
CONVEXITY OF THE IMAGE OF A QUADRATIC

MAP VIA THE RELATIVE ENTROPY DISTANCE

Alexander Barvinok

May 2013

Abstract. Let ψ : Rn −→ R
k be a map defined by k positive definite quadratic

forms on R
n. We prove that the relative entropy (Kullback-Leibler) distance from

the convex hull of the image of ψ to the image of ψ is bounded above by an absolute

constant. More precisely, we prove that for every point a = (a1, . . . , ak) in the convex
hull of the image of ψ such that a1 + . . . + ak = 1 there is a point b = (b1, . . . , bk)

in the image of ψ such that b1 + . . .+ bk = 1 and such that
∑

k

i=1
ai ln (ai/bi) < 4.8.

Similarly, we prove that for any integer m one can choose a convex combination b of

at most m points from the image of ψ such that
∑

k

i=1
ai ln (ai/bi) < 15/

√
m.

1. Introduction

Let q1, . . . , qk : Rn −→ R be quadratic forms and let ψ : Rn −→ R
k be the

corresponding quadratic map,

ψ(x) = (q1(x), . . . , qk(x)) .

We are interested in the convex properties of the image ψ (Rn) ⊂ R
k. The image is

clearly convex when k = 1 and by the Dines Theorem it is convex when k = 2 (this
and related facts can be found, for example, in Sections II.12-14 of [Ba02] or in
[PT07]). The image is not necessarily convex for k ≥ 3, though it remains convex
for k = 3 if some linear combination of the forms q1, q2 and q3 is positive definite.

In this paper, we show that the image ψ (Rn) is close to its own convex hull
conv (ψ (Rn)) in some information-theoretic sense.

Let

a = (a1, . . . , ak) and b = (b1, . . . , bk)
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be two positive vectors such that

k∑

i=1

ai =
k∑

i=1

bi = 1.

We interpret a and b as probability distributions and define the relative entropy of
a with respect to b as

D(a‖b) =
k∑

i=1

ai ln

(
ai
bi

)
.

The quantity D(a‖b) is also known as the Kullback - Leibler distance from a to b
(although, generally speaking, D(a‖b) 6= D(b‖a) and the triangle inequality does
not hold). In particular, D(a‖b) ≥ 0 with equality if and only if a = b, see for
example, [CT06].

We prove that with respect to the Kullback - Leibler distance, the image ψ (Rn)
of a quadratic map is reasonably close to its own convex hull conv (ψ (Rn)).

(1.1) Theorem. Let q1, . . . , qk : Rn −→ R be positive definite quadratic forms
and let ψ : Rn −→ R

k be the corresponding map,

ψ(x) = (q1(x), . . . , qk(x)) .

Let a ∈ conv (ψ (Rn)) be a point, a = (a1, . . . , ak), such that a1 + . . . + ak = 1.
Then there exists a point b ∈ ψ (Rn), b = (b1, . . . , bk), such that b1 + . . .+ bk = 1
and

k∑

i=1

ai ln

(
ai
bi

)
≤ β

for some absolute constant β > 0. One can choose, for example, β = 4.8.

We have undertaken some effort to optimize the constant β, but its optimal value
is not known at the moment and it would be interesting to find it.

Loosely speaking, Theorem 1.1 asserts that replacing the image of ψ by its convex
hull leads to only a constant loss of information. The technique of semidefinite
programming is based on replacing computationally intractable systems of quadratic
equations and inequalities over the reals by computationally tractable systems of
linear equations and inequalities in positive semidefinite matrices. This procedure
is known as relaxation, see for example, [Tu10]. The success of relaxation depends
on the convex properties of the underlying quadratic maps, see [PT07]. Speaking
even more loosely, one can speculate that the constant bound on the information
loss in Theorem 1.1 explains the success of semidefinite programming.

We also prove the following extension of Theorem 1.1.
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(1.2) Theorem. Let q1, . . . , qk : Rn −→ R be positive definite quadratic forms
and let ψ : Rn −→ R

k be the corresponding map,

ψ(x) = (q1(x), . . . , qk(x)) .

Let a ∈ conv (ψ (Rn)) be a point, a = (a1, . . . , ak), such that a1 + . . . + ak = 1.
Then, for any positive integer m, there exists a point b = (b1, . . . , bk), such that
b1+ . . .+ bk = 1, the point b is a convex combination of at most m points of ψ (Rn)
and

k∑

i=1

ai ln

(
ai
bi

)
<

15√
m
.

