
CONCENTRATION OF THE MIXED DISCRIMINANT

OF WELL-CONDITIONED MATRICES

Alexander Barvinok

Abstract. We call an n-tuple Q1, . . . , Qn of positive definite n × n real matrices
α-conditioned for some α ≥ 1 if for the corresponding quadratic forms qi : R

n −→ R

we have qi(x) ≤ αqi(y) for any two vectors x, y ∈ R
n of Euclidean unit length and

qi(x) ≤ αqj(x) for all 1 ≤ i, j ≤ n and all x ∈ R
n. An n-tuple is called doubly

stochastic if the sum of Qi is the identity matrix and the trace of each Qi is 1. We

prove that for any fixed α ≥ 1 the mixed discriminant of an α-conditioned doubly
stochastic n-tuple is nO(1)e−n. As a corollary, for any α ≥ 1 fixed in advance,

we obtain a polynomial time algorithm approximating the mixed discriminant of an

α-conditioned n-tuple within a polynomial in n factor.

1. Introduction and main results

(1.1) Mixed discriminants. Let Q1, . . . , Qn be n × n real symmetric matri-
ces. The function det (t1Q1 + . . .+ tnQn), where t1, . . . , tn are real variables, is a
homogeneous polynomial of degree n in t1, . . . , tn and its coefficient

(1.1.1) D (Q1, . . . , Qn) =
∂n

∂t1 · · ·∂tn
det (t1Q1 + . . .+ tnQn)

is called the mixed discriminant of Q1, . . . , Qn (sometimes, the normalizing factor
of 1/n! is used). Mixed discriminants were introduced by A.D. Alexandrov in his
work on mixed volumes [Al38], see also [Le93]. They also have some interesting
combinatorial applications, see Chapter V of [BR97].

Mixed discriminants generalize permanents. If the matrices Q1, . . . , Qn are di-
agonal, so that

Qi = diag (ai1, . . . , ain) for i = 1, . . . , n,

then

(1.1.2) D (Q1, . . . , Qn) = perA where A = (aij)
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and

perA =
∑

σ∈Sn

n∏

i=1

aiσ(i)

is the permanent of an n × n matrix A. Here the i-th row of A is the diagonal of
Qi and Sn is the symmetric group of all n! permutations of the set {1, . . . , n}.

(1.2) Doubly stochastic n-tuples. If Q1, . . . , Qn are positive semidefinite ma-
trices then D (Q1, . . . , Qn) ≥ 0, see [Le93]. We say that the n-tuple (Q1, . . . , Qn)
is doubly stochastic if Q1, . . . , Qn are positive semidefinite,

Q1 + . . .+Qn = I and trQ1 = . . . = trQn = 1,

where I is the n × n identity matrix and trQ is the trace of Q. We note that if
Q1, . . . , Qn are diagonal then the n-tuple (Q1, . . . , Qn) is doubly stochastic if and
only if the matrix A in (1.1.2) is doubly stochastic, that is, non-negative and has
row and column sums 1.

In [Ba89] Bapat conjectured what should be the mixed discriminant version
of the van der Waerden inequality for permanents: if (Q1, . . . , Qn) is a doubly
stochastic n-tuple then

(1.2.1) D (Q1, . . . , Qn) ≥
n!

nn

where equality holds if and only if

Q1 = . . . = Qn =
1

n
I.

The conjecture was proved by Gurvits [Gu06], see also [Gu08] for a more general
result with a simpler proof.

In this paper, we prove that D (Q1, . . . , Qn) remains close to n!/nn ≈ e−n if the
n-tuple (Q1, . . . , Qn) is doubly stochastic and well-conditioned.

(1.3) α-conditioned n-tuples. For a symmetric matrix Q, let λmin(Q) denote
the minimum eigenvalue of Q and let λmax(Q) denote the maximum eigenvalue of
Q. We say that a positive definite matrix Q is α-conditioned for some α ≥ 1 if

λmax(Q) ≤ αλmin(Q).

Equivalently, let q : Rn −→ R be the corresponding quadratic form defined by

q(x) = 〈Qx, x〉 for x ∈ R
n,

where 〈·, ·〉 is the standard inner product in R
n. Then Q is α-conditioned if

q(x) ≤ αq(y) for all x, y ∈ R
n such that ‖x‖ = ‖y‖ = 1,

where ‖ · ‖ is the standard Euclidean norm in R
n.

