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1. BASIC DEFINITIONS

We work in a finite-dimensional real vector space V. Once we choose a basis of
V, we may identify V = R<.

(1.1) Definitions. For two points a,b € V, we define the interval [a,b] C V by
[a,b]:{xev: z=Xa+(1—N\b: Og)\gl}.

A set X C V is convez if for all a,b € X we have [a,b] C X. The empty set ) is
convex. Given points, a,...,a, € V, a point

a:Z)\iai where Z)‘izl and X\, >0 for i=1,...,n

=1 =1

is called a convexr combination of ai,...,a,. The convexr hull conv(A) of a set
A C V is the set of all convex combinations of points from A. A polytope is the
convex hull of a finite set of points.
Given a linear functional ¢ : V — R, not identically 0, and a real a € R, the
set
H_:{a:EV: E(x)ga}

is called a (closed) halfspace. A polyhedron is the intersection of finitely many
halfspaces.

(1.2) Problems.
1°. Prove that conv(A) is the minimal under inclusion convex set containing A.

2°. Prove that conv(conv(A)) = conv(A), that conv(A) C conv(B) provided
A C B and that conv(A) U conv(B) C conv(A U B). Prove that if u ¢ conv(A),
v & conv(A), u € conv(AU {v}) and v € conv(A U {u}) then u = v.

3. Let us identify C = R2. Let f : C — C be a polynomial. Prove that the
zeros of the derivative f’ of f lie in the convex hull of the zeros of f (Gauss - Lucas
Theorem).

4°. Let eq,. .., eq be the standard basis of R%. Let us define:

Ag_1 =conv(ey,...,eq), Og=conv(tey,...,+eq) and
I;=conv(te; tes...tey).

Prove that Ayz_1, O4, and I; are polyhedra and find the minimal set of linear
inequalities defining each.

Polytope Ay_1 is called the standard (d — 1)-dimensional simplex, polytope Oy
is called the standard d-dimensional octahedron or cross-polytope and polytope I

is called the standard d-dimensional cube.
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5*. Prove that a polytope is a polyhedron and a bounded polyhedron is a
polytope (Weyl - Minkowski Theorem, to be proven later).

6*. Prove that the set of diagonals of n X n symmetric matrices with the eigen-

values Ai,..., A, is the convex hull of the vectors in R™ whose coordinates are
permutations of A1, ..., A, (Schur-Horn Theorem, we will prove at least a part of
it later).

2. CARATHEODORY’S THEOREM

(2.1) Theorem. Let dimV = d and let A C V be a set. Then every point x €
conv(A) is a convex combination of some d+ 1 points from A.

Proof. Let us choose a point x € conv(A). Then z is a convex combination of some

points from A,
T = Z A;a; where Z AN=1
i=1 i=1

and where without loss of generality we may assume that
Ai>0 for i=1,...,n.

If n < d+ 1 we are done, since we can append the combination by Os as needed. It
suffices to prove that if n > d + 1 then we can represent x as a convex combination
of fewer a;s.

Let us consider a homogeneous system of linear equations in real variables

A1y...,0pn:
n n
E a;a; =0 and E a; = 0.

The number of equations is d 4+ 1, so there is a non-trivial solution aq,...,a,. In
particular, for some ¢ we must have a; > 0. For ¢ > 0 let us define

Ai(t) =X —ta; for i=1,... n.

Clearly,

n

r=>Y X(t)a; and i)\i(t) =1.

=1

Let us choose
Y
t= min —.
i ;>0 Oy

Then A;(¢) > 0 and for some j we have \;(¢f) = 0. Hence we expressed z as a convex
combination of fewer points. O



(2.2) Problems.
1. Suppose that the set A is path-connected. Prove that every point x € conv(A)
is a convex combination of some d points from A.

2%, Let Aq,...,Aq+1 C V be sets, where dimV = d. Suppose that = €
conv (A;) for i = 1,...,d+ 1. Prove that there exist points a; € A; such that
x € conv (ay,...,aq+1). This is the “colored Carathéodory Theorem” proved in
I. Barany, A generalization of Carathéodory’s theorem, Discrete Math. 40 (1982),
no. 2-3, 141-152.

3. RADON’S THEOREM

(3.1) Theorem. Let dimV =d and let A CV be a set with at least d + 2 points,
|A| > d+ 2. Then one can find subsets R,B C A such that RN B = () and
conv(R) N conv(B) # 0.

Proof. Let ay,...,a,, n > d+ 2 be some distinct points from A. Let us consider
the following system of homogeneous linear equations in real variables (31,... , Bn:

iﬁiai:0 and iﬁzzo
i=1 i=1

The number of equations is d + 1 and since n > d 4+ 1 there exists a non-trivial
solution to the system. In particular, for some ¢ we have (3; > 0 and for some j we

have 8; < 0. Let
y= Y Bi= > (-B)>0.

it 3;>0 i: 3; <0
Let
R:{ai:ﬁi>0} and B:{aizﬁi<0}.

Clearly, RN B = () and for the point

_ Big — AW
p= Z ,_yal i:%io( ’y)az

i 3;>0
we have p € conv(R) N conv(B). O

(3.2) Problem.

1*.  Suppose that dimV = d and that A C V is a set such that
|A| > (d+ 1)(k — 1) + 1 for some integer k. Prove that one can find pairwise
disjoint subsets Aq,..., Ay C A such that

conv (A1) N...Nconv (Ay) # 0.

This is Tverberg’s Theorem, see H. Tverberg and S. Vrecica, On generalizations of
Radon’s theorem and the ham sandwich theorem, European J. Combin. 14 (1993),
no. 3, 259-264 for a relatively intuitive proof.
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4. HELLY’S THEOREM

(4.1) Theorem. Suppose that dimV = d and let Si,...,S,, C V be convex sets
such that

S; ﬁ...ﬂSid+17£® for all 1<y <ig <. <41 <m.

Then
() S: #0.
=1

Proof. The proof is by induction on m. The case of m = d + 1 is tautological.
Suppose that m > d + 1. By the induction hypothesis, the intersection of every
(m—1) of sets S; is not empty. Therefore, for i = 1,... ,m, there is a point p; such
that

p; € S; provided j #i.

If some two points p;, and p;, coincide, we will have constructed a point p =
Di, = Pi, which belongs to every set S;. If the points p1,...,p, are distinct, we
apply Theorem 3.1 to the set A = {p1,...,pn} and claim that there are disjoint
subsets R, B C A such that conv(R) N conv(B) # (). Let us choose a point p €
conv(R) N conv(B). Let us consider a set S;. Then either p; ¢ R or p; ¢ B. If
p; ¢ R, we have R C S; and hence p € S; since S; is convex. If p; ¢ B, we have
B C S; and hence p € S; since §; is convex. In either case, p € S; fori =1,... ,m.
O

(4.2) Problems.

1°. Let {S;: i € I} be a possibly infinite family of compact convex subsets
S; C V,dimV = d, such that the intersection of every d+ 1 of sets \S; is non-empty.
Prove that the intersection of all sets S; is non-empty.

2. Letusfixa k <d+1 and let S1,...,S,, CV be convex sets such that the
intersection of every k of sets .5; is non-empty. Let L C V be a subspace such that
dim L =d — k + 1. Prove that there exists a translation L + x, x € V, of L which
intersects every set S;.

3. Let S1,...,5,;C CV be convex sets, dimV = d. Suppose that for every
d+1sets S;,...,S;,,, there exists a translation C' + x,x € V, which intersects
every Si,,...,Si, . Prove that there exists a translation C' + x which intersects

every set S; fori=1,...,m.
4. In Problem 3, replace intersects by contains. Prove that the statement still
holds.

5. In Problem 3, replace intersects by is contained in. Prove that the statement
still holds.
6



6. Let ACV,dimV = d, be a convex compact set. Prove that one can find a
u € V such that (—1/d)A+ u C A. Here and elsewhere

aA:{ax:xeA} and B—i—u:{x—f—u: :CEB}

for sets A, B C V, a vector u € V and a number a € R.

7. Let § C V be a finite set of points, dim V' = d. Prove that there is a point
p € V such that every closed halfspace containing p contains at least |S|/(d+ 1) of
the points from S.

8*. Prove that for any 0 < a < 1 there exists a 8 = [(«a,d) > 0 with the

following property: if Sy,...,S5,, C V are convex sets in a d-dimensional space such
that for at least a(d’j:l) of (d+1)-tuples S;,,...,S;,,, wehave S;; N...NS;,., #0

then there is a point p € V which belongs to at least Sm of the sets S1,...,S,.
This is the Fractional Helly Theorem, the optimal value is f =1 — (1 — a)l/(d+1)
whereas a weaker bound 5 > «/(d + 1) is much easier to prove, see Section 8.1 of
J. Matousek, Lectures on Discrete Geometry, Graduate Texts in Mathematics, 212,
Springer-Verlag, New York, 2002.

5. EULER CHARACTERISTIC

(5.1) Definitions. Let V be a finite-dimensional real vector space. For a set
A C V we define the indicator of A as the function [A] : V' — R such that

1 ifzeAd

469 ={ ierga

We define the following real vector spaces
C(V)= span{[A] : ACV is a closed convex set},
Co(V) = span{[A] : A CV is a compact convex set},
PV) :span{[A] : ACVisa polyhedron} and
Py(V) = Span{[A] : ACV is a bounded polyhedron}.

A linear functional, or more generally, a linear transformation defined on any of the
spaces C(V),Cp(V), P(V) and Py(V) is called a valuation.

(5.2) Theorem. There ezists a unique linear functional (valuation) x : C(V) —
R, called the Euler characteristic, such that x([A]) =1 for every non-empty closed
convez set A C V.

Proof. The uniqueness is immediate: for f € C(V),
(5.2.1) F=Y ailA],

i€l
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where A; C V are closed convex sets and «; are real numbers, we should have

(522 = Y

IS E A175@

We need to prove the existence of y.

First, we prove the existence of a linear functional x : Cp(V) — R such that
x([A]) = 1 for every non-empty compact convex set A C V. We identify V = R?
and proceed by induction on d.

For d = 0 we have V' = {0}, so we define x(f) = f(0) for all f € C,(V'). Suppose
we established the existence of y for V' = R%. Our goal is to show that y exists in
RA+1,

Let H, C R be the affine hyperplane consisting of the points with the last
coordinate 7. We have

R = | ) H,.

TER

By the induction hypothesis there is a linear functional x, : Cy (H;) — R such
that x,([4]) = 1 for all non-empty compact convex sets A C H,. For a function
f el (]Rd“), let f. be its restriction onto H,. Then, if f is defined by (5.2.1), we

have
fT = ZO&Z' [Az N HT]

i€l

and hence f. € C, (H;). Next, we claim that for all f € C, (Rd+1) and 7 € R the
one-sided limit

(5.2.3) ELH%JF Xr—e (fr—e)

exists and that for every f € Cp (R‘“’l) there are at most finitely many values of
where the limit (5.2.3) is not equal to x, (f-). In view of (5.2.1) it suffices to check
the claim if f = [A], where A C R%*! is a non-empty compact convex set. Let Ty
be the minimum value of the last coordinate for a point in A and let 7,.« be the
maximum value of the last coordinate for a point in A.

Using (5.2.2), we obtain

(0 if T > Timax
im xr—e (fr—e) ={ 1 3 Tmin <7 < Tinax
L 0 if 7 < 7min
(5.2.4) and
(0 if 7> Tmax
Xr(fr) =4 1 if Tin <7 < Tax
0 if 7 < Tmin,



which proves the claim. Now, for f € C, (Rd+1), we define

(5'2'5) X(f) = Z (XT (fT) - el—i>r%—|— Xr—¢ (fT—E)) :

TER

Since only finitely many terms of the sum (5.2.5) can be non-zero (namely, when

7 is the minimum coordinate of a point in one of the sets A; in (5.2.1)), the sum

(5.2.5) is well-defined. By (5.2.4), it satisfies the requirements of the theorem.
Finally, we have to extend x from Cy(V) to C(V). Let us identify V = R? and

let ;
Br:{<$1,..-,$’d): Zx?§r2}

=1

be the ball of radius r centered at the origin. Then for every f € C(V) we have
f-[Br] € Cp(V) and hence x (f - [B,]) is well-defined. We let

x(f) = lim x(f-[B]).

r——>+400

It is straightforward to check the limit exists and satisfies the conditions of the
theorem. U

In the course of the proof, we obtained the following important corollary.

(5.3) Corollary. Let f € C, (R?). Then

W =3 (v - i x(5-0).

TER

where f. is the restriction of f onto the affine hyperplane in R¢ consisting of the
points with the last coordinate T.

(5.4) Problems.
1°. Show that the indicators [A], where A C V are non-empty closed convex
sets, do not form a basis of C(V) unless dim V' = 0.

2°. Prove that the spaces C(V'),Cp(V'), P(V) and P,(V') are closed under point-
wise multiplication of functions.

3°. Prove the inclusion-exclusion formula for sets Ay,...,A,, C V:
m m
Al =) (D! > (A, N... N AL
i=1 k=1 1<ir <...<ix<m
4. Let Aq, ..., A, be closed convex sets such that their union is convex and the

intersection of any k of the sets is not empty. Prove that the intersection of some
k + 1 of the sets is not empty.
9



5. Let Ay_1 C R? be the standard d-dimensional simplex defined by the equation
r1+...+x4 = 1 and inequalities z; > O for¢ = 1,...,d. Let F; C A4_1 be the i-th
facet of Ay_1 defined by the equation z; = 0. Suppose that A;,..., A4 are closed
convex sets such that A C A1 U...UAy and such that A;NF; =0 fori=1,...,d.
Prove that A1 N...N Ag # 0.

6. Let Ay,..., A, be closed convex sets such that Ay N...N A, # (. Prove
that x ([A; U...UAp]) =1.

7. Let int I; be the interior of the standard d-dimensional cube in R? defined by
the inequalities —1 < x; < 1 for i =1,... ,d. Prove that [int I] € C (R?) and that
X ([int Iq]) = (=1)%.

8*. Let 0 be a function which associates with every polyhedron P C V a real
number 6(P). Suppose that () = 0 and that for every polyhedron P C V and
for every affine hyperplane H C V bounding the closed halfspaces H_ and H,; we
have O(P) =0 (PN Hy)+60 (PN H_)—60 (PN H). Prove that there exists a unique
valuation © : P(V) — R such that O([P]) = §(P) for every polyhedron P C V.

See H. Groemer, On the extension of additive functionals on classes of convex sets,
Pacific J. Math. 75 (1978), no. 2, 397-410.

6. POLYHEDRA AND LINEAR TRANSFORMATIONS

(6.1) Theorem. Let V and W be finite-dimensional real vector spaces and let
T:V — W be a linear transformation. Then

(1) If P C V is a polyhedron then T(P) C W is a polyhedron;
(2) There is a unique linear transformation T : P(V) — P(W) such that
T([P)) = [T(P)] for any polyhedron P C V.
Proof. To prove Part (1), let us consider first the following model case. Suppose
that V. = R4, W = R and T : (21,...,74) — (21,...,24_1) is the map
forgetting the last coordinate. Suppose that P C R? is defined by a finite system
of linear inequalities:

d

Zaija)jgbi for i€l

j=1
Let
I ={i€l: au>0}, I_={i€l: au<0} and Iy={i€l: ajq=0}.
Then (z1,...,24-1) € T(P) if and only if

d—1
(611) Zaija)j < b; for i€ I()
j=1

10



and there exists x4 € R such that

b; a; .
xd<—1—z “Yg; for i€l and

Aid azd
d—1
b; Ay .
Tq > 1—5 ”a:j for ie1l_.
(07%) ” id
j=1

The system has a solution x4 if and only if

-1
— Z am:(: forall 43 €l_ and iy € ly.

CLng

(6.1.2)

azld Zld a12d

J=1

Hence the image T'(P) is defined by the finite set of linear inequalities (6.1.1)—
(6.1.2) in 1,... ,24-1, so T(P) is a polyhedron. If I_ = () or Iy = () there are no
inequalities (6.1.2) and if Iy = () there are no inequalities (6.1.1). This procedure of
obtaining the inequalities for T'(P) from those for P is called the Fourier-Motzkin
elimination.

Next, we remark that if 7 : V' — W is an isomorphism then T'(P) C W is
trivially a polyhedron and if ker 7" = {0} then T': V' — T(V) is an isomorphism
and T'(P) is a polyhedron in T'(V) and hence in W. Finally, we can represent an
arbitrary T as a composition of linear transformations

V—VeoW —W, z+ (z,Tx)— Tx.

The first transformation has zero kernel while the second is obtained by erasing
the first dim V' coordinates and hence can be dealt with by an iteration of the
Fourier-Motzkin elimination procedure. This concludes the proof of Part (1).

For every y € W the inverse image T~(y) C V is an affine subspace in W. For
any f € P(V), we can write

f=> ai[P] and f[T =S a[BnT (),

el el

for some polyhedra P; C V and some numbers «; € R. Hence for any f € P(V) and
any y € W the product f [T‘l] lies in P(V'). Let us define a function g : W — R
by

9y) =x (F [T W)])-

If f = [P] where P C V is a polyhedron then
1 if PNT Y (y)#0
9(y) = . i
0 if PNTHy)=10

and hence g = [T'(P)]. Therefore, for every f € P(V) we have g € P(W) and the
transformation f —— ¢ is the desired transformation 7. The uniqueness of 7 is
obvious. O

11



(6.2) Corollary. Let P C V be a polytope. Then P is a polyhedron.

Proof. We can write P = conv (ay, ... ,ay,) for some ay,...,a, € V. Let

An_lz{()\l,...,)\n): ZAizl and A\; >0 for z':l,...,n}

=1

be the standard (n — 1)-dimensional simplex. Clearly, A,,_; is a polyhedron. We
consider the linear transformation 7' : R® — V,

T()\l, e ;)\n) = Z)\zaz
=1

Clearly, T (A,,—1) = P. By Theorem 6.1 P is a polyhedron. O

(6.3) Problems.
1°. Construct an example of a closed convex set A C R? and a linear transfor-
mation T : R*> — R such that T'(A) is not closed.