We note a useful inequality

D(a‖b) =
k∑

i=1

ai ln

(
ai
bi

)
≥ 1

2 ln 2

(
k∑

i=1

|ai − bi|
)2

,

see, for example, Section 11.6 of [CT06]. The Approximate Carathéodory Theorem
of Maurey (see [Pi81] and Section I.3 of [Ve+]) states that if X is any set of points
in the standard simplex

k∑

i=1

xi = 1 and x1, . . . , xk ≥ 0

in R
k then any point a ∈ conv(X) can be approximated within error of 1/

√
m

by a convex combination of m points of X in the ℓ2 (Euclidean) norm. Theorem
1.2 asserts that if X is the image of a quadratic map then one can get a similar
approximation in the ℓ1 norm.

The Johnson - Lindenstrauss Lemma implies that for any ǫ > 0, if one chooses
m = O

(
ǫ−2 ln k

)
in Theorem 1.2 then one can ensure that

∣∣∣∣ln
ai
bi

∣∣∣∣ ≤ ǫ for i = 1, . . . , k,

see, for example, Sections V.5-6 of [Ba02] and [Ma08]. Theorem 1.2 asserts that if
we measure the Kullback - Leibler distance, then the dependence on the number k
of quadratic forms can be removed so that m = O

(
ǫ−2
)
and

D(a‖b) =
k∑

i=1

ai ln

(
ai
bi

)
≤ ǫ.

In the rest of the paper, we prove Theorems 1.1 and 1.2. In Section 2, we
establish some general results on the distribution of values of a positive semidefinite
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quadratic form with respect to the Gaussian probability measure in R
n. In Section

3, we consider the problem of maximizing a convex combination of logarithms
of positive semidefinite quadratic forms on the unit sphere. We prove that its
straightforward positive semidefinite relaxation produces a relative error bounded
by an absolute constant. In Section 4, we complete the proof of Theorem 1.1. The
proof of Theorem 1.2 given in Section 5 is a straightforward modification of our
proof of Theorem 1.1.

2. Quadratic forms and the Gaussian measure

Un this section, we prove the following main result.

(2.1) Lemma. Let us fix in R
n the standard Gaussian probability measure µn with

density
1

(2π)n/2
e−‖x‖2/2.

Let q : Rn −→ R be a positive semidefinite quadratic form such that

E q = 1.

Then

(1) We have
E |ln q| < 2.75;

(2) For t ≥ 1 let us define

φ(t) = min
α≥1

2α

tα
√
π
Γ

(
α+

1

2

)
.

Then
P
(
x : q(x) ≥ t

)
≤ φ(t) for all t ≥ 1.

Proof. Part (1) is essentially proved in [Ba99] but we present its proof here for
completeness. We have

E |ln q| ≤
(
E ln2 q

)1/2
.

We can write

(2.1.1) q(x) =

n∑

i=1

λix
2
i for x = (x1, . . . , xn)

in some orthonormal basis of Rn. Since

E q = Ex2i = 1 for i = 1, . . . , n,
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we have

(2.1.2)
n∑

i=1

λi = 1 and also λi ≥ 0 for i = 1, . . . , n.

Let
Y =

{
x ∈ R

n : q(x) ≤ 1
}
.

By the concavity of the logarithm,

ln

(
n∑

i=1

λix
2
i

)
≥

n∑

i=1

λi lnx
2
i .

Since ln q(x) < 0 for all x ∈ Y , using (2.1.2) and the convexity of the function
t 7−→ t2, we conclude that

∫

Y

ln2 q(x) dµn(x) ≤
∫

Y

(
n∑

i=1

λi lnx
2
i

)2

dµn(x)

≤
∫

Y

(
n∑

i=1

λi ln
2 x2i

)
dµn(x) ≤

∫

Rn

ln2 x21 dµn(x)

=
8√
2π

∫ +∞

0

(
ln2 x

)
e−x2/2 dx < 6.55.

On the other hand, since ln t ≤
√
t for t ≥ 1, we conclude that

∫

Rn\Y

ln2 q(x) dµn(x) ≤
∫

Rn\Y

q(x) dµn(x) ≤
∫

Rn

q(x) dµn(x) = 1.

