
IHP LECTURES ON HYPERBOLIC 3-MANIFOLDS

RICHARD D. CANARY

Abstract. These notes are designed to accompany my mini-course on hyperbolic 3-manifolds
at IHP in May 2025. The goal is to develop enough understanding of hyperbolic 3-manifolds
to understand the background statements and some consequences of the Tameness Theorem,
the Ending Lamination Theorem and the Density Theorem. The notes contain much more
material than we will be able to cover in the actual mini-course.

I left the four lane highway took a blacktop seven miles
Down by the old country school I went to as a child
Two miles down a gravel road I could see the proud old home
A tribute to a way of life that’s almost come and gone.

The roots of my raising run deep
I come back for the strength that I need
And hope comes no matter how far down I sink
The roots of my raising run deep.
—————–Tommy Collins1

0. Background material

This section consists of background material on hyperbolic space and Teichmüller space. We
will not cover this material in the lectures, but we include the material for any participants who
are not familiar with this material or would like a reminder.

0.1. The hyperbolic plane

Recall that the upper half-plane model for the hyperbolic plane is given by

H2 = {z ∈ C | Im(z) > 0}
with Riemannian metric

ds2hyp =
1

y2
dxdy.

Prosaically, if v⃗ ∈ T(x,y)H2, then its hyperbolic length ||v⃗||hyp = |v⃗|
y where |v⃗| is the Eucliden

length of v⃗
One may easily check that the y-axis L is a geodesic in this metric, since if p : H2 → L is

Euclidean perpendicular projection, then ||Dp(v⃗)||hyp ≤ ||v⃗||hyp with equality if and only if v⃗ is
vertical. Moreover, segments of L are the only geodesic joining points on L. One may check that
Möbius transformations with real co-efficients act as orientation-preserving isometries of H2, by

Date: May 16, 2025.
1The most famous version of this song is sung by Merle Haggard
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a simple calculation. Or you can notice that all such Mobius transformations are generated
by maps of the form z → a, z → 1

z̄ and z → λz and checking that each of these maps is an
isometry. It follows that all lines and semi-circles perpendicular to the x-axis are geodesics and
that these are the only geodesics. Therefore, an orientation-preserving isometry is determined
by its action on a single unit tangent vector. Since PSL(2,R) acts transitively on T 1H2, we see
that

Isom+(H2) = PSL(2,R).

An ideal triangle is determined by the three geodesics joining any three points in ∂H2. Since
PSL(2,R) acts transitively on triples of distinct points in ∂H2, any two ideal triangles are
isometric. We say that the angle at an ideal vertex is 0. One may move the end points to 1,
−1 and ∞ and compute that the triangle has area π. We say a geodesic triangle is 1/3-ideal
if it has two endpoints in ∂H2 and the other in H2. We may move the two ideal vertices to
−1 and ∞ and arrange that the other vertex lies on the unit circle. If the internal angle at
the non-ideal vertex is α, then the vertex must lie at the point (cosα, sinα). Hence any two
1/3-ideal triangles with internal angle α are isometric and one can compute that they have area
π − α.

In general if a geodesic triangle T has internal angles α, β and γ, we may assume that one
vertex lies at (0, 1), one edge emanating from (0, 1) travels downward and that the other travels
to the right of the y-axis. The following picture then proves that Area(T ) = π − (α + β + γ).
(I include this mainly because it is one of my favorite picture proofs.)
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More generally, if P is a geodesic n-gon in H2 with internal angles {α1, . . . , αn}, then

Area(P ) = π(n− 2)−
n∑
i=1

αi.

Another prominent model for H2 is the Poincaré Disk model which is the unit disk D2 with
the metric

ds2 =
4(dx2 + dy2)

(1− x2 − y2)2

so if v⃗ ∈ T(x,y)D
2, then

||v⃗||hyp =
2|v⃗|

(1− x2 − y2)
.

One may check that any Möbius transformation taking the upper half-plane to D2 is an
isometry with respect to the hyperbolic metrrics. For example, one may take T (z) = z−i

z+i .

It follows that geodesics in this model are lines and semi-circles perpendicular to ∂D2 = S1.
Moreover, the group of orientation-preserving isometries is the group of Möbius transformation
which preserve D2.

The main advantage of this model is the rotational symmetry about the origin. One can
compute that if r ∈ (0, 1) and z ∈ S1, then

dhyp(0, rz) = log
1 + r

1− r
= 2 tanh−1(r).

One may then easily compute that the ball of hyperbolic radius R about the origin is a ball of
Euclidean radius tanh

(
R
2

)
. Therefore, one may compute that this ball has hyperbolic circum-

ference

2π sinhR = 2π
tanh

(
R
2

)
1− tanh2

(
R
2

)
and hyperbolic area

2π coshR− 2π =

∫ R

0
2π sinh tdt.

Since the isometry group of H2 acts transitively on H2, every circle of hyperbolic radius R has
hyperbolic length 2π sinhR and bounds a ball of hyperbolic area 2π coshR− 2π.

0.2. Life in the hyperbolic plane

One tenet of the Thurstonian viewpoint is that one should obtain a visceral feeling for what
it is like to love there. Here we explore sports in the hyperbolic plane.

We assume, for simplicity, that the baseball field is a quadrant of a disk with radius 300
feet and that the infield is contained within a disk of radius 100 feet. In Euclidean space, the
outfield has area approximately 62,832 square feet. It can be covered by 3 outfielders, so each
outfielder covers approximately 20,000 square feet.

In hyperbolic space, the outfield has area π
2 cosh(300) > 10100. If you assume that each

outfielder can still cover 20,000 square feet, you would need more than 1094 outfielders to play
hyperbolic baseball.

Suppose that you are 300 feet (100 yards) from the pin on the golf course. If you hit the ball
exactly 300 feet but one degree off-line, you can use distance along the circle to calculate that
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you are roughly 2π(300)
360 = 5.24 feet from the hole. This estimate is accurate to two significant

digits.

In hyperbolic space, the circular estimate would suggest that you are roughly 2π cosh(300)
360 >

1097 feet from the hole, which can’t be correct. In fact, you will be over 590 feet from the hole.
So hitting it by only one degree off-line is almost as bad as hitting the ball straight backwards.

In Euclidean beachball, a ball of radius one foot which is r feet away takes up roughly 1
πR of

your field of vision (assuming you can see in exactly half the directions). So at 30 feet it takes
up roughly 1 percent of your field of vision and at 300 feet it takes up roughly .1 percent of
your field of vision.

In hyperbolic beachball, a ball of radius one foot which is r feet away takes up roughly 1
π sinhR

of your field of vision. So even if you have such good eyesight that you can see things that only
take up .01 percent of your field of vision you won’t be able to see the beachball if it is more
than seven feet from you.

All these calculations are done in American hyperbolic space where the units are feet. In
European hyperbolic space the units are meters.

0.3. Teichmüller space

A complete orientable Riemannian surface X is said to be hyperbolic if it is locally isometric
to H2. In this case, the universal cover X̃ is a simply connected complete Riemannian manifold
locally isometric to H2 and hence can be identified with H2. Therefore, X = H2/Γ where Γ
is a discrete subgroup of Isom+(H2) ∼= PSL(2,R). Notice that Γ is only well-defined up to

conjugacy, since the identification of X̃ with H2 is not canonical.
Amarked hyperbolic structure on a closed oriented surface S is a pair (X, f) where f : S → X

is an orientation-preserving homeomorphism and X is a hyperbolic surface. If X = H2/Γ,
then f∗ : π1(S) → π1(X) ∼= Γ is an isomorphism and hence we obtain a discrete, faithful
representation ρ : π1(S) → PSL(2,R). However, ρ is only well-defined up to conjugation in
PSL(2,R).

One may build a hyperbolic surface of genus two, by starting with a regular hyperbolic
octagon, all of whose internal angles are π

4 and then gluing by the standard gluing pattern.
Similarly, one may build a hyperbolic surface of genus g by starting with a regular (4g− 4)-gon
with internal angles π

2g .

We will choose to formalize Teichmüller space by using representations. Recall that a marked
hyperbolic structure on a closed surface S, gives rise to a (conjugacy class of a) discrete,
faithful representation ρ : π1(S) → PSL(2,R). In turn, a discrete, faithful representation
ρ : π1(S) → PSL(2,R) gives rise to a hyperbolic surface Xρ = H2/ρ(π1(S)). Since Xρ is homo-
topy equivalent to S, it is homeomorphic to S. Moreover, there is homeomorphism hρ : S → Xρ

so that (hρ)∗ is conjugate to ρ. (Here, we are using a special property of the topology of closed
surfaces. The Nielsen-Baer Theorem, see Farb-Margalit [36, Chapter 8], gives that every ho-
motopy equivalence of a closed orientable surface is homotopic to a homeomorphism.) We then
let

T̃ (S) = {ρ : π1(S) → PSL(2,R) | ρ discrete, faithful, and hρis orientation-preserving}

and the Teichmüller space of S is the quotient

T (S) = T̃ (S)/PSL(2,R)
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where T̃ (S) inherits a topology as a subset of Hom(π1(S),PSL(2,R)), PSL(2,R) acts by conju-
gation and T (S) inherits the quotient topology.

Alternatively, one may define T (S) to be the space of marked hyperbolic structure on S up
to the equivalence (X1, f1) ∼ (X2, f2) if and only if f2 ◦ f−1

1 is homotopic to an isometry. One
may think of X as hyperbolic clothing for the naked topological surface S and f as instructions
for how to wear the clothing. The equivalence relation allows one to adjust the clothing, but
not to wear it backwards or to stick your head through the hole designated for the arm.

It is a classical theorem, going back to the 19th century, that T (S) is homeomorphic to R6g−6

if g ≥ 2 is the genus of S. (Notice that π1(S) has a presentation with 2g relations and one
relation, one would expect that DF(π1(S),PSL(2,R)) has dimension (2g)3− 3 = 6g− 3, so one
would predict that Teichmüller space has dimension 6g− 6.) The mapping class group Mod(S)
is the group of (isotopy classes of) self-homeomorphisms of S. Fricke showed that the mapping
class group acts properly discontinuously, but not freely, on T (S) and its quotient is the moduli
space of unmarked hyperbolic structures on S.

We now give a quick sketch of the Fenchel-Nielsen coordinates on Teichmüller space. Suppose
thatX is a closed orientable hyperbolic surface of genus g ≥ 2. Recall that, sinceX is negatively
curved, every homotopically non-trivial closed curve is homotopic to a unique closed geodesic.
Morever, if two homotopically non-trivial simple closed curves are disjoint and non-parallel,
then their geodesic representatives are also disjoint. Let α = {α1, . . . , α3g−3} be a maximal
collection of disjoint simple closed curves and let α∗ be their geodesic representatives on X.
The components of X − α∗ are a collection of 2g − 2 hyperbolic pairs of pants with geodesic
boundary. (A topological pair of pants is a disk with two holes.) Therefore, every closed
hyperbolic surface may be built from hyperbolic pairs of pants.

If P is a hyperbolic pair of pants with geodesic boundary and s1, s2 and s3 are the shortest
paths joining boundary components (called seams), then P − {s1, s2, s3} is a pair of all-right
hyperbolic hexagons (i.e. hexagons all of whose interior angles are π

2 ). An all-right hexagon
is determined by the lengths of any 3 non-consecutive sides. Moreover, any 3 lengths can be
achieved. It follows that P is the double of the unique all-right hexagon with alternate sides
having lengths agreeing with the lengths of the seams of P . Moreover, we can build a geodesic
pair of pants with any collection of boundary lengths and this geodesic pair of pants is entirely
determined by its boundary lengths.

So the hyperbolic structure on X is determined, up to isometry, by the lengths of the com-
ponents of α∗ and instructions for gluing the pants together. Since the pants are glued along
closed geodesic curves, there is a one-dimensional space of ways to glue them. This suggests
more forcefully that the space of hyperbolic structures on X has dimension 6g − 6.

More formally, we get a map L : T (S) → R3g−3
+ where

L(X, f) =
(
ℓX(f(αi)

∗)
)3g−3

i=1
.

At each element of α we can define a twist coordinate in R which records how the geodesic
pairs of pants are glued along f(αi)

∗, so we obtain Θ : T (S) → R3g−3. It is natural to think
at first that the twist should lie in S1. One way to see that this is not the case is to observe
that because we have marked the surface, we can detect the homotopy class of the shortest
curve crossing α. When you make a full positive twist, the shortest such curve changes by a
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full negative twist (at least if it is unique). One can then see that

(L,Θ) : T (S) → R3g−3
+ × R3g−3 ∼= R6g−6

is a homeomorphism. For a careful discussion of twist coordinates see, for example, Thurston
[76, Section 4.6], Farb-Margalit [36, Section 10.6] or Martelli [51, Chapter 7].

References: Farb and Margalit [36] give a nice treatment of Teichmüller space from a modern
geometrical/topological viewpoint. Bers’ survey paper [7] is a beautiful treatment of the classical
complex analytic approach. Thurston [76, Section 4.6] gives a concise treatment of the Fenchel-
Nielson coordinates. Abikoff [1] gives a treatment of the classical theory with an eye towards
the modern viewpoint.

0.4. Hyperbolic 3-space

The upper half space model for hyperbolic 3-space is given by

H3 = {(z, t) ∈ C× R|t > 0}
with hyperbolic metric given

ds2 =
dx2 + · · ·+ dy2 + dt2

t2

where x = Re(z) and y = Im(z).
It is easy to check, just as in H2, that the t-axis L is a geodesic and that the only geodesics

joining points on L are given by segments of L. Möbius transformations (this time with complex
co-efficients) extend to orientation-preserving isometries of H3. One can do this by writing down
a painful formula, or by noting that translations in C extend to horizontal translations in H3,
dilations z → λz extend to dilations (z, t) → (λz, |λ|t), inversion in the unit circle extends
to inversion in the unit sphere and reflection in the y-axis extends to reflection in the y − t-
plane. One may then check that each of these extensions is an isometry of H3. It follows
that all geodesics in H3 are semi-circles or lines perpendicular to ∂H3 and that an isometry
is determined by its action on a single orthonormal frame at a point in H3. Since, the group
generated by these inversions, translations, and dilations, acts transitively on the orthonormal
frame bundle of H3, we see that this group is the full isometry group of H3. In particular, e can
identify Isom+(H3) with PSL(2,C). Therefore, H3 has constant sectional curvature, and since
it contains a totally geodesic copy of H2, the constant is −1.

An element of PSL(2,C) is said to be hyperbolic if it fixes two points in ∂H3 and no points

in H3. In this case it is conjugate to Hλ =

[
λ 0
0 λ−1

]
for some λ > 1.. If A = BHλB

−1 for

some B ∈ PSL(2,C), then A acts as a translation by 2 log λ along its axis which is the B-image
of the t-axis. It has attracting fixed point B(∞) and repelling fixed point B(0). Every other
point in H3 is moved a distance greater than 2 log λ, which is called the translation distance of
A.

