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Abstract. Given a system of linear equations `i(x) = βi in an n-vector x of 0-1

variables, we compute the expectation of exp
{
−

∑
i γi (`i(x)− βi)2

}
, where x is a

vector of independent Bernoulli random variables and γi > 0 are constants. The
algorithm runs in quasi-polynomial nO(lnn) time under some sparseness condition

on the matrix of the system. The result is based on the absence of the zeros of the
analytic continuation of the expectation for complex probabilities, which can also be

interpreted as the absence of a phase transition in the Ising model with a sufficiently

strong external field. We discuss applications to (perfect) matchings in hypergraphs
and randomized rounding in discrete optimization.

1. Introduction and examples

(1.1) Linear equations in 0-1 vectors. Let A = (αij) be an m× n real matrix
and let b = (β1, . . . , βm) be a real m-vector, where m ≤ n. As is well-known, the
problem of finding if there is a solution ξ1, . . . , ξn to the system of linear equations
in 0-1 variables

n∑
j=1

αijξj = βi for i = 1, . . . ,m

ξj ∈ {0, 1} for j = 1, . . . , n

(1.1.1)

is NP-hard, while counting all such solutions in a #P-hard problem. Motivated by
the general difficulty of the problem and inspired by ideas from statistical physics,
we suggest a way of “smoothed counting”, which in some non-trivial cases turns out
to be computationally feasible, at least in theory, and gives some information about
“near-solutions” that satisfy the equations within a certain error. It also allows us
to sharpen the procedure of “randomized rounding” in discrete optimization. As a
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by-product, we prove the absence of phase transition in the Lee - Yang sense for
the Ising model with a sufficiently strong external field.

Let us fix some γi > 0, i = 1, . . . ,m, interpreted as “weights” of the equa-
tions in (1.1.1). Suppose further, that ξ1, . . . , ξn are independent Bernoulli random
variables, so that

(1.1.2) P (ξj = 1) = pj and P (ξj = 0) = 1− pj for j = 1, . . . , n

for some 0 < pj < 1. Our goal is to compute the expectation

(1.1.3) E exp

−
m∑
i=1

γi

−βi +
n∑
j=1

αijξj

2
 .

Hence every solution to (1.1.1) is accounted for in (1.1.3) with weight 1, while any
other 0-1 vector (ξ1, . . . , ξn) is accounted for with a weight that is exponentially
small in the number of violated constraints and the “severity” of violation.

Clearly, (1.1.3) is always an upper bound on the probability that (ξ1, . . . , ξn) is
a solution to (1.1.1), and that for larger γi we get sharper bounds. Generally, we
cannot expect to be able to compute (1.1.3) efficiently for γi that are too large,
since that would lead to an efficient algorithm in a #P-hard problem of counting
0-1 solutions to a system of linear equations. How large γi we can choose will de-
pend on the sparsity of the system (1.1.1) as well as on the choice of probabilities
p1, . . . , pn. The choice of probabilities is motivated by the specifics of the problem.
For example, if we pick pj = k/n for all j then the probability distribution concen-
trates around vectors satisfying ξ1 + . . .+ ξn = k, so we zoom in on the solutions of
(1.1.1) having approximately k coordinates equal 1. We discuss another reasonable
choice of probabilities in Section 1.5.

Our main results are stated in Section 2. To make them easier to parse, we
demonstrate first some of their corollaries.

(1.2) Example: perfect matchings in hypergraphs. Let H = (V,E) be a
k-hypergraph with set V of vertices and set E of edges. Thus the edges of H are
some subsets s ⊂ V such that |s| ≤ k. A perfect matching in H is a collection
C ⊂ E of edges s1, . . . , sm such that every vertex v ∈ V belongs to exactly one
edge from C. As is well-known, to decide whether H contains a perfect matching
is an NP-hard problem if k ≥ 3 and to count all perfect matchings is a #P-hard
problem if k ≥ 2, cf. Problem SP2 in [A+99] and Chapter 17 of [AB09]. If k = 2,
a fully polynomial randomized approximation scheme was constructed by Jerrum,
Sinclair and Vigoda [J+04] in the case of a bipartite graph.

For each edge s ∈ E we introduce a 0-1 variable ξs. Then the solutions of the
system of equations

(1.2.1)
∑
s: v∈s

ξs = 1 for all v ∈ V
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are in one-to-one correspondence with perfect matchings in H: given a solution
(ξs : s ∈ E) we select those edges s for which ξs = 1. The right hand side of the
system is the vector of all 1’s, b = (βv : v ∈ V ), where βv = 1 for all v ∈ V .

Suppose now that the hypergraph H is k-uniform, that is, |s| = k for all s ∈ E
and ∆-regular for some ∆ ≥ 3, that is, each vertex v ∈ V is contained in exactly
∆ edges s ∈ E, which is the case in many symmetric hypergraphs, such as Latin
squares and cubes, see [LL13], [LL14], [Ke18], [Po18]. Then |E| = ∆|V |/k and each
perfect matching contains exactly |V |/k edges. Let C ⊂ E be a random collection
edges, where each edge s is picked into C independently at random with probability

(1.2.2) ps =
1

∆
for all s ∈ E,

so that the expected number of selected edges is exactly |V |/k. For a collection
C ⊂ E of edges and a vertex v ∈ V , let #(C, v) be the number of edges from C
that contain v. We pick γv = γ for some γ > 0 and all v ∈ V . Then (1.1.3) can be
written as

(1.2.3) E exp

{
−γ

∑
v∈V

(#(C, v)− 1)
2

}
.