We say that an n-tuple (Q1, . . . , Qn) is α-conditioned if each matrix Qi is α-
conditioned and

qi(x) ≤ αqj(x) for all 1 ≤ i, j ≤ n and all x ∈ R
n,

where q1, . . . , qn : Rn −→ R are the corresponding quadratic forms.
The main result of this paper is the following inequality.
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(1.4) Theorem. Let (Q1, . . . , Qn) be an α-conditioned doubly stochastic n-tuple
of positive definite n× n matrices. Then

D (Q1, . . .Qn) ≤ nα2

e−(n−1).

Combining the bound of Theorem 1.4 with (1.2.1), we conclude that for any α ≥
1, fixed in advance, the mixed discriminant of an α-conditioned doubly stochastic
n-tuple is within a polynomial in n factor of e−n. If we allow α to vary with n then
as long as α ≪

√
n

lnn , the logarithmic order of the mixed discriminant is captured

by e−n.
The estimate of Theorem 1.4 is unlikely to be precise. It can be considered

as a (weak) mixed discriminant extension of the Bregman - Minc inequality for
permanents (we discuss the connection in Section 1.7).

(1.5) Scaling. We say that an n-tuple (P1, . . . , Pn) of n × n positive definite
matrices is obtained from an n-tuple (Q1, . . . , Qn) of n×n positive definite matrices
by scaling if for some invertible n× n matrix T and real τ1, . . . , τn > 0, we have

(1.5.1) Pi = τiT
∗QiT for i = 1, . . . , n,

where T ∗ is the transpose of T . As easily follows from (1.1.1),

(1.5.2) D (P1, . . . , Pn) = (detT )
2

(
n∏

i=1

τi

)
D (Q1, . . . , Qn) ,

provided (1.5.1) holds.
This notion of scaling extends the notion of scaling for positive matrices by

Sinkhorn [Si64] to n-tuples of positive definite matrices. Gurvits and Samorodnitsky
proved in [GS02] that any n-tuple of n×n positive definite matrices can be obtained
by scaling from a doubly stochastic n-tuple, and, moreover, this can be achieved
in polynomial time, as it reduces to solving a convex optimization problem (the
gist of their algorithm is given by Theorem 2.1 below). More generally, Gurvits
and Samorodnitsky discuss when an n-tuple of positive semidefinite matrices can
be scaled to a doubly stochastic n-tuple. As is discussed in [GS02], the inequality
(1.2.1), together with the scaling algorithm, the identity (1.5.2) and the inequality

D (Q1, . . . , Qn) ≤ 1

for doubly stochastic n-tuples (Q1, . . . , Qn), allow one to estimate within a factor
of n!/nn ≈ e−n the mixed discriminant of any given n-tuple of n × n positive
semidefinite matrices in polynomial time.

In this paper, we prove that if a doubly stochastic n-tuple (P1, . . . , Pn) is ob-
tained from an α-conditioned n-tuple of positive definite matrices then the n-tuple
(P1, . . . , Pn) is α

2-conditioned (see Lemma 2.4 below). We also prove the following
strengthening of Theorem 1.4.
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(1.6) Theorem. Suppose that (Q1, . . . , Qn) is an α-conditioned n-tuple of n× n
positive definite matrices and suppose that (P1, . . . , Pn) is a doubly stochastic n-
tuple of positive definite matrices obtained from (Q1, . . . , Qn) by scaling. Then

D (P1, . . . , Pn) ≤ nα2

e−(n−1).

Together with the scaling algorithm of [GS02] and the inequality (1.2.1), The-
orem 1.6 allows us to approximate in polynomial time the mixed discriminant

D (Q1, . . . , Qn) of an α-conditioned n-tuple (Q1, . . . , Qn) within a factor of nα2

.
Note that the value of D (Q1, . . . , Qn) may vary within a factor of αn.

(1.7) Connections to the Bregman - Minc inequality. The following inequal-
ity for permanents of 0-1 matrices was conjectured by Minc [Mi63] and proved by
Bregman [Br73], see also [Sc78] for a much simplified proof: if A is an n×n matrix
with 0-1 entries and row sums r1, . . . , rn, then

(1.7.1) perA ≤
n∏

i=1

(ri!)
1/ri .

The author learned from A. Samorodnitsky [Sa00] the following restatement of
(1.7.1), see also [So03]. Suppose that B = (bij) is an n× n stochastic matrix (that
is, a non-negative matrix with row sums 1) such that

(1.7.2) 0 ≤ bij ≤
1

ri
for all i, j

and some positive integers r1, . . . , rn. Then

(1.7.3) perB ≤
n∏

i=1

(ri!)
1/ri

ri
.

