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ABSTRACT. Given a convex body C C R? containing the origin in its interior and
a real number 7 > 1 we seek to construct a polytope P C C with as few vertices
as possible such that C C 7P. Our construction is nearly optimal for a wide range
of d and 7. In particular, we prove that if C' = —C then for any 1 > ¢ > 0 and
7 =1+ € one can choose P having roughly e~%/2 vertices and for 7 = v/ed one can
choose P having roughly d'/€ vertices. Similarly, we prove that if C C R? is a convex
body such that —C' C uC for some p > 1 then one can choose P having roughly

((p+1)/(r— 1))d/2 vertices provided (7 —1)/(p+ 1) < 1.

1. INTRODUCTION AND MAIN RESULTS

We discuss how well convex bodies (compact convex sets with non-empty inte-
rior) can be approximated by polytopes (convex hulls of finite sets of points). There
is, of course, a vast literature on the topic, as there are many different notions of
approximation, see surveys [G93a] and [Br07]. Our setup is as follows. Let C C R?
be a convex body containing the origin in its interior. We seek to construct a
polytope P C R with as few vertices as possible, so that

pPcCcrP
for some given 7 > 1.

Our first main result concerns symmetric convex bodies C' for which C = —C
and 7 measures the Banach-Mazur distance between P and C.
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(1.1) Theorem. Let k and d be positive integers and let T > 1 be a real number

such that i 3 1/2
(V1) () = o)

k

Then for any symmetric convex body C C R® there is a symmetric polytope P C R%
with at most
3 d+k
k

P c C c 7P

vertices such that

d+k
In fact (see Remark 3.3), we can replace ( _;; ) throughout the statement of

Theorem 1.1 by a slightly smaller number

Lk/2]
d+k—-1—-2m
1.1.1 D(d, k) = .
(1.11) @n=> (TR

m=0

For example, taking d = 20 and k£ = 3 we conclude that any 20-dimensional sym-
metric convex body can be approximated within a factor of 7 = 3.18 by a symmetric
polytope with at most 12,480 vertices.
Taking 7 in Theorem 1.1 arbitrarily close to 1, we obtain the following corollary.
(1.2) Corollary. For any
N> S ~048

42

there exists €9 = €o(y) > 0 such that for any 0 < € < €y and for any symmetric
convex body C C R?, there is a symmetric polytope P C R® with at most

(2

PcCC cC (1+eP

vertices such that

The well-known volumetric argument (see, for example, Lemma 4.10 of [Pi89])
produces polytopes with roughly (3/€)? vertices which approximate a given sym-
metric d-dimensional convex body within a factor of 1+¢. Hence for small € > 0 the
estimate of Corollary 1.2 gives us roughly the square root of the number of vertices
required by the volumetric bound. It follows from results of Dudley [Du74] and
also from results of Bronshtein and Ivanov [BI75] that in any dimension d one can
construct a polytope P with not more than ’y(d)e_(d_l)/ 2 vertices approximating
a given symmetric convex body C' C R? within a factor of 1 + €, with y(d) of the
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order of d%*. If the boundary of C is C?>-smooth then for all sufficiently small
0 < € < €(C) one can obtain an approximating symmetric polytope with at most
(7/€)(@=1)/2 vertices for some absolute constant v > 0, and the dependence on €
cannot be made better [G93b], [B600] (note that the upper bound for € depends on
the convex body C'). The estimate of Corollary 1.2 is the first bound improving the
volumetric bound uniformly over all symmetric convex bodies C' of all dimensions
d.

Next, we consider approximations for which we want to keep the number of
vertices of the polytope polynomial in the dimension of the ambient space.

(1.3) Corollary. For any
v > % ~ 0.82

there is a positive integer ko = ko(7y) such that for any k > ko and for any symmetric
convex body C C RY of a sufficiently large dimension d > do(k) there is a symmetric

polytope P C R% with at most
3 d+k
k
d

vertices such that

In other words, for any fixed 0 < € < 1, any d-dimensional symmetric convex
body C' can be approximated within a factor of 7 = v/ed by a polytope P with
roughly d'/€ vertices. A simple computation shows that if C' is the d-dimensional
Euclidean ball and P has at most d* vertices for some fixed k, then P cannot

approximate C' better than within a factor of 7 = as d grows, where

d
klnd
v > 0 is an absolute constant, see [Ba97].