2°. Tt follows from the example of Problem 1 above that if A C V is defined
by a system of infinitely many linear inequalities and if T': V' — W is a linear
transformation then T'(A) doesn’t have to be defined by a system of infinitely many
linear inequalities. Where does the proof of Part (1) of Theorem 6.1 break down
for infinite sets of linear inequalities?

3°. Prove a version of Theorem 6.1 replacing polyhedra by compact convex sets

and P(V) by Cy(V).

7. MINKOWSKI SUM

(7.1) Definitions. Let A C V be a set and let & € R be a number. We define the
scaling

aA:{oza:: a:EA}, aACV.

Let A, B C V be sets. We define their Minkowski sum

A+B={a+b: acAbeB}, A+BcCV.

(7.2) Theorem. LetV be a finite-dimensional space. Then

(1) If P, P, CV are polyhedra then Py + Py C V is a polyhedron;
(2) There exists a unique bilinear operation x : P(V) x P(V) — P(V), called
convolution, such that [Py|*[Py] = [Py + Ps] for any two polyhedra Py, Py C
V.
12



Proof. For polyhedra Py, P, C V, let us define
PixPo={(z,y): ze€Pye P}, P xP,CVa&V.
Clearly, P; x P, is a polyhedron. Let us define a linear transformation
T:VeV —V where T(x,y)=x+y.

Then
P1+P2 :T(Pl XPQ)

and hence P; + P, is a polyhedron by Part (1) of Theorem 6.1, which proves Part

(1).
By Part (2) of Theorem 6.1, there is a map 7 : P(V & V) — P(V) such that

T ([P x [P2]) =[P+ B.
For f,g € P(V) let us define f x g: V&V — V by

(f x g)(x,y) = f(x)g(y)-
Clearly [Pi] x [P;] = [P1 x P] for polyhedra P;, P, C V. Therefore, f x g €
PV eV)for f,g e P(V). Now we define
frg=T(fxg)
The proof of Part (2) now follows. O

(7.3) Problems.
1°. Let A be a convex set and suppose that «, 6 > 0. Prove that

(a+ B)A = aA + [A.
2°. Prove that

for all f € P(V).

3*. Let P C R? be a d-dimensional bounded polyhedron. Prove that [int P] €
P(V) and that

[P] + [~ int P] = (~1)7[0],

where int P is the interior of P.

4°. Prove a version of Theorem 7.2 replacing polyhedra by convex compact sets
and P(V) by Cp(V).

5*. Let K; C V, i € I, be a finite family of convex compact sets and let a; € R
be numbers such that

i€l

Z a; K; = Z (—) K,

2: a; >0 2: a; <0

Prove that

where in the latter identity the sum is understood as the Minkowski sum and the
products are understood as scalings.

13



8. EXAMPLES OF VALUATIONS

First, we consider valuations on Cy(V'). We consider a Euclidean structure on V.

(8.1) Intrinsic volumes. Clearly, volume of a convex compact set gives rise to a

valuation: if
icl
for some convex compact sets A; C V and some real o; € R then

Z a;vol (4;) = 0.
icl
Let L C V be a subspace, dim L = k, and let vol; be the k-dimensional volume
in L. Denoting by A;|L the orthogonal projection of A; onto L, we deduce from
Problem 3° of Section 6.3 that
> ai[4]L] =0
il
and hence
Z a; voly (4;]L) = 0.
icl
Hence the volume of the orthogonal projection of a convex compact set onto a
subspace gives rise to a valuation. Let us define wy(A) as the average k-dimensional
volume of the orthogonal projection of A onto a random k-dimensional subspace
(where the average is taken with respect to the Haar measure on the Grassmannian
G (R™) of all k-dimensional subspaces in R™). Then wy, called the k-th intrinsic
volume of A, gives rise to a valuation: if

Z a5 [Al] =0
for convex compact sets A; C V and reals «; € R then

Z o WE (AZ) =0.
iel
(8.2) Problems.
1°. Show that w(A) < wg(B) if A C B are convex compact sets, that wy(aA)
a*wyi(A) for a convex compact set A and a number o > 0 and that wy(U(A)) =

wi(A), where U is an isometry of V.

2° Show that wq is the Euler characteristic x.
3. Suppose that dim V' = d. Show that there is a constant ¢(d) such that

wa—1(A) = ¢(d) (the surface area of A)

for all convex compact sets A C V with a non-empty interior. In particular, ¢(2) =
1/7.

14



(8.3) Support function. Let us choose a linear functional ¢ : V. — R. For a
convex compact set A C V let us define

h(A;¢) = max {(x).

€A

The value of h(A; /) is called the support function of A in the direction of /.

(8.4) Problems. 1. Show that h(A;/) gives rise to a valuation: if 4; C V are
compact convex sets such that

Z(l/i [Al] =0

then
Z Oéih (Al, E) =0

iel
for any linear /: V — R.
2°. Let A, B C V be convex compact sets. Show that

h(A+ B;0) = h(A; €) + h(B; ()

for any linear ¢ : V — R.
Finally, we consider an interesting valuation on P (R3).

(8.5) Dehn invariant. A function f:R — R is called additive if
fla+b)= f(a)+ f(b) forall a,beR

(it does not have to be continuous or even measurable). Let us choose an additive
function f such that f(7) = 0. For a polytope P C R3, let us define a real number

D¢(P) = Z (length of the edge) f(the dihedral angle of P at the edge).
the edges of P

The number D¢ (P) is called the Dehn invariant of P. Strictly speaking, the Dehn
invariant D(P) is defined not as a real number but as an element of the module R®y,
(R/7Z), where both R and R/7Z are considered as additive groups and modules
over Z with the natural action, so

D(P) = Z (length of the edge)
the edges of P
®z (the dihedral angle of P at the edge mod =),

but we will work with D¢(P) instead.
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(8.6) Problems.

1. Let f : R — R be an additive function such that f(7) = 0. Show that
f(rz) =0 for any x € Q.

2. Let a € R be a number such that a/m ¢ Q. Deduce from the axiom of choice
that there is an additive function f such that f(7) =0 and f(a) # 0.

3*. Show that D¢(P) gives rise to valuation: if P, C R3 are polytopes and
«a; € R are real numbers such that

iel

then
Z Ozin (Pz> =0
il

for every additive f such that f(7) = 0.

4°. Let I C R? be the standard 3-dimensional cube. Show that Dy (I) = 0 for
any additive f such that f(m) = 0.

5°. Let A C R? be a regular tetrahedron. Show that all dihedral angles of A

are equal to arccos 3

1 1
6*. Show that — arccos = is an irrational number. See, for example, Chapter I of
i
M. Aigner and G.M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 2004.

7. Deduce from Problems 2-6 above that one cannot cut a regular cube into
finitely many polyhedral pieces to reassemble them into a regular tetrahedron (the
solution to Hilbert’s 3rd Poblem). Show that the axiom of choice (used in Problem
2) is not really needed to draw that conclusion.

8. Let P,Q C R? be two polygons of equal area. Show that P can be cut into
finitely many polygonal pieces that can be reassembled into @) (Bolyai-Gerwien
Theorem).

9. THE STRUCTURE OF POLYHEDRA

(9.1) Definitions. Let V be a vector space and let A C V beaset. Let £: V — R
be a linear function and let & € R be a number. Suppose that ¢(z) < « for all
x € A. The set

F:{xGA: E(:L’):a}

is called a face of A. We often treat () and A as faces of A. Faces other than A and
() are called proper faces.
A point v € A is called extreme if whenever v = (v1 + v3)/2 for some vy, v9 € A,

we must have v; = v9 = v. An extreme point of a polyhedron is called a vertex.
16



Let
(9.1.1) P:{xEV: li(x) <a; for iEI}

be a polyhedron. We assume that ¢; # 0 for all ¢ € I.
We say that the inequality ¢;(z) < «; is active on x if we have in fact ¢;(z) = «;.
Let u € V'\ {0} be a non-zero vector and let a € V' be a point. The set

{a +Tu: TE ]R}
is called a line through a in the direction of u and the set
{a +Tu: T> O}

is called a ray emanating from a in the direction of wu.

The relative interior of a convex set A C V is the interior of A relative to the
smallest affine subspace containing A. The dimension dim A of a convex set A C V'
is the dimension of the smallest affine subspace containing A.

(9.2) Lemma. Suppose that F' is a face of A and that v is an extreme point of F.
Then v is an extreme point of A.

Proof. Let £ : V — R be a linear function and let o € R be a number such that

l(z)<aforallz € Aand F = {z € A: {(z) = a}. Suppose that

V1 + V2
2

for v1,v9 € A. Then ¢ (v1),4 (v2) < o and

C(v1) + £ (v2)

5 ={(v) = .

Hence we should have ¢ (v1) = £(v2) = « and v1,vy € F. Since v is an extreme
point of F' we must have v; = vy = v, which proves that v is an extreme point of

A. O

(9.3) Lemma. Let P C V be a polyhedron defined by (9.1.1) and let v € P be a
point. Let

I, = {ie[: Ei(x):ai}

be the set of indices of the inequalities active on v. Then v is a vertex of P if and
only if
Span{ﬁi NS Iv} =V,
17



Proof. Suppose that
span{& 1€ IU} =V,

Let us write

v = U —;UQ for some wvq1,v9 € P.
Then
Ui (v1),4; (v2) < o and ti(v) ;Ei (v2) =/4; (v) =a; forall ic€l,.
Therefore,

l; (Ul> =Y (Uz) = EZ(U> =q; forall i€l,.
Since the functions ¢; : ¢ € I,, span the dual space V*, the system of linear equations
E,(CB) =q; for 1€l

has at most one solution in V', so we must have v; = v = v and v is an extreme
point.
Suppose that

span{ﬁi 1€ Iv} £ V.
Then there exists u € V', u # 0, such that

li(u)=0 forall i€l,.

Let L
vy +v
vp=v—eu and vg —=v+eu SO vV = 12 2
Since for ¢ ¢ I, we have £;(v) < «y, for all sufficiently small € > 0 we have vy, v9 € P,
so v is not a vertex of P. OJ

In particular, a polyhedron defined by n linear inequalities in a d-dimensional
space does not have more than (Z) vertices.

(9.4) Lemma. Let P C V be a polyhedron. Then either P contains an interior
point or P lies in a proper affine subspace of V.

Proof. Suppose that P is defined by the system (9.1.1). If for every ¢ € I there is
a point x; € P such that ¢; (z;) < «; then the point

1

is an interior point of P. Otherwise, there is an ¢ € I such that ¢;(x) = «; for all
x e P. U

18



(9.5) Lemma. Let P C R? be a polyhedron. Then P is bounded if and only if P
does not contain a ray.

Proof. Clearly, if P contains a ray then P is unbounded. Suppose that P is un-
bounded, so there is a sequence x,, € P such that ||z,| > n, where || - || is the
Euclidean norm. Suppose that P is defined by the system (9.1.1). Let

x
Up = ———=, 50 |lu,l =1.
[0

We observe that o
li (un) < # for all i€ 1.

Let u be a limit point of u,, so ||u|| =1 and
li(u) <0 forall iel.

Then for every x € P the ray emanating from z in the direction of u is contained
in P.

Now we can prove the second part of the Weyl-Minkowski Theorem, cf. Corollary
6.2.

(9.6) Theorem. Let P C V be a bounded polyhedron. Then P is a polytope that
1$ the convex hull of the set of its vertices.

Proof. We need to prove that every point x € P is a convex combination of vertices
of P. We proceed by induction on dimV'.

The case of dimV = 0 is trivial.

Suppose that P is defined by the system (9.1.1). If ¢;(z) = «; for some i € I then
x lies in a proper face F' of P and the result follows by the induction hypothesis
and Lemma 9.2. If /;(x) < «; for all i € I, let us consider a line L through z. Since
P is bounded, the intersection L N P is a closed interval, so

LNP=a,b]

where a,b € P necessarily lie in proper faces of P. Arguing as above, we conclude
that a and b are convex combinations of some vertices of P. Since x € [a, b], point
x is also a convex combination of some vertices of P. U

(9.7) Theorem. Let P C V be a non-empty polyhedron. Then P contains a vertex
if and only if P does not contain a line.

Proof. Let P be defined by system (9.1.1). If P contains a line in the direction
u # 0 then, necessarily, ¢;(u) = 0 for all ¢ € I. Then for any v € P we can write

V1 + U2

5 where v =v+wu and vy =v — u,
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so P has no vertices.

Suppose that P contains no lines. We proceed by induction on dim V' with the
trivial base of dim V' = 0. Without loss of generality, by Lemma 9.4 we may assume
that P has a non-empty interior. Let us pick a point x in the interior of P and let
us consider a line L through z in any direction u. Since P contains no lines, the
intersection P N L is either a non-empty closed interval or a ray. In either case, it
contains a point a which necessarily lies in a proper face F' of P. Hence there is a
proper face F' of P and the result follows by the induction hypothesis and Lemma
9.2. O

(9.8) Definitions. Let K C V be a polyhedron. Then K is called a coneif 0 € K
and for every x € K and every A > 0 we have A\x € K. Equivalently, K is a
polyhedral cone if K is defined by finitely many homogeneous linear inequalities:

(9.8.1) K:{xEV: li(z) <0 for ieI}.
Let P C V be a polyhedron. The set

Kp:{UEV: r+Au€eP forall x€ P and all )\20}

is called the recession cone of P. Equivalently, if P is defined by (9.1.1), cone Kp
is defined by (9.8.1). A cone without lines (equivalently, for which 0 is the vertex)
is called pointed.

We say that a point ©v € K, u # 0, spans an extreme ray of K if whenever
u = (u + ug) /2 with uy,us € K, we must have u; = A\ju and us = Ayu for some

)\1, Ao € R.
A vector
n
x:Z)\iui where A\, >0 forall 1=1,...,n
i=1
is called a conic combination of vectors uy, ... ,u,. The set of all conic combinations

of vectors from a set A is called the conic hull of A and denoted co(A).

(9.9) Theorem. Let K C V be a pointed polyhedral cone such that K # {0}.
Then there exists an affine hyperplane H C V such that 0 ¢ H, P = KN H is a
polytope and K = co(P).

Proof. Suppose that K is defined by system (9.8.1). Let
(=Y "t
iel

Let us pick any u € K \ {0}. We claim that ¢(u) < 0. Indeed, if ¢(u) = 0 we
necessarily have ¢;(u) = 0 for all i € I and then the line through the origin in the
direction of u is contained in K, which is a contradiction.
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In particular, we conclude that ¢ # 0. Let us define
H:{xGV: E(:L'):—l}.

Then H is an affine hyperplane not containing the origin and P = K N H is a
polyhedron. Since for every x € K\ {0} we have ¢(x) < 0, there exists a A > 0 such
that {(Ax) = —1. It follows that K = co(P). By Theorem 9.6, it remains to prove
that P is bounded and by Lemma 9.5 it remains to prove that P contains no rays.
Suppose that P contains a ray in the direction u # 0. Then, necessarily ¢;(u) < 0
for all i € I, so u € K\ {0}. Additionally, since u is parallel to H, we must have
¢(u) = 0, which as we proved above is impossible. O

(9.10) Theorem. Let P C V be a non-empty polyhedron without lines. Then
P=M+ Kp,
where M is the convex hull of the vertices of P and Kp is the recession cone of P.

Proof. Clearly,
M+ Kp C P.

It remains to show the reverse inclusion. We prove it by induction on dim V.

The case of dim V' = 0 is trivial. Let us pick a point x € P. If z lies in a proper
face F' of P then by the induction hypothesis x can be written as a sum of a vector
from K and a convex combination of vertices of F'. The result follows by Lemma
9.2 and the inclusion Kr C Kp.

Suppose, therefore, that z lies in the interior of P. If Kp = {0}, the result
follows by Theorem 9.6. If Kp # {0}, let us pick a vector u € Kp \ {0} and
consider a line L through z in the direction of u. The intersection L N P is a ray
{a +TUu: T > 0}. Point a lies in a proper face of P and as we argued above
belongs to M + Kp. Hence x € M + Kp as well. O

(9.11) Theorem. Let P C V be a polyhedron. Then P can be represented as the
Minkowski sum
P=L+M+K,

where L C 'V is a subspace, M C V' is a polytope and K C V is a polyhedral cone
without lines.

Proof. Suppose that P is defined by system (9.1.1). We note that if a line
{ru: 7 €R} lies in P then ¢;(u) = 0 for all i € I. Hence

L:{UEV: li(u) =0 for iEI}

is the largest under inclusion subspace contained in P.

Let us consider the projection pr: V. — V/L and let @Q = pr(P). By Theorem
6.1, Q@ C V/L is a polyhedron. Furthermore, () does not contain lines (since L is
the largest subspace contained in P). Therefore, by Theorem 9.10, we can write
Q) = M + K, where M is a polytope and K is a cone without lines. By introducing
a scalar product in V', we may identify V/L with a subspace of V. Since for all
x € V/L, we have pr~!(z) = z + L, we obtain that P =L+ M + K. O
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(9.12) Theorem. Let P C V be a polyhedron defined by (9.1.1). For a point
v € P, let I, C I be the set of inequalities active on v. Let

Fv:{xEP: li(z) =a; for ier}.

Then
(1) F, is a face of P;
(2) If F C P is a non-empty face of P then F = F, for any v in the relative
interior of F.

Proof. Let

Ezz& and 0422041-

(ST S i€l
Clearly, ¢(z) < « for all z € P and

FU:{SCEP: Z(m):a}.