Therefore,

E ln2 q < 6.55 + 1 = 7.55 and E |ln q| <
√
7.55 < 2.75,

which proves Part (1).
Let us choose any α ≥ 1. Applying the Markov inequality, we get

P
(
x : q(x) ≥ t

)
= P (x : qα(x) ≥ tα) ≤ t−αE qα.

Writing q as in (2.1.1) and using (2.1.2) and the convexity of the function t 7−→ tα,
we obtain

E qα =E

(
n∑

i=1

λix
2
i

)α

≤
k∑

i=1

λiE
(
x2i
)α

=
2√
2π

∫ +∞

0

x2αe−x2/2 dx =
2α√
π
Γ

(
α +

1

2

)
,
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from which the proof of Part (2) follows. �

(2.2) Remark. The exact upper bound in Part (1) is not known to the author,
though it looks plausible that it is attained on forms of rank 1 and hence is equal
to

4√
2π

∫ +∞

0

| lnx|e−x2/2 dx ≈ 1.76.

3. An optimization problem on the sphere

(3.1) Notation. We consider the space Symn of n×n symmetric matrices endowed
with standard inner product

〈A,B〉 =
n∑

i,j=1

aijbij = trace(AB),

where A = (aij) and B = (bij). For a vector x ∈ R
n, x = (x1, . . . , xn), we define a

symmetric matrix X = x ⊗ x, X = (xij), by xij = xixj . Thus a quadratic form q
with matrix Q can be written as

q(x) = 〈Q, x⊗ x〉 for all x ∈ R
n.

We write X � 0 to say that X is positive semidefinite and X ≻ 0 to say that X is
positive definite.

In R
n, we consider the standard inner product

〈x, y〉 =
n∑

i=1

xiyi where x = (x1, . . . , xn) and y = (y1, . . . , yn) ,

the corresponding norm

‖x‖ =
√
〈x, x〉,

and the unit sphere

S
n−1 =

{
x ∈ R

n : ‖x‖ = 1
}
.

In this section, we prove the following main result.

(3.2) Theorem. Let α1, . . . , αk be non-negative reals such that α1+ . . .+αk = 1,
let Q1, . . . , Qk be n × n positive definite matrices and let q1, . . . , qk : Rn −→ R be
the corresponding quadratic forms,

qi(x) = 〈Qi, x⊗ x〉 for i = 1, . . . , k.

Then

max
x∈Sn−1

k∑

i=1

αi ln qi(x) ≤ max
X�0

trace(X)=1

k∑

i=1

αi ln〈Qi, X〉 ≤ β + max
x∈Sn−1

k∑

i=1

αi ln qi(x),
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where β > 0 is an absolute constant. One can choose β = 4.8.

Proof. For x ∈ S
n−1 the matrix X = x ⊗ x satisfies the constraints X � 0 and

trace(X) = 1. Hence the first inequality holds.
Let A be a matrix where the maximum value of the function

X 7−→
k∑

i=1

αi ln〈Qi, X〉

is attained on the set X of positive semidefinite matrices of trace 1. Rescaling
Qi −→ τiQi for some positive τ1, . . . , τk if necessary, we may assume that 〈Qi, A〉 =
1 for i = 1, . . . , k and hence

(3.2.1) max
X�0

trace(X)=1

k∑

i=1

αi ln〈Qi, X〉 =
k∑

i=1

αi ln〈Qi, A〉 = 0.

Since A is positive semidefinite, we can write A = T 2 for some symmetric n × n
matrix T .

Let us fix the standard Gaussian probability measure µn in R
n with density

1

(2π)n/2
e−‖x‖2/2

and let x ∈ R
n be a random vector. Then

E ‖Tx‖2 = E 〈Tx, Tx〉 = E 〈T 2x, x〉 = trace
(
T 2
)
= trace(A) = 1.

Hence by Part (2) of Lemma 2.1,

(3.2.2) P
(
x : ‖Tx‖2 ≥ 6

)
≤ φ(6) < 0.07

(choosing α = 3 in the definition of φ(6), we obtain φ(6) ≤ 5/72 < 0.07).
Furthermore,

E qi(Tx) =〈QiTx, Tx〉 = 〈TQiTx, x〉 = trace (TQiT )

= trace
(
QiT

2
)
= 〈Qi, A〉 = 1 for i = 1, . . . , k.