Finally, we consider approximations of not necessarily symmetric convex bodies.
We prove the following main result, generalizing Theorem 1.1. The quality of
approximation depends on the symmetry coefficient of the convex body C, that
is on the smallest ;> 1 such that —C' C uC (recall that the convex bodies we

consider contain the origin in their interior).
(1.4) Theorem. Let d and k be positive integers. For T, > 1 let us define

2 pw—1

)\:)\(T’M):M+1T+M+1

If
(v 1) s (v veeo) 6(d+’f)”2

k
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then for any convex body C C R% containing the origin in its interior and such that
—C C uC there is a polytope P C R with at most

()

vertices such that

P c C c 7P

We also obtain the following extension of Corollary 1.2.

(1.5) Corollary.

(1)

For m,u > 1 let us define

2(r —1)

0 =06(r,p) = 11

For any
N> S ~048

42

there exists §g = do(7y) > 0 such that as long as §(7, 1) < do, for any convex
body C C R? such that —C C uC there exists a polytope with at most

(Fmi)

P c C c P

vertices such that

For any

[
> —~0.34
778

there exists g = €(y) > 0 such that for any 0 < € < e¢g and for any convex
body C C R? such that —C C uC for some p > 1 there exists a polytope
P c R? with at most

vertices such that



As a function of the symmetry coefficient p, the number of vertices of P grows
roughly as u%? as long as the ratio 7/p is small enough. One can deduce from
results of Gruber [G93b] that if the boundary of C' is C2-smooth then for all suf-
ficiently small 0 < € < ¢3(C') one can construct a polytope P with not more than
142 (/€)(4=1)/2 yertices for some absolute constant v which approximates C' within
a factor of 1+ €. The estimates of Corollary 1.5 are uniform over all convex bodies
C of all dimensions d.

The plan of the paper is as follows. In Section 2, we collect some facts needed
for the proofs of Theorems 1.1 and 1.4. Namely, we review the classical result on
the John decomposition of the identity operator and the minimum volume ellipsoid
of a convex body, a recent result of Batson, Spielman and Srivastava [B+08] which
allows one to obtain certain “sparsification” of the John decomposition, the stan-
dard construction of tensor product from multilinear algebra which allows us to
translate polynomial relations among vectors into linear identities among tensors
and the classical construction of the Chebyshev polynomials which solve a relevant
extremal problem. As it turns out, the vertices of the approximating polytopes P
are picked up by certain algebraic conditions.

We complete the proofs in Section 3.

2. PRELIMINARIES

(2.1) Chebyshev polynomials. For a positive integer k let Tj(¢) be the Cheby-
shev polynomial of degree k, see, for example, Section 2.1 of [BE95]. Thus for real
t the polynomial T (t) can be defined by

Ty (t) = cos (karccost) provided —1<t<1 and

1 | k
Tk (t) = 5 (t —Vit? - 1) + 3 <t + V2 — 1) provided [¢t| > 1.

In particular,
(2.1.1) |Tx(t)] <1 provided [t <1.
Writing 7% (t) in the standard monomial basis, we obtain

k2] BN
1) = 3 ()" e,

m=0
In particular,
Ti(t) =t, To(t) =2t> — 1, T3(t) = 4¢3 — 3t, Ty(t) = 8t* — 8% + 1.

We note that Ty (—t) = Ty (t) if k is even and Ty (—t) = —T}(t) if k is odd. We also
note that the polynomial T} (t) is strictly increasing for ¢ > 1.
)



In particular,

(7' — VT2 — 1)k + (7' + VT2 — 1)k

(2.1.2)  |Tu(t)| > 5

provided [¢t| > T > 1.

The polynomial T (t) has the following extremal property relevant to us: for any
to ¢ [—1, 1] the maximum value of |p(to)|, where p is a polynomial of deg p < k such
that [p(t)] < 1 for all ¢t € [—1,1], is attained for p = T}, see, for example, Section
5.1 of [BE95).

