
ASYMPTOTIC ESTIMATES FOR THE NUMBER OF

CONTINGENCY TABLES, INTEGER FLOWS, AND

VOLUMES OF TRANSPORTATION POLYTOPES

Alexander Barvinok

August 2008

Abstract. We prove an asymptotic estimate for the number of m×n non-negative

integer matrices (contingency tables) with prescribed row and column sums and,
more generally, for the number of integer feasible flows in a network. Similarly,

we estimate the volume of the polytope of m × n non-negative real matrices with

prescribed row and column sums. Our estimates are solutions of convex optimization
problems and hence can be computed efficiently. As a corollary, we show that if row

sums R = (r1, . . . , rm) and column sums C = (c1, . . . , cn) with r1 + . . . + rm =

c1 + . . . + cn = N are sufficiently far from constant vectors, then, asymptotically, in
the uniform probability space of the m × n non-negative integer matrices with the

total sum N of entries, the event consisting of the matrices with row sums R and the

event consisting of the matrices with column sums C are positively correlated.

1. Introduction and main results

Let m > 1 and n > 1 be integers and let R = (r1, . . . , rm) and C = (c1, . . . , cn)
be positive integer vectors such that

m∑
i=1

ri =
n∑
j=1

cj = N.

We are interested in the number #(R,C) of m × n non-negative integer matrices,
also known as contingency tables, with row sums R and column sums C, called mar-
gins. Computing or estimating numbers #(R,C) has attracted a lot of attention,
because of the relevance of these numbers in statistics, see [Goo76], [DE85], com-
binatorics, representation theory, and elsewhere, see [DG85], [DG04]. Of interest
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are asymptotic formulas, see [BBK72], [Ben74] and most recent [CM07a], [GM07],
algorithms with rigorous estimates of the performance guarantees, see [DKM97],
[Mor02], [CD03], [BLV04], and heuristic approaches which may lack formal justifi-
cation but tend to work well in practice [Goo76], [DE85], [C+05].

Our first main result is as follows.

(1.1) Theorem. Let R = (r1, . . . , rm) and C = (c1, . . . , cn) be positive integer
vectors such that r1 + . . .+ rm = c1 + . . .+ cn = N . Let us define a function

F (x,y) =

(
m∏
i=1

x−ri
i

) n∏
j=1

y
−cj

j

∏
ij

1
1− xiyj


for x = (x1, . . . , xm) and y = (y1, . . . , yn) .

Then F (x,y) attains its minimum

ρ = ρ(R,C) = min
0<x1,... ,xm<1
0<y1,... ,yn<1

F (x,y)

on the open cube 0 < xi, yj < 1 and for the number #(R,C) of non-negative integer
m× n matrices with row sums R and column sums C we have

ρ ≥ #(R,C) ≥ N−γ(m+n)ρ,

where γ > 0 is an absolute constant.

More precisely, the lower bound we prove is

#(R,C) ≥
Γ
(
m+n

2

)
2e5π

m+n−2
2 mn(N +mn)

(
2

(mn)2(N + 1)(N +mn)

)m+n−1

×

(
m∏
i=1

rri
i

ri!

) n∏
j=1

c
cj

j

cj !

 N !(N +mn)!(mn)mn

NN (N +mn)N+mn(mn)!
ρ(R,C)

provided m+ n ≥ 10. Recall that from Stirling’s formula

s!
ss

= e−s
√

2πs
(
1 +O(s−1)

)
and hence the product in front of ρ(R,C) indeed exceeds N−γ(m+n) for some ab-
solute constant γ > 0.

We note that the substitution xi = e−ti and yj = e−sj transforms the problem
of computing ρ into the problem of minimizing the convex function

φ(t, s) = φR,C(t, s) =
m∑
i=1

riti +
n∑
j=1

cjsj −
∑
ij

ln
(
1− e−ti−sj

)
2



on the positive orthant si, tj > 0, so that methods of convex optimization can be
applied to compute ρ in time polynomial in m+ n and lnN , see [NN94].

Theorem 1.1 estimates the number #(R,C) of contingency tables within an
NO(m+n) factor. This estimate provides, asymptotically, the main term
of log #(R,C) for all but very sparse cases, where margins ri and cj are small
compared to the sizes m and n of the matrix. For example, if the margins ri and cj
are at least linear in m and n then #(R,C) is at least as big as γmn for some con-
stant γ > 1. By now, the sparse case of small ri and cj is well understood, thanks
especially to the recent paper [GM07]. The case of moderate to high margins seems
to be the most difficult. To the author’s knowledge, the estimate of Theorem 1.1
is the only rigorously proven effective estimate of #(R,C) for generic R and C (if
all ri’s are equal and all cj ’s are equal, recent paper [CM07a] provides a precise
asymptotic formula for the number of tables). Theorem 1.1 allows us to find faults
with the very intuitive “independence heuristic” for counting contingency tables
and points out at some strange “attraction” phenomena in the space of matrices.
Quite counter-intuitively, we conclude that in the uniform probability space of the
m× n non-negative integer matrices with the total sum of entries equal to N , the
event consisting of the matrices with row sums R and the event consisting of the
matrices with column sums C attract exponentially in mn provided the vectors
R and C are sufficiently far from constant vectors, see Section 2 for the precise
statements and details.

Let us identify the space of m× n real matrices X = (xij) with Euclidean space
Rd for d = mn. In Rd we consider the transportation polytope P = P(R,C) defined
by the equations

n∑
j=1

xij = ri for i = 1, . . . ,m,
m∑
i=1

xij = cj for j = 1, . . . , n

and inequalities
xij ≥ 0 for all i, j.

As is known, P is a polytope of dimension (m− 1)(n− 1). We prove the following
estimate for the volume of P, computed with respect to the Euclidean structure in
the affine span of P, induced from Rd.
(1.2) Theorem. Let R = (r1, . . . , rm) and C = (c1, . . . , cn) be positive integer
vectors such that r1 + . . . + rm = c1 + . . . + cn = N and let P = P(R,C) be the
polytope of non-negative m×n matrices with row sums r1, . . . , rm and column sums
c1, . . . , cn.

Let
β = β(R,C) = max

X=(xij)
X∈P

∏
ij

xij

be the maximum value of the product of entries of a matrix from P. Then for the
volume of P we have

βemnNγ(m+n) ≥ vol(P) ≥ βemnN−γ(m+n),
3



where γ > 0 is an absolute constant.

From our proof more precise bounds

vol(P) ≥
Γ
(
m+n

2

)
2e3
√
mnπ

m+n−2
2 Nm+n−1

(mn)mn

(mn)!
β

and

vol(P) ≤ 2eλm+n−2(mn)2m+2n−5/2

Nm+n−1

(mn)mn

(mn)!
β,

where

λ = λ(R,C) =
n

2
max

i=1,... ,m

N

ri
+
m

2
max

j=1,... ,n

N

cj

follow. When the margins are scaled, (R,C) 7−→ (tR, tC) for t > 0, the volume of
P and both the upper and the lower bounds get multiplied by tdimP .

Computing β reduces to finding the maximum of the concave function

f(X) =
∑
ij

lnxij

on the transportation polytope P and hence can be done efficiently (in time poly-
nomial in m+ n and lnN) by existing methods [NN94].

Computing or estimating volumes of transportation polytopes has attracted con-
siderable attention as a testing ground for methods of convex geometry [Sch92],
combinatorics [Pak00], analysis and algebra [BLV04], [BP03], [DLY03]. In a recent
breakthrough [CM07b], Canfield and McKay obtained a precise asymptotic expres-
sion for the volume of the Birkhoff polytope (when ri = cj = 1 for all i and j) and
in the more general case of all the row sums being equal and all the column sums
being equal. If R = C = (1, . . . , 1), the formula of [CM07b] gives

volP =
1

(2π)n−1/2n(n−1)2
exp

{
1
3

+ n2 +O
(
n−1/2+ε

)}
,

whereas the formula of Theorem 1.2 implies that, ignoring lower-order terms, we
have

volP ≈ en
2

nn2

in that case (since by symmetry the maximum β of the product of coordinates
xij is attained at xij = 1/n). Theorem 1.2 seems to be the only rigorously proven
estimate of the volume of the transportation polytope available for general margins.