An element of PSL(2,C) is said to be parabolic if it fixes exactly one point in ∂H3 and no

points in H3. In this case it is conjugate to P =

[
1 1
0 1

]
. If A = BPB−1 for some B ∈ PSL(2,C),

then A has parabolic fixed point B(∞). We say that A has translation distance 0, since

inf
x∈H3

d(x,A(x)) = 0,
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even though this infimum is not acheived.
An element of PSL(2,C) is said to be elliptic if it fixes a point in H3. In this case it is conjugate

to Eθ =

[
cos θ sin θ
− sin θ cos θ

]
for some θ ∈ (0, 2π).. If A = BEθB

−1 for some B ∈ PSL(2,C), then

A is a hyperbolic rotation of angle θ about the geodesic which is the B-image of the t-axis.
The Jordan normal form theorem implies that we have classified the non-trivial elements of

PSL(2,C).

1. Convex cocompact hyperbolic 3-manifolds

1.1. Basic definitions

For simplicity, we will assume throughout these lectures that all groups are finitely gener-
ated, non-abelian and torsion-free. Selberg’s Lemma guarantees that every finitely generated
subgroup of any linear group contains a finite-index torsion-free subgroup, so the assumption
that groups are torsion-free is not very restrictive.

A Kleinian group Γ is a discrete subgroup of PSL(2,C) ∼= Isom+(H3). Since we have assumed
that Γ is torsion-free,

NΓ = H3/Γ

is a hyperbolic 3-manifold.
The limit set Λ(Γ) of a Kleinian group Γ is the set of accumulation points of an orbit in the

boundary of H3, i.e. if x0 ∈ H3, then

Λ(Γ) = Γ(x0)− Γ(x0) ⊂ ∂H3.

One may easily check that Λ(ρ) does not depend on the choice of basepoint x0 (If x0, y0 ∈ H3,
{γn} ⊂ Γ and γn(x0) → z ∈ ∂H3, then γn(y0) → z ∈ ∂H3).

For example, if Γ ⊂ PSL(2,R) ⊂ PSL(2,C) and H2/Γ is a closed surface, then Λ(Γ) =
R ∪ {0} ⊂ ∂H3.

A better example is provided by looking at Schottky groups. If {C1, C2, . . . , C2n−1, C2n} is a
family of disjoint round circles in C = ∂H3 bounding disjoint (closed) disks {D1, D2, . . . , D2n−1, D2n}
(whose closures are disjoint in C), then we may construct a free Kleinian groups by letting γi
be a Möbius transformation taking Di to C− int(D2i) for all i. The classical ping-pong lemma
implies that Γ = ⟨γ1, . . . , γn⟩ is a free group and that if F = C −

⋃n
i=1Di and if γ ̸= id ∈ Γ,

then Γ(F ) is disjoint from F (and that γi(F ) abuts F along ∂D2i). If you think about this
picture a bit you can convince yourself that C−Γ(F ) is a Cantor set which is, by construction,
Γ-invariant (where F is the closure of F ). In fact, Λ(Γ) = C− Γ(F ).

Lemma 1.1. If Γ is a Kleinian group, which is not virtually abelian, then Γ acts on H3 = H3∪∂H3

as a (discrete) convergence group. Specifically, if {γn} is a sequence of distinct elements of Γ,
then there exists w, z ∈ Λ(Γ) (not necessarily distinct) and a subsequence, still called {γn} so

that γn(x) → z uniformly on compact subsets of H3 − {w}.

Proof. Let {γn} is a sequence of distinct elements of Γ and let x0 = (0, 0, 1) ∈ H3. We may
pass to a subsequence so that γn(x0) → z and γ−1

n (x0) → w. If x ∈ H3, then d(γn(x0), γn(x)) =
d(x, x0), so since γn(x0) → z, we see that γn(x) → z.

Now suppose that x ∈ ∂H3−{w}. Let Rn be the geodesic ray joining γ−1
n (x0) to x. Then Rn

converges to the geodesic L joining w to x. It follows that d(x0, Rn) is uniformly bounded, so
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there exists xn ∈ Rn so that d(xn, x0) is bounded. Now consider any convergent subsequence
of γn(Rn), it will be a geodesic ray emanating from x0. Moreover, since d(γn(x0), γn(xn) is
bounded and γn(x0) → z, the ray R must emanate from z. Therefore, γn(x) → z.

In order to check that this convergence is uniform on compacta, we just need to check that if
{xn} is a sequence in H3 − {w} converging to x ∈ H3 − {w}, then γn(xn) → z. If x ∈ H3, then
d(xn, x), and hence d(xn, x0) is bounded for all large enough n, so γn(xn) → z. If x ∈ ∂H3, let
Rn be the geodesic ray (or segment) joining γ−1

n (x0) → xn (for all large enough n) and proceed
exactly as before. □

Exercise: Prove that Λ(Γ) is the closure of the set of fixed points of elements of Γ. Observe that
if Λ(Γ) is not virtually abelian, then Λ(Γ) is the smallest non-empty closed subset of ∂H3 which
is invariant under Γ. Moreover, in this case Λ(Γ) is perfect, hence uncountable.

The complement Ω(Γ) = ∂H3 \ Λ(Γ) of the limit set is called the domain of discontinuity.

Lemma 1.2. If Γ is a Kleinian group, then Γ acts properly discontinuously on Ω(Γ).

Proof. Let K be a compact subset of Ω(Γ). Suppose there exists a sequence γn of distinct
elements of Γ so that γn(K)∩K is non-empty. Then, by Lemma 1.1, there exists a subsequence
{γn} and w, z ∈ Λ(Γ) so that γn(x) → z uniformly on compact subsets of ∂H3 − {w}. Since K
is a compact subset of ∂H3 − {w}, this is a contradiction. □

We can then consider the conformal boundary

∂cNΓ = Ω(Γ)/ρ(Γ)

which has the structure of a Riemann surface. Notice that the conformal boundary can be
empty, for example if NΓ is cocompact. We can combine the hyperbolic manifold and its
conformal boundary to obtain the conformal bordification

N̂Γ = (H3 ∪ Ω(Γ))/Γ = NΓ ∪ ∂cNΓ

If Γ is a Fuchsian group uniformizing a closed surface S, then ∂cNΓ is two copies of the
surface S (one the quotient of the upper half-plane and the other is the quotient of the lower
half plane) and their is an anti-conformal involution of ∂cNΓ which switches the two surfaces

(which is the just the quotient of the map z → z̄). Moreover, N̂Γ
∼= S × [0, 1].

If Γ is the Schottky group constructed above, then F is a fundamental domain for the action
of Γ on Ω(Γ), so one may easily check that ∂cNΓ is a closed surface of genus n. One can further

check that N̂ is a handlebody of genus n.

The convex hull of the limit set CH(Λ(Γ)) is defined to be the smallest closed convex subset
of H3 containing all bi-infinite geodesics with end points in Λ(Λ(Γ)). Concretely, CH(Λ(Γ))
is the union of all ideal tetrahedra with endpoints in the limit set. (The convex hull clearly
contains all such ideal tetrahedra and is clearly closed, it only remains that any geodesic joining
points in ideal tetrahedra T1 and T2 lies in the union of all ideal tetrahedra whose endpoints lie
in the union of the endpoints of T1 and T2.) The convex core is then given by

C(NΓ) = CH(Λ(Γ))/Γ ⊂ NΓ

Notice that since CH(Λ(Γ)) is convex, there exists a well-defined retraction, called the nearest
point retraction,

r̃ : H3 → CH(Λ(Γ))
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so that r̃(x) is the unique point on CH(Λ(Γ)) closest to x. (Notice that if x ̸= y and d(z, x) =
d(z, y) then there exists a point u ∈ xy so that d(z, u) < d(z, x).) Since CH(Λ(Γ)) is ρ(Γ)-
invariant, r̃ is ρ-equivariant, so descends to a retraction, still called the nearest point retraction,

r : NΓ → C(NΓ).

It is often useful to consider the closed neighborhood C1(Nρ) of radius one of the convex core.
C1(Nρ) is the quotient of the closed neighborhood of radius one of the convex hull of the limit
set. One key feature here is that C1(N) is strictly convex (since if d(x,w) = 1 and d(y, z) = 1
and u lies in the interior of xy, then d(u,wz) < 1).

Lemma 1.3. If Γ is a Kleinian group which is not virtually abelian, then ∂C1(Nρ) is a C1-
submanifold.

Proof. Consider the map f : H3 − CH(Λ(ρ)) → (0,∞), given by f(x) = d(x, r(x)). By the
regular value theorem, It suffices to show that f is a C1-submersion. If y ∈ H3 − CH(Λ(Γ)),

then let Py be the totally geodesic plane through x which is perpendicular to yr(y), which is a
support plane for CH(λ(ρ) if g(x) = d(y, x) and h(y) = d(x, Py), then h(x) ≤ f(x) ≤ g(x) for
all x in the same component of H3 − Px as x. Moreover, f(y) = g(y) = h(y) and f and h are
differentiable at y and the have the same derivative at y (which is simply the dot product with

the unit tangent vector to yr(y) pointing towards y), so f is differentiable at y. Notice that f

is a submersion at y, since the restriction of f to
−−−→
r(y)y is a submersion. □

Remark: With a little more care, one can show that ∂C1(NΓ) is actually C
1,1.

Suppose that x, y ∈ NΓ − C1(NΓ) and
−−−→
r(x)x and r(y)y intersect ∂C1(NΓ) at the same point

z, then r(z) = r(y) = r(x), so
−−−→
r(x)x =

−−−→
r(y)y =

−−−→
r(z)z. It follows that there is a homeomorphism

F : NΓ − C(NΓ) → ∂C1(NΓ)× (0,∞) given by F (x) =
(−−−→
r(x)x ∩ ∂C1(NΓ), d(x, r(x))

)
.

(Notice that if r(x) = r(y) it need not be the case that
−−−→
r(x)x =

−−−→
r(y)y, which is another main

reason we work mostly with C1(NΓ).)
One may continuously extend r̃ to a map ∂r̃ : Ω(Γ) → CH(Λ(Γ)) by letting r̃(z) be the first

point of contact of an expanding family of horospheres based at z with CH(Λ(Γ)). Again, r̃
descends to a map

∂r : ∂cNΓ → C(NΓ).

We can then define a homeomorphism

∂F : ∂cNΓ → ∂C1(NΓ) given by ∂F (z) =
−−−→
r(z)z ∩ ∂C1(NΓ).

One may use F and ∂F to construct a homeomorphism

G : N̂ρ → C1(NΓ)

where if x ∈ C(NΓ) then G(x) = x, if x ∈ NΓ − C(NΓ), then

G(x) = F−1

(−−−→
r(x)x ∩ ∂C1(N), 1− 1

1 + d(r, r(x))

)
and if z ∈ ∂cNΓ, then G(z) = ∂F (z). So we see:
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Proposition 1.4. If Γ is a Kleinian group, then N̂Γ is homeomorphic to C1(NΓ).

We say that Γ is convex cocompact if C1(NΓ) is compact. Notice that this is equivalent to

requiring that either N̂Γ or C(NΓ) is compact.
If ρ is convex cocompact, then we identified Nρ − C1(Nρ) with C1(Nρ) × (1,∞). We may

then show that in these coordinates Nρ − C1(Nρ) is bilipschitz to the metric

cosh2 tds2∂C1(Nρ)
+ dt2

where ds2∂C1(Nρ)
is the intrinsic metric on ∂C1(Nρ) and t is the real coordinate. (This fact is

implicit in the work of Epstein-Marden [35]. See Section 4.2 of Biringer-Souto [11] for a more
precise discussion.)

We observe that convex cocompact Kleinian groups contain no parabolic elements.

Corollary 1.5. If NΓ = H3/Γ is a convex cocompact hyperbolic 3-manifold, then Γ contains no
elliptic or parabolic elements, so every non-trivial element of Γ is hyperbolic.

Proof. Let Γ be a convex cocompact Kleinian group and let π : H3 → NΓ be the obvious
covering map. Γ contains no elliptic elements, since Γ acts freely on H3. If Γ contains a
parabolic element α, then there exists a sequence {yn} ⊂ CH(Λ(Γ)) so that d(yn, α(yn)) → 0.
(One obtains such a sequence by approaching the parabolic fixed point of α along a geodesic
in CH(Λ(Γ)). This implies that the injectivity radius injNΓ

(π(yn)) of π(yn) in NΓ converges
to 0. This is a contradiction since C(N) is compact, π(yn) ∈ C(N) and every point in N has
positive injectivity radius. □

1.2. A characterization of convex cocompactness in terms of quasi-isometries

It will be useful to give another characterization of convex cocompactness. This definition
is well-adapted to show that small deformations of convex cocompact groups remain convex
cocompact.

Quasi-isometries and quasi-isometric embeddings are natural classes of mappings in the con-
text of geometric group theory. They are generalizations of bilipschitz homeomorphisms and
embeddings which ignore the local structure. However, they need not even be continuous. For
example, an infinite line is quasi-isometric to both an infinite Euclidean cylinder and to Z and
all compact metric spaces are quasi-isometric. One justification for working in this looser con-
text, is that the natural geometric structure on a group, given by a word metric associated to
some (finite) generating set, is only well-defined up to quasi-isometry.

We will always work in the setting of proper length spaces. A metric space is proper if
all closed metric balls are compact. A proper metric space X is a length space if given any
x, y ∈ X, then there exists a rectifiable path joining x to y of length d(x, y). If J is an interval
in R and α : J → X is a path so that d(α(s), α(t)) = |t−s| for all s, t ∈ J , then we say that α is
a geodesic. Notice that in this case α([s, t]) has length t− s if t > s. An action of a group Γ on
X is properly discontinuous if whenever K ⊂ X is compact, {γ ∈ Γ |γ(K) ∩K ̸= ∅} is finite. (I
include this definition since some standard texts in general topology include the non-standard
assumption that the group acts freely to the definition of proper discontinuity.)
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A map f : Y → Z between metric spaces is a quasi-isometric embedding if there exists K ≥ 1
and C ≥ 0 such that

1

K
dY (a, b)− C ≤ dZ(f(a), f(b)) ≤ KdY (a, b) + C

for all a, b ∈ Y . If we want to remember the constants, we say that f is a (K,C)-quasi-isometric
embedding. We say that f : X → Y is a quasi-isometry if there exists K ≥ 1 and C ≥ 0 so
that f is a (K,C)-quasi-isometric embedding and if y ∈ Y , then there exists x ∈ X so that
d(f(x), y) ≤ C, i.e. f is a quasi-isometric embedding which is coarsely surjective. One may
think of quasi-isometric embeddings as bilipschitz embeddings “in the large,” where you don’t
care at all what happens on the “scale” of the additive constant C.

