i∈I ǫiei −
∑

i/∈I δiei
lies in L and hence we have (32.2.3) for some c ∈ L and α = 1. Therefore, both
(33.2.2) and (33.2.1) hold and hence

{

ǫivi : i ∈ I
}

are the vertices of a proper face
of P . �

(33.3) Problems.
1. Describe a possible facial structure of a d-dimensional polytope with d + 2

vertices.

2. Construct an example of a (d− 1)-dimensional centrally symmetric polytope
P with 2d vertices such that every subset of k < d/2 vertices, not containing a pair
of antipodal vertices, is the set of vertices of some face of P .

34. Almost Euclidean subspaces of ℓ1 and

centrally symmetric polytopes with many faces

(34.1) Definitions. Let us consider the following two norms in Rn: the usual
Euclidean norm

‖x‖2 =

(

n
∑

i=1

x2
i

)1/2

for x = (x1, . . . , xn)

and the ℓ1 norm

‖x‖1 =
n
∑

i=1

|xi| for x = (x1, . . . , xn) .

It is not hard to show that

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 for all x ∈ Rn.

For a 0 < ρ < 1 we say that a subspace L ⊂ Rn is ρ-Euclidean if

ρ
√
n‖x‖2 ≤ ‖x‖1 ≤

√
n‖x‖2 for all x ∈ L.

The following is a rephrasing of a result due to N. Linial and I. Novik.
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(34.2) Theorem. Let L ⊂ Rn be a subspace, let vi be the orthogonal projection of
ei onto L, and let P = conv

(

v1, . . . , vn;−v1, . . . ,−vn
)

. Suppose that the comple-

mentary subspace L⊥ ⊂ Rn is ρ-Euclidean and let k < ρ2n/4 be a positive integer.
Then every set of k vertices of P not containing a pair of antipodal vertices is the
set of vertices of some proper face of P .

Proof. Let vi be the orthogonal projection of ei onto L⊥ for i = 1, . . . , n.
Let I ⊂ {1, . . . , n} be a set, |I| = k, and let ǫi ∈ {−1, 1} for i ∈ I be signs such

that the set
{

ǫivi : i ∈ I
}

is not the set of vertices of a face of P . By Theorem
33.2, the point

∑

i∈I ǫivi does not lie in the relative interior of the convex hull of

the points
∑

i/∈I δivi for δi ∈ {−1, 1} and hence there exists a vector c ∈ L⊥, c 6= 0,
such that

〈

c,
∑

i∈I

ǫivi

〉

≥ max
δi=±1
i/∈I

〈

c,
∑

i/∈I

δivi

〉

=
∑

i/∈I

|〈c, vi〉| .

In particular,
∑

i∈I

|〈c, vi〉| ≥
∑

i/∈I

|〈c, vi〉| .

On the other hand, 〈c, vi〉 = 〈c, ei〉 for i = 1, . . . , n and hence

∑

i∈I

|〈c, ei〉| ≥
∑

i/∈I

|〈c, ei〉| .

Therefore,
∑

i∈I

|〈c, ei〉| ≥
1

2

n
∑

i=1

|〈c, ei〉| =
1

2
‖c‖1.

On the other hand, by the Cauchy- Schwarz inequality

∑

i∈I

|〈c, ei〉| ≤
√
k

(

∑

i∈I

〈c, ei〉2
)1/2

≤
√
k‖c‖2 <

ρ

2

√
n‖c‖2

and

‖c‖1 > ρ
√
n‖c‖2,

which is a contradiction. �

(34.3) Problems.
1◦. Construct an example of a 1-dimensional subspace of Rn which is

1-Euclidean.

2. For 0 < ρ < 1 and a positive integer k construct an example of a k-dimensional
subspace of Rn for which is ρ-Euclidean for a sufficiently large n.
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35. The volume ratio and almost Euclidean subspaces

(35.1) Definitions. Let V be an n-dimensional vector space with Euclidean norm
‖ · ‖ and let p : V −→ R be some other norm on V . Let

B =
{

x ∈ V : ‖x‖ ≤ 1
}

be the Euclidean unit ball, and let

K =
{

x ∈ V : p(x) ≤ 1
}

be the unit ball in norm p.
Let Gk (V ) be Grassmannian manifold of all k-dimensional subspaces L ⊂ V

with the unique rotation invariant Borel probability measure νk,n.