Therefore, by Part (1) of Lemma 2.1,

E |ln qi(Tx)| ≤ 2.75 for i = 1, . . . , k

and hence

E

∣∣∣∣∣

k∑

i=1

αi ln qi(Tx)

∣∣∣∣∣ ≤ 2.75.
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Therefore, by the Markov inequality,

(3.2.3) P

(
x :

k∑

i=1

αi ln qi(Tx) ≤ −3

)
≤ 2.75

3
< 0.92.

From (3.2.2)–(3.2.3) we conclude that there is an x ∈ R
n \ {0} such that

‖Tx‖2 < 6 and
k∑

i=1

αi ln qi(Tx) > −3.

Then for

y =
Tx

‖Tx‖
we have

y ∈ S
n−1 and

k∑

i=1

αi ln qi(y) > −3− ln(6) > −4.8,

and, in view of (3.2.1), the proof follows. �

4. Proof of Theorem 1.1

Proof. Let us write

qi(x) = 〈Qi, x⊗ x〉 for i = 1, . . . , k,

where Q1, . . . , Qk are n× n positive definite matrices. Let

S =
k∑

i=1

Qi.

Thus S ≻ 0 and hence there exists an invertible symmetric matrix T : Rn −→ R
n

such that S = T 2. Let us define new matrices

Q̂i = T−1QiT
−1 for i = 1, . . . , k,

the corresponding quadratic forms

q̂i(x) = 〈Q̂i, x⊗ x〉 = 〈Qi, T
−1x⊗ T−1x〉 = qi

(
T−1x

)
for i = 1, . . . , k

and the map ψ̂ : Rn −→ R
k,

ψ̂(x) = (q̂1, . . . , q̂k) .
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Clearly, ψ (Rn) = ψ̂ (Rn) and
k∑

i=1

Q̂i = I.

Hence, without loss of generality, we can assume that

(4.1)

k∑

i=1

Qi = I.

Since a ∈ conv (ψ (Rn)), we can write

ai = 〈Qi, X〉 for i = 1, . . . , k

and some X � 0. Moreover, in view of (4.1), we have

1 =

k∑

i=1

ai =

〈
k∑

i=1

Qi, X

〉
= 〈I, X〉 = trace(X).

We note that
k∑

i=1

ai ln〈Qi, X〉 =
k∑

i=1

ai lnai.

By Theorem 3.2, there is an x ∈ S
n−1 such that

β +
k∑

i=1

ai ln qi(x) ≥
k∑

i=1

ai lnai.

Letting

bi = qi(x) for i = 1, . . . , k,

we conclude that

k∑

i=1

bi =

k∑

i=1

〈Qi, x⊗ x〉 = 〈I, x⊗ x〉 = trace(x⊗ x) = 1

and that
k∑

i=1

ai ln

(
ai
bi

)
=

k∑

i=1

ai lnai −
k∑

i=1

ai ln bi ≤ β.

Moreover, for b = (b1, . . . , bk) we have b = ψ(x), so b ∈ ψ (Rn). �
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5. Proof of Theorem 1.2

(5.1) Lemma. For a positive integer m let us consider R
mn as the direct sum

R
mn = R

n ⊕ . . .⊕ R
n

︸ ︷︷ ︸
m times

.

Let us fix the standard Gaussian probability measure µn in R
n and consider the

standard Gaussian probability measure µmn in R
mn as the direct product

µmn = µn ⊗ . . .⊗ µn.

Let q : R
n −→ R be a positive semidefinite quadratic form and let us define a

quadratic form qm : Rmn −→ R by

qm (x1, . . . , xm) =
1

m

m∑

i=1

q (xi) where x = (x1, . . . , xm)

and xi ∈ R
n for i = 1, . . . , m. Suppose that

E q = 1.

Then

(1) For all t ≥ 1 we have

P
(
x ∈ R

mn : qm(x) ≥ t
)

≤ exp
{m
2
(1− t+ ln t)

}
;

(2) For all 0 < t ≤ 1 we have

P
(
x ∈ R

mn : qm(x) ≤ t
)

≤ exp
{m
2
(1− t+ ln t)

}
;

(3) We have

E |ln qm| ≤ 6√
m
.

Proof. We use the Laplace transform method, see also [HW71]. Since

E q = 1,

in some orthonormal basis of Rn we can write

q(x) =
n∑

i=1

λiξ
2
i where x = (ξ1, . . . , ξn)
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and

(5.1.1)

n∑

i=1

λi = 1 and λi ≥ 0 for i = 1, . . . , n.

