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Abstract. Let A be an n×n positive definite Hermitian matrix with all eigenvalues

between 1 and 2. We represent the permanent of A as the integral of some explicit

log-concave function on R2n. Consequently, there is a fully polynomial randomized
approximation scheme (FPRAS) for perA.

1. Introduction and main results

Let A = (aij) be an n× n complex matrix. The permanent of A is defined as

perA =
∑
σ∈Sn

n∏
k=1

akσ(k),

where Sn is the symmetric group of all n! permutations of the set {1, . . . , n}. Re-
cently, in particular because of connections with quantum optics, there was some
interest in efficient computing (approximating) perA, when A is a positive semi-
definite Hermitian matrix, see [A+17], [GS18] and references therein. As is known,
in that case perA is real and non-negative, see, for example, Chapter 2 of [Mi78].
In [A+17], Anari, Gurvits, Oveis Gharan and Saberi constructed a deterministic
polynomial time algorithm approximating the permanent of a positive semidefinite
n× n Hermitian matrix A within a multiplicative factor of cn for c = e1+γ ≈ 4.84,
where γ ≈ 0.577 is the Euler constant. Similarly to the case of a non-negative real
matrix A, the problem of exact computation of perA for a positive semidefinite
matrix A is #P-hard [GS18].

If A is a non-negative real matrix, a fully polynomial randomized approximation
scheme (FPRAS) for perA was constructed by Jerrum, Sinclair and Vigoda [J+04].
Given an n×n matrix non-negative A and a real 0 < ε < 1, the algorithm of [J+04]
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produces in (n/ε)O(1) time a number α approximating perA within relative error
ε. The algorithm is randomized, meaning that the number α satisfies the desired
condition with a sufficiently large probability p, for example, with p = 0.9 (then
by running m independent copies of the algorithm and taking the median of the
computed αs, one can make the probability of error exponentially small in m). No
such algorithm is known in the case of a positive semidefinite Hermitian A, and the
question of existence of an FPRAS in that case was asked in [A+17] and [GS18].

In this note, we show that that there is a fully polynomial randomized approx-
imation scheme (FPRAS) for permanents of positive definite matrices with the
eigenvalues between 1 and 2. Namely, we represent perA for such an n× n matrix
A as the integral of an explicitly constructed log-concave function fA : R2n −→ R+,
so that ∫

R2n

fA(t) dt = perA.

There is an FPRAS for integrating log-concave functions, see [LV07] for the detailed
analysis and history of the Markov Chain Monte Carlo approach to the problem
of integrating log-concave functions and a closely related problem of approximat-
ing volumes of convex bodies. Hence the above integral representation and an
integration algorithm from [LV07] instantly produce an FPRAS for computing the
permanent of a positive definite Hermitian matrix with all eigenvalues between 1
and 2. We note that a standard interpolation argument implies that the problem
of computing perA exactly remains #P-hard, when restricted to positive definite
matrices with eigenvalues between 1 and 2. Indeed, the set Xn of such n × n ma-
trices has a non-empty interior in the vector space of all n×n Hermitian matrices.
Given an arbitrary n×n Hermitian matrix B, one can draw a line L through B and
an interior point of Xn. Since the restriction of the permanent onto that line is a
univariate polynomial of degree at most n, by computing the permanent perAi for
n+ 1 distinct matrices Ai ∈ (L ∩Xn), we would be able to compute perB exactly
by interpolation, which is a #P-hard problem, cf. [GS18].

We consider the space Cn with the standard norm

‖z‖2 = |z1|2 + . . .+ |zn|2, where z = (z1, . . . , zn) .

We identify Cn = R2n by identifying z = x+ iy with (x, y). For a complex matrix

L = (ljk), we denote by L∗ =
(
l∗jk

)
its conjugate, so that

l∗jk = lkj for all j, k.

We prove the following main result.

(1.1) Theorem. Let A be an n × n positive definite matrix with all eigenvalues
between 1 and 2. Let us write A = I +B, where I is the n× n identity matrix and
B is an n × n positive semidefinite Hermitian matrix with eigenvalues between 0
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and 1. Further, we write B = LL∗, where L = (ljk) is an n × n complex matrix.
We define linear functions `1, . . . , `n : Cn −→ C by

`j(z) =
n∑
k=1

ljkzk for z = (z1, . . . , zn) .

Let us define fA : Cn −→ R+ by

fA(z) =
1

πn
e−‖z‖

2
n∏
j=1

(
1 + |`j(z)|2

)
.

(1) Identifying Cn = R2n, we have

perA =

∫
R2n

fA(x, y) dxdy.

(2) The function fA : R2n −→ R+ is log-concave, that is, if (x1, y1), (x2, y2) ∈
R2n and if

x = αx1 + (1− α)x2 and y = αy1 + (1− α)y2 for some 0 ≤ α ≤ 1

then
fA (x, y) ≥ fαA(x1, y1)f1−αA (x2, y2).