If f : X → Y is a quasi-isometry, one may define a quasi-inverse g : Y → X, i.e. a quasi-
isometry so that there exists Ĉ so that dX(x, g(f(x)) ≤ Ĉ and dY (y, f(g(y)) ≤ Ĉ for all x ∈ X
and y ∈ Y . There is only one sensible way to construct g. Given y ∈ Y , there exists some
x ∈ X so that d(f(x), y)) ≤ C, and we set g(y) = x. If you haven’t done so before, I recommend
checking the claim that g is a quasi-inverse for yourself. Notice that the quasi-inverse is far
from canonical.

If Γ is generated by a finite set S, then we can define an associated word metric dS on S
by letting dS(α, β) be the minimum word length of α−1β in the generating set S. Notice that
the action of Γ on itself by multiplication on the left is an isometric action with respect to dS .
If S and T are two finite generating sets, then the identity map from (Γ, dS) to (Γ, dT ) is a
quasi-isometry.

If KΓ,S is the Cayley graph of Γ associated to the finite generating set S, we can metrize KΓ

by giving each edge length 1. In that case, the inclusion map (Γ, dS) → KΓ,S is an isometric
embedding. Moreover, one may easily construct a quasi-isometry from KΓ,S → (Γ, dS) by
mapping each point to a nearest vertex.

The Milnor-Svarc lemma assures us that if a group acts properly discontinuously and cocom-
pactly on two spaces, then the space is quasi-isometric to the group This allows one to freely
study finitely generated groups by studying their actions on spaces. We will later give a proof
in our setting.

Lemma 1.6. (Milnor-Svarc Lemma) If Γ acts properly discontinuously, cocompactly and by
isometries on a proper, length space X and x ∈ X then Γ has a finite generating set S so
that the orbit map Γ → X given by γ 7→ γ(x), for all γ ∈ Γ, is a quasi-isometry from (Γ, dS) to
X.

We now observe that a Kleinian group is convex cocompact if and only if its orbit map is a
quasi-isometric embedding.

Proposition 1.7. A Kleinian group is convex cocompact if and only if its orbit map τx : Γ → H3

is a quasi-isometric embedding for some (any) x ∈ H3

Proof. The forward direction follows quickly from the Milnor-Svarc lemma. If Γ is convex
cocompact, then Γ acts properly discontinuously, cocompactly and by isometries on CH(Λ(Γ)).
So, if we pick x ∈ CH(Λ(Γ)), the Milnor-Svarc lemma implies that the orbit map τx : Γ →
CH(Λ(Γ)) given by γ → γ(x) is a quasi-isometry with respect to the metric dS associated
to some finite generating set for Γ. Since the inclusion of CH (Λ(Γ)) into H3 is an isometric
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embedding, it follows that τx : Γ → H3 is a quasi-isometric embedding with respect to the
metric dS .

So, suppose τx : Γ → H3 is a quasi-isometric embedding into H3 for some x ∈ H3 and the
metric dS associated to some finite generating set for Γ. If KΓ,S is the Cayley graph associated
to S. we may extend τx to a map τ̂x : KΓ,S → H3 by taking each edge of KΓ to a geodesic
(by a map which is proportional to arc length). Since (Γ, dS) is quasi-isometric to KΓ,S , τ̂x is
a (K,C)-quasi-isometric embedding for some K > 1 and C ≥ 0.

We make use of a special case of the Fellow Traveller Property, which we will sketch a proof
of later.

Theorem 1.8. (Special case of Fellow Traveller Property) Given K ≥ 1 and C ≥ 0 there exists
R = R(K,C) so that if J is a closed interval in R and f : J → H3 is a (K,C)-quasi-isometric
embedding, [a, b] ⊂ J and L is a geodesic in H3 joining f(a) to f(b), then the Hausdorff distance
between L and f([a, b]) is at most R.

Reminder: Suppose that C and D are closed subsets of a metric space Y . We say that the
Hausdorff distance between C and D is at most R if both

(1) d(c,D) ≤ R for all c ∈ C, and
(2) d(d,C) ≤ R for all d ∈ D.

Alternatively, one can say that C lies in the (closed) metric neighborhood of radius R of D
and D lies in the (closed) metric neighborhood of radius R of C. The Hausdorff distance is
symmetric, satisfies the triangle inequality, and equals 0 if and only if C = D, but is not truly
a distance, since two closed sets can fail to be a finite Hausdorff distance apart.

Recall that CH(Λ(Γ)) is the union of all ideal tetrahedra in H3 with endpoints in the limit
set. The Fellow Traveller Property implies that there exists R = R(K,C) so that if [a, b] is
a geodesic segment in KΓ,S , then τ̂ρ([a, b]) is a Hausdorff distance at most R apart from the

geodesic τ̂x(a))τ̂x(b) joining τ̂x(a) to τ̂x(b).
If z ̸= w ∈ Λ(ρ), then there exists {γn} and {βn} in Γ so that τx(γn) → z and τx(βn) → w.

Then the geodesic τx(γn)τx(βn) lies in the (closed) neighborhood NR(τ̂x(KΓ,S)) of τ̂ρ(KΓ,S) of

radius R, for all n. Since τx(γn)τx(βn) → zw we see that zw ⊂ NR(τ̂x(CΓ)).
There exists B so that if T is an ideal tetrahedra in Hs, then every point in T lies within B

of an edge of T . Therefore, every point in CH (Λ(Γ)) lies with R + B of a point in τ̂ρ(KΓ,S).
It follows that if D is the diameter of the bouquet of circles τ̂ρ(KΓ,S)/Γ ⊂ NΓ, then C(NΓ)
has diameter at most R + B +D. Since C(NΓ) is a closed subset of the complete hyperbolic
3-manifold NΓ, this implies that C(NΓ) is compact, and hence that Γ is convex cocompact. □

Exercise: Prove that there exists B so that if T is an ideal tetrahedra in H3, then every point
in T lies within B of an edge of T . (Hint: Triangles have area at most π and T is a union of
triangles with every edge contained in a face of T .)

Exercise: If Γ is a finitely generated group and x, y ∈ H3, then τx is a quasi-isometric embedding
if and only if τy is a quasi-isometric embedding (although the constants K and C may change).
Moreover, if τx is a quasi-isometric embedding with respect to a finite generating set S, then it
is a quasi-isometric embedding with respect to any finite generating set.
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1.3. Other characterizations

Beardon and Maskit [6] showed that a Kleinian group is convex cocompact if and only every
point in the limit set is a conical limit point. We say that z ∈ Λ(ρ) is a conical limit point if
whenever −→xz is a geodesic ray ending at z, there exists R and a sequence {γn} ⊂ π1(M) so that
γn(x) → z and d(γn(x),

−→xz) ≤ R for all n.
Marden [50] showed that a Kleinian group is convex cocompact if and only if it has a finite-

sided convex fundamental domain and contains no parabolic elements.

Exercises: (1) Prove that if Γ is a Kleinian group, which is not virtually abelian, then every
point in Λ(ρ) is conical if and only if Γ is convex cocompact.

(2) Prove that z ∈ Λ(Γ) is conical if and only if there exists a sequence {γn} ⊂ Γ and

a ̸= b ∈ Λ(Γ) so that γn(x) → a for all x ∈ H3 − {z} and γn(z) → b.

Marden [50] showed that a Kleinian group is convex cocompact if and only if it has a finite-
sided convex fundamental domain and contains no parabolic elements.

1.4. A digression on hyperbolic spaces

We will say that a proper length spaceX is (Gromov) δ-hyperbolic if whenever T is a geodesic
triangle in X with sides s1, s2 and s3 and y ∈ s1, then d(y, s2 ∪ s3) ≤ δ. If X is δ-hyperbolic
for some δ, we often simply say that it is Gromov hyperbolic or simply hyperbolic.

The simplest examples of Gromov hyperbolic spaces are trees, which are 0-hyperbolic. The
name is motivated, in part, by the observation that H3 is hyperbolic.

Lemma 1.9. Hyperbolic space H3 is cosh−1(2)-hyperbolic for any n.

Proof. Let T be a geodesic triangle in H3 with sides s1, s2 and s3. Since any three points in H3

are contained in a totally geodesic, isometrically embedded copy of H2, we may assume that
n = 2.

By the Gauss-Bonnet Theorem, T has area at most π. If y ∈ s1 and r = d(y, s2 ∪ s3), then
T contains a half-disk D of hyperbolic radius r. Since D has area π cosh r − π, we see that

π cosh r − π ≤ π,

so r ≤ cosh−1(2) ≈ 1.317. □

We say that a group is Gromov hyperbolic if its Cayley graph, with respect to some finite
generating set, is a Gromov hyperbolic metric space. It is a consequence of the Fellow Traveler
Property that if two spaces X and Y are quasi-isometric, then X is Gromov hyperbolic if and
only if Y is Gromov hyperbolic. Since Cayley graphs of a fixed group, with respect to different
finite generating sets are quasi-isometric, this notion is well-defined independent of the (finite)
choice of generating set. So we obtain the following immediate consequence of Corollary 1.7.

Corollary 1.10. If Γ is a convex cocompact Kleinian group, then Γ is Gromov hyperbolic.

Remarks: 1) Actually, H3 is δ-hyperbolic for δ = tanh−1
(

1√
2

)
≈ 0.8814.

2) A stronger notion of negative curvature is given by considering CAT(−1)-spaces. One says
that a proper length space is CAT(−k), for some k ≥ 0, if every geodesic triangle is at least as
thin as the triangle with the same lengths in a simply connected, complete Riemannian surface
of curvature −k. The Comparision Theorem in Riemannian geometry implies that any simply
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connected Riemannian manifold with sectional curvature ≤ −k is CAT(−k). The above lemma
implies that CAT(−k) spaces are cosh−1(2)/k2-hyperbolic if k > 0.

The Fellow Traveller Property we used earlier for hyperbolic spaces, generalizes to the setting
of Gromov hyperbolic spaces. Notice that it is far from true in Euclidean geometry.

Theorem 1.11. (Fellow Traveller Property) Given (K,C) and δ there exists R so that if X is δ-
hyperbolic and f : [a, b] → X is a (K,C)-quasi-isometric embedding and L is a geodesic joining
f(a) to f(b), then the Hausdorff distance between L and f([a, b]) is at most R.

We sketch the proof in the case when f is a K-Lipschitz, (K,C)-quasi-isometric embedding
into H3. Notice that in this case f is rectifiable and its image has length at most K|b−a|. This
situation contains all the key ideas of the general proof.

Sketch of Proof: The key observation is that it is “exponentially inefficient” for a path to wander
far from the geodesic joining the endpoints. One manifestation of this principle is that if β is
a path joining the endpoints of a geodesic of length 2A in H3 and lies entirely outside the ball
of radius A about the midpoint x0, then β has length at least π sinhA (which is the length of
the shortest such path in the sphere of radius A about x0).

We first bound how far any point on L can lie from f([a, b]). Choose a point x0 ∈ L which
lies furthest from f([a, b]), i.e.

D = d
(
x0, f([a, b])

)
= sup{d

(
x, f([a, b])

)
| x ∈ L}.

Choose a point y on L so that y lies between f(a) and x0 and d(y, x0) = 2D (or y = f(a) if
d(f(a), y) ≤ 2D). Choose s ∈ [a, b] so that d(f(s), y) ≤ D (or s = a if y = f(a)). Choose a point
z on L which lies between x0 and f(b) and and d(z, x0) = 2D (or z = f(b) (if d(f(b), x0) ≤ 2D.)
Choose t ∈ [a, b] so that d(f(t), y) ≤ D (or t = b if z = f(b)). We then concatenate a
geodesic joining y to f(s), f([s, t]) and the geodesic joining f(t) to z to produce a path γ
joining y to z. Since d(f(s), f(t)) ≤ 6D, |s − t| < 6KD + KC, and since f is K-lipschitz,
ℓ(f([s, t])) ≤ 6DK2 +K2C, so

ℓ(γ) ≤ 6DK2 + 2KD +K2C.

Let ŷ be the point between x0 and y so that d(x0, ŷ) = D and let ẑ between x0 and z so that
d(x0, ẑ) = D, and form a path joining ŷ to ẑ by appending to γ segments in L joining y to ŷ
and joining z to ẑ. Then

ℓ(γ̂) ≤ 6DK2 +K2C + 4D

and γ̂ lies entirely outside of the ball of radius D about x0. Therefore,

ℓ(γ̂) ≥ π sinhD

so

D ≤ sinh−1

(
6DK2 +KC + 4D

π

)
= D0.

We now bound the distance from any point on f([a, b]) to L. Let f([s, t]) be maximal
subsegment of f([a, b]) which stays outside of an open neighborhood of L of radius D0. Notice
that the subset of L consisting of points within D0 of f([a, s]) is closed and the subset of L
consisting of points within D0 of f([t, b]) is closed. On the other hand their union is all of L,
by the previous paragraph, so, since L is connected, their intersection is non-empty. So, there
exists r ∈ [a, s], u ∈ [t, b] and w ∈ L so that d(w, f(r)) ≤ D0 and d(w, f(u)) ≤ D0.
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Since d(f(r), f(u)) ≤ 2D0 , we see that |r − u| ≤ 2KD0 +KC and, since f is K-lipschitz,

ℓ(f([u, r])) ≤ 2K2D0 +K2C

so if q ∈ [s, t] ⊂ [r, u], then

d(f(q), L) ≤ D0 +K2D0 +
K2C

2
= R.

Therefore, the Hausdorff distance between f([a, b]) and L is at most R. □

The following special case of the Milnor-Svarc lemma assures us that it suffices for our
purposes to consider the case f is a K-Lipschitz, (K,C)-quasi-isometric embedding into H3.

Lemma 1.12. (Specialized Milnor-Svarc Lemma) If Γ is a convex cocompact Kleinian group
and x ∈ CH(Λ(Γ)), then there exists a finite generating set S for Γ, K ≥ 1 and C ≥ 0 so that
τ̂x : KΓ,S → CH(Λ(Γ)) is K-bilipschitz and a (K,C)-quasi-isometry.

Proof. Let R be the diameter of C(NΓ) and let S = {γ ∈ Γ | γ(D(x, 3R)) ∩ D(x, 3R) ̸= ∅},
where D(x, 3R) is the closed ball of radius 3R about x. Since Γ is discrete, S is finite.