In Section 2.4, we show that we can choose

(1.2.4) γ =
γ0

k

for some absolute constant γ0 > 0 so that (1.2.3) can be computed within relative
error 0 < ε < 1 in quasi-polynomial time |E|O(ln |E|−ln ε). We show that one can
choose γ0 = 0.025 and, if ∆ is large enough, one can choose γ0 = 0.17.

The dependence of γ on k in (1.2.4) is likely to be optimal, or close to optimal.
Indeed, if we could have allowed, for example, γ = γ0/k

1−ε for some fixed ε > 0
in (1.2.3), we would have been able to approximate (1.2.3) efficiently with any
γ > 0, and hence compute the probability of selecting a perfect matching with
an arbitrary precision. The bootstrapping is accomplished as follows. Given a
hypergraph H = (V,E) and an integer m > 1, let us construct the hypergraph
Hm = (Vm, Em). We have |Vm| = m|V | and the vertices of Vm are the “clones” of
the vertices of V , so that each vertex of V has m clones in Vm. Each edge s ∈ E
corresponds to a unique edge s′ ∈ Em such that |s′| = m|s| and s′ consists of the
clones of each vertex in s. We assign the probabilities ps′ = ps. Thus if H is a
k-uniform hypergraph then Hm is km-uniform, and if H is ∆-regular then Hm is
also ∆-regular. On the other hand, for a collection C ⊂ E of edges of H and the
corresponding collection C ′ ⊂ Em, we have∑

v∈Vm

(
#(C ′, v)− 1

)2
= m

∑
v∈V

(
#(C, v)− 1

)2
.
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Hence if we could choose γ = γ0/k
1−ε in (1.2.3), by applying our algorithm to

the hypergraph Hm instead of H, we would have computed (1.2.3) for H with
γ = mεγ0/k

1−ε, and we could have achieved an arbitrarily large γ by choosing m
large enough.

The standard method of randomized rounding consists of choosing a random
collection C of edges from the probability distribution (1.2.2) in lieu of an “approx-
imate perfect matching”, see, for example, Chapter 5 of [MR95] and Section 4.7 of
[AS00]. For a collection C ⊂ V of edges, we define the penalty function

f(C) =
∑
v∈V

(
#(C, v)− 1

)2
,

which measures how far C is from a perfect matching. In Section 2.4 we show
that for any given 0 < ε < 1, one can compute (again, in quasi-polynomial time) a
particular collection C0 ⊂ E of edges such that

exp {−γf(C0)} ≥ (1− ε)E exp {−γf(C)} .

It follows that

P
{
C : f(C) ≤ f(C0)− ρ

}
≤ e−γρ

1− ε
for any ρ > 0.

For example, the probability that a random collection C outperforms C0 with
respect to f by δ|V | for some δ > 0 is exponentially small in δ|V |/k. We note
that for a fixed ∆ and k, the function f(C) is a random variable with expectation
and variance roughly linear in |V |. If we assume that f has a roughly Gaussian
tail, that is,

P
{
C : f(C) ≤ a− δ|V |

}
∼ e−κδ

2|V |

for the median a (roughly linear in |V |) sufficiently small (constant) δ > 0 and
κ > 0 (which is not unreasonable since f is a sum of weakly dependent random
variables), then with high probability f(C0) is smaller than f(C) by a linear in |V |
term.

(1.3) Example: matchings in hypergraphs. Let H = (V,E) be a k-uniform
∆-regular hypergraph as in Section 1.2. We are still interested in computing (1.2.3),
only this time we select each edge s ∈ E into C with a smaller probability

ps =
ω

∆
for all s ∈ E,

for some fixed 0 < ω < 1. This time the expected cardinality of C is ω|V |/k, so
typically C will not cover all vertices of H. We also note that once |C| is fixed, the
largest weight

exp

{
−γ

∑
v∈V

(#(C, v)− 1)
2

}
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is attained if C is a matching, that is, no two edges from C share a common vertex.
It turns out that we can choose γ = γ(ω) so that γ(ω) −→ +∞ as ω −→ 0 and
(1.2.3) can be approximated within relative error 0 < ε < 1 in quasi-polynomial
|E|O(ln |E|−ln ε) time. More precisely, in Section 2.5, we show that if ω > 0 is small
enough, we can choose

(1.3.1) γ =
1

k
ln

1

ω
.

While a matching exists trivially in any hypergraph, unless NP=RP, there is no
polynomial time approximation scheme for counting all matchings if k ≥ 3 [S+19].
Polynomial time approximation algorithms for k = 3 and ∆ = 3 are obtained in
[D+14] (randomized) and [S+19] (deterministic).

For k = 2, the problem of counting all matchings in a given graph is #P-hard
[Va79], while there exists a fully polynomial randomized approximation scheme
[JS89]. A deterministic polynomial time algorithm is known if the maximum degree
is fixed in advance [B+07], [PR17].

(1.4) Connections to the Ising model. Given a real symmetric n × n matrix
G = (gkj) with zero diagonal and a real vector (f1, . . . , fn), the partition function
in the general Ising model can be written as

(1.4.1)
∑

η1,... ,ηn=±1

exp

 ∑
1≤k<j≤n

gkjηkηj +
n∑
j=1

fjηj

 .

Here the values of ηj = ±1 are interpreted as spins of the j-th particle, the numbers
gkj describe the interaction of the k-th and j-th particle (if gkj > 0, the interaction
is ferromagnetic and if gkj < 0, the interaction is antiferromagnetic), and fj describe
the external field, see Chapter 3 of [FV18].

We can write the expectation (1.1.3) in the form (1.4.1) via the substitution

ξj =
ηj + 1

2
for j = 1, . . . , n.

Let

gkj = −1

2

m∑
i=1

γiαikαij for j 6= k and

fj =
1

2
ln

pj
1− pj

−
m∑
i=1

γiαij

(
−βi +

1

2

n∑
k=1

αik

)
.