We note that from the purely algorithmic perspective, volumes of polytopes and
convex bodies can be computed in randomized polynomial time, see [Bol97] for a
survey.
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Theorem 1.1 can be extended to counting with weights.
Let us fix a non-negative matrix W = (wij), which we call the matrix of weights.

We consider the following expression

T (R,C;W ) =
∑

D=(dij)

∏
ij

w
dij

ij ,

where the sum is taken over all non-negative integer matrices D with row sums R
and column sums C and where we agree that 00 = 1. For example, if wij ∈ {0, 1}
for all i, j then T (R,C;W ) is the number of m × n non-negative integer matrices
D = (dij) with row sums R, column sums C and such that dij = 0 whenever
wij = 0. This number can also be interpreted as the number of integer feasible
flows in a bipartite graph with vertices u1, . . . , um and v1, . . . , vn and edges (ui, vj)
whenever wij = 1 that satisfy the supply constraints ri at ui and the demand
constraints cj at vj . Counting integer feasible flows in non-bipartite networks can
be reduced to that for bipartite networks. For example, if wij = 1 for j ≤ i+ 1 and
wij = 0 elsewhere, T (R,C;W ) is the Kostant partition function, see [Ba07], [Ba08]
for more examples and details. We also note that T (R,C; 1) = #(R,C), where 1
is the matrix of all 1’s.

We prove the following extension of Theorem 1.1.

(1.3) Theorem. Let R = (r1, . . . , rm) and C = (c1, . . . , cn) be positive integer
vectors such that r1 + . . .+ rm = c1 + . . .+ cn = N and let W = (wij) be an m× n
non-negative matrix of weights. Let us define a function

F (x,y;W ) =

(
m∏
i=1

x−ri
i

) n∏
j=1

y
−cj

j

∏
ij

1
1− wijxiyj


for x = (x1, . . . , xm) and y = (y1, . . . , yn)

and let
ρ = ρ(R,C;W ) = inf

x1,... ,xm>0
y1,... ,yn>0

wijxiyj<1 for all i,j

F (x,y;W ).

Then, for the number T (R,C;W ) of weighted non-negative integer matrices with
row sums r1, . . . , rm and column sums c1, . . . , cn, we have

ρ ≥ T (R,C;W ) ≥ N−γ(m+n)ρ,

where γ > 0 is an absolute constant.

More precisely, the lower bound we prove is

T (R,C;W ) ≥
Γ
(
m+n

2

)
2e5π

m+n−2
2 mn(N +mn)

(
2

(mn)2(N + 1)(N +mn)

)m+n−1

×

(
m∏
i=1

rri
i

ri!

) n∏
j=1

c
cj

j

cj !

 N !(N +mn)!(mn)mn

NN (N +mn)N+mn(mn)!
ρ(R,C;W )
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provided m+ n ≥ 10.
As in Theorem 1.1, substituting xi = e−ti for i = 1, . . . ,m and yj = e−sj for

j = 1, . . . , n we reduce the problem of computing ρ to the problem of finding the
infimum of the convex function

φ(t, s) = φR,C(t, s) =
m∑
i=1

riti +
n∑
j=1

cjsj −
∑
ij

ln
(
1− wije−ti−sj

)
on the convex polyhedron

si + tj > lnwij for all i, j.

Again, the value of ρ can be computed efficiently, both in theory and in practice,
by methods of convex optimization, cf. [NN94].

For positive matrices W = (wij) the infimum ρ(R,C;W ) in Theorem 1.3 is at-
tained at a particular point and there is a convenient dual description of ρ(R,C;W ).

(1.4) Lemma. Let P = P(R,C) be the transportation polytope of the m× n non-
negative matrices X = (xij) with row sums R and column sums C and let us fix an
m× n positive matrix W = (wij) of weights, so wij > 0 for all i, j. For an m× n
non-negative matrix X = (xij) let us define

g(X;W ) =
∑
ij

(
(xij + 1) ln (xij + 1)− xij lnxij + xij lnwij

)
.

Then g(X;W ) is a strictly concave function of X and attains its maximum on P
at a unique positive matrix Z = Z(R,C;W ). One can write Z = (zij) in the form

zij =
wijξiηj

1− wijξiηj
for all i, j

and positive ξ1, . . . , ξm; η1, . . . , ηn such that wijξiηj < 1 for all i and j and such
that the infimum ρ(R,C;W ) in Theorem 1.3 is attained at x∗ = (ξ1, . . . , ξm) and
y∗ = (η1, . . . , ηn):

ρ(R,C;W ) = F (x∗,y∗;W ) .

Moreover, we have
ρ(R,C;W ) = exp

{
g(Z;W )

}
.

In particular, if wij = 1 for all i, j, then

g(X) = g(X; 1) =
∑
ij

(
(xij + 1) ln (xij + 1)− xij lnxij

)
and

zij =
ξiηj

1− ξiηj
for all i, j,
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where x∗ = (ξ1, . . . , ξm) and y∗ = (η1, . . . , ηn) is a point where the minimum
ρ(R,C) = F (x∗,y∗) in Theorem 1.1 is attained. Additionally,

ρ(R,C) = exp
{
g(Z)

}
.

The paper is structured as follows.
In Section 2, we consider consequences of Theorems 1.1 and 1.2 for the “inde-

pendence heuristic”. The heuristic was, apparently, first discussed by Good, see
[Goo76]. It asserts that if we consider the space of non-negative integer m × n
matrices with the total sum N of entries as a probability space with the uniform
measure then the event consisting of the matrices with the row sums r1, . . . , rm is
“almost independent” from the event consisting of the matrices with the column
sums c1, . . . , cn. We show that if the row sums ri and the column sums cj are suffi-
ciently generic then the independence heuristic tends to underestimate the number
of tables as badly as within a factor of γmn for some absolute constant γ > 1.
We see that in fact (rather counter-intuitively), instead of independence, we have
attraction (positive correlation) of the events.

In Section 3, we state a general result (Theorem 3.1), which provides a reason-
ably accurate estimate for the volume of the section of the standard simplex by a
subspace of a small codimension. Theorem 3.1 states that in a sufficiently generic
situation the volume of the section is determined by the maximum value of the
product of the coordinates of a point in the section. This estimate immediately
implies Theorem 1.2 and is one of the two crucial ingredients in the proofs of The-
orems 1.1 and 1.3. Theorem 3.1 appears to be new and may be interesting in its
own right.

In Section 4, we state some preliminaries from convex geometry needed to prove
Theorem 3.1.

In Section 5, we prove Theorems 3.1 and 1.2.
In Section 6, we describe the second main ingredient for the proofs of Theorems

1.1 and 1.3, the integral representation from [Ba07] and [Ba08] for the number
#(R,C) of tables and the number T (R,C;W ) of weighted tables.

In Section 7, we prove Theorems 1.1 and 1.3 and Lemma 1.4.

In what follows, we use γ to denote a positive constant.

2. The independence heuristic and the
exponential attraction in the space of matrices

(2.1) The independence heuristic. The following heuristic approach to count-
ing contingency tables was suggested by Good [Goo76]. Let us consider the space
of all m × n non-negative integer matrices with the total sum of entries N as a
probability space with the uniform measure. Then the probability that a matrix

7



from this space has row sums R = (r1, . . . , rm) is exactly(
N +mn− 1
mn− 1

)−1 m∏
i=1

(
ri + n− 1
n− 1

)
.

Similarly, the probability that a matrix has column sums C = (c1, . . . , cn) is exactly(
N +mn− 1
mn− 1

)−1 n∏
j=1

(
cj +m− 1
m− 1

)
.

Assuming that the two events are almost independent, one estimates the number
#(R,C) of contingency tables by the independence heuristic I(R,C):

(2.1.1) I(R,C) =
(
N +mn− 1
mn− 1

)−1 m∏
i=1

(
ri + n− 1
n− 1

) n∏
j=1

(
cj +m− 1
m− 1

)
.