Writing vectors x ∈ R
mn as x = (ξ11, . . . , ξ1n, ξ21, . . . , ξ2n, . . . , ξm1, . . . , ξmn), we

write

qm(x) =
1

m

n∑

i=1

m∑

j=1

λiξ
2
ji.

For any 0 < α < m/2 we have

P
(
x ∈ R

mn : qm(x) ≥ t
)
=P

(
x ∈ R

mn : eαqm(x) ≥ eαt
)

≤ e−αtE eαqm

=e−αt
n∏

i=1

(
1− 2αλi

m

)−m/2

.

Since the function

(λ1, . . . , λn) 7−→ −m
2

n∑

i=1

ln

(
1− 2αλi

m

)

is convex, it attains its maximum on the simplex (5.1.1) at a vertex λi = 1, λj = 0
for j 6= i. Therefore,

P
(
x ∈ R

mn : qm(x) ≥ t
)

≤ e−αt

(
1− 2α

m

)−m/2

.

Optimizing on α, we choose

α =
m

2

(
t− 1

t

)

and the proof of Part (1) follows.
For any α > 0 we have

P
(
x ∈ R

mn : qm(x) ≤ t
)
=P

(
x ∈ R

mn : e−αqm(x) ≥ e−αt
)

≤ eαtE e−αqm

=eαt
n∏

i=1

(
1 +

2αλi
m

)−m/2

.

Since the function

(λ1, . . . , λn) 7−→ −m
2

n∑

i=1

ln

(
1 +

2αλi
m

)
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is convex, it attains its maximum on the simplex (5.1.1) at a vertex λi = 1, λj = 0
for j 6= i. Therefore,

P
(
x ∈ R

mn : qm(x) ≤ t
)

≤ eαt
(
1 +

2α

m

)−m/2

.

Optimizing on α, we choose

α =
m

2

(
1− t

t

)

and the proof of Part (2) follows.

Let us define

X+ =
{
x ∈ R

mn : qm(x) ≥ 1
}

and X− =
{
x ∈ R

mn : qm(x) < 1
}

Then

E |ln qm| =
∫

X+

ln qm(x) dµmn(x)−
∫

X
−

ln qm(x) dµmn(x)

By Part (1),

∫

X+

ln qm(x) dµmn(x) =

∫ +∞

0

P
(
x : ln qm(x) ≥ t

)
dt

=

∫ +∞

0

P
(
x : qm(x) ≥ et

)
dt

≤
∫ +∞

0

exp
{m
2

(
1− et + t

)}
dt ≤

∫ +∞

0

exp

{
−mt

2

4

}
dt

=

√
π

m
.

By Part(2),

∫

X
−

− ln qm(x) dµmn(x) =

∫ +∞

0

P
(
x : − ln qm(x) ≥ t

)
dt

=

∫ +∞

0

P
(
x : qm(x) ≤ e−t

)
dt

≤
∫ +∞

0

exp
{m
2

(
1− e−t − t

)}
dt.
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Now,

∫ +∞

0

exp
{m
2

(
1− e−t − t

)}
dt =

∫ 1

0

exp
{m
2

(
1− e−t − t

)}
dt

+

∫ +∞

1

exp
{m
2

(
1− e−t − t

)}
dt

≤
∫ 1

0

exp

{
−mt

2

6

}
dt+

∫ +∞

0

exp

{
−mt

2

}
dt

≤
√

3π

2m
+

2

m
.

Summarizing,

E |ln qm| ≤
√
π

m
+

√
3π

2m
+

2

m
<

6√
m

and the proof of Part (3) follows. �

(5.2) Theorem. Let α1, . . . , αk be non-negative reals such that α1+ . . .+αk = 1,
let Q1, . . . , Qk be n × n positive definite matrices and let m be a positive integer.
Then

max
X�0

trace(X)=1
rankX≤m

k∑

i=1

αi ln〈Qi, X〉 ≤ max
X�0

trace(X)=1

k∑

i=1

αi ln〈Qi, X〉

≤ 15√
m

+ max
X�0

trace(X)=1
rank(X)≤m

k∑

i=1

αi ln〈Qi, X〉.

