
URUGUAY NOTES ON HYPERBOLIC 3-MANIFOLDS

RICHARD D. CANARY

Abstract. Notes for a 6-hour minicourse in Uruguay on hyperbolic 3-manifolds. The goal is
to complete a sketch of Thurston’s original proof that 3-manifolds which fiber over the circle
are geometrizable.

1. Review of hyperbolic space and Teichmüller space

This section consists of background material on hyperbolic space and Teichmüller space. This
material will be covered in Matilda Martinez’s lectures, so will not be covered in my lectures.
Most of this section is lifted and lightly rewritten from my Informal Lecture Notes on Anosov
Representations which are available on my webpage.

1.1. The hyperbolic plane

Recall that the upper half-plane model for the hyperbolic plane is given by

H2 = {z ∈ C | Im(z) > 0}
with Riemannian metric

ds2
hyp =

1

y2
dxdy.

Prosaically, if ~v ∈ T(x,y)H2, then its hyperbolic length ||~v||hyp = |~v|
y where |~v| is the Eucliden

length of ~v
One may easily check that the y-axis L is a geodesic in this metric, since if p : H2 → L is

Euclidean perpendicular projection, then ||Dp(~v)||hyp ≤ ||~v||hyp with equality if and only if ~v is
vertical. Moreover, segments of L are the only geodesic joining points on L. One may check that
Möbius transformations with real co-efficients act as orientation-preserving isometries of H2, by
a simple calculation. Or you can notice that all such Mobius transformations are generated
by maps of the form z → a, z → 1

z̄ and z → λz and checking that each of these maps is an
isometry. It follows that all lines and semi-circles perpendicular to the x-axis are geodesics and
that these are the only geodesics. Therefore, an orientation-preserving isometry is determined
by its action on a single unit tangent vector. Since PSL(2,R) acts transitively on T 1H2, we see
that

Isom+(H2) = PSL(2,R).

An ideal triangle is determined by the three geodesics joining any three points in ∂H2. Since
PSL(2,R) acts transitively on triples of distinct points in ∂H2, any two ideal triangles are
isometric. We say that the angle at an ideal vertex is 0. One may move the end points to 1,
−1 and ∞ and compute that the triangle has area π. We say a geodesic triangle is 1/3-ideal
if it has two endpoints in ∂H2 and the other in H2. We may move the two ideal vertices to
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−1 and ∞ and arrange that the other vertex lies on the unit circle. if the internal angle at
the non-ideal vertex is α, then the vertex must lie at the point (cosα, sinα). Hence any two
1/3-ideal triangles with internal angle α are isometric and one can compute that they have area
π − α.

In general if a geodesic triangle T has internal angles α, β and γ, we may assume that one
vertex lies at (0, 1), one edge emanating from (0, 1) travels downward and that the other travels
to the right of the y-axis. The following picture then proves that Area(T ) = π − (α + β + γ).
(I include this mainly because it is one of my favorite picture proofs.)

PICTURE NEEDED

More generally, if P is a geodesic n-gon in H2 with internal angles {α1, . . . , αn}, then

Area(P ) = π(n− 2)−
n∑
i=1

αi.

This implies that the hyperbolic plane has constant curvature −1.

Another prominent model for H2 is the Poincaré Disk model which is the unit disk D2 with
the metric

ds2 =
4(dx2 + dy2)

(1− x2 − y2)2

so if ~v ∈ T(x,y)D
2, then

||~v||hyp =
2|~v|

(1− x2 − y2)
.

One may check that any Möbius transformation taking the upper half-plane to D2 is an
isometry with respect to the hyperbolic metrrics. For example, one may take T (z) = z−i

z+i .

It follows that geodesics in this model are lines and semi-circles perpendicular to ∂D2 = S1.
Moreover, the group of orientation-preserving isometries is the group of Möbius transformation
which preserve D2.

The main advantage of this model is the rotational symmetry about the origin. One can
compute that if r ∈ (0, 1) and z ∈ S1, then

dhyp(0, rz) = log
1 + r

1− r
= 2 tanh−1(r).

One may then easily compute that the ball of hyperbolic radius R about the origin is a ball of
Euclidean radius tanh

(
R
2

)
. Therefore, one may compute that this ball has hyperbolic circum-

ference

2π sinhR = 2π
tanh

(
R
2

)
1− tanh2

(
R
2

)
and hyperbolic area

2π coshR− 2π =

∫ R

0
2π sinh tdt.

Since the isometry group of H2 acts transitively on H2, every circle of hyperbolic radius R has
hyperbolic length 2π sinhR and bounds a ball of hyperbolic area 2π coshR− 2π.
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1.1.1. Life in the hyperbolic plane. We assume, for simplicity, that the baseball field is a quad-
rant of a disk with radius 300 feet and that the infield is contained within a disk of radius 100
feet. In Euclidean space, the outfield has area approximately 62,832 square feet. It can be
covered by 3 outfielders, so each outfielder covers approximately 20,000 square feet.

In hyperbolic space, the outfield has area π
2 cosh(300) > 10100. If you assume that each

outfielder can still cover 20,000 square feet, you would need more than 1094 outfielders to play
hyperbolic baseball.

