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Abstract. Let f : Rn −→ R be a positive definite quadratic form and let y ∈ Rn be

a point. We present a fully polynomial randomized approximation scheme (FPRAS)

for computing
∑

x∈Zn e−f(x), provided the eigenvalues of f lie in the interval roughly

between s and es and for computing
∑

x∈Zn e−f(x−y), provided the eigenvalues of

f lie in the interval roughly between e−s and s−1 for some s ≥ 3. To compute the

first sum, we represent it as the integral of an explicit log-concave function on Rn,

and to compute the second sum, we use the reciprocity relation for theta functions.
We then apply our results to test the existence of many short integer vectors in a

given subspace L ⊂ Rn, to estimate the distance from a given point to a lattice, and

to sample a random lattice point from the discrete Gaussian distribution.

1. Introduction

(1.1) The theta function. Let f : Rn −→ R+ be a positive definite quadratic
form, so

f(x) = 〈Bx, x〉 for x ∈ Rn,

where B is an n×n positive definite matrix and 〈·, ·〉 is the standard scalar product
in Rn. We consider the problem of efficient computing (approximating) the sum

(1.1.1) Θ(B) =
∑
x∈Zn

e−f(x) =
∑
x∈Zn

e−〈Bx,x〉,

where Zn ⊂ Rn is the standard integer lattice. More generally, for a given point
y ∈ Rn, we want to efficiently compute (approximate) the sum

(1.1.2) Θ(B, y) =
∑
x∈Zn

e−f(x−y) =
∑
x∈Zn

e−〈B(x−y),x−y〉.
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Together with (1.1.1) and (1.1.2), we also compute the sum

(1.1.3)
∑
x∈Zn

exp {−〈Bx, x〉+ i〈b, x〉} ,

where b ∈ Rn and i2 = −1.
Of course, the sums (1.1.1) – (1.1.3) are examples of the (multivariate) theta func-

tion, an immensely popular object, see, for example, [M07a], [M07b] and [M07c].
Theta functions satisfy the reciprocity relation∑

x∈Zn
exp {−π〈B(x− y), x− y〉}

=
1√

detB

∑
x∈Zn

exp
{
−π〈B−1x, x〉+ 2πi〈x, y〉

}
,

(1.1.4)

see, for example, [BL61].
One motivation to study (1.1.1)–(1.1.3) from the computational point of view

comes from connections with algorithmic problems on lattices, such as approximat-
ing the length of a shortest non-zero vector in the lattice and estimating the distance
from a given point to a given lattice, see [Sc87], [G+93], [Ba93], [Aj96], [A+01],
[MG02], [D+03], [AR05], [Kh05], [MR07], [A+15], [M+21], as well as lattice-based
cryptography, see [MG02], [MR07], [G+08], [MR09], [Pe10].

(1.2) Lattices. A lattice Λ ⊂ Rn is a discrete additive subgroup which spans
Rn. Equivalently, Λ is the set of all integer linear combinations of some linearly
independent vectors u1, . . . , un, called a basis of Λ,

Λ =

{
n∑
i=1

ξiui : ξi ∈ Z for i = 1, . . . , n

}
.

We say that rank Λ = n.
For n > 1, the same lattice Λ has many different bases, and some of those

bases are more convenient to work with than others, see, for example, [G+93] and
[MG02]. Given a vector u ∈ Λ, u = ξ1u1 + . . .+ ξnun, we have

‖u‖2 = 〈Bx, x〉 where x = (ξ1, . . . , ξn)

and B is the Gram matrix of the vectors u1, . . . , un, so that

B = (βij) where βij = 〈ui, uj〉.

Similarly, if v ∈ Rn is an arbitrary point, v = η1u1 + . . .+ ηnun, then

‖u− v‖2 = 〈B(x− y), x− y〉 for y = (η1, . . . , ηn) .
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Consequently, the theta functions (1.1.1) and (1.1.2) are written as

(1.2.1) Θ(B) =
∑
u∈Λ

e−‖u‖
2

and Θ(B, y) =
∑
u∈Λ

e−‖u−v‖
2

.

We see from (1.2.1) that the theta functions do not depend on the choice of a basis
of the lattice: choosing a different basis corresponds to replacing the Gram matrix
B with a Gram matrix of the form ATBA, where A ∈ GL(n,Z) is an integer matrix
such that detA = ±1. It follows that the value of detB does not depend on the
choice of a basis. The number

√
detB is called the determinant of Λ and denoted

det Λ, see, for example, Chapter I of [Ca97].
The following two optimization problems have attracted a lot of attention due

to their importance for optimization and cryptography. One is finding (or approx-
imating) the minimum length of a non-zero vector from a given lattice,

λ(Λ) = min
u∈Λ\{0}

‖u‖

and the other is finding (or approximating) the distance from a given point v ∈ Rn
to a given lattice,

dist(v,Λ) = min
u∈Λ
‖u− v‖,

see [Sc87], [G+93], [Ba93], [Aj96], [A+01], [MG02], [D+03], [AR05], [Kh05], [A+15].
We assume that Λ is defined by its basis. In a breakthrough paper [Ba93], Ba-
naszczyk used theta functions to obtain structural results (known as “transference
theorems”) for λ(Λ) and a host of related quantities (successive minima, covering
radius, etc.) Using results of [Ba93], Aharonov and Regev [AR05] showed that the
problems of approximating λ(Λ) and dist(v,Λ) within a factor O(

√
n) lie in NP ∩

co-NP. This is in contrast to the fact that the existing polynomial time algorithms
are guaranteed to approximate the desired quantities roughly within a 2O(n) factor,

more precisely within a factor of 2O(n(log logn)2/ logn) in deterministic polynomial
time [Sc87] and within a factor 2O(n log logn/ logn) in randomized polynomial time
[A+01]. Computing λ(Λ) exactly is NP-hard, and approximating λ(Λ) within a

factor of 2(logn)
1
2
−ε

is hard modulo some plausible computational complexity as-
sumptions [Kh05], while approximating dist(v,Λ) within a factor of nc/ log logn is
NP-hard for some absolute constant c > 0 [D+03].

Given a lattice Λ ⊂ Rn and a point v ∈ Rn, one can define a probability measure
on Λ, called the discrete Gaussian distribution, where the probability of u ∈ Λ is

proportional to e−‖u−v‖
2

,

(1.2.2) P(u) ∼ e−‖u−v‖
2

for all u ∈ Λ.

Efficient approximate sampling from the distribution (1.2.2) has attracted a lot of
attention, in connection with optimization and cryptography, see [G+08], [MR07],
[MR09], [Pe10], [A+15], [RS17].
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2. Results

(2.1) Approximating the theta function. In what follows, we write A � B
for n × n real symmetric matrices A and B if B − A is a positive semidefinite
matrix. We denote by I the n × n identity matrix. Our main result is a fully
polynomial randomized approximation scheme (FPRAS) for computing (1.1.1) and
(1.1.3) provided

(2.1.1) sI � B �
(
s+

es

4

(
1− e−s

)2 (
1− e−2s

))
I for some s ≥ 1.