Hence F, is a face, which proves Part (1).
To prove Part (2), suppose that a face F' C P is defined by the equation

F:{xeP: E(:L’):a},

where £ : V' — R is a linear function and « is a real number such that /(z) < «
for all z € P. Let v € F be a point in the relative interior and let I,, C I be the set
of inequalities active on v. We claim that

(9.12.1) IS Span{éi: 1€ IU}.

Indeed, if (9.12.1) if violated, one can find a point u € V such that ¢;(u) = 0 for
all i € I, and ¢(u) # 0. Choosing —u, if necessary, we may assume that ¢(u) > 0.
Then for all sufficiently small € > 0 we have v = v+ eu € P and £(v') > {(v) = «,
which is a contradiction. Hence (9.12.1) holds and

{= Z N4; and hence «o = Z ;0
iel, iel,

for some real \;. Therefore,
F, C F.

Suppose now that there is a point w € F'\ F,,. Then there exists a j € I,, such that
¢j(w) < aj. Therefore,

G:{xeF: €j(a:):aj}

is a proper face of F' containing v, which is a contradiction, since v was chosen in
the relative interior of F'. O
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(9.13) Problems.
1. Let us fix a linear functional ¢ : V' — R. For a compact convex set A C V,
let Fy(A) be the face of A in the direction of ¢:

Fy(A) = {y ceA: Ly = glea,fxd(x)}'

Prove that the correspondence A — Fy(A) gives rise to a valuation on Cp(V): if

D ai[A]=0 then Y a;[Fy(4;)]=0.
il il
2. Construct examples of convex compact sets C' C B C A such that B is a face
of A, C is a face of B but C is not a face of A.
3°. Show that the intersection of every two faces of a set is a face of the set.
4°. Prove that a vertex of a polyhedron is a face of the polyhedron.

5°. Let Py, P, C V be polyhedra and let ) = P; + P,. Prove that every face of
Q is the Minkowski sum of a face of P; and a face of Ps.

6. Let P, P, C V be non-empty polyhedra and let Q = P; N P,. Prove that
every vertex v of () can be written as v = F} N Fy, where I} is a face of Pp, Fy is a
face of P, and dim F; + dim F5, < dim V.

7. Let A C V be a convex set, where V' is a finite-dimensional space. Prove that
either A contains an interior point or lies in a proper affine subspace of V.

8. Let A C V be a closed convex set. Suppose that A has finitely many faces.
Prove that A is a polyhedron.

10. THE EULER-POINCARE FORMULA

(10.1) Lemma. Let P C R¥ be a polytope with a non-empty interior int P. Then
int P] C Cp (R¥) and
x ([int P]) = (=1)*.

Proof. By Corollary 6.2, P is a bounded polyhedron and by Theorem 9.12 every
point of P lies in the relative interior of a face of P. Since faces of P are polyhedra
and the intersection of any number of faces of P is a face (possibly empty) of P,
we have [int P] C G (RF).

Now we use the induction on k. The case of k = 0 is obvious and for £ > 0 we
use Corollary 5.3. Namely, let H, C R* be the affine hyperplane consisting of the
points with the last coordinate 7. Then

x (Jint P]) = Z(X([intP NH))— lim x(fmt P HT_E])>.

By the induction hypothesis, for 7 equal to the maximum value of the last coordinate
on P the corresponding summand is 0 — (—1)¥~! = (—1)*, while for all other 7 the
corresponding summand is 0. U

Now we can establish the Euler-Poincaré formula.
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(10.2) Theorem. Let P C R? be a d-dimensional polytope and let fi(P) denotes
the number of i-dimensional faces of P. Then

d—1

Y (=D fi(P)y =1+ (D)

i=0
Proof. Using Theorem 9.12, we can write

[P] = [int P] + > [int F],

where the sum is taken over all proper faces F' of P and int F' is the relative interior
of F'. Applying the Euler characteristic to the both parts of the identity and using
Lemma 10.1, we conclude

+ Z d1m F

from which the proof follows. U

(10.3) Problems.

1. Let P C V be an unbounded polyhedron without lines. Prove that
x([int P]) = 0.

2. Let P C R? be a non-empty unbounded polyhedron without lines, let f?(P)
be the number of bounded i-dimensional faces of P and let f>°(P) be the number

of unbounded i-dimensional faces of P. Prove that
d—1
S (-1 f(P)=1 and Z 1)t feo(P) = 1.
i=0

3. Let P C R? be a 3-dimensional polytope. For a vertex v of P let us define
the curvature k(v) at v as 2r minus the sum of the angles at v of the facets of P
containing v. Prove the Gauss-Bonnet formula

Z k(v) = 4m,

where the sum is taken over all vertices v of P.

11. THE BIRKHOFF POLYTOPE

(11.1) Definitions. A doubly stochastic matrix is an n X n non-negative matrix
with all row sums and all column sums equal to 1. A permutation matrix (o)

corresponding to a permutation o of the set {1,...,n} is the n x n matrix such
that )
(0) 1 ifo(j)=1
(o) =
“ 0 otherwise.

The set of all permutations o of {1,...,n} is the symmetric group S,. Let R™*™
be the vector space of all n x n matrices. The Birkhoff polytope B,, is defined as
the bounded polyhedron in R™*" that consists of all doubly stochastic matrices.
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(11.2) Theorem. The vertices of By, are the n x n are the n X n permutation
matrices. Consequently,

B, = conv(w(a) . o€ Sn>.

Proof. It is immediate that a permutation matrix is necessarily a vertex of B,,. Let
us prove that there are no other vertices.

We proceed by induction on n. The case of n =1 is trivial.

Let A C R™"™ be the affine subspace of the n x n matrices with row and column
sums equal to 1. We claim that dim A = (n — 1)?. Indeed, every matrix x € A,
x = (x;5), is uniquely specified by its (n — 1) x (n — 1) upper left corner, since for
other entries we should have

n—1
:z:mzl—g xzi; for ¢=1,...,n—-1
j=1

n—1
xnjzl—Za:ij for j=1,...,n—1 and
i=1

Tpn =(2 —n) + Z Tij.

1<i<n—1

1<jsn—1
The polyhedron B,, C A is defined by n? inequalities z;; > 0. Let us consider a
vertex v = (v;;) of By,. By Lemma 9.3, at least (n — 1)? of the inequalities should
be active on v and hence at least (n — 1) = n? — 2n + 1 entries v;; should be
0. We observe that no row can have all zeros and that there must be a row with
(n — 1) zero, since otherwise the total number of zeros would have been at most
n(n —2) < (n —1)2. The remaining entry in a row with (n — 1) zero must be 1
and hence all other entries in the corresponding column with 1 must be 0. If we
cross out the row and the column containing 1, we obtain an (n — 1) x (n — 1)
doubly stochastic matrix w which should be a vertex of B, _;. By the induction
hypothesis, w is a permutation matrix and hence v must also be a permutation
matrix. U

(11.3) Problems.

1. Consider a polytope of n x n symmetric doubly stochastic matrices. Prove
that every vertex of the polytope is either a permutation matrix or the average of
two permutation matrices.

2. Let G be a finite group acting in a finite-dimensional vector space V', let
A C V be a convex compact set such that g(A) = A for all g € G and let L C V
be the subspace L = {a: eV : glx)=xforall g € G}. Prove that every extreme
point of AN L is a convex combination of at most |G| extreme points of A.

3. Prove that the interval [7(o),7(7)] is an edge (1-dimensional face) of B,, if
and only if 0~17 is a cycle (that is, a permutation consisting of a single cycle and
fixed points).
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12. THE SCHUR-HORN THEOREM
We prove the Schur part of the Schur—-Horn Theorem.

(12.1) Theorem. Let A be an n X n real symmetric matriz with the eigenvalues
AMyeoo s A Letl = (Aq,..., ) and let a = (aq1,... ,ann) be the vector of the
diagonal entries of A. Then a lies in the convex hull of the vectors obtained from [
by a permutation of the coordinates:

a € COHV(’/T(O’)Z: o€ Sn>.

Proof. Matrix A can be written in the form A = UAUT, where U = (u;;) is an
orthogonal matrix and A is the diagonal matrix having A, ..., A, on the diagonal.
Then

n
am':E )\jufj for i=1,...,n.
Jj=1

Let C = (¢;j) be the matrix defined by ¢;; = ufj Since U is an orthogonal matrix,
C is doubly stochastic and we have a = Cl. By Theorem 11.2, matrix C' can
be written as a convex combination of permutation matrices m(o) and the proof

follows. O

(12.2) Problems.
1*. Prove the Horn part of the Schur-Horn Theorem: for every vector a €

conv (W(J)l NS Sn) there is a real symmetric n x n matrix A with diagonal a
and the eigenvalues [ = (A1,...,A\pn).

2. Complete the following alternative proof of Theorem 12.1. Its advantage is
that it can be generalized to other situations, in particular, to the orbits of other
Lie groups.

Let V' be the space of n x n symmetric matrices with the scalar product (A, B) =
trace(AB). Let W C V be the subspace consisting of the diagonal matrices. Con-
sider the orthogonal projection pr : V' — W that replaces the non-diagonal entries
of a matrix with zeros. Consider the orbit

O = {UAUT U is orthogonal}

of a diagonal matrix A. Notice that ONW consists of the diagonal matrices obtained
from A by permuting the entries on the diagonal. Our goal is to show that

pr(0) C conv(ONW).

Argue that it suffices to show that for any B € W the maximum of the linear

function /(X ) = trace(X B) is attained at a point of O NW. Moreover, it is enough

to show that for B with distinct diagonal entries. Note that O is a smooth manifold
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and that the tangent space at X € O consists of all matrices of the type XY —Y X
for a skew-symmetric Y: Y7 = —Y. Then X is a critical point of ¢ if and only if

0 =trace(XY B — Y XB) = trace(Y BX — Y XB) = trace(Y (BX — X B))

for all skew-symmetric Y.

The last condition implies that BX — X B = 0 and since the diagonal entries of B
are distinct, X must be a diagonal matrix.

13. TRANSPORTATION POLYHEDRA

(13.1) Definition. Let G be a directed graph with a finite set V' of vertices and
a finite set E of directed edges v — w for certain pairs v,w € V. We forbid loops
v — v and multiple edges. Let b = {bv v E V} be real numbers assigned to the
vertices. If b, > 0, we call b, the demand at v, if b, < 0, we call b, the supply at
v. The pair (G,b) is called a transportation network. An assignment z. : e € F of
non-negative numbers to the edges of GG is called a feasible flow if at every vertex v
the balance condition is satisfied:

Z Lo — Z Tz, =05, forall veV.

eck: ecE:
e ends in v e begins in v

We define the polyhedron T'(G;b) C R¥ as the set of all feasible flows.

(13.2) Lemma. Suppose thatx = (z. : e € E) is a vertex of T(G;b). Let E, C E
be the set of edges e where x. > 0. Then E, contains no cycles, that is, configu-

rations of the type v1 — vo — ... — vy, — v1 where “—7 stands for an edge in either
direction.
Proof. Suppose that there is a cycle v; — vo — ... — v, — v1 with positive flows on

the edges. We choose a sufficiently small € > 0 and construct two feasible flows y
and z, where

flow y is obtained from z by adding € to the flow on each edge of the type
Vi — Vit1, Uy — v and subtracting e from the flow on each edge of the type
Vi — Vi1 and vy, «— v7;

flow z is obtained from x by adding € to the flow on each edge of the type
Vi < Vit1, Um < v and subtracting e from the flow on each edge of the type
v; — Vi+1 and v, — v;.

Since x = (y + 2)/2, flow x cannot be a vertex. O

(13.3) Theorem. Suppose that b, : v € V are integer. Let x € T(G;b) be a
verter. Then x. is integer for all e € E.

Proof. By Lemma 13.2 it suffices to prove the following statement:
27



suppose that {z.} is a feasible flow in a transportation network with integer
demand /supplies and such that the set of edges e with . > 0 has no cycles. Then
T. are integers.

We proceed by induction on the number of non-zero xz.. If all z. = 0 then clearly
x. are all integers. If not all . = 0 then there is a vertex v such that for only one
edge e incident to v we have x. > 0. Let w be the other vertex incident to e. We
modify the network by setting

by :=by +0b, and b, =0,
modify the feasible flow by setting x. := 0 and apply the induction hypothesis. [
(13.4) Problems.

1°. Show that the Birkhoff polytope of Section 11 is a transportation polyhedron.

2°. Consider the polytope of m x n non-negative matrices with positive integer
row sums 7, ..., 7, and positive integer column sums cy, ... ,c,. Show that each
vertex of the polytope is an integer matrix.

3°. Show that if T'(G;b) is non-empty then ) _, b, = 0.
4. Suppose that T'(G;b) is non-empty. Show that T'(G;b) is bounded if and only
if G does not contain a directed cycle vy — vo — ... — v, — v1.

5*. Consider the polytope P, of all n X n X n non-negative arrays {%k} with
all sectional sums equal to 1:

E Tigr =1 for i=1,...,n
3.k

injkzl for k=1,...,n;

i,
injkzl for j=1,...,n.
ik
Prove that for any sequence of rational numbers 1 > oy > ... > 0, > 0 one can

find a positive integer b such that the numbers (b —1)/b >0y > ... > 0, > 1/bis
the set of values (without multiplicities) of the non-zero coordinates of a vertex of
P, for some n.

See M.B. Gromova, The Birkhoff-von Neumann theorem for polystochastic ma-
trices [translation of Operations research and statistical simulation, No. 2 (Rus-
sian), 3-15, 149, Izdat. Leningrad. Univ., Leningrad, 1974]. Selected translations.
Selecta Math. Soviet. 11 (1992), no. 2, 145-158.

14. THE PERMUTATION POLYTOPE

(14.1) Definitions. Let us fix a vector a = (ay,...,ay,). The convex hull of
all vectors in R™ obtained by permutations of the coordinates of a is called the
permutation polytope P(a):

P(a) = conv((ag(l), . ,ag(n)) . o€ Sn) = conv(w(a)a . o€ Sn),
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see Definitions 11.1. By (x,y) we denote the standard scalar product of vectors
z,y € R™

n
(x,y)sziyi for = (x1,...,2,) and y=(y1,-..,Yn)-
i=1

(14.2) Lemma. Let a = (ai,...,a,) and b = (by,... ,by) be two real n-vectors.
Suppose that a; > a; and b; < b; for some i # j. Let b be the vector obtained from
b by swapping coordinates b; and bj. Then

(b,a) > (b, a).

Proof. We have
(b,a) — (b,a) = bia; + bja; — bja; — bja; = (bj — b;) (a; — a;) > 0.
O

(14.3) Theorem. Let us fix a vector a = (ay,...,a,) where a3 > ... > a, and
let us consider the permutation polytope P(a). Then the (n — k)-dimensional faces
F of P(a) containing a are as follows:

we choose a partition of the integer interval 1,... ,n into k non-empty consecu-
tive integer intervals Iy, ... , I and let

Fr,..n= conv{w(a)a: o(l;)=1; for j=1,... ,k}.

Proof. Let b € R™ be a vector defining a face F' of P(a) containing a, so

(b,a) = IIgIlg()({})(b, z) and F = {x € P(a): (b,z) = (b, a)}.

By Lemma 14.2 we must have by > by > ... > b,,. Suppose that
b1 =...=bmy >bmyr1 =1 =bm,+ms > by tmat1 .-
and let us define the partition
L={1... m}, L={m +1,... , m +ma}...

In other words, the coordinate b; does not change as long as ¢ stays within a
subinterval I; of the partition and gets smaller when ¢ moves from I; to I;;q. It
is now clear that the corresponding face F' is the convex hull of all vectors 7 (o)a,
where o ranges over all permutations o € S,, that map each of the intervals I; onto
itself. Geometrically, the face F' = Fr, . 1, is the direct product of permutation
polytopes in spaces R, ... R’ and hence dim F = n — k. 0

29



(14.4) Corollary. Let a = (a1,...,an) be a vector with distinct coordinates. Let

us choose a partition
{1,...,n}=5U...US},

where S; are non-empty pairwise disjoint subsets.
Let s; =|S;| for j=1,...,k and let us define consecutive subintervals

11:{1,...,81}, 12:{81+1,...,81+82},...,
Ip={s1+...+sk_1+1,...,n},

so that |I;| = |S;| for j=1,... k.

Let F = Fs, .. s, be the conver hull of the vectors x = (x1,...,x,) such that
forall j =1,...,k, the set of the coordinates {x; : i € S;} coincides with the set
of the coordinates {a; : i € I;}. Then F is a face of P(a) of dimension n —k and
all (n — k)-faces of P(a) appear this way.

0

(14.5) Problems.
1°. Let P be a polytope and let F' C P be a face of P. Prove that F' is the
convex hull of the vertices of P that belong to F.

2°. Suppose that the coordinates aq, ... ,a, of a are not all equal. Prove that
dim P(a) =n — 1.
3°. Suppose that a; > ... > a,. Prove that two vertices of P(a) are the

endpoints of an edge (a face of dimension 1) if and only if one vertex is obtained
from the other by swapping the coordinates with two adjacent values a; and a;11
fori=1,...,n—1.

4. Let a = (ay,...,a,) where a; > ay > ... > a,. Prove that P(a) is defined in
R™ by the inequalities

S|
in < Zai forall Sc{l,...,n}, 0<|S|<n
i€S i=1
and the equation
n n
=Y a.
i=1 i=1
5. Let a = (ay,...,a,) where a3 > ag > ... > a, and let x = (z1,...,2,)

where 1 > x5 > ... > x,,. Prove that = € P(a) if and only if

k k
Z%gZai for k=1,...,n—1 and zn:xiziai
i=1 i=1 i=1 i=1

(Rado’s Theorem).
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6. Let a = (1,...,n) and let ey, ... , e, be the standard basis of R”. Prove that
P(a) is a translation of the Minkowski sum of (}) intervals

e —ej ej—e; o
{22], J . for @ > j.