Indeed, the function B 7−→ perB is linear in each row and hence its maximum
value on the polyhedron of stochastic matrices satisfying (1.7.2) is attained at a
vertex of the polyhedron, that is, where bij ∈ {0, 1/ri} for all i, j. Multiplying the
i-th row of B by ri, we obtain a 0-1 matrix A with row sums r1, . . . , rn and hence
(1.7.3) follows by (1.7.1).

Suppose now that B is a doubly stochastic matrix whose entries do not exceed
α/n for some α ≥ 1. Combining (1.7.3) with the van der Waerden lower bound, we
obtain that

(1.7.4) perB = e−nnO(α).

Ideally, we would like to obtain a similar to (1.7.4) estimate for the mixed discrimi-
nants D (Q1, . . . , Qn) of doubly stochastic n-tuples of positive semidefinite matrices
satisfying

(1.7.5) λmax (Qi) ≤
α

n
for i = 1, . . . , n.
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In Theorem 1.4 such an estimate is obtained under a stronger assumption that the
n-tuple (Q1, . . . , Qn) in addition to being doubly stochastic is also α-conditioned.
This of course implies (1.7.5) but it also prohibits Qi from having small (in partic-
ular, 0) eigenvalues. The question whether a similar to Theorem 1.4 bound can be
proven under the the weaker assumption of (1.7.5) together with the assumption
that (Q1, . . . , Qn) is doubly stochastic remains open.

In Section 2 we collect various preliminaries and in Section 3 we prove Theorems
1.4 and 1.6.

2. Preliminaries

First, we restate a result of Gurvits and Samorodnitsky [GS02] that is at the
heart of their algorithm to estimate the mixed discriminant. We state it in the
particular case of positive definite matrices.

(2.1) Theorem. Let Q1, . . . , Qn be n × n positive definite matrices, let H ⊂ R
n

be the hyperplane,

H =

{
(x1, . . . , xn) :

n∑

i=1

xi = 0

}

and let f : H −→ R be the function

f (x1, . . . , xn) = ln det

(
n∑

i=1

exiQi

)
.

Then f is strictly convex on H and attains its minimum on H at a unique point
(ξ1, . . . , ξn). Let S be an n× n, necessarily invertible, matrix such that

(2.1.1) S∗S =
n∑

i=1

eξiQi

(such a matrix exists since the matrix in the right hand side of (2.1.1) is positive
definite). Let

τi = eξi for i = 1, . . . , n,

let T = S−1 and let

Bi = τiT
∗QiT for i = 1, . . . , n.

Then (B1, . . . , Bn) is a doubly stochastic n-tuple of positive definite matrices.

We will need the following simple observation regarding matrices B1, . . . , Bn

constructed in Theorem 2.1.
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(2.2) Lemma. Suppose that for the matrices Q1, . . . , Qn in Theorem 2.1, we have

n∑

i=1

trQi = n.

Then, for the matrices B1, . . . , Bn constructed in Theorem 2.1, we have

D (B1, . . . , Bn) ≥ D (Q1, . . . , Qn) .

Proof. We have

(2.2.1) D (B1, . . . , Bn) = (detT )
2

(
n∏

i=1

τi

)
D (Q1, . . . , Qn) .

Now,

(2.2.2)
n∏

i=1

τi = exp

{
n∑

i=1

ξi

}
= 1

and

(2.2.3) (detT )
2
=

(
det

n∑

i=1

eξiQi

)−1

= exp {−f (ξ1, . . . , ξn)} .

Since (ξ1, . . . , ξn) is the minimum point of f on H, we have

(2.2.4) f (ξ1, . . . , ξn) ≤ f(0, . . . , 0) = ln detQ where Q =

n∑

i=1

Qi.

We observe that Q is a positive definite matrix with eigenvalues, say, λ1, . . . , λn

such that
n∑

i=1

λi = trQ =

n∑

i=1

trQi = n and λ1, . . . , λn > 0.

Applying the arithmetic - geometric mean inequality, we obtain

(2.2.5) detQ = λ1 · · ·λn ≤

(
λ1 + . . .+ λn

n

)n

= 1.