Let γ ∈ Γ and let L be a geodesic segment in X joining x0 to γ(x0). Divide L up into

n =

⌊
d(x0, γ(x0))

R

⌋
+ 1

segments of equal length, with endpoints {x0, x1, . . . , xn}. Notice that each segment has length
less than R. Since C(NΓ) has diameter R and x0 ∈ CH(Λ(ρ)), there exists, for each i, γi ∈ Γ so
that d(xi, γi(x)) ≤ R where we may choose γ0 = id and γn = γ. Then, since d(γi(x), γi+1)(x)) ≤
3R (by the triangle inequality), γ−1

i γi+1 ∈ S. Therefore, S is a finite generating set for Γ and

dS(id, γ) ≤ n =

(⌊
d(x, γ(x))

R

⌋
+ 1

)
≤ 1

R
d(x, γ(x)) + 1

so

RdS(id, γ)−R ≤ d(x, γ(x))

and, since τx is Γ-equivariant,

RdS(α, β)−R ≤ d(τx(α), τx(β)

for all α, β ∈ Γ.
If a, b ∈ KΓ,S , then there exists α, β ∈ Γ, so that dKΓ,S

(a, α) ≤ 1
2 and dKΓ,S

(b, beta) ≤ 1
2 .

Then

d(τ̂x(a), τ̂x(b)) ≥ d(τx(α), τx(β))−R ≥ RdS(α, β)− 2R ≥ RdKΓ,S
− 3R.

On the other hand, since τx is 3R-Lipschitz on each edge.

d(τ̂x(a), τ̂x(b)) ≤ 3RdKΓ,S
(a, b).

Finally, notice that, every point in CH(Λ(Γ) lies within R of τx(Γ). Therefore, τ̂ is 3R-Lipschitz
and is a

(
max{ 1

R , 3R}, 3R
)
-quasi-isometry. □
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2. Deformation spaces of Kleinian groups

2.1. Basic Definitions

Throughout the lecture course, M will denote a compact, oriented, irreducible 3-manifold,
possibly with boundary, with infinite fundamental group. A 3-manifold M is said to be irre-
ducible if every embedded 2-sphere in M bounds a 3-ball in M . These assumptions guarantee
that the universal cover ofM is contractible. We will often be considering the simple case where
M = S×[0, 1] and S is a closed surface. Moreover, S will always denote a closed oriented surface
in these notes.

If ρ : π1(M) → PSL(2, C) is a discrete, faithful representation, then ρ(π1(M)) then we obtain
a hyperbolic 3-manifold

Nρ = H3/ρ(π1(S)).

Since M and Nρ both have contractible universal cover and ρ gives an identification of the
fundamental groups of M and Nρ, we obtain a homotopy equivalence

hρ :M → Nρ

so that (hρ)∗ : π1(M) → π1(Nρ) = ρ(π1(M)) is conjugate to ρ. We think of hρ as a marking
of a hyperbolic 3-manifold (much as in the setting of Teichmüller space) and think of the pair
(Mρ, hρ) as a marked hyperbolic 3-manifold.

Let ÃH(M) ⊂ Hom(π1(M),PSL(2,C) denote the space of discrete faithful representations
of π1(M) into PSL(2,C) and let AH(M) be its image in the quotient character variety

X(M) = Hom(π1(M),PSL(2,C)//PSL(2,C).

(The double back-slash indicates that we are taking the geometric invariant theory quotient
which givesX(M) the structure of the variety. We will not need to worry about this construction
but there is an open neighborhood of the set of discrete faithful representation on which the
quotient is simply the usual quotient and the image of the neighborhood lies in the smooth
part of the character variety.) In analogy with Teichmüller space, we may think of this as the
space of marked hyperbolic 3-manifolds homotopy equivalent toM (up to orientation-preserving
isometry).

It is a classical consequence of the Margulis lemma that AH(M) is a closed subset of X(M).
When AH(M) is not a single point, it will not be an open subset of X(M).

Theorem 2.1. If M is a compact 3-manifold whose fundamental group is not virtually abelian,
then AH(M) is a closed (possibly empty) subset of X(M).

Exercise: Show that if H2 is a handlebody of genus two, then AH(H2) is not open in X(M).
Hint: It suffices to consider representations into PSL(2,R).

A discrete, faithful representation ρ : π1(M) → PSL(2,C) is said to be convex cocompact
if ρ(π1(M) is convex cocompact. Let CC(M) be the set of convex cocompact representations
in AH(M). Moreover, a discrete, faithful representation ρ : π1(M) → PSL(2,C) is said to
be a convex cocompact uniformization of M if hρ : M → Nρ is homotopic to an orientation-
preserving homeomorphism jρ : M → C1(Nρ). Let CC0(M) be the set of convex cocompact
uniformizations of M in AH(M).
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Thurston completely characterized which manifolds with boundary have convex cocompact
uniformizations.

Thurston’s Hyperbolization Theorem (special case): If M is an irreducible, compact 3-manifold
with non-empty boundary and π1(M) is infinite and does not contain a subgroup isomorphic to
Z⊕ Z, then M admits a convex cocompact uniformization.

The best source for Thurston’s original proof of his hyperbolization theorem is the article of
Morgan [61], although portions of Thurston’s proof appear in his papers [74, 78]. Otal [65] and
Kapovich [43] discuss other proofs of his theorem.

2.2. Stability

It is a crucial property of convex cocompact representations, known as stability, that C̃C(M)
is open in Hom(Γ,PSL(2,C)). This was first established by Marden [50]. Informally, if you
wiggle a convex cocompact representation a little bit it remains convex cocompact.

One can easily see how this phenomena works for Schottky groups. If Γ = ⟨γ1, . . . , γn⟩
is the Schottky group constructed in Section 1, we may view it as the image of a convex
cocompact representation of Fn = ⟨a1, . . . , an⟩, ρ : Fn → PSL(2, C) where ρ(ai) = γi. If
σ ∈ Hom(Fn, PSL(2, C) is close enough to ρ, then

{C1, . . . , Cn, ρ(a1)(C1), . . . , ρ(an)(Cn)}

is a collection of disjoint circle. So, the image of σ is a Schottky group and σ is convex
cocompact. It follows that ρ lies in the interior of CC(Hn).

Theorem 2.2. If ρ : π1(M) → PSL(2,C) is convex cocompact, then there exists a neighborhood
U of ρ in Hom(π1(M),PSL(2,C)) such that if σ ∈ U , then σ is convex cocompact.

Theorem 2.2 was first establshed by Marden [50, Theorem 10.1]. Thurston [75, Proposition
8.3.3] observed that it followed from argument of the form due to Weyl, see also Canary-Epstein-
Green [23, Section I.2.5].

Proof. The proof relies on the following local-to-global principle. We will sketch a proof in our
setting in the next subsection.

Theorem 2.3. (Local to Global Principle) Given K ≥ 1, C ≥ 0, there exists K̂, Ĉ and A so that
if J is an interval in R and h : J → H3 is a (K,C)-quasi-isometric embedding restricted to every

connected subsegment of J with length ≤ A, then h is a (K̂, Ĉ)-quasi-isometric embedding.

Let KM denote the Cayley graph of π1(M) with respect to some generating set S and choose
x0 ∈ H3. There exists (K,C) so that the orbit map τρ : KM → H3 (with basepoint x0) is
a (K,C)-quasi-isometric embedding. The local-to-global principle, see Theorem 2.5, implies

that there exists A ≥ 1, K̂, and Ĉ so that if f : J → H3 (where J is an interval in R) is
a (K + C + 1, 2K + 3C + 5)-quasi-isometry on all segments of length at most A, then f is a

(K̂, Ĉ)-quasi-isometry.
Let U be an open neighborhood of ρ in Hom(π1(M),PSL(2, )) so that if σ ∈ U , γ ∈ π1(M)

and dS(1, γ) ≤ A, then d(ρ(γ(x0)), σ(γ)(x0)) < 1. (We may do so since there are only finitely
many elements of γ within A of id.)
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If σ ∈ U , let τσ be the orbit map of σ with basepoint x0. We see that if dS(1, γ) ≤ A, then

1

K
dS(id, γ)− C − 1 ≤ d(τσ(id), τσ(γ)) ≤ KdS(id, γ) + C + 1.

Since τσ is σ-equivariant, we see that if α, β ∈ Γ and dS(α, β) ≤ A, then

1

K
dS(α, β)− C − 1 ≤ d(τσ(α), τσ(β)) ≤ KdS(α, β) + C + 1.

We now check that τσ is a quasi-isometric embedding on all geodesic segments in KM of
length at most A. Since τσ is (K + C + 1)-bilipschitz on each edge with a vertex at the origin
and it is σ-equivariant, we conclude that τσ is (K +C +1)-bilipschitz on each edge of KM and
hence globally bilipschitz.

Let ab be a segment in KM of length at most A joining a to b. Since τσ is (K + C + 1)-
bilipschitz,

d(τσ(a), τσ(b)) ≤ (K + C + 1)dKM
(a, b).

We must work a little harder to get the lower bound. Let α be the vertex on [a, b] closest to
a and let β be the vertex on [a, b] closest to b. Then d(a, α) < 1, d(b, β) < 1 and d(α, β) ≤ A.
So

d(τx(a), τx(b)) ≥ d(τσ(α), τσ(β))− 2(K + C + 1)

≥ 1

K
dS(α, β)− C − 1− 2(K + C + 1)

≥ 1

K
(dKM

(a, b)− 2)− 2K − 3C − 3

≥ 1

K
dKM

(a, b)− 2K − 3C − 5

Therefore, the extended orbit map τ̂σ is a (K + C + 1, 2K + 3C + 5)-quasi-isometry on all
geodesic segments in KM of length at most A. Since τ̂σ is σ-equivariant, τ̂σ is a (K +2, C +2)-
quasi-isometric embedding on all geodesic segments in CM of length at most A. Therefore, τ̂σ
is a (K̂, Ĉ)-quasi-isometric embedding on all geodesic segments in KM , which implies that τ̂σ
is a (K̂, Ĉ)-quasi-isometric embedding. Therefore, σ is convex cocompact. □

Since the set CC(M) is invariant under conjugation, we immediately see that both C̃C(M)
and its quotient CC(M) are open.

Corollary 2.4. IfM is a compact, irreducible 3-manifold with non-empty boundary, then CC(M)
is open in X(M).

Remark: If M is a closed hyperbolic 3-manifold which admits a hyperbolic structure, then
Mostow’s Rigidity Theorem [62] implies that CC(M) consists of two points (one for each ori-
entation on M),
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2.3. A proof of the Local-to-global principle

In a hyperbolic space, the local-to-global principle takes the following form:

Theorem 2.5. (Local to Global Principle) Given K ≥ 1, C ≥ 0 and δ ≥ 0, there exists K̂, Ĉ
and A so that if J is an interval in R, X is δ-hyperbolic and h : J → X is a (K,C)-quasi-
isometric embedding restricted to every connected subsegment of J with length ≤ A, then h is a
(K̂, Ĉ)-quasi-isometric embedding.

We will sketch a proof of Theorem 2.5 in the case that X = H3 and J = R (The assumption
that J = R is simply for convenience, while the restriction to X = H3 significantly simplifies
the proof). See Coornaert-Delzant-Papadopoulos [33, Thm. 3.1.4] for a complete proof.

Sketch of proof: We will make use of an elementary lemma in hyperbolic geometry.

Lemma 2.6. Given S > 0, T > 0, there exists B = B(S, T ) > 0 so that if P and Q are totally
geodesic hyperplanes in H3, p ∈ P , q ∈ Q and x ∈ H3, and px and qx are geodesic segments
perpendicular to P and Q respectively, so that d(p, x) ≥ B, d(q, x) ≥ B, and d(x, pq) ≤ S , then
d(P,Q) ≥ T .

(The idea of the proof of the lemma is that if B is large enough, then px and pq are nearly
tangent, so pq is nearly orthogonal to P . Similarly, pq is nearly orthogonal to Q. So we choose
B large enough that the angles between pq and both P and Q is at least .75. Notice that pq
has length at least 2B − 2S. Let C = {(P,Q,L)} be the set of triples where P and Q are
geodesic hyperplanes which are joined by a geodesic segment L which makes angle at least .75
with each of P and Q and d(P,Q) ≤ T . If we also assume pq passes through a fixed point, then
C is a compact set of configurations. Therefore, there is an upper bound R on the length of L.
So, if we also choose B large enough that 2B − 2S > R, then our assumptions guarantee that
d(P,Q) ≥ T .)

Given K ≥ 1 and C ≥ 0, let R = R(K,C, cosh−1(2)) be the constant provided by the Fellow
Traveller property and let B = B(2R, 2R) be the constant provided by Lemma 2.6. Choose
A ≥ 4K(B + C +R).

For all i ∈ Z, let ti = iA
2 and yi = h(ti). Let Gi = yiyi+1 be the geodesic segment with

vertices yi and yi+1 and midpoint mi. Notice that d(yi, yi+1) ≥ A
2K − C, so

d(mi, yi+1) ≥
A

4K
− C

2
≥ B.

Similarly, d(mi+1, yi) ≥ L.
By the Fellow Traveller Property, there exists si ∈ [ti, ti+1] such that d(f(si),mi) ≤ R. The

Fellow traveller property, then implies that d
(
yi, h(si)h(si+1)

)
≤ R. Choose zi ∈ h(si), h(si+1),

so that d(zi, yi) ≤ R. Since mi,mi+1 are h(si)h(si+1) are geodesics whose endpoints are a
distance at most R apart, the convexity of the distance function implies that the Hausdorff
distance between mi,mi+1 are h(si)h(si+1) is at most R. Therefore, d(zi,mimi+1) ≤ R, so
d(yi,mimi+1) ≤ 2R. Lemma 2.6 then implies that

d(Pi, Pi+1) ≥ 2R for all i ∈ Z.
We next claim that Pi−1 and Pi+1 lie on opposite sides of Pi. If not, then yi−1 and yi+1 lie

on the same side of Pi, so the geodesic segment yi−1yi+1 lies on the opposite side of Pi from yi,
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but

d(yi, Pi) = d(yi,mi) ≥
A

4K
− C > 2R, so d

(
f(si), yi−1, yi+1

)
> R

which would contradict the Fellow Traveller Property. It follows that Pi−1 lies on the opposite
side of Pi as Pi+1. Therefore, since d(Pi, Pi+1) ≥ 2R for all i and are ordered monotonically, we
see that

d(ym, yn) ≥ (|m− n| − 1)2R for all m,n ∈ Z,
If a, b ∈ R, choose m,n ∈ Z so that a ∈ [tm−1, tm] and b ∈ [tn, tn+1]. Then

|a− tm| <
A

2
, |b− tn| <

A

2
, d(f(a), f(tm)) ≤

KA

2
+ C d(f(b), f(tn)) ≤

KA

2
+ C

so

d(f(a), f(b)) ≥ 2R(|m− n| − 1)−KA− 2C

=
4R

A
|tm − tn| − 2R−KA− 2C

≥ 4R

A
|b− a| − 6R−KA− 2C

Since, |ti − ti+1| = A
2 , d(f(ti), f(ti+1)) ≤ KA

2 + C, so we see that

d(f(tm), f(tn)) ≤ |m− n|
(
KA

2
+ C

)
.