For example, if m = n = 4, R = (220, 215, 93, 64), C = (108, 286, 71, 127) with
N = 592 then

#(R,C) = 1225914276768514 ≈ 1.226× 1015,

see [DE85], while
I(R,C) ≈ 1.211× 1015.

Given margins R = (r1, . . . , rn) and C = (c1, . . . , cm) such that not all row sums
ri are equal and not all column sums cj are equal, we will construct a sequence of
margins (Rk, Ck), where Rk is a km-vector and Ck is a kn-vector such that the
ratio #(Rk, Ck)/I(Rk, Ck) grows as γk

2
for some γ = γ(R,C) > 1.

(2.2) Cloning margins. Let us choose some margins R = (r1, . . . , rm) and C =
(c1, . . . , cn) such that r1 + . . .+ rm = c1 + . . .+ cn = N . For a positive integer k,
let us consider the new “clone” margins

Rk =

kr1, . . . , kr1︸ ︷︷ ︸
k times

, . . . , krm, . . . , krm︸ ︷︷ ︸
k times


Ck =

kc1, . . . , kc1︸ ︷︷ ︸
k times

, . . . , kcn, . . . , kcn︸ ︷︷ ︸
k times

 .

In other words, we obtain margins (Rk, Ck) if we choose an arbitrary matrix X with
row sums R and column sums C, consider the km× kn block matrix Yk consisting
of k2 blocks X and let Rk be the row sums of Yk and let Ck be the column sums of
Yk. Hence we consider km× kn matrices with the total sum of the matrix entries
equal to k2N .

8



One can check from the optimality condition (cf. Section 7.1) that if x∗ =
(ξ1, . . . , ξm) and y∗ = (η1, . . . , ηn) is a point in Theorem 1.1 where the minimum
ρ(R,C) is attained then the minimum ρ(Rk, Ck) is attained at the pointx∗, . . . ,x∗︸ ︷︷ ︸

k times

,y∗, . . . ,y∗︸ ︷︷ ︸
k times

 .

Therefore,
ρ(Rk, Ck) = ρk

2
(R,C)

and by Theorem 1.1

lim
k−→+∞

#(Rk, Ck)1/k2
= ρ(R,C),

or, in other words,

(2.2.1) lim
k−→+∞

1
k2

ln #(Rk, Ck) = ln ρ(R,C).

Let us introduce the multivariate entropy function

H (p1, . . . , pd) =
d∑
i=1

pi ln
1
pi
,

where p1, . . . , pd are non-negative numbers such that p1 + . . .+ pd = 1. Using the
standard asymptotic estimate for binomial coefficients (available, for example, via
Stirling’s formula)

lim
k−→+∞

1
k

ln
(
ka+ kb

ka

)
= (a+ b) ln(a+ b)− a ln a− b ln b

we deduce from (2.1.1) that

lim
k−→+∞

1
k2

ln I(Rk, Ck) =

− (N +mn)H
(

ri + n

N +mn
, i = 1, . . . ,m

)
− (N +mn)H

(
cj +m

N +mn
, j = 1, . . . , n

)
−

m∑
i=1

ri ln ri −
n∑
j=1

cj ln cj

+N lnN + (N +mn) ln(N +mn)

(2.2.2)
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(2.3) The exponential attraction in the space of matrices. Let us choose
margins R = (r1, . . . , rm) and C = (c1, . . . , cn) such that not all row sums ri are
equal and not all column sums cj are equal. Our goal is to show that

(2.3.1) lim
k−→+∞

1
k2

ln #(Rk, Ck) > lim
k−→+∞

1
k2

ln I(Rk, Ck),

so the ratio #(Rk, Ck)/I(Rk, Ck) grows as γk
2

for some γ = γ(R,C) > 1, as we
clone margins (R,C) 7−→ (Rk, Ck).

By Lemma 1.4, we can write

(2.3.2) ln ρ(R,C) = g(Z) ≥ g(Y ),

where Y = (yij) is the independence matrix with yij = ricj/N for all i, j and

g(X) =
∑
ij

(
(xij + 1) ln (xij + 1)− xij lnxij

)
.

On the other hand, it is easy to check that

g(Y ) =− (N +mn)H
(

ricj +N

N(N +mn)
, i, j

)
−

m∑
i=1

ri ln ri −
n∑
j=1

cj ln cj

+N lnN + (N +mn) ln(N +mn)

(2.3.3)

Let us consider the m× n matrix with the (i, j)-th entry equal to
(ricj + N)/(N2 + Nmn). The i-th row sum of the matrix is (ri + n)/(N + mn),
the j-th column sum is (cj + m)/(N + mn) while the sum of all the entries of
the matrix is 1. Using the inequality relating the entropies of two partitions of
a probability space with the entropy of the intersection of the partition (see, for
example, [Khi57]), we conclude that

H
(

ricj +N

N(N +mn)
,

1 ≤ i ≤ m
1 ≤ j ≤ n

)
≤ H

(
ri + n

N +mn
, 1 ≤ i ≤ m

)
+ H

(
cj +m

N +mn
, 1 ≤ j ≤ n

)(2.3.4)

with the equality if and only if

(2.3.5)
ri + n

N +mn
· cj +m

N +mn
=

ricj +N

N(N +mn)
for all i, j.

10



Identities (2.3.5) are equivalent to (N−rim)(N−cjn) = 0, which, in turn, equivalent
to all row sums being equal ri = N/m or all column sums being equal cj = N/n.

Summarizing (2.2.1), (2.2.2), (2.3.2), and (2.3.3) we conclude that inequality
(2.3.1) indeed holds if not all row sums ri are equal and not all column sums cj are
equal. Therefore, in the space of km× kn matrices with the sum k2N of all entries
the two events

(2.3.6)

Rk : the vector of row sums of a matrix is Rk

and
Ck : the vector of column sums of a matrix is Ck,

instead of being asymptotically independent, attract exponentially in k2, that is,

Pr (Rk ∩ Ck)
(PrRk) (Pr Ck)

≥ γk
2

for some γ = γ(R,C) > 1 and all sufficiently large k.
Starting with non-constant margins (R,C) the cloning procedure (R,C) 7−→

(Rk, Ck) produces margins which stay away from from constant and maintain the
density N/mn separated from 0. Similar analysis shows that the phenomenon
of attraction of the events Rk and Ck defined by (2.3.6) holds for more general
sequences of margins (Rk, Ck) of growing dimensions which stay sufficiently away
from uniform and sparse.

Two terms contribute to the difference ln #(R,C)− ln I(R,C):
first, the difference g(Z) − g(Y ), where Z is the matrix of Lemma 1.4 at which

the maximum of the function g(X) =
∑
ij(xij + 1) ln(xij + 1) − xij lnxij on the

transportation polytope P(R,C) is attained and Y = (yij) is the independence
matrix yij = ricj/N , cf. (2.3.2);

and second, the difference (multiplied by (N + mn)) between the entropies on
the right hand side of (2.3.4) and the left hand side of (2.3.4).

As long as either of these differences remains large enough to overcome the error
term of O

(
(m+n) lnN

)
coming from Theorem 1.1, we have the asymptotic positive

correlation of sequences of events Rk and Ck in (2.3.6).
On the other hand, the independence estimate I(R,C) produces a reasonable

approximation to #(R,C) in the cases of sparse tables (cf. [GM07]) and tables
with constant margins (cf. [CM07a]). One can show that if all row sums are equal
or if all column sums are equal then indeed

lim
k−→+∞

1
k2

ln #(Rk, Ck) = lim
k−→+∞

1
k2

ln I(Rk, Ck),

where (Rk, Ck) are cloned margins (R,C). Indeed, if all ri are equal then the
symmetry argument shows that the matrix Z = (zij) in Lemma 1.4 satisfies zij =
cj/m for all i and j, and, similarly, if all cj are equal then we have zij = ri/n for
all i, j. In either case we have Z = Y in (2.3.2) and, as we have already discussed,
equations (2.3.5) hold as well.
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3. The volume of a section of a simplex

Let A be the affine hyperplane in Rd defined by the equation

d∑
i=1

xi = 1

and let ∆ ⊂ A be the standard (d − 1)-dimensional open simplex defined by the
inequalities

xi > 0 for i = 1, . . . , d.

