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Abstract. Let R = (r1, . . . , rm) and C = (c1, . . . , cn) be positive integer vectors

such that r1 + . . . + rm = c1 + . . . + cn. We consider the set Σ(R, C) of non-negative

m × n integer matrices (contingency tables) with row sums R and column sums C

as a finite probability space with the uniform measure. We prove that a random

table D ∈ Σ(R, C) is close with high probability to a particular matrix (“typical
table”) Z defined as follows. We let g(x) = (x + 1) ln(x + 1) − x ln x for x ≥ 0 and

let g(X) =
P

i,j g(xij) for a non-negative matrix X = (xij). Then g(X) is strictly

concave and attains its maximum on the polytope of non-negative m × n matrices
X with row sums R and column sums C at a unique point, which we call the typical

table Z.

1. Introduction and the main result

(1.1) Random contingency tables. Let R = (r1, . . . , rm) be a positive integer
m-vector and let C = (c1, . . . , cn) be a positive integer n-vector such that

m∑

i=1

ri =
n∑

j=1

cj = N.

A contingency table with margins (R, C) is a non-negative integer matrix D = (dij)
with row sums R and column sums C:

n∑

j=1

dij = ri for i = 1, . . . , m,
m∑

i=1

dij = cj for j = 1, . . . , n,

dij ≥ 0 and dij ∈ Z for all i, j.
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Let Σ(R, C) be the set of all contingency tables with margins (R, C). As is well
known, Σ(R, C) is non-empty and finite. Let us consider Σ(R, C) as a finite prob-
ability space endowed with the uniform probability measure. In this paper we
address the following question:

Suppose that D ∈ Σ(R, C) is chosen at random. What is D likely to look like?

The problem is interesting in its own right, but the main motivation comes
from statistics; see [Go63], [DE85], [DG95] and references therein. A contingency
table D = (dij) may represent certain statistical data (for example, dij may be
the number of people in a certain sample having the i-th hair color and the j-
th eye color). One can condition on the row and column sums and ask what is
special about a particular table D ∈ Σ(R, C), considering all tables in Σ(R, C) as
equiprobable; see [DE85]. To answer this question we need to know what a random
table D ∈ Σ(R, C) looks like. Considerable effort was invested in finding an efficient
(polynomial time) algorithm to sample a random table D ∈ Σ(R, C); see [DG95],
[D+97], [C+06]. Despite a number of successes, such an algorithm is still at large
in many interesting situations. In this paper, we do not discuss how to sample a
random table but describe instead what it is likely to look like.

We prove that a random contingency table D is close in a certain sense to some
particular non-negative m × n matrix Z, which we call the typical table.

(1.2) The typical table. Let P(R, C) be the set of all m×n non-negative matrices
X = (xij) with row sums R and column sums C:

n∑

j=1

xij = ri for i = 1, . . . , m,

m∑

i=1

xij = cj for j = 1, . . . , n and

xij ≥ 0 for all i, j.

Geometrically, P(R, C) is a convex polytope of dimension (m − 1)(n − 1), known
as the transportation polytope. Let

g(x) = (x + 1) ln(x + 1) − x lnx for x ≥ 0

and let
g(X) =

∑

i,j

g(xij)

for a non-negative matrix X = (xij). One can easily check that g is strictly concave
and hence achieves a unique maximum Z = (zij) on P(R, C). We call Z the typical
table with margins (R, C). Since the objective function g is concave, Z can be
computed efficiently, both in theory and in practice, by existing methods of convex
optimization, cf. [NN94].

The solution Z to the above optimization problem was first introduced in the
author’s paper [Ba09]. It was given the name of “typical table” (perhaps with not
enough justification) in [B+08].

In this paper, we show that Z indeed captures some typical features of a random
table D ∈ Σ(R, C).

We prove our main result assuming certain regularity (“smoothness”) of margins.
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(1.3) Smooth margins. Let us fix a number 0 < δ ≤ 1. First, we assume that
the row sums and column sums are of the same order:

δN

m
≤ ri ≤ N

δm
for i = 1, . . . , m and

δN

n
≤ cj ≤ N

δn
for j = 1, . . . , n.

(1.3.1)

Second, we assume that the density of the table is separated from 0:

(1.3.2)
N

mn
≥ δ.

We say that the margins (R, C) are δ-smooth if conditions (1.3.1)–(1.3.2) are satis-
fied. This is a modification of the definition from [B+08]. We note that δ-smooth
margins are also δ′-smooth for any 0 < δ′ < δ. As we remarked (see (1.3.2)), we
are interested in tables with the density separated from 0. For the case of sparse
tables, where ri ≪ n and cj ≪ m, see [Ne69], [GM08] and references therein.

Without loss of generality, we assume that n ≥ m.

(1.4) Definitions and notation. Let us choose a non-empty subset of entries of
a matrix:

S ⊂
{

(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n
}

.

For an m × n matrix A = (aij) let

σS(A) =
∑

(i,j)∈S

aij

be the sum of the entries from S.
The cardinality of a finite set X is denoted by |X |.
Now we state our main result.

(1.5) Theorem. Let us fix real numbers 0 < δ ≤ 1 and κ > 0. Then there exists
a positive integer q = q(δ, κ) such that the following holds:

Suppose that (R, C) are δ-smooth margins such that n ≥ m ≥ q.
Let

S ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
be a set such that

|S| ≥ δmn,

let Z be the typical table with margins (R, C), and let

ǫ = δ
lnn

m1/3
.

3



If ǫ ≤ 1 then

Pr
{

D ∈Σ(R, C) :

(1 − ǫ)σS(Z) ≤ σS(D) ≤ (1 + ǫ)σS(Z)
}

≥ 1 − 2n−κn.

In other words, asymptotically, as far as the sum over a positive fraction of
entries is concerned, a contingency table D sampled uniformly at random from the
set of contingency tables with given margins is very likely to be close to the typical
table Z.

(1.6) The independence table. In [Go63], I.J. Good observes that the indepen-
dence table

Y = (yij) , yij = ricj/N for all i, j,

maximizes the entropy

H(X) =
∑

i,j

xij

N
ln

N

xij

on the set of all matrices X = (xij) in the transportation polytope P(R, C). One
may be tempted to think that the independence table Y , not the typical table Z,
reflects the structure of a random table D ∈ Σ(R, C).