Combining (2.2.1) – (2.2.5), we complete the proof. �
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(2.3) From symmetric matrices to quadratic forms. As in Section 1.3, with
an n × n symmetric matrix Q we associate the quadratic form q : R

n −→ R.
We define the eigenvalues, the trace, and the determinant of q as those of Q.
Consequently, we define the mixed discriminant D (q1, . . . , qn) of quadratic forms
q1, . . . , qn. An n-tuple of positive semidefinite quadratic forms q1, . . . , qn : Rn −→
R is doubly stochastic if

n∑

i=1

qi(x) = ‖x‖2 for all x ∈ R
n and tr q1 = . . . = tr qn = 1.

An n-tuple of quadratic forms p1, . . . , pn : Rn −→ R
n is obtained from an n-

tuple q1, . . . , qn : Rn −→ R by scaling if for some invertible linear transformation
T : Rn −→ R

n and real τ1, . . . , τn > 0 we have

pi(x) = τiqi(Tx) for all x ∈ R
n and all i = 1, . . . , n.

One advantage of working with quadratic forms as opposed to matrices is that it is
particularly easy to define the restriction of a quadratic form onto a subspace. We
will use the following construction: suppose that q1, . . . , qn : Rn −→ R are positive
definite quadratic forms and let L ⊂ R

n be an m-dimensional subspace for some
1 ≤ m ≤ n. Then L inherits Euclidean structure from R

n and we can consider the
restrictions q̂1, . . . , q̂n : L −→ R of q1, . . . , qn onto L. Thus we can define the mixed
discriminant D (q̂1, . . . , q̂m). Note that by choosing an orthonormal basis in L, we

can associate m×m symmetric matrices Q̂1, . . . , Q̂m with q̂1, . . . , q̂m. A different

choice of an orthonormal basis results in the transformation Q̂i 7−→ U∗Q̂iU for
some m × m orthogonal matrix U and i = 1, . . . , m, which does not change the

mixed discriminant D
(
Q̂1, . . . , Q̂m

)
.

(2.4) Lemma. Let q1, . . . , qn : Rn −→ R be an α-conditioned n-tuple of positive
definite quadratic forms. Let L ⊂ R

n be an m-dimensional subspace, where 1 ≤
m ≤ n, let T : L −→ R

n be a linear transformation such that kerT = {0} and let
τ1, . . . , τm > 0 be reals. Let us define quadratic forms p1, . . . , pm : L −→ R by

pi(x) = τiqi(Tx) for x ∈ L and i = 1, . . . , m.

Suppose that

m∑

i=1

pi(x) = ‖x‖2 for all x ∈ L and tr pi = 1 for i = 1, . . . , m.

Then the m-tuple of quadratic forms p1, . . . , pm is α2-conditioned.

This version of Lemma 2.4 and the following proof was suggested by the anony-
mous referee. It replaces an earlier version with a weaker bound of α4 instead of
α2.
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Proof of Lemma 2.4. Let us define a quadratic form q : Rn −→ R by

q(x) =

m∑

i=1

τiqi(x) for all x ∈ R
n.

Then q(x) is α-conditioned and for each x, y ∈ L such that ‖x‖ = ‖y‖ = 1 we have

1 = q(Tx) ≥ λmin(q)‖Tx‖
2 and 1 = q(Ty) ≤ λmax(q)‖Ty‖

2,

from which it follows that

‖Tx‖2 ≤
λmax(q)

λmin(q)
‖Ty‖2

and hence

(2.4.1) ‖Tx‖2 ≤ α‖Ty‖2 for all x, y ∈ L such that ‖x‖ = ‖y‖ = 1.

Applying (2.4.1) and using that the form qi is α-conditioned, we obtain

(2.4.2)

pi(x) =τiqi(Tx) ≤ τi (λmaxqi) ‖Tx‖
2 ≤ ατi (λmaxqi) ‖Ty‖

2

≤α2τi (λminqi) ‖Ty‖
2 ≤ α2τiqi (Ty)

=α2pi(y) for all x, y ∈ L such that ‖x‖ = ‖y‖ = 1,

and hence each form pi is α
2-conditioned.

Let us define quadratic forms ri : L −→ R, i = 1, . . . , m, by

ri(x) = qi(Tx) for x ∈ L and i = 1, . . . , m.

Then
ri(x) ≤ αrj(x) for all 1 ≤ i, j ≤ m and all x ∈ L.

Therefore,
tr ri ≤ α tr rj for all 1 ≤ i, j ≤ m.