(1.4.2)

Then (1.1.3) is equal to (1.4.1) multiplied by the constant factor n∏
j=1

pj(1− pj)

1/2

exp

−
m∑
i=1

γi

−βi +
1

2

n∑
j=1

αij

2

− 1

4

m∑
i=1

n∑
j=1

γiα
2
ij

 .
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In [BB21] we prove that for any 0 < δ < 1, fixed in advance, the value of (1.4.1) can
be approximated within relative error 0 < ε < 1 in quasi-polynomial nOδ(lnn−ln ε)

time provided

(1.4.3)
∑
j: j 6=k

|gjk| ≤ 1− δ for k = 1, . . . , n,

where the implicit constant in the “O” notation depends on δ only. Geometrically,
the condition (1.4.3) means that the Lipschitz constant of the quadratic form∑

1≤k<j≤n

gkjηkηj

on the Boolean cube {−1, 1}n endowed with the `1-metric does not exceed 1−δ (the
condition is essentially sharp, modulo NP 6= BPP hypothesis). To avoid dealing
with exponentially large numbers, we assume that the coefficients fj in (1.4.1) are
given as efj . Other than that, the complexity does not depend on fj .

The result of [BB21] and the connection (1.4.2) allows us to handle certain sparse
systems (1.1.1). Namely, let us fix integers ri ≥ 1 for i = 1, . . . ,m, integer c ≥ 1
and suppose that the matrix A = (αij) contains at most ri non-zero entries in the
i-th row and at most c non-zero entries in each column, while all entries satisfy the
inequalities

|αij | ≤ 1 for all i, j.

Let us choose

γi =
1

cri
for i = 1, . . . ,m.

Then for the coefficients gkj defined by (1.4.2) we have

∑
k: k 6=j

|gjk| =
1

2

m∑
i=1

|αij |
c

 1

ri

∑
k: k 6=j

|αik|

 ≤ 1

2c

m∑
i=1

|αij | ≤
1

2

and hence (1.4.3) is satisfied with δ = 0.5. Consequently, the expectation (1.1.3)
can be approximated in quasi-polynomial time mO(1)nO(lnn−ln ε) within any given
relative error 0 < ε < 1.

We note that the system of equations (1.2.1) for perfect matchings in a k-uniform
hypergraph is not sparse in the above sense when k is fixed but ∆ is allowed to
grow, and the bounds of Section 1.2 do not follow from [BB21].

Given an n × n symmetric matrix G = (gkj) with zero diagonal, let λ = λG be
the largest eigenvalue of G. Then the matrix G− λI is negative semidefinite, and
hence we can represent G in the form (1.4.2), for some n × n matrix A = (αij),
where we choose m = n and γi = 1 for all i. Our results of Section 2 can be
interpreted as saying that the partition function (1.4.1) in the Ising model with an
arbitrary matrix G of interactions can be efficiently approximated, provided the
external field is sufficiently strong, that is, if the values of |fj | are sufficiently large.
We say more about the connection in Section 2.6, and also relate it to the Lee -
Yang phase transition.
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(1.5) The maximum entropy distribution. Given the system (1.1.1), let Q ⊂
Rn be the polytope

Q =

{
(x1, . . . , xn) :

n∑
j=1

αijxj = βi for i = 1, . . . ,m and

0 ≤ xj ≤ 1 for j = 1, . . . , n

}
.

We define the entropy function

H(x) =

n∑
j=1

xj ln
1

xj
+ (1− xj) ln

1

1− xj
where x = (x1, . . . , xn)

and 0 ≤ xj ≤ 1 for j = 1, . . . , n, with the standard agreement that at xj = 0 or
xj = 1 the corresponding terms are 0.

Suppose that the polytope Q has a non-empty relative interior, that is, contains
a point x = (x1, . . . , xn) where 0 < xj < 1 for j = 1, . . . , n.

One reasonable choice for the probabilities pj in (1.1.2) is the maximum entropy
distribution obtained as the solution p = x to the optimization problem:

(1.5.1) maximize H(x) subject to x ∈ Q.

This is a convex optimization problem, for which efficient algorithms are available
[NN94]. LetX = (ξ1, . . . , ξn) be a vector of independent Bernoulli random variables
defined by (1.1.2), where p = (p1, . . . , pn) is the optimal solution in (1.5.1). Then
EX ∈ Q. Moreover, for every point x ∈ {0, 1}n ∩Q, we have

P (X = x) = e−H(p)

and hence we get a bound on the number of 0-1 points in Q:

|{0, 1}n ∩Q| = eH(p)P (X ∈ Q) ≤ eH(p),

see [BH10] for details. This bound turns out to be of interest in some situations,
see, for example, [PP20].

In this case, our “smoothed counting” provides an improvement

|{0, 1}n ∩Q| ≤ eH(p)E exp

−
m∑
i=1

γi

−βi +
n∑
j=1

αijξj

2
 ,

by frequently an exponential in m factor. For example, the distribution (1.2.2) for
k-uniform ∆-regular hypergraphs is clearly the maximum entropy distribution, and
for fixed k and ∆ we get an eΩ(|V |) factor improvement, compared to the maximum
entropy bound.
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2. Methods and results

(2.1) The interpolation method. Given an m× n matrix A = (αij), m-vector
b = (βi) and weights γi as in Section 1.1, we consider the polynomial

(2.1.1) PA,b,γ(z) =
∑

ξ1,... ,ξn∈{0,1}

zξ11 . . . zξnn exp

−
m∑
i=1

γi

−βi +

n∑
j=1

αijξj

2


in n complex variables z = (z1, . . . , zn), where we agree that z0
j = 1. Hence the

expected value (1.1.3) is written as

(2.1.2)

 n∏
j=1

(1− pj)

PA,b,γ

(
p1

1− p1
, . . . ,

pn
1− pn

)
.