Suppose that you are 300 feet (100 yards) from the pin on the golf course. If you hit the ball
exactly 300 feet but one degree off-line, you can use distance along the circle to calculate that

you are roughly 2π(300)
360 = 5.24 feet from the hole. This estimate is accurate to two significant

digits.

In hyperbolic space, the circular estimate would suggest that you are roughly 2π cosh(300)
360 >

1097 feet from the hole, which can’t be correct. In fact, you will be over 590 feet from the hole.
So hitting it by only one degree off-line is almost as bad as hitting the ball straight backwards.

In Euclidean beachball, a ball of radius one foot which is r feet away takes up roughly 1
πR of

your field of vision (assuming you can see in exactly half the directions). So at 30 feet it takes
up roughly 1 percent of your field of vision and at 300 feet it takes up roughly .1 percent of
your field of vision.

In hyperbolic beachball, a ball of radius one foot which is r feet away takes up roughly 1
π sinhR

of your field of vision. So even if you have such good eyesight that you can see things that only
take up .01 percent of your field of vision you won’t be able to see the beachball if it is more
than seven feet from you.

1.2. Teichmüller space

A complete orientable Riemannian surface X is said to be hyperbolic if it is locally isometric
to H2. In this case, the universal cover X̃ is a simply connected complete Riemannian manifold
locally isometric to H2 and hence can be identified with H2. Therefore, X = H2/Γ where Γ
is a discrete subgroup of Isom+(H2) ∼= PSL(2,R). Notice that Γ is only well-defined up to

conjugacy, since the identification of X̃ with H2 is not canonical.
A marked hyperbolic structure on a closed orientable surface S is a pair (X, f) where f : S →

X is an orientation-preserving homeomorphism and X is a hyperbolic surface. If X = H2/Γ,
then f∗ : π1(S) → π1(X) ∼= Γ is an isomorphism and hence we obtain a discrete, faithful
representation ρ : π1(S) → PSL(2,R). However, ρ is only well-defined up to conjugation in
PsL(2,R).

One may build a hyperbolic surface of genus two, by starting with a regular hyperbolic
octagon, all of whose internal angles are π

4 and then gluing by the standard gluing pattern.
Similarly, one may build a hyperbolic surface of genus g by starting with a regular (4g− 4)-gon
with internal angles π

2g .

We will choose to formalize Teichmüller space by using representations. Recall that a marked
hyperbolic structure on a closed surface S, gives rise to a (conjugacy class of a) discrete,
faithful representation ρ : π1(S) → PSL(2,R). In turn, a discrete, faithful representation
ρ : π1(S)→ PSL(2,R) gives rise to a hyperbolic surface Xρ = H2/ρ(π1(S)). Since Xρ is homo-
topy equivalent to S, it is homeomorphic to S. Moreover, there is homeomorphism hρ : S → Xρ

so that (hρ)∗ is conjugate to ρ. (Here, we are using a special property of the topology of closed
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surfaces. The Nielsen-Baer Theorem, see Farb-Margalit [17, Chapter 8], gives that every ho-
motopy equivalence of a closed orientable surface is homotopic to a homeomorphism.) We then
let

T̃ (S) = {ρ : π1(S)→ PSL(2,R) | ρ discrete, faithful, and hρis orientation-preserving}

and the Teichmüller space of S is the quotient

T (S) = T̃ (S)/PSL(2,R)

where T̃ (S) inherits a topology as a subset of Hom(π1(S),PSL(2,R)), PSL(2,R) acts by conju-
gation and T (S) inherits the quotient topology.

Alternatively, one may define T (S) to be the space of marked hyperbolic structure on S up
to the equivalence (X1, f1) ∼ (X2, f2) if and only if f2 ◦ f−1

1 is homotopic to an isometry. One
may think of X as hyperbolic clothing for the naked topological surface S and f as instructions
for how to wear the clothing. The equivalence relation allows one to adjust the clothing, but
not to wear it backwards or to stick your head through the hole designated for the arm.

It is a classical theorem, going back to the 19th century, that T (S) is homeomorphic to R6g−6

if g ≥ 2 is the genus of S. (Notice that π1(S) has a presentation with 2g relations and one
relation, one would expect that DF(π1(S),PSL(2,R)) has dimension (2g)3− 3 = 6g− 3, so one
would predict that Teichmüller space has dimension 6g− 6.) The mapping class group Mod(S)
is the group of (isotopy classes of) self-homeomorphisms of S. Fricke showed that the mapping
class group acts properly discontinuously, but not freely, on T (S) and its quotient is the moduli
space of unmarked hyperbolic structures on S.

We now give a quick sketch of the Fenchel-Nielsen coordinates on Teichmüller space. Suppose
that X is a closed orientable hyperbolic surface of genus g ≥ 2. Recall that, since X is negatively
curved, every homotopically non-trivial closed curve is homotopic to a unique closed geodesic.
Morever, if two homotopically non-trivial simple closed curves are disjoint and non-parallel,
then their geodesic representatives are also disjoint. Let α = {α1, . . . , α3g−3} be a maximal
collection of disjoint simple closed curves and let α∗ be their geodesic representatives on X.
The components of X − α∗ are a collection of 2g − 2 hyperbolic pairs of pants with geodesic
boundary. (A topological pair of pants is a disk with two holes.) Therefore, every closed
hyperbolic surface may be built from hyperbolic pairs of pants.