One can show that Y = Z if and only if all row sums ri are equal or all col-
umn sums cj are equal. In fact, particular entries of the matrices Z and Y may
demonstrate very different behavior even for reasonably looking margins. Suppose,
for example, that m = n, that r1 = c1 = 3n and that ri = ci = n for i > 1. Hence
N = 3n + n(n − 1) = n2 + 2n and for the independence table we have

y11 =
9n2

n2 + 2n
≤ 9.

On the other hand, for the typical table Z the entry z11 grows linearly in n. Indeed,
the optimality condition for Z (the gradient of g at Z is orthogonal to the affine
span of the transportation polytope) implies that

ln

(
zij + 1

zij

)

= λi + µj for all i, j

and some λ1, . . . , λm, µ1, . . . , µn; see Section 2.3. By symmetry, we can choose
λ1 = µ1 = α and λi = µi = β for i > 1. Moreover, we must have 0 < α < β. Since

z21 =
1

eα+β − 1
>

1

e2β − 1
= z2j for all j > 1

and r2 = n, we should have

β >
ln 2

2
.
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Therefore,

z1j =
1

eα+β − 1
<

1

eβ − 1
<

1√
2 − 1

for j > 1.

Since r1 = 3n we must have

z11 > 3n − n√
2 − 1

> 0.58n.

Let us show that the independence table Y and the typical table Z may also produce
different asymptotic behavior of the sums σS(Y ) and σS(Z) as m and n grow and
S is a subset of entries consisting of a positive fraction of all entries as in Theorem
1.5. For that, let us fix some margins R = (r1, . . . , rm) and C = (c1, . . . , cn) such
that z11 6= y11. For a positive integer k let us consider the “cloned” margins

(1.6.1)

Rk =
(

kr1, . . . , kr1
︸ ︷︷ ︸

k times

, . . . , krm, . . . , krm
︸ ︷︷ ︸

k times

)

and

Ck =
(

kc1, . . . , kc1
︸ ︷︷ ︸

k times

, . . . , kcn, . . . , krn
︸ ︷︷ ︸

k times

)

.

In particular, tables D ∈ Σ(Rk, Ck) are km×kn matrices whose total sum of entries
is equal to k2N , where N = r1 + . . . + rm = c1 + . . . + cn. Let S = Sk be the set
of entries in the upper left k × k corner of a matrix from Σ(Rk, Ck), let Yk be the
independence table of margins (Rk, Ck) and let Zk be the typical table of margins
(Rk, Ck). It is not hard to show that σS(Zk) = k2z11 and σS(Yk) = k2y11, so the
ratio between the two sums remains fixed (and not equal to 1) as k grows.

It looks plausible that the independence table Y is indeed close with high prob-
ability to a random table D ∈ Σ(R, C), if, instead of the uniform distribution in
Σ(R, C), a table D = (dij) is sampled from the Fisher-Yates probability measure,
where

Pr (D) = (N !)−1

(
m∏

i=1

ri!

)



n∏

j=1

cj !








∏

ij

1

dij !



 ;

see [DG95]. Compared with the uniform distribution, the Fisher-Yates measure
gives less weight to tables with large entries.

Let p, q > 0 be real numbers such that p + q = 1. Recall that a discrete random
variable x has geometric distribution if

Pr {x = k} = pqk for k = 0, 1, . . .

We have
Ex =

q

p
.

Consequently,

if Ex = z then p =
1

1 + z
and q =

z

1 + z
.

The following interpretation of the typical matrix was suggested to the author by
J.A. Hartigan; see [BH09].
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(1.7) Theorem. Let Z = (zij) be the m×n typical table with margins (R, C). Let
X = (xij) be the random m× n matrix of independent geometric random variables
xij such that

Exij = zij for all i, j.

Then the probability mass function of X is constant on the set Σ(R, C) of contin-
gency tables with margins (R, C), and, moreover,

Pr {X = D} = e−g(Z) for all D ∈ Σ(R, C),

where g is the function defined in Section 1.2.

In other words, the multivariate geometric distribution X whose expectation is
the typical matrix Z, when conditioned on the set Σ(R, C) of contingency tables,
results in the uniform probability distribution on Σ(R, C). It turns out that for
a positive m × n matrix A the value of g(A) is equal to the maximum possible
entropy of a random matrix with expectation A and values in the set Z

m×n
+ of

m × n non-negative integer matrices. Such a maximum entropy random matrix is
necessarily a matrix with independent geometrically distributed entries. Therefore,
the distribution of X in Theorem 1.7 can be characterized as the maximum entropy
distribution in the class consisting of all probability distributions on Z

m×n
+ whose

expectations lie in the affine subspace consisting of the matrices with row sums R
and column sums C; see [BH09].

(1.8) Possible ramifications and open questions. Theorem 1.7 allows one to
interpret Theorem 1.5 as a law of large numbers for contingency tables: with re-
spect to sums σS(D) for sufficiently large sets S of entries, a random contingency
table D ∈ Σ(R, C) behaves approximately as the matrix of independent geomet-
ric variables whose expectation is the typical table. Similar concentration results
can be obtained for other well-behaved functions on contingency tables. One can
ask whether the distribution of a particular entry of a random table D ∈ Σ(R, C)
is asymptotically geometric, as the dimensions m and n of the table grow. For
example, does the first entry d11 of the table converge in distribution to the geo-
metric random variable with expectation z11 when the margins (R, C) are cloned,
(R, C) 7−→ (Rk, Ck), as in (1.6.1)?

Let us fix a subset

W ⊂
{

(i, j) : i = 1, . . . , m; j = 1, . . . , n
}

.

Let us consider the set Σ(R, C; W ) of m×n non-negative integer matrices D = (dij)
with row sums R, column sums C and such that dij = 0 for (i, j) /∈ W . Assuming
that Σ(R, C; W ) is non-empty, we can consider Σ(R, C; W ) as a finite probability
space with the uniform measure and ask what a random table D ∈ Σ(R, C; W )
looks like.