To compute the value of PA,b,γ at a particular point (x1, . . . , xn) we use the in-
terpolation method, see [Ba16] and [PR17] as general references, as well as recent
[Ga20] and [C+21] for connections with other computational approaches, correla-
tion decay and Markov Chain Monte Carlo. For the interpolation method to work,
one should show that that

PA,b,γ (zx1, . . . , zxn) 6= 0

for all z in some connected open set U ⊂ C containing points 0 and 1. We establish
a sufficient condition for

PA,b,γ(z) 6= 0

for all z = (z1, . . . , zn) in a polydisc

|zj | < ρj for j = 1, . . . , n.

We prove the following main result.

(2.2) Theorem. Suppose that the number of non-zero entries in each column of
the matrix A = (αij) does not exceed c for some integer c ≥ 1. Given real numbers
ρj > 0 for j = 1, . . . , n, we define

λj = ρj exp

{
m∑
i=1

γiβiαij

}
for j = 1, . . . , n.

Suppose that
λj < 1 for j = 1, . . . , n

and that
√
γi

n∑
j=1

λj
1− λj

|αij | ≤
1

2
√
c

for i = 1, . . . ,m.
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Then
PA,b,γ (z) 6= 0

as long as
|zj | < ρj for j = 1, . . . , n.

Using Theorem 2.2, we obtain an algorithm.

(2.3) Computing PA,b,γ. Let us fix a 0 < δ < 1 and let ρ1, . . . , ρn be as in
Theorem 2.2. Then for any given x1, . . . , xn such that

|xj | ≤ (1− δ)ρj for j = 1, . . . , n

and any 0 < ε < 1, the value of

PA,b,γ (x1, . . . , xn)

can be approximated within relative error ε in nOδ(lnn−ln ε) time, where the implicit
constant in the “O” notation depends on δ only. For that, we define a univariate
polynomial

g(z) = PA,b,γ (zx1, . . . , zxn) for z ∈ C.

Thus deg g = n, we need to approximate g(1) and by Theorem 2.2 we have

g(z) 6= 0 provided |z| < 1

1− δ
.

As discussed in [Ba16], Section 2.2, under these conditions, one can approximate
in g(1) within relative error ε in O(n2) time from the values of the derivatives

g(k)(0) for k ≤ Oδ(lnn− ln ε),

where we agree that g(0) = g. From (2.1.1), we have

g(0) = exp

{
−

m∑
i=1

γiβ
2
i

}

while

g(k)(0) = k!
∑

ξ1,... ,ξn∈{0,1}
ξ1+...+ξn=k

exp

−
m∑
i=1

γi

−βi +
n∑
j=1

αijξj

2
 .

The direct enumeration of all 0-1 vectors (ξ1, . . . , ξn) with ξ1 + . . .+ ξn = k takes
nO(k) time and since k = Oδ(lnn − ln ε), we get the nOδ(lnn−ln ε) complexity of
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approximating g(1). Here we assume that for any given ξ1, . . . , ξn ∈ {0, 1}, the
computation of the expression

exp

−
m∑
i=1

γi

−βi +
n∑
j=1

αijξj

2


takes unit time. In the bit model of computation, the complexity of the algorithm
acquires an additional factor ofmn+

∑
i,j

|γiαij |+
∑
i

|γiβi|

O(1)

.

We now revisit examples of Sections 1.2–1.4 to see how Theorem 2.2 applies
there.

(2.4) Example: perfect matchings in hypergraphs. As in Section 1.2, let
H = (V,E) be a k-uniform ∆-regular hypergraph with ∆ ≥ 3. Let A = (αvs) be
the |V | × |E| matrix of the system (1.2.1). Hence αvs ∈ {0, 1}, every row of A
contains ∆ non-zero entries and every column of A contains k non-zero entries, and
all non-zero entries are necessarily 1’s. Let b = (βv) be the vector of the right hand
sides of (1.2.1). Hence βv = 1 for all v. As in Section 1.2, we intend to choose
γv = γ for some γ > 0 and all v ∈ V .

Choosing the probabilities ps as in (1.2.2), in view of (2.1.2), we need to compute

(2.4.1) PA,b,γ

(
1

∆− 1
, . . . ,

1

∆− 1

)
.

We choose some 0 < δ < 1, to be adjusted later, such that for

ρs = ρ =
1

(1− δ)(∆− 1)
we have ρ < 1

(recall that ∆ ≥ 3). Our goal is to choose γ > 0, the larger the better, such that

PA,b,γ (zs : s ∈ E) 6= 0

provided
|zs| < ρ for all s ∈ E.

Then we can approximate (2.4.1) by interpolation in quasi-polynomial time, as
discussed in Section 2.2.

We use Theorem 2.2. We need to choose γ > 0 so that for λs = λ we have

λ = ρeγk < 1 and
√
γ∆

λ

1− λ
≤ 1

2
√
k
,
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that is,

λ =
eγk

(1− δ)(∆− 1)
< 1 and

λ

1− λ
≤ 1

2∆
√
γk
.

From the second inequality, we get

λ ≤ 1

1 + 2∆
√
γk

< 1

and hence

(2.4.2) eγk ≤ (1− δ)(∆− 1)

1 + 2∆
√
γk

.

The right hand side of (2.4.2) is an increasing function of ∆, so to find γ = γ(k)
satisfying (2.4.2) for all ∆ ≥ 3, it suffices to find such γ satisfying (2.4.2) for ∆ = 3.
Numerical computations show that if we choose a sufficiently small δ > 0, we can
choose

γ =
0.025

k
.