2

15. CYCLIC POLYTOPES

(15.1) Definitions. Let ¢ be a real parameter. The curve
v(t) = (t,£%,...,t%) e R?

is called the moment curve.
Let us pick numbers
O<t1 <...<t,

and let
v =~(t;) for i=1,... n.

The polytope
P = conv(vl, e ,vn)

is called the cyclic polytope. Often, we suppress the dependence on the choice of

parameters t1,... ,t, in the notation for P and denote it just by C(d,n).
(15.2) Theorem. Let k < d/2 and let v;,, ... ,v;, be distinct vertices of C(d,n).
Then

F = conv (viy, ... ,v;,)

is a face of C(d,n).
Proof. Let us consider a polynomial
p(t) =t (= t,)7 - (8 — 1)
Thus
p(tiy)=...=p(t;,)=0 and p(t) >0 for t#t;,,...,t;,; t>0.
Since deg p = d, we can write
p(t) = g — art — ... — agt?.
Let a = (aq,...,aq). Then
p(t) = a0 — {(a, (1))
Hence
(a,v;,) =...=(a,v;,) =09 and (a,v;) <ap for @iy, ... i,
which concludes the proof. O
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(15.3) Problems.
1. Prove that any affine hyperplane in R? intersects the moment curve 7(t) in
not more than d points.

2. Prove the Gale’s eveness condition: the convex hull of {fui NS I} is a facet
of C(d,n) (that is, a face of dimension d — 1) if and only if |I| = d and any two
indices not in I are separated by an even number of indices in I.

3. Describe the faces of C'(4,n).

4. Suppose that d = 2m is even. Consider the trigonometric moment curve
w(t) = (cost,sint, cos 2t,sin 2t, ... ,cosmt,sinmt), 0<t < 2w

in R?. Prove that any affine hyperplane in R? intersects w(¢) in not more than d
points.

5. Let w(t) be the trigonometric moment curve of Problem 2, let 0 < ¢; < t3 <
oo <ty <2mand let v; = w(t;) fori =1,...,n. Consider P = conv(vl,... ,vn>.
Prove that the convex hull of every k < d/2 vertices of P is a face of P.

6. Consider letter “Y”, that is, three intervals joined at an endpoint. Prove
that one cannot embed “Y” in R? by a continuous embedding so that every affine
hyperplane intersects the image in at most d points.

7. Let P C R% be a polytope with n vertices and let k > d/2. Suppose that every
k vertices of P are the vertices of some proper face of P. Prove that n < d + 1.

16. POLARITY

(16.1) Definition. Let V' be Euclidean space with the scalar product (-,-) and
the corresponding norm || - || and let A C V' be a non-empty set. The polar A° of
A is defined by

AOI{CEVZ (c,x) <1 for all :CEA}.

(16.2) Lemma. Let A C V be a non-empty closed convez set and let b ¢ A be a
point. Then there exists a vector ¢ € A and a number o € R such that (c,x) < «
for all x € A and {(c,b) > a.

Proof. First, we prove that there exists a point a € A such that |ja — b|| < ||z — b
for all x € A. Indeed, let us choose a ball centered at b of a sufficiently large radius
T’

BT:{er: ||93—b||§7°},

which intersects A. Since A is closed, the intersection AN B, is compact and hence
the function = —— ||z — b|| attains its minimum on A N B,., which is necessarily the
minimum on A. Let

1
c=b—a#0 and azi(b—a, b+ a).
32



Since A is convex, for every z € A and every 0 <t < 1, we have tx + (1 —t)a € A
and therefore
[tz + (1 —t)a = b]* > |la—b|*.

Since
||ta:-|—(1—t)a—b||2 = ||t(33—a)-|—(a—b)||2 = ||a—b||2-|-2t<33—a, a—b)+t2||33—a||2,
we conclude that

(c, x—a) < 0 forall z€A
and hence
(16.2.1) (¢, z) < (¢, a) forall ze A
On the other hand,

(¢, b) — (e, a) = |c[* >0,

and hence
(16.2.2) (e, b) > (e, a).

Since « is the average of (c, a) and (c, b), the proof follows by (16.2.1) and (16.2.2).
U
(16.3) Theorem.

(1) Let A CV be a closed convex set containing 0. Then

(A%)° = 4;
(2) There exists a linear transformation D : C(V) — C(V') such that
D ([A]) = [A°]

for all non-empty closed convex sets A C V;
(3) Let P C V be a non-empty polyhedron. Then P° is a polyhedron.

Proof. Let us choose an x € A. Then {(c,z) < 1 for all ¢ € A° and hence x € (A°)°.
Suppose that there exists a b € (A°)° such that b ¢ A. Since A is closed and convex,
by Lemma 16.2 there is a vector ¢ € V' and a number a € R such that (¢, z) < «
for all x € A and (¢,b) > «. Since 0 € A we conclude that @ > 0. Scaling, if
necessary, ¢ — a~ ‘¢, we may assume that o = 1. Then ¢ € A° and {(c,b) > 1,
which contradicts that b € (A°)°. Hence Part (1) is proven.

For € > 0 let us define a function G, : V x V — R by

1 if (z,y)<1l+e

0 otherwise.
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We claim that for all f € C(V) and ally € V

the function g, () = f(x)Ge(x,y) lies in C(V') and
the limit h(y) = lime_o4 X (gy,e) exists.

By linearity, it suffices to check the above statements for f = [A], where A is a
non-empty closed convex set. Let

mmz{xEV: @u»21+4.
Thus H, . is a closed halfspace and
Gy.e = [Al = [AN Hy ] .
80 gy,e € C(V). Therefore,

1 if (z,y)<1l+4+e forall z€ A

0 otherwise.

M%Qz{

Hence
1 if (z,y) <1 forall z€ A
h(y) =

0 otherwise.
Finally, we claim that the linear transformation D : f —— h maps C(V) into C(V)
and maps the indicator of a non-empty closed convex set to the indicator of its

polar. Indeed, if f = [A] then h = [A°] and the proof of Part (2) follows.
By Theorem 9.11 there is a decomposition

P=L+K+M,

where L C V is a subspace, K C V is a pointed polyhedral cone and M is a
polytope.
We observe that

LO:{CEV: (c,z) =0 for all xeL},

so L° is the orthogonal complement of L. Indeed, if (¢, z) # 0 for some x € L then
by scaling z —— Az for an appropriate A € R we find = € L such that (¢, x) > 1, so
c¢ L°.

Next, we claim that

KO:{CEV: (c,z) <0 for all xeK}.
Indeed, if (¢, x) > 0 for some x € K then by scaling x —— Ax for an appropriate

A > 0 we find x € K such that (¢,z) > 1, s0 c ¢ K°.
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By Theorem 9.9, we can write
K:co(ui: 1=1,... ,m)

for some vectors uq,...,u, € V. Then

K° = {CGV: (c,u;) <0 for i=1,... ,m}.
Assuming that

M = conv(vi coe=1,... ,n),

we conclude that

M° = {CEV: (c,v;) <1 for i=1,... ,m}.
In particular, L°, K° and M° are polyhedra. We claim that

P°=L°NK°nNM°.

Indeed, any z € P can be represented as a sum x = u+w +y, where u € L, w € K
and y € M. Then, for every c € L° N K° N M°, we have

<C7 ZE) :<C7 u> + <Cv w) + <Cv y>
(c,w) + (¢, y)

(¢, y)
1

IA A

and hence ¢ € P°. Suppose that ¢ € P°. Let us choose a point x € P. Then, for
any u € L and any A € R we have x + Au € P and so we must have (¢, u) = 0, so
c € L°. Similarly, for any v € K and any A > 0 we have x + \u € P, so we must
have (c,u) <0 and ¢ € K°. Finally, M C P, so we must have ¢ € M°. O

(16.4) Problems.
1°. Find the polars of the origin, the whole space, the unit ball, the standard
cube and octahedron, see Problem 4 of Section 1.2.

2°. Show that A C B implies B® C A°, that (U, Ai)o = (;e; A and that
(aA)° = a~tA° for a > 0.

3. Let K1, Ko C V be two polyhedral cones. Show that (K; + K»)° = K{ N KS
and that (K1 N Ky)° = K{ + K3.

4. Let IUJ = {1,...,d} be a partition, INJ = ). Let K{, Ko C R% be two sets
defined by

Klz{(a:l,...,:cd): ;>0 for ¢€l and z; >0 for jEJ},
ng{(a:l,...,:cd): z; <0 for ¢€l and z; >0 for jEJ}.

Prove that D ([K1]) = (—=1)I'I[K3].
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17. POLYTOPES AND POLARITY

(17.1) Theorem. Let V be FEuclidean space, dimV = d, and let P C V be a
polytope containing the origin in its interior. Let Q = P° C V. For a proper face
F of P let us define F C Q by

F:{CGQ: (c,xy =1 for all zz:eF}.

(1) @ is a polytope containing the origin in its interior;

(2) F is a face of Q;

(3) dimF +dimF =d —1;

(4) If G is a proper face of P such that F C G then G C F;
(5) Let G be a proper face of Q. Let

F:{xeP: (x,c) =1 for all CGG}.

Then F is a proper face of P and F = G.

Proof. Let
chonv(z)i, 1=1,... ,n),
where vq,... ,v, are the vertices of P. Then
(17.1.1) Q:{CEVZ (c,v;) <1 for izl,...,n}.

In particular, @ is a polyhedron. For p > 0 let
B,={zeV: |lz|<p}
be the ball of radius p centered at the origin. Since for some € > 0 we have
B. C P C Byye,

we have
Be C Q CBl/e

and so @ is a bounded polyhedron containing the origin in its interior. Part (1)
now follows.
Suppose that

(17.1.2) F= conv(vi e I).
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Then X
F:{CEQ: (c,v;) =1 for all ie[}.

1
u:msz

iel

Let

be the average of the vertices v; on the face F'. Because of (17.1.1), we can write
F:{CEQ: (c,u>:1}.

Therefore, F is a face of Q, so Part (2) follows.
Since F' is a proper face of P there exists a ¢ € V and a number « such that

(c,z) <a forall z€ P and F:{xEP: <c,x):a}.

Since P contains the origin in its interior, o > 0 and by scaling ¢ — a~!c we can

assume that a = 1. Hence by (17.1.2),
(17.1.3) (c,v;) =1 for i€l and (c,v;) <1 for i€l

In particular, ¢ € F.Let L = span(F) and let L+ be the orthogonal complement to
L. Thus dim L = dim F + 1 and dim L+ = d — dim F' — 1. We observe that for any
w € L+ and a sufficiently small € > 0 the perturbation ¢ — c+ew satisfies (17.1.3)
and hence lies in F'. Therefore, dim ' > d — dim F — 1. Moreover, for any ¢ € F
and any = € F we have (c—¢,z) = 0 and hence dim ' < d—dim L = d —dim F —1.
This concludes the proof of Part (3).

Part (4) is obvious.

By Part (1) of Theorem 16.3, we have P = Q°. We conclude that F' is a proper
face of P by exchanging the roles of P and @ and by Part (2) of the Theorem, so
F = G. Moreover, by Part (3) of the Theorem, we have dim F = d — dim G — 1
and hence dim F' = dim G. Clearly, G C F. Let us pick a point x in the relative
interior of G and hence in the relative interior of E. By Theorem 9.12, both F and
G are defined by turning the inequalities of ) active on x into equations, and hence
G = F, which proves Part (5). O

(17.2) Face figure. Let P C V be a d-dimensional polytope containing the origin
in its interior and let FF C P be a k-dimensional face of P, 0 < k < d — 1. Let
Q = P°, let I be the face of Q constructed in Theorem 17.1 and let H be the
polar of F computed in the affine span of F with respect to the origin chosen in
the relative interior of F'. Hence H is a polytope and dim H = d — 1 — k. Theorem
17.1 implies that there is an inclusion-preserving bijection between the faces G of
P containing F' and the faces of H, where F' itself corresponds to the empty face of
H and P corresponds to H. The partially ordered (by inclusion) set of all faces G
of P containing F' is called the face figure of F' in P and denoted P/F. Hence the
face figure P/F' is isomorphic to the partially ordered (by inclusion) set of all faces
of a (d — k — 1)-dimensional polytope H (the empty face and H itself included).
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(17.3) Problems.

1°. Let P be a d-dimensional polytope and let F' C G be two faces of P such
that dim G — dim F' = 2. Prove that there are precisely two faces Hy, Ho of P such
that F' C Hy, H, C G and the inclusions are proper.

2. Let P be a d-dimensional polytope and let int P be its interior. Prove that

(~1)fint ) = 3 (1) % F[F),

F

where the sum is taken over all faces F' of P, including P but not including the
empty face.

3. Let ey, e, €3, e4 be the standard basis of R* and let
chonv(ei—f—ej, —e; —e€j, ,—e; for 1<i#j5< 4).

Prove that P° can be obtained from P by an invertible linear transformation (such
polytopes are called self-dual).

18. REGULAR TRIANGULATIONS AND SUBDIVISIONS

(18.1) Definitions. Points vy, ... ,v,, € V are called affinely independent if when-
ever a1y +. ..+ ayv,, = 0 for some real o’s such that oy +. ..+ «,, = 0, one must
have a; = ... = oy, = 0. Equivalently, vq,... ,v,, are affinely independent if and
only if the vectors w; = (v;,1) € VAR, i =1,...,m, are linearly independent. The
convex hull of a set of affinely independent points is called a simplex. Equivalently,
a simplex is the image T (A,,—1) of the standard simplex A,,_; (see Problem 4 of
Section 1.2), where T' is a composition of a translation and a linear transformation
with zero kernel.

Let P C R%! be a (d — 1)-dimensional polytope. A triangulation of P is a
representation of P as a finite union of (d — 1)-dimensional simplices such that
every two simplices are either disjoint or intersect by a common proper face. We
are interested in triangulations without new vertices, that is, when the vertices of
the simplices of the triangulation are vertices of the polytope P. More generally, a
polytopal subdivision is a representation of P as a finite union of (d —1)-dimensional
polytopes such that every two polytopes are either disjoint or intersect by a common
proper face (again, we are interested in subdivisions without new vertices). We say
that subdivision 57 refines subdivision Ss if every polytope of subdivision S5 is a
union of polytopes of subdivision 5.

(18.2) Lemma. Let vq,...,v441 € R¥™! be points. Suppose that there exist real
Tiy...,Tay1 such that the points w; = (v;,7;) € RY, i = 1,....,d + 1, are affinely

independent. Then the set of such vectors t = (71,...,Tq+1) i open and dense in
R+,

Proof. Points wy, ... ,wq4+1 are affinely independent if and only if the determinant
of the (d+1) x (d+ 1) matrix with the columns (wy,1),..., (w4y1,1) is not 0. The
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last condition can be written as p(t) # 0, t = (71,...,7T4+1), for some polynomial
p: R — R. We have either p(t) = 0 for t € R4 or the set {t cRY: p(t) #

0} is open and dense in R4+1, O
(18.3) Regular subdivisions. Let P C R9"! be a polytope with the vertices
V1,...,Uy. We assume that dim P = d — 1. For t = (7q,...,7,) we construct a
polyhedron Q(t) C R = R4~1 @ R as follows.
Let w; = (vs,7;) for i =1,... ,n and let
Q(t) = {(x,a) . (x,7) € conv (wy,...,w,) forsome T > O’}.
Alternatively,

Q(t) = conv (wy, ..., w,) + R,

where R is the ray {(0,7): 7 <0} CR“!@R. We call Q(t) a lifting of P.

For any = € P, the line {(IIJ,T) D o< T<L —|—oo} intersects the boundary of
Q(t) at a single point which lies in some bounded face of Q(t). Hence the projections
of the bounded facets (faces of dimension (d — 1)) of Q(¢) form a subdivision of P,
which is called a regular subdivision. If each bounded facet of Q(t) is a simplex, we
get a triangulation of P, called a reqular triangulation.

(18.4) Problems.
1°. Prove that the set of all vectors ¢t = (71,...,7,), t € R™, such that all
bounded facets of Q(t) are simplices is open and dense in R".

2. Prove that every subdivision of a convex polygon P C R? by its non-
intersecting diagonals is a regular subdivision.

19. THE SECONDARY POLYTOPE

(19.1) Definitions. Let P C R%"! be a polytope with the vertices vy,. .., v,.
We assume that dim P = d — 1. Following I.M. Gelfand, M. Kapranov and A.
Zelevinsky, we define its secondary polytope ¥(P) C R™. First, we interpret R" as
the space of all real-valued functions v on the vertices of the polytope with the
scalar product

(6, ¥) = (vi) ¢ (vi).
i=1
Then, for each triangulation 7" of P we define ¢ € R" by

or(v) = Z vol A.

AEeT:
vEA

In words: the value of ¢ on a vertex v is the sum of the volumes of the simplices
of the triangulation 7" that contain v. We define
Y (P) = conv ((;ST : T is a triangulation of P).
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We consider only triangulations without new vertices.
A function g : P — R is called concave if

g(ZOﬁvi) > Zaig (vi)

n
whenever Zaizl and a; >0 for i=1,... n.
i=1

Gelfand, Kapranov and Zelevinsky defined the secondary polytope 3(A) more
generally, for any set A C R4! of points spanning R~! affinely, not necessarily
the set of vertices of a convex polytope.

(19.2) Lemma. Let A C R be a (d — 1)-dimensional simplex with the vertices
Vi,...,vq and let f : R™1 — R be an affine function (a linear function plus a
constant). Then

Vol A &
J S ar =230 ),

Proof. Applying an invertible affine transformation, we may assume that
A= COIlV(O,el, e ,ed_1>,

where e1,. .. ,eq_1 is the standard basis of R¥~!. If f(z) is a constant, the formula
obviously holds. If f(x) = x;, the left hand side of the formula evaluates to

1 ! Ly 1 ! Ly
i, S ey [ e

__ Lo (1 ny_1
S d-2)!\d—1 d) 4

and so does the right hand side. U

(19.3) Lemma. For a function ¢ € R™ and a triangulation T of P, let us define
a function gy 7 : P — R as follows: if A = conv (v, : i € I) is a simplex of T
containing r and

x:Zawi where Zaizl and o; >0 for i€,
iel iel

we define
gor(x) =Y o (vy).
el
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Then
(W, ér)=d / gu.r(x) dr.
P

Proof. Since the restriction of g, r on every simplex A of the triangulation is an
affine function which coincides with @ on the vertices of A, by Lemma 19.2 we
obtain:

d/Pgw,T(x) dr =d Z /qu/,;p(a:) dr = Z (volA) - < Z ¢(v)>

AeET AeT v is a vertex of A

=D _w() [ Y volA| = (¥, ¢r).