We consider the Euclidean structure in A induced from Rd. In particular, if K ⊂ A
is an m-dimensional convex body, by volm(K) we denote the m-dimensional volume
of K with respect to that Euclidean structure. For m = d− 1 we denote volm just
by vol. In particular,

vol(∆) =

√
d

(d− 1)!
.

Let L ⊂ A be an affine subspace intersecting ∆. Suppose that dimL = d−k−1,
so the the codimension of L in A is k ≥ 1. Our aim is to estimate the volume of the
intersection vold−k−1(L∩∆) within a reasonable accuracy when the codimension k
of L is small. It turns out that the volume is controlled by one particular quantity,
namely the maximum value of the product of the coordinates of a point x ∈ ∆∩L.

Our result is as follows.

(3.1) Theorem. Let A ⊂ Rd be the affine hyperplane defined by the equation
x1 + . . .+ xd = 1 and let ∆ ⊂ A be the standard (d− 1)-dimensional open simplex
defined by the inequalities x1 > 0, . . . , xd > 0.

Let L ⊂ A be an affine subspace intersecting ∆ and such that dimL = d− k− 1
where k ≥ 1. Suppose that the maximum of the function

f(x) =
d∑
i=1

lnxi

on ∆ ∩ L is attained at a = (α1, . . . , αd).
(1) We have

vold−k−1(∆ ∩ L)
vol(∆)

≥ γ
1

d2ωk
ddef(a),

where

ωk =
πk/2

Γ(k/2 + 1)

is the volume of the k-dimensional unit ball and γ > 0 is an absolute con-
stant (one can choose γ = 1/2e3 ≈ 0.025).
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(2) Suppose that

αi ≥
ε

d
for some ε > 0 and i = 1, . . . , d.

Then
vold−k−1 (∆ ∩ L)

vol(∆)
≤ γ

(
d2

2ε

)k
ddef(a),

where γ > 0 is an absolute constant (one can choose γ = 2e ≈ 5.44).

We are interested in the situation of k ∼
√
d, so ignoring lower-order terms in

the logarithmic order, we get

vold−k−1(∆ ∩ L) ∼ dd

d!
ef(a) ∼ ed

d∏
i=1

αi,

provided the maximum value of the product of the coordinates of a point x ∈ ∆∩L
is attained at a = (α1, . . . , αd) and all αi are not too small.

Let

c =
(

1
d
, . . . ,

1
d

)
be the center of the simplex ∆.

We deduce Theorem 3.1 from the following result.

(3.2) Theorem. Let A ⊂ Rd be the affine hyperplane defined by the equation
x1 + . . .+ xd = 1 and let ∆ ⊂ A be the standard (d− 1)-dimensional open simplex
defined by the inequalities x1 > 0, . . . , xd > 0.

Let H ⊂ A be an affine hyperplane in A intersecting ∆. If H does not pass
through the center c of ∆, let H− ⊂ A be the open halfspace bounded by H that
does not contain c and if H passes through c let H− ⊂ A be either of the open
halfspaces bounded by H.

Suppose that the function

f(x) =
d∑
i=1

lnxi where x = (x1, . . . , xd)

attains its maximum on ∆ ∩H at a point a = (α1, . . . , αd).
Then, for some absolute constant γ > 0 we have

ddef(a) ≥ vol(∆ ∩H−)
vol(∆)

≥ γ

d2
ddef(a).

We can choose γ = 1/2e3 ≈ 0.025.
13



4. Preliminaries from convex geometry

We recall that A ⊂ Rd is the affine hyperplane defined by the equation x1 +
. . .+ xd = 1, that ∆ ⊂ A is the open simplex defined by the inequalities xi > 0 for
i = 1, . . . , d, and that c = (1/d, . . . , 1/d) is the center of ∆. We need some results
regarding central hyperplane sections of ∆.

(4.1) Lemma. Let H ⊂ A be an affine hyperplane in A passing through the center
c of ∆.

(1) Let H+ and H− be the open halfspaces bounded by H. Then for some
absolute constant γ > 0 we have

vol (∆ ∩H+)
vol(∆)

≥ γ and
vol (∆ ∩H−)

vol(∆)
≥ γ.

One can choose γ = 1/e ≈ 0.37.
(2) For some absolute constant γ > 0 we have

vold−2(∆ ∩H)
vol(∆)

≥ γ.

One can choose γ = 1/2e ≈ 0.18.

Proof. Part (1) is a particular case of a more general result of Grünbaum [Grü60]
on hyperplane sections through the centroid of a convex body. In fact, in dimension
d one can choose

γd =
(

1− 1
d

)d−1

>
1
e
.

As K. Ball and M. Fradelizi explained to the author, a stronger estimate than
that of Part (2) can be obtained by combining techniques of [Bal88] and [Frad97].
Nevertheless, we present a proof of Part (2) below since the same approach is used
later in the proof of Theorem 3.1.

To prove Part (2), let H⊥ ⊂ A be a line orthogonal to H. Let us consider
the orthogonal projection pr : A −→ H⊥ and let Q = pr(∆) be the image of the
simplex. Since ∆ is contained in a ball of radius 1, Q is an interval of length at
most 2.

Let y0 = pr(H) and for y ∈ Q let

ν(y) = vold−2

(
pr−1(y)

)
be the volume of the inverse image of y. By the Brunn-Minkowski inequality, the
function ν is log-concave, see [Bal88], [Bal97].

Our goal is to bound ν(y0) from below. The point y0 splits the interval Q into
two subintervals, Q+ = pr(∆ ∩ H+) and Q− = pr(∆ ∩ H−) of length at most 2
each.

14



We have∫
Q+

ν(y) dy = vol
(
∆ ∩H+

)
and

∫
Q−

ν(y) dy = vol
(
∆ ∩H−

)
.

Using Part (1) we conclude that there exist y+ ∈ Q+ and y− ∈ Q− such that

ν(y+)
vol(∆)

≥ 1
2e

and
ν(y−)
vol(∆)

≥ 1
2e
.

Since y0 is a convex combination of y+ and y−, by the log-concavity of ν we
must have

ν(y0)
vol(∆)

≥ 1
2e
,

as desired. �

Let us choose a point a = (α1, . . . , αd) in ∆, and let us consider the projective
transformation Ta : ∆ −→ ∆

Ta(x) = y where yi =
αixi

α1x1 + . . .+ αdxd
for

x = (x1, . . . , xd) and y = (y1, . . . , yd) .

The inverse transformation is Tb for b =
(
α−1

1 , . . . , α−1
d

)
. Clearly,

Ta(c) = a,

where c is the center of ∆. For x ∈ ∆, the derivative DTa(x) is a linear transfor-
mation

DTa(x) : H −→ H,

where H is the hyperplane x1 + . . .+ xd = 0 in Rd.
Our immediate goal is to compute the Jacobian |DTa(x)| at x ∈ ∆.

(4.2) Lemma. Let us choose a point a = (α1, . . . , αd) in the simplex ∆ and let us
consider the projective transformation

Ta : ∆ −→ ∆

defined by the formula

Ta(x) = y where yi =
αixi

α1x1 + . . .+ αdxd

for x = (x1, . . . , xd) and y = (y1, . . . , yd).
15



Let DTa(x) : H −→ H be the derivative of Ta at x ∈ ∆ and |DTa(x)| the
corresponding value of the Jacobian. Then

|DTa(x)| = α1 · · ·αd
(α1x1 + . . .+ αdxd)d

.

Proof. Let us consider Ta as defined in a neighborhood of x in Rd with values in
Rd and let DTa(x) be the d× d matrix of the derivative

DTa(x) =
(
∂yi
∂xj

)
in the standard basis of Rd. Then the i-th diagonal entry of DTa(x) is

αi
(α1x1 + . . .+ αdxd)

− α2
ixi

(α1x1 + . . .+ αdxd)2
,

while the (i, j)-th entry for i 6= j is

−αiαjxi
(α1x1 + . . .+ αdxd)2

.