If ∆ is large enough, we can choose

γ =
0.17

k
.

It turns out that we can compute a particular collection C0 such that

exp

{
−γ

∑
v∈V

(#(C0, v)− 1)
2

}
≥ (1− ε)E exp

{
−γ

∑
v∈V

(#(C0, v)− 1)
2

}

also in quasi-polynomial time |E|O(ln |E|−ln ε). This reduces to computing a se-
quence of expressions similar to (1.1.3) by the standard application of the method
of conditional expectations, see, for example, Chapter 5 of [MR95]. Indeed, the
algorithm allows us to compute the conditional expectation, defined by any set of
constraints of the type ξj = 0 or ξj = 1. Imposing a condition of this type reduces
the computation of (1.1.3) to a similar problem, only with fewer variables and pos-
sibly different right hand sides βi. We note that since the coefficients of the system
(1.2.1) are non-negative, when we condition on ξs = 0 or ξs = 1 for a particular
edge s, we replace the system with a similar system where the right hand sides
βv can only get smaller. Theorem 2.2 then allows us to keep the same value of γ.
Successively testing for s ∈ E the conditions ξs = 0 or ξs = 1, and choosing each
time the one with the larger conditional expectation (which we compute within
relative error ε/|E|2), we compute the desired collection C0, while increasing the
complexity roughly by a factor of |E|.
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(2.5) Example: matchings in hypergraph. Here we revisit the example of
Section 1.3. This time, we need to compute

PA,b,γ

(
ω

∆− ω
, . . . ,

ω

∆− ω

)
where 0 < ω < 1.

Consequently, it suffices to show that

PA,b,γ (zs : s ∈ E) 6= 0 whenever |zs| < ρ =
ω

(1− δ) (∆− 1)
for all s ∈ E

and some fixed 0 < δ < 1. Using Theorem 2.2, we conclude that we need to choose
γ > 0 so that

λ =
ωeγk

(1− δ)(∆− 1)
< 1 and

λ

1− λ
<

1

2∆
√
γk
.

It is now clear that if 0 < ω < 1 is small enough, we can choose γ defined by (1.3.1).

(2.6) Connections to the Ising model. Here we revisit the connection of Sec-
tion 1.4. Let G = (gkj) be an n × n real symmetric matrix with zero diagonal,
which we interpret as the matrix of interactions in the Ising model, cf. (1.4.1).
Let λ = λG be the largest eigenvalue of G. Then the matrix G − λI is negative
semidefinite, and hence we can write the entries gkj in the form (1.4.2) for some
n× n matrix A = (αij) and γi = 1 for all i.

Suppose that the number of non-zero entries in each column of A does not exceed
some c ≥ 1. For j = 1, . . . , n, let us choose 0 < ρj < 1 such that

n∑
j=1

ρj
1− ρj

|αij | ≤
1

2
√
c

for i = 1, . . . , n.

Then by Theorem 2.2, we have

∑
ξ1,... ,ξn∈{0,1}

zξ11 · · · zξnn exp

−
n∑
i=1

 n∑
j=1

αijξj

2
 6= 0

as long as z1, . . . , zn are complex numbers such that

|zj | < ρj for j = 1, . . . , n.

Using (1.4.2), we conclude that

∑
η1,... ,ηn=±1

exp

 ∑
1≤k<j≤n

gjkηkηj +

n∑
j=1

fjηj

 6= 0,

12



where f1, . . . , fn are complex numbers with sufficiently small real parts:

< fj <
1

2
ln ρj −

1

2

n∑
i=1

αij

(
n∑
k=1

αik

)

=
1

2
ln ρj +

n∑
k=1

gkj .

This can be interpreted as that there is no phase transition in the Lee - Yang
sense, see Section 3.7 of [FV18], provided the external field is strong enough. For
comparison, the classical result of Lee and Yang [LY52] establishes that in the
ferromagnetic Ising model (that is, when gkj ≥ 0 for all k and j), there is no phase
transition as long as the external field is non-zero.

We prove Theorem 2.2 in Section 3. In Section 4, we make some concluding
remarks regarding smoothed counting of integer points.

3. Proof of Theorem 2.2

We start with establishing a zero-free region in what may be considered as a
Fourier dual functional. The proof of Proposition 3.1 below is somewhat similar to
the proof of Theorem 1.1 in [BR19]. In what follows, we denote the imaginary unit
by
√
−1, so as to use i for indices.

(3.1) Proposition. For i = 1, . . . ,m and j = 1, . . . , n let αij be real numbers and
let zj be complex numbers. Suppose that

|zj | ≤ λj for j = 1, . . . , n

and some 0 < λj < 1 and that

|i : αij 6= 0| ≤ c for j = 1, . . . , n

and some integer c ≥ 1, so that the m×n matrix A = (αij) has at most c non-zero
entries in each column.

If
n∑
j=1

λj |αij |
1− λj

≤ 1

2
√
c

for i = 1, . . . ,m

Then ∑
σ1,... ,σm=±1

n∏
j=1

(
1 + zj exp

{
√
−1

m∑
i=1

αijσi

})
6= 0.

Before we embark on the proof of Proposition 3.1, we do some preparations.
13



(3.2) Preliminaries. Let {−1, 1}m be the discrete cube of all m-vectors x =
(σ1, . . . , σm), where σi = ±1 for i = 1, . . . ,m. Let I ⊂ {1, . . . ,m} be a set of
indices and let us fix some εi ∈ {−1, 1} for all i ∈ I. The set

F =
{

(σ1, . . . , σm) ∈ {−1, 1}m : σi = εi for i ∈ I
}

is called a face of the cube. The indices i ∈ I are fixed indices of F and indices
i ∈ {1, . . . ,m}\ I are its free indices. We define the dimension by dimF = m−|I|,
the cardinality of the set of free indices. Thus a face of dimension k consists of 2k

points. The cube itself is a face of dimension m, while every vertex x is a face of
dimension 0.