Thus we present a randomized algorithm that for any B satisfying (2.1.1) and for
any ε > 0 approximates the value of Θ(B) and that of (1.1.3) within relative error
ε in time polynomial in n, ε−1 and s. It turns out that when (2.1.1) is satisfied,
we can write (1.1.1) and (1.1.3) as an integral of some explicit log-concave function
G : Rn −→ R+ and hence we can use any of the efficient algorithms for integrating
log-concave functions as a blackbox [AK91], [F+94], [FK99], [LV07]. From (2.1.1)
we obtain an easier to parse condition

(2.1.2) sI � B �
(
s+

es

5

)
I for s ≥ 3,

which is sufficient for Θ(B) and, more generally, for (1.1.3) to be efficiently com-
putable. We describe the algorithm is Section 3 and prove the main structural
result (Theorem 3.1) underlying the algorithm in Section 4.

From the reciprocity relation (1.1.4) it immediately follows that there is an
FPRAS for Θ(B, y) provided

(2.1.3)
π2

(
s+

es

4

(
1− e−s

)2 (
1− e−2s

))−1

I � B � π2s−1I

for some s ≥ 1.

That is, there is a randomized algorithm that for any B satisfying (2.1.3), for any
y ∈ Rn and any 0 < ε < 1 approximates the value of Θ(B, y) within relative error
ε in time polynomial in n, ε−1 and s. An easier to parse sufficient condition is

(2.1.4) π2

(
s+

es

5

)−1

I � B �
(
π2s−1

)
I for s ≥ 3.

(2.1.5) The smooth range.
Let us fix γ > 1 and let s = γ lnn. It is not hard to check that if sI � B then

the value of Θ(B), and, more generally, of (1.1.3) is 1 +O
(
n1−γ), since only x = 0

contributes significantly to the sum. Furthermore, a straightforward algorithm
approximates Θ(B) and (1.1.3) within relative error ε in time polynomial in n and
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ε−1, provided n is sufficiently large, n ≥ n0(γ). For the sake of completeness, we
present the algorithm along with some technical estimates in Section 8.

Applying the reciprocity relation (1.1.4), we have

Θ(B, y) =
πn/2√
detB

(
1 +O

(
n1−γ)) provided B �

(
π2

γ lnn

)
I for γ > 1.

Furthermore, as long as γ > 1 is fixed, for any ε > 0 the value of Θ(B, y) can be
approximated within relative error ε in time polynomial in n and ε−1. Hence if B
is sufficiently small in the “�” order, the discrete sum (1.1.2) is well-approximated
by the integral ∫

Rn
exp {−〈B(x− y), x− y〉} dx =

πn/2√
detB

.

This phenomenon is described by the smoothing parameter of a lattice introduced in
[MR07]. Our constraints (2.1.1) and (2.1.3) correspond to the “non-smooth” range
when s ≤ γ lnn for some fixed 0 < γ < 1. Apart from some straightforward situa-
tions (for example, when the matrix B is diagonal), the condition (2.1.3) appears
to be the first one when Θ(B, y) can be efficiently approximated in a non-smooth,
that is genuinely discrete, case.

(2.2) Integer points in a subspace. Let A be an m × n integer matrix of
rankA = m < n and let

(2.2.1) Λ = {x ∈ Zn : Ax = 0} .

Then Λ is a lattice in the ambient space span(Λ) = kerA. We remark that even
when m = 1, the class of such lattices (2.2.1) is quite rich: it is shown in [S+11]
that any lattice Λ′ of rank n can be arbitrarily closely approximated by a proper
scaling αΛ of a lattice Λ that is a hyperplane section of Zn+1.

For s > 0, we consider the theta function

ΘΛ(s) =
∑
u∈Λ

e−s‖u‖
2

.

We denote by ‖A‖op the operator norm of A, that is the largest singular value of
A. Let us fix δ > 0. In what follows, we consider asymptotics as n grows.

In Section 5, we show that if ‖A‖op = o
(
nδ
)
, then for

s =

(
1

2
+ δ

)
lnn

and any ε > 0, the value of ΘΛ(s) can be approximated within relative error ε+o(1)
in randomized polynomial time. This is based on the observation that ΘΛ(s) is
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approximated within an additive error o(1) by the function Θ(B) of (1.1.1), where
B is an n × n matrix with the eigenvectors in kerA with eigenvalue s and in
(kerA)⊥ = imAT with eigenvalue s+ es/5 so that B satisfies (2.1.2) when s ≥ 3.

Note that as long as δ < 1/2, we are in a “non-smooth” range, cf. Section 2.1.5.

This result is then applied to testing the existence of short non-zero vectors in
Λ. We show that if

min
u∈Λ\{0}

‖u‖ � n
1
2−δ

then ΘΛ(s) = 1 + o(1), while ΘΛ(s) � 1, if Λ contains many short vectors, which
allows us to separate these two cases in randomized polynomial time.

Using a different approach, in [M+21], the authors present a polynomial time
algorithm to find a lattice vector closest to a given point, when A is a totally
unimodular matrix.

(2.3) Estimating the distance to the lattice. In Section 6, we consider the
problem of estimating the distance from a given point v ∈ Rn to a given lattice
Λ ⊂ Rn, provided Zn ⊂ Λ. Such lattices Λ appear in a few natural ways. If Λ0 ⊂ Zn
is a lattice with an integer basis, then the dual or reciprocal lattice Λ = Λ∗0 defined
by

Λ∗0 = {u ∈ Rn : 〈u,w〉 ∈ Z for all w ∈ Λ0}

contains Zn. The q-ary lattices Λ satisfying (qZ)
n ⊂ Λ ⊂ Zn for an integer q > 1

play a prominent role in lattice-based cryptography, see [Aj96], [MG02], [MR09].
Typically, they are defined as the sets of solutions to systems of integer linear
equations mod q. Clearly, if Λ is a q-ary lattice then the lattice q−1Λ contains
Zn.

For a lattice Λ ⊂ Rn and τ > 0, we define

ΘΛ(τ, v) =
∑
u∈Λ

exp
{
−τ‖u− v‖2

}
.

In particular, if Λ = Zn, then ΘZn(τ, v) = Θ(τI, v) and ΘZn(τ, 0) = Θ(τI) in the
notation of Section 1.1.

In Section 6, we prove that if Zn ⊂ Λ then for any 0 < τ ≤ 1, we have

(2.3.1) 41e−π
2/τ dist2(v,Λ) ≥ ln

Θ(τI)

ΘΛ(τ, v)
≥ 13e−π

2/τ dist2(v,Λ) + ln det Λ.

As n grows, under some conditions the additive term of ln det Λ becomes asymp-
totically negligible and (2.3.1) provides an approximation of dist(v,Λ) within a

constant factor of
√

41/13 ≈ 1.8, computable in randomized polynomial time. We
provide an example to that effect in Section 6.