(2.2) Tensor power. Let V' be Euclidean space with scalar product (-,-). For a
positive integer k let
V¥ =V eV
—_——

k times

be the k-th tensor power of V. We consider V®* as Euclidean space endowed with
scalar product <~, > such that

k
(1@ @, 1 @ @uyp) = | [(@i, 1)
i=1
for all z1,...,2kY1,...,yx € V. The space V€? is naturally identified with the

space of all linear operators on V.
The symmetric part Sym (V‘X’k) of V@ is the subspace spanned by the tensors

PP =zrx--0z
—_——

k times

for x € V. The space Sym (V®k) is naturally identified with the space of all
homogeneous polynomials p : V' — R of degree k. In particular, Sym (V®2) can
be identified with the space of quadratic forms on V' and also with the space of all
symmetric operators on V. We have

dim Sym (V®k) = (dimV Tk 1) .

k
Let us consider the direct sum
W=RoVoV?2q...0 Ve

as Euclidean space with the standard scalar product, which we also denote by <-, >
For a real univariate polynomial a(t) and a vector z € V', we denote by a®(x) € W
the vector
k
(22.1) a®(@) =0y Dz ®ar®? @ ... ®apz®", where a(t) = Z Qmt™.
m=0
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It is then easy to check that for any x,y € V and any polynomials a(t) and b(t),
we have

<a®(az), b®(y)> =c((z,y)), provided

k k k
a(t) = Z amt™, b(t) = Z Bmt™ and c(t) = Z (B ) t™.
m=0 m=0

m=0

(2.2.2)

(2.3) The ellipsoid of the minimum volume. As is known, for any compact
set C' C R? there is a unique ellipsoid of the minimum volume among all ellipsoids
centered at the origin and containing C'. If the minimum volume ellipsoid is the
unit ball

B={zeR": |af <1},

where || - || is the Euclidean norm, the contact points x; € C'N OB provide a certain
decomposition of the identity operator I, called the John decomposition (recall that
r®x for x € RY is interpreted as a d x d symmetric matrix). We need the following
result, see for example, [Ba97].

(2.3.1) Theorem. Let C C R? be a compact set which spans RY and let B C
R? be the unit ball. Suppose that C C B and that B has the smallest volume
among all ellipsoids centered at the origin and containing C. Then there exist
points x1,... ,x, € CNOB and non-negative real oy, ... , o, such that

ZO&Z' (l‘z ®$1) = I,
i=1
where I is the identity operator on R®. Equivalently,
n
> aifzi,y)? = |yl
i=1

for every y € R?.

(2.4) Sparsification. We need a recent result of Batson, Spielman and Srivastava
on a certain “sparsification” of the conclusion of Theorem 2.3.1, see also [Nall].
Namely, we want to be able to choose the number n of points in Theorem 2.3.1 linear
in the dimension d at the cost of a controlled corruption of the identity operator I.

If A and B are d x d symmetric matrices we say that A < B if B — A is positive
semidefinite. The following result is from [B+08].

(2.4.1) Theorem. Let~y > 1 be a number and let x1, ... ,x, be vectors in R% such

that n
Z T, @y =1,
1=1
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or, equivalently,
n

> @i y)® = yl?

i=1

for all y € RY. Then there is a subset J C {1,... ,n} with |J| < ~vd and 3; > 0 for
7 € J such that

v+1+2/y
I <) Bi(zj@x,) = (— I
=~ y+1-2/7

or, equivalently,

1+2
Wiz < 3 8y ( ks f) ol

jeJ 7+1 \/_

for all y € RY.

3. PROOFS

We start with a lemma.

(3.1) Lemma. Let C C R? be a compact set. Then there is a subset X C C of
| X| < 4d
points such that for any linear function ¢ : R — R we have

< <
max [f(z)| < max|¢(z)] 3\/_5611683?\5( z)|.

Proof. Without loss of generality we assume that C spans R?. Applying a linear
transformation, if necessary, we may assume that C' is contained in the unit ball B
and that B is the minimum volume ellipsoid among all ellipsoids centered at the
origin and containing C. By Theorem 2.3.1 there exist vectors z1,...z, € CNOB
and numbers a1, ... ,a, > 0 such that

iai (1’1 ®ZL‘1) = 1.
=1

Applying Theorem 2.4.1 with v = 4 to vectors /a;x; we conclude that for some
JCA{l,...,n}and 5; > 0 for j € J we have

(3.1.1) I =) o (zj@a;) < 91
jeJ
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and |J| < 4d. We let
X=A{x;: jeJ}.

In particular, z; € C and ||z;|| = 1 for all j € J. Comparing the traces of the
operators in (3.1.1), we get

(3.1.2) d <) a;8 < 9d.

jeJ

A linear function ¢ : R — R can be written as £(z) = (y, z) for some y € RY. It
follows by (3.1.1) that

D (aB) (yx)® = Nyl

jedJ

and then by (3.1.2) it follows that

1 .
[(y,z)| = 3_\/E“y|| for some j € J.