A€ET:
v; EA

O

(19.4) Lemma. Let us choose a function p € R™, let t = (Y(v1),...,%(v,)), let
Q(t) be a lifting of P and let S be the corresponding reqular polytopal subdivision
of P as in Section 18.3.

1) Let T be a triangulation of P such that g, r is concave. Then for any
P,
triangulation T" of P we have

gpr(x) > gy () forall ze€ P;

(2) Let T be a triangulation which refines S. Then gy 7 is concave;
(3) Let T be a triangulation which does not refine S. Then for some x € P we
have gy 1/(x) < gy (), where T is a triangulation which refines S.

Proof. Let x € P be a point and let A = conv (v; : i € I) be a simplex of triangu-
lation 7" such that z € A. Then

(19.4.1) T = Z%’Uz‘ for some «; >0 such that Zai = 1.
iel icl

Since gy T is concave, we have

gy.r() 2 aigpr(v) =Y anh(vi) = gy ()

iel iel

and Part (1) follows.
Let

x:Zawi where Zaizl and «; >0 for i=1,...,n.
i=1 i=1
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Then for .
=Y aib(v;)
i=1

we have
(x,7) € conv(wy,...,w,) w;=(v;,¥(v;)) for i=1,... n.

Therefore, for some o > 7 the point (z,0) lies in a bounded facet of Q(¢). Let
A = conv (v; : i € I) be a simplex of triangulation 7" containing x. If T refines S
then the point (x, o) lies in the convex hull conv (w; : i € I) and

Jor(r)=02>7= Z a;p(v;) = Z @igy 1 (vi),
i=1 i=1

and Part (2) follows.

Suppose that T” does not refine S. Then there exists a simplex A of T/, A =
(v; : 1 € I) such that conv (w; : w; € I') does not lie in a bounded facet of Q(t).
Then, for some x € A as in (19.4.1) and

T = Z Oéﬂﬁ(vi),
iel
the point (z,7) € Q(t) does not lie in a bounded facet of Q(t). Therefore, for some
o > 7 the point (z,0) lies in a bounded facet of Q(¢) and hence
g1 () =7 <0 = gy 1()
and Part (3) follows. O

(19.5) Theorem. Let P C R4"! be a (d — 1)-dimensional polyhedron with n ver-
tices v1, ... v, and let X(P) C R™ be its secondary polytope. Then the vertices of

Y(P) C R™ are the vectors ¢, where T is a reqular triangulation of P. Moreover,
the faces of ¥(P) are the sets

conv (pr: T refines S),

where S is a reqular polytopal subdivision of P.

Proof. Let us choose a vector 1 € R". By Lemma 19.3,

W, ér) =d /P gor da.

By Lemma 19.4, the maximum of the integral is attained when T refines the
regular polyhedral subdivision S of P obtained from the lifting Q(t) for ¢t =
(¥(v1),...,%(vy,)). By Lemma 18.2, for ¢ from an open dense set the subdivision
S is a triangulation, and hence there is a unique, necessarily regular, triangulation
T maximizing (1, ¢r). O
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(19.6) Problems.
1. Prove that dim ¥(P) = n — d, where n is the number of vertices of P and
d — 1 is the dimension of P.

2. Let P C R? be a polygon. The polytope X(P) is called an associahedron.
Describe the faces of X (P) and compute their dimensions.

20. FIBER POLYTOPES

We discuss an alternative construction of the secondary polytope due to L. Billera
and B. Sturmfels, see L.J. Billera and B. Sturmfels, Fiber polytopes, Ann. of Math.
(2) 135 (1992), no. 3, 527-549.

Let P C R%! be a (d — 1)-dimensional polytope with the vertices v1,... ,v,
and let A,,_1 C R" be the standard simplex, A,_; = conv (eq,...,e,), where
€1,...,ey, is the standard basis of R™. Let us consider the linear transformation
7 R" — R defined by

n n
™ E og;e; | = E a;0;.
=1 =1

Hence
™ (An—l) =P.

A map v: P — A,_1 is called a section of « if
w(y(x)) =2 forall ze€P.

We consider only Lebesgue measurable sections, so that we can define the integral

/P ~v(x) dz

as a point in R".

(20.1) Theorem. We have
X(P) = {d/ v(x) dx: 7 is a section of W}.
P
Proof. 1t is clear that the set

(20.1.1) {d/ v(x) dr: v 1is a section of W}
P

1S convex.
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For a triangulation T" of P we construct a particular section vp as follows. Let
A be a simplex of the triangulation, A = conv (v; : ¢ € I). Then for every z € A
there is a unique representation

x:Zaivi where Z%’:l and o; >0 for 7€l.
icl iel

We define
yr(x) = Zaiei.

icl
Since yr is a linear function on every simplex A of the triangulation T, applying
Lemma 19.2, we get

d/PVT(a:) dr = Z d/AWT(a;) dx = Z (vol A) ( Z ei>

AET AET it v;EA
n
:Z< Z VOlA) eiquT,
i=1 \A: v;€EA

as defined by Definition 19.1. Hence the set (20.1.1) contains vectors ¢r.
Let us choose a vector 1) € R™ (which we interpret as a function on the vertices
of P) and find a section 7(x) maximizing

(0 [ 2@ de)= [ (0. 2(0) o

Clearly, it suffices to maximize (v, y(z)) for each x € P. Let
(20.1.2) ~v(x) = iaiei where iai =1 and aq,...,a, >0.

i=1 i=1
Since 7(vy(x)) = x, we must have
(20.1.3) xr = i Qi v;.

i=1
Besides,
(20.1.4) (. A@) =3 ot (v
i=1

Hence our goal is to choose a4, ..., a, in (20.1.2) in such a way that (20.1.3) holds
and (20.1.4) is maximized.
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Fori=1,...,nlet w; = (v;,7¥ (v;)) € R? be the lifting of the vertices v;. Thus
the maximum value of (20.1.4) is the largest 7 € R such that

(z,7) € conv (wy, ..., wy) .

Now it is clear how to construct v(z): we let ¢t = (¢(v1),...,%(vy)), consider the
lifting Q(t) of P as in Section 18.3, pick a traingulation 7' refining the regular
subdivision produced by Q(t) and let v = ~y7, in which case as we have shown

d/}37T<x) dx = ¢r.

Hence we proved that the convex set (20.1.1) contains all vectors ¢, where T is
a triangulation of P, and that for every ¢ € R™ the linear function 6 —— (1, 0)
attains its maximum on (20.1.1) at some vector ¢, possibly among other points.
It follows that (20.1.1) contains X(P).

Suppose that (20.1.1) contains a point ¢ ¢ 3(P). Since X(P) is a polyhedron,
there exists ¥ € R™ such that

(V,¢) > (Y, ¢r) forall or.

But as we proved, the maximum of the linear function § — (1, 0) is attained, in
particular, at some ¢, which is a contradiction. O

Theorem 20.1 suggests the following more general construction of the fiber poly-
tope. Let P C R? be a d-dimensional polytope, let Q C R"™ be an n-dimensional
polytope and let 7 : R” — R? be a linear transformation such that 7(Q) = P. A
function v : P — @ is called a section if w(y(x)) = z for all z € P. We consider
Lebesgue measurable sections only. The set

$(Q, P) = {/P’y(x) de: s asection}

is called the fiber polytope associated with the map 7 : QQ — P.

(20.2) Problems.
1. Prove that (@, P) is indeed a polytope of dimension n — d.

2*. Let A,,_1 C R™ be the standard simplex, let 7 : R — R be a map,
T (X1, Tpn) = @121 + - .. + AT,

where aq, ... ,a, are distinct numbers, and let P = 7 (A, _1).
Prove that ¥ (A, _1, P) is an (n — 2)-dimensional parallelepiped.

3*. Let Q C R" be the n-dimensional cube,
Q:{(a:l,... Xp): 0<z; <1 for i=1,... ,n},
let 7 : R” — R be the map

T(T1, e Tp) =1+ ...+ Ty

and let P = 7(Q). Prove that ¥(Q, P) is a permutation polytope.
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21. IDENTITIES MODULO POLYHEDRA WITH LINES

(21.1) Definitions. Let P C V be a polyhedron and let v € P be a point. The
set

fcone(P,v):{UEV: v+eu € P for some e>0}

is called the cone of feasible directions of P at v. Alternatively, if P is defined by
a set of linear inequalities,

P:{xGV: li(x) < a ieI}
and
IU:{iEI: Ei(fu):ai}

are the inequalities active on v, then
fcone(P,v) = {u eV: Li(u)<0 forall ie Iv}.

The set
tcone(P,v) = v + fcone(P, v)

is called the tangent cone of P at v. Alternatively,
tcone( P, v) = {az eV: Vli(x)<a; forall i€ IU}.

Note that the tangent cone is not really a cone since its vertex does not have to be
at the origin.

Let P(V) be the algebra of polyhedra and let P;(V) C P(V) be the subspace
spanned by the indicators of polyhedra with lines. For two functions f,g € P(V),
we say that

f =g modulo polyhedra with lines

provided
f—g9 € P(V).
(21.2) Theorem. Let P C V be a polyhedron. Then

[P] = Z [tcone(P,v)] modulo polyhedra with lines,

v

where the sum is taken over all vertices v of P.

Proof. First, we prove the theorem assuming that P is a polytope. In this case,

without loss of generality, we assume that V is Euclidean space with scalar product

(-,-) and P contains the origin in its interior. Let vy, ..., v, be the vertices of P.
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Let Q@ = P° be the polar of P, so @ is a polytope (see Theorem 17.1). For a
vertex v;, let us compute tcone(P, v;)°. We have

tcone( P, v;) = v; + co (vj —wv;: forall j# z)
Then
tcone(P,v;)° = {c eV: (cv)<1l and (c,v;) > (c,v;) forall j# z}
In other words,

tcone( P, v;)° = {c eV: 1> {cv)= mag(c, :Jc)}
BAS

Let 0; C @ be the facet of @) dual to v;, see Theorem 17.1. Then tcone(P,v;)° is
the pyramid over v; with the vertex at 0,

tcone(P, v;)° = conv (O, 151) .

Now, we have
n

Q] — Z [conv (0, v;)] Z a; [K

i=1

where K; = conv(0, F};) for a face F; of Q with dlij <dim@ — 2 and «a; € R.
Hence K; are polyhedra lying in proper subspaces of V. Applying Theorem 16.3,

we conclude that .

[P] — Z [tcone(P, v;)] Za] (K3

i=1

Since K7 contains a line orthogonal to span (K j), the proof follows.

Suppose now that P C V is an unbounded polyhedron. If P contains a line then
by Theorem 9.7 polyhedron P has no vertices and the result holds trivially. Suppose
that P does not contain a line. Then by Theorem 9.10 we can write P = M + Kp,
where M is the convex hull of the vertices of P and Kp is the recession cone of P.
As we proved,

[M] = Z [tcone(M,v)] modulo polyhedra with lines,

v

where the sum is taken over all vertices v of P. By Theorem 7.2, we have

[P] =M+ Kp| = Z [tcone(M,v) + Kp| modulo polyhedra with lines.

v

It remains to notice that

[tcone(M,v) + Kp] = [tcone(P,v)].
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(21.3) Problems.
1°. Suppose that v = 0. Prove that

tcone(P, v) = fcone(P,v) = U tP.

t>0

2°. Let T : V — W be a linear transformation, let P C V' be a polyhedron,
and let v € P be a point. Prove that

T (tcone(P,v)) = tcone(T(P),T(v)).

3°. Let P be a polyhedron with the recession cone Kp and let M be the convex
hull of the set of vertices of P. Prove that for a vertex v of P we have

tcone(P, v) = tcone(M,v) + Kp.
4. Let P be a polytope. Prove that
Z [fcone(P,v)] = [0] modulo polyhedra with lines,

where the sum is taken over all vertices v of P.
5. Let P be a polyhedron. Prove that

Z [fcone(P,v)] = [Kp] modulo polyhedra with lines,
where K p is the recession cone of P and the sum is taken over all vertices v of P.

6°. Let P be a polytope with the vertices vq,...,v,. Prove that
fcone(P, v;) = co(vj —v;: j# 2)
7. Let P be a polytope with the vertices vy,...,v,. Prove that
fcone( P, v;) = co (vj —wv; :  conv(vj,v;) is an edge of P).

8°. Check that P (V) C P(V) is an ideal with respect to the convolution =: if
f€P(V) then fxge P(V) for all g € P(V), cf. Theorem 7.2.

9. Let P be a polytope. For a non-empty face I’ of P let us define the tangent
cone tcone( P, F') as follows: we pick a point v in the relative interior of F' and let
tcone( P, v) = tcone(P, F'). Prove that the tangent cone so defined does not depend
on the choice of v and that

[P = 3" (-1)"" Fltcone(P, F))
F
where the sum is taken over all faces F' of P, including F' = P (the Brianchon-Gram

Theorem).
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22. THE EXPONENTIAL VALUATION

(22.1) Definition. A cone K C V is called simple if K = co(uq,...,u,) where
Ui, ..., Uy is a basis of V.

For a polyhedron P C V, where V is Euclidean space with the scalar product
(-,+), we consider the integral
/ ele®) dg
P

as a function of c € V.

(22.2) Examples.
a) Let V' =R™ and let

K:R’i:{(ajl,...,xn): x; >0 for izl,...,n}.

Let ¢ = (c1,...,¢,). Then

(cm)d - oo ciTi g . 1
/R e a:—Zl:[l/O € xi_H—ci’

i=1
provided ¢; < 0 for ¢ = 1,...,n, in which case the integral converges absolutely
and uniformly on compact subsets of —int R}

n
+

b) Let K = co(uy,...,u,), where uy,...,u, is a basis of V. This example
reduces to a) by a change of variables, and we obtain

- 1
(o) dp = | —_
e x ul/\.../\un\” ,

where |uy A ... Auy,| denotes the volume of the parallelepiped

{Zaiui: 0<q; <1 for izl,...,n}
i=1

spanned by uq,...,u,. The integral converges absolutely for all ¢ € int K° uni-
formly on compact subsets of int K°.

c) Let K C V be a pointed polyhedral cone. By Theorem 9.9, we may write K =
co(P), where P is a polytope in an affine hyperplane not containing 0. Triangulating
P (see Section 18), we may write

(K] = Z[K’] modulo lower-dimensional cones,
i€l
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where K; C V are simple cones as in b). Hence

(&) Jp — / (e;x) g
e x e T.
/K Z K;

iel
Therefore,

() dp = ; - b
/Ke ! ;QEFC,%V

where «; > 0 and u;1,...,u;, is a basis of V' for all i € I. The integral converges
absolutely for ¢ € int K° uniformly on all compact subsets of int K°. It follows
form the proof of Theorem 9.9 that int K° # ().

The following result was proved by J. Lawrence and independently by A. Kho-
vanskii and A. Pukhlikov at about the same time, c. 1990.

(22.3) Theorem. LetV be Euclidean space and let M(V') be the space of functions
on V' that are finite linear combinations of functions

elev)
C ,
<C, ul) T <C, un>
where v € V and uy, ... ,u, is a basis of V. There exists a unique linear transfor-
mation
O:P(V)— M(V)
such that

(1) If P C V is a polyhedron without lines and Kp its recession cone then for
all c € int K the integral
/ elo®) dg
P

converges absolutely and uniformly on compact subsets of int K% to a func-
tion ¢(P;c) € M(V) such that ®([P]) = ¢(P;c).
(2) If P contains a line then ®([P]) = 0.

Proof. We proceed by induction on n = dim V. For n = 0 the result is trivial.
Suppose that n > 0. The proof consists of three steps.

Step 1. We prove that if P is a polyhedron without lines then for all ¢ € int K%

the integral
/ N
P

converges absolutely and uniformly for compact subsets of int K7 to a function
¢(P;c) € M(V).
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Let us pick a sufficiently generic unit vector u € int Kp and let us slice V' by
affine hyperplanes

H; = {aj: (—u,x) :t}, teR.

By Theorem 9.10 it follows that the function x — (—wu, x) attains its finite mini-
mum ty on P, so we can write

—+ o0
(22.3.1) /e<c’x> da::/ (/ ele) daj) dt,
P to Py

where P, = PN H;. By Lemma 9.5, P, is a bounded and hence is a polytope.
We choose v in such a way that u is not orthogonal to any face of P of positive
dimension. In this case, every k-dimensional face of P; is the intersection of H; and
a (k 4+ 1)-dimensional face of P. In particular, every vertex of P; is the intersection
of H; and an edge of P. Let t; < ... < t; be the values of t for which H,
passes through a vertex of P. Then for every open interval (¢;,t;41), and, if P is
unbounded, for the open ray (tx,+00), the vertices vy (t),... , v, (t) of P, change
linearly with ¢:
vi(t)=a; +tw; for i=1,...,m

while the cone of feasible directions K; = fcone(P;,v;(t)) doesn’t change. For a
given ¢ we can always choose u in such a way that the function z — (¢, ) is not
constant on the edges of P;.