6



(2.4) Sampling from the discrete Gaussian distribution. Given a lattice Λ ⊂
Rn and a point v ∈ Rn, we consider the discrete Gaussian probability distribution
(1.2.2). Suppose that Λ has a basis whose Gram matrix B satisfies

(2.4.1) λI � B

for some λ > 0. Assume further that for any given y ∈ Rn, the value of Θ(B, y)
can be approximated in randomized polynomial time (for example, if B satisfies
(2.1.3)). We present an algorithm which for any given 0 < ε < 1 samples a random
point u ∈ Λ from a probability distribution µ which is ε-close to (1.2.2) in the total
variation distance, that is,

1

2

∑
u∈Λ

|P(u)− µ(u)| ≤ ε.

The complexity of the algorithm is polynomial in n, ε−1 and λ−1.
It appears that previously polynomial time sampling algorithms, apart from

some simple cases (such as when B is a diagonal matrix), were known only in
the smooth range, when the discrete Gaussian measure is well-approximated by its
classical continuous version [G+08], [Pe10]. Our algorithm follows the general logic
of Peikert’s algorithm [Pe10], except that we are able to extend it to non-smooth
cases, since we are able to approximate the value of the theta function in those
cases. Apart from that, the price we apparently have to pay is the dependence of
the computational complexity on λ in (2.4.1), which is absent in the smooth case.

We discuss the algorithm in Section 7.

(2.5) The plan of the paper. Summarizing, the plan of the paper is as follows.
In Section 3, we present our main algorithm for approximating the theta func-

tions (1.1.1) and (1.1.3).
In Section 4, we prove the main structural result, underlying the algorithm.
In Section 5, we compute theta functions associated with integer points in a

subspace.
In Section 6, we estimate the distance from a given point to a lattice containing

Zn.
In Section 7, we present an algorithm for sampling from a discrete Gaussian

distribution.
In Section 8, we discuss the smooth case.

3. The main algorithm

A function G : Rn −→ R+ is called log-concave if

G(αx+ (1− α)y) ≥ Gα(x)G1−α(y) for all x, y ∈ Rn and all 0 ≤ α ≤ 1.

Equivalently, G = eψ where ψ : Rn −→ R ∪ {−∞} is concave, that is

ψ
(
αx+(1−α)y

)
≥ αψ(x)+(1−α)ψ(y) for all x, y ∈ Rn and all 0 ≤ α ≤ 1.

Recall that by ‖A‖op we denote the operator norm of a matrix A, that is the
largest singular value of A.

Our main result is as follows.
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(3.1) Theorem. Let A = (aij) be an m× n real matrix, let b = (β1, . . . , βn) be a
real n-vector and let s > 0 be a real number. Let

B = sI +
1

2
ATA

be an n× n positive definite matrix.
Let q = e−s and let us define a function FA,b,s : Rm −→ R+ by

FA,b,s(t) =
n∏
j=1

∞∏
k=1

(
1 + 2q2k−1 cos

(
βj +

m∑
i=1

aijτi

)
+ q4k−2

)
,

where t = (τ1, . . . , τm) .

Then

(1) We have

(2π)−m/2
∞∏
k=1

(
1− q2k

)n ∫
Rm

FA,b,s(t)e
−‖t‖2/2 dt

=
∑
x∈Zn

exp {−〈Bx, x〉+ i〈b, x〉} .

(2) Suppose that

‖ATA‖op

∞∑
k=1

q2k−1

(1− q2k−1)
2 ≤

1

2
.

Then for every integer K > 0 the function G(t) = GA,b,s,K(t) defined by

G(t) = e−‖t‖
2/2

n∏
j=1

K∏
k=1

(
1 + 2q2k−1 cos

(
βj +

m∑
i=1

aijτi

)
+ q4k−2

)
,

where t = (τ1, . . . , τm) ,

is log-concave. In particular, the function FA,b,s(t)e
−‖t‖2/2 is log-concave.

We note that
∞∑
k=1

q2k−1

(1− q2k−1)2
≤ 1

(1− q)2

∞∑
k=1

q2k−1 =
q

(1− q)2(1− q2)
=

e−s

(1− e−s)2(1− e−2s)
.

Consequently, to satisfy the constraint in Part (2), we are allowed to choose A so
that

‖ATA‖op ≤
1

2
es
(
1− e−s

)2 (
1− e−2s

)
.

We prove Theorem 3.1 in Section 4.
Theorem 3.1 allows us to approximate Θ(B) and, more generally the sum (1.1.3),

by using any of the efficient algorithms for integrating log-concave functions [AK91],
[F+94], [FK99], [LV07].
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(3.2) Algorithm for computing the theta function. We present an algorithm
for computing (1.1.3).

Input: An n× n positive definite matrix B such that

sI � B �
(
s+

es

4

(
1− e−s

)2 (
1− e−2s

))
I for some s ≥ 1,

a vector b ∈ Rn, b = (β1, . . . , βn), and a number 0 < ε < 1.

Output: A positive real number approximating∑
x∈Zn

exp {−〈Bx, x〉+ i〈b, x〉}

within relative error ε.

Algorithm: Let C = B − sI. Hence C is a positive definite matrix with

‖C‖op ≤
es

4

(
1− e−s

)2 (
1− e−2s

)
.

Next, we write

C =
1

2
ATA so that B = sI +

1

2
ATA

for an m× n matrix A. We can always choose m = n or m = rankA. Hence∥∥ATA∥∥
op
≤ 1

2
es
(
1− e−s

)2 (
1− e−2s

)
.

Let q = e−s. For an integer K = K(ε) > 0, to be specified in a moment, we define

F̂ : Rm −→ R by

F̂ (t) =

n∏
j=1

K∏
k=1

(
1 + 2q2k−1 cos

(
βj +

m∑
i=1

aijτi

)
+ q4k−2

)
for t = (τ1, . . . , τm)

and use any of the efficient algorithms of integration log-concave functions to com-
pute

(2π)−m/2
K∏
k=1

(
1− q2k

)n ∫
Rm

F̂ (t)e−‖t‖
2/2 dt

within relative error ε/3.
We choose K so that the relative error acquired by replacing infinite products

∞∏
k=1

(
1− q2k

)n
and

∞∏
k=1

(
1 + 2q2k−1 cos

(
βj +

m∑
i=1

aijτi

)
+ q4k−2

)
9



in Theorem 3.1 by finite ones does not exceed ε/3. Since

| ln(1 + x)| ≤ 2|x| for − 0.5 ≤ x ≤ 0.5,

and q = e−s ≤ e−1, we have∣∣∣∣∣
∞∑
k=K

ln
(
1− qk

)∣∣∣∣∣ ≤ 2

∞∑
k=K

qk =
2qK

1− q
≤ 4qK .

Similarly, ∣∣∣∣∣
∞∑
k=K

ln

(
1 + 2q2k−1 cos

(
βj +

m∑
i=1

aijτi

)
+ q4k−2

)∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
k=K

ln
(
1− 2q2k−1 + q4k−2

)∣∣∣∣∣ = 2

∣∣∣∣∣
∞∑
k=K

ln
(
1− q2k−1

)∣∣∣∣∣
≤ 4

∞∑
k=K

q2k−1 =
4q2K−1

1− q2
≤ 5q2K−1.