For a function f : {−1, 1}m −→ C and a face F ⊂ {−1, 1}m, we define

S(f ;F ) =
∑
x∈F

f(x).

Suppose that i is a free index of F and let F+ ⊂ F and F− ⊂ F be the faces of F
defined by the constraint σi = 1 and σi = −1 respectively. Then

S(f ;F ) = S(f ;F+) + S(f ;F−).

Furthermore, if S(f ;F+) 6= 0 and S(f ;F−) 6= 0 and if the angle between non-zero
complex numbers S(f ;F+) and S(f ;F−), considered as vectors in R2 = C, does
not exceed θ for some 0 ≤ θ < π, we have

(3.2.1) |S(f ;F )| ≥
(

cos
θ

2

)(∣∣S(f ;F+)
∣∣+
∣∣S(f ;F−)

∣∣) ,
cf. Lemma 3.6.3 of [Ba16]. The inequality (3.2.1) is easily obtained by bounding
the length of S(f ;F ) from below by the length of its orthogonal projection onto
the bisector of the angle between S(f ;F+) and S(f ;F−).

More generally, suppose that for every face G ⊆ F , every free index i of G and
the corresponding faces G+ and G− of G, we have that S(f ;G+) 6= 0, S(f ;G−) 6= 0
and the angle between the two non-zero complex numbers does not exceed θ. Let
I ⊂ {1, . . . ,m} be a set of some free indices of F . For for an assignment s : I −→
{−1, 1} of signs, let F s be the face of F obtained by fixing the coordinates σi with
i ∈ I to s(i). Then

S(f ;F ) =
∑

s: I−→{−1,1}

S(f ;F s)

and iterating (3.2.1) we obtain

(3.2.2) |S(f ;F )| ≥
(

cos
θ

2

)|I| ∑
s: I−→{−1,1}

|S(f ;F s)| .

14



Finally, we will use the inequality

(3.2.3)

(
cos

ψ√
c

)c
≥ cosψ for 0 ≤ ψ ≤ π

2
and c ≥ 1,

which can be obtained as follows. Since tanψ is a convex function on the interval
(0, π/2), we have

√
c tan

ψ√
c
≤ tanψ

on the interval. Integrating, we obtain

−c ln cos
ψ√
c
≤ − ln cosψ for 0 ≤ ψ < π/2,

which is equivalent to (3.2.3).

(3.3) Proof of Proposition 3.1. For a given complex vector z = (z1, . . . , zn), sat-
isfying the conditions of the theorem, we consider the function `(·; z) : {−1, 1}m −→
C defined by

`(x; z) =
n∏
j=1

(
1 + zj exp

{
√
−1

m∑
i=1

αijσi

})

for x = (σ1, . . . , σm). To simplify the notation somewhat, for a face F ⊂ {−1, 1}n,
we denote S

(
`(·; z);F

)
just by S

(
`(z);F

)
.

We prove by induction on d = 0, 1, . . . ,m the following statement.

(3.3.1) Let F ⊂ {−1, 1}m be a face of dimension d. Then S
(
`(z);F

)
6= 0. Moreover,

if dimF > 0 and if i is a free index of F then for the faces F+, F− ⊂ F the angle
between complex numbers S

(
`(z);F+

)
6= 0 and S

(
`(z);F−

)
6= 0, considered as

vectors in R2 = C, does not exceed

θ =
2π

3
√
c
.

We obtain the desired result when F = {−1, 1}m is the whole cube.

Since |zj | < 1 for j = 1, . . . , n, the statement (3.3.1) holds if dimF = 0, and
hence F is a vertex of the cube.

Suppose now that (3.3.1) holds for all faces of dimension d and lower. Let G ⊂
{−1, 1}m be a face of dimension d. Since by the induction hypothesis S

(
`(z);G

)
6= 0

on the polydisc of vectors z = (z1, . . . , zn) ∈ Cn, satisfying

(3.3.2) |zj | ≤ λj for j = 1, . . . , n,
15



we can choose a branch of the function

z 7−→ lnS
(
`(z);G

)
.

For j = 1, . . . , n, let us introduce a function hj(·; z) : {−1, 1}m −→ C defined by

hj(x; z) =
exp

{√
−1
∑m
i=1 αijσi

}
1 + zj exp

{√
−1
∑m
i=1 αijσi

}
for x = (σ1, . . . , σm). Hence we have

(3.3.3) |hj(x; z)| ≤ 1

1− λj
for all x ∈ {−1, 1}m

and

∂

∂zj
`(x; z) = exp

{
√
−1

m∑
i=1

αijσi

} ∏
k: k 6=j

(
1 + zk exp

{
√
−1

m∑
i=1

αikσi

})
= hj(x; z)`(x; z).

Therefore,

∂

∂zj
lnS

(
`(z);G

)
=

∂
∂zj
S
(
`(z);G)

S
(
`(z);G

) =
S
(

∂
∂zj

`(z);G
)

S(`(z);G)
=
S(`(z)hj(z);G)

S(`(z);G)
,

where we use S(`(z)hj(z);G) as a shorthand for S
(
`(·; z)hj(·; z);G

)
. Our goal is

to bound

(3.3.4)

∣∣∣∣ ∂∂zj lnS
(
`(z);G

)∣∣∣∣ =

∣∣∣∣S(`(z)hj(z);G)

S(`(z);G)

∣∣∣∣ ,
which will allow us to bound the angle by which S

(
`(z);G

)
rotates as z changes

inside the polydisc (3.3.2).
If d = 0 then by (3.3.3), we have∣∣∣∣ ∂∂zj lnS

(
`(z);G

)∣∣∣∣ ≤ 1

1− λj
.