As above, we define the typical table Z as the unique maximum of g(X) on the
polytope of non-negative matrices X = (xij) with row sums R, column sums C
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and such that xij = 0 for (i, j) /∈ W . One can prove versions of Theorem 1.5 and
Theorem 1.7 in this more general context for subsets S ⊂ W . However, it appears
that for Theorem 1.5 one has to assume, additionally, that there are no too large
or too small values among the entries zij of the typical table Z = (zij), cf. the
example in Section 1.6. In our case, when W is the set of all pairs (i, j), Lemma 2.4
ensures that the entries zij are not too small while Lemma 3.3 ensures that they
are not too large.

In [Ba08] another variation of the problem is considered: what if we require
dij ∈ {0, 1} for all i, j. It turns out that a random D is close to a particular matrix
maximizing the sum of entropies of the entries among all matrices with row sums
R, column sums C and entries between 0 and 1.

In the rest of the paper, we prove Theorem 1.5.
In Section 2, we recall the main results of [Ba09] connecting the typical table

Z with an asymptotic estimate for the number |Σ(R, C)| of tables and also prove
Theorem 1.7.

In Section 3, we prove Theorem 1.5 under the additional assumption that the
total sum N of the entries is bounded by a polynomial in m and n.

In Section 4, we complete the proof of Theorem 1.5.

2. Preliminaries: an asymptotic formula for the number of tables

In [Ba09], the following result was proved; see Theorem 1.1 there.

(2.1) Theorem. Let R = (r1, . . . , rm) and C = (c1, . . . , cn) be positive integer
vectors such that r1 + . . . + rm = c1 + . . . + cn = N . Let us define a function

F (x,y) =

(
m∏

i=1

x−ri

i

)



n∏

j=1

y
−cj

j








∏

i,j

1

1 − xiyj





for x = (x1, . . . , xm) and y = (y1, . . . , yn) .

Then F (x,y) attains its infimum

ρ(R, C) = min
0<x1,... ,xm<1
0<y1,... ,yn<1

F (x,y)

on the open cube 0 < xi, yj < 1 and for the number |Σ(R, C)| of non-negative
integer m × n matrices with row sums R and column sums C we have

ρ(R, C) ≥ |Σ(R, C)| ≥ N−γ(m+n)ρ(R, C),

where γ > 0 is an absolute constant.

�
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As is remarked in [Ba09], the substitution xi = e−si , yj = e−tj transforms
lnF (x,y) into a convex function

G(s, t) =

m∑

i=1

risi +

n∑

j=1

cjtj −
∑

i,j

ln
(
1 − e−si−tj

)

for s = (s1, . . . , sm) and t = (t1, . . . , tn)

on the positive orthant R
m
+ × R

n
+. It turns out that the typical table Z is the

solution to the problem that is convex dual to the problem of minimizing G. The
following result was proved in [Ba09]; see Lemma 1.4 there.

(2.2) Lemma. Let P = P(R, C) be the polytope of m × n non-negative matrices
X = (xij) with row sums R and column sums C and let Z ∈ P(R, C) be the typical
table; see Section 1.2.

Then one can write Z = (zij),

zij =
ξiηj

1 − ξiηj
for all i, j

and some 0 < ξ1, . . . , ξm; η1, . . . , ηn < 1 such that the minimum ρ(R, C) of the
function F (x,y) in Theorem 2.1 is attained at x∗ = (ξ1, . . . , ξm) and
y∗ = (η1, . . . , ηn):

F (x∗,y∗) = ρ(R, C) = min
0<x1,... ,xm<1
0<y1,... ,yn<1

F (x,y).

Moreover,

ρ(R, C) = exp {g(Z)} .

�

Theorem 1.7 is a particular case of a more general result proved in [BH09].
Nevertheless, we present the proof of Theorem 1.7 here for completeness and since
some elements of the proof will be recycled later.

(2.3) Proof of Theorem 1.7. From Lemma 2.2, we have zij > 0 for all i, j. Since
Z lies in the relative interior of the transportation polytope P(R, C), the gradient
of g at Z must be orthogonal to the subspace of m × n matrices with row and
column sums equal to 0. Therefore,

(2.3.1) ln

(
zij + 1

zij

)

= λi + µj for all i, j

and some λ1, . . . , λm and µ1, . . . , µn.
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For the geometric random variables xij we have

Pr
{

xij = dij

}

= pijq
dij

ij =

(
1

1 + zij

)(
zij

1 + zij

)dij

Using (2.3.1), for D ∈ Σ(R, C), D = (dij), we obtain

Pr
{
X = D

}
=




∏

i,j

1

1 + zij




∏

i,j

(
zij

1 + zij

)dij

=




∏

i,j

1

1 + zij




∏

i,j

e−(λi+µj)dij

=




∏

i,j

1

1 + zij





(
m∏

i=1

e−λiri

)



n∏

j=1

e−µjcj



 .

Also,

e−g(Z) =
∏

i,j

z
zij

ij

(1 + zij)
zij+1

=




∏

i,j

1

1 + zij




∏

i,j

(
zij

1 + zij

)zij

=




∏

i,j

1

1 + zij




∏

i,j

e−(λi+µj)zij

=




∏

i,j

1

1 + zij





(
m∏

i=1

e−λiri

)



n∏

j=1

e−µjcj



 ,

which completes the proof. �

We will need a lower bound for the entries of the typical table Z = (zij) proved
in [B+08]; see Theorem 3.3 there.

(2.4) Lemma. Let

r+ = max
i=1,... ,m

ri, r− = min
i=1,... ,m

ri and

c+ = max
j=1,... ,n

cj , c− = min
j=1,... ,n

cj .

Let Z = (zij) be the typical table with margins (R, C). Then

zij ≥ r−c−
r+m

and zij ≥ c−r−
c+n

for all i, j.

�
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(2.5) Corollary. Let Z = (zij) be the typical table of δ-smooth margins (R, C).
Then

zij ≥ δ3N

mn
for all i, j.

