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Abstract. We prove that for any compact set B ⊂ R
d and for any ǫ > 0 there is a

finite subset X ⊂ B of |X| = dO(1/ǫ2) points such that the maximum absolute value

of any linear function ℓ : Rd −→ R on X approximates the maximum absolute value

of ℓ on B within a factor of ǫ
√
d. We also discuss approximations of convex bodies by

projections of spectrahedra, that is, by projections of sections of the cone of positive

semidefinite matrices by affine subspaces.

1. Introduction and main results

We present two results on approximating general convex bodies by efficiently
computable convex bodies in the general spirit of [BV08]. Having fixed a compact
set B ⊂ R

d, we are interested in constructing an algorithm, preferably of a rea-
sonably low complexity, which allows us to approximate the maximum of a given
linear function ℓ : Rd −→ R on B.

Our first result describes how well we can approximate B by a finite subset
X ⊂ B of a controlled size.

(1.1) Theorem. Let B ⊂ R
d be a compact set. Then for any positive integer k

there exists a set X ⊂ B such that for the cardinality |X | of X we have

|X | ≤ 1 +
1

2

(
d+ k − 1

k

)
+

1

2

(
d+ k − 1

k

)2

and such that

max
x∈B

|ℓ(x)| ≤
(
d+ k − 1

k

) 1

2k

max
x∈X

|ℓ(x)|
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for every linear function ℓ : Rd −→ R.

Let us fix k and let the dimension d grow. Then the cardinality |X | = dO(k) of
X is polynomial in d while for the approximation factor we have

(
d+ k − 1

k

) 1

2k

≈
√
d

(k!)1/2k
≈

√
de

k
.

In particular, choosing a sufficiently large k we can replace B by a set X of polyno-
mially many in d points such that the maximum absolute value any linear function
on X approximates the maximum absolute value of the function on B within a fac-
tor ǫ

√
d for any ǫ > 0, fixed in advance. To obtain a constant factor approximation

we have to choose X consisting of exponentially many in d points.
Next, we consider approximations of convex bodies by more complicated sets.
In the space Rr×r of r× r real matrices we consider the closed convex cone Rr×r

+

of symmetric positive semidefinite matrices. A section of Rr×r
+ by an affine subspace

is called sometimes a spectrahedron, see, for example, [GN11]. The problem of opti-
mizing a given linear function on the affine image (projection) of a spectrahedron is
a problem of semidefinite programming, which, under some technical qualifications,
can be solved in polynomial time, see, for example, [Tu10].

The following result was obtained by Gouveia, Parrilo and Thomas [G+10],
[GT10] in the language of theta bodies. Nevertheless, we give a proof here as it
connects the topic with the concept of positive semidefinite rank of a matrix in-
troduced in [F+11] and [G+11] and raises some interesting questions. We note,
however, that the proof uses the same idea as the proof from [GT10], only stated
in a different language.

(1.2) Theorem. Let B ⊂ Z
d be a finite set of integer vectors. For any positive

integer k there exists a convex set C ⊂ R
d such that the following holds:

(1) We can write C as a Minkowski sum C = C′ + L⊥, where L ⊂ R
d is a

subspace and C′ ⊂ L is an affine image of a section of the cone of r × r
symmetric positive semidefinite matrices by an affine subspace with

r ≤
(
d+ k + 2

k

)
,

(2) We have

B ⊂ C

and

(3) For any linear function

ℓ(x) = a1x1 + . . .+ adxd for x = (x1, . . . , xd)

with integer coefficients a1, . . . , ad such that

max
x∈B

ℓ(x)−min
x∈B

ℓ(x) ≤ k
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we have

max
x∈B

ℓ(x) = max
x∈C

ℓ(x).

If k is fixed in advance then r = dO(k) is bounded by a polynomial in the
dimension and C approximates the convex hull conv(B) precisely with respect to
any lattice direction for which the width of the convex hull is bounded by k. If we
allow the lattice width k to be linear in d, the dimension r of the ambient space for
the spectrahedron becomes exponentially large in d.

The paper is organized as follows.
In Section 2, we discuss some preliminaries concerning (symmetric) tensor powers

of spaces.
In Section 3, we prove Theorem 1.1.
In Section 4, we prove Theorem 1.2.
In Section 5, we present a related result on approximating non-negative matrices

by matrices with a small positive semidefinite rank, studied in [F+11] and [G+11].

