Math 669 Problems, Set no. II

DUE THURSDAY, MARCH 18

1. Problem. For sets $A, B \subset \mathbb{R}^d$, we define their Minkowski sum as

$$A + B = \{x + y : x \in A, y \in B\}.$$

Prove that the Minkowski sum of convex sets is convex and that the Minkowski sum of compact sets is compact.

2. Problem. Let $\mathcal{K}(\mathbb{R}^d)$ be the algebra of convex compact sets in \mathbb{R}^d . Show that there is a bilinear operation

$$\star: \ \mathcal{K}(\mathbb{R}^d) \times \mathcal{K}(\mathbb{R}^d) \longrightarrow \mathcal{K}(\mathbb{R}^d)$$

such that

$$[A] \star [B] = [A+B]$$

for any non-empty convex compact sets $A, B \subset \mathbb{R}^d$. Here A + B is the Minkowski sum. The operation \star is bilinear if

$$(\alpha f + \beta g) \star h = \alpha (f \star h) + \beta (g \star h)$$
 and $h \star (\alpha f + \beta g) = \alpha (h \star f) + \beta (h \star g)$

for any $f, g, h \in \mathcal{K}(\mathbb{R}^d)$ and $\alpha, \beta \in \mathbb{R}$.

3. Problem. Let $A, B \subset \mathbb{R}^d$ be non-empty convex compact sets such that $A \cup B$ is convex. Prove the following identity for Minkowski sums:

$$(A \cap B) + (A \cup B) = A + B.$$

Hint: One way (which extends to more general identities) to prove it is to argue that for any linear function $\ell : \mathbb{R}^d \longrightarrow \mathbb{R}$, we have

$$\max_{x \in A \cap B} \ell(x) + \max_{x \in A \cup B} \ell(x) = \max_{x \in A} \ell(x) + \max_{x \in B} \ell(x).$$

4. Problem. Let $A \subset \mathbb{R}^2$ be a convex polygon (convex hull of finitely many points with a non-empty interior). Show that

$$\omega_1(A) = \frac{1}{\pi}$$
 perimeter of A ,

where ω_1 is the first intrinsic volume.

5. Problem. Let $A \subset \mathbb{R}^d$ be a convex body, let $B \subset \mathbb{R}^d$ be the unit ball. Show that for any $\epsilon > 0$, we have

$$\operatorname{vol}(A + \epsilon B) = \sum_{k=0}^{d} {\binom{d}{k}} \frac{\nu_d}{\nu_k} \omega_k(A) \epsilon^{d-k},$$

where ν_k is the volume of the unit ball in \mathbb{R}^k and $\omega_k(A)$ is the k-th intrinsic volume. Hint: Using Problem 2, prove that the correspondence

$$A \mapsto \operatorname{vol}(A + \epsilon B)$$

for convex compact sets $A \subset \mathbb{R}^d$ extends to a valuation on $\mathcal{K}(\mathbb{R}^d)$. Use Hadwiger's Theorem characterizing valuations invariant under rigid motions of \mathbb{R}^d and continuous with respect to the Hausdorff distance.

6. Problem. Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ where m < n be the projection

$$(\xi_1,\ldots,\xi_n)\longmapsto (\xi_1,\ldots,\xi_m).$$

Let $C \subset \mathbb{R}^n$ be a convex body, that is, a convex compact set with non-empty interior. For $x \in T(C)$, let

$$f(x) = \ln \operatorname{vol} \left(T^{-1}(x) \cap C \right),$$

where we measure volume in the n-m dimensional affine subspace $T^{-1}(x)$. Show that

$$f(\alpha x + \beta y) \ge \alpha f(x) + \beta f(y)$$

for any $x, y \in T(C)$ and any $\alpha, \beta \ge 0$ such that $\alpha + \beta = 1$. Deduce that if C is symmetric about the origin, that is, C = -C, then

$$\max_{x \in T(C)} f(x) = f(0).$$

7. **Problem.** Let $V = \mathbb{R}_{\infty}$ be the real vector space of all infinite sequences $x = (\xi_1, \xi_2, ...)$ for which all but finitely many terms ξ_i are zero. Let $A \subset V$ be the set of all such sequences $x \neq 0$ such that the last non-zero term ξ_n is strictly positive. Prove that A is convex and that there is no hyperplane $H \subset V$ such that $0 \in H$ and H isolates A (strictly or not).

8. Problem. Let $A \subset \mathbb{R}^d$ be a non-empty closed convex set. Prove that A contains an extreme point if and only if A does not contain lines.

9. Problem. Construct an example of a real vector space V and a non-empty convex set $A \subset V$ such that the intersection of A with every line in V is a closed bounded interval, possibly empty or a point, and A has no extreme points.

10. Problem. Construct an example of a convex compact set $A \subset \mathbb{R}^3$ such that the set of extreme points of A is not closed.