If P is a hyperbolic pair of pants with geodesic boundary and s1, s2 and s3 are the shortest
paths joining boundary components (called seams), then P − {s1, s2, s3} is a pair of all-right
hyperbolic hexagons (i.e. hexagons all of whose interior angles are π

2 ). An all-right hexagonpictures needed

is determined by the lengths of any 3 non-consecutive sides. Moreover, any 3 lengths can be
achieved. It follows that P is the double of the unique all-right hexagon with alternate sides
having lengths agreeing with the lengths of the seams of P . Moreover, we can build a geodesic
pair of pants with any collection of boundary lengths and this geodesic pair of pants is entirely
determined by its boundary lengths.

So the hyperbolic structure on X is determined, up to isometry, by the lengths of the com-
ponents of α∗ and instructions for gluing the pants together. Since the pants are glued along
closed geodesic curves, there is a one-dimensional space of ways to glue them. This suggests
more forcefully that the space of hyperbolic structures on X has dimension 6g − 6.
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More formally, we get a map L : T (S)→ R3g−3
+ where

L(X, f) =
(
`X(f(αi)

∗)
)3g−3

i=1
.

At each element of α we can define a twist coordinate in R which records how the geodesic
pairs of pants are glued along f(αi)

∗, so we obtain Θ : T (S) → R3g−3. It is natural to think
at first that the twist should lie in S1. One way to see that this is not the case is to observe
that because we have marked the surface, we can detect the homotopy class of the shortest
curve crossing α. When you make a full positive twist, the shortest such curve changes by a
full negative twist (at least if it is unique). One can then see that

(L,Θ) : T (S)→ R3g−3
+ × R3g−3 ∼= R6g−6

is a homeomorphism. For a careful discussion of twist coordinates see, for example, Thurston
[32, Section 4.6], Farb-Margalit [17, Section 10.6] or Martelli [23, Chapter 7].

References: Farb and Margalit [17] give a nice treatment of Teichmüller space from a modern
geometrical/topological viewpoint. Bers’ survey paper [5] is a beautiful treatment of the classical
complex analytic approach Thurston [32, Section 4.6] gives a concise treatment of the Fenchel-
Nielson coordinates. Abikoff [1] gives a treatment of the classical theory with an eye towards
the modern viewpoint.

1.3. Hyperbolic 3-space

The upper half space model for hyperbolic 3-space is given by

H3 = {(z, t) ∈ C× R|t > 0}

with hyperbolic metric given

ds2 =
dx2 + · · ·+ dy2 + dt2

t2

where x = Re(z) and y = Im(z).
It is easy to check, just as in H2, that the t-axis L is a geodesic and that the only geodesics

joining points on L are given by segments of L. Möbius transformations (this time with complex
co-efficients) extend to orientation-preserving isometries of H3. One can do this by writing down
a painful formula, or by noting that translations in C extend to horizontal translations in H3,
dilations z → λz extend to dilations (z, t) → (λz, |λ|t), inversion in the unit circle extends
to inversion in the unit sphere and reflection in the y-axis extends to reflection in the y − t-
plane. One may then check that each of these extensions is an isometry of H3. It follows
that all geodesics in H3 are semi-circles or lines perpendicular to ∂H3 and that an isometry
is determined by its action on a single orthonormal frame at a point in H3. Since, the group
generated by these inversions, translations, and dilations, acts transitively on the orthonormal
frame bundle of H3, we see that this group is the full isometry group of H3. In particular, e can
identify Isom+(H3) with PSL(2,C). Therefore, H3 has constant sectional curvature, and since
it contains a totally geodesic copy of H2, the constant is −1.
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2. Convex cocompact hyperbolic 3-manifolds

2.1. Basic definitions

For simplicity, we will assume throughout these lectures that all groups are finitely gener-
ated, non-abelian and torsion-free. Selberg’s Lemma guarantees that every finitely generated
subgroup of any linear group contains a finite-index torsion-free subgroup, so the assumption
that groups are torsion-free is not very restrictive.

Throughout the lecture course, M will denote a compact, orientable, irreducible 3-manifold,
possibly with boundary, with infinite fundamental group. A 3-manifold M is said to be irre-
ducible if every embedded 2-sphere in M bounds a 3-ball in M . These assumptions guarantee
that π1(M) is infinite and the universal cover of M is contractible. (If you prefer not to take
these facts for granted, you can just add them to the assumptions we are making on M .) In
fact, we will mostly be considering the case where M = S × [0, 1] and S is a closed surface.
Moreover, S will always denote a closed oriented surface in these notes.

A discrete subgroup Γ of PSL(2,C) is called a Kleinian group. If ρ : π1(M) → PSL(2, C) is
a discrete, faithful representation, then ρ(π1(M)) then we obtain a hyperbolic 3-manifold

Nρ = H3/ρ(π1(S)).

Since M and Nρ both have contractible universal cover and ρ gives an identification of the
fundamental groups of M and Nρ, we obtain a homotopy equivalence

hρ : M → Nρ

so that (hρ)∗ : π1(M) → π1(Nρ) = ρ(π1(M)) is conjugate to ρ. We think of hρ as a marking
of a hyperbolic 3-manifold (much as in the setting of Teichmüller space) and think of the pair
(Mρ, hρ) as a marked hyperbolic 3-manifold.