2. Preliminaries

We consider Euclidean space R
d with scalar product

〈x, y〉 =
d∑

i=1

xiyi for x = (x1, . . . , xd) and y = (y1, . . . , yd)

and the corresponding Euclidean norm

‖x‖ =
√
〈x, x〉.

For a positive integer k we interpret the tensor product

(
R

d
)⊗k

= R
d ⊗ . . .⊗ R

d

︸ ︷︷ ︸
k times

as dk-dimensional Euclidean space of arrays X = (xi1...ik), 1 ≤ i1, . . . , ik ≤ d, with
scalar product

〈
X, Y

〉
=

∑

1≤i1,... ,ik≤d

xi1...ikyi1...ik for X = (xi1...ik) and Y = (yi1...ik) .

For a vector x ∈ R
d, we define x⊗k ∈

(
R

d
)⊗k

by

(
x⊗k

)
i1...ik

= xi1 · · ·xik for 1 ≤ i1, . . . , ik ≤ d and x = (x1, . . . , xd) .

We have 〈
x⊗k, y⊗k

〉
= 〈x, y〉k for all x, y ∈ R

d.
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We observe that x⊗k lies in the subspace Sym
(
R

d
)⊗k

consisting of the tensors
X = (xi1...ik) for which values of the coordinates do not change when indices
i1, . . . ik are permuted. We have

dimSym
(
R

d
)⊗k

=

(
d+ k − 1

k

)
.

Finally, the space
(
R

d
)⊗2

is naturally identified with the space R
d×d of d × d

matrices while subspace Sym
(
R

d
)⊗2

is identified with the subspace of symmetric

matrices. For x ∈ R
d the matrix x⊗2 is positive semidefinite. As is well-known, the

cone R
d×d
+ of symmetric positive semidefinite matrices is spanned by matrices x⊗2.

We have
〈
X, Y

〉
≥ 0 for any d× d symmetric positive semidefinite matrices.

3. Proof Theorem 1.1

We start with a lemma.

(3.1) Lemma. Let B ⊂ R
d be a compact set. Then there exists a set X ⊂ B of

not more than 1 + d(d+1)
2 points such that for any linear function ℓ : Rd −→ R one

has

max
x∈B

|ℓ(x)| ≤
√
dmax

x∈X
|ℓ(x)|.

Proof. Without loss of generality we assume that B spans R
d. We consider the

(necessarily unique) ellipsoid E ⊂ R
d centered at the origin and of the minimum

volume among those which contain B, see, for example, [Ba97]. Applying an invert-
ible linear transformation, if necessary, we assume that E =

{
x ∈ R

d : ‖x‖ ≤ 1
}

is the unit ball. F. John’s conditions, see [Ba97], state that there is a finite subset
X ⊂ B and numbers αx ≥ 0 such that

(3.1.1)

∑

x∈X

αxx
⊗2 =

1

d
I

and
∑

x∈X

αx = 1

where I is the d× d identity matrix.
For completeness, we sketch a proof of (3.1.1). If matrix d−1I does not lie in the

convex hull of the compact set
{
x⊗2 : x ∈ B

}
then it can be separated from the set

by an affine hyperplane, which implies that there is a quadratic form q : Rd −→ R

such that q(x) ≤ 1 for all x ∈ B and such that trace q > d. Then for a sufficiently

small ǫ > 0 the ellipsoid Ẽ defined by the inequality

(1− ǫ)‖x‖2 + ǫq(x) ≤ 1
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contains B and has a smaller volume, which is a contradiction.

Carathéodory’s Theorem then implies that we can choose |X | ≤ 1+ d(d+1)
2 . The

first equation of (3.1.1) can be also written as

∑

x∈X

αx〈c, x〉2 =
1

d
‖c‖2 for all c ∈ R

d,

from which it follows that

max
x∈X

|〈c, x〉| ≥ 1√
d
‖c‖ ≥ 1√

d
max
x∈B

|〈c, x〉|.

�

(3.2) Proof of Theorem 1.1. Let us consider

Bk =
{
x⊗k : x ∈ B

}
.