Proof. The first inequality obviously holds.
Let A be a matrix where the maximum value of the function

X 7−→
k∑

i=1

αi ln〈Qi, X〉

is attained on the set X of positive semidefinite matrices of trace 1. Rescaling
Qi −→ τiQi for some positive τ1, . . . , τk if necessary, we may assume that 〈Qi, A〉 =
1 for i = 1, . . . , k and hence

(5.2.1) max
X�0

trace(X)=1

k∑

i=1

αi ln〈Qi, X〉 =
k∑

i=1

αi ln〈Qi, A〉 = 0.
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Since A is positive semidefinite, we can write A = T 2 for some symmetric n × n
matrix T .

Let us fix the standard Gaussian probability measure µn in R
n with density

1

(2π)n/2
e−‖x‖2/2

and let x1, . . . , xm ∈ R
n be m independent random vectors. Then

E ‖Txj‖2 = E 〈Txj , Txj〉 = E 〈T 2xj , xj〉 = trace
(
T 2
)
= trace(A) = 1.

Applying Part (1) of Lemma 5.2, we conclude that

(5.2.2) P


x1, . . . , xm :

1

m

m∑

j=1

‖Txj‖2 ≥ 1 +
3√
m


 ≤ exp

{
−9

8

}
< 0.33

(we use that ln(1 + s) ≤ s− s2/4 for 0 ≤ s ≤ 1).
Let us define quadratic forms

qi(x) = 〈Qi, x⊗ x〉 for i = 1, . . . , k.

Then

E qi(Txj) =〈QiTxj , Txj〉 = 〈TQiTxj , xj〉 = trace (TQiT )

= trace
(
QiT

2
)
= 〈Qi, A〉 = 1 for i = 1, . . . , k.

Therefore, by Part (3) of Lemma 5.1,

E

∣∣∣∣∣∣
ln


 1

m

m∑

j=1

qi(Txj)



∣∣∣∣∣∣
≤ 6√

m
for i = 1, . . . , k

and hence

E

∣∣∣∣∣∣

k∑

i=1

αi ln


 1

m

m∑

j=1

qi(Txj)



∣∣∣∣∣∣
≤ 6√

m
.

Therefore, by the Markov inequality,

(5.2.3) P


x1, . . . , xm :

k∑

i=1

αi ln


 1

m

m∑

j=1

qi(Txj)


 ≤ − 12√

m


 ≤ 0.5.

14



From (5.2.2)–(5.2.3) we conclude that there are points x1, . . . , xm ∈ R
n \ {0} such

that

1

m

m∑

j=1

‖Txj‖2 ≤ 1 +
3√
m

and

k∑

i=1

αi ln


 1

m

m∑

j=1

qi(Txj)


 ≥ − 12√

m
.

Let us define a matrix Y by

Y =




m∑

j=1

‖Txj‖2



−1
m∑

j=1

(Txj)⊗ (Txj) .

Then
Y � 0, trace(Y ) = 1, rankY ≤ m

and

k∑

i=1

αi ln〈Qi, Y 〉 =
k∑

i=1

αi ln


 1

m

m∑

j=1

qi(xj)


− ln


 1

m

m∑

j=1

‖Txj‖2



≥ − 12√
m

− ln

(
1 +

3√
m

)
> − 15√

m
,

and, in view of (5.2.1), the proof follows. �

(5.3) Proof of Theorem 1.2. As in the proof of Theorem 1.1 in Section 4,
without loss of generality we assume that

(5.3.1)

k∑

i=1

Qi = I.

Since a ∈ conv (ψ (Rn)), we can write

ai = 〈Qi, X〉 for i = 1, . . . , k

and some X � 0. Moreover, in view of (5.3.1), we have

1 =
k∑

i=1

ai =

〈
k∑

i=1

Qi, X

〉
= 〈I, X〉 = trace(X).

We note that
k∑

i=1

ai ln〈Qi, X〉 =
k∑

i=1

ai lnai.
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By Theorem 5.2, there is a n×n symmetric matrix Y , such that Y � 0, rankY ≤ m
and

15√
m

+
k∑

i=1

ai ln〈Qi, Y 〉 >
k∑

i=1

ai lnai.

Let
bi = 〈Qi, Y 〉 for i = 1, . . . , k.

Then
k∑

i=1

bi =

〈
k∑

i=1

Qi, Y

〉
= trace(Y ) = 1.

Since rank Y ≤ m, we can write

Y =
1

m

m∑

j=1

yj ⊗ yj

for some y1, . . . , ym ∈ R
n. Then

bi =
1

m

m∑

j=1

qi (yj) for i = 1, . . . , k

and b is a convex combination of at most m points from ψ (Rn). �
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