Remark: It follows from a result of Peter Scott [28] that if Γ is a finitely generated, torsion-free
Kleinian group then Nρ is homotopy equivalent to a compact, irreducible, orientable 3-manifold
M , so we may regard Γ as the image of a discrete faithful representation of π1(M).

The limit set of a Kleinian group is the set of accumulation points of an orbit in the boundary
of H3, i.e. if x0 ∈ H3

Λ(ρ) = ρ(π1(M))(x0)− ρ(π1(M))(x0) ⊂ ∂H3.

One may easily check that Λ(ρ) does not depend on the choice of basepoint x0 (EXERCISE).
If ρ : π1(S) → PSL(2,R) is a Fuchsian representation, then ρ(π1(S)) acts cocompactly on the
isometric copy of H2 lying above the real axis in C, so Λ(ρ) = R ∪ {∞}. (EXERCISE) One
may characterize Λ(ρ) as the smallest non-empty closes subset of ∂H3 which is invariant under
ρ(π1(M)).

The complement Ω(ρ) = ∂H3\Λ(ρ) of the limit set is called the domain of discontinuity, since
ρ(π1(M)) acts properly discontinuously on Ω(ρ) (EXERCISE). One may characterize Ω(ρ) as
the largest open subset of ∂H3 on which ρ(π1(M)) acts properly discontinuosly. (EXERCISE)
We can then consider the conformal boundary

∂cNρ = Ω(ρ)/ρ(π1(M))

which has the structure of a Riemann surface. Notice that the conformal boundary can be
empty, for example if ρ(Γ) is cocompact. We can combine the hyperbolic manifold and its
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conformal boundary to obtain the conformal bordification

N̂ρ = (H3 ∪ Ω(ρ))/ρ(π1(N)) = Nρ ∪ ∂cNρ.

The convex hull of the limit set CH(Λ(Γ) is defined to be the smallest closed convex subset of
H3 containing all bi-infinite geodesics with end points in Λ(Λ(Γ)). One may check (EXERCISE)
that it is the union of all ideal tetrahedra with endpoints in the limit set. (The convex hull
clearly contains all such ideal tetrahedra, so it only remains to check that the union of two ideal
tetrahedra is contained in the convex hull of their limit points.) The convex core is then given
by

C(Nρ) = CH(Λ(ρ))/ρ(π1(M)) ⊂ Nρ

Notice that since CH(Λ(ρ)) is convex, there exists a well-defined retraction, called the nearest
point retraction,

r̃ : H3 → CH(Λ(ρ))

so that r̃(x) is the unique point on CH(Λ(ρ)) closest to x. (Notice that if x 6= y and d(z, x) =
d(z, y) then there exists a point u ∈ xy so that d(z, u) < d(z, x).) Since CH(Λ(ρ)) is ρ(Γ)-
invariant, r̃ is ρ-equivariant, so descends to a retraction, still called the nearest point retraction,

r : Nρ → C(Nρ).

It is often useful to consider the closed neighborhood C1(Nρ) of radius one of the convex core.
C1(Nρ) is the quotient of the closed neighborhood of radius one of the convex hull of the limit
set. One key feature here is that C1(N) is strictly convex (since if d(x,w) = 1 and d(y, z) = 1
and u lies in the interior of xy, then d(u,wz) < 1). One may also show that ∂C1(Nρ) is C1.
One does so by showing that f : H3−CH(Λ(ρ))→ (0,∞) is a C1-submersion and applying the
regular value theorem. If x ∈ H3−CH(Λ(ρ)), then let Px be the totally geodesic plane through

x which is perpendicular to xr(x), which is a support plane for CH(λ(ρ) if g(y) = d(y, x)
and h(y) = d(y, Px), then h(y) ≤ f(y) ≤ g(y) for all y in the same component of H3 − Px
as x. Moreover, f(x) = g(x) = h(x) and f and h are differentiable at x and the have the
same derivative at x, so f is differentiable at x. Notice that f is a submersion at x, since the

restriction of f to
−−−→
r(x)x is a submersion. (With a little more care, one can show that ∂C1(Nρ)

is C1,1.)

Suppose that x, y ∈ Nρ − C1(Nρ) and
−−−→
r(x)x and r(y)y intersect ∂C1(Nρ) at the same point

z, then r(z) = r(y) = r(x), so
−−−→
r(x)x =

−−−→
r(y)y =

−−−→
r(z)z. It follows that there is a homeomorphism

f : Nρ − C(Nρ)→ ∂C1(Nρ)× (0,∞) given by f(x) =
(−−−→
r(x)x ∩ ∂C1(N), d(r, r(x))

)
.

(Notice that if r(x) = r(y) it need not be the case that
−−−→
r(x)x =

−−−→
r(y)y, which is another main

reason we work mostly with C1(Nρ).)
One may continuously extend r̃ to a map ∂r̃ : Ω(ρ)→ CH(Λ(ρ)) by letting r̃(z) be the first

point of contact of an expanding family of horospheres based at z with CH(Λ(ρ)). Again, r̃
descends to a map

∂r : ∂cNρ → C(Nρ).