The following result is due to S. Szarek who was building on the work of B.
Kashin.

(35.2) Theorem. Suppose that B ⊂ K and that

(

volK

volB

)1/n

≤ γ

for some γ > 1. Then for any 1 ≤ k ≤ n − 1 a random subspace L ∈ Gk (V )
satisfies

p(x) ≤ ‖x‖ ≤ (12γ)
n

n−k p(x) for all x ∈ L

with probability at least 1− 2−n.

Proof. Since B ⊂ K we have

p(x) ≤ ‖x‖ for all x ∈ V.

We note that
volK

volB
=

∫

Sn−1

p−n(x) dµn−1(x),

where µn−1 is the rotation invariant Borel probability measure on the unit Eu-
clidean sphere Sn−1. Indeed, for a point x ∈ V \ 0 we have p−1(x)x ∈ ∂K and
hence we obtain K by stretching B in the direction of x ∈ Sn−1 by the factor of
p−1(x).

Next, we note that for any continuous function f : Sn−1 −→ R we have

∫

Sn−1

f(x) dµn−1(x) =

∫

Gk(V )

(
∫

Sn−1∩L

f(x) dµk−1,L(x)

)

dνk,n(L),
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where µk−1,L is the rotation invariant Borel probability measure on the (k − 1)-
dimensional unit sphere Sn−1 ∩ L in the k-dimensional subspace L. This follows
from the uniqueness of the rotation invariant Borel probability measure on Sn−1.

Summarizing,
∫

Gk(V )

(
∫

Sn−1∩L

p−n(x) dµk−1,L(x)

)

dνk,n(L) ≤ γn

and hence with probability at least 1−2−n a random subspace L ∈ Gk (V ) satisfies

(35.2.1)

∫

Sn−1∩L

p−n(x) dµk−1,L(x) ≤ (2γ)n.

Suppose that a subspace L ∈ Gk (V ) satisfies (35.2.1). Then, for any 0 < α < 1 we
have

(35.2.2) µk−1,L

{

x ∈ Sn−1 ∩ L : p(x) ≤ α

2γ

}

≤ αn.

Suppose that for some y ∈ Sn−1 ∩ L we have

p(y) ≤ α

4γ
.

Let us consider the (k − 1)-dimensional spherical cap

A(y) =

{

x ∈ Sn−1 ∩ L : ‖x− y‖ ≤ α

4γ

}

.

Then for every x ∈ A(y) we have

p(x) ≤ p(y) + p(x− y) ≤ p(y) + ‖x− y‖ ≤ α

2γ
.

Using the estimate of Lemma 31.2 on the measure of a spherical cap, we conclude
that

(35.2.3) µk−1,L

{

x ∈ Sn−1 ∩ L : p(x) ≤ α

2γ

}

≥
(

α

12γ

)k

.

However, (35.2.3) contradicts (35.2.2) if

α < (12γ)
− k

n−k .

Therefore, for all y ∈ Sn−1 ∩ L we have

p(y) ≥ (2γ)−1(12γ)−
k

n−k ≥ (12γ)−
n

n−k

and the proof follows. �
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(35.3) Example: almost Euclidean subspaces of ℓ1. Let V = Rn with the
usual Euclidean norm ‖ · ‖. Let us define

p(x) = n−1/2‖x‖1 for all x ∈ Rn.

Then the unit ball of p(x) is the dilated octahedron K =
√
nOn and B ⊂ √nO(n),

where B is the Euclidean unit ball.
We have (cf. Problem 31.3)

(

volK

volB

)1/n

=

(

nn/2Γ(n/2 + 1)2n

πn/2n!

)1/n

≤
√

2e

π
.

It follows by Theorem 35.2 that for any 0 < ǫ < 1 there is a constant ρ(ǫ) > 0 and
an integer k ≥ (1− ǫ)n such that a random subspace L ∈ Gk (Rn) is ρ(ǫ)-Euclidean
with probability at least 1− 2−n.

(35.4) Problem.
1. Prove that the probability that m ≥ n independent random points x1, . . . ,

xm ∈ Sn−1 lie in a halfspace is

2−m+1
n−1
∑

k=0

(

m− 1

k

)

.

See J.G. Wendel, A problem in geometric probability, Math. Scand. 11 (1962),
109–111.
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