Since C' C B, we have
m <
xeac}’(|<y’x>| < [y

and the proof follows. O
We now prove Theorem 1.1.

(3.2) Proof of Theorem 1.1. Let us denote V = R and let us consider the
space
W=RaeVaeV?g. . oV,

see Section 2.2. Let us define a continuous map ¢ : V — W by
pr)=10z®2%2 @ ---®a® for zeV.
We consider the compact set
C={¢@x): zeC}, CcCW.
We note that C lies in the subspace
ReVaeSym (V) @@ Sym (VEF).
In particular,

) ~ d+1 d+k—1 d—+k
< = .
d1mspan<C) < 1+d—|—< 5 )+ +< 1 ) < 1 )
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Applying Lemma 3.1 to 6’, we conclude that there is a set X C C such that

d+k
X| < 4
||_(k)

such that for any linear function £ : W — R we have

1/2
d+ k) max|£(¢(x))‘ )

zeX

(3.2.1) 216%%(|£(¢(x))‘ < gcneaéc‘ﬁw(x)ﬂ < 3( h

We define P as the convex hull

P = conV(X U —X).
Clearly, P C C and P has at most 8(‘”];]‘3) vertices. To conclude that P approx-
imates C' with the desired accuracy, we compare the maxima of linear functions
¢:RY — R on C and on P.

Suppose that
() = (y,x) for some yeV.
Let us define a linear function £ : W — R by
L(w)=(T2(y), w) foral weW,
where T} is the Chebyshev polynomial of degree k, see Section 2.1 and (2.2.1).
Then by (2.2.2), we have
L(¢(2)) =T ({y, ).

Hence from (3.2.1) we obtain

1/2
d+k> max|Tk(€(:L‘))| .

)| < gleaéc\Tk(E(af))’ < 3( k TEX

Suppose that ¢(z) < 1 for all z € P and hence [¢(z)| < 1 for all x € X. Then by
(2.1.1) we have [T (¢(z))| <1 for all z € X. If for some z € C we have {(z) > T
then by (2.1.2) we have

(VP + (r+ VP =D 3<d+k>1/2
2 - k ’

(3.2.2) ma T, (0(
1

T (£(2))] >

which contradicts (3.2.2). Therefore

2. l < l < 14
(3.2.3) max (x) < max (x) < 7 max ()
for every linear function ¢ : R? — R, which proves that C' C 7P. O

(8.3) Remark. One can sharpen the bounds somewhat by noticing that the polyno-
mial T} is even for even k£ and odd for odd k. Consequently, the map ¢ : V — W
can be replaced by

pe(z) =1® 2P @ @22 @ a®
for even k and by

gbo(x) —x® 7®3 D --- @x®k72 @x®k

for odd k. This allows us to replace (dzk) by D(d, k) defined by (1.1.1) throughout
the statement of Theorem 1.1.
10



(3.4) Proof of Theorem 1.4. As in Section 3.2, we construct the space W, the

map ¢, the set C' and the subset X C C so that (3.2.1) holds. We then define P as
the convex hull
P =conv(XU(—1/p) X).

Clearly, P C C and P has at most S(dzk) vertices. To conclude that P approx-

imates C with the desired accuracy, we compare the maxima of linear functions
¢:R? — R on C and on P.
Let T} be the Chebyshev polynomial of degree k. We define a polynomial Sj, by

2 pw—1
Sk(t) =1, t+ :
) k<u+1 u+1>

Hence deg Sk (t) = k. Moreover,
(3.4.1) |Sk(t)] < 1 provided —p <t <1

and

A=va—1) + (a+var—1)"
2

(3.4.2) |Sk(t)| > provided ¢ > 7.

Given a linear function ¢ : R — R,
l(z) = (y,x) for some y €V,
we define a linear function £ : W — R by
L(w) = (S2(y), w) forall weW.

Then
L(¢(x)) = Sk ((y, ) -

Hence from (3.2.1) we obtain

d+k)1/2

(3.4.3) 1516%}((’519(6(33))‘ < Eneaéc‘Sk(K(x)H < 3( I

max Sk (€(2))] -
Suppose that ¢(z) < 1 for all x € P. Then, necessarily, 1 > ¢(x) > —p forallz € X
and hence by (3.4.1) we have |Sj(¢(z))| < 1 for all z € X. If for some z € C' we
have ¢(z) > 7 then by (3.4.2)

Vv 7 —1\* 1/2
(= V=T 4 (A VAT 2 s(44)”