Consequently, to approximate the infinite products in Theorem 3.1 by finite ones
within relative error ε/3, we can choose K = O (ln(n/ε)). We summarize the result
as a theorem.

(3.3) Theorem. Given an n × n positive definite matrix B satisfying (2.1.1), a
vector b ∈ Rn and 0 < ε ≤ 1, the algorithm of Section 3.2 approximates∑

x∈Zn
exp {−〈Bx, x〉+ i〈b, x〉}

within relative error ε in time polynomial in n, s and ε−1.

�

4. Proof of Theorem 3.1

The proof of Part (1) is based on the Jacobi identity.

(4.1) Jacobi’s formula. For any 0 ≤ q < 1 and any w ∈ C \ 0, we have∏
k≥1

(
1− q2k

) (
1 + wq2k−1

) (
1 + w−1q2k−1

)
=
∑
ξ∈Z

wξqξ
2

.

This is Jacobi’s triple product identity, see for example, Section 2.2 of [An98].
Suppose now that

wj ∈ C \ {0} for j = 1, . . . , n.
10



Then

(4.1.1)

n∏
j=1

∏
k≥1

(
1− q2k

) (
1 + wjq

2k−1
) (

1 + w−1
j q2k−1

)
=

∑
x∈Zn:

x=(ξ1,... ,ξn)

q‖x‖
2
n∏
j=1

w
ξj
j .

(4.2) Proof of Part (1). For t = (τ1, . . . , τm), we choose

wj(t) = exp

{
i

(
βj +

m∑
i=1

aijτi

)}
for j = 1, . . . , n

in (4.1.1). Using that(
1 + wj(t)q

2k−1
) (

1 + w−1
j (t)q2k−1

)
= 1 +

(
wj(t) + w−1

j (t)
)
q2k−1 + q4k−2

= 1 + 2 cos

(
βj +

m∑
i=1

aijτi

)
q2k−1 + q4k−2

and that
n∏
j=1

w
ξj
j = exp

i

n∑
j=1

βjξj + i

m∑
i=1

τi

 n∑
j=1

aijξj

 ,

we conclude that

FA,b,s(t)

∞∏
k=1

(
1− q2k

)n
=

∑
x∈Zn:

x=(ξ1,... ,ξn)

q‖x‖
2

exp

i
n∑
j=1

βjξj + i
m∑
i=1

τi

 n∑
j=1

aijξj

 .

Since

1√
2π

∫ +∞

−∞
exp

iτi

n∑
j=1

aijξj

 e−τ
2
i /2 dτi = exp

−1

2

 n∑
j=1

aijξj

2
 ,

we get

(2π)−m/2
∞∏
k=1

(
1− q2k

)n ∫
Rm

FA,b,s(t)e
−‖t‖2/2 dt

=
∑
x∈Zn:

x=(ξ1,... ,ξn)

q‖x‖
2

exp

−1

2

m∑
i=1

 n∑
j=1

aijξj

2

+ i
n∑
j=1

βjξj


=
∑
x∈Zn

q‖x‖
2

exp

{
−1

2
‖Ax‖2 + i〈b, x〉

}
=
∑
x∈Zn

exp {−〈Bx, x〉+ i〈b, x〉} ,

11



and the proof follows. �
To prove Part (2), we need one technical estimate.

(4.3) Lemma. Let 0 < q < 1 and α, β be reals. Then

d2

dτ2
ln
(
1 + 2q cos(ατ + β) + q2

)
≤ 2α2q

(1− q)2
.

Proof. We have

d

dτ
ln
(
1 + 2q cos(ατ + β) + q2

)
= − 2αq sin(ατ + β)

1 + 2q cos(ατ + β) + q2

and

d2

dτ2
ln
(
1 + 2q cos(ατ + β) + q2

)
= −

2α2q cos(ατ + β)
(
1 + 2q cos(ατ + β) + q2

)
+ (2αq sin(ατ + β))

2

(1 + 2q cos(ατ + β) + q2)
2

=− 2α2q(1 + q2) cos(ατ + β) + 4α2q2

(1 + 2q cos(ατ + β) + q2)
2 .

Now, (
1 + 2q cos(ατ + β) + q2

)2 ≥ (
1− 2q + q2

)2
= (1− q)4.

Also,

2α2q(1 + q2) cos(ατ + β) + 4α2q2 ≥ −2α2q(1 + q2) + 4α2q2

= 2α2q
(
2q − 1− q2

)
= −2α2q(1− q)2.

The proof now follows. �

(4.4) Proof of Part (2). It suffices to prove that the restriction of G(t) onto any
affine line

τi = γiτ + δi for i = 1, . . . ,m where
m∑
i=1

γ2
i = 1

is log-concave. Indeed, let g(τ) be that restriction. From Lemma 4.3, we get

d2

dτ2
ln g(τ) ≤ − 1 + 2

K∑
k=1

q2k−1

(1− q2k−1)
2

n∑
j=1

(
m∑
i=1

aijγi

)2

≤ −1 + 2‖AT ‖2op

K∑
k=1

q2k−1

(1− q2k−1)
2

= −1 + 2‖ATA‖op

K∑
k=1

q2k−1

(1− q2k−1)
2 ≤ 0

and hence ln g(τ) is concave. The proof now follows. �
12



5. Integer points in a subspace

Let A be an m × n integer matrix of rankA = m < n and let L = kerA be a
subspace, L ⊂ Rn. Then Λ = Zn ∩ L is a lattice in L. Note that in this case, we
do not define Λ by its basis. For s > 0, we consider the theta function

ΘΛ(s) =
∑
x∈Λ

e−s‖x‖
2

.

Our main result is as follows.

(5.1) Theorem. Suppose that ‖A‖op ≤ γ for some γ ≥ 1. For s > 0 and t > 0,
let B = Bs,t be an n × n positive definite matrix with the eigenvectors in L ∪ L⊥,
where L = kerA, and such that the eigenvectors in L have eigenvalue s while the
eigenvectors in L⊥ have eigenvalue s+ t. Then

|Θ(B)−ΘΛ(s)| ≤ exp

{
− t

γ2
+

2ne−s

1− e−s

}
.

(5.2) Example. Let us fix δ > 0 and let

(5.2.1) s =

(
1

2
+ δ

)
lnn and t =

es

5
=
n

1
2 +δ

5
.

From Theorem 5.1, we have

|Θ(B)−ΘΛ(s)| ≤ exp

{
−n

1
2 +δ

5γ2
+

2n
1
2−δ

1− n− 1
2−δ

}
.

As long as γ = o
(
nδ
)
, we get

(5.2.2) |Θ(B)−ΘΛ(s)| = o(1).

When s ≥ 3, the matrix B = Bs,t satisfies (2.1.2) and hence Θ(B) can be effi-
ciently approximated. Since Θ(B) ≥ 1, from (5.2.2) and Theorem 3.3, we obtain a
randomized polynomial time algorithm that approximates ΘΛ(s) within a relative
error of o(1) as n −→∞.

The proof of Theorem 5.1 is based on the following two lemmas. In the first
lemma, we bound from below the distance of a point x ∈ Zn \Λ to the subspace L.