We can then define a homeomorphism

∂f : ∂cNρ → ∂C1(Nρ) given by ∂f(z) =
−−−→
r(z)z ∩ ∂C1(N).
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One may combine f and ∂f into a homeomorphism

f̄ : N̂ρ − C(Nρ)→ ∂C1(Nρ)× (0, 1]

where if x ∈ Nρ − C(Nρ) then f̄(x) =
(−−−→
r(x)x ∩ ∂C1(N), 1− 1

1+d(r,r(x))

)
and if z ∈ ∂cNρ, then

f̄(z) =
(−−−→
r(z)z ∩ ∂C1(N), 1)

)
. So we see:

Proposition 2.1. If ρ : π1(M) → PSL(2,C) is a discrete, faithful representation, then N̂ρ is
homeomorphic to C1(Nρ).

We say that ρ is convex cocompact if C1(Nρ) is compact. Notice that this is equivalent to

requiring that either N̂ρ or C(Nρ) is compact.

2.2. The viewpoint from geometric group theory

Quasi-isometries and quasi-isometric embeddings are natural classes of mappings in the con-
text of geometric group theory. They are generalizations of bilipschitz homeomorphisms and
embeddings which ignore the local structure. However, they need not even be continuous. For
example, an infinite line is quasi-isometric to both an infinite Euclidean cylinder and to Z and
all compact metric spaces are quasi-isometric. One justification for working in this looser con-
text, is that the natural geometric structure on a group, given by a word metric associated to
some (finite) generating set, is only well-defined up to quasi-isometry.

We will always work in the setting of proper length spaces. A metric space is proper if
all closed metric balls are compact. A proper metric space X is a length space if given any
x, y ∈ X, then there exists a rectifiable path joining x to y of length d(x, y). If J is an interval
in R and α : J → X is a path so that d(α(s), α(t)) = |t−s| for all s, t ∈ J , then we say that α is
a geodesic. Notice that in this case α([s, t]) has length t− s if t > s. An action of a group Γ on
X is properly discontinuous if whenever K ⊂ X is compact, {γ ∈ Γ |γ(K) ∩K 6= ∅} is finite. (I
include this definition since some standard texts in general topology include the non-standard
assumption that the group acts freely to the definition of proper discontinuity.)

A map f : Y → Z between metric spaces is a quasi-isometric embedding if there exists K ≥ 1
and C ≥ 0 such that

1

K
dY (a, b)− C ≤ dZ(f(a), f(b)) ≤ KdY (a, b) + C

for all a, b ∈ Y . If we want to remember the constants, we say that f is a (K,C)-quasi-isometric
embedding. We say that f : X → Y is a quasi-isometry if there exists K ≥ 1 and C ≥ 0 so
that f is a (K,C)-quasi-isometric embedding and if y ∈ Y , then there exists x ∈ X so that
d(f(x), y) ≤ C, i.e. f is a quasi-isometric embedding which is coarsely surjective. One may
think of quasi-isometric embeddings as bilipschitz embeddings “in the large,” where you don’t
care at all what happens on the “scale” of the additive constant C.

If f : X → Y is a quasi-isometry, one may define a quasi-inverse g : Y → X, i.e. a quasi-
isometry so that there exists Ĉ so that dX(x, g(f(x)) ≤ Ĉ and dY (y, f(g(y)) ≤ Ĉ for all x ∈ X
and y ∈ Y . There is only one sensible way to construct g. Given y ∈ Y , there exists some
x ∈ X so that d(f(x), y)) ≤ C, and we set g(y) = x. If you haven’t done so before, I recommend
checking the claim that g is a quasi-inverse for yourself. Notice that the quasi-inverse is far
from canonical.
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The Milnor-Svarc lemma assures us that if a group acts properly discontinuously and cocom-
pactly on two spaces, then the spaces are quasi-isometric. This allows one to freely study finitely
presented groups by studying their actions on spaces, since any such space is quasi-isometric to
the Cayley graph of the group. Moreover, any two Cayley graphs for a group (with respect to
different finite generating sets) are quasi-isometric.

Lemma 2.2. (Milnor-Svarc Lemma) If Γ acts properly discontinuously, cocompactly and by
isometries on a proper, length space X, then Γ is finitely generated and the orbit map Γ → X
given by γ 7→ γ(x0), for all γ ∈ Γ and some x0 ∈ X, is a quasi-isometry.

We will make use of a special case of this lemma which is tailored to our situation. If
ρ : π1(M) → PSL(2,C) is a convex cocompact representation, we pick x0 ∈ CH(Λ(Γ)) and
define the orbit map τρ : Γ→ H3 by τρ(γ) = γ(x0). If we choose a generating set S for π1(M),
we can construct a Cayley graph CM for π1(M) and extend τρ to a map τ̂ρ : CM → H3 by
mapping each edge of CM to a geodesic segment. Recall that we metrize CM by giving each
edge length 1.

Lemma 2.3. (Specialized Milnor-Svarc Lemma) If ρ : π1(M)→ PSL(2,C) is a convex cocompact
representation, x0 ∈ CH(Λ(Γ)) and S is a finite generating set for π1(M), then there exists
K ≥ 1 and C > 0 so that τ̂ρ : CM → CH(Λ(ρ)) is K-bilipschitz and a (K,C)-quasi-isometry.