Thus Bk is a compact subset of a
(
d+k−1

k

)
-dimensional space Sym

(
R

d
)⊗k

. Applying
Lemma 3.1 we conclude that there exists a subset X ⊂ B such that

|X | ≤ 1 +
1

2

(
d+ k − 1

k

)
+

1

2

(
d+ k − 1

k

)2

and such such that

max
x∈B

∣∣〈Y, x⊗k
〉∣∣ ≤

(
d+ k − 1

k

)1/2

max
x∈X

∣∣〈Y, x⊗k
〉∣∣

for any Y ∈ Sym
(
R

d
)⊗k

. Choosing Y = y⊗k we conclude that

max
x∈B

|〈y, x〉| ≤
(
d+ k − 1

k

)1/2k

max
x∈X

|〈y, x〉|

for any y ∈ R
d, which completes the proof. �

It follows from our proof that we can choose the set X among the contact points
of the ellipsoid of the minimum volume centered at the origin and containing the
set Bk =

{
x⊗k : x ∈ B

}
.

4. Proof of Theorem 1.2

We deal with real matrices A = (aij) for i ∈ I and j ∈ J , where I and J are
possibly infinite sets of indices. We say that

rankA ≤ n
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if there exist vectors ui ∈ R
n for i ∈ I and vj ∈ R

n for j ∈ J such that

aij = 〈ui, vj〉 for all i ∈ I and all j ∈ J.

We say that
rankA = n

if n is the smallest non-negative integer satisfying rankA ≤ n. We can define
rankA = ∞ if there is no such n, but we will only deal with matrices of a finite
rank. Our definition agrees with the usual definition of the rank of a matrix, when
I and J are finite.

We need some concepts and results of [F+11] and [G+11].

(4.1) Definition. Let A = (aij), i ∈ I, j ∈ J be a non-negative matrix. We say
that

rankpsdA ≤ r

if there exist r× r symmetric positive semidefinite matrices Ui for i ∈ I and Vj for
j ∈ J such that

aij =
〈
Ui, Vj

〉
for all i, j.

The following result was proved in [F+11] and [G+11]. For completeness, we
present its proof here.

(4.2) Lemma. Let {ui : i ∈ I} ⊂ R
d and {vj : j ∈ J} ⊂ R

d be sets of vectors

such that

〈ui, vj〉 ≤ 1 for all i, j.

Suppose further that span (vj : j ∈ J) = R
d.

Let us define matrix A = (aij) by

aij = 1− 〈ui, vj〉 for all i, j.

Suppose that

rankpsdA ≤ r.

Then there exists a convex set C ⊂ R
d which is an affine image of a section of the

cone of r × r symmetric positive semidefinite matrices by an affine subspace such

that

ui ∈ C for all i ∈ I

and

〈x, vj〉 ≤ 1 for all j ∈ J and all x ∈ C.

Proof. Since rankpsdA ≤ r there exist r× r positive semidefinite matrices Ui and
Vj such that

(4.2.1) 1− 〈ui, vj〉 =
〈
Ui, Vj

〉
for all i, j.
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Let us define an affine subspace L ⊂ R
d ⊕ R

r×r by the equations

(4.2.2) 1− 〈x, vj〉 =
〈
X, Vj

〉
for j ∈ J,

where x ∈ R
d and X ∈ R

r×r. The map

(x,X) 7−→ X

projects L onto an affine subspace A ⊂ R
r×r. We claim that for every X ∈ A there

is a unique x ∈ R
d such that (x,X) ∈ L. Indeed, if (x,X) ∈ L and (y,X) ∈ L,

then
〈x− y, vj〉 = 0 for j ∈ J

and since the set {vj : j ∈ J} spans R
d we conclude that x = y. This allows us to

define an affine map (projection)

T : A −→ R
d

by letting
T (X) = x if (x,X) ∈ L.

We let
C = T

(
A ∩ R

r×r
+

)
.

Since by (4.2.1)–(4.2.2) we have (ui, Ui) ∈ L, we conclude that Ui ∈ A and T (Ui) =
ui. Since Ui ∈ R

r×r
+ , we have ui ∈ C for all i ∈ I.

Let us pick any x ∈ C. Then there exists an X ∈ R
r×r
+ such that (x,X) satisfies

(4.4.2). Since Vj ∈ R
r×r
+ we have 〈X, Vj〉 ≥ 0 for all j and hence 〈x, vj〉 ≤ 1 for all

j ∈ J . �

The following observation is also from [F+11] and [G+11].

(4.3) Lemma. Let A = (aij) and B = (bij) for i ∈ I and j ∈ J be matrices such

that

aij = b2ij for all i, j.

Then

rankpsdA ≤ rankB.