Therefore,

d(f(a), f(b)) ≤ |m− n|
(
KA

2
+ C

)
+KA+ 2C

=
2

A
|tm − tn|

(
KA

2
+ C

)
+KA+ 2C

≤ |b− a|
(
K +

2C

A

)
+A

(
K +

2C

A

)
+KA+ 2C

We conclude that f is a (K̂, Ĉ)-quasi-isometry where

K̂ = max

{
A

R
,K +

2C

A

}
and Ĉ = A

(
K +

2C

A

)
+ 6R+KA+ 2C.

□

3. Bers’ Simultaneous uniformization

If S is a closed oriented surface, we call a convex cocompact uniformization of S× [0, 1] (and
its image) quasifuchsian. We also use the simplifying notation

QF (S) = CC0(S × [0, 1]).

Since S × [0, 1] admits an orientation-reversing homeomorphism homotopic to the identity,
we may assume that hρ is orientation-preserving. Therefore, we get a map

B : QF (S) → T (S)× T (S̄) given by B(ρ) = (∂cNρ, hρ)



IHP LECTURES ON HYPERBOLIC 3-MANIFOLDS 21

where S̄ is S with the opposite orientation. The main goal of this section is to show that B is
a homeomorphism.

Remark: If M is a compact, irreducible 3-manifold and h : S × [0, 1] → M is a homotopy
equivalence, then h is homotopic to an orientation-preserving homeomorphism (see Section 10
of Hempel [39]). It follows that

CC(S × [0, 1]) = CC0(S × [0, 1]).

3.1. Quasiconformal maps and Beltrami differentials

We begin with a brief survey of the theory of quasiconformal maps (without proof). Roughly,
quasiconformal maps are orientation preserving homeomorphisms which distort the conformal
structure by a bounded amount. One may view them as the conformal analogue of bilipschitz
maps, which distort the metric structure a bounded amount. Good references for the theory
of quasiconformal maps are the books of Lehto-Virtanen [48] and Lehto [47]. This section is
plagiarized from the research monograph of Canary-McCullough [30].

Given a function f : D → C defined on a domain D in C, we may write it as f(x, y) =
u(x, y) + iv(x, y). We say f is ACL (absolutely continuous on lines) if given any rectangle
R = [a, b]× [c, d] in D both u and v are absolutely continuous restricted to almost every vertical
and almost every horizontal line segment in R. If f is ACL then the partial derivatives of u
and v exist almost everywhere and we define fx = ux + ivx and fy = uy + ivy. Then, we let
fz = 1

2(fx − ify) and fz̄ = 1
2(fx + ify). (Recall that the Cauchy-Riemann equations assert

that if f is analytic then fz̄ = 0 for all z ∈ D.) We define the Beltrami differential of f to be

µf =
fz̄
fz

Notice that if f is differentiable at a point z and Jf(z) is its Jacobian, then the image

of the unit circle (in the tangent space Tz(D)) under Jf(z) is an ellipse, the ratio of the lengths

of the axes is given by K(z) =
1 + |µf (z)|
1− |µf (z)|

and the angle that the preimage of the (longer) axis

makes with the x-axis is 1
2 arg(µf (z)).

One says that an orientation-preserving homeomorphism f : D → D′ is K-quasiconformal if
f is ACL and |µf | ≤ K−1

K+1 almost everywhere. This says that, typically, very small circles are
taken to curves very much like ellipses with eccentricity at most K. One way of formalizing
this is by defining

H(z) = lim sup
r→0

maxθ |f(z + reiθ)− f(z)|
minθ |f(z + reiθ)− f(z)|

.

An orientation-preserving homeomorphism f : D → C ∪ {∞} is K-quasiconformal if and only
if H is bounded on D − {∞, f−1(∞)} and H(z) ≤ K almost everywhere in D (see pages 177
and 178 in Lehto [47]). If one uses the spherical metric on C, then one need not exclude ∞ and
f−1(∞) from consideration.

One may check that the composition of a K1-quasiconformal map and a K2-quasiconformal
map is a K1K2-quasiconformal map. Another useful fact is:

Proposition 3.1. (Lehto-Virtanen [48, Thm. 1.5.1]) A quasiconformal map is conformal if and
only if it is 1-quasiconformal.

The most fundamental result concerning quasiconformal maps is the Measurable Riemann
Mapping Theorem (see Ahlfors-Bers [5] or Lehto [47]) which asserts that the Beltrami differential
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determines the quasiconformal map (up to normalization) and that every Beltrami differential
(of norm less than 1) determines a quasiconformal map.

Measurable Riemann Mapping Theorem: Suppose that µ ∈ L∞(C,C) and ||µ||∞ < 1. Then
there exists a unique quasiconformal map ϕµ : C → C whose Beltrami differential is µ and such
that ϕµ fixes 0, 1, and ∞. Moreover, ϕµ depends analytically on µ.

Notice that one may combine the Measurable Riemann Mapping Theorem and the traditional
Riemann Mapping Theorem to observe that the same result holds for the upper half-plane H2.
This version of the result is used in traditional Teichmüller theory and also plays a role in our
proof of the Quasiconformal Parameterization Theorem.

Measurable Riemann Mapping Theorem (Disk version): Suppose that µ ∈ L∞(H2,C) and
||µ∞|| < 1. Then there exists a unique quasiconformal map ϕµ : H2 → H2 whose Beltrami
differential is µ and such that ϕµ fixes i, 2i, and 3i. Moreover, ϕµ depends analytically on µ.

An alternative characterization of quasiconformal mappings of C is obtained by considering
bilipschitz homeomorphisms of H3. The Fellow Traveller property may be used to show that any
bilipschitz homeomorphism of H3 to itself extends continuously to a homeomorphism of ∂H3 to
itself. One must work a little harder (although not too much harder) to show that this extension
is quasiconformal. (I like how this is written up in Thurston’s notes [75], but one may find this
argument many places.) It is a deeper fact that any quasiconformal automorphism of ∂H3

extends to a bilipschitz map of H3. (One place to read an exposition is in Matsuzaki-Taniguchi
[55, Thm 5.3.1].)

Proposition 3.2. Let ϕ : C → C be an orientation-preserving homeomorphism. Then ϕ is quasi-
conformal if and only if it extends to a homeomorphism Φ: H3 ∪C → H3 ∪C whose restriction
to H3 is bilipschitz (with respect to the hyperbolic metric).

Notice that one can show that a bilipschitz map extends to a well-defined map of the boundary
using only the Fellow Traveller Property. One must work a little harder (although not too much
harder) to show that this extension is quasiconformal. The fact that quasiconformal maps
extend to bilipschitz maps is a deeper fact.

It will also be useful to know that quasiconformal homeomorphisms take sets of measure zero
to sets of measure zero (see [48]).

Theorem 3.3. If f : C ∪ {∞} → C ∪ {∞} is a quasiconformal map and E ⊂ C has measure
zero, then f(E) has measure zero.

3.2. Quasifconformal conjugacy

We now show that any two quasifuchsian representations are quasiconformally conjugate.

Theorem 3.4. If ρ1, ρ2 ∈ QF (S), then there exists a quasiconformal map ϕ : ∂H3 → ∂H3, so
that ρ2(γ) = ϕ ◦ ρ2(γ) ◦ ϕ−1 for all γ ∈ Γ.

Proof. Let hρi : S×[0, 1] → C1(Nρi) be orientation-preserving homeomorphism in the homotopy
class of ρi. Since C1(Nρi) is a compact C1-manifold, we may assume that hρi is bilipschitz. So

h = hρ2 ◦ h−1
ρ1 : C1(Nρ1) → C1(Nρ2)
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is a bilipschitz homeomorphism. We may then extend h radially in the coordinates to obtain
an orientation-preserving bilipschitz homeomorphism

H : Nρ1 → Nρ2

where if x ∈ Nρ1 − C1(Nρ1) has coordinates (y, t), then H(x) has coordinates (h(y), t).

Then H lifts to an orientation-preserving bilipschitz homeomorphism H̃ : H3 → H3 which
conjugates the action of ρ1(π1(S)) to the action of ρ2(π1(S), so, perhaps after precomposition
by an element of ρ1(π1(S)),

H̃ ◦ ρ1(γ) = ρ2(γ) ◦ H̃
for all γ ∈ π1(S). Then H̃ extends to a quasiconformal homeomorphism ϕ : ∂H3 → ∂H3 so that

ϕ ◦ ρ1(γ) = ρ2(γ) ◦ ϕ
for all γ ∈ π1(S). □

If ρ1 is Fuchsian, then its limit set has measure zero, which implies that Λ(ρ2) = ϕ(Λ(ρ1))
also has measure zero.

Corollary 3.5. If ρ ∈ QF (S), then Λ(ρ) has measure zero.

3.3. Simultaneous uniformization

Bers [8] showed that B gives a complete parametrization of QF (S).

Theorem 3.6. The map
B : QF (S) → T (S)× T (S̄)

is a homeomorphism.

Proof. We first prove that B is injective. If B(ρ1) = B(ρ2), then there exists a conformal
map ψ : ∂cNρ1 → ∂cNρ2 in the homotopy class of hρ2 ◦ h−1

ρ1 . This map lifts to a conformal

homeomorphism ψ̃ : Ω(ρ1) → Ω(ρ2) so that ρ2(γ) = ϕ̃ ◦ ρ1(γ) ◦ ϕ̃−1 for all γ ∈ π1(S).

We may use the radial coordinates on N̂ρi−C1(Nρi) to extend ψ to a differentiable bilipschitz
homeomorphism Ψ from Nρ1 \ intC1(Nρ1) to Nρ2 \ intC1(Nρ2). Since C1(Nρ1) and C1(Nρ2) are
homeomorphic, we may then extend Ψ to a differentiable bilipschitz diffeomorphism from Nρ1

to Nρ2 . The map Ψ lifts to a bilipschitz map from H3 to H3 which admits a continuous extension

to a quasiconformal homeomorphism C of ∂H3. By construction, C agrees with ψ̃ on Ω(ρ1).
(Bers uses a more analytic argument to construct the extension C.)

Since Λ(ρ1) has measure zero and C is conformal on Ω(ρ1), we conclude that C is conformal
and that ρ2(γ) = C ◦ ρ1(γ) ◦ C−1 for all γ ∈ π1(S). Therefore ρ1 = ρ2 ∈ QF (S).

The fact that B is surjective is an application of the Measurable Riemann Mapping Theorem.
Suppose that (Y, Z̄) ∈ T (S)× T (S̄). Let ρ0 be a Fuchsian group so that B(ρ0) = (X, X̄). Let
ψ : X ∪ X̄ → Y ∪ Z̄ be an orientation-preserving diffeomorphism (in the correct homotopy

class). We may lift ψ to a map ψ̃ : Ω(ρ0) → H2 ∪H2 and compute its Beltrami differential µψ̃.

We may then extend µψ̃ to a Beltrami differential on ∂H3 by setting it equal to 0 on Λ(ρ0).

The Measurable Riemann Mapping Theorem implies that there exists a quasiconformal map
ϕ : ∂H3 → ∂H3 with Beltrami differential µ.

By construction, ψ ◦ ρ0(g)ψ−1 is conformal, so ψ ◦ ρ0(g) and ψ have the same Beltrami
differential for all g ∈ π1(S). Thus, ϕ ◦ ρ0(g) and ϕ have the same Beltrami differential on
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Ω(ρ0), and hence on Ĉ, for all g ∈ π1(S). The uniqueness portion of the Measurable Riemann
Mapping Theorem then implies that ϕ ◦ ρ0(g) and ϕ differ by postcomposition by a Möbius
transformation. Therefore, ϕ ◦ ρ0(g) ◦ ϕ−1i is conformal, for all g ∈ π1(S), so we obtain a
faifthful representation ρ : π1(S) → PSL(2,C) defined by ρ(γ) = ϕ ◦ ρ0(γ) ◦ ϕ−1 for all γ ∈ Γ. ρ
is discrete since ρ(π1(S)) acts properly discontinuously on ϕ(Ω(ρ0)).

Then N̂ρ is an irreducible, orientable manifold homotopy equivalent to S. It has two boundary

components which are homotopic, hence homologous, which implies that N̂ρ is compact, and

hence that ρ is convex cocompact. Since ϕ and ψ̃ have the same Beltrami differential on Ω(ρ0),

we see that ϕ ◦ ψ̃−1 is a conformal homeomorphism from H2 ∪ H2 to Ω(ρ) which descends to
a conformal homeomorphism from Y ∪ Z̄ to ∂cNρ. Therefore, B(ρ) = (Y, Z̄). (If one prefers a
more geometric argument, one may use work of Douady and Earle [34] to extend the quotient

of ϕ to a homeomorphism of N̂ρ0 to N̂ρ which is bilipschitz on Nρ0 .) Therefore, ρ ∈ QF (S) and
B(ρ) = (Y, Z̄).) We have now shown that B is surjective which completes the proof. □

3.4. The general case

The same outline of proof will always produce a natural parametrization of CC0(M) in
general.

We say that a compact, irreducible 3-manifold M has compressible boundary if there is a
closed curve α in ∂M which is not homotopically trivial in ∂M but is homotopically trivial inM .
Otherwise, we say that M has incompressible boundary. Equivalently, M has incompressible
boundary if and only if whenever S is a boundary component of ∂M , the inclusion map of S
into M induces an injection from π1(S) into π1(M).

If M and M ′ have incompressible boundary, then Waldhausen’s theorem implies that any
two homotopic orientation-preserving homeomorphisms between M and M ′ are isotopic. Thus,
when M has incompressible boundary, the generalization of Bers’ Simultaneous Uniformization
theorem has the following simple form.

Theorem 3.7. (Bers) If M is compact, irreducible 3-maniifold with non-empty, incompressible
boundary and CC0(M) is non-empty, then

CC0(M) ∼= T (∂M).

Here, if {S1, . . . , Sn} are the components of ∂M , then

T (∂M) =
n∏
i=1

T (Si).

The Loop Theorem says that M has compressible boundary if and only if there is a homo-
topically non-trivial simple closed curve in ∂M which bounds an embedded disk in M . A disk
of this form is called a compressing disk. Thus, M has compressible boundary if and only if
π1(M) splits, non-trivially, as a free product of subgroups.

If M has compressible boundary, then Dehn twists about compressing disks are orientation-
preserving homeomorphisms homotopic to the identity. We let Mod0(M) denote the group of
isotopy classes of homeomorphism of M which are homotopic to the identity. This group is
always generated by Dehn twists about compressing disks and is typically infinitely generated.
Notice that if ρ ∈ CC0(M), then jρ is only well-defined modulo Mod0(M). Moreover,Mod0(M)
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is naturally identified with a subgroup of the mapping class group of ∂M and hence acts on
T (∂M).

If M has compressible boundary, the generalization of Bers’ Simultaneous Uniformization
theorem has the following less simple form.