Since 1 = tr pi = τi tr ri, we conclude that τi = 1/ tr ri and, therefore,

(2.4.3) τi ≤ ατj for all 1 ≤ i, j ≤ m.

Applying (2.4.3) and using that the n-tuple q1, . . . , qn is α-conditioned, we obtain

pi(x) =τiqi(Tx) ≤ ατjqi(Tx) ≤ α2τjqj(Tx)

=α2pj(x) for all x ∈ L.
(2.4.4)

Combining (2.4.2) and (2.4.4), we conclude that the m-tuple p1, . . . , pm is α2-
conditioned. �
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(2.5) Lemma. Let q1, . . . , qn : Rn −→ R be positive semidefinite quadratic forms
and suppose that

qn(x) = 〈u, x〉2,

where u ∈ R
n and ‖u‖ = 1. Let H = u⊥ be the orthogonal complement to u. Let

q̂1, . . . , q̂n−1 : H −→ R be the restrictions of q1, . . . , qn−1 onto H. Then

D(q1, . . . , qn) = D (q̂1, . . . , q̂n−1) .

Proof. Let us choose an orthonormal basis of Rn for which u is the last basis vector
and let Q1, . . . , Qn be the matrices of the forms q1, . . . , qn in that basis. Then the

only non-zero entry of Qn is 1 in the lower right corner. Let Q̂1, . . . , Q̂n−1 be the
upper left (n− 1)× (n− 1) submatrices of Q1, . . . , Qn−1. Then

det (t1Q1 + . . .+ tnQn) = tn det
(
t1Q̂1 + . . .+ tn−1Q̂n−1

)

and hence by (1.1.1) we have

D (Q1, . . . , Qn) = D
(
Q̂1, . . . , Q̂n−1

)
.

On the other hand, Q̂1, . . . , Q̂n−1 are the matrices of q̂1, . . . , q̂n−1. �

Finally, the last lemma before we embark on the proof of Theorems 1.4 and 1.6.

(2.6) Lemma. Let q : Rn −→ R be an α-conditioned quadratic form such that
tr q = 1. Let H ⊂ R

n be a hyperplane and let q̂ be the restriction of q onto H.
Then

tr q̂ ≥ 1−
α

n
.

Proof. Let
0 < λ1 ≤ . . . ≤ λn

be the eigenvalues of q. Then

n∑

i=1

λi = 1 and λn ≤ αλ1,

from which it follows that
λn ≤

α

n
.

As is known, the eigenvalues of q̂ interlace the eigenvalues of q, see, for example,
Section 1.3 of [Ta12], so for the eigenvalues µ1, . . . , µn−1 of q̂ we have

λ1 ≤ µ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ µn−1 ≤ λn.

Therefore,

tr q̂ =
n−1∑

i=1

µi ≥
n−1∑

i=1

λi ≥ 1−
α

n
.

�
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3. Proof of Theorem 1.4 and Theorem 1.6

Clearly, Theorem 1.6 implies Theorem 1.4, so it suffices to prove the former.

(3.1) Proof of Theorem 1.6. As in Section 2.3, we associate quadratic forms
with matrices. We prove the following statement by induction on m = 1, . . . , n.

Statement: Let q1, . . . , qn : Rn −→ R be an α-conditioned n-tuple of positive
definite quadratic forms. Let L ⊂ R

n be an m-dimensional subspace, 1 ≤ m ≤
n, let T : L −→ R

n be a linear transformation such that kerT = {0} and let
τ1, . . . , τm > 0 be reals. Let us define quadratic forms pi : L −→ R, i = 1, . . . , m,
by

pi(x) = τiqi(Tx) for x ∈ L and i = 1, . . . , m

and suppose that

m∑

i=1

pi(x) = ‖x‖2 for all x ∈ L and tr pi = 1 for i = 1, . . . , m.

Then

(3.1.1) D(p1, . . . , pm) ≤ exp

(
−(m− 1) + α2

m∑

k=2

1

k

)
.

In the case of m = n, we get the desired result.

The statement holds if m = 1 since in that case D(p1) = det p1 = 1.