Proof. In Lemma 2.4, we have

r− ≥ δN

m
, c− ≥ δN

n
and r+ ≤ N

δm
,

and the result follows. �

3. Proof of Theorem 1.5 assuming that N is polynomially bounded

In this section we prove Theorem 1.5 under the additional assumption that the
total sum N of entries is bounded by a polynomial in m and n, specifically that
N ≤ (mn)1/δ. We use Theorem 1.7. We start with a standard large deviation
inequality.

(3.1) Lemma. Let X = (xij) be the m×n matrix of independent geometric random
variables xij such that EX = Z, Z = (zij). Let

S ⊂
{

(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n
}

be a non-empty set. Recall that

σS(X) =
∑

(i,j)∈S

xij , σS(Z) =
∑

(i,j)∈S

zij

and let us denote

νS(Z) =
∑

(i,j)∈S

z2
ij .

Then

(1) For any real a and for any 0 < t ≤ 2, we have

Pr
{
σS(X) ≤ −a + σS(Z)

}
≤ exp

{

−ta +
t2

2

(
σS(Z) + νS(Z)

)
}

.

(2) For any real a and for any 0 < t ≤ min
{
1/3, 1/2zij : (i, j) ∈ S

}
, we have

Pr
{
σS(X) ≥ a + σS(Z)

}
≤ exp

{

−ta + 2t2
(
σS(Z) + νS(Z)

)}

.
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Proof. We use the Laplace transform method; see, for example, Section 1.6 of
[Le01]. To prove Part (1), for any t > 0 we compute

E e−tσS(X) =
∏

(i,j)∈S

E e−txij =
∏

(i,j)∈S

pij

1 − e−tqij
,

where
Pr
{
xij = k

}
= pijq

k
ij for k = 0, 1, . . .

Using the fact that e−t ≤ 1 − t + t2/2 for t ≥ 0, we obtain

E e−tσS(X) ≤
∏

(i,j)∈S

pij

pij + (t − t2/2)qij
=

∏

(i,j)∈S

1

1 + (t − t2/2)zij
.

Using the fact that t − t2/2 ≥ 0 for 0 ≤ t ≤ 2 and that ln(1 + x) ≥ x − x2/2 for
x ≥ 0, we obtain

E e−tσS(X) ≤ exp






−
∑

(i,j)∈S

ln
(
1 +

(
t − t2/2

)
zij

)







≤ exp






−
∑

(i,j)∈S

(t − t2/2)zij +
1

2

∑

(i,j)∈S

(t − t2/2)2z2
ij







≤ exp

{

−tσS(Z) +
t2

2

(
σS(Z) + νS(Z)

)
}

.

Then

Pr
{
σS(X) ≤ −a + σS(Z)

}
= Pr

{
−tσS(X) ≥ ta − tσS(Z)

}

= Pr
{

e−tσS(X) ≥ eta−tσS (Z)
}

≤ e−ta+tσS(Z)E e−tσS(X)

≤ exp

{

−ta +
t2

2

(
σS(Z) + νS(Z)

)
}

.

To prove Part (2), we observe that et < 1 + t + t2 for all 0 < t ≤ 1. Therefore,
for 0 < t ≤ min

{
1/3, 1/2zij : (i, j)

}
, we have

et < 1 + 2t ≤ 1 + zij

zij
=

1

qij

and hence

E etσS(X) =
∏

(i,j)∈S

E etxij =
∏

(i,j)∈S

pij

1 − etqij

≤
∏

(i,j)∈S

pij

pij − (t + t2)qij
=

∏

(i,j)∈S

1

1 − (t + t2)zij
.
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Since t ≤ 1/3 we have t + t2 ≤ (4/3)t and hence (t + t2)zij ≤ 2/3. Using the fact
that ln(1 − x) ≥ −x − x2 for 0 ≤ x ≤ 2/3, we obtain

E etσS(X) ≤ exp






−
∑

(i,j)∈S

ln
(
1 − (t + t2)zij

)







≤ exp







∑

(i,j)∈S

(
t + t2

)
zij +

∑

(i,j)∈S

(
t + t2

)2
z2
ij







≤ exp
{

tσS(Z) + 2t2 (σS(Z) + νS(Z))
}

.

Therefore,

Pr
{
σS(X) ≥ a + σS(Z)

}
= Pr

{
tσS(X) ≥ ta + tσS(Z)

}

= Pr
{

etσS(X) ≥ eta+tσS (Z)
}

≤ e−ta−tσS (Z)E etσS(X)

≤ exp
{

−ta + 2t2
(
σS(Z) + νS(Z)

)}

.

�

One can observe that σS(Z) + νS(Z) is the variance of σS(X).

(3.2) Corollary. Let (R, C) be δ-smooth margins with the typical table Z = (zij)
and let X = (xij) be the matrix of independent geometric variables such that EX =
Z. Suppose that

zij ≤ αN

mn
for all (i, j) ∈ S

and some α ≥ 1. Then

(1) For any 0 < ǫ < 1 we have

Pr
{
σS(X) ≤ (1 − ǫ)σS(Z)

}
≤ exp

{

− ǫ2δ4|S|
2 + 2δα

}

.

(2) For any 0 < ǫ < 1 we have

Pr
{
σS(X) ≥ (1 + ǫ)σS(Z)

}
≤ exp

{

− ǫ2δ4|S|
8 + 8δα

}

.

Proof. Choosing

a = ǫσS(Z) and t =
ǫσS(Z)

σS(Z) + νS(Z)
12



in Part (1) of Lemma 3.1, we obtain

(3.2.1) Pr
{
σS(X) ≤ (1 − ǫ)σS(Z)

}
≤ exp

{

− ǫ2σ2
S(Z)

2(σS(Z) + νS(Z))

}

.

Furthermore,

(3.2.2) νS(Z) =
∑

(i,j)∈S

z2
ij ≤ αN

mn

∑

(i,j)∈S

zij =
αN

mn
σS(Z).

By Corollary 2.5,

(3.2.3) δS(Z) ≥ |S|δ
3N

mn
.

We recall that

(3.2.4)
N

mn
≥ δ.