Let
β =

1
α1x1 + . . .+ αdxd

,

let B be the diagonal matrix with the diagonal entries α1, . . . , αd, and let C be the
matrix with the (i, j)th entry equal to αiαjxi for all 1 ≤ i, j ≤ d. Then we can
write

DTa(x) = βB − β2C = β(B − βC).

Since DTa(x) maps Rd onto H and H is an invariant subspace of DTa(x), the
value of the Jacobian we are interested in is the product of the (d − 1) non-zero
eigenvalues of DTa(x) (counting algebraic multiplicities), which is equal to the
(d − 1)-st elementary symmetric function in the eigenvalues of DTa(x), which is
equal to the sum of the d of the (d− 1)× (d− 1) principle minors of DTa(x).

Let Bi and Ci be the (d−1)×(d−1) matrices obtained from B and C respectively
by crossing out the ith row and column.

Hence
Bi − βCi = Bi(I − βB−1

i Ci),

where I is the (d− 1)× (d− 1) identity matrix. Now B−1
i Ci is a matrix of rank 1

with the non-zero eigenvalue equal to the trace of B−1
i Ci, which is∑

j 6=i

αjxj .
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Hence
det
(
I − βB−1

i Ci
)

= 1− β
∑
j 6=i

αjxj =
αixi

α1x1 + . . .+ αdxd

and
detBi(I − βB−1

i Ci) =
α1 · · ·αdxi

α1x1 + . . .+ αdxd
.

Therefore, the sum of the d of (d− 1)× (d− 1) principle minors of B − βC is

α1 . . . αd
α1x1 + . . .+ αdxd

and the sum of the (d− 1)× (d− 1) principle minors of DTa(x) = β(B − βC) is

α1 . . . αd
(α1x1 + . . .+ αdxd)d

,

as desired. �

Next, we will need a technical estimate, which shows that if the volume of the
section of the simplex by an affine subspace of a small codimension is sufficiently
large and if the subspace cuts sufficiently deep into the simplex then a neighborhood
of the section in the simplex has a sufficiently large volume.

(4.3) Lemma. Let L ⊂ A be an affine subspace, dimL = d− k − 1. Suppose that
there is a point a ∈ L ∩∆, a = (α1, . . . , αd) such that

αi ≥
ε

d
for i = 1, . . . , d

and some ε > 0.
Let

‖x‖∞ = max
{
|xi| for i = 1, . . . , d

}
for i = 1, . . . , d

and let us define a neighborhood Q of ∆ ∩ L by

Q =
{
x ∈ ∆ : ‖x− y‖∞ ≤

ε

d2
for some y ∈ ∆ ∩ L

}
.

Then, for any affine hyperplane H ⊂ A passing through L we have

vol(Q ∩H+), vol(Q ∩H−) ≥ γ
(

2ε
d2

)k
vold−k−1(∆ ∩ L),

where H+ and H− are the halfspaces bounded by H and γ > 0 is an absolute
constant. One can choose γ = 1/2e ≈ 0.18.

Proof. Let

Q0 =
{

1
d
a+

d− 1
d

x : x ∈ ∆ ∩ L
}
.
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Since Q0 is the contraction of ∆ ∩ L we have

vold−k−1Q0 =
(
d− 1
d

)d−k−1

vold−k−1(∆ ∩ L) ≥ 1
e

vold−k−1(∆ ∩ L).

Moreover, for any x ∈ Q0, x = (x1, . . . , xd), we have

xi ≥
ε

d2
for i = 1, . . . , d.

For every point x ∈ Q0 let us consider the cube

Ix =
{
y ∈ Rd : ‖y − x‖∞ ≤

ε

d2

}
.

Then (Ix ∩ A) ⊂ ∆. The intersection of Ix with the k-dimensional affine subspace
L⊥x ⊂ A orthogonal to L and passing through x is centrally symmetric with respect
to x and, by Vaaler’s Theorem [Vaa79], satisfies

volk
(
Ix ∩ L⊥x

)
≥
(

2ε
d2

)k
.

The proof now follows. �

5. Proofs of Theorems 1.2, 3.1, and 3.2

We prove Theorem 3.2 first.

(5.1) Proof of Theorem 3.2. If c ∈ H the result follows by Lemma 4.1. Hence
we assume that c /∈ H.

The hyperplane H is orthogonal to the gradient of f(x) at x = a and passes
through a, from which it follows that H can be defined in A by the equation

d∑
i=1

xi
αi

= d,

while the halfspace H− is defined by the inequality

d∑
i=1

xi
αi

< d.

Let us consider the projective transformation Ta : ∆ −→ ∆ defined by the
formula of Lemma 4.2. Hence Ta(c) = a. Moreover, the inverse image T−1

a (H) is
the hyperplane H0 defined in A by the equation

d∑
i=1

αixi =
1
d

18



and the inverse image T−1
a (∆ ∩H−) is the intersection ∆ ∩H−0 , where H−0 is the

halfspace defined by the inequality

d∑
i=1

αixi >
1
d
.

By Lemma 4.2, we have

|DTa(x)| = α1 · · ·αd
(α1x1 + . . .+ αdxd)

d
< dd

d∏
i=1

αi for all x ∈ ∆ ∩H−0 .

Since

(5.1.1) vol(∆ ∩H−) =
∫

∆∩H−
0

|DTa(x)| dx,

the upper bound follows.
Let us prove the lower bound. By Part (2) of Lemma 4.1,

vold−2 (∆ ∩H0)
vol(∆)

≥ 1
2e
.

We recall that H0 passes through the center of the simplex and apply Lemma 4.3
with ε = 1. Namely, we define

Q =
{
x ∈ ∆ : ‖x− y‖∞ ≤

1
d2

for some y ∈ ∆ ∩H0

}
and conclude that by Lemma 4.3

vol(Q ∩H−0 ) ≥
(

1
2e

)(
2
d2

)
vold−2 (∆ ∩H0) ≥ 1

2e2d2
vol(∆).

We note that for every x ∈ Q we have

d∑
i=1

αixi ≤
1
d

+
1
d2

=
d+ 1
d2

.

By (5.1.1)

vol(∆ ∩H−) ≥
∫
Q∩H−

0

|DTa(x)| dx ≥
(

d2

d+ 1

)d
vol(Q ∩H−0 )

d∏
i=1

αi

≥ 1
2e3

1
d2
dd vol(∆)

d∏
i=1

αi,

which completes the proof. �
Next, we prove Theorem 3.1.
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(5.2) Proof of Theorem 3.1. The proof of Part (1) is similar to that of Part (2)
of Lemma 4.1. Let L⊥ ⊂ A be a k-dimensional subspace orthogonal to L in A and
let

pr : A −→ L⊥

be the orthogonal projection. Let Q ⊂ L⊥, Q = pr(∆), be the image of the simplex.
Clearly, Q lies in a ball of radius 1, so

volkQ ≤ ωk.

For y ∈ Q, let
ν(y) = vold−k−1

(
pr−1(y)

)
be the volume of the inverse image of y. By the Brunn-Minkowski inequality, the
function ν is log-concave, so for every α > 0 the set{

y ∈ Q : ν(y) ≥ α
}

is convex. Moreover, for all Borel sets Y ⊂ Q we have∫
Y

ν(y) dy = vol
(
pr−1(Y )

)
.

We want to estimate ν(y0) for y0 = pr(L). Let H ⊂ L⊥ be an affine hyperplane
through y0 and let H+, H− ⊂ L⊥ be open halfspaces bounded by H. Then H̃ =
pr−1(H) is an affine hyperplane in A containing L and pr−1(H−) and pr−1(H+)
are the corresponding open halfspaces of A bounded by H̃.

Since the maximum value of f on ∆∩ H̃ is at least as big as the maximum value
of f on ∆ ∩ L, by Theorem 3.2 we have

vol pr−1
(
H± ∩Q

)
≥ 1

2e3

1
d2
ddef(a) vol(∆).