Proof. Let A = maxs∈S d(x0, ρ(s)(x0)). Then τ̂ρ is A-Lipschitz by construction.
Let R be the diameter of C(N) and let T = {γ ∈ π1(M) | ρ(γ)(D(3R, x0)) ∩ D(3R, x0) 6=

∅}, where D(3R, x0) is the closed ball of radius 3R about x0. Since ρ(π1(M)) acts properly
discontinuously on H3, T is finite.

Let γ ∈ π1(M) and let L be a geodesic segment in X joining x0 to ρ(γ)(x0). Divide L up
into

n =

⌊
d(x0, ρ(γ()x0))

R

⌋
+ 1

segments of equal length, with endpoints {x0, x1, . . . , xn}. Notice that each segment has length
less than R. Since C(Nρ) has diameter R and x0 ∈ CH(Λ(ρ)), there exists, for each i, γi ∈
π1(M) so that d(xi, ρ(γi)x0)) ≤ R where we may choose γ0 = id and γn = γ. Then, since
d(ρ(γi)(x0), ρ(γi+1)(x0)) ≤ 3R (by the triangle inequality), γ−1

i γi+1 ∈ T . Notice that

γ = γ0(γ−1
0 γ1)(γ−1

1 γ2) · · · (γ−1
n−1γn).

Notice that since T is finite and S generates π1(M), there exists K1 such that dCM (1, t) ≤ K1

for all t ∈ T . Therefore,

dCM (id, γ) ≤ K1n = K1

(⌊
d(x0, γ(x0)

R

⌋
+ 1

)
≤ K1

R
d(x0, γ(x0)) +K1

so
R

K1
dCM (id, γ)−K1 ≤ d(x0, γ(x0))

and, since τ is Γ-equivariant,

R

K1
dCM (α, β)−K1 ≤ d(α(x0), β(x0))

for all α, β ∈ Γ.
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Finally, notice that, every point in CH(Λ(Γ) lies within R of τ̂ρ(CM ). Therefore, τ̂ρ is a(
max{A, K1

R },max{R,K1}
)
-quasi-isometry. �

Since the inclusion map of any convex subset of H3 into H3 is an isometric embedding, we
obtain the following immediate consequence.

Corollary 2.4. f ρ : π1(M) → PSL(2,C) is a convex cocompact representation, x0 ∈ CH(Λ(Γ))
and S is a finite generating set for π1(M), then τ̂ρ : CM → H3 is a quasi-isometric embedding.

2.3. The fellow traveller property

We will say that a proper length space X is (Gromov) δ-hyperbolic if whenever T is a geodesic
triangle in X with sides s1, s2 and s3 and y ∈ s1, then d(y, s2 ∪ s3) ≤ δ. If X is δ-hyperbolic
for some δ, we often simply say that it is Gromov hyperbolic or simply hyperbolic.

The simplest examples of Gromov hyperbolic spaces are trees, which are 0-hyperbolic. The
name is motivated, in part, by the observation that H3 is hyperbolic.

Lemma 2.5. Hyperbolic space H3 is cosh−1(2)-hyperbolic for any n.

Proof. Let T be a geodesic triangle in H3 with sides s1, s2 and s3. Since any three points in H3

are contained in a totally geodesic, isometrically embedded copy of H2, we may assume that
n = 2.

By the Gauss-Bonnet Theorem, T has area at most π. If y ∈ s1 and r = d(y, s2 ∪ s3), then
T contains a half-disk D of hyperbolic radius r. Since D has area π cosh r − π, we see that

π cosh r − π ≤ π,

so r ≤ cosh−1(2) ≈ 1.317. �

Remarks: 1) Actually, H3 is δ-hyperbolic for δ = tanh−1
(

1√
2

)
≈ 0.8814.

2) A stronger notion of negative curvature is given by considering CAT(−1)-spaces. One says
that a proper length space is CAT(−k), for some k ≥ 0, if every geodesic triangle is at least as
thin as the triangle with the same lengths in a simply connected, complete Riemannian surface
of curvature −k. The Comparision Theorem in Riemannian geometry implies that any simply
connected Riemannian manifold with sectional curvature ≤ −k is CAT(−k). The above lemma
implies that CAT(−k) spaces are cosh−1(2)/k2-hyperbolic if k > 0.

The key property of Gromov hyperbolic spaces which we will need is the Fellow Traveller
Property which tells us that quasi-geodesics remain a bounded distance from actual geodesics
in a hyperbolic space. Notice that this is far from true in Euclidean geometry.

Theorem 2.6. (Fellow Traveller Property) Given (K,C) and δ there exists R so that if X is δ-
hyperbolic and f : [a, b]→ X is a (K,C)-quasi-isometric embedding and L is a geodesic joining
f(a) to f(b), then the Hausdorff distance between L and f([a, b]) is at most R.