Theorem 3.8. (Bers) If M is compact, irreducible 3-maniifold with non-empty, compressible
boundary and CC0(M) is non-empty, then

CC0(M) ∼= T (∂M)/Mod0(M).

The eagle-eyed reader will have noticed that one portion of the above sketch of proof admits
no obvious generalization. We used the fact that the limit set of a Fuchsian uniformization of a
closed surface is round circle in ∂H3, to conclude that every quasifuchsian group has a limit set
of measure zero. We used this in turn to conclude that any quasiconformal conjugacy which is
conformal on the domain of discontinuity is a globally conformal conjugacy. We may replace
this step with a result of Ahlfors.

Ahlfors’ Measure Theorem: If Γ is a convex cocompact Kleinian group and Λ(Γ) ̸= ∂H3, then
its limit set Λ(Γ) has measure zero. Moreover, if Λ(Γ) = ∂H3, then Γ acts ergodically on ∂H3,
i.e. if A ⊂ ∂H3 is a Γ-invariant measurable subset of ∂H3, then A either has full measure or
zero measure.

We sketch Ahlfors’ beautiful proof [4].

Sketch of proof: If Λ(Γ) ̸= ∂H3, we define a Γ-invariant function h̃ : H3 → [0, 1] by letting
h(x) denote the measure, in T 1

xH3 of the set of unit vectors tangent to geodesic rays emanating
from x which end at points in Λ(Γ). (Here, we scale the Riemannian metric on T 1

xH3 so that
it is a probability measure.) If we work in the Poincaré ball model for H3, one can choose

Ax ∈ Isom+(H3) so that Ax(x) = 0⃗ and let h̃(x) = 1
4πm(Ax(Λ(Γ)) where dm is the usual

Lebesgue measure on S2. Recalling that A′
x(z) =

1−|x|2
|x−z|2 for all z ∈ S2, we obtain the formula

h̃(x) =
1

4π

∫
S2

(
1− |x|2

|x− z|2

)2

dm.

One may check that h̃ is harmonic, i.e. that div(grad h̃)(x) = 0 for all x ∈ H3.
Notice that if x ∈ H3 − CH(Λ(Γ), then there exists a totally geodesic plane Px through x

which bounds an open half-space Hx which is disjoint from CH(Λ(Γ). It follows that Λ(Γ) is
disjoint from the interior of the disk Dx = Hx ∩ ∂H3. Since half the geodesic rays emanating
from x lie in Dx, it follows that h̃(x) ≤ 1

2 if x ∈ H3 − CH(Λ(Γ).
Since h is Γ-invariant, by construction, it descends to a harmonic function

h : NΓ → [0, 1]

such that h(x) ≤ 1
2 if x ∈ NΓ−C(NΓ). So, h(x) ≤ 1

2 if x ∈ ∂C(N). Since C(N) is compact, the
maximum principle for harmonic functions implies that h achieves its maximal value on C(N)
at a point on ∂C(N). Therefore, h(x) ≤ 1

2 for all x ∈ H3.
If Λ(Γ) does not have measure zero, then it has a point of density z. However, if xn is a

sequence of points approaching z along a geodesic, we see that limh(xn) = 1, so we have a
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contradiction. Recall that z is a point of density for the limit set if

lim
ϵ→0

m(Bϵ(z) ∩ Λ(Γ)

m(Bϵ(z))
= 1.

If Λ(Γ) = ∂H3, then N = C(N), so, since C(N) is compact, N is a closed manifold. if
A ⊂ ∂H3 is a Γ-invariant measurable subset of ∂H3, we can define a Γ-invariant harmonic
function h̃ : H3 → [0, 1] by letting h(x) denote the measure, in T 1

xH3 of the set of unit vectors
tangent to geodesic rays emanating from x which end at points in A. Since N is closed, all
harmonic functions are constant (if not consider the volume-preserving flow {ϕt} generated by
grad h and notice that ϕt(N) is a proper subset of N for all t > 0 which is impossible). If A is
neither full measure nor zero measure, then A has a point of density so h = 1, while ∂H3 − A
also has a point of density, so h = 0, and we have arrived at a contradiction. □

An excellent, analytically oriented, survey of the quasiconformal deformation theory of
Kleinian groups is given in a paper of Bers [10]. A full treatment from a more topological
viewpoint is given in Canary-McCullough [30].

4. Geometrically tame hyperbolic 3-manifolds

A hyperbolic manifold NΓ is said to have no cusps if Γ contains no parabolic elements.
Equivalently, we can say that every non-trivial element of Γ has non-zero translation length
and gives rise to a closed geodesic in NΓ. We will assume from now on, for simplicity, that NΓ

has no cusps. This will only be a technical issue in the results we will discuss, but in their proofs
one must consider manifolds with cusps (so we are hiding important details in some sense). We
will continue to assume that Γ is finitely generated and torsion-free.

There exist many important hyperbolic 3-manifolds without cusps and we will discuss their
topology and geometry in this section.

4.1. The first explicit examples

The most easily understood, and constructed, hyperbolic 3-manifolds which are not convex
cocompact arise as covers of closed hyperbolic 3-manifolds which fiber over the circle. Thurston
showed that if ϕ : S → S is a pseudo-Anosov homeomorphim then its mapping torus

Mϕ = S × [0, 1]/(x, 0) ∼ (ϕ(x), 1)

is homeomorphic to a hyperbolic 3-manifold Nϕ. Since Nϕ is closed, it is itself a convex co-
compact hyperbolic 3-manifold. (We recall that ϕ is pseudo-Anosov if whenever C is a simple
closed curve on S, then ϕn(C) is not homotopic to C for any n > 0.)

If Nϕ = H3/Γϕ, then Λ(Γϕ) = ∂H3 (since if Λ(Γ) ̸= ∂H3, one may easily check, using the fact
that C(NΓ) ̸= NΓ and our analysis of the complement of the convex core, that NΓ has infinite
volume).

Let Γ0
ϕ ⊂ Γϕ denote the normal subgroup of Γϕ associated to the subgroup π1(S × {1

2) ⊂
π1(Mϕ). Since Γ0

ϕ is normal in Γϕ, Λ(Γ
0
ϕ) is a closed Γϕ invariant subset of ∂H3, Therefore,

Λ(Γϕ) ⊂ Λ(Γ0
ϕ)

so Λ(Γ0
ϕ) = ∂H3.
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Let N0
ϕ = H3/Γ0

ϕ be the regular infinite cyclic cover of Nϕ. Since Λ(Γ0
ϕ) = ∂H3, we see

that C(N0
ϕ) = N0

ϕ, so N
0
ϕ is not convex cocompact (since N0

ϕ has infinite volume). One may

construct N0
ϕ explicitly by cutting Nϕ along an embedded surface in the homotopy class of the

fiber to obtain a “lego block” L which is homeomorphic to S × [0, 1]. One then constructs N0
ϕ

from infinitely many lego blocks by gluing the top boundary of the nth lego block to the bottom
boundary of the (n + 1)st lego block (by an isometry in the homotopy class of ϕ). The group
⟨C⟩ of covering transformations of the cover N0

ϕ → Nϕ then acts by translation (twisted by ϕ)
in the collection of lego blocks.

This picture gives us a coarse understanding of the geometry of N0
ϕ. One initially surprising

fact is that the volume of r-balls in N0
ϕ grows linearly in r. There is, possibly apocryphal, story

that when Thurston was first asked which 3-manifolds could be hyperbolic, he guessed that
3-manifolds fibering over the circle could not be, based on this consequence.

We will focus on two features of this example. First, if we take a simple closed curve α on
S and consider its associated geodesic α∗ of α, we see that ϕn(α)∗ = Cn(α∗) for all n ∈ Z.
This implies that the sequence of geodesics {Cn(α∗)}n ∈ N is a sequence of geodesics exiting
the “‘upward-pointing end” of N0

ϕ each of which is homotopic to a simple closed curve on S.

Similarly, {C−n(α∗)}n ∈ N is a sequence of geodesics exiting the “downward-pointing end” of
N0
ϕ each of which is homotopic to a simple closed curve on S.
Second, let Y be a minimal surface in Nϕ in the homotopy class of the fiber. One key fact is

that in its intrinsic metric, Y has curvature bounded above by −1. Then, the pre-image of Y
is an infinite family {Yn}n∈Z of minimal surfaces in N0

ϕ so that Yn = Cn(Y0) for all n ∈ Z. So

{Yn}n∈N is an infinite family of surface whose intrinsic curvature is bounded above by −1, each
of which is in the homotopy class of S × {0}, which exits the upward-pointing end of N0

ϕ.

Historical Remarks: The majority of Thurston’s proof of his hyperbolization theorem for closed
3-manifolds which fibre over the circle is contained in his preprint [77]. A complete proof, using
the technology of R-trees in place of Thurston’s use of pleated surfaces, is given by Otal [66].
The first explicit example was discovered by Jørgensen [42] and is the cover of a finite volume
hyperbolic 3-manifold fibering over the circle associated to the fibre subgroup (which was a
punctured torus in his case). Greenberg [37] was the first to abstractly show the existence of
hyperbolic 3-manifolds with finitely generated fundamental group which are not geometrically
finite.

4.2. Simplicial hyperbolic surfaces

Instead of working with minimal surfaces, we will work with simplicial hyperbolic surfaces.
The intrinsic metric on these manifolds will be hyperbolic except at a finite number of cone
points where the total angle around the cone points is greater than 2π. We interpret these cone
points as points of concentrated (or infinite) negative curvature. In particular, the intrinsic
metric on a simplicial hyperbolic surface is locally CAT(−1), i.e. every geodesic triangle in the
universal cover is at least as thin as a triangle in H2.

We will say that a finite graph T on a surface S is a triangulation if every component of
S − T is bounded by 3 edges (I.e. is the interior of a triangle). One key observation is that
every essential simple closed curve C on S can be extended to a triangulation of S with a single
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vertex. One simply chooses a vertex v on C and adds disjoint edges which begin and end at v
(no two of which are homotopic rel boundary) until one achieves a triangulation.

A simplicial hyperbolic surface f : S → N is a map so that there exists a triangulation T of
S, so that the image of each face of T is a totally geodesic (filled) triangle in N and the total
angle around each vertex is at least 2π. One obtains a pull-back metric on S, which we call
τf , which is locally isometric to H2 at every point except (possibly) the vertices. If v ∈ T (0) is
a vertex, then let a(v) be the total angle of the induced metric about v (i.e. the sums of the
internal angles of triangles with a vertex at v.) Since the area of a triangle is its angle defect
(i.e. the difference between π and the sum of the internal angles), we see that

Area(S, τf ) = −2ξ(S)−
∑
v∈T (0)

a(v)− 2π ≤ −2πξ(S)

where ξ(S) is the Euler characteristic of S.
Suppose that g : S → N is a π1-injective map and N has no cusps. If α is a simple closed

curve on S, we complete it to a triangulation T with only one vertex v on α. One may then
homotope g to a map taking v to a point on g(α)∗ and pull the remaining edges and faces tight
so that their images are totally geodesic to obtain a map f : S → N . One may check that f is
actually a simplicial hyperbolic surface, by noticing that there is an edge through f(v) which
is a closed geodesic through f(v), so the total angle occuring on either side of this edge is at
least π, so that a(v) ≥ 2π as required. It may be easiest to understand the picture by looking

at the lifted map f̃ : S̃ → H3 from the universal cover to H3. In this picture, one may consider
the edges arranged around a lift ṽ of v, then there are two edges, both of which are “lifts” of
g(α)∗, which meet at ṽ and are antipodal, so any path of edges joining one edge to another
transverse a total angle at least π Another way to see this is to look at the set of unit tangent
vectors to f(S) at f(v). The set of tangent vectors is a path in T 1

f(v)N and a(v) is the length

of this path. Since the path contains antipodal points, it has length at least 2π. We will say
that f is a simplicial hyperbolic surface which realizes α with one vertex.

If g is not π1-injective, then the above construction works as long as g(α) is homotopically
non-trivial and we can choose T so that every edge of T determines a homotopically non-trivial
loop in N .

4.3. Simply degenerate ends

Peter Scott [69] proved that every irreducible 3-manifold N with finitely generated fundamen-
tal group contains a compact submanifold C so that the inclusion of C into M is a homotopy
equivalence. We call such a submanifold a compact core for N . If N is homeomorphic to the
interior of a handlebody, it is easy to construct compact cores which are not isotopic, since one
may form a compact core by thickening any bouquet of circles in N whose inclusion into N is
a homotopy equivalence. McCullough, Miller and Swarup [56] proved that this core is unique
in the sense that if C1 and C2 are two compact cores for N , then there is a homeomorphism
from C1 to C2 which is homotopic, within N , to the inclusion of C1 into N . I believe it is the
case that the compact core is unique up to isotopy when the compact core has incompressible
boundary (i.e. when π1(N) is freely indecomposable).2

2This will definitely be the case when N is topologically tame, i.e homeomorphic to the interior of a compact
3-manifold, and its compact core has incompressible boundary



IHP LECTURES ON HYPERBOLIC 3-MANIFOLDS 29

If NΓ is a hyperbolic 3-manifold, let CΓ denote a compact core for NΓ. We will call each
component of NΓ − CΓ an end of NΓ. If E is an end of NΓ, then any open subset of U so that
E − U is bounded, will be called a nieghborhood of the end E. (See Section 1.2 in Bonahon
[13] for a discussion of why this is equivalent to the more abstract definition of ends.)

Inspired by the examples above, we say that an end of a hyperbolic 3-manifold is simply
degenerate if it has a neighborhood U which is homeomorphic to S × (0,∞) (where S is
homeomorphic to the boundary of E) and there exists a sequence {fn : S → U} of simplicial
hyperbolic surfaces so that {fn(S)} exits the end E (i.e. for any compact subsetK of the closure
of E, there exists N so that if n ≥ N , then fn(S) ∩ K = ∅) and, for all n, fn is homotopic,
within U to the inclusion map ι : S → S × {1} given by ι(x) = (x, 1).

Furthermore, we say that an end of NΓ is convex cocompact if it has a neighborhood disjoint
from C(NΓ). Notice, that NΓ is convex cocompact if and only if every end of NΓ is convex
cocompact.

We say that NΓ is geometrically tame if every end of NΓ is either simply degenerate or convex
cocompact. Notice that if NΓ is geometrically tame, then every end has a neighborhood of the
form S × (0,∞). It follows, that if NΓ is geometrically tame, then it is also topologically tame,
i.e. homeomorphic to the interior of a compact 3-manifold.

We note that these definitions can be exended to the setting of hyperbolic 3-manifolds with
cusps, but we will forego the technicalities involved.