Proof. Let rankB = d. Then there exist vectors ui, vj ∈ R
d such that

bij = 〈ui, vj〉 for all i ∈ I and all j ∈ J.

Then
aij =

〈
u⊗2
i , v⊗2

j

〉
for all i, j.

Since u⊗2
i and v⊗2

j are d× d positive semidefinite matrices, the result follows. �

The following result is a standard linear algebra fact.
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(4.4) Lemma. Let A = (aij) be a real matrix and let p : R −→ R be a polynomial

of degree k. Let us define a matrix B = (bij) by

bij = p (bij) for all i ∈ I and all j ∈ J.

Then

rankB ≤
(
k + rankA

k

)
.

Proof. We write

p(t) =
k∑

m=0

αmtm

for some αm ∈ R. Let rankA = d, so

aij = 〈ui, vj〉 for all i, j

and some vectors ui : i ∈ I and vj : j ∈ J in R
d. Then we can write

bij = p (aij) = α0 +

k∑

m=1

αj〈ui, vj〉m = α0 +

k∑

m=1

αm

〈
u⊗m
i , v⊗m

j

〉
.

Let us introduce vectors

Ui = α0 ⊕ α1ui ⊕ α2u
⊗2
i ⊕ . . .⊕ αku

⊗k
i and Vj = 1⊕ vj ⊕ v⊗2

j ⊕ . . .⊕ v⊗k
j

in Euclidean space

R⊕ R
d ⊕

(
R

d
)⊗2 ⊕ . . .⊕

(
R

d
)⊗k

.

Hence we can write

bij =
〈
Ui, Vj

〉
for all i, j.

It remains to notice that the dimension of the space spanned by vectors Ui and Vj

does not exceed

1 +
k∑

m=1

dimSym
(
R

d
)⊗m

= 1 +
k∑

m=1

(
d+m− 1

m

)
=

(
d+ k

k

)
.

�
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(4.5) Corollary. Let A = (aij) for i ∈ I and j ∈ J be a real matrix, let S ⊂ R,

S = {aij : i ∈ I, j ∈ J} ,

be the set of all distinct values among the matrix entries aij and let φ : S −→ R be

a function. Let us define a matrix B = (bij) by

bij = φ (aij) for all i, j.

If |S| ≤ k then

rankB ≤
(
k − 1 + rankA

k − 1

)
.

Proof. Since |S| ≤ k there is a polynomial p : R −→ R with deg p ≤ k−1 such that
φ(t) = p(t) for all t ∈ S, so bij = p (aij). We write

p(t) =
k−1∑

m=0

αmtm

for some αm ∈ R. The proof follows by Lemma 4.4. �

(4.6) Lemma. Let A = (aij) be a real non-negative matrix such that the number

of distinct values among the matrix entries aij does not exceed k. Then

rankpsdA ≤
(
k − 1 + rankA

k − 1

)
.

Proof. Let us define a matrix B = (bij) by

bij =
√
aij for all i, j.

By Corollary 4.5,

rankB ≤
(
k − 1 + rankA

k − 1

)
.

Since

aij = b2ij for all i, j,

the proof follows by Lemma 4.3. �
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(4.7) Lemma. Let {ui : i ∈ I} ⊂ R
d and {vj : j ∈ J} ⊂ R

d be sets of vectors

such that

〈ui, vj〉 ≤ 1 for all i, j.

Let

L = span (vj : j ∈ J) .

Let us define a matrix A = (aij) by

aij = 1− 〈ui, vj〉 for all i ∈ I and all j ∈ J.

Suppose further, that the number of distinct values among the entries aij does not

exceed some positive integer k.
Then there exists a convex set C ⊂ R

d such that the following holds:

(1) We can write C as a Minkowski sum C = C′ + L⊥, where C′ ⊂ L is an

affine image of a section of the cone of r×r symmetric positive semidefinite

matrices by an affine subspace for

r ≤
(
k + d

k − 1

)
;

(2) We have

ui ∈ C for all i ∈ I

and

(3) We have

〈x, vj〉 ≤ 1 for all j ∈ J and all x ∈ C.

Proof. Since rankA ≤ d+ 1 it follows by Lemma 4.6 that

rankpsdA ≤
(
k + d

k − 1

)
.