By Theorem 21.2,

[P] = [v;(t) + K;] modulo polyhedra with lines

i=1

and hence by the induction hypothesis

(22.3.2) / el dp =" el fi(e),
P i=1

where f;(c) is a linear combination of functions of the type

1

<Cv w1> T <C, wn—1>,

cf. Example 22.2.
It remains to notice that for v(¢) = a + tw we have

/tj+1 e<c7 () it :e<C,U(tj+1)> _ e<CvU(tj)>
t

j <C7 w)
(22.3.3) and that
+o0 (e,v(tr))
/ gl vty gy €
122 <_Ca w)

o1



since in the latter case w is the direction of an unbounded edge of P, so w € Kp
and since ¢ € int K%, we have (¢, w) < 0, so the integral converges.
Using (22.3.1)—(22.3.3), we conclude Step 1.

Step 2. We prove that there is a unique valuation ® : P(V) — M(V) such
that ®([P]) = ¢(P;c) if P is a polyhedron without lines and ¢(P; ¢) is the function
constructed at Step 1.

Let us write

V1= 51Qi.

jedJ

where 3; € R and @; are some polyhedra without lines. Then, for any polyhedron
P we have

[P]=[PI[V]=)_5;[PNQ,l.

Jjed

It follows that P (V') is spanned by the indicators of polyhedra without lines.
Suppose now that

(22.3.4) > ai[P] =0,

iel

where a; € R and P; are polyhedra without lines. Multiplying (22.3.4) by [Q;] we
obtain

Z(l/i [Pz N QJ] =0.

i€l
For the recession cones we have Kp,ng, C Kq, and hence K¢ C Kp g . There-
fore, for all ¢ € int K (f?j we have

and all the integrals converge absolutely and uniformly on compact subsets of
int K 223-' Hence we have

Z%‘Mﬂ' NQj;c)=0 forall ceintKy .
iel

Since the above identity holds for a non-empty open set of ¢ and functions ¢ are
meromorphic, we get

(22.3.5) Zaigb(Pi NQj;c)=0 forall jeJ
iel
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Similarly, we have

[P]=> 8 [P.NQ,]
jeJ
and hence

/ el o — Zﬂj/ ele® de for all ¢ € int Kf:ﬂ
P; jeJ PinQ;

which implies that
(22:3.6) O(Piic) =) _B;0(P;NQj:c).
jeJ
Then, using (22.3.5) and (22.3.6) we deduce from (22.3.4) that

Y aid(Pic) = ai | Y _Bio(PinQjic) | = 5 <Z a; ¢(P; N Qj;c)> =0.

i€l iel j€J jeJ i€l
Hence the correspondence [P] — ¢(P;c) preserves linear relations among the

indicators of polyhedra without lines and therefore can be extended uniquely to a
valuation ® : P(V) — M(V'), which concludes Step 2.

Step 3. We prove that ®([P]) = 0 if P is a polyhedron with a line.
Let P C V be a polyhedron without lines, let w € V be a vector and let P + u
be the translation of P. Then Kp,, = Kp and for all ¢ € int K we have

/ ele?) dy = e<c’“>/ ele®) do.
P+u P
Therefore,

O(P +ujc) = eop(P;e) and B([P + u]) = !> ®([P]).

By linearity, the same identity holds if P is any polyhedron. If P contains a line
then there is a vector u # 0 such that P +u = P. Then we have

®([P)) = ®([P +u]) = el P([P)),
from which ®([P]) = 0. O

(22.4) Problems.
1. Let P C R" be a polytope. Prove that

Z ®[fcone(P,v)] =0,

where the sum is taken over all vertices v of P.

2. Let P C R™ be a polytope with integer vertices (that is, the coordinates of
each vertex are integer). Let ¢ € R™ be an integer vector which is not orthogonal

to any edge of P. Prove that
/ 2™ dy = 0.
P
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23. A FORMULA FOR THE VOLUME OF A POLYTOPE

Let V be Euclidean n-dimensional space and let P C V be a polytope. Using
Theorem 22.3, we may write

(23.1) / elo®) dy = Z ¢(tcone(P,v);c) = Z el g(feone(P, v); ¢),
P v v

where sum is taken over all vertices v of P and ¢(fcone(P, v); ¢) is a rational function
of ¢ of degree —n obtained by extending the integral

/ o) g
fcone(P,v)

by an analytic continuation in ¢ from its domain of convergence, which is the interior
of fcone(P,v)°.

Identity (23.1) is known as Brion’s Theorem.

Substituting ¢ = 0 in the left hand side of (23.1) we obtain the volume of P.
However, ¢ = 0 is the pole of every term in the right hand side of (23.1). This
difficulty can be handled as follows.

Let ¢ be a small parameter and let us replace ¢ by tc in (23.1). We get

[ e do= 3 eteremgteone( P ).
P v

Using the standard expansion

2 n

. z z
e=14+z+—+...+ —+...
2 n!

we observe that the left hand side of (23.1) is an analytic function of ¢ and vol P is
its constant term. Each summand is a meromorphic function of £ and its constant
term is

<C’7§> ¢(fecone(P,v); c).
Hence we obtain the formula
c,v)"
(23.2) vol P = Z %qf)(fcone(P, v);c).

v

Curiously, the right hand side is a function of ¢ while the left hand side is just a
constant. When the cone of feasible directions at each vertex v of P is simple,

fcone( P, v) = co (ulv, e ,um,>

for some basis w1y, ... ,Up, of V, we obtain

{c,v)" 1
23.3 1P = I AN T >
( ) Vo Z n! |U1 Y | <_C, ulv> e <_C7 unv>

v

where the sum is taken over all vertices v on P and c is any vector not orthogonal
to any of the edges of P. Formula (23.3) is due to J. Lawrence.
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Problem.
1°. Prove that

k
Z <C’]j> ¢(fecone(P,v);¢) =0 for k=0,...,n—1.

v

24. SIMPLE POLYTOPES AND THEIR h-VECTORS

(24.1) Definitions. Let P be a polytope. Vertices v and u of P are called neigh-
bors if [v,u] is an edge of P. A polytope P is called simple if for every vertex v
of P the cone of feasible directions fcone(P,v) is simple, that is, the conic hull of
linearly independent vectors. For a d-dimensional polytope P we define f(P) as
the number of k-dimensional faces of P, where we agree that f;(P) = 1. The vector
(fo(P),..., fa(P)) is called the f-vector of P. For a simple polytope P we define

d

hi(P) =Y (-1)""* (;) fi(P) for k=0,...,d.

i=k
The vector (ho(P),...,hq(P)) is called the h-vector of P.
(24.2) Lemma. Let P be a simple d-dimensional polytope. Then

(1) Ewvery vertex v has exactly d neighbors.

(2) For every vertex v and for every 0 < k < d of its neighbors there is a unique
k-dimensional face of P containing v and the k neighbors of v.

(3) Ewvery k-dimensional face F' of P containing a vertex v of P contains exactly
k neighbors of v and fcone(F,v) is a simple k-dimensional cone.

(4) The intersection of any 0 < k < d facets of P containing v is a (d — k)-
dimensional face of P.

(5) Let v be a vertex of P, let £ be a linear function such that ¢(u) < £(v) for
every neighbor u of v. Then the maximum of £ on P is attained at v and
only at v.

(6) Ewvery face of P is a simple polytope.

Proof. Parts (1)—(5) deal with a particular vertex v of P. Without loss of generality,
we may assume that P C R%, that v = 0 and that

(24.2.1) tcone(P, v) = fecone(P,v) = RY.
Then the neighbors u1, . .. ,uq of v are points u; = «;e;, where e; is the i-th standard
basis vector and «; > 0. The k-dimensional face containing v and w;,, ... ,u;, is

defined by the inequality Z#il’m i, i = 0 which is active on v and w;,, ..., u;,.

Let F' is a k-dimensional face of P containing v. Then FF = PN H where H is a

hyperplane H = {x : ¢(x) = 0} such that ¢(z) < 0 for all x € P. That is, {(z) =

121 + ... + cqxgq, where ¢; < 0 for i = 1,...,d. Then fcone(F,v) = tcone(F,v)
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is the cone consisting of the points (x1,...,x4) with x; = 0 whenever ¢; < 0 and
x; > 0 whenever ¢; = 0. This is a simple cone of dimension k£ = dim F' and hence
the number of coordinates ¢ with ¢; = 0 is k. Then F' contains u; with ¢; = 0. The
i-th facet containing v is defined by the coordinate inequality x; > 0 and hence
the intersection of the facets defined by the inequalities z;, > 0,... ,z;, > 0 is the
face defined by the inequality > ;c(; 4@ = 0. If (u;) < L(v) fori=1,....d
then {(x) = ciz1 + ...+ cqxq, where ¢; < 0 for i =1,...,d and since P C Ri, the
maximum of £ on P is attained at v = 0. This proves Parts (1)—(5).

Part (6) follows from Part (3). O

(24.3) Lemma. Let ag,...,aq and by, ... ,bg be numbers. Then the two systems
of linear equations

i=k
and
4k
azzz<i>bk for =0, ,d
k=1
are equivalent.
In particular,
4k
(P) = hi (P =0,...,d.
fp =3 (F)mtr) sor

Proof. Let us introduce two polynomials
d d
a(t) = z:aitZ and b(t) = Z bit".
i=0 k=0

Then the first system is equivalent to the identity b(t) = a(t—1) whereas the second
system is equivalent to the identity a(t) = b(t + 1). O

(24.4) Theorem. Let P be a simple d-dimensional polytope and let £ be a linear
function which is not constant on any edge of P. For a vertex v we define the index
of v with respect to £ as the number of neighbors u of v such that ¢(u) < £(v). Then
for k =0,...,d the number of vertices of P of index k is equal to hy(P) and, in
particular, does not depend on L.

Proof. Let hy(P;¢) be the number of vertices of index k with respect to £. Since ¢
is not constant on the edges of P, on every face F' of P the function ¢ attains its
maximum at a unique vertex v of F' which is necessarily a vertex of P.
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Let us consider the correspondence
1; :  i-dimensional faces of P —— vertices of P,

which with every ¢-dimensional face F' of P associates the vertex v of P where the
maximum of £ on F'is attained. Let us compute the number of i-dimensional faces
F mapped to the same vertex v of index k. Thus at exactly k of the d neighbors
of v the function ¢ attains a smaller value than it does at v. By Parts (2), (3)
and (5) of Lemma 24.2, we uniquely select an i-dimensional face F' of P such that
¥;(F) = v by selecting i neighbors from the set of k neighbors of v with the smaller
value of £. Therefore,

‘zpi_l(fu)‘ = <I;) provided the index of v is k.

This gives us the equation

d
fi(P) = Z (I;)hk(P;E) for i=0,...,d.
k=i

By Lemma 24.3, the equations are equivalent to

d

hi(Pil) = (=1)"F (;) fi(P) = hg(P) for k=0,...,d.

i=k

(24.5) Corollary. Let P be a d-dimensional simple polytope. Then

hk(P) = hd_k(P) fO?” k :O,... ,d.

Proof. Let us pick a linear function ¢ not constant on any edge of P. Then, by
Theorem 24.4, the number of vertices of P of index k with respect to ¢ is hy(P).
On the other hand, every vertex of index k& with respect to £ has index d — k with
respect to —¢. Since the number of vertices having index d — k with respect to —/
is hq_r(P), the proof follows. O

The formulas of Corollary 24.5 are called the Dehn-Sommeruville equations.

(24.6) Problems.
1°. Prove that hy(P) > 1 provided d > 1 and that ZZ:O hi(P) = fo(P).
2°. Check that ho(P)=h
3°. Check that for d = 3 the Dehn-Sommerville equations are equivalent to

fo(P) = fi(P) + f2(P) = 2 and 3fo(P) — 2f.(P) = 0.
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4°. Check that for d = 4 the Dehn-Sommerville equations are equivalent to
fo(P) = f1(P) + f2(P) — fs(P) = 0 and f1(P) = 2fo(P).

5°. Let P be a d-dimensional simplex. Prove that hx(P) =1 for 0 < k < d.

6°. Let P be a d-dimensional cube. Prove that P is simple and that hy(P) = (z)

7. Let P be a 3-dimensional simple polytope and let pi be the number of k-gons
among its facets. Prove that

3ps +2pa+ps =12+ > _(k—6)ps.

k>T
8. For a permutation o of the set {1,...,n}, let us define a descent as a number
i =2,...,nsuch that o(i) < o(i—1). Let E(n, k) be the number of permutations o
having precisely k — 1 descents, k = 1,... ,n. Let a = (a1, ... ,a,) be a point with

distinct coordinates and let P = P(a) be the corresponding permutation polytope.
Prove that P is simple, that hy(P) = E(n,k+ 1) and that E(n,k) = E(n —k+ 1)
fork=1,...,n.

25. THE UPPER BOUND THEOREM

(25.1) Lemma. Let P be a d-dimensional simple polytope and let F' be a facet of
P. Then
hk(F) < hk(P) fOT k':O,... ,d.

Moreover, if the intersection of every k + 1 of facets of P is non-empty then

Proof. Since F' is a facet there exists a linear function ¢ on the ambient space V'
and a number « such that

lz) > o forall xze€ P and F:{xEP: Z(:L’):a}.

In particular, if w and v are vertices of P such that v € F and u ¢ F then
¢(v) < £(u). Let £ be a sufficiently generic linear function sufficiently close to £, so
that ¢ is not constant on edges of P and £(v) < {(u) for any two vertices u and v
of P with v € F and u ¢ F. Then the index of every vertex v of F' with respect to
{ is equal to the index of v as a vertex of P with respect to /£, so hy(F) < hi(P).

Suppose that the intersection of every k + 1 facets of P is non-empty. Let v be
a vertex of P of index k with respect to . Numbering the neighbors uq, ... ,ugq of
v in the increasing order of £(u;), we obtain

U(u;) > (v) for i=k+1,...,d
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By Part (2) of Lemma 24.2, there exists a (d—k)-dimensional face G of P containing
v and Ugy1, ... ,uq. By Part (5) of Lemma 24.2, we have /(v) < /(z) for all z € G.
On the other hand, G can be represented as the intersection of k facets of P,
G = FiN...N Fg (we obtain F; as the unique facet containing v and all its
neighbors except ;). Since

GNF=FNFN...0NE,#0,

for a vertex u € GNF we must have £(u) > {(v). This proves that v € F and hence

(25.2) Lemma. Let P be a d-dimensional simple polytope. Then
> hi(F) = (d = k)he(P) + (k + Dhega(P)  for k=0,...,d—1,
F

where the sum is taken over all facets F of P.

Proof. Let us choose a generic function £ not constant on edges of P and let v be
a vertex of P. If the index of v is smaller than k then the index of v on any facet
of P will be smaller than k. If the index of v is k then there are precisely (d — k)
facets containing v for which the index of v is k (such a facet contains v and all but
one neighbor u of v for which ¢(u) > ¢(v)). If the index of v is k + 1 then there are
precisely k + 1 facets of P containing v for which the index of v is k (such a facet
contains v and all but one neighbor u of v for which ¢(u) < £(v)). If the index of v
is greater than k + 1 then the index of v on every facet of P containing v is greater

than k. 0
(25.3) Corollary. Let P be a d-dimensional simple polytope with n facets. Then

n—d+k

Py < —hi (P =0,...,d—1.
hk+1( ) = k’-i-l hk( ) fOT‘ k O, ,d
Moreover, if every k + 1 facets of P have a non-empty intersection then
n—d+k

h P)=—hi(P).

k:+1( ) k+ 1 k( )
Proof. Follows by Lemma 25.1 and Lemma 25.2. U

(25.4) Corollary. Let P be a d-dimensional simple polytope with n facets. Then

—dt k-1
hi(P) < (" Z ) for k=0,....d.

Moreover, if every k facets of P have a non-empty intersection then
n—d+k—1
i = (77T

Proof. Follows by Corollary 25.3 since ho(P) = 1. O
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(25.5) Proposition. Let C(d,n) be the d-dimensional cyclic polytope and let
C(d,n)° be its polar with the origin chosen in the interior of C(d,n). Then C(d,n)°
s a simple d-dimensional polytope with n facets and for every d-dimensional simple
polytope P with n facets, we have

hi(P) < hig(C(d,n)°?) for k=0,...,d.

Proof. 1t is easy to show (see Problem 1 of Section 15.3, for example), that every
facet of C(d,n) is a (d — 1)-dimensional simplex. By Theorem 17.1, C(d,n)° is a
simple polytope with n facets. By Theorem 15.2, every k < d/2 vertices of C(d,n)
are the vertices of a proper face of C(d,n). Therefore, by Theorem 17.1, every
k < d/2 facets of C(d,n)° have a non-empty intersection. Therefore, by Corollary
925.4,

A4 k-1
hk(C(d,n)o):CL d;:k ) for 0<k<d/2

Since by Corollary 25.4

hk(P)§<n_de_1) for k=0,....d

we obtain

hi(P) < hi (C(d,n)?) for 0<k<d/2.
Since by Corollary 24.5,

hk(P) = hd_k(P> and hk (C(d, TL)O) = hd—k (C(d, n)o),

the proof follows. O

(25.6) Theorem. Let C(d,n) be the d-dimensional cyclic polytope and let C(d,n)°
be its polar with the origin chosen in the interior of C(d,n). Then for every d-
dimensional polytope P with n facets, we have

fi(P) < fi(C(d,n)°) for i=0,...,d.

Proof. We prove the theorem assuming, additionally, that P is simple (see Problem
2 of Section 25.8 below). In this case, the theorem follows by Proposition 25.5 since

fi(P) = i (k) hp(P) and f;(C(d,n)°) = i (k) hi (C(d,n)°).

l l
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(25.7) Theorem. Let C(d,n) be the d-dimensional cyclic polytope with n vertices.
Then for any d-dimensional polytope P with n vertices we have

fi(P) < fi(C(d,n)) for i=0,...,d.

Proof. Follows from Theorem 25.6 and Theorem 17.1. O

Theorem 25.7 is known as the Upper Bound Theorem. 1t was proved by P.
McMullen and the proof of this section follows his approach.