Sk (t(a))| > ; > 3%

which contradicts (3.4.3). Hence (3.2.3) holds for every linear function £ : R? — R
and, therefore, C' C 7P. O
11



(3.5) Proof of Corollary 1.2. Let us choose 7 = 1 + € in Theorem 1.1. We use
the standard estimate

ssn (T < (SEE) (HE) < e (e k)

Let us choose

(3.5.2) k= {% nﬂ ,

where 5 > 0 is a constant. Then

1/2 <
(3.5.3) %m (6<d;k> > < %(Ho(l)),

where “o(1)” stands for a term which converges to 0 uniformly on d as ¢ — 0.
On the other hand,

1n<7+\/72—1> =V2e(1+0(1)),

where “o(1)” stands for a term which converges to 0 as € — 0. Then, as long as

1
> =,
B W
the condition of Theorem 1.1 is satisfied for all sufficiently small 0 < € < €y(5).
The proof now follows by (3.5.1). O

(3.6) Proof of Corollary 1.5. To prove Part (1), we observe that A = 1+ ¢ and
hence

(3.6.1) In (A + VA2 — 1) = V26 (1+0(1)),

where “o(1)” stands for a term which converges to 0 as § — 0. In Theorem 1.4,
let us choose k defined by (3.5.2) with e replaced by 6. Comparing (3.5.3) with €
replaced by ¢ and (3.6.1) we conclude the proof as in Section 3.5.

To prove Part (2), in Theorem 1.4 we choose 7 = 1+ € and k defined by (3.5.2).
Then

(3.6.2) In(A+V22=1) =2 (L> - (140(1).

pt1

where “o(1)” stands for a term which converges to 0 uniformly on > 1 as e — 0.
Comparing (3.6.2) and (3.5.3), we conclude that the condition of Theorem 1.4 is
satisfied for all sufficiently small 0 < € < €y(5) as long as

vi+1

5>8.

The proof now follows by (3.5.1). O




(3.7) Proof of Corollary 1.3. Let us choose 7 = v4/d/k in Theorem 1.1, where
~v > 0 is a constant. Using Stirling’s formula, we conclude that for each k

1 d+ K\ e
lim —6'/* = /=(14o0(1
dlmoo \/36 ( d ) k( + of ))a

where “o(1)” stands for a term which converges to 0 as k grows.
On the other hand, for each k

d— 00 \/E \/E

The proof now follows by Theorem 1.1. O

ACKNOWLEDGMENT

The author is grateful to Mark Rudelson and Roman Vershynin for many helpful
conversations.

REFERENCES

[Ba97] K. Ball, An elementary introduction to modern convex geometry, Flavors of Geometry,
Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 1-58.

[B+08] J. Batson, D.A. Spielman and N. Srivastava, Twice-Ramanujan sparsifiers, preprint
arXiv:0808.0163 (2008).

[Bo00] K. Boroczky, Approzimation of general smooth convex bodies, Adv. Math. 153 (2000),
325-341.

[BE95] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Graduate Texts in
Mathematics, 161, Springer-Verlag, New York, 1995.

[Br07] E.M. Bronshtein, Approzimation of convex sets by polyhedra (Russian), Sovrem. Mat.
Fundam. Napravl. 22 (2007), 5-37; translation in J. Math. Sci. (N. Y.) 153 (2008), no.
6, 727-762.

[BI75] E.M. Bronshtein and L.D. Ivanov, The approzimation of convez sets by polyhedra (Rus-
sian), Sibirsk. Mat. Zh. 16 (1975), 1110-1112; translation in Siberian Math. J. 16 (1975),
no. 5, 852-853 (1976).

[Du74] R.M. Dudley, Metric entropy of some classes of sets with differentiable boundaries, J.
Approximation Theory 10 (1974), 227-236.

[G93a] P.M. Gruber, Aspects of approzimation of convez bodies, Handbook of Convex Geometry,
Vol. A, North-Holland, Amsterdam, 1993, pp. 319-345.

[G93b] P.M. Gruber, Asymptotic estimates for best and stepwise approzimation of convex bodies.
I, Forum Math. 5 (1993), 281-297.

[Nall] A. Naor, Sparse quadratic forms and their geometric applications [after Batson, Spiel-
man and Srivastava], Séminaire Bourbaki 63, no 1033 (2011), 1-27.

[Pi89]  G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts
in Mathematics, 94, Cambridge University Press, Cambridge, 1989.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-1043,
USA

E-mail address: barvinok@Qumich.edu

13