For an index j = 1, . . . , n, let

Ij =
{
i : αij 6= 0 and i is free in G

}
.
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Hence |Ij | ≤ c. Suppose first that Ij 6= ∅. For an assignment s : Ij −→ {−1, 1} of
signs, let Gs be the face of G obtained by fixing σi = s(i) for all i ∈ Ij . Applying
the induction hypothesis to G and its faces, by (3.2.2) we get

∣∣S(`(z);G
)∣∣ ≥ (

cos
θ

2

)|Ij | ∑
s: Ij−→{−1,1}

∣∣S(`(z);Gs
)∣∣ .

On the other hand, the function hj(z) is constant on every face Gs, and hence from
(3.3.3), we obtain∣∣S(`(z)hj(z);G

)∣∣ ≤ ∑
s: Ij−→{−1,1}

∣∣S(`(z)hj(z);Gs
)∣∣

≤ 1

1− λj

∑
s: Ij−→{−1,1}

∣∣S(`(z);Gs
)∣∣ .

Therefore, by (3.3.4), we obtain the bound

(3.3.5)

∣∣∣∣ ∂∂zj lnS
(
`(z);G

)∣∣∣∣ ≤ 1

(1− λj) cos|Ij |(θ/2)
≤ 1

(1− λj) cosc(θ/2)
.

If Ij = ∅ then hj(z) is constant on G and from (3.3.3) and (3.3.4) we get∣∣∣∣ ∂∂zj lnS
(
`(z);G

)∣∣∣∣ ≤ 1

1− λj
,

so (3.3.5) holds as well.
Now we are ready to complete the induction step. Let F be a face of dimension

d + 1 > 0. Let i be a free index of F and let F+, F− ⊂ F be the faces obtained
by fixing σi = 1 and σi = −1 respectively. Then dimF+ = dimF− = d and by
the induction hypothesis, we have S

(
`(z);F+

)
6= 0 and S

(
`(z);F−

)
6= 0. We need

to prove that the angle between S
(
`(z);F+

)
6= 0 and S

(
`(z);F−

)
6= 0 does not

exceed θ. To this end, we note that

S
(
`(z);F+

)
= S

(
`(ẑ);F−

)
where ẑj = e2

√
−1αijzj for j = 1, . . . , n.

Applying (3.3.5) with G = F−, we conclude that the angle between S
(
`(z);F+

)
6= 0

and S
(
`(z);F−

)
6= 0 does not exceed

n∑
j=1

|zj − ẑj |
(1− λj) cosc(θ/2)

≤ 2

cosc(θ/2)

n∑
j=1

λj |αij |
1− λj

.
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Using (3.2.3), we obtain

cosc
(
θ

2

)
= cosc

π

3
√
c
≥ cos

π

3
=

1

2
,

and hence the angle between S
(
`(z);F+

)
6= 0 and S

(
`(z);F−

)
6= 0 does not exceed

4
n∑
j=1

λ|αij |
1− λj

≤ 2√
c
<

2π

3
√
c

= θ,

which completes the proof. �
The following corollary can be considered as a Fourier dual statement to Propo-

sition 3.1.

(3.4) Corollary. For i = 1, . . . ,m and j = 1, . . . , n, let 0 < λj < 1 and αij be
real numbers and let zj be complex numbers. Suppose that

|i : αij 6= 0| ≤ c for j = 1, . . . , n

and some integer c ≥ 1 and that

n∑
j=1

λj |αij |
1− λj

≤ 1

2
√
c

for i = 1, . . . ,m.

Then ∑
ξ1,... ,ξn∈{0,1}

zξ11 · · · zξnn
m∏
i=1

cos

 n∑
j=1

αijξj

 6= 0

provided
|zj | ≤ λj for j = 1, . . . , n.

Proof. We have

m∏
i=1

cos

 n∑
j=1

αijξj


= 2−m

m∏
i=1

exp

√−1
n∑
j=1

αijξj

+ exp

−√−1
n∑
j=1

αijξj




= 2−m
∑

σ1... ,σm=±1

exp

√−1

n∑
j=1

m∑
i=1

αijσiξj

 .
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Consequently,

2m
∑

ξ1,... ,ξn∈{0,1}

zξ11 · · · zξnn
m∏
i=1

cos

 n∑
j=1

αijξj


=

∑
σ1... ,σm=±1

∑
ξ1,... ,ξn∈{0,1}

zξ11 · · · zξnn exp

√−1
n∑
j=1

m∑
i=1

αijσiξj


=

∑
σ1... ,σm=±1

n∏
j=1

(
1 + zj exp

{
√
−1

m∑
i=1

αijσi

})
6= 0

by Proposition 3.1. �

Next, we take a limit in Corollary 3.4

(3.5) Corollary. For i = 1, . . . ,m and j = 1, . . . , n, let 0 < λj < 1 and αij be
real numbers and let zj be complex numbers. Suppose that

|i : αij 6= 0| ≤ c for j = 1, . . . , n

and some integer c ≥ 1 and that

n∑
j=1

λj |αij |
1− λj

≤ 1

2
√
c

for i = 1, . . . ,m.

Then ∑
ξ1,... ,ξn∈{0,1}

zξ11 · · · zξnn exp

−1

2

m∑
i=1

 n∑
j=1

αijξj

2
 6= 0

provided
|zj | < λj for j = 1, . . . , n.