(5.3) Lemma. Let A be an m × n integer matrix with rankA = m < n and let
L = kerA. For a point x ∈ Rn, let

dist(x, L) = min
y∈L
‖x− y‖

13



be the Euclidean distance from x to L. Then

dist(x, L) ≥ (‖A‖op)
−1

for all x ∈ Zn \ L.

Proof. Suppose that x ∈ Zn \L. Let P : Rn −→ L⊥ = imageAT be the orthogonal
projection. Then the matrix of P in the standard coordinates is AT (AAT )−1A and
hence

dist2(x, L) = ‖P (x)‖2 =
〈
AT (AAT )−1Ax, AT (AAT )−1Ax

〉
=
〈
(AAT )−1Ax, Ax

〉
.

Since A is an integer matrix, x is an integer vector and Ax 6= 0, we have ‖Ax‖ ≥ 1.
Let λ > 0 be the smallest eigenvalue of the matrix (AAT )−1. Then〈

(AAT )−1Ax, Ax
〉
≥ λ‖Ax‖2 ≥ λ

and hence
dist2(x, L) ≥ λ.

On the other hand,

λ =
(
‖AAT ‖op

)−1
= (‖A‖op)

−2
,

from which the proof follows. �

The next lemma provides some technical estimates for the theta function. For
the proof of Theorem 5.1 we need Part (1) only, while Part (2) will be used later.

(5.4) Lemma.

(1) For s > 0, we have

Θ(sI) =
∑
x∈Zn

e−s‖x‖
2

≤ exp

{
2ne−s

1− e−s

}
.

(2) For s > 0 and
4ne−1 ≥ k ≥ 30ne−s,

we have ∑
x∈Zn:
‖x‖2≥k

e−s‖x‖
2

≤ e−k.

Proof. For s > 0, we have

Θ(sI) =

∑
ξ∈Z

e−sξ
2

n

≤

1 + 2
∞∑
ξ=1

e−sξ

n

=

(
1 +

2e−s

1− e−s

)n
= exp

{
n ln

(
1 +

2e−s

1− e−s

)}
≤ exp

{
2ne−s

1− e−s

}
,

14



which proves Part (1).
To prove Part (2), for any 0 < τ < s, using Part (1), we get∑

x∈Zn:
‖x‖2≥k

e−s‖x‖
2

≤ e−τk
∑
x∈Zn:
‖x‖2≥k

e−s‖x‖
2

eτ‖x‖
2

≤ e−τkΘ
(
(s− τ)I

)

≤ exp

{
−τk +

2ne−(s−τ)

1− e−(s−τ)

}
.

Optimizing on τ , we choose

τ = s+ ln
k

4n
.

Since k ≥ 30ne−s, we have

τ ≥ ln
30

4
> 2

and since k ≤ 4ne−1, we have

s− τ = − ln
k

4n
≥ 1.

Therefore,∑
x∈Zn:
‖x‖2≥k

e−s‖x‖
2

≤ exp
{
−τk + 4ne−(s−τ)

}
= exp {−(τ − 1)k} ≤ e−k,

as required. �

Now we are ready to prove Theorem 5.1.

(5.5) Proof of Theorem 5.1.
Applying Lemma 5.3 and Part(1) of Lemma 5.4, we obtain

|Θ(B)−ΘΛ(s)| =
∑

x∈Zn\L

exp {−〈Bx, x〉}

=
∑

x∈Zn\L

exp
{
−tdist2(x, L)

}
exp

{
−s‖x‖2

}
≤ exp

{
− t

γ2

} ∑
x∈Zn

exp
{
−s‖x‖2

}
≤ exp

{
− t

γ2
+

2ne−s

1− e−s

}
.

�
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As in Example 5.2, let us fix 0 < δ < 1
2 , define s and t by (5.2.1) and assume that

‖A‖op = o
(
nδ
)
, so that ΘΛ(s) can be approximated in randomized polynomial time

within a relative error of o(1). If there are no points x ∈ Λ\{0} with ‖x‖2 ≤ 30n
1
2−δ

then by Part (2) of Lemma 5.4, we have ΘΛ(s) = 1 + o(1). On the other hand,
if Λ contains many short vectors, then ΘΛ(s) can be large. For example, if L is a
coordinate subspace, dimL ≥ αn for some 0 < α < 1, so that Λ is identified with
ZdimL, then

ΘΛ(s) ≥

∑
ξ∈Z

e−sξ
2

αn

≥
(
1 + 2e−s

)αn
=

(
1 +

2

n
1
2 +δ

)αn
≥ exp

{
αn

1
2−δ
}

is exponentially large in n. Hence computing ΘΛ(s) allows us to distinguish the case
of L having no short non-zero integer vectors from the case of L having sufficiently
many short integer vectors.

6. Lattices containing Zn

As in Section 5, for a lattice Λ ⊂ Rn, a point v ∈ Rn and a number τ > 0, we
denote

ΘΛ(τ, v) =
∑
u∈Λ

exp
{
−τ‖u− v‖2

}
.

In agreement with our notation in Sections 1-4, when Λ = Zn, we still denote
ΘZn(τ, v) just by Θ(τI, v) and ΘZn(τ, 0) just by Θ(τI), so

Θ(τI, v) =
∑
x∈Zn

e−τ‖x−v‖
2

and Θ(τI) =
∑
x∈Zn

e−τ‖x‖
2

.

In this section we prove the following main result.

(6.1) Theorem. Let Λ ⊂ Rn be a lattice such that Zn ⊂ Λ. Then for 0 < τ ≤ 1,
we have

41e−π
2/τ dist2(v,Λ) ≥ ln

Θ(τI)

ΘΛ(τ, v)
≥ 13e−π

2/τ dist2(v,Λ) + ln det Λ.

Apart from the additive term of ln det Λ, the formula of Theorem 6.1 provides
an estimate of dist(v,Λ) within a constant factor of

√
41/13 ≈ 1.8. It may happen

that as n grows, the additive term becomes asymptotically negligible, and hence the
formula of Theorem 6.1 provides an approximation of dist(v,Λ) within a constant
factor.
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(6.2) Example. A lattice Λ ⊂ Rn containing Zn can be constructed as follows:
let w1, . . . , wn be a basis of Zn and let λ1, . . . , λn be positive integers. Then

(6.2.1) ui =
1

λi
wi for i = 1, . . . , n

is a basis of a lattice Λ containing Zn. Moreover, any lattice containing Zn can be
constructed this way, cf., for example, Chapter I of [Ca97] for the Smith normal
form. We have

ln det Λ = −
n∑
i=1

lnλi.

Let us consider the case when dist2(v,Λ) ≥ nα for some 0 < α < 1. We let

τ =
10π2

α lnn
,

so that

e−π
2/τ dist2(v,Λ) = n−0.1α dist2(v,Λ) ≥ n0.9α.

To make sure that the term ln det Λ is asymptotically negligible, we choose not
more than n0.8α of λi in (6.2.1) satisfying λi ≤ γ for a constant γ > 1, fixed in
advance, while the rest of λi are equal to 1.