Summarizing (3.2.1)–(3.2.4), we get

Pr
{
σS(X) ≤ (1 − ǫ)σS(Z)

}
≤ exp

{

− ǫ2σS(Z)mn

2 (mn + αN)

}

≤ exp

{

− ǫ2|S|δ3N

2 (mn + αN)

}

≤ exp

{

− ǫ2|S|δ3

2 (mn/N + α)

}

≤ exp

{

− ǫ2δ4|S|
2 + 2δα

}

and Part (1) follows.
Let us choose a = ǫσS(Z) in Part (2) of Lemma 3.1. Let

t0 =
ǫσS(Z)

4 (σS(Z) + νS(Z))
.

Clearly, t0 ≤ 1/4 < 1/3. If t0 < mn/2αN , we choose t = t0 and if t0 ≥ mn/2αN ,
we choose t = mn/2αN in Part (2) of Lemma 3.1. Hence if t0 < mn/2αN , we
obtain as above in Part (1)

(3.2.5)

Pr
{
σS(X) ≥ (1 + ǫ)σS(Z)

}
≤ exp

{

− ǫ2σ2
S(Z)

8 (σS(Z) + νS(Z))

}

≤ exp

{

− ǫ2δ4|S|
8 + 8δα

}

.
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If t0 ≥ mn/2αN then

σS(Z) + νS(Z) ≤ ǫσS(Z)αN

2mn
.

Therefore, choosing t = mn/2αN in Part (2) of Lemma 3.1, we obtain

Pr
{
σS(X) ≥ (1 + ǫ)σS(Z)

}
≤ exp

{

−ǫmnσS(Z)

2αN
+

m2n2 (σS(Z) + νS(Z))

2α2N2

}

≤ exp

{

−ǫσS(Z)mn

4αN

}

.

Using (3.2.3), we obtain

(3.2.6) Pr
{
σS(X) ≥ (1 + ǫ)σS(Z)

}
≤ exp

{

−ǫδ3|S|
4α

}

.

Comparing (3.2.5) and (3.2.6), we complete the proof. �

Now we can prove the following weaker version of Theorem 1.5.

(3.3) Proposition. Let us fix real numbers 0 < δ ≤ 1 and κ > 0. Then there
exists a positive integer q = q(δ, κ) such that the following holds:

Suppose that (R, C) are δ-smooth margins such that n ≥ m ≥ q and let Z = (zij)
be the typical table with margins (R, C). Let

S ⊂
{
(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

be a set such that
|S| ≥ δmn

and suppose that the entries zij of the typical table satisfy the inequalities

zij ≤ αN

mn
for α = 2δ−1m1/3

and all (i, j) ∈ S.
Suppose further that for the total sum N of entries we have

N ≤ (mn)1/δ.

Let

ǫ =
δ lnn

m1/3
.

If ǫ ≤ 1, we have

Pr
{
D ∈ Σ(R, C) : σS(D) ≤ (1 − ǫ)σS(Z)

}
≤ n−κn and

Pr
{
D ∈ Σ(R, C) : σS(D) ≥ (1 + ǫ)σS(Z)

}
≤ n−κn.

14



Proof. Let X = (xij) be the m × n matrix of independent geometric random vari-
ables xij such that EX = Z. By Theorem 1.7, the distribution of X conditioned
on X ∈ Σ(R, C) is uniform and hence

Pr
{
D ∈ Σ(R, C) : σS(D) ≤ (1 − ǫ)σS(Z)

}

=
Pr
{
X : σS(X) ≤ (1 − ǫ)σS(Z) and X ∈ Σ(R, C)

}

Pr
{
X : X ∈ Σ(R, C)

} .

Similarly,

Pr
{
D ∈ Σ(R, C) : σS(D) ≥ (1 + ǫ)σS(Z)

}

=
Pr
{
X : σS(X) ≥ (1 + ǫ)σS(Z) and X ∈ Σ(R, C)

}

Pr
{
X : X ∈ Σ(R, C)

} .

By Theorem 1.7, Lemma 2.2 and Theorem 2.1 we get

Pr
{
X ∈ Σ(R, C)

}
= e−g(Z) |Σ(R, C)| ≥ N−γ(m+n)

for some absolute constant γ > 0. Since N ≤ (mn)1/δ, we obtain

Pr
{
D ∈ Σ(R, C) : σS(D) ≤ (1 − ǫ)σS(Z)

}

≤ (mn)γ1(m+n)Pr
{
X : σS(X) ≤ (1 − ǫ)σS(Z)

}

and similarly

Pr
{
D ∈ Σ(R, C) : σS(D) ≥ (1 + ǫ)σS(Z)

}

≤ (mn)γ1(m+n)Pr
{
X : σS(X) ≥ (1 + ǫ)σS(Z)

}

for some constant γ1 = γ(δ) > 0. By Part (1) of Corollary 3.2,

Pr
{
X : σS(X) ≤ (1 − ǫ)σS(Z)

}
≤ exp

{

− δ7mn ln2 n

m2/3(2 + 4m1/3)

}

,

while by Part (2) of Corollary 3.2

Pr
{
X : σS(X) ≥ (1 + ǫ)σS(Z)

}
≤ exp

{

− δ7mn ln2 n

m2/3(8 + 16m1/3)

}

,

and the result follows. �

Next, we prove that large entries of the typical table Z belong to a small number
of rows.
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(3.4) Lemma. Let (R, C) be δ-smooth margins and let Z = (zij) be the m × n
typical table with margins (R, C). Let α ≥ 2mn/N be a real number. Let

I =
{

i : zij ≥ αN

mn
for some j

}

.

Then

|I| ≤ 4m

δα
.

Proof. By (2.3.1), we can write

ln

(
zij + 1

zij

)

= λi + µj for all i, j

and some λ1, . . . , λm and µ1, . . . , µn. Since λi +µj > 0 for all i and j, without loss
of generality we may assume that λ1, . . . , λm and µ1, . . . , µn are positive.

Let
I0 =

{

i : λi ≤ mn

αN

}

and J0 =
{

j : µj ≤ mn

αN

}

.

If i ∈ I then for some j we have

mn

αN
≥ 1

zij
≥ ln

(
zij + 1

zij

)

≥ λi

and therefore I ⊂ I0. Similarly, if zij ≥ αN/mn for some i then j ∈ J0. Hence
without loss of generality, we may assume that J0 6= ∅.