Suppose that m > 1. Let L ⊂ R
n be an m-dimensional subspace and let the

linear transformation T , numbers τi and the forms pi for i = 1, . . . , m be as above.
By Lemma 2.4, the m-tuple p1, . . . , pm is α2-conditioned. We write the spectral
decomposition

pm(x) =

m∑

j=1

λj〈uj , x〉
2,

where u1, . . . , um ∈ L are the unit eigenvectors of pm and λ1, . . . , λm > 0 are the
corresponding eigenvalues of pm. Since tr pm = 1, we have λ1 + . . .+ λm = 1. Let
Lj = u⊥

j , Lj ⊂ L, be the orthogonal complement of uj in L. Let

p̂ij : Lj −→ R for i = 1, . . . , m and j = 1, . . . , m

be the restriction of pi onto Lj .
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Using Lemma 2.5, we write

(3.1.2)

D(p1, . . . , pm) =

m∑

j=1

λjD
(
p1, . . . , pm−1, 〈uj, x〉

2
)

=
m∑

j=1

λjD
(
p̂1j , . . . , p̂(m−1)j

)
where

m∑

j=1

λj = 1 and λj > 0 for j = 1, . . . , m.

Let

σj = tr p̂1j + . . .+ tr p̂(m−1)j for j = 1, . . . , m.

Since

m−1∑

i=1

p̂ij(x) = ‖x‖2 − p̂mj(x) for all x ∈ Lj and j = 1, . . . , m

and since the form p̂mj is α2-conditioned, by Lemma 2.6, we have

(3.1.3) σj ≤ m− 2 +
α2

m
for j = 1, . . . , m.

Let us define

rij =
m− 1

σj
p̂ij for i = 1, . . . , m− 1 and j = 1, . . . , m.

Then by (3.1.3),

(3.1.4)

D
(
p̂1j , . . . , p̂(m−1)j

)
=

(
σj

m− 1

)m−1

D
(
r1j, . . . , r(m−1)j

)

≤

(
1−

1

m− 1
+

α2

m(m− 1)

)m−1

D
(
r1j, . . . , r(m−1)j

)

≤ exp

(
−1 +

α2

m

)
D
(
r1j, . . . , r(m−1)j

)

for j = 1, . . . , m.

In addition,

(3.1.5) tr r1j + . . .+ tr r(m−1)j = m− 1 for j = 1, . . . , m.
11



For each j = 1, . . . , m, let w1j , . . . , w(m−1)j : Lj −→ R be a doubly stochastic (m−
1)-tuple of quadratic forms obtained from r1j , . . . , r(m−1)j by scaling as described
in Theorem 2.1. From (3.1.5) and Lemma 2.2, we have

(3.1.6) D
(
r1j , . . . , r(m−1)j

)
≤ D

(
w1j , . . . , w(m−1)j

)
for j = 1, . . . , m.

Finally, for each j = 1, . . . , m, we are going to apply the induction hypothesis
to the (m − 1)-tuple of quadratic forms w1j , . . . , w(m−1)j : Lj −→ R. Since the
(m− 1)-tuple is doubly stochastic, we have

(3.1.7)

m−1∑

i=1

wij(x) = ‖x‖2 for all x ∈ Lj and all j = 1, . . . , m

and

trwij = 1 for all i = 1, . . . , m− 1 and j = 1, . . . , m.

Since the (m − 1)-tuple w1j , . . . , w(m−1)j is obtained from the (m − 1)-tuple
r1j , . . . , r(m−1)j by scaling, there are invertible linear operators Sj : Lj −→ Lj

and real numbers µij > 0 for i = 1, . . . , m− 1 and j = 1, . . . , m such that

wij(x) = µijrij(Sjx) for all x ∈ Lj

and all i = 1, . . . , m− 1 and j = 1, . . . , m.

In other words,

(3.1.8)

wij(x) =µijrij (Sjx) =
µij(m− 1)

σj
p̂ij (Sjx) =

µij(m− 1)

σj
pi (Sjx)

=
µij(m− 1)τi

σj
qi (TSjx) for all x ∈ Lj

and all i = 1, . . . , m− 1 and j = 1, . . . , m.

Since for each j = 1, . . . , m, the linear transformation TSj : Lj −→ R
n of an

(m− 1)-dimensional subspace Lj ⊂ R
n has zero kernel, from (3.1.7) and (3.1.8) we

can apply the induction hypothesis to conclude that

(3.1.9)
D
(
w1j , . . . , w(m−1)j

)
≤ exp

(
−(m− 2) + α2

m−1∑

k=2

1

k

)

for j = 1, . . . , m.

Combining (3.1.2) and the inequalities (3.1.4), (3.1.6) and (3.1.9), we obtain (3.1.1)
and conclude the induction step. �
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