Let B be the Gram matrix of the basis u1, . . . , un. In the trivial case, if
w1, . . . , wn in (6.2.1) is the standard basis e1, . . . , en, then for large n, the ma-
trix τB satisfies (2.1.4) and hence the ratio Θ(τI)/ΘΛ(τ, v) can be approximated
in randomized polynomial time. However, the matrix τB would still satisfy (2.1.4)
in a less trivial situation, when w1, . . . , wn are close enough to the standard basis,
for example, when wi = Aei for some matrix A ∈ GL(n,Z) where

‖A‖op ≤ γ and ‖A−1‖op ≤ nα/21γ2

,

for a constant γ > 1, fixed in advance.
It appears essential that we are able to choose τ in the non-smooth range, see

Section 2.1.5. Indeed, choosing τ ≤ π2/γ lnn for some γ > 1 leads to

e−π
2/τ dist2(v,Λ) = o(1)

and hence the ln det Λ additive term cannot be discarded.

We note that the ratio ΘΛ(τ, v)/ΘΛ(τ, 0) was crucially used by Aharonov and
Regev to show that estimating dist(v,Λ) within a factor of O(

√
n) for any lattice

Λ ⊂ Rn lies in NP ∩ co-NP [AR05].
To prove Theorem 6.1, we first consider the case of Λ = Zn.

17



(6.3) Lemma. For y ∈ Rn and 0 < τ ≤ 1, we have

exp
{
−41e−π

2/τ dist2(y,Zn)
}
≤ Θ(τI, y)

Θ(τI)
≤ exp

{
−13e−π

2/τ dist2 (y,Zn)
}
.

Proof. Let y = (η1, . . . , ηn). We have

Θ(τI, y) =
∑
x∈Zn

exp
{
−τ‖x− y‖2

}
=

n∏
i=1

∑
ξ∈Z

exp
{
−τ(ξ − ηi)2

}
and similarly,

Θ(τI) =
∑
x∈Zn

exp
{
−τ‖x‖2

}
=

n∏
i=1

∑
ξ∈Z

exp
{
−τξ2

}
.

Translating y by an integer vector, without loss of generality we assume that y =
(η1, . . . , ηn) where

|ηi| ≤
1

2
for i = 1, . . . , n.

Then

dist2(y,Zn) = ‖y‖2 =
n∑
i=1

η2
i .

By the reciprocity relation (1.1.4), we get

Θ(τI, y) =
πn/2

τn/2

n∏
i=1

∑
ξ∈Z

exp
{
−π2τ−1ξ2 + 2πiξηi

}
and

Θ(τI) =
πn/2

τn/2

n∏
i=1

∑
ξ∈Z

exp
{
−π2τ−1ξ2

}
.

Denoting

q = e−π
2/τ ,

from the Jacobi identity (4.1), we get∑
ξ∈Z

exp
{
−π2τ−1ξ2 + 2πiξηi

}
=
∞∏
k=1

(
1− q2k

) (
1 + exp {2πiηi} q2k−1

) (
1 + exp {−2πiηi} q2k−1

)
=

∞∏
k=1

(
1− q2k

) (
1 + 2q2k−1 cos(2πηi) + q4k−2

)
18



and, similarly,

∑
ξ∈Z

exp
{
−π2τ−1ξ2

}
=

∞∏
k=1

(
1− q2k

) (
1 + 2q2k−1 + q4k−2

)
.

Summarizing,

Θ(τI, y)

Θ(τI)
=

n∏
i=1

∞∏
k=1

1 + 2q2k−1 cos(2πηi) + q4k−2

1 + 2q2k−1 + q4k−2

=
n∏
i=1

∞∏
k=1

(
1− 2q2k−1 (1− cos(2πηi))

(1 + q2k−1)
2

)
.

We have

7η2 ≤ 1− cos(2πη) ≤ 20η2 for − 1

2
≤ η ≤ 1

2
.

Since

q = e−π
2/τ ≤ e−π

2

< 10−4 and |ηi| ≤
1

2
,

we have
η2
i q

2k−1

(1 + q2k−1)
2 ≤

1

4
10−4

and we can further write

(6.3.1)
n∏
i=1

∞∏
k=1

(
1− 40η2

i q
2k−1

(1 + q2k−1)
2

)
≤ Θ(τI, y)

Θ(τI)
≤

n∏
i=1

∞∏
k=1

(
1− 14η2

i q
2k−1

(1 + q2k−1)
2

)

(note that all factors in the products are positive).
Using that

ln(1− α) ≤ −α for 0 ≤ α < 1,

we conclude that

(6.3.2)

∞∏
k=1

(
1− 14η2

i q
2k−1

(1 + q2k−1)2

)
= exp

{ ∞∑
k=1

ln

(
1− 14η2

i q
2k−1

(1 + q2k−1)2

)}

≤ exp

{
−
∞∑
k=1

14η2
i q

2k−1

(1 + q2k−1)2

}
≤ exp

{
−13η2

i

∞∑
k=1

q2k−1

}

= exp

{
− 13η2

i q

1− q2

}
≤ exp

{
−13η2

i q
}
.

Similarly, using that

ln(1− α) ≥ −1.01α for 0 ≤ α ≤ 0.001,
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we conclude that

(6.3.3)

∞∏
k=1

(
1− 40η2

i q
2k−1

(1 + q2k−1)2

)
= exp

{ ∞∑
k=1

ln

(
1− 40η2

i q
2k−1

(1 + q2k−1)2

)}

≥ exp

{
−
∞∑
k=1

40.5η2
i q

2k−1

(1 + q2k−1)2

}
≥ exp

{
−40.5η2

i

∞∑
k=1

q2k−1

}

= exp

{
−40.5η2

i q

1− q2

}
≥ exp

{
−41η2

i q
}
.

Summarizing, from (6.3.1)–(6.3.3) we infer that

Θ(τI, y)

Θ(τI)
≤

n∏
i=1

exp
{
−13η2

i q
}

= exp

{
−13q

n∑
i=1

η2
i

}
= exp

{
−13q dist2 (y,Zn)

}
and

Θ(τI, y)

Θ(τI)
≥

n∏
i=1

exp
{
−41η2

i q
}

= exp

{
−41q

n∑
i=1

η2
i

}
= exp

{
−41q dist2 (y,Zn)

}
,

which concludes the proof. �

Now we are ready to prove Theorem 6.1.

(6.4) Proof of Theorem 6.1. Let ui, i ∈ I be the coset representatives of the
quotient Λ/Zn, so that Λ is represented as a disjoint union

(6.4.1) Λ =
⋃
i∈I

(ui + Zn) and |I| = 1

det Λ
.

Then

(6.4.2)

ΘΛ(τ, v) =
∑
u∈Λ

exp
{
−τ‖u− v‖2

}
=
∑
i∈I

∑
x∈Zn

exp
{
−τ‖ui + x− v‖2

}
=
∑
i∈I

Θ(τI, v − ui).

On the other hand,

dist(v,Λ) = min
i∈I

dist (v, ui + Zn) = min
i∈I

dist (v − ui,Zn) .