Let us fix a j0 ∈ J0. Then for any i ∈ I0 we have

ln

(
zij0 + 1

zij0

)

≤ 2mn

αN
.

Hence for all i ∈ I0 we have

1

zij0

≤ exp

{
2mn

αN

}

− 1 ≤ 4mn

αN

(using the fact that ex ≤ 1 + 2x for 0 ≤ x ≤ 1). Hence

zij0 ≥ αN

4mn
for i ∈ I0.

Since
m∑

i=1

zij0 = cj0 ≤ N

δn
,

we conclude that

|I| ≤ |I0| ≤ 4cj0mn

αN
≤ 4m

δα
.

�

Finally, we prove the main result of this section.
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(3.5) Proposition. In Theorem 1.5 assume, additionally, that N ≤ (mn)1/δ

(equivalently, drop the upper bound assumption for zij in Proposition 3.3). Then
the conclusion of Theorem 1.5 holds (equivalently, the conclusion of Proposition 3.3
holds).

Proof. Let us choose

α = 2δ−1m1/3

and let

I =

{

i : zij ≥ αN

mn
for some j

}

.

Since N/mn ≥ δ, we have α ≥ 2mn/N and by Lemma 3.4 we have

|I| ≤ 2m2/3.

Let

S0 =
{
(i, j) ∈ S : i /∈ I

}
.

Then

|S \ S0| ≤ n|I| ≤ 2nm2/3,

and hence for δ0 = δ/2 and m sufficiently large, n ≥ m ≥ q(δ), we have

|S0| ≥ δ0mn.

Furthermore, we have

σS\S0
(D), σS\S0

(Z) ≤
∑

i∈I

ri ≤ |I| N

δm
≤ 2N

δm1/3
.

On the other hand, by Corollary 2.5, we have

σS(Z) ≥ |S|δ
3N

mn
≥ δ4N.

Therefore,

(3.5.1) σS0
(Z) = σS(Z) − σS\S0

(Z) ≥
(

1 − 2

δ5m1/3

)

σS(Z)

and, similarly,

(3.5.2) σS(Z) − σS\S0
(D) ≥

(

1 − 2

δ5m1/3

)

σS(Z).
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We have

Pr {D ∈ Σ(R, C) : σS(D) ≤ (1 − ǫ)σS(Z)}
≤ Pr {D ∈ Σ(R, C) : σS0

(D) ≤ (1 − ǫ)σS(Z)} .

By (3.5.1) we obtain

(1 − ǫ)σS(Z) =

(

1 − δ lnn

m1/3

)

σS(Z) ≤ (1 − ǫ0)

(

1 − 2

δ5m1/3

)

σS(Z)

≤ (1 − ǫ0) σS0
(Z), where

ǫ0 =
δ lnn

2m1/3
,

and m is sufficiently large, n ≥ m ≥ q(δ).
Applying Proposition 3.3 with S0 ⊂ S and δ0 = δ/2, we conclude that if m is

sufficiently large, n ≥ m ≥ q(δ, κ), we have

Pr
{
D ∈ Σ(R, C) : σS0

(D) ≤ (1 − ǫ)σS(Z)
}

≤ Pr
{
D ∈ Σ(R, C) : σS0

(D) ≤ (1 − ǫ0)σS0
(Z)
}

≤ n−κn.

Similarly, we have

Pr
{
D ∈ Σ(R, C) : σS(D) ≥ (1 + ǫ)σS(Z)

}

= Pr
{
D ∈ Σ(R, C) : σS0

(D) ≥ (1 + ǫ)σS(Z) − σS\S0
(D)

}

≤ Pr
{
D ∈ Σ(R, C) : σS0

(D) ≥ (1 + ǫ)
(
σS(Z) − σS\S0

(D)
)}

.

By (3.5.2) we obtain

(1 + ǫ)
(
σS(Z) − σS\S0

(D)
)

≥ (1 + ǫ)

(

1 − 2

δ5m1/3

)

σS(Z)

≥ (1 + ǫ0) σS0
(Z), where

ǫ0 =
δ lnn

2m1/3
,

and m is sufficiently large, n ≥ m ≥ q(δ).
Applying Proposition 3.3 with S0 ⊂ S and δ0 = δ/2, we conclude that if m is

sufficiently large, n ≥ m ≥ q(δ, κ), we have

Pr
{
D ∈ Σ(R, C) : σS0

(D) ≥ (1 + ǫ)
(
σS(Z) − σS\S0

(D)
)}

≤ Pr
{
D ∈ Σ(R, C) : σS0

(D) ≥ (1 + ǫ0)σS0
(Z)
}

≤ n−κ

and the result follows. �
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4. Proof of Theorem 1.5

It remains to prove Theorem 1.5 in the case of a large (superpolynomial in mn)
total sum N of entries. More precisely, we assume that N > (mn)7 since the case
of N ≤ (mn)7 is covered by Proposition 3.5 with a sufficiently small δ ≤ 1/7 (we
recall that δ-smooth margins are also δ′-smooth with any 0 < δ′ < δ).

The idea of the proof is as follows: given margins (R, C) whose total sum of
entries is N , we construct new margins (R′, C′) whose total sum of entries N ′ is
bounded by a polynomial in mn and a scaling map

T : Σ(R, C) −→ Σ(R′, C′),

which, roughly, scales every table D ∈ Σ(R, C) by the same factor t. We then
deduce Theorem 1.5 for margins (R, C) from that for margins (R′, C′).

We have
R′ ≈ t−1R, C′ ≈ t−1C and T (D) ≈ t−1D,

where “≈” stands for rounding in some consistent way.
In constructing the map T we essentially follow the ideas of [D+97].