Suppose that C and D are closed subsets of a metric space Y . We say that the Hausdorff
distance between C and D is at most R if both

(1) d(c,D) ≤ R for all c ∈ C, and
(2) d(d,C) ≤ R for all d ∈ D.
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Alternatively, one can say that C lies in the (closed) metric neighborhood of radius R of D
and D lies in the (closed) metric neighborhood of radius R of C. The Hausdorff distance is
symmetric, satisfies the triangle inequality, and equals 0 if and only if C = D, but is not truly
a distance, since two closed sets can fail to be a finite Hausdorff distance apart.

We sketch the proof in the case when f is a K-Lipschitz, (K,C)-quasi-isometric embedding.
Notice that in this case f is rectifiable and its image has length at most K|b−a|. This situation
contains all the key ideas of the general proof.

Sketch of Proof: The key observation is that it is “exponentially inefficient” for a path to wander
far from the geodesic joining the endpoints. One manifestation of this principle is that if β is
a path joining the endpoints of a geodesic of length 2A in H3 and lies entirely outside the ball
of radius A about the midpoint x0, then β has length at least π sinhA (which is the length of
the shortest such path in the sphere of radius A about x0).

We first bound how far any point on L can lie from f([a, b]). Choose a point x0 ∈ L which
lies furthest from f([a, b]), i.e.

D = d
(
x0, f([a, b])

)
= sup{d

(
x, f([a, b])

)
| x ∈ L}.

Choose a point y on L so that y lies between f(a) and x0 and d(y, x0) = 2D (or y = f(a) if
d(f(a), y) ≤ 2D). Choose s ∈ [a, b] so that d(f(s), y) ≤ D (or s = a if y = f(a)). Choose a point
z on L which lies between x0 and f(b) and and d(z, x0) = 2D (or z = f(b) (if d(f(b), x0) ≤ 2D.)
Choose t ∈ [a, b] so that d(f(t), y) ≤ D (or t = b if z = f(b)). We then concatenate a
geodesic joining y to f(s), f([s, t]) and the geodesic joining f(t) to z to produce a path γ
joining y to z. Since d(f(s), f(t)) ≤ 6D, |s − t| < 6KD + KC, and since f is K-lipschitz,
`(f([s, t])) ≤ 6DK2 +K2C, so

`(γ) ≤ 6DK2 + 2KD +K2C.

Let ŷ be the point between x0 and y so that d(x0, ŷ) = D and let ẑ between x0 and z so that
d(x0, ẑ) = D, and form a path joining ŷ to ẑ by appending to γ segments in L joining y to ŷ
and joining z to ẑ. Then

`(γ̂) ≤ 6DK2 +K2C + 4D

and γ̂ lies entirely outside of the ball of radius D about x0. Therefore,

`(γ̂) ≥ π sinhD

so

D ≤ sinh−1

(
6DK2 +KC + 4D

π

)
= D0.

We now bound the distance from any point on f([a, b]) to L. Let f([s, t]) be maximal
subsegment of f([a, b]) which stays outside of an open neighborhood of L of radius D0. Notice
that the subset of L consisting of points within D0 of f([a, s]) is closed and the subset of L
consisting of points within D0 of f([t, b]) is closed. On the other hand their union is all of L,
by the previous paragraph, so, since L is connected, their intersection is non-empty. So, there
exists r ∈ [a, s], u ∈ [t, b] and w ∈ L so that d(w, f(r)) ≤ D0 and d(w, f(u)) ≤ D0.

Since d(f(r), f(u)) ≤ 2D0 , we see that |r − u| ≤ 2KD0 +KC and, since f is K-lipschitz,

`(f([u, r])) ≤ 2K2D0 +K2C
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so if q ∈ [s, t] ⊂ [r, u], then

d(f(q), L) ≤ D0 +K2D0 +
K2C

2
= R.

Therefore, the Hausdorff distance between f([a, b]) and L is at most R. �

We say that a group is Gromov hyperbolic if its Cayley graph, with respect to some finite
generating set, is a Gromov hyperbolic metric space. It is a consequence of the Fellow Traveler
Property that if two spaces X and Y are quasi-isometric, then X is Gromov hyperbolic if and
only if Y is Gromov hyperbolic. (EXERCISE) Since Cayley graphs of a fixed group, with respect
to different finite generating sets are quasi-isometric, this notion is well-defined independent of
the (finite) choice of generating set. So we obtain the following consequence:

Proposition 2.7. If ρ : π1(M) → PSL(2,C) is a convex cocompact representation, then π1(M)
is Gromov hyperbolic.

2.4. Alternative characterizations

We see that a representation is convex cocompact if and only if its orbit map is a quasi-
isometric embedding.

Proposition 2.8. A discrete faithful representation ρ : π1(M)→ PSL(2,C) is convex cocompact
if and only if its extended orbit map τ̂ρ : CM → H3 is a quasi-isometric embedding.

Proof. We have already established the forward direction.
So, suppose τ̂ρ is a quasi-isometric embedding into H3. Recall that CH(Λ(ρ)), is the union

of all ideal tetrahedra in H3 with endpoints in the limit set. We may assume that x0 has been
chosen to lie in CH(Λ(Γ)), which implies that τ̂ρ(CM ) ⊂ CH(Λ(ρ).