Since
vol pr−1

(
H± ∩Q

)
=
∫
H±∩Q

ν(y) dy,

We conclude that there exist points y+ ∈ H+ and y− ∈ H− such that

(5.2.1) ν(y+), ν(y−) ≥ 1
2e3

1
d2
ddef(a) vol(∆)

volkQ
≥ 1

2e3

1
d2
ddef(a) vol(∆)

ωk
.

In other words, for any affine hyperplane H ⊂ L⊥ through y0 on either side of the
hyperplane there are points y+, y− for which inequality (5.2.1) holds. Hence y0 lies
in the convex hull of points y for which the inequality holds. The proof of Part (1)
follows by the log-concavity of ν.
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Let us prove Part (2). Since a is the maximum point of the strictly concave
function

f(x) =
d∑
i=1

lnxi

on ∆ ∩ L, the gradient of f at a is orthogonal to L. Hence L is orthogonal to the
vector (

1
α1
, . . . ,

1
αd

)
.

If a 6= c, let H ⊂ A be the affine hyperplane defined by the equation

d∑
i=1

xi
αi

= d

and if a = c let H be any affine hyperplane containing L. In either case L ⊂ H and
the maximum values of f on ∆ ∩H and on ∆ ∩ L coincide and are equal to f(a).
Therefore, by Theorem 3.2, we have

(5.2.2) vol(∆ ∩H−) ≤ ddef(a) vol(∆)

for some open halfspace H− bounded by H.
We apply Lemma 4.3. Namely, we let

Q =
{
x ∈ ∆ : ‖x− y‖∞ ≤

ε

d2
for some y ∈ ∆ ∩ L

}
.

Then, by Lemma 4.3,

vol(Q ∩H−) ≥ 1
2e

(
2ε
d2

)k
vold−k−1(∆ ∩ L).

Since
vol(Q ∩H−) ≤ vol(∆ ∩H−),

we get the upper bound from (5.2.2). �
Finally, we prove Theorem 1.2.

(5.3) Proof of Theorem 1.2. Let us consider the contracted polytope N−1P
defined by the equations

n∑
j=1

xij =
ri
N

for i = 1, . . . ,m,
m∑
i=1

xij =
cj
N

for j = 1, . . . , n

and inequalities
xij > 0 for all i, j.
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Then N−1P can be represented as an intersection of the standard simplex in the
space of m × n matrices and an affine subspace of dimension (m − 1)(n − 1). We
are going to use Theorem 3.1. Let A = (αij), A ∈ N−1P, be the point maximizing
the product of the coordinates. Writing the optimality condition for

f(X) =
∑
ij

lnxij

on N−1P, we conclude that

1
αij

= λi + µj for all i, j

and some λ1, . . . λm and µ1, . . . , µn. Since λi + µj > 0 for all i, j, we may assume
that λi, µj > 0 for all i, j. If λi > nN/ri for some i then αij < ri/nN for all j,
which is a contradiction. If µj > mN/cj for some j then αij < cj/mN for all i
which is a contradiction. Hence λi ≤ nN/ri for i = 1, . . . ,m and µj ≤ mN/cj for
j = 1, . . . , n, from which

αij ≥
ricj

Nncj +Nmri
=

1
(nN/ri) + (mN/cj)

for all i, j.

The proof now follows by Theorem 3.1 with d = mn, k = m+ n− 2, and

ε =
(
n max
i=1,... ,m

N

ri
+m max

j=1,... ,n

N

cj

)−1

.

�

6. An integral representation for the number of contingency tables

In this section, we recall bounds for #(R,C) obtained in [Ba07] and [Ba08].

(6.1) Matrix scaling. Our estimates for the number #(R,C) of contingency
tables essentially use the theory of matrix scaling, see [Si64], [MO68], [RS89]. Let
us fix non-negative vectors R = (r1, . . . , rm), C = (c1, . . . , cn), such that

m∑
i=1

ri =
n∑
j=1

cj = N.

Then for every m×n positive matrix X = (xij) there exist a positive m×n matrix
L = (lij) and positive numbers λ1, . . . , λm and µ1, . . . , µn such that

n∑
j=1

lij = ri for i = 1, . . . ,m,

m∑
i=1

lij = cj for j = 1, . . . , n, and

xij = λiµj lij for all i, j.

(6.1.1)
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Moreover, given X, the matrix L is unique while the numbers λi and µj are unique
up to a re-scaling:

λi 7−→ λiτ for i = 1, . . . ,m

µj 7−→ µjτ
−1 for j = 1, . . . , n

and some τ > 0.

(6.2) Function φ. This allows us to define a function

φ(X) = φR,C(X) =

(
m∏
i=1

λri
i

) n∏
j=1

µ
cj

j

 ,

where λi and µj are numbers such that equations (6.1.1) hold, on positive m × n
matrices X. It turns out that φ is continuous (it is also log-concave but we don’t
use that), positive homogeneous of degree N ,

φ(αX) = αNφ(X)

for α > 0 and positive matrix X, and monotone

φ(X) ≥ φ(Y )

provided X and Y are positive matrices satisfying xij ≥ yij for all i, j, see, for
example, [Ba07] and [Ba08].

Alternatively, φ(X) can be defined by

φ(X) = min
a,b

 1
N

∑
ij

xijαiβj

N

,

where the minimum is taken over all positive m-vectors a = (α1, . . . , αm) and
positive n-vectors b = (β1, . . . , βn) satisfying

m∏
i=1

αri
i =

n∏
j=1

β
cj

j = 1,

see also [MO68].

(6.3) The bounds. Let us identify the space of m × n matrices with Euclidean
space Rd for d = mn, let A ⊂ Rd be the affine hyperplane defined by the equation∑

ij

xij = 1,
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and let ∆ ⊂ A be the standard open simplex defined by the inequalities

xij > 0 for all i, j

with the Lebesgue measure dX induced from the Euclidean structure in Rd. It is
proved in [Ba07] and [Ba08] that

(6.3.1)

#(R,C) ≥ N !(N +mn− 1)!
NN
√
mn

(
m∏
i=1

rri
i

ri!

) n∏
j=1

c
cj

j

cj !

∫
∆

φ(X) dX

and

#(R,C) ≤ (N +mn− 1)!√
mn

min


m∏
i=1

rri
i

ri!
,

n∏
j=1

c
cj

j

cj !


∫

∆

φ(X) dX.

Therefore, we have an approximation within up to an Nγ(m+n) factor for some
absolute constant γ > 0:

(6.3.2) #(R,C) ≈ eN (N +mn)!
∫

∆

φ(X) dX

In fact, we will be using only a lower bound in (6.3.1).
For completeness, let us sketch the main ingredients of the proof of (6.3.1).
Recall that the permanent of an N × N matrix A = (aij) is defined by the

formula

perA =
∑
σ∈SN

N∏
i=1

aiσ(i),

where the sum is taken over all N ! permutations σ from the symmetric group SN .
For an m×n matrix X = (xij) let us define the N×N block matrix A(X) that has
mn blocks of sizes ri × cj for i = 1, . . . ,m and j = 1, . . . , n with the (i, j)-th block
filled by the copies of xij . A combinatorial computation produces the following
expansion

perA(X) =

(
m∏
i=1

ri!

) n∏
j=1

cj !

 ∑
D=(dij)

x
dij

ij

dij !
,

where the sum is taken over all m×n non-negative integer matrices D = (dij) with
row sums R and column sums C. From this expansion we obtain the formula

#(R,C) =

(
m∏
i=1

1
ri!

) n∏
j=1

1
cj !

∫
Rd

+

perA(X) exp

−∑
ij

xij

 dX,
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where Rd+ is the set of m×n positive matrices X, see Theorem 1.1 of [Ba08]. Since
perA(X) is a homogeneous polynomial of degree N in X, a standard change of
variables results in the formula

#(R,C) =
(N +mn− 1)!√

mn

(
m∏
i=1

1
ri!

) n∏
j=1

1
cj !