By Lemma 6.3, we have

Θ(τI, v − ui) ≤ exp
{
−13e−π

2/τ dist2 (v − ui,Zn)
}

Θ(τI)
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and hence
Θ(τI, v − ui) ≤ exp

{
−13e−π

2/τ dist2(v,Λ)
}

Θ(τI).

Therefore, by (6.4.2) we have

ΘΛ(τ, v) ≤ |I| exp
{
−13e−π

2/τ dist2(v,Λ)
}

Θ(τI)

and from (6.4.1) we obtain

(6.4.3)
ΘΛ(τ, v)

Θ(τI)
≤ (det Λ)−1 exp

{
−13e−π

2/τ dist2(v,Λ)
}
.

We have
dist(v,Λ) = dist(v − ui0 ,Zn) for some i0 ∈ I.

Therefore, by Lemma 6.3,

Θ(τI, v − ui0) ≥ exp
{
−41e−π

2/τ dist2(v,Λ)
}

Θ(τI).

Hence by (6.4.2)

(6.4.4)
ΘΛ(τ, v)

Θ(τI)
≥ exp

{
−41e−π

2/τ dist2(v,Λ)
}
.

Combining (6.4.3)–(6.4.4), we complete the proof. �

7. Sampling from the discrete Gaussian measure

(7.1) Gaussian measure on lattices. Let Λ ⊂ Rn be a lattice and let v ∈ Rn.
In this section, we use the shorthand

ΘΛ(v) =
∑
u∈Λ

e−‖u−v‖
2

and ΘΛ(0) =
∑
u∈Λ

e−‖u‖
2

.

We consider the discrete Gaussian probability measure on Λ defined by

(7.1.1) P(u) =
exp{−‖u− v‖2}

ΘΛ(v)
for u ∈ Λ.

Our goal is to sample a point u ∈ Λ from a probability distribution that is ε-close
in the total variation distance to (7.1.1).

Let u1, . . . , un be a basis of Λ, so that every point u ∈ Rn can be uniquely
written as

(7.1.2) u = ξ1u1 + . . .+ ξnun for some ξ1, . . . , ξn ∈ R,
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and u ∈ Λ if and only if ξ1, . . . , ξn are integer.
The general design of the algorithm is the same as in [G+08] and [Pe10]: we

consecutively sample the coordinates ξn, ξn−1, . . . , ξ1 of u. For that, we compute
the conditional distribution of ξn−k for fixed ξn, . . . , ξn−k+1.

For α ∈ Z, let Hα ⊂ Rn be the affine hyperplane defined by the equation ξn = α
in (7.1.2). Let Λα = Λ ∩ Hα. We identify Hα with Rn−1 by choosing the origin
at a point of Λα, so that Λα ⊂ Hα becomes a lattice. The general idea of the
algorithm is to compute P(u ∈ Hα), sample α ∈ Z from the computed probability
distribution, assign ξn = α and then iterate, until all coordinates are sampled.

We will use the following inequality from [Ba03] and [AR05]:

(7.1.3) ΘΛ(v) ≤ ΘΛ(0) ≤ exp
{

dist2(v,Λ)
}

ΘΛ(v) for all v ∈ Rn.

The following lemma summarizes various technical estimates that we need.

(7.2) Lemma. Let vα be the orthogonal projection of v onto Hα, so that

‖v − vα‖ = dist(v,Hα).

(1) We have

P(ξn = α) = P(u ∈ Hα) = exp
{
−‖v − vα‖2

} ΘΛα(vα)

ΘΛ(v)
;

(2) We have

P(ξn = α) ≤ exp
{

dist2(v,Λ)− ‖v − vα‖2
}

;

(3) Let B be the Gram matrix of u1, . . . , un and suppose that

λminI � B � λmaxI

for some λmax ≥ λmin > 0. Let

v = η1u1 + . . .+ ηnun

for some real η1, . . . , ηn. Then

P(ξn = α) ≤ exp

{
nλmax

4
− λmin(ηn − α)2

}
.

(4) Suppose that the Gram matrix B of u1, . . . , un satisfies the condition of Part
(3) for some λmax ≥ λmin > 0. Then the Gram matrix B′ of u1, . . . , un−1

satisfies the condition with the same λmax and λmin.
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Proof. For every u ∈ Hα, by the Pythagoras Theorem, we have

‖u− v‖2 = ‖v − vα‖2 + ‖vα − u‖2.

Hence ∑
u∈Λα

exp
{
−‖u− v‖2

}
= exp

{
−‖v − vα‖2

} ∑
u∈Λα

exp
{
−‖u− vα‖2

}
,

and the proof of Part (1) follows.
To prove Part (2), by applying (7.1.3) we get

ΘΛα (vα) ≤ ΘΛα(0) = ΘΛ0
(0) ≤ ΘΛ(0) ≤ ΘΛ(v) exp

{
dist2(v,Λ)

}
,

and the proof follows from Part (1).
Next, we prove Part (3). For i = 1, . . . , n, let νi be the integer nearest to ηi, so

that |ηi − νi| ≤ 1
2 and let u = ν1u1 + . . .+ νnun, so that u ∈ Λ. Let

y = (η1 − ν1, . . . , ηn − νn) .

Then

(7.2.1) dist2(v,Λ) ≤ ‖v − u‖2 = 〈By, y〉 ≤ λmax‖y‖2 ≤
λmaxn

4
.

Let w be a unit vector orthogonal to u1, . . . , un−1. Then

(7.2.2) ‖v − vα‖2 = dist2(v,Hα) = (〈v, w〉 − 〈vα, w〉)2
= 〈un, w〉2(ηn − α)2.

To bound 〈un, w〉2, we consider the n × n matrix A having vectors u1, . . . , un as
rows. Then B = AAT and since the eigenvalues of the matrices AAT and ATA
coincide (the matrices are similar), we also have

(7.2.3) λminI � ATA,

Now, Aw = 〈un, w〉en, where en is the n-th standard basis vector and hence
ATAw = 〈un, w〉un. From (7.2.3), we obtain that

(7.2.4) 〈ATAw,w〉 = 〈un, w〉2 ≥ λmin.

Combining (7.2.1), (7.2.2), (7.2.4) and Part (2), we complete the proof of Part (3).
To prove Part (4), we identify Rn−1 with the coordinate subspace of Rn, con-

sisting of the points x = (ξ1, . . . , ξn) where ξn = 0. The condition on the matrix B
says that

λmin‖x‖2 ≤ 〈Bx, x〉 ≤ λmax‖x‖2 for x ∈ Rn,

while the same condition for B′ says that the above inequality holds for x ∈ Rn−1 ⊂
Rn. �

Now we are ready to present the sampling algorithm.
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(7.3) Algorithm for sampling from the discrete Gaussian distribution.

Input: A basis u1, . . . , un of a lattice Λ such that the Gram matrix B of
u1, . . . , un satisfies

λminI � B � λmaxI

for some λmax ≥ λmin > 0 such that

λmin ≥ π2

(
s+

es

4

(
1− e−s

) (
1− e−2s

))−1

and λmax ≤ π2s−1

for some s ≥ 1, a point v ∈ Rn and 0 < ε ≤ 1.