(25.8) Problems.
1. Let P be a simple d-dimensional polytope. Prove that for d even,

d
fo(P) < fap(P)+2 > fi(P)

i=d/2
while for d odd,

d
fi(Py <2 ) fuP).

i=(d+1)/2
2*. Let P be a d-dimensional polytope with n facets. Prove that there is a
simple d-dimensional polytope P with n facets, such that
fi(P) < fi(P) for i=0,...,d.

See, for example, Section 5.2 of B. Griinbaum, Convex Polytopes. Second edition.
Prepared and with a preface by Volker Kaibel, Victor Klee and Giinter M. Ziegler,
Graduate Texts in Mathematics, 221, Springer-Verlag, New York, 2003.

26. BALINSKI’S THEOREM

(26.1) Definitions. Given a polyhedron P, we define its graph G(P) as an undi-
rected graph whose vertices are the vertices of P and whose edges are the edges
(1-dimensional faces) of P.

(26.2) Lemma. Let P C V be a polytope, let £ : V — R be a linear function and
let v € P be a vertex. Suppose that

L(v) < max l(x).

Then there exists a vertex uw of P such that £(u) > £(v) and [u,v] is an edge of P.

Proof. Let us consider fcone(P, v). By Theorem 9.9 there exists an affine hyperplane
H,0¢ H, such that @ = fcone(P,v) N H is a polytope and

fcone(P,v) = co(Q).
Clearly, we must have ¢(w) > 0 for some vertex w of (). Next, we note that the

vertices of () are the intersections of the edges of fcone(P,v) with H. Therefore,
w + v lies on an edge of P, one endpoint of which is v while the other is wu. O

The following theorem was proved by M.L. Balinski in 1961.
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(26.3) Theorem. Let P be a d-dimensional polytope. Then the graph G(P) is
d-connected, that, is, the graph obtained from G(P) by removing any d — 1 vertices
and adjacent edges is connected. Equivalently, for any two vertices of G(P) there
exist d pairwise vertex-disjoint paths connected them.

Proof. The equivalence of two definitions of d-connectedness is a Graph Theory
result, which we don’t discuss here.

We proceed by induction on d. Clearly, the result holds for d = 1.

Suppose that P C V, where dimV = d. Let us choose any d — 1 vertices
v1,...,04—1 which we remove from G(P) with the adjacent edges, as well as yet
another vertex vy. Then there exists a non-zero linear functional £ : V — R and
a number o € R such that

l(v;))=a for i=0,...,d.

Let

oy = rglealgcﬁ(a:) and a_ = géllrjlﬁ(a:).

Let us define the following two faces of P:
F+:{:c€P: Z(a:):owr} and F_:{xEP: €(x):a_}.

Since dim P = d, we have that Fy and F_ are proper faces of P and that F;, NF_ =
0.

By Lemma 26.2, for every vertex v of P\ F there exists a path in G(P) con-
necting v with a vertex of F; such that the values of ¢ strictly increase along the
path and for every vertex v € P\ F_ there exists a path in G(P) connecting v with
a vertex of F_ such that the values of ¢ strictly decrease along the path. We have
the following three cases:

Case 1. We have a_ < a < a4. Then for every vertex v # v1,... ,vq such that
¢(v) > « there exists a path (possibly consisting of a single point) which does not
contain vy, ... ,vq and which connects v with a vertex of Fy and for every vertex
v # v1,...,vq such that £(v) < « there exists a path (possibly consisting of a single
point) which does not contain vy, ... ,vs and which connects v with a vertex of F_.
Note that for vy both paths exist.

Case 2. We have a = a_. Then for every vertex v # vq,...,vq there exists a
path which does not contain vy, ... ,v4 and which connects v with a vertex of F\,.

Case 3. We have o = a. Then for every vertex v # vq,...,vy there exists a
path which does not contain vy, ... ,v4y and which connects v with a vertex of F_.

In any case, by the induction hypothesis, we conclude that the graph obtained
from G(P) by removing vy,...,v4—1 and the adjacent edges is connected. O

(26.4) Problems.

1°. Let P be an unbounded polyhedron without lines. Prove that G(P) is
connected.

2°. Let I; be the d-dimensional cube. Prove that graph G (I;) is not (d + 1)-

connected.
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27. RECONSTRUCTING A SIMPLE POLYTOPE FROM ITS GRAPH

(27.1) Definitions. Let P be a polytope and let G(P) be its graph. An acyclic
orientation O of G(P) assigns to every edge [u, v] a direction u — v or v — u in
such a way that there are no directed cycles vy — v — ... — v,, — v1. Let
S be a set of vertices of P and let O be an acyclic orientation of G(P). A vertex v
is called a sink of S if all edges [u,v] with u,v € S are directed u — v. The set S
is called an initial set if all edges [u,v] with u ¢ S and v € S are directed v — wu.
The index of a vertex v is the number of edges u — v. We identify a face F' of P
with the set of its vertices in G(P).

We present an algorithm, due to G. Kalai, to recover the facial structure of a
simple polytope P from its graph G(P).

(27.2) Lemma. Let P be a d-dimensional simple polytope, let G(P) be its graph
and let O be an acyclic orientation of G(P). For k = 0,...,d let h{(P) be the
number of vertices of index k. Then

d
> 2khQ(P) = > fu(P)
k=0 i

with the equality if and only if every face F' of P (we count P as its own face) has
precisely one sink.

Proof. Since the orientation O is acyclic, every set S of vertices has at least one
sink. By Parts (2) and (3) of Lemma 24.2, every vertex of index k is a sink of
exactly 2% faces of P: for every set of vertices u; : i € I such that u; — v there
is a unique face F of P of dimension |I| that contains v and w; : ¢ € I. Since FJ
contains no other neighbors of v, vertex v is a sink of F'. Therefore,

d
Z QkhkO(P> _ Z 2index of v
k=0

v is a vertex of P

= E the number of sinks in F.
F is a face of P

O
(27.3) Lemma. Let P be a d-dimensional simple polytope and let F' be its face.
Then there exists an acyclic orientation O of G(P) such that
(1) Face F is an initial set.
(2) Every face of P has a unique sink.

Proof. Since F' is a face there exists a linear function ¢ and a number « such that
{(z) > « for all z € P and

F:{xEP: E(a:):a}.
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Let ¢ be a sufficiently generic linear function sufficiently close to £ so that ¢ is not
constant on edges of P and ¢(v) < £(u) for any two vertices v and u of P such that
v e F and u ¢ F, cf. proof of Lemma 25.1. Let us define O by directing v — v if
0(v) > 0(u). O

(27.4) Reconstructing the faces of P from G(P).

Input: Graph G(P) of a d-dimensional simple polytope P.
Output: The list of faces of P.

The algorithm: For every acyclic orientation O of G(P) we compute the number
hQ (P) of vertices of index k and the quantity

d
fO=> "2 (P).
k=0

We compute
- 2O
= min
f = min ©,

where the minimum is taken over all acyclic orientations. We call an acyclic orien-
tation good if f© = f.

We output F' as the set of vertices of a k-dimensional face of P if the subgraph
induced by F' is connected and k-regular and F' occurs as an initial set in some
good acyclic orientation F'.

(27.5) Theorem. The algorithm is correct.

Proof. By Lemmas 27.2 and 27.3 for every good orientation O every face F' of
P has a unique sink. If F' is a k-dimensional face of P then by Theorem 26.3
the subgraph induced by F' is connected while by Part (6) of Lemma 24.2 it is
k-regular. By Lemma 27.3, every k-dimensional face will be included in the output
of the algorithm.

Let O be a good acyclic orientation and let H be an initial set such that the
subgraph induced by H is connected and k-regular. Let us prove that H is the set
of vertices of a k-dimensional face of P.

Since O is acyclic, H contains a sink v. Since H is k-regular, v has k neighbors
Uy, ..., ux in H and we must have u; — v for i = 1,... , k. By Part (2) of Lemma
24.2 there is a k-dimensional face F' of P which contains v and uq,... ,u;. Then v
must be a sink of F' and since orientation O is good, v must be the only sink of F.
Let w be a vertex of F. Since v is the unique sink of F', there is a directed path
w=wy — wy — ... — wy, =v in G(P), where wy, ... ,w, are vertices of F'. If
w ¢ H then for some i =0,...,n — 2 we must have w; ¢ H and w; 11 € H, which
is a contradiction since H is an initial set. Therefore F° C H. Since the graphs
induced by F' and H are both k-regular and connected, we must have F' = H. []
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28. THE DIAMETER OF THE GRAPH OF A POLYHEDRON

(28.1) Definitions. Let G be a connected graph. The length of a path in G is the
number of edges in the path. The distance between any two vertices of the graph
is the smallest length of a path connecting the vertices. The diameter of the graph
G is the largest distance between two vertices of the graph. Let A(d,n) be the
maximum diameter of G(P) for a polyhedron P of dimension at most d and with
at most n facets. It follows by Problem 1 of Section 26.4 that A(d,n) < +oco. We
say that a path in G(P) wvisits a facet F' of P if the path contains a vertex of F.

The famous Hirsch Conjecture states that the diameter of the graph G(P) of a
d-dimensional polytope P with n facets does not exceed n — d, see E.D. Kim and
F. Santos, An update on the Hirsch conjecture, preprint arXiv:0907.1186, 2009
and E.D. Kim and F. Santos, Companion to “An update on the Hirsch conjecture”,
preprint arXiv:0912.4235, 2009. Below we reproduce an upper bound on the the
diameter of G(P), where P is a (possibly unbounded) polyhedron, due to G. Kalai
and D. Kleitman.

(28.2) Lemma. Let P be a d-dimensional polyhedron with n facets and without
lines. For a vertex w of P let us define k., as the largest integer such that the set
of facets of P that can be visited from w by a path of length at most k,, contains
not more than n/2 facets. We let k,, = —1 if w belongs to more than n/2 facets of
P. Then

(1) The distance in G(P) between any two vertices u and v does not exceed

(2) Suppose that k,, > 0. Let Q., be the polyhedron defined by the inequalities
that define the facets of P that can be visited by a path of length at most k.,
from w. Then w is a vertex of Q. and every path in G(Q.) of length at
most ky, is a path in G(P).

(3) We have

kw < A(d,n/2).

Proof. Since the set of facets visited by a path from w of length at most k, + 1
contains more than n/2 facets and the set of facets visited by a path from v of
length at most k, + 1 contains more than n/2 facets, there is a facet F' of P visited
by a path I, from wu of length at most &k, + 1 and by a path I, from v of length at
most k, + 1. Moreover, F' is a (d — 1)- dimensional polyhedron with at most (n—1)
facets. Connecting the endpoints of II,, and II, in F', we obtain a path connecting
u and v of length at most 2 + &k, + k, + A(d — 1,n — 1), which proves Part (1).
The inequalities that define the facets of P containing w are also inequalities
defining @,,. Therefore, tcone(P,w) = tcone(Q,,, w), so w is a vertex of Q,,. Let IT
be a path from w in G(Q,,) of length k < k,,. We prove by induction on k that II is
a path in G(P). The case of kK = 0 has been dealt with. Suppose that & > 1 and let
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us consider the path IT C II consisting of the first k—1 edges of II. Suppose that the
other endpoint of IT is . Then the inequalities defining the facets of P containing u
are also inequalities defining @,, and hence tcone(P, u) = tcone(Q,,, u). Therefore
the remaining edge of II follows an edge e of P with one endpoint at u. Since this
edge is bounded in @), it is bounded in P and let v be the other endpoint of e in
G(P). Then v is the intersection of e with a facet F' of P and since k < k,,, the
inequality defining the facet F' is also an inequality defining a facet of (),,. Then v
is a vertex of @, and the remaining edge of II is [u, v], which proves Part (2).

Let u be a vertex of P such that the distance between w and u in G(P) is ky,.
Such a vertex exists since otherwise all vertices and hence all facets of P can be
visited by a path from w of length at most k,,, which is a contradiction. As follows
by Part (2), the distance between w and u in G(Q,,) is also k,,. Since @, is defined
by at most n/2 inequalities, the proof of Part (3) follows. O

(28.3) Theorem. We have

A(d,n) < 2dlog,n +nlTloezd,

Proof. By Parts (1) and (3) of Lemma 28.2, we obtain
A(d,n) < 24+2A(d,n/2)+ A(d—1,n—1).
Iterating (d — d — 1), we obtain
A(d,n) < 2d+2dA(d,n/2).
Iterating (n —— n/2), we obtain
A(d,n) < 2dlogyn + (2d)'°%2" < 2dlog,n + n'tloe2d,

U

(28.4) Problem.
1. Let P be a d-dimensional polytope with n facets. Suppose that the vertices
of P are 0-1 vectors. Prove that the diameter of G(P) does not exceed n — d.
29. EDGES OF A CENTRALLY SYMMETRIC POLYTOPE
(29.1) Definition. A polytope P is called centrally symmetric if P = —P.
The following result was proved by A. Barvinok and I. Novik.

(29.2) Theorem. Let P be a d-dimensional centrally symmetric polytope. Then

fi(P) <

BV 5.
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Proof. Let us define
h=Y [P+,

where the sum is taken over all vertices v of P. Clearly, P + v C 2P. Let us
normalize the Lebesgue measure on 2P in such a way that vol(2P) = 1. Then
vol(P +v) = 2~% and

/QPh dr = Z/zp[P+v] dx = fo(P)274.

Therefore, by the Holder inequality, we have
/ h? dx > f2(P)27%
2P

On the other hand,

/2th dz = Zvol((P—l—u)ﬁ(P—i—v)),

(v,u)

where the sum is taken over all unordered pairs u and v of vertices.
Suppose that vol((P—i—u) N (P—l—v)) > (0. Then there exist x,y € int P such that

x4+u=y+wv. Thus (u—v)/2 = (y —x)/2. Since P = —P, we have y, —z € int P
and so (y —x)/2 € int P. Therefore, the midpoint of the interval [u, —v] lies in the
interior of P and so [u, —v] is not an edge of P. Consequently,

> vol((P+u) N (P+v)) < 270 (P) 4+ 27! ((fO(QP)) — fl(P)) .

(v,u)

Summarizing,

27 fo(P) + 27+ <<f°

and the proof follows. O

(29.3) Problems.
1°. Recall that the standard octahedron O,, C R" is defined as

O, zconv<ei,—e¢: 1=1,... ,n),

where eq,... e, is the standard basis in R™. Prove that the (r — 1)-dimensional
faces of O,, are as follows: let S_, S, C {1,...,n} be disjoint subsets such that
|S_| +|S4+| = r. Then
x; >0 for 1€ 54,
Fs. s =< (x1,...,2n) € Op : x; <0 for 1eS_,

x; =0 for i¢SLUS_
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2. Let L C R™ be a subspace. Let us consider a projection pr : R — R" /L
with the kernel L and let @ = pr(O,,), where O,, is the standard octahedron. Let
y € L be a unique vector minimizing ||u — z||; for u € L, where

n

lally = Z la;| for a=(ay,...,a,).

i=1

Let
S+:{i: y¢>:)3i} and S_:{z': yi<xi}

so that |Sy|+ |S_| = r. Prove that pr (Fs, s_) is an (r — 1)-dimensional face of
Q.

3. Let L C R™ be a subspace and let pr : R — R"/L be a projection with
the kernel L. Let @ = pr(O,) and suppose that the projection of every (r — 1)-
dimensional face of O,, is an (r — 1)-dimensional face of (). Suppose further, that
there is a point y € L such that y differ from z in r coordinates. Prove that y is
the unique minimum of ||u — z||; for u € L.

30. APPROXIMATING A CONVEX BODY BY AN ELLIPSOID

(30.1) Definitions. Let V' be Euclidean space, let B C V,
B = {x cV: |z|* < 1},

be the unit ball, let T': V — V be an invertible linear transformation and let
a € V be a point. The set E = T'(B) + a is called an ellipsoid and a is called its
center.

(30.2) Theorem. Let K CV be a centrally symmetric compact convex set with a
non-empty interior. Then there exists an ellipsoid E C 'V centered at 0 such that

ECKC (\/W)E

Proof. We choose E to be the ellipsoid of the maximum volume among those
centered at 0 and contained in K (that such an ellipsoid exists is proven by a
standard compactness argument). Hence E C K and we have to prove that

K C (\/ dim V) FE. Without loss of generality we assume that K = B, the unit ball.

Suppose that there is a point z € K such that ||z|| > vdim V. Let us introduce
a coordinate system in V, thus identifying V = R? and = (r,0,...,0), where
r > v/d. Since K is symmetric and convex, we have conv(B,z,—x) C K. Our
goal is to inscribe an ellipsoid E C conv(B,z,—z) such that vol E > vol B thus

obtaining a contradiction with the existence of z.
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We look for F in the form

x3 1 &
E:{(ml,...,xd): a—;—f—@fo < 1;,
i=2

where o > 1 and 0 < 8 < 1. Then
vol E = a% ! vol B.

To make sure that E C conv(B, z, —z) for some choice of o and (3, by symmetry it
suffices to show the inclusion for d = 2, in which case we write x for x; and y for
Z9.

Suppose that d = 2 and let (a,b) € OB be a point on the unit circle, so a®+b% = 1.
The equation of the tangent line to B through (a,b) is axz + by = 1 and if we insist
that the line passes through the point (r,0), we obtain the equation

VT 1
(30.2.1) A L)
T T

Similarly, the equation of the tangent line to E through a point (a,b) € E such
that a?/a? +b%/3% =1 is

a b
(30.2.2) Pk + ?y =1

Hence we obtain a common tangent to B and F passing through (r,0) when

1
2 -7 and o =
r

Therefore a = o?/r and b = 3%v/r2 — 1/r. Substituting a and b into the equation
a?/a? +b*/3% = 1, we obtain

(30.2.3) o =r?—(r* - 1)8%

If 5 =1— ¢ for a sufficiently small € > 0 and (a, 3) satisfy (30.2.3) then E C K.
Letting 3 = 1 — ¢ we obtain from (30.2.3) that & = 1+ (r? — 1)e+ O(e?). Therefore,

af?t =exp{lna+ (d-1)InpB} =exp{(r* —1)e— (d— e+ O(?)} > 1

provided r > v/d and € > 0 is sufficiently small. The obtained contradiction shows
that in fact » < v/d and K C VdB. O

69



(30.3) Problems.