(4.1) Lattices, bases, and fundamental parallelepipeds. Let V be a finite-
dimensional real vector space and let Λ ⊂ V be a lattice, that is, a discrete additive
subgroup of V which spans V. Suppose that dimV = k and let u1, . . . , uk be a
basis of Λ. The set

Π =

{
k∑

i=1

λiui : 0 ≤ λi < 1 for i = 1, . . . , k

}

is called the fundamental parallelepiped associated with the basis u1, . . . , uk.
Suppose that A is an affine space, with dimA = dimV, on which V acts by

translations: a + v ∈ A for all a ∈ A and v ∈ V and a + (v1 + v2) = (a + v1) + v2

for all a ∈ A and v1, v2 ∈ V. Let us choose a ∈ A. The set Λa = a + Λ is called a
point lattice in A. As is known, the translations v + Π : v ∈ Λa cover A without
overlapping.

We will also use the following standard fact. Suppose that Λ1 ⊃ Λ is a finer
lattice and let |Λ1/Λ| < ∞ be its index. Then, for any a, b ∈ A we have

|(a + Π) ∩ (b + Λ1)| = |Λ1/Λ|,

see for example Chapter VII of [Ba02].
Let us fix a point lattice Λa ⊂ A and a fundamental parallelepiped Π ⊂ V of

Λ. Given a point x ∈ A, we define its rounding y = ⌊x⌋Λa,Π as the unique point
y ∈ Λa such that x ∈ y + Π.

In our case, V is the space of real m×n matrices with the row and column sums
equal to 0, so dimV = (m− 1)(n− 1), while A is the affine space of m×n matrices
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with prescribed integer row and column sums, so that for all D ∈ A and U ∈ V we
have D + U ∈ A. Furthermore, let Λ ⊂ V be the lattice of integer matrices and let
Λ′ ⊂ A be the point lattice consisting of integer matrices.

As is shown, for example, in [D+97], lattice Λ has a basis consisting of the
matrices Uij for 1 ≤ i ≤ n−1, 1 ≤ j ≤ m−1 that have 1 in the (i, j) and (i+1, j+1)
positions, −1 in the (i + 1, j) and (i, j + 1) positions and zeros elsewhere. Let Π
be the fundamental parallelepiped of this basis {Uij}. We call this parallelepiped
Π standard. We note that

(4.1.1) −2 ≤ xij ≤ 2 for all i, j and all X ∈ Π, X = (xij) .

Finally, for positive integer t let Λ1 = t−1Λ. Hence |Λ1/Λ| = t(m−1)(n−1).

(4.2) The t-scaling map T . Let us choose a positive integer t and an arbitrary
D0 ∈ Σ(R, C), where R = (r1, . . . , rm) and C = (c1, . . . , cn). Let us define a
positive m × n matrix B as follows. First, we obtain D1 by rounding up to the
nearest integer every entry of t−1D0 and adding 2 to the result. In particular, D1

is a positive integer matrix. Let

B = D1 − t−1D0, so D1 = B + t−1D0.

Clearly, B = (bij) is an m × n matrix with

(4.2.1) 2 ≤ bij < 3 for all i, j.

Let R′ = (r′1, . . . , r′m) and C′ = (c′1, . . . , c′n) be the row and column sums of D1

respectively. Thus R′ and C′ are positive integer vectors and

t−1ri + 2n ≤ r′i ≤ t−1ri + 3n for i = 1, . . . , m

and

t−1cj + 2m ≤ c′j ≤ t−1cj + 3m for j = 1, . . . , n.

(4.2.2)

Let A be the affine subspace of matrices with row sums R′ and column sums C′

and let Λ′ ⊂ A be the point lattice of integer matrices. Thus Λ′ = D1 +Λ, where Λ
is the lattice of m×n integer matrices with zero row and column sums, see Section
4.1. For a matrix D ∈ Σ(R, C) we define a matrix T (D) by

T (D) = ⌊t−1D + B⌋Λ′,Π,

where Π is the standard parallelepiped of Λ; see Section 4.1. In words: given a table
D ∈ Σ(R, C), matrix T (D) is the unique integer matrix such that the translation
T (D)+Π of the standard parallelepiped Π contains t−1D+B. Clearly, T (D) is an
m×n integer matrix with row sums R′ and column sums C′. Moreover, since every
entry of t−1D+B is at least 2 and because of (4.1.1), matrix T (D) is non-negative.

Hence we have defined a map

T : Σ(R, C) −→ Σ(R′, C′).

We summarize some of its properties below.
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(4.3) Lemma.

(1) For all Y ∈ Σ(R′, C′) we have

|T −1(Y )| ≤ t(m−1)(n−1);

(2) Let S ⊂
{
(i, j) : i = 1, . . . , m, j = 1, . . . , n

}
be a set of indices. Then

t−1σS(D) ≤ σS(T (D)) ≤ t−1σS(D) + 5|S|
for all D ∈ Σ(R, C).

Proof. Given Y ∈ Σ(R′, C′), we compute T −1(Y ) as follows: we consider the trans-
lation (Y − B) + Π of the standard parallelepiped Π and observe that

T −1(Y ) =
{

D : t−1D ∈ (Y − B) + Π and

D is a non-negative integer matrix
}

.

Recall that Λ ⊂ V is the lattice of m×n integer matrices with the row and column
sums equal to 0 and that Λ1 = t−1Λ. In the affine space of m×n matrices with row
sums t−1R and column sums t−1C let us consider the point lattice Λ′

1 = t−1D0+Λ1

consisting of matrices t−1D where D is an integer matrix. Then

|((Y − B) + Π) ∩ Λ′
1| = |Λ1/Λ| = t(m−1)(n−1)

and Part (1) follows. Part (2) follows because of (4.1.1) and (4.2.1). �

(4.4) Lemma. Suppose that

r′i, c′j ≥ (mn)2 for all i, j.

Then, for any ζ ≥ 0 we have

Pr
{

D ∈ Σ(R, C) : σS(D) ≥ tζ
}

≤ βPr
{

Y ∈ Σ(R′, C′) : σS(Y ) ≥ ζ
}

and

Pr
{

D ∈ Σ(R, C) : σS(D) ≤ tζ
}

≤ βPr
{

Y ∈ Σ(R′, C′) : σS(Y ) ≤ ζ + 5|S|
}

,

where β > 0 is an absolute constant.

