Math 669 Problems, Set no. I

Due Thursday, February 18

1. Problem. Let V be a real vector space, let $S \subset V$ be a set and let $a, b \in V$ be points such that $a \notin \operatorname{conv}(S)$ and $b \notin \operatorname{conv}(S)$. Prove that if $a \in \operatorname{conv}(S \cup\{b\})$ and $b \in \operatorname{conv}(S \cup\{a\})$ then $a=b$.
2. Problem. Let $f(z)$ be a non-constant polynomial in one complex variable z and let z_{1}, \ldots, z_{m} be the roots of f. Identify the set of complex numbers \mathbb{C} with the plane \mathbb{R}^{2} by identifying $z=x+i y$ with (x, y). Let $w \in \mathbb{C}$ be a root of the derivative f^{\prime} of f. Prove that $w \in \operatorname{conv}\left(z_{1}, \ldots, z_{m}\right)$ (Gauss-Lucas Theorem).
3. Problem. Let $A_{1}, \ldots, A_{d+1} \subset \mathbb{R}^{d}$ be sets and let $a \in \mathbb{R}^{d}$ be a point such that $a \in \operatorname{conv}\left(A_{i}\right)$ for $i=1, \ldots, d+1$. Prove that there are points $a_{i} \in A_{i}$ for $i=1, \ldots, d+1$ such that $a \in \operatorname{conv}\left(a_{1}, \ldots, a_{d+1}\right)$ (Bárány Theorem).
Hint: Argue that without loss of generality one may assume that all the sets A_{i} are finite. Choose $a_{i} \in A_{i}$ so that the Euclidean distance from a to conv $\left(a_{1}, \ldots, a_{d+1}\right)$ is the smallest possible.
4. Problem. Construct an example of a closed set $A \subset \mathbb{R}^{2}$ such that $\operatorname{conv}(A)$ is not closed.
5. Problem. Let $S \subset \mathbb{R}^{d}$ be a set of $(k-1)(d+1)+1$ points in \mathbb{R}^{d}, where $k>1$ is an integer. Prove that one can find k pairwise disjoint subsets $S_{i} \subset S$ for $i=1, \ldots, k$ such that

$$
\operatorname{conv}\left(S_{1}\right) \cap \operatorname{conv}\left(S_{2}\right) \cap \ldots \cap \operatorname{conv}\left(S_{k}\right) \neq \emptyset
$$

(Tverberg Theorem).
Hint: Identify \mathbb{R}^{d} with the affine hyperplane $x_{1}+\ldots+x_{d+1}=1$ in \mathbb{R}^{d+1}. Let W be a $(k-1)$-dimensional real vector space and let $w_{1}, \ldots, w_{k} \in W$ be vectors such that $w_{1}+\ldots+w_{k}=0$ is their only linear dependence, up to a factor. In the space $\mathbb{R}^{d+1} \otimes W$ consider the $(k-1)(d+1)+1$ subsets

$$
A_{s}=\left\{s \otimes w_{1}, s \otimes w_{2}, \ldots, s \otimes w_{k}\right\} \quad \text { where } \quad s \in S
$$

Apply the result of Problem 3.
6. Problem. Let A_{1}, \ldots, A_{m} be convex sets in a d-dimensional real vector space V. Let $k \leq d+1$ and suppose that every k of the sets have a point in common. Prove that for any subspace $L \subset V$ such that $\operatorname{dim} L=d-k+1$ there is a translation $L+u=\{x+u: x \in L\}$ that intersects every set $A_{i}, i=1, \ldots, m$.
7. Problem. Let $A_{1}, \ldots, A_{m} ; C$ be convex sets in a d-dimensional real vector space V. Suppose that for any $d+1$ sets $A_{i_{1}}, \ldots, A_{i_{d+1}}$ there is a vector $u \in V$ such that the translate $C+u=\{x+u: x \in C\}$ intersects every set $A_{i_{1}}, \ldots, A_{i_{d+1}}$:

$$
A_{i_{1}} \cap(C+u) \neq \emptyset, A_{i_{2}} \cap(C+u) \neq \emptyset, \ldots, A_{i_{d+1}} \cap(C+u) \neq \emptyset
$$

(vector u may depend on $A_{i_{1}}, \ldots, A_{i_{d+1}}$). Prove that there is a vector $w \in V$ such that

$$
A_{i} \cap(C+w) \neq \emptyset \quad \text { for } \quad i=1, \ldots, m
$$

8. Problem. Let $A \subset \mathbb{R}^{d}$ be a compact convex set. Prove that there is a point $u \in \mathbb{R}^{d}$ such that

$$
-\frac{1}{d} A+u \subset A \quad \text { where } \quad-\frac{1}{d} A+u=\left\{-\frac{1}{d} x+u: x \in A\right\} .
$$

9. Problem. Let $A_{1}, A_{2}, A_{3}, A_{4} \subset \mathbb{R}^{2}$ be closed convex sets such that the set $A_{1} \cup A_{2} \cup A_{3} \cup A_{4}$ is convex. Suppose that all pairwise intersections $A_{1} \cap A_{2}$, $A_{1} \cap A_{3}, A_{1} \cap A_{4}, A_{2} \cap A_{3}, A_{2} \cap A_{4}$ and $A_{3} \cap A_{4}$ are non-empty. Prove that at least three of the four intersections $A_{1} \cap A_{2} \cap A_{3}, A_{1} \cap A_{2} \cap A_{4}, A_{1} \cap A_{3} \cap A_{4}$ and $A_{2} \cap A_{3} \cap A_{4}$ are non-empty and if all the four intersections are non-empty then $A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \neq \emptyset$.
10. Problem. Let $\Delta \subset \mathbb{R}^{d}$ be the standard ($d-1$)-dimensional simplex defined by

$$
\Delta=\left\{\left(x_{1}, \ldots, x_{d}\right): \quad \sum_{i=1}^{d} x_{i}=1 \quad \text { and } \quad x_{i} \geq 0 \quad \text { for } \quad i=1, \ldots d\right\}
$$

For $i=1, \ldots, d$, let $\Gamma_{i} \subset \Delta$ be the facet of Δ defined by the equation $x_{i}=0$. Let $K_{1}, \ldots, K_{d} \subset \mathbb{R}^{d}$ be closed convex sets such that

$$
\Delta \subset \bigcup_{i=1}^{d} K_{i} \quad \text { and } \quad K_{i} \cap \Gamma_{i}=\emptyset \quad \text { for } \quad i=1, \ldots, d
$$

Prove that

$$
\bigcap_{i=1}^{d} K_{i} \neq \emptyset
$$

(Klee Theorem).