∫
∆

perA(X) dX,

cf. Lemma 4.1 of [Ba08]. Given a matrix X ∈ ∆, let λ1, . . . , λm and µ1, . . . , µn
be its scaling factors so that (6.1.1) holds. Let B(X) be the matrix obtained by
dividing the entries in the (i, j)-th block of A(X) by λiriµjcj , so the entries in the
(i, j)-th block of B(X) are equal to lij/ricj . Hence

perA(X) =

(
m∏
i=1

rri
i

) n∏
j=1

c
cj

j

φ(X) perB(X),

cf. Section 3.1 of [Ba08]. Now we notice that B(X) is a doubly stochastic matrix,
that is, a non-negative matrix with row and column sums equal to 1. The classi-
cal estimate for permanents of doubly stochastic matrices conjectured by van der
Waerden and proved by Falikman and Egorychev (see [Fa81], [Eg81], and Chapter
12 of [LW01]) asserts that

perB(X) ≥ N !
NN

and hence the lower bound in (6.3.1) follows. The upper bound in (6.3.1) follows
from the inequality for permanents conjectured by Minc and proven by Bregman,
(see [Br73] and Chapter 11 of [LW01]), which results in

perB(X) ≤ min


m∏
i=1

ri!
rri
i

,
n∏
j=1

cj !
c
cj

j

 ,

since the entries in the (i, j)-th block of B(X) do not exceed min{1/ri, 1/cj}, see
Section 5 of [Ba08] for details.

(6.4) Slicing the simplex. The crucial observation which makes the integral∫
∆

φ(X) dX

amenable to analysis is that the simplex ∆ can be sliced by affine subspaces of
codimension m+ n− 1 into sections on which function φ remains constant.

Let us choose some positive λ1, . . . , λm and µ1, . . . , µn and let us consider the
affine subspace L ⊂ Rd of m× n matrices X = (xij) satisfying the equations

(6.4.1)

n∑
j=1

xij
λiµj

= ri for i = 1, . . .m

m∑
i=1

xij
λiµj

= cj for j = 1, . . . , n
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Clearly,

(6.4.2) φ(X) =

(
m∏
i=1

λri
i

) n∏
j=1

µ
cj

j

 for all X ∈ ∆ ∩ L.

Moreover, dimL = (m− 1)(n− 1).

(6.5) Modification for weighted tables. Similar identities an inequalities hold
for weighted tables. For a positive matrix W = (wij) of weights, we define the
function

φR,C;W (X) = φR,C(Y ) where yij = wijxij for all i, j

and φR,C is the unweighted function defined in Section 6.2. Then

T (R,C;W ) ≥ N !(N +mn− 1)!
NN
√
mn

×

(
m∏
i=1

rri
i

ri!

) n∏
j=1

c
cj

j

cj !

∫
∆

φR,C;W (X) dX

and

T (R,C : W ) ≤ (N +mn− 1)!√
mn

×min


m∏
i=1

rri
i

ri!
,

n∏
j=1

c
cj

j

cj !


∫

∆

φR,C;W (X) dX,

(6.5.1)

see [Ba07], [Ba08], and the proof sketch in Section 6.3.
Let us choose some positive λ1, . . . , λm and µ1, . . . , µn and let us consider the

subspace L ⊂ Rd of m× n matrices X = (xij) satisfying the equations

(6.5.2)

n∑
j=1

wijxij
λiµj

= ri for i = 1, . . .m

m∑
i=1

wijxij
λiµj

= cj for j = 1, . . . , n

Clearly,

(6.5.3) φR,C;W (X) =

(
m∏
i=1

λri
i

) n∏
j=1

µ
cj

j

 for all X ∈ ∆ ∩ L.

Moreover, dimL = (m− 1)(n− 1).
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7. Proofs of Theorems 1.1 and 1.3 and Lemma 1.4

We prove Lemma 1.4 first.

(7.1) Proof of Lemma 1.4. It is straightforward to check that the function

g(x;w) = (x+ 1) ln(x+ 1)− x lnx+ x lnw for x ≥ 0

is strictly concave for x > 0. Therefore, the maximum of g(X;W ) on P(R,C) is
attained at a single point Z = (zij). Let us show that necessarily zij > 0 for all
i, j.

Since

g′(x;w) = ln
(
x+ 1
x

)
+ lnw,

the derivative of g(x;w) at x > 0 is finite and the right derivative at x = 0 is +∞.
Let Y ∈ P(R,C) be a matrix with positive entries, for example, Y = (yij) where
yij = ricj/N . If zij = 0 for some i, j then

g
(
(1− ε)Z + εY ;W

)
> g

(
Z;W

)
for some sufficiently small ε > 0, which is a contradiction.

Thus zij > 0 for all i, j and hence Z lies in the relative interior of P(R,C).
Therefore the gradient of g(X;W ) at X = Z is orthogonal to the affine span of
P(R,C), that is,

ln
(
zij + 1
zij

)
+ lnwij = λi + µj for all i, j

and some λ1, . . . , λm, µ1, . . . , µn.
Let

ξi = e−λi > 0 for i = 1, . . . ,m and ηj = e−µj > 0 for j = 1, . . . , n.

Then
wijξiηj =

zij
zij + 1

< 1 for all i, j,

and

(7.1.1) zij =
wijξiηj

1− wijξiηj
for all i, j.

In particular,

n∑
j=1

wijξiηj
1− wijξiηj

= ri for i = 1, . . . ,m and

m∑
i=1

wijξiηj
1− wijξiηj

= cj for j = 1, . . . , n.

(7.1.2)
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Equations (7.1.2) are equivalent to the statement that the point
t∗ = (λ1, . . . , λm) and s∗ = (µ1, . . . , µn) is a critical point of the function

φ(t, s) =
m∑
i=1

riti +
n∑
j=1

cjsj −
∑
ij

ln
(
1− wije−ti−sj

)
.

Since φ is convex, the point (s∗, t∗) is a minimum point of φ and hence the point
x∗ = (ξ1, . . . , ξm) and y∗ = (η1, . . . , ηn) is a point where the infimum of

F (x,y;W ) =

(
m∏
i=1

x−ri
i

) n∏
j=1

y
−cj

j

∏
ij

1
1− wijxiyj


is attained in the region x1, . . . , xm > 0, y1, . . . , yn > 0, and wijxiyj < 1 for all
i, j.

Using (7.1.1) and (7.1.2), we conclude that

g(Z;W ) =
∑
ij

(zij + 1) ln(zij + 1)−
∑
ij

zij(ln zij − lnwij)

=−
∑
ij

ln(1− wijξiηj)
1− wijξiηj

−
∑
ij

wijξiηj
1− wijξiηj

ln
(

ξiηj
1− wijξiηj

)

=−
∑
ij

ln(1− wijξiηj)−
m∑
i=1

ln ξi

 n∑
j=1

wijξiηj
1− wijξiηj


−

n∑
j=1

ln ηj

 n∑
j=1

wijξiηj
1− wijξiηj


=−

m∑
i=1

riξi −
n∑
j=1

cjηj −
∑
ij

ln(1− wijξiηj) = lnF (x∗,y∗;W ),

as claimed.
We observe that the value of F (x,y;W ) does not change if we scale xi 7−→ xiτ ,

yj 7−→ yjτ
−1 for τ > 0. In the case of wij = 1 for all i, j we have ξiηj < 1 for all

i, j and hence by choosing an appropriate τ we can enforce 0 < ξi, ηj < 1 for all
i, j. �

We consider the space Rd for d = mn of m×n real matrices, the affine hyperplane
A ⊂ Rd defined by the equation

∑
ij xij = 1 and the standard open simplex ∆ ⊂ A

defined by the inequalities xij > 0 for all i, j. Let φ = φR,C;W be the function
defined in Sections 6.5 and 6.2.

We start with a technical lemma, which is a straightforward modification of
Lemma 4.3.
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(7.2) Lemma. Let L ⊂ A be an affine subspace, dimL = d − k − 1 for k ≥ 1.
Suppose that there is a point A = (αij), A ∈ ∆ ∩ L, such that

αij ≥
ε

d
for all i, j.