Historical Remarks: (1) Thurston’s original definition of a simply degenerate end was only given
in the setting where the compact core has incompressible boundary. In this case, the assumption
that each simplicial hyperbolic surface fn is homotopic to the inclusion map ι within U is un-
necessary (in fact, follows from results in 3-manifolds). His simpler definition was that there
exist a sequence of simple closed curves αn on ∂E whose geodesic representatives {α∗

n} exit
E. Given such a sequence of curves one may construct simplicial hyperbolic surfaces fn which
realize αn with one vertex, and one may easily check that the resulting hyperbolic surfaces must
also exit E. However, in the compressible case this additional assumption is necessary to ensure
that the regions homologically bounded by fn(S) and ∂E exhaust E. This new definition first
appears in [25].

(2) One need not use simplicial hyperbolic surfaces in the definition of simply degenerate
ends. Most of Thurston’s work uses pleated surfaces instead of simplicia hyperbolic surfaces.
Minsky [57] showed that one can use harmonic maps in place of simplicial hyperbolic surfaces.
In recent work, authors often simply use 1-Lipschitz maps of hyperbolic surfaces (which include
all of these examples). However, one cannot use minimal surfaces, since they are much more
sparse than these other examples.

4.4. The Tameness Theorem

Marden [50] presciently conjectured that every hyperbolic 3-manifold with finitely generated
fundamenal group is topologically tame.

The first major breakthrough was Thurston’s proof [75] that if M has incompressible bound-
ary and {ρn} ⊂ CC(M) converges to ρ ∈ AH(M) and ρ(π1(M)) contains no parabolic elements,
then Nρ is geometrically tame, and hence topologically tame. Bonahon [13] proved much more
generally that if NΓ has freely indecomposable fundamental group then NΓ is geometrically
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tame. Canary [25] used Bonahon’s work to show that if NΓ is topologically tame, then NΓ is
geometrically tame.

Agol [2] and Calegari-Gabai [22] independently completed the picture by proving the full
tameness conjecture. Soma [70] later gave a simplified proof combinng aspects of both of their
proofs.

Tameness Theorem: (Agol, Calegari-Gabai) If N is a hyperbolic 3-manifold with finitely gen-
erated fundamental group, then N is geometrically tame, and hence topologically tame.

A sketch of the proof is beyond the reach of a short mini-course, so we will instead discuss
a few applications of their result. A more complete discussion of the history of Marden’s
Tameness Conjecture and its applications is given in the survey article [28]. (In fact, we have
self-plagiarized a portion of this article in the next few sections.)

4.5. Ahlfors’ Measure Conjecture

One of the major classical conjectures in the study of hyperbolic 3-manifolds is Ahlfors’
Measure Conjecture, which was motivated in part by his result for convex cocompact hyperbolic
3-manifolds which we discussed as Ahlfors’ Measure Theorem above.

Ahlfors’ Measure Conjecture: If N = H3/Γ is a hyperbolic 3-manifold with finitely generated
fundamental group, then either Λ(Γ) has measure zero or Λ(Γ) = ∂H3 and Γ acts ergodically
on ∂H3.

The proof of Ahlfors’ measure theorem suggests that we study the behavior of hyperbolic
3-manifolds. Thurston established the following minimum principle for positive superharmonic
functions on geometrically tame hyperbolic 3-manifolds with finitely generated fundamental
group and Canary observed that with the correct definition of geometric tameness Thurston’s
proof generalized to the setting of all geometrically tame hyperbolic 3-manifolds.

Theorem 4.1. (Thurston [75], Canary[25]) Let N be a geometrically tame hyperbolic 3-manifold.
If h : N → (0,∞) is a positive superharmonic function, i.e. div(grad h) ≥ 0, then

infC(N)h = inf∂C(N)h.

In particular, if C(N) = N , then h is constant.

Idea of proof: If h is non-constant, consider the flow {ϕt} generated by −grad h, i.e. the flow in
the direction of maximal decrease. The fact that h is superharmonic guarantees that this flow
is volume non-decreasing.

The fact that h is positive guarantees that the flow moves more and more slowly as one
progresses. More concretely, if x ∈ N , T is a measurable subset of [0,∞), A = {ϕt(x) : t ∈ T}
is the associated subset of the forward flow line and ℓ(A) is the length of A in N , then the
Cauchy-Schwartz inequality implies that

ℓ(A)2 =

∫
A

(
1√

|grad h|

√
|grad h|

)2

ds ≤
(∫

A

1

|grad h|
ds

) (∫
A
|grad h| ds

)
≤ ℓ(T )h(x)

where ds is the measure of arc length on the flow line. Notice that this implies that {ϕt} exist
for all positive time.
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Neighborhoods of radius one of (the images of) our simplicial hyperbolic surfaces have
bounded volume, so act as narrows for the flow. More concretely,

Lemma 4.2. Given A > 0, there exists C > 0 so that if f : S → N is a simplicial hyperbolic
surface and whenever α is a homotopically non-trivial curve on S so that f(α) is homotopically
trivial in N , then f(α) has length at least A, then

vol
(
N1(f(S))

)
≤ C|χ(S)|

where vol denotes volume, N1(f(S)) is the metric neighborhood of radius one of f(S) and ξ(S)
is the Euler characteristic of S.

If C(N) ̸= N , we use these facts to show that almost every flow line starting in C(N) must
intersect the boundary ∂C(N).

Let x be a point in the interior of C(M) and choose a small ball B about x in C(N) so that
ϕ1(B) is disjoint from B. Supposes that there is a measurable subset B0 of B of positive measure
so that if y ∈ B0, then ϕt(y) lies in the interior of C(N) for all t ≥ 0. Since ϕn(B) ∩ B = ∅
for all n ≥ 0 and ϕt is volume non-decreasing, the flow line emanating from y must leave every
compact subset of C(N). So there exists a boundary component of the compact core of N and
a family of simplicial hyperbolic surfaces fn : S → C(N) so that the flow line through y passes
through N1(fn(S)). We further assume that the surfaces {N1(fn(S))} are mutually disjoint.
For any N , let

TNy = {t ≥ 0 : ϕt(y) ∈ N1(fn(S)) for some n ≤ N} and let ANy = {ϕt(y) : t ∈ TN (y)}.

We know that ℓ(ANy ) ≥ N and hence that ℓ(TNY ) ≥ N2. One may then show that∑
n∈N

vol

(⋃
n∈N

ϕn(B0) ∩
N⋃
i=1

N1(fn(S))

)
grows quadratically inN , which contradicts Lemma 4.2. This completes the proof when C(N) ̸=
N .

When C(N) = N , the same argument shows that h must be constant, since the flow cannot
exist. □

Combining the Tameness Theorem, the minimum principle Theorem 4.1 and Ahlfors’ proof
of his Measure Theorem, one immediately obtains a proof of Ahlfors’ Measure Conjecture.

Corollary 4.3. If N = H3/Γ is a hyperbolic 3-manifold with finitely generated fundamental
group, then either Λ(Γ) has measure zero or Λ(Γ) = ∂H3. Moreover, if Λ(Γ) = ∂H3 then Γ acts
ergodically on ∂H3, i.e. if A ⊂ ∂H3 is measurable and Γ-invariant, then A has either measure
zero or full measure.

Another immediate consequence of this minimum principle is a characterization of which
hyperbolic 3-manifolds admit non-constant positive superharmonic functions.

Corollary 4.4. Let N = H3/Γ be a hyperbolic 3-manifold with finitely generated fundamental
group. The manifold N is strongly parabolic (i.e. admits no non-constant positive superhar-
monic functions) if and only if Λ(Γ) = ∂H3.

Sullivan [71] showed that the geodesic flow of N is ergodic if and only if it admits a (positive)
Green’s function, so one can also completely characterize when the geodesic flow of N is ergodic.
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Corollary 4.5. Let N = H3/Γ be a hyperbolic 3-manifold with finitely generated fundamental
group. The geodesic flow of N is ergodic if and only if Λ(Γ) = ∂H3.

4.6. Limit sets of Kleinian groups

Another collection of geometric applications of topological tameness involve the Hausdorff
dimension of the limit set and the bottom of the spectrum of the Laplacian. Patterson [67]
and Sullivan [72] showed that there are deep relationships between these two quantities. In
particular, they showed that if N = H3/Γ is geometrically finite, then

λ0(N) = D(Λ(Γ))(2−D(Λ(Γ))

unless D(Λ(Γ) < 1 in which case λ0(N) = 1. Here, D(Λ(Γ)) denotes the Hausdorff dimension
of the limit set and λ0(N) = inf spec(−∆) is the bottom of the spectrum of the Laplacian
∆ = div(grad) Moreover, if D(Λ(Γ)) < 1, then Γ is a free group (see Braam [15], Canary-
Taylor [31] and Sullivan [71]).

Sullivan [72] and Tukia [79] showed that if N = H3/Γ is convex cocompact and has infinite
volume, then λ0(N) > 0 and D(Λ(Γ)) < 2. Canary [24] proved that if N is topologically
tame and geometrically infinite, then λ0(N) = 0. (One does this by simply using the simplicial
hyperbolic surfaces exiting the end to show that the Cheeger constant of a geometrically infinite
manifold is 0.)

Theorem 4.6. (Sullivan [72], Tukia[79], Canary[24]) Let N = H3/Γ be a hyperbolic 3-manifold
with finitely generated fundamental group. Then λ0(N) = 0 if and only if either N has finite
volume or is geometrically infinite.

Bishop and Jones [12] showed that geometrically infinite hyperbolic 3-manifolds have limit
sets of Hausdorff dimension 2 without making use of tameness. Combining all the results we
have mentioned one gets the following result.

Corollary 4.7. Let N = H3/Γ be a hyperbolic 3-manifold with finitely generated fundamental
group. Then,

λ0(N) = D(Λ(Γ))(2−D(Λ(Γ))

unless D(Λ(Γ) < 1 in which case λ0(N) = 1 and Γ is a free group.

4.7. A covering theorem for hyperbolic 3-manifolds

The restrictive structure of simply degenerate ends places serious restrictions on how it can
cover another manifold. Thurston established the following result when the covering manifold
has freely indecomposable fundamental group and Canary generalized the argument to the
general setting.

Covering Theorem: (Thurston[75], Canary [27]) Let N̂ be a geometrically tame hyperbolic 3-

manifold which covers another hyperbolic 3-manifold N by a local isometry p : N̂ → N . If Ê is
a simply degenerate end of N̂ then either

a) Ê has a neighborhood Û such that p is finite-to-one on Û , or
b) N has finite volume and has a finite cover N ′ which fibers over the circle such that if

NS denotes the cover of N ′ associated to the fiber subgroup then N̂ is finitely covered by NS.
Moreover, if N̂ ̸= NS, then N̂ is homeomorphic to the interior of a twisted I-bundle which is
doubly covered by NS.
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Idea of proof: Let Û be a neighborhood of Ê homeomorphic to S × (0,∞) and let {fn : S × Û}
be a sequence of simplicial hyperbolic surfaces exiting E (which are homotopic to the inclusion

map ι within Û). There exists L > 0 so that for all n there exists an essential simple closed
curve αn on S so that ℓ(f(αn)) ≤ L. (By the usual “blowing a up a balloon” argument, we may
take L to be any number so that

areaBH2(L, i) = 2π coshL− 2π > 2π|ξ(S)| ≥ area(S, τf ).)

It is then not difficult to show that f(αn) is homotopically non-trivial and f(αn)
∗ is homotopic

to f(αn) (within U) for all large enough n and {f(αn)∗} exits E. We may then replace fn by

a simplicial hyperbolic surface gn : S → Û , for all large n, which realizes αn with one vertex so
that {gn : S× Û} is a sequence of simplicial hyperbolic surfaces exiting E (which are homotopic

to the inclusion map ι within Û).
Hatcher [38] showed that any two triangulations of S with one vertex can be joined by a path

of triangulations each of which is obtained from the previous one by an “elementary move.”
Using Hatcher’s result, if n ̸= m, we can either

(1) Produce a continuous family {ht : S → N̂}t∈[0,1] of simplicial hyperbolic surfaces (with at
most two vertices) joining gm to gn (i.e. h0 = gm and h1 = gn), or

(2) Produce continuous families {ht : S → Û}t∈[0,1] and {jt : S → N̂}t∈[0,1] simplicial hyperbolic

surfaces (with at most two vertices) so that h0 = gm and h1(Sn)∩∂Û is non-empty and j0 = gn

and j1(Sn) ∩ ∂Û
If S is π1-injective in N , then case (1) always occurs. In either situation, this allows us to find

a smaller neighborhood U of N , so that if x ∈ U , there exists a simplicial hyperbolic surface
hx : S → Û (which is isotopic to ι within Û). One corollary of this observation is:

Corollary 4.8. If N is a hyperbolic 3-manifold with finitely generated fundamental group, then
there exists L so that C(N) does not contain an embedded hyperbolic ball of radius L.

Suppose that p is infinite-to-one on U . So there exists a point x ∈ N so that p−1(x) ∩ U
is infinite. Index p−1(x) ∩ U = {xi}i∈N so that xi exits the end E. For all i, let fi : S → Û

be a simplicial hyperbolic surface so that xi ∈ fi(S) (homotopic to ι within Û). We may pass
to a subsequence so that p(fi(S)) converges. Choose i and j large enough so that there is a

short homotopy in N between p(fi(S)) and p(fj(S)) and fi(S) and fj(S) are far apart in Û .

We concatenate the p-image of a homotopy between fi(S) and fj(S) within Û and the short
homotopy between fi(S) and fj(S) to construct a map g : M → N of a closed 3-manifold M
which fibers over the circle into N .

If S is π1-injective, then we may show that g is πi-injective. (Notice that the “lift”of the

fibre of M to N̂ is an arc in Û joining a point in fi(S) to fj(S), so is not a closed loop.) Let
N ′ be the cover of N associated to g∗(π1(M)) and consider the lift g̃ : M → N ′. Since g̃ is
a homotopy equivalence, N ′ must be closed (for homological reasons). Waldhausen’s Theorem
(see [39, Thm.13.9] then implies that g̃ is homotopic to a homeomorphism. Moreover, since N ′

is closed, it must be a finite cover of N .
If S is not π1-injective, let Li be the length (in τfi of the shortest compressible curve on

fi(S) (i.e. an essential curve in S which is mapped to a homotopically trivial curve in N̂). One
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may show that Li → ∞. This then contradicts the fact that the p(fi(S)) can be chosen to
accumulate in N . □

A subgroup Γ̂ of Γ is said to be a virtual fiber subgroup if there exist finite index subgroups
Γ0 of Γ and Γ̂0 of Γ̂ such that N0 = H3/Γ0 fibers over the circle and Γ̂0 corresponds to the fiber
subgroup. Corollary 4.9 is the key tool in many of the group-theoretic applications of Marden’s
Tameness Conjecture.

Corollary 4.9. If N = H3/Γ is a closed hyperbolic 3-manifold and Γ̂ is a finitely generated

subgroup of Γ, then Γ̂ is either convex cocompact or a virtual fiber subgroup.