Output: A random point u from a distribution µ on Λ such that

1

2

∑
u∈Λ

|µ(u)−P(u)| ≤ ε, where P(u) =
exp

{
−‖u− v‖2

}
ΘΛ(v)

.

Algorithm:

Step 0: Let
v = η1u1 + . . .+ ηnun.

From Part (3) of Lemma 7.2, compute an integer l ≥ 1,

l = O

(
n

λmin
ln
n

ε

)
,

such that for u = ξ1u1 + . . .+ ξnun, u ∈ Λ, one has

P
(
|ξi − ηi| > l for some i = 1, . . . , n

)
<

ε

10n
.

For k = 1, . . . , n perform the following steps.

Step k: The input of Step k is the lattice Λ(k) ⊂ Rn−k+1 with basis
u1, . . . , un−k+1, where Rn−k+1 is identified with span (u1, . . . , un−k+1), and a point
v(k) ∈ Rn−k+1,

v(k) = η
(k)
1 u

(k)
1 + . . .+ η

(k)
n−k+1un−k+1.

When k = 1, we have Λ(1) = Λ and v(1) = v. For α ∈ Z such that

|α− ηn−k+1| ≤ l,

compute the probabilities that ξn−k+1 = α within relative error ε/10n as in Part
(1) of Lemma 7.2. To compute theta functions, use the algorithm of Section 3.2
and the reciprocity relation (1.1.4). Sample a value ξn−k+1 = α from the resulting

probability distribution. If k < n, let v(k+1) = v
(k)
α and go to Step k + 1.

At the end of Step n, we have integers ξ1, . . . , ξn. Output

u = ξ1u1 + . . .+ ξnun.

We state the result as a theorem.
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(7.4) Theorem. The algorithm of Section 7.3 samples a point u ∈ Λ from a
distribution which is ε-close in the total variation distance to the discrete Gaussian
distribution (7.1.1) in time polynomial in n, ε−1 and λ−1

min.

�

(7.5) The smooth case. As we mentioned in Section 2.4, the algorithm follows the
general scheme of Peikert [Pe10]. The difference is that [Pe10] deals with the
smooth range, when B � sI with s� (lnn)−1 so that the value of ΘΛ(v) does not
significantly depend on the choice of v ∈ Rn. Hence there is no need to compute
values of the theta function, and one needs to sample α from the distribution where

(7.5.1) P (ξn−k+1 = α) ∼ exp
{
−‖v(k) − v(k)

α ‖2
}
.

Another computational advantage of the smooth case in that the distribution (7.5.1)
is well-approximated by a continuous Gaussian distribution. As a result, the com-
plexity of sampling ξn−k+1 does not depend badly on the length of an interval for
ξn−k+1 and so there is no dependence on λmin that we have in Theorem 7.4. It ap-
pears that once we leave the smooth range, we do need to compute theta functions,
and the dependence on λmin appears to be unavoidable.

8. The smooth range

Let us fix γ > 1. In this section, we present a fully polynomial time approxima-
tion scheme (FPTAS) for computing (1.1.3) when B is an n × n positive definite
matrix of a sufficiently large size n ≥ n0(γ) satisfying

sI � B where s ≥ γ lnn.

Thus we present a deterministic algorithm that for any 0 < ε ≤ 1 approximates
(1.1.3) within relative error ε in time polynomial in ε−1 and n. From the reciprocity
relation (1.1.4), we immediately get an FPTAS for approximating Θ(B, y) provided

B � sI where s ≤ π2

γ lnn
I

as long as n ≥ n0(γ). The results of this section are likely to be known in some
form, but since we are unable to provide a reference, we summarize them here for
completeness.

The algorithm is based on the following simple result.

(8.1) Theorem. Fix γ > 1 and let B be an n× n be positive definite matrix such
that

sI � B where s ≥ γ lnn.
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(1) For n ≥ 2 and for all integer k ≥ 1, we have∑
x∈Zn:
‖x‖2≥k

exp {−〈Bx, x〉} ≤ 60n(1−γ)k.

(2) Let

n0(γ) = exp

{
5

γ − 1

}
.

Then for any n ≥ n0(γ) and any b ∈ Rn, we have∣∣∣∣∣−1 +
∑
x∈Zn

exp {−〈Bx, x〉+ i〈b, x〉}

∣∣∣∣∣ ≤ 1

2
.

(3) For any integer k ≥ 1, we have∣∣x ∈ Zn : ‖x‖2 ≤ k
∣∣ ≤ (2n+ 2)k.

Proof. The proof of Part (1) is similar to that of Lemma 5.4. For 0 < τ < s, we
have ∑

x∈Zn:
‖x‖2≥k

exp {−〈Bx, x〉} ≤
∑
x∈Zn:
‖x‖2≥k

e−s‖x‖
2

≤ e−τk
∑
x∈Zn:
‖x‖2≥k

e−s‖x‖
2

eτ‖x‖
2

≤ e−τkΘ
(
(s− τ)I

)
≤ exp

{
−τk +

2ne−(s−τ)

1− e−(s−τ)

}
,

where the last inequality is from Part (1) of Lemma 5.4. We choose

τ = (γ − 1) lnn.

Since s− τ ≥ lnn, we obtain

exp

{
−τk +

2ne−(s−τ)

1− e−(s−τ)

}
≤ exp

{
−τk +

2

1− n−1

}
≤ 60n(1−γ)k,

which completes the proof of Part (1).
Part (2) follows from Part (1) for k = 1, since for n ≥ n0(γ) we have 60n1−γ ≤ 1

2 .

To prove Part (3), letting x = (ξ1, . . . , ξn) and ηi = ξ2
i , we observe that the

number non-negative integer solutions to the inequality η1 + . . .+ ηn ≤ k is(
n+ k

k

)
=

(n+ k)(n+ k − 1) · · · (n+ 1)

k(k − 1) · · · 1
≤ (n+ 1)k.

Since each of at most k positive ηi correspond to at most two values ±ξi, the bound
follows.

�

Now we are ready to present the algorithm.
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(8.2) The algorithm. Fix γ > 1 and

n0 = exp

{
5

γ − 1

}
.

Input: For n ≥ n0(γ), an n×n positive definite matrix B such that sI � B for
some s ≥ γ ln, a vector b ∈ Rn and 0 < ε < 1.

Output: A number approximating

(8.2.1)
∑
x∈Zn

exp {−〈Bx, x〉+ i〈b, x〉}

within relative error ε.

Algorithm: From Parts (1) and (2) of Theorem 1, choose

k = O

(
ln(1/ε)

(γ − 1) lnn

)
,

so that

(8.2.2)
∑
x∈Zn:
‖x‖2≤k

exp {−〈Bx, x〉+ i〈b, x〉}

approximates (8.2.1) within relative error ε, and compute (8.2.2).

From Part (3) of Theorem 8.1, the sum (8.2.2) contains (1/ε)O( 1
γ−1 ) terms.
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