2. Proofs

We start with a known integral representation of the permanent of a positive
semidefinite matrix.

(2.1) The integral formula. Let µ be the Gaussian probability measure in Cn
with density

1

πn
e−‖z‖

2

where ‖z‖2 = |z1|2 + . . .+ |zn|2 for z = (z1, . . . , zn) .

For the expectations of products of coordinates, we have

E zizj =

∫
Cn

zizj dµ(z) =

{
1 if i = j

0 if i 6= j.

Let `1, . . . , `n : Cn −→ C be linear functions and let B = (bjk) be the n×n matrix,

bjk = E `j`k =

∫
Cn

`j(z)`k(z) dµ(z) for j, k = 1, . . . , n.

Hence B is a positive semidefinite Hermitian matrix and the Wick formula (see, for
example, Section 3.1.4 of [Ba16]) implies that

(2.1.1) perB = E
(
|`1|2 · · · |`n|2

)
=

∫
Cn

|`1(z)|2 · · · |`n(z)|2 dµ(z).

Next, we need a simple lemma.
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(2.2) Lemma. Let q : Rm −→ R+ be a positive semidefinite quadratic form. Then
the function

h(x) = ln
(
1 + q(x)

)
− q(x)

is concave.

Proof. It suffices to check that the restriction of h onto any affine line x(τ) = τa+b
with a, b ∈ Rm is concave. Thus we need to check that the univariate function

G(τ) = ln
(
1 + (ατ + β)2 + γ2

)
− (ατ + β)2 − γ2 for τ ∈ R,

where α 6= 0, is concave, for which it suffices to check that G′′(τ) ≤ 0 for all τ . Via
the affine substitution τ := (τ − β)/α, it suffices to check that g′′(τ) ≤ 0, where

g(τ) = ln
(
1 + τ2 + γ2

)
−
(
τ2 + γ2

)
.

We have

g′(τ) =
2τ

1 + τ2 + γ2
− 2τ

and

g′′(τ) =
2(1 + τ2 + γ2)− 4τ2

(1 + τ2 + γ2)
2 − 2

=
2(1 + τ2 + γ2)− 4τ2 − 2

(
1 + τ2 + γ2

)2
(1 + τ2 + γ2)

2

=
2 + 2τ2 + 2γ2 − 4τ2 − 2− 2τ4 − 2γ4 − 4τ2 − 4γ2 − 4τ2γ2

(1 + τ2 + γ2)
2

=− 6τ2 + 2γ2 + 2τ4 + 2γ4 + 4τ2γ2

(1 + τ2 + γ2)
2 ≤ 0

and the proof follows. �

(2.3) Proof of Theorem 1.1. We have

perA = per(I +B) =
∑

J⊂{1,... ,n}

perBJ ,

where BJ is the principal |J | × |J | submatrix of B with row and column indices in
J and where we agree that perB∅ = 1. Let us consider the Gaussian probability

measure in Cn with density π−ne−‖z‖
2

. By (2.1.1), we have

perBJ = E
∏
j∈J
|`j(z)|2
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and hence

perA = E
n∏
j=1

(
1 + |`j(z)|2

)
=

∫
R2n

fA(x, y) dxdy,

and the proof of Part (1) follows.
We write

e−‖z‖
2
n∏
j=1

(
1 + |`j(z)|2

)
= e−q(z)

n∏
j=1

(
1 + |`j(z)|2

)
e−|`j(z)|

2

,

where q(z) = ‖z‖2 −
n∑
j=1

|`j(z)|2.

By Lemma 2.2 each function (1 + |`j(z)|2)e−|`j(z)|
2

is log-concave on R2n = Cn
and hence to complete the proof of Part (2) it suffices to show that q is a positive
semidefinite Hermitian form. To this end, we consider the Hermitian form

p(z) =

n∑
j=1

|`j(z)|2 =

n∑
j=1

∣∣∣∣∣
n∑
k=1

ljkzk

∣∣∣∣∣
2

=

n∑
j=1

∑
1≤k1,k2≤n

ljk1 ljk2zk1zk2

=
∑

1≤k1,k2≤n

ck1k2zk1zk2 ,

where

ck1k2 =

n∑
j=1

ljk1 ljk2 for 1 ≤ k1, k2 ≤ n.

Hence for the matrix C = (ck1k2) of p, we have C = L∗L. We note that B = LL∗

and that the eigenvalues of B lie between 0 and 1. Therefore, the eigenvalues of
L∗L lie between 0 and 1 (in the generic case, when L is invertible, the matrices
LL∗ and L∗L are similar). Consequently, the eigenvalues of C lie between 0 and
1 and hence the Hermitian form q(z) with matrix I − C is positive semidefinite,
which completes the proof of Part (2). �
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