Thurston gave a beautiful proof, using that a cover of an infinite-volume convex cocompact
hyperbolic 3-manifold is convex cocompact if it has finitely generated fundamental group. (See
[27] for the general statement and proof.)

Theorem 4.10. If N = H3/Γ is an infinite volume convex cocompact hyperbolic 3-manifold and
Γ0 is a finitely generated (non-abelian) subgroup of Γ, then Γ0 is convex compact.

Proof. Ahlfors’ Finiteness Theorem [3] implies that if ∆ is a finitely, generated, torsion-free,
non-abelian Klelnian group which does not contain any parabolic elements, then ∂cN∆ is a
finite collection (possibly empty) of closed surfaces. It follows from our earlier discussion that
∂C1(N∆) is also a finite collection of closed surfaces, and hence that ∂C(N∆) is compact.

Since NΓ is convex cocompact and infinite volume, ∂C(NΓ) is non-empty. Since C(NΓ) is
compact, there exists D so that if x ∈ C(NΓ), then d(x, ∂C(NΓ)) ≤ D. Lifting to the cover we
see that if y ∈ CH(Λ(Γ)), then d(y, ∂CH(Λ(Γ)) ≤ D.

Since Γ0 ⊂ Γ, Λ(Γ0) ⊂ Λ(Γ), so CH(Λ(Γ0)) ⊂ CH(Λ(Γ)). If y ∈ CH(Λ(Γ0), then y ∈
CH(Λ(Γ), so d(y, ∂CH(Λ(Γ)) ≤ D. But, again since CH(Λ(Γ0)) ⊂ CH(Λ(Γ)), we see that
d(y, ∂CH(Λ(Γ0)) ≤ D. So, if x ∈ C(NΓ0), then d(x, ∂C(NΓ0) ≤ D. Since ∂C(NΓ0) is compact
(by the above discussion), C(NΓ0) is a closed bounded subset of NΓ0 , hence compact. Therefore,
Γ0 is convex cocompact. □

More generally, one may use the covering theorem to completely describe exactly which covers
of a hyperbolic 3-manifold with finitely generated fundamental group are convex cocompact (see
[27]).

Further discussion of the group theoretic consequences of the Covering Theorem are given in
[28].

5. The classification of hyperbolic 3-manifolds

One may view the conformal boundary of a convex cocompact hyperbolic as capturing the
asymptotic geometry of the 3-manifolds, so from this viewpoint Bers’ parametrization theo-
rems assert that a convex cococompact hyperbolic 3-manifold is determined by its asymptotic
geometry.

One may associate a geodesic lamination to a simply degenerate end, which we call its ending
lamination, which captures the asymptotic geometry. Thurston conjectured that a hyperbolic 3-
manifold is completely determined by its conformal boundary and the ending laminations of its
simply degenerate ends. The proof of the Ending Lamination Theorem verified his conjecture.
We will attempt to give a complete version of the statement in the case when the manifold
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has no cusps. We will then discuss some of its consequence, including the proof of the Bers-
Sullivan-Thurston Density Conjecture. If you haven’t seen this material before, I encourage
you to focus only on the case where the compact core has incompressible boundary where the
statements are much simpler.

5.1. Geodesic laminations

We begin with a brief discussion of the theory of geodesic laminations.
A geodesic lamination on a hyperbolic surface X is a closed set which is a disjoint union of

simple complete geodesics, i.e. geodesics in the disjoint union are either simple closed geodesics
or bi-infinite simple geodesics. The simplest examples are disjoint unions of simple closed
geodesics. In fact every geodesic lamination is a (Gromov-Hausdorff) limit of a sequence of a
sequence of finite-leaved geodesic laminations.

We now explain how to obtain a maximal finite-leaved geodesic lamination whose complement
is a finite collection of ideal triangles. We begin with the case of a pair of pants with geodesic
boundary. Consider the three common perpendicular geodesic segments which join pairs of
sides. These geodesic segments decompose the pair of pants into two all-right angled hexagons.
One can spin the vertices along the geodesic, reducing the angle and lengthening each segment.
If one takes a limit as one spins a larger and larger amount, each geodesic segment will converge
to a bi-infinite geodesic each of whose ends spirals about one of the closed geodesics. The
complement of the three leaves is a union of two ideal triangles.

Given a geodesic pants decomposition of a hyperbolic surface, one may perform the same
operation on each pair of pants to obtain a finite leaved lamination which contains the original
pants decomposition such that each component of its complement is an ideal triangle. More
generally, given a collection C of disjoint simple closed geodesics on the surface, one may place
one vertex on each component of C and complete C to a triangulation T . If we spin T about C
we obtain a finite-leaved geodesic lamination whose closed geodesics are exactly C and so that
all other geodesics are bi-infinite geodesics each of whose ends spiral about a component of C.
All maximal finite-leaved laminations may be obtained in this manner.

It is much harder to draw a picture of a “typical” geodesic lamination has uncountably
many leaves and the intersection with a short goedesic segment transverse to the lamination is
typically a Cantor set.

If X = H2/ΓX , then a geodesic lamination λ lifts to a ΓX -invariant geodesic lamination λ̃.

The collection Cλ of pairs of points in ∂H2 × ∂H2 which arise as endpoints of geodesics in λ̃ is
a ΓX -invariant subset which determines λ̃ and hence λ. If h : X → Y is a homeomorphism and
Y = H2/ΓY , then h lifts to a homeomorphism h̃ : H2 → H2 conjugating the action of ΓX to

ΓY and h̃ extends to a homeomorphism ∂h : ∂H2 → ∂H2 conjugating the action of ΓX to ΓY .
One way then transport λ on X to a geodesic lamination on Y , we simply look at the geodesic
lamination determined by the pairs of points given by (∂h × ∂h)(Cλ). The set (∂h × ∂h)(Cλ)
gives rise to a ΓY -invariant geodesic lamination on H2, which descends to a lamination on Y .
Therefore, it makes sense to talk about the space GL(S) of geodesic laminations on S without
choosing a specific hyperbolic structure on S.

More complete discussions of geodesic laminations are contained in the notes of Canary-
Epstein-Green [23] , the book of Casson-Bleiler [32] or Section 8.3 of Martelli [51].
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5.2. Ending laminations

Suppose that E is a simply degenerate end and let U be a neighborhood of E homeomorphic
to S × (0,∞) and let {fn : S × U} be a sequence of simplicial hyperbolic surfaces exiting E
(which are homotopic to the inclusion map ι within U). There exists L > 0 so that for all
n there exists an essential simple closed curve αn on S so that ℓ(f(αn)) ≤ L. By the usual
“blowing a up a balloon” argument, we may take L to be any number so that

areaBH2

(
L

2
, i

)
= 2π cosh

L

2
− 2π > 2π|ξ(S)| ≥ area(S, τf ).

It is then not difficult to show that fn(αn) is homotopically non-trivial and fn(αn)
∗ is homotopic

to fn(αn) (within U) for all large enough n and {fn(αn)∗} exits E. Let λ∞ be a Gromov-
Hausdorff limit of (some subsequence of) αn. Then the ending lamination of the end E is
obtained from λ∞ by removing any isolated leaves. (A leaf of a geodesic lamination is isolated
it if is not a limit of a sequence of other leaves. For example, every leaf in a finite-leaved
lamination is isolated.)

If one is familiar with the language of measured laminations one may make a more natural
version of this definition. One places a hyperbolic structure X on S, assumes that each αn
is geodesic in X and then considers the sequence of unit length measured laminations {µn =
αn

ℓX(αn)
}. Then λ is the support of any measured lamination which arises as the limit of a

subsequence of {µn}.
Thurston [75] showed that if the compact core of N has incompressible boundary then the

ending lamination of any simply degenerate end is well-defined. He also showed that the end
lamination is filling (intersects every simple closed curve) and minimal (contains no proper
sublamination). His proof relied on the following crucial estimate, whose proof and statement
were corrected by Bonahon [13].

Lemma 5.1. Suppose that N is a geometrically tame hyperbolic 3-manifold with a compact core
C with incompressible boundary. If E is a simply degenerate end of N bounded by a component
S of ∂C, there exists a constant K so that if α1 and α2 are essential closed curves on S (not
necessarily simple) so that α∗

1, α
∗
2 ⊂ E, d(α∗

i , S) ≥ D for i = 1, 2, and each α∗
i is either the core

curve of a Margulis tube or disjoint from all Margulis tubes in N , then

i(α1, α2) ≤ KeDℓN (α
∗
1)ℓN (α

∗
2) + 2

where i(α1, α2) is the geometric intersection number of α1 and α2 on S.

It E is a simply degenerate end of a hyperbolic 3-manifold whose compact core has compress-
ible boundary and S = ∂E , Canary [25] showed that the ending lamination is well-defined up
to the action of Mod(C, S) which is the subgroup of Mod(S) generated by Dehn twists about
essential simple closed curves in S which bound compressing disks in C. This is consistent with
the fact that if E is a convex cocompact end of a hyperbolic 3-manifold whose compact core
has compressible boundary, then the conformal structure on the component of the conformal
boundary associated to E is only well-defined up to the action of Mod(S,C). Moreover, in this
case the ending lamination is always the support of a projective measured lamination lying in
the Masur domain, which is a domain of discontinuity for the action of Mod(C, S) on the space
PL(S) of projective classes of measured laminations. (See [52] for a discussion of the Masur
domain.)
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5.3. The Ending Lamination Theorem

We now describe the ending invariants of a hyperbolic 3-manifold with finitely generated
fundamental group and no cusps. Let C be a compact core for N (which is well-defined up
to homeomorphism homotopic to the identity). The conformal boundary is identified with a
collection of components of ∂C, so gives rise to a conformal structure on these components.
The remaining components of ∂C bound simply degenerate ends of N , so each such component
inherits an ending lamination. The ending invariants of N consist of the compact submanifold
C together with either a conformal structure or a filling, minimal lamination on each component
of ∂C. If N is a hyperbolic 3-manifold (with

Thurston conjectured that this information determined N up to isometry. Brock, Canary
and Minsky [59, 18] proved this conjecture for topologically tame hyperbolic 3-manifolds as
the culmination of a long-term program developed by Minsky. The proof depends crucially on
work of Masur and Minsky [53, 54] on the curve complex of a surface. Given the resolution of
Marden’s Tameness Conjecture we have the following:

Ending Lamination Theorem: A hyperbolic 3-manifold with finitely generated fundamental group
is determined up to isometry by its ending invariants.

One can completely describe the set of ending invariants which arise as ending invariants of
hyperbolic 3-manifolds with finitely generated fundamental group, see Theorem 1.3 in Namazi-
Souto, so the Ending Lamination Theorem may be viewed as a classification theorem. However
t it does not provide a parametrization of AH(M) since the ending invariants do not vary
continuously. In fact, Bromberg [21] and Magid [49] showed that AH(S× [0, 1]) is never locally
connected. A survey of the deformation theory of Kleinian groups, circa 2008, is given in [29].

Historical Remarks: Minsky [58] earlier established the Ending Lamination Theorem for hy-
perbolic 3-manifolds with a (positive) lower bound on their injectivity radius and freely inde-
composable fundamental group. Alternate approaches to the proof of the Ending Lamination
Theorem have been given by Bowditch [14] and Rees [68].

5.4. The Bers-Sullivan-Thurston Density Conjecture and other consequences

Sulivan [73] proved that CC(M) is the interior of AH(M).

Theorem 5.2. Let M be a compact, oriented, irreducible 3-manifold with non-empty boundary
such that π1(M) is infinite, non-abelian and does not contain a free abelian subgroup of rank 2.
Then CC(M) is the interior of AH(M).

Idea of Proof: Let ρ be an interior point of AH(M). One may use the λ-lemma to show that
there exists a neighborhood U of ρ so that every representation in U is quasiconformally conju-
gate to ρ/ Sullivan proved that the Beltrami differential of every quasiconformal deformation of
a finitely generated Kleinian group is supported on the limit set. Therefore, U is identified with
an open set in T (∂cNρ). Since the dimension of the component of X(M) containing ρ agrees
with the dimension of T (∂M), it follows that T (∂cNρ) has the same dimension as T (∂M), so
χ(∂M) = χ(∂cNρ). Topological considerations then imply that ∂cNρ compactifies Nρ, so ρ is
convex cocompact. □

Bers, Sullivan and Thurston conjectured that every representation in AH(M), with our
restrictions on M , is a limit of convex cocompact representations. Given Sullivan’s theorem we
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can rephrase this conjecture by saying that AH(M) is the closure of its interior. This rephrasing
is valid for all manifolds M whose interior admits a hyperbolic structure.

Density Theorem: If M is a compact irreducible 3-manifold and AH(M) is non-empty, then
AH(M) is the closure of its interior int(AH(M)).

The proof of the Density theorem has a rather convoluted history. The first major break-
through was due to Bromberg [20] who established a version of this conjecture for ρ ∈ AH(S×
[0, 1]) whereNρ has no cusp and ∂cNρ has exactly one component. His argument was generalized
by Brock-Bomberg [17] to prove the conjecture for ρ ∈ AH(M) where M has incompressible
boundary and Nρ has no cusps. Their approach makes use of the deformation theory of cone-
manifolds developed by Hodgson-Kerckhoff [40, 41] and Bromberg [19]. It only makes use of
the proof of the Ending Lamination Conjecture in the case where there is a lower bound on
injectivity radius, which was established earlier by Minsky [58].

If M has incompressible boundary, one may derive the Density Theorem from the Tameness
Theorem, the Ending Lamination Theorem, and convergence results of Thurston [77, 78] (see
the discussion in [18].) Basically, the idea here is to consider the end invariants of a given
3-manifold, use the convergence results to construct a hyperbolic 3-manifold with the given
end invariants which arises as a limit of geometrically finite hyperbolic 3-manifolds. One then
applies the Ending Lamination Theorem to show that the manifold you constructed agrees with
the original hyperbolic 3-manifold.

If M has compressible boundary, one replaces Thurston’s convergence results with conver-
gence results of Kleineidam-Souto [44], Lecuire [46] and Kim-Lecuire-Ohshika [45]. However,
especially in the case that M is homotopy equivalent to a compression body (e.g. a handle-
body), significant technical difficulties arise in showing that the limits have the correct ending
invariants. Namazi-Souto [63] and Ohshika [64] overcome these obstacles to complete the proof
of the Density Theorem in all cases.

Another consequence of the proof of the Ending Lamination Theorem is the following common
generalization of Mostow [62] and Sullivan’s [71] rigidity theorems.

Corollary 5.3. Let G be a finitely generated, torsion-free group which is not virtually abelian.
If two discrete faithful representations ρ1 : G → PSL(2,C) and ρ2 : G → PSL(2,C) are con-
jugate by an orientation-preserving homeomorphism ϕ of ∂H3, then they are quasiconformally
conjugate. Moreover, if ϕ is conformal on Ω(ρ1(G)), then ϕ is conformal.
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