Suppose further that the value of the function φ = φR,C;W on ∆∩L is constant and
equal to τ . Then∫

∆

φ(X) dX ≥ γ
(

2ε
d2(N + 1)

)k
τ vold−k−1(∆ ∩ L)

for some absolute constant γ > 0 (one can choose γ = e−2 ≈ 0.14).

Proof. Let

Q0 =
{

1
d
A+

d− 1
d

X : X ∈ ∆ ∩ L
}
.

As in the proof of Lemma 4.3, we have

vold−k−1(Q0) ≥ 1
e

vold−k−1(∆ ∩ L)

and for any X ∈ Q0, X = (xij), we have

xij ≥
ε

d2
for all i, j.

Let us define Q by

Q =
{
X ∈ ∆ : ‖X − Y ‖∞ ≤

ε

d2(N + 1)
for some Y ∈ Q0

}
.

Then, as in Lemma 4.3, we have

volQ ≥ 1
e

(
2ε

d2(N + 1)

)k
vold−k−1(∆ ∩ L).

We note that for every X ∈ Q there is a Y ∈ ∆ ∩ L such that

xij ≥
(

1− 1
N + 1

)
yij for all i, j.

Since φ is monotone and homogeneous of degree N (see Section 6.2) , we have

φ(X) ≥
(

1− 1
N + 1

)N
τ >

1
e
τ for all X ∈ Q.

Since ∫
∆

φ(X) dX ≥
∫
Q

φ(X) dX,

the proof follows. �
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(7.3) Proof of Theorem 1.1. The upper bound follows immediately from the
standard generating function expression:

∏
i,j

1
1− xiyj

=
∑
R,C

#(R,C)xRyC , where xR =
m∏
i=1

xri
i and xC =

n∏
j=1

y
cj

j

and the some is taken over all pairs of positive integer m-vectors R = (r1, . . . , rm)
and n-vectors C = (c1, . . . , cn) such that r1 + . . .+ rm = c1 + . . .+ cn.

Let us prove the lower bound. By Lemma 1.4 the minimum of

F (x,y) =

(
m∏
i=1

x−ri
i

) n∏
j=1

y
−cj

j

∏
ij

1
1− xiyj


on the open cube 0 < xi, yj < 1 for all i, j is attained at a certain point

x∗ = (ξ1, . . . , ξm) and y∗ = (η1, . . . , ηn) ,

which, moreover, satisfies

(7.3.1)

n∑
j=1

ξiηj
1− ξiηj

= ri for i = 1, . . . ,m

m∑
i=1

ξiηj
1− ξiηj

= cj for j = 1, . . . , n.

Equations (7.3.1) can also be obtained by setting the gradient of lnF to 0.
In the space of m × n matrices Rd with d = mn, let us consider the standard

simplex ∆ and the point A = (αij) defined by

αij =
1

(N +mn)(1− ξiηj)
for all i, j.

By (7.3.1), we have

n∑
j=1

1
1− ξiηj

=
n∑
j=1

1− ξiηj
1− ξiηj

+
n∑
j=1

ξiηj
1− ξiηj

= n+ ri for all i,

so A lies in ∆. Let

λi =
1

ξi
√
N +mn

for i = 1, . . . ,m and

µj =
1

ηj
√
N +mn

for j = 1, . . . , n.
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Let us consider the affine subspace L ⊂ Rd defined by the system of equations
n∑
j=1

xij
λiµj

= ri for i = 1, . . .m

m∑
i=1

xij
λiµj

= cj for j = 1, . . . , n.

Hence dimL = (m− 1)(n− 1) and A ∈ L by (7.3.1).
By (6.4.2), the density φ = φR,C is constant on L and equal to

τ =
1

(N +mn)N

(
m∏
i=1

ξ−ri
i

) n∏
j=1

η
−cj

j

 .

By Part (1) of Theorem 3.1, the volume of the section ∆ ∩ L within a factor of
(N +mn)O(m+n) is at least

emn

(N +mn)mn

∏
ij

1
1− ξiηj

 .

More precisely, for k = d− 1−dim(∆∩L) we have k = m+n− 1 or k = m+n− 2
and

vold−1−k(∆ ∩ L) ≥ Γ(k/2 + 1)
2e3πk/2

√
mn

(mn)mn

(mn)!
1

(N +mn)mn

∏
ij

1
1− ξiηj

 .

Choosing ε = 1/(N +mn) in Lemma 7.2, we estimate the integral∫
∆

φ(X) dX

within a factor of NO(m+n) from below by

emn

(N +mn)N+mn

(
m∏
i=1

ξ−ri
i

) n∏
j=1

η
−cj

j

∏
ij

1
1− ξiηj

 .

More precisely,∫
∆

φ(X) dX ≥
Γ
(
m+n

2

)
2e5π

m+n−2
2
√
mn

(
2

(mn)2(N + 1)(N +mn)

)m+n−1

× (mn)mn

(mn)!
1

(N +mn)N+mn

×

(
m∏
i=1

ξ−ri
i

) n∏
j=1

η
−cj

j

∏
ij

1
1− ξiηj
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provided m + n ≥ 10. Hence by (6.3.2) the number #(R,C) is estimated from
below within a factor of (N +mn)O(m+n) by

eN (N +mn)!
∫

∆

φ(X) dX ≈ emn+N (N +mn)!
(N +mn)N+mn

×

(
m∏
i=1

ξ−ri
i

) n∏
j=1

η
−cj

j

∏
ij

1
1− ξiηj


≈F (x∗, y∗) = ρ,

where “≈” stands for an approximation within a NO(m+n) factor.
More precisely, by (6.3.1)

#(R,C) ≥
Γ
(
m+n

2

)
2e5π

m+n−2
2 mn(N +mn)

(
2

(mn)2(N + 1)(N +mn)

)m+n−1

×

(
m∏
i=1

rri
i

ri!

) n∏
j=1

c
cj

j

cj !

 N !(N +mn)!(mn)mn

NN (N +mn)N+mn(mn)!
ρ(R,C)

provided m+ n ≥ 10. �
The proof of Theorem 1.3 is a straightforward modification of the proof of The-

orem 1.1.

(7.4) Proof of Theorem 1.3. The upper bound follows from the generating
function expression ∏

ij

1
1− wijxiyj

=
∑
R,C

T (R,C;W )xRyC .

Let us prove the lower bound. Since T (R,C;W ) is a polynomial in W , without
loss of generality we assume that W is a strictly positive matrix. Let

x∗ = (ξ1, . . . , ξm) and y∗ = (η1, . . . , ηn)

be the minimum point of

F (x,y;W ) =

(
m∏
i=1

x−ri
i

) n∏
j=1

y
−cj

j

∏
ij

1
1− wijxiyj

 ,

see Lemma 1.4. Then

(7.4.1)

n∑
j=1

wijξiηj
1− wijξiηj

= ri for i = 1, . . . ,m

m∑
i=1

wijξiηj
1− wijξiηj

= cj for j = 1, . . . , n.
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In the space of matrices, let us consider the standard simplex ∆ and the matrix
A = (αij)

αij =
1

(N +mn)(1− wijξiηj)
for all i, j.

As in the proof of Theorem 1.1, we check from (7.4.1) that indeed A ∈ ∆. Let

λi =
1

ξi
√
N +mn

for i = 1, . . . ,m and

µj =
1

ηj
√
N +mn

for j = 1, . . . , n.

Let us consider the affine space L ⊂ Rd defined by the equations

n∑
j=1

wijxij
λiµj

= ri for i = 1, . . . ,m

m∑
i=1

wijxij
λiµj

= cj for j = 1, . . . , n.

Then A ∈ L, the value of φR,C;W on ∆ ∩ L is constant and equal to

τ =
1

(N +mn)N

(
m∏
i=1

ξ−ri
i

) n∏
j=1

η
−cj

j

 ,

see (6.5.2)-(6.5.3). Next, we use the lower bound in (6.5.1) and the proof proceeds
as for Theorem 1.1. �
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