Proof. By Part (2) of Lemma 4.3, if σS(D) ≥ tζ then σS(Y ) ≥ ζ for Y = T (D).
Using Part (1) of Lemma 4.3, we can write

Pr
{

D ∈ Σ(R, C) : σS(D) ≥ tζ
}

=

∣
∣D ∈ Σ(R, C) : σS(D) ≥ tζ

∣
∣

|Σ(R, C)|

≤ t(m−1)(n−1)

∣
∣Y ∈ Σ(R′, C′) : σS(Y ) ≥ ζ

∣
∣

|Σ(R, C)|

=
|Σ(R′, C′)|
|Σ(R, C)| t(m−1)(n−1)Pr

{

Y ∈ Σ(R′, C′) : σS(Y ) ≥ ζ
}

.
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Similarly, by Part (2) of Lemma 4.3, if σS(D) ≤ tζ then σS(Y ) ≤ ζ + 5|S| for
Y = T (D) and

Pr
{

D ∈ Σ(R, C) : σS(D) ≤ tζ
}

≤ |Σ(R′, C′)|
|Σ(R, C)| t(m−1)(n−1)Pr

{

Y ∈ Σ(R′, C′) : σS(Y ) ≤ ζ + 5|S|
}

.

It is shown in [D+97] that for sufficiently large margins, the number of contingency
tables is approximated within a constant factor by the volume of the corresponding
transportation polytope; see Section 1.2. In particular, estimates of [D+97] imply
that

|Σ(R′, C′)| ≤ β1 volP(R′, C′) and |Σ(R, C)| ≥ β2 volP(R, C)

for some absolute constants β1, β2 > 0.
From (4.2.2), we have

ri ≥ t(r′i − 3n) ≥ tr′i

(

1 − 3

m2n

)

for i = 1, . . . , m and

cj ≥ t(r′i − 3m) ≥ tc′j

(

1 − 3

mn2

)

for j = 1, . . . , n.

It follows then that

volP(R, C) ≥ β3t
(m−1)(n−1) volP(R′, C′)

for some absolute constant β3 > 0. The result now follows. �

Next, we show that the t-scaling map T almost scales the typical table provided
the margins R′, C′ are large enough, that is, Z ′ ≈ t−1Z. The idea of the proof is
roughly the following: if margins (R′, C′) and (R, C) are large enough, then the
corresponding typical tables Z ′ and Z roughly optimize the functional

∑

i,j lnxij on
the corresponding transportation polytopes and hence the map X 7−→ tX roughly
maps Z ′ to Z.

(4.5) Lemma. Let Z = (zij) be the typical table with margins (R, C), let Z ′ =
(
z′ij
)

be the typical table with margins (R′, C′) obtained by t-scaling and suppose
that

z′ij ≥ (mn)4 + 3 for all i, j.

Then ∣
∣
∣
zij

tz′ij
− 1
∣
∣
∣ ≤ β

mn
for all i, j

and some absolute constant β > 0.
22



Proof. First, we prove some useful inequalities for the function

g(x) = (x + 1) ln(x + 1) − x lnx.

We have

g(tx)− g(x) =

∫ tx

x

g′(y) dy =

∫ tx

x

ln

(
y + 1

y

)

dy ≤
∫ tx

x

dy

y
= ln(tx)− lnx = ln t.

Also,

g(x) =(x + 1) ln(x + 1) − (x + 1) lnx + (x + 1) lnx − x lnx

=(x + 1) ln

(
x + 1

x

)

+ lnx = lnx + 1 + O

(
1

x

)

for x ≥ 1.

Finally, we note that

g′′(x) = − 1

x(x + 1)
.

Since from (4.2.2) we have

ri ≤ tr′i and cj ≤ tc′j for all i, j

we have

(4.5.1) max
X∈P(R,C)

g(X) ≤ ln t + max
X∈P(R′,C′)

g(X).

Let B be the matrix constructed in Section 4.2 and let W = t(Z ′ − B) ∈ P(R, C).
Hence

wij ≥ t(mn)4 for all i, j.

Since

g (wij) = 1 + lnwij + O

(
1

m4n4

)

and g
(
z′ij
)

= 1 + ln z′ij + O

(
1

m4n4

)

,

we have

g(W ) = g(Z ′) + ln t + O

(
1

m3n3

)

.

From (4.5.1) it follows that

(4.5.2) g(Z) − g(W ) = O

(
1

m3n3

)

.

Next, we are going to exploit the strong concavity of g and use the following stan-
dard inequality:
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if g′′(x) ≤ −α for some α > 0 and all a ≤ x ≤ b then

g

(
a + b

2

)

− 1

2
g(a)− 1

2
g(b) ≥ α(b − a)2

8
.

If for some i, j we have |wij −zij | ≥ (mn)−1wij , then in view of (4.5.2), for some
point U on the interval connecting W and Z and all sufficiently large mn, we will
have

g(U) > g(Z),

which is a contradiction. Thus
∣
∣
∣
∣

zi

wij
− 1

∣
∣
∣
∣
≤ 1

mn
for all i, j

and all sufficiently large mn. Since

∣
∣
∣
∣
∣

wij

tz′ij
− 1

∣
∣
∣
∣
∣
≤ 3

z′ij
≤ 3

(mn)4
,

the proof follows. �

(4.6) Proof of Theorem 1.5. Without loss of generality we assume that N ≥
(mn)7 since the case of a polynomially bounded N is handled in Proposition 3.5.

Let us choose

t =

⌊
N

(mn)6

⌋

and consider the t-scaling map T : Σ(R, C) −→ Σ(R′, C′) . Since margins (R, C)
are δ-smooth, we have

(mn)6 ≤ N ′ ≤ (mn)7 and r′i, c
′
j ≥ (mn)4 for all i, j

and all sufficiently large n ≥ m.
Let us choose 0 < δ1 < δ. It follows by (4.2.2) that the margins (R′, C′) are

δ1-smooth for all sufficiently large n ≥ m. Let Z ′ be the typical table of (R′, C′),
Z ′ =

(
z′ij
)
. By Corollary 2.5,

z′ij ≥ (δ1)
3 N ′

mn
.

Therefore, for all sufficiently large m + n we have

z′ij ≥ (mn)4 + 3.

The result now follows by Lemmas 4.4, 4.5, and Proposition 3.5 applied to (R′, C′).
�
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