Let u′
i be the orthogonal projection of ui onto L. By Lemma 4.2, there exists a

convex set C′ ⊂ L which is an affine image of a section of the cone of r×r symmetric
positive semidefinite matrices by an affine subspace for

r ≤
(
k + d

k − 1

)
,

such that
u′
i ∈ C′ for all i ∈ I

and such that
〈x, vj〉 ≤ 1 for all x ∈ C′ and all j ∈ J.

Then C = C′ + L⊥ satisfies the desired conditions. �
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(4.8) Proof of Theorem 1.2. We consider R
d as the coordinate hyperplane

xd+1 = 0 of Rd. For a vector x ∈ R
d and a ∈ R we denote by (x, a) ∈ R

d+1 the
vector obtained from x by appending the (d+ 1)-st coordinate equal to a.

For a vector u ∈ B let û = (u, 1) ∈ Z
d+1 and let {ûi : i ∈ I} be the set of vectors

obtained this way.
For any vector v ∈ Z

d and any m ∈ Z such that

max
u∈B

〈u, v〉 = m and min
u∈B

〈u, v〉 ≥ m− k

we let v̂ = (v, k−m) ∈ Z
d+1 and let {v̂j : j ∈ J} be the set of all vectors obtained

this way. In particular,

max
i∈I

〈ûi, v̂j〉 = k and min
i∈I

〈ûi, v̂j〉 ≥ 0 for all j ∈ J.

We define matrix A = (aij) by

aij = 1− 1

k
〈ûi, v̂j〉 for all i ∈ I and all j ∈ J.

Hence we have 0 ≤ aij ≤ 1 and kaij ∈ Z for all i and j. In particular, the number
of distinct values among the entries aij does not exceed k + 1.

Let
L = span (v̂j : j ∈ J) .

Since vector (0, k) is among vectors v̂j , we have

L⊥ ⊂ R
d.

By Lemma 4.7, there is an affine image Ĉ′ ⊂ L of a section of the cone of r × r
symmetric positive semidefinite matrices with

r ≤
(
k + d+ 2

k

)

such that for Ĉ = Ĉ′ + L⊥ we have

ûi ∈ Ĉ for all i ∈ I and 〈x, v̂j〉 ≤ k for all x ∈ Ĉ and all j ∈ J.

Let us define

C′ =
{
x ∈ R

d : (x, 1) ∈ Ĉ′
}

and C = C′ + L⊥.

Since L⊥ ⊂ R
d we have

C =
{
x ∈ R

d : (x, 1) ∈ Ĉ
}
.
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We observe that C′ is an affine image of a section of the cone of r × r positive
semidefinite matrices and that

B ⊂ C.

Moreover, if for some v ∈ Z
d and some integer m we have

max
u∈B

〈u, v〉 = m and min
u∈B

〈u, v〉 ≥ m− k

then (v, k −m) = v̂j for some j ∈ J and

〈x, v〉 ≤ m for all x ∈ C.

Since B ⊂ C we necessarily have

max
x∈C

〈x, v〉 = m.

�

5. Approximating non-negative matrices by

matrices of a small positive semidefinite rank

As a by-product of our proof of Theorem 1.2 we obtain the following result.

(5.1) Theorem. For any ǫ > 0 there is a positive integer d = d(ǫ) such that the

following holds. Let A = (aij), i ∈ I, j ∈ J be a matrix such that

0 ≤ aij ≤ 1 for all i, j.

Then there exists a non-negative m× n matrix A′ =
(
a′ij

)
such that

∣∣aij − a′ij
∣∣ ≤ ǫ for all i, j

and

rankpsdA
′ ≤ (rankA)

d
.

Proof. Without loss of generality, we assume that rankA ≥ 2 and that ǫ < 1/2.
There is a univariate polynomial p(t) of some degree k = k(ǫ) such that

(5.1.1)
∣∣∣
√
t− p(t)

∣∣∣ ≤ ǫ

3
for all 0 ≤ t ≤ 1.

We let B = (bij) by
bij = p (aij) for all i, j.

By Lemma 4.4 that

rankB ≤
(
k + rankA

k

)
.

12



Let us define A′ by
a′ij = b2ij for all i, j.

It follows by (5.1.1) that a′ij approximates aij within ǫ. By Lemma 4.3

rankpsdA
′ ≤ rankB ≤

(
k + rankA

k

)

and the proof follows. �

It would be interesting to find out if Theorem 5.1 leads to any non-trivial ap-
proximations of general convex bodies by projections of spectrahedra. So far, the
author was unable to beat the bounds established by Theorem 1.1.
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