Math 669 Problems, Set no. III

Due Thursday, April 15

1. Problem. Let $A \subset \mathbb{R}^{n}$ be a closed convex set. Prove that if A has finitely many faces then A is a polyhedron.
2. Problem. Let Q_{n} be the polytope of $n \times n$ symmetric doubly stochastic matrices and let $X=\left(\xi_{i j}\right)$ be a vertex of Q_{n}. Prove that $\xi_{i j} \in\{0,1,1 / 2\}$ for all i, j.
3. Problem. Let $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$ be real numbers. Let $x=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and let consider the permutation polytope P that is the convex hull of the n ! points $x_{\sigma}=$ $\left(\lambda_{\sigma(1)}, \ldots, \lambda_{\sigma(n)}\right)$, where $\sigma:\{1, \ldots, n\} \longrightarrow\{1, \ldots, n\}$ is a permutation. Let us split the integer interval $(1,2, \ldots, n)$ into k subintervals $\left(1, \ldots, a_{1}\right),\left(a_{1}+1, \ldots, a_{2}\right)$, $\ldots,\left(a_{k-1}+1, \ldots, n\right)$, where subintervals may consist of a single point. Prove that the convex hull of the points x_{σ} where σ permutes the numbers inside each subinterval is a face of P containing x and that every face of P containing x is constructed this way.
4. Problem. Let $T(G ; b) \neq \emptyset$ be a transportation polyhedron. Prove that $T(G, b)$ is bounded if and only if the graph G does not contain directed cycles $v_{1} \rightarrow v_{2} \rightarrow$ $\ldots \rightarrow v_{k} \rightarrow v_{1}$.
5. Problem. Let $P_{1}, P_{2} \subset \mathbb{R}^{n}$ be polyhedra. Prove that $Q=P_{1}+P_{2}$ is a polyhedron and that every face F of Q can be written as $F=F_{1}+F_{2}$, where F_{1} is a face of P_{1} and F_{2} is a face of P_{2}.
6. Problem. Let $K_{1}, K_{2} \subset \mathbb{R}^{n}$ be closed convex cones. Prove that $\left(K_{1}+K_{2}\right)^{\circ}=$ $K_{1}^{\circ} \cap K_{2}^{\circ}$ and that $\left(K_{1} \cap K_{2}\right)^{\circ}=K_{1}^{\circ}+K_{2}^{\circ}$, provided the cone $K_{1}^{\circ}+K_{2}^{\circ}$ is closed.
7. Problem. Let $P \subset \mathbb{R}^{n}$ be a non-empty polyhedron. Prove that $P^{\circ} \subset \mathbb{R}^{n}$ is a polyhedron.
8. Problem. Let $\mathcal{D}: \mathcal{C}\left(\mathbb{R}^{n}\right) \longrightarrow \mathcal{C}\left(\mathbb{R}^{n}\right)$ be the polarity valuation such that $\mathcal{D}([A])=\left[A^{\circ}\right]$ for non-empty closed convex sets $A \subset \mathbb{R}^{n}$. Let

$$
K=\left\{\left(\xi_{1}, \ldots, \xi_{n}\right): \xi_{i}>0 \quad \text { for } \quad i=1, \ldots, n\right\}
$$

Prove that $\mathcal{D}([K])=(-1)^{n}[K]$.
9. Problem. Let $A \subset \mathbb{R}^{n}$ be a convex compact set containing 0 in its interior. We define the support function $h_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ by

$$
h_{A}(c)=\max _{x \in A}\langle c, x\rangle .
$$

Prove that

$$
\operatorname{vol} A^{\circ}=\frac{1}{n!} \int_{\mathbb{R}^{n}} e^{-h_{A}(c)} d c
$$

10. Problem. We consider the space V_{n} of $n \times n$ symmetric matrices as Euclidean space with inner product

$$
\langle A, B\rangle=\operatorname{trace} A B
$$

Let

$$
K=\left\{A \in V_{n}: \quad A \text { is positive semi-definite }\right\} .
$$

Prove that

$$
K^{\circ}=-K
$$