Proof. Let A = (αij) be the m × n matrix. For an integer k > 1, we define the

(km) × n matrix A(k) =
(
α

(k)
ij

)
as follows. First, we divide each row of A by

√
k

and then copy the resulting row k times. Thus every column of A(k) contains at
most ck non-zero entries∣∣∣i : α

(k)
ij 6= 0

∣∣∣ ≤ ck for j = 1, . . . , n

and we have
n∑
j=1

λj

∣∣∣α(k)
ij

∣∣∣
1− λj

≤ 1

2
√
ck

for i = 1, . . . , km.
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Applying Corollary 3.4, we conclude that

∑
ξ1,... ,ξn∈{0,1}

zξ11 · · · zξnn
m∏
i=1

cosk

 1√
k

n∑
j=1

αijξj

 6= 0

provided
|zj | < λj for j = 1, . . . , n.

Since

lim
k−→∞

cosk

 1√
k

n∑
j=1

αijξj

 = exp

−1

2

 n∑
j=1

αijξj

2
 ,

By Hurwitz’ Theorem, see, for example, Chapter 7 of [Kr01], the polynomial

p (z1, . . . , zn) =
∑

ξ1,... ,ξn∈{0,1}

zξ11 · · · zξnn exp

−1

2

m∑
i=1

 n∑
j=1

αijξj

2


either has no zeros in the domain

(3.5.1) |zj | < λj for j = 1, . . . , n

or is identically zero there. Since

p (0, . . . , 0) = 1 6= 0,

we conclude that p (z1, . . . , zn) 6= 0 in the domain (3.5.1). �

Next, we deal with non-homogeneous equations.

(3.6) Corollary. For i = 1, . . . ,m and j = 1, . . . , n, let 0 < λj < 1, βi and αij
be real numbers and let zj be complex numbers. Suppose that

|i : αij 6= 0| ≤ c for j = 1, . . . , n

and some integer c ≥ 1 and that

n∑
j=1

λj |αij |
1− λj

≤ 1

2
√
c

for i = 1, . . . ,m.

Then ∑
ξ1,... ,ξn∈{0,1}

zξ11 · · · zξnn exp

−1

2

m∑
i=1

−βi +
n∑
j=1

αijξj

2
 6= 0
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provided

|zj | < λj exp

{
−

m∑
i=1

βiαij

}
for j = 1, . . . , n.

Proof. We have−βi +
n∑
j=1

αijξj

2

= β2
i − 2

n∑
j=1

αijβiξj +

 n∑
j=1

αijξj

2

.

Denoting

wj = zj exp

{
m∑
i=1

αijβi

}
for j = 1, . . . , n,

we write

∑
ξ1,... ,ξn∈{0,1}

zξ11 · · · zξnn exp

−1

2

m∑
i=1

−βi +
n∑
j=1

αijξj

2


= exp

{
−1

2

m∑
i=1

β2
i

} ∑
ξ1,... ,ξn∈{0,1}

wξ11 · · ·wξnn exp

−1

2

 n∑
j=1

αijξj

2


and the result follows by Corollary 3.5. �

Now the proof of Theorem 2.2 is obtained by rescaling.

(3.7) Proof of Theorem 2.2. For i = 1, . . . ,m and j = 1, . . . , n, we define

β′i =
√
γiβ
′
i and α′ij =

√
γiαij .

Applying Corollary 3.6 to α′ij and β′i, we conclude that

∑
ξ1,... ,ξn∈{0,1}

zξ11 · · · zξnn exp

−1

2

m∑
i=1

γi

−βi +
n∑
j=1

αijξj

2
 6= 0

provided

|zj | < λj exp

{
−

m∑
i=1

γiβiαij

}
= ρj

and
√
γi

n∑
j=1

λj |αij |
1− λj

≤ 1

2
√
c

for i = 1, . . . ,m.

�
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4. Concluding remarks

(4.1) Smoothed counting of integer points. Let A = (aij) be an m×n matrix,
let b = (β1, . . . , βm) be an m-vector and let γ = (γ1, . . . , γm) be an m-vector of
positive real weights. For a complex n-vector z = (z1, . . . , zn) we introduce a series

(4.1.1) P̃A,b,γ(z) =
∑

ξ1,... ,ξn∈Z+

zξ11 · · · zξnn exp

−
m∑
i=1

γi

−βi +
n∑
j=1

αijξj

2


Here the external sum is taken over all n-tuples of non-negative integers. Clearly,
(4.1.1) converges absolutely and uniformly on compact subsets of the open polydisc

|zj | < 1 for j = 1, . . . , n,

although unlike (2.1.1), the function P̃A,b,γ is not a polynomial. If we interpret
ξ1, . . . , ξn as independent geometric random variables such that

P (ξj = k) = (1− pj)pkj for k = 0, 1, . . . ,

where 0 < pj < 1 for k = 1, . . . , n, we get

E exp

−
m∑
i=1

γi

−βi +
n∑
j=1

αijξj

2
 = P̃A,b,γ (p1, . . . , pn)

n∏
j=1

(1− pj).

By more or less straightforward modification of the proof of Theorem 2.2, one can
prove that P̃A,b,γ(z) 6= 0 if the conditions of Theorem 2.2 are satisfied. The proof
almost repeats that of Section 3, only that in Proposition 3.1 we deal with the sum

∑
σ1,... ,σm=±1

n∏
j=1

(
1− zj exp

{
−

m∑
i=1

αijσi

})−1

and the functions `(x; z) and hj(x; z) are replaced respectively by

˜̀(x; z) =

n∏
j=1

(
1− zj exp

{
√
−1

m∑
i=1

αijσi

})−1

and

h̃j(x; z) =
exp

{√
−1
∑m
i=1 αijσi

}
1− zj exp

{√
−1
∑m
i=1 αijσi

} .
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