1. Prove that for any centrally symmetric convex compact set K with a non-
empty interior there exists a unique ellipsoid F which has the maximum volume
among all ellipsoids inscribed in K and centered at the origin.

2. Let K be a convex compact (not necessarily symmetric) set with a non-empty
interior. Prove that there exists a unique ellipsoid E which has the maximum
volume among all ellipsoids inscribed in K.

3. Let EF C K be the maximum volume ellipsoid of Problem 2 and suppose that
its center is at the origin. Prove that K C (dim K)E.

4. Let K be a centrally symmetric convex compact set with a non-empty interior.
Prove that there exists a unique ellipsoid E of the minimum volume among all
ellipsoids containing K and centered at the origin. Prove that (dim K)~/2E C K.

5. Let K be a convex compact (not necessarily symmetric) set with a non-empty
interior. Prove that there exists a unique ellipsoid F of the minimum volume among
all ellipsoids containing K. Suppose that the center of E is at the origin. Prove

that (dimK)'E C K.
31. SPHERICAL CAPS

(31.1) Lemma. Let

N {(wl,... ,Tp) - Zazf = 1}
i=1

be the unit sphere in R™ and let pu be the (unique) rotation invariant Borel probability
measure on S*~L. For 0 < e <1 let us define the spherical cap

C. = {(331,... Jr,) €Sy > e}.

Then

w(C) < %exp{—%}.

Proof. Let v be the Gaussian probability measure on R" with the density

L
an/2 ’

Since v is rotation invariant, the push-forward of v under the radial projection
R™\ {0}, 2 — x/||z|| is the measure p on S*~1,
Let
Ac={(@r, o ma) 23> o2},
70



Then
1

1 (Ce) = 5”(146)

and hence our goal is bound v (A.). We have

v(Ae) = ! / eIl gz <
Ae

_7-‘-71/2

22,2 a2
n/z/ (@ =l2l?) /2~ 12? gy
T A,

1 [+ o A
_ (ﬁ/ e—|\m1||2/2 da:l) H (ﬁ/ e—(1—|-62/2)9612 da;l.)
— 00 im1 —00

Sﬂexp{—w}

6

and the proof follows. O
We will also need a lower bound on the measure of a (small) spherical cap.

(31.2) Lemma. Let
sl = {(a:l,... X)) fo = 1}
i=1

be the unit sphere in R™ and let pu be the (unique) rotation invariant Borel probability
measure on S"". For 0 < § <2 andy € S" 1, let us define the spherical cap

Asly)={ves" s Jo-yl <o},

Then
67’1

(2+6)"

n(As) >

Proof. Suppose that ¥ C S*~! is a é-net, that is, a finite set of points such that
every point z € S”~! is within distance § from some point y € . Then the caps
As(y) for y € ¥ cover S~ and hence

n(As(y)) = ik
71



Let us now construct a d-net as follows. Let X be the maximal (under inclusion) set
¥ C S"~! such that the distance between any two points of ¥ is at least §. Clearly,
Y is a 0-net. For y € X, let

)
Bal) = {w e R oyl <3

be the ball centered at y of radius §/2. Hence the balls B;/5(y) are pairwise disjoint
and contained in the ball By;5/2(0). Therefore,

|X] - vol Bs2(y) < vol Biys5/2(0)

and hence 51 5y
=l < %

The proof now follows. O

(31.3) Problem.
1. Let B={z € R": |jz|| <1} be the unit ball. Prove that

g
YO T T2 1)

32. AN INEQUALITY FOR THE NUMBER OF
FACES OF A CENTRALLY SYMMETRIC POLYTOPE

The following result is due to V.D. Milman, T. Figiel and J. Lindenstrauss.
(32.1) Theorem. There ezists a constant v > 0 such that

In fo(P) - Infa1(P) > ~d

for any d > 1 and any d-dimensional centrally symmetric polytope P.

Proof. By Theorem 30.2 there is an ellipsoid E centered at the origin such that
E C P C VdE. Applying a linear transformation, if necessary, we assume that
E = B, the unit ball defined in the ambient space V' by the inequality

B:{:ceV: || g1}.
Let v, i =1,..., fa—1(P) be the vertices of P and let 7; = v;/||v;|| be their radial

projections onto the unit sphere S?~!. Let us choose an 0 < ¢ < 1 and let us
consider the spherical cap

Ce(m):{ceSd_lz (e,T3) > e} for i=1,...,fs1(P).
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Let u the the rotation invariant Borel probability measure on S%'. By Lemma

31.1, we have
L2
uCom) < e {-5UE

We can choose
In f() (P )
e < —_—
for some absolute constant vy > 0 such that

fo(P)eXp{—w} <

!
6 2

Letting
X.=|]JC (),
we conclude that

(32.1.1) n(X) <

and that for any ¢ € ST=!\ X,, we have

(32.1.2) max(c,x) = max(c,v;) < \/am;dX(c,@ﬁ < eVd < ~o\/In fo(P).

rEP A

Suppose that P is defined by the inequalities

P:{er: mw@gaﬁj:L“wﬁme}

Since P contains the origin in its interior, we must have o; > 0 and, rescaling if
necessary, we assume that a; =1 for j=1,..., fa_1(P).

Let w; = u;/|luj|| be the radial projections of u; onto the unit sphere S¢~1.
Since w; € P, we conclude that |lu;|| <1 for j =1,..., fq—1(P). Let us choose a
0 < 6§ <1 and let us consider the spherical cap

cxmﬁz{ceskk <g@>za} for j=1,...,fs1(P).

We can choose

In fg_1(P
0 < m 7fdd1< )

for some absolute constant 77 > 0 such that

fa—1(P)exp {—%} <
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Letting
Y =JGCs @),
J

we conclude that

(32.1.3) n(Ys) <

N |

Moreover, for every ¢ € S~ \ Y5 we have
[(c,u;)| < [{c,uy)| < & for j=1,..., fa—1(P)

and hence 6~'c € P. Therefore, for every ¢ € S¢! \ Y5 we have

d
. > -1 Bk P —
(32.1.4) glealgc(c, x)y > (¢, 6 "¢ 0 > I fy 1 (P)

By (32.1.1) and (32.1.3), there exists a ¢ € S¥~! such that ¢ ¢ X, and ¢ ¢ Y.
For such a ¢, we have by (32.1.2) and (32.1.4)

d
71—1 m < r;lealg(<c,x> < ’)’Om'

Therefore,
In fo(P)-In fg_1(P) > ~vd for ~v=(yom) 7,

as desired. O

(32.2) Problems.
1. Let P be a d-dimensional polytope such that B C P C pB for the unit ball
B and some p > 1. Prove that

In f4—1(P) -In fo(P) > ~d*/p?,

for some absolute constant v > 0.

2. Let P be a d-dimensional centrally symmetric polytope. Prove that
Infi(P)-Inf(P) > ~v(I—k) forall 0<k<Ii<d-1

and some absolute constant v > 0.
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33. GALE TRANSFORMS AND SYMMETRIC GALE TRANSFORMS

Let P C R? be a d-dimensional polytope with the vertices v1,. .. ,v,. By trans-
lating P, we can assume that v; +...4wv, = 0. Moreover, by applying an invertible
linear transformation, we can represent P as the orthogonal projection of the stan-
dard simplex A, _1 C R™ onto a d-dimensional subspace L. We define L by its
basis consisting of the rows of the d x n matrix whose columns are vy, ... ,v,.

(33.1) Theorem. Letey,... e, be the standard basis of R™, letu=e1+ ...+ €,
and let L C R™ be a d-dimensional subspace orthogonal to u. Letv; be the orthogonal
projection of e; onto L and let P = conv (v1,. .. ,vn). Let L = (L ®Ru)™ be the
(n—d—1)-dimensional subspace orthogonal to L and to u and let v; be the orthogonal
projection of e; onto L. Then {fui NS I} is the set of vertices of a proper face of
P if and only if

0= Z)\i@i for some X\, >0 for i¢1
igl

or, equivalently, if
0 €intconv(d; : i ¢1I),
where by “int 7 we understand the relative interior (that is, the interior relative to

the affine span of the set v; : i ¢ I).

Proof. Suppose that {vi el } is the set of vertices of a proper face of P. Then
there exists a vector ¢ € L and a number « such that

2311 (c,v;) =a for i€l and
(33.1.1) (c,v;) >a for i¢l.
Since (c,v;) = (c, e;) for all 7, we obtain

(c—au,e;) =0 for i€l and

33.1.2
( ) (c —au,e;) >0 for i¢l1.

Thus we can write

(33.1.3) c—au = Z Nie;  for N\ = (c—au,e;) > 0.
it

Projecting the above identity onto IA/, we get

(33.1.4) 0= MNb; where X\ >0 forall i¢l.

i¢I
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Conversely, suppose that (33.1.4) holds. Then the vector ZZ-¢ 7 Aie; lies in
L
(L) = L & Ru and hence for some o € R we have (33.1.3) where

. L
ce (LoRru) =L
Then (33.1.2) and hence (33.1.1) hold and so {v; : i € I} are the vertices of a

proper face of P. O

The correspondence
{vi: 1=1,... ,n} — {171 1=1,... ,n}

is called the Gale transform after D. Gale.
The symmetric Gale transform was introduced by P. McMullen and G.C. Shep-

hard. It is based on representing a centrally symmetric polytope as the projection
of the octahedron O,,.

(33.2) Theorem. Let eq,... e, be the standard basis of R™ and let L C R™ be
a d-dimensional subspace. Let v; be the orthogonal projection of e; onto L and let
P = conv (vy,... ,Un;—V1,...,—0y,). Let L+ C R™ be the orthogonal complement
to L and let v; be the orthogonal projection of e; onto L+. Then the set {eivi NS

I} where €; € {—1,1} is the set of vertices of a proper face of P if and only if
ZQ@Z‘ = Zéﬁl where |5z‘ <1 fO?“ 1 ¢ I
i€l ¢l

or, equivalently, if

Zeﬁi € intconv (Z 0;v; :  for 0; € {—1, 1}) ,

il i1
where by “int 7 we understand the relative interior.

Proof. Suppose that {eivi el } is the set of vertices of a proper face of P. Then
there exists a vector ¢ € L and a number o > 0 such that

(c,v;) =€ for i€l and

33.2.1
( ) |{c,v)| <a for i¢l.

Since (c,v;) = (c, e;) for all 7, we obtain

(c,e;) =€, for i€l and

|{c,e))| <a for i¢l.
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Thus we can write
(33.2.3) c= Zeiaei + Z)‘iei where |\ <a for ié¢l.
il il
Projecting the above identity onto L and dividing by «, we obtain
(33.2.4) Zeﬁi = Zéﬁi where [§;| <1 forall ¢ I.
i€l il

Conversely, suppose that (33.2.4) holds. Then the vector ), ; €;e; — Zi(ﬂ 0;€;
lies in L and hence we have (32.2.3) for some ¢ € L and o = 1. Therefore, both
(33.2.2) and (33.2.1) hold and hence {¢;v; : i € I} are the vertices of a proper face
of P. O

(33.3) Problems.
1. Describe a possible facial structure of a d-dimensional polytope with d + 2
vertices.

2. Construct an example of a (d — 1)-dimensional centrally symmetric polytope
P with 2d vertices such that every subset of k < d/2 vertices, not containing a pair
of antipodal vertices, is the set of vertices of some face of P.

34. ALMOST EUCLIDEAN SUBSPACES OF ¢! AND
CENTRALLY SYMMETRIC POLYTOPES WITH MANY FACES

(34.1) Definitions. Let us consider the following two norms in R™: the usual
Euclidean norm

n 1/2
]2 = (Zﬁ) for = (z1,...,2,)
i=1
and the ¢! norm .
2|l = Z |z;| for x=(x1,...,2).
i=1
It is not hard to show that
lzll2 < |lz|]li £ Vnllz||2 forall z € R".
For a 0 < p < 1 we say that a subspace L C R" is p-Fuclidean if

ovnllzlla < |zl < vn|z|2 forall ze L.

The following is a rephrasing of a result due to N. Linial and I. Novik.
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(34.2) Theorem. Let L C R™ be a subspace, let v; be the orthogonal projection of
e; onto L, and let P = conv(vl, e, Up —UL, ... ,—vn). Suppose that the comple-
mentary subspace L+ C R™ is p-Euclidean and let k < p*n/4 be a positive integer.
Then every set of k vertices of P not containing a pair of antipodal vertices is the
set of vertices of some proper face of P.

Proof. Let T; be the orthogonal projection of e; onto L+ fori =1,... ,n.

Let I C {1,...,n} be aset, |I[| =k, and let ¢, € {—1,1} for i € I be signs such
that the set {eivi 1€ I} is not the set of vertices of a face of P. By Theorem
33.2, the point Zz‘e ; €V; does not lie in the relative interior of the convex hull of

the points Ziﬂ 6;0; for 6; € {—1,1} and hence there exists a vector ¢ € L*, ¢ # 0,

such that
T > T ) = o) .
<C, > €1Uz> 5{@£<1<c, > 6zvz> > " [{c, 7))

i€l igl il il
In particular,
Y Kew)l = > Hew)l.
il il
On the other hand, (¢, 7;) = (c,e;) for i = 1,... ,n and hence
D el = > leenl.
il igl

Therefore,
1« 1
Slteenl = 53 leedl = sl
el i=1

On the other hand, by the Cauchy- Schwarz inequality

1/2
S leie] < @(Z@,e&) < Villels < Evalels

iel iel

and

lells > pv/nlle]l2,

which is a contradiction. O

(34.3) Problems.
1°. Construct an example of a 1-dimensional subspace of R™ which is
1-Euclidean.

2. For 0 < p < 1 and a positive integer k construct an example of a k-dimensional
subspace of R™ for which is p-Euclidean for a sufficiently large n.
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35. THE VOLUME RATIO AND ALMOST EUCLIDEAN SUBSPACES

(35.1) Definitions. Let V be an n-dimensional vector space with Euclidean norm
| - || and let p : V' — R be some other norm on V. Let

B:{xEV: ||x||§1}
be the Euclidean unit ball, and let
K:{xGV: p(m)gl}

be the unit ball in norm p.
Let G (V) be Grassmannian manifold of all k-dimensional subspaces L C V
with the unique rotation invariant Borel probability measure v, j,.

The following result is due to S. Szarek who was building on the work of B.
Kashin.

(35.2) Theorem. Suppose that B C K and that

vol K\ /"
<y
vol B
for some v > 1. Then for any 1 < k < n —1 a random subspace L € Gy (V)
satisfies

pla) < |lzl < (129)7Fp(x) forall welL
with probability at least 1 — 27",

Proof. Since B C K we have
p(x) < ||z|| forall zeV.

We note that
vol K

VOIB - S§n—1

p " (x) dpn—1(z),

where p,_1 is the rotation invariant Borel probability measure on the unit Eu-
clidean sphere S*~!. Indeed, for a point z € V \ 0 we have p~!(z)r € K and
hence we obtain K by stretching B in the direction of x € S*~! by the factor of
p~H(z).

Next, we note that for any continuous function f:S"~!' — R we have

[ 1@ duste) = [ . ( [ s duk_m(x)) D),
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where p_1,1 is the rotation invariant Borel probability measure on the (k — 1)-

dimensional unit sphere S*~! N L in the k-dimensional subspace L. This follows

from the uniqueness of the rotation invariant Borel probability measure on S?~!.
Summarizing,

/Gk(V) </Sn_1mp_n(a:) duk_1,L(a:)) A (L) < 4™

and hence with probability at least 1 —2~"™ a random subspace L € Gy (V') satisfies

(35.2.1) Lo v dmeste) < @

Suppose that a subspace L € Gy (V) satisfies (35.2.1). Then, for any 0 < oo < 1 we
have

(35.2.2) fh—1.L {xeS”_lﬂL: p(z) < 23} < a".
¥

Suppose that for some y € S*~! N L we have

«

ply) < oot

Let us consider the (k — 1)-dimensional spherical cap

A(y):{xESn_lﬂL: |z —y| S%}

Then for every x € A(y) we have

p(x) < ply)+px—y) < ply)+ e —y| < %

Using the estimate of Lemma 31.2 on the measure of a spherical cap, we conclude
that

k
« «
2. _ nlng: < — 5 > [ —) .
(35.2.3) Hk—1,L {:L'ES N p(z) < 27} > <12’y)

However, (35.2.3) contradicts (35.2.2) if
a < (129) 7F .
Therefore, for all y € S*~! N L we have
Py) = (29)71(12y)7TF > (127)77F
and the proof follows. O
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(35.3) Example: almost Euclidean subspaces of ¢!. Let V = R" with the
usual Euclidean norm || - ||. Let us define

p(x) =n"Y?||z||; forall zeR™

Then the unit ball of p(x) is the dilated octahedron K = /nO,, and B C 1/nO(n),
where B is the Euclidean unit ball.
We have (cf. Problem 31.3)

1/n %

™

vol B 7n/2n)

(mx)”n _ <nn/2r(n/2 + 1)2n)

It follows by Theorem 35.2 that for any 0 < € < 1 there is a constant p(e) > 0 and
an integer k > (1 — €)n such that a random subspace L € G (R") is p(¢)-Euclidean
with probability at least 1 — 27",

(35.4) Problem.
1. Prove that the probability that m > n independent random points zq,...
Zm € S"1 lie in a halfspace is

n—1
-1
gt § (7 .
< k )

k=0

See J.G. Wendel, A problem in geometric probability, Math. Scand. 11 (1962),
109-111.
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