Suppose that τ̂ρ is a (K,C)-quasi-isometric embedding. The Fellow Traveller Property implies

that there exists R = R(K,C, cosh−1(2)) so that if [a, b]] is a geodesic segment in CM , then

τ̂ρ([a.b]) is a Hausdorff distance at most R apart from the geodesic τ̂ρ(a))τ̂ρ(b) joining τ̂ρ(a) to
τ̂ρ(b).

If z 6= w ∈ Λ(ρ), then there exists {γn} and {βn} in π1(M) so that τρ(γn)→ z and τρ(βn)→
w. Then τρ(γn)τρ(βn) lies in the (closed) neighborhood NR(τ̂ρ(CM ) of τ̂ρ(CM ) of radius R, for

all n. Since τρ(γn)τρ(βn)→ zw we see that zw ⊂ NR(τ̂ρ(CΓ)).
There exists B so that if T is an ideal tetrahedra in Hs, then every point in T lies within B

of an edge of T (EXERCISE) Therefore, every point in CH (Λ(ρ)) lies with R+B of a point in
τ̂ρ(CM ). It follows that if D is the diameter of the bouquet of circles τ̂ρ(CM )/ρ(π1(M)) ⊂ Nρ,
then C(Nρ) has diameter at most R + B +D. Since C(Nρ) is a closed subset of the complete
Riemannian manifold Nρ, this implies that C(Nρ) is compact, and hence that ρ is convex
cocompact. �

Beardon and Maskit [4] showed that a Kleinian group is convex cocompact if and only every
point in the limit set is a conical limit point. We say that z ∈ Λ(ρ) is a conical limit point if
whenever −→xz is a geodesic ray ending at z, there exists R and a sequence {γn} ⊂ π1(M) so that
γn(x)→ z and d(γn(x),−→xz) ≤ R for all n.

Medium Exercise: Prove that if ρ is convex cocompact, then every limit point is conical.
Hard Exercise: Prove that if every point in Λ(ρ) is conical, then ρ is convex cocompact.

Medium
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Marden [22] showed that a Kleinian group is convex cocompact if and only if it has a finite-
sided convex fundamental domain and contains no parabolic elements. (EXERCISE)

Remark: In one of my first conversations with Bill Thurston, before he became my advisor, I
tried to explain how to prove some fact using fundamental domains. He immediately told me
that was the wrong way to think about hyperbolic manifolds.

2.5. Stability

Let

C̃C(M) ⊂ Hom(π1(M),PSL(2,C))

be the set of convex cocompact representations and let CC(M) be its image in the quotient
character variety

X(M) = Hom(π1(M),PSL(2,C)//PSL(2,C).

(The double back-slash indicates that we are taking the geometric invariant theory quotient
which givesX(M) the structure of the variety. We will not need to worry about this construction
but there is an open neighborhood of the set of discrete faithful representation on which the
quotient is simply the usual quotient and the image of the neighborhood lies in the smooth part
of the character variety.)

It is a crucial property of convex cocompact representations, known as stability, that C̃C(M)
is open in Hom(Γ,PSL(2,C)). This was first established by Marden [22]. Informally, if you
wiggle a convex cocompact representation a little bit it remains convex cocompact.

Theorem 2.9. If ρ : π1(M) → PSL(2,C) is convex cocompact, then there exists a neighborhood
U of ρ in Hom(π1(M),PSL(2,C)) such that if σ ∈ U , then σ is convex cocompact.

Theorem 2.9 was first establshed by Marden [22, Theorem 10.1]. Thurston [31, Proposition
8.3.3] observed that it followed from argument of the form due to Weyl, see also Canary-Epstein-
Green [10, Section I.2.5].

Proof. Suppose that the orbit map τ̂ρ : CM → H3 is a (K,C)-quasi-isometric embedding, where
CM is constructed from a finite generating set S for π1(M). The local-to-global principle, see

Theorem 2.13, implies that there exists A, K̂, and Ĉ so that if f : J → H3 (where J is an
interval in R) is a (K + C + 2, C + 2)-quasi-isometry on all segments of length at most A, then

f is a (K̂, Ĉ)-quasi-isometry.
Let U be an open neighborhood of ρ in Hom(π1(M),PSL(2, )) so that if σ ∈ U , γ ∈ π1(M)

and dCM (1, γ) ≤ A + 1, then d(ρ(γ(x0)), σ(γ)(x0)) < 1. (We may do so since there are only
finitely many elements of γ within A+ 1 of id.)

If σ ∈ U , let τσ be the orbit map of σ. We see that if dCM (1, γ) ≤ A+ 1, then

1

K
dCM (id, γ)− C − 1 ≤ d(τσ(id), τσ(γ)) ≤ KdCM (id, γ) + C + 1.

Therefore, the extended orbit map τ̂σ is a (K +C + 2, C + 2)-quasi-isometry on all geodesic
segments in CM of length at most A + 1 emanating from the origin. However, every segment
of length A in CM may be translated by an element of π1(M) to a subsegment of a geodesic
segment in CM of length at most A+1 emanating from the origin. Since τ̂σ is σ-equivariant, τ̂σ
is a (K+ 2, C+ 2)-quasi-isometric embedding on all geodesic segments in CM of length at most
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A. Therefore, τ̂σ is a (K̂, Ĉ)-quasi-isometric embedding on all geodesic segments in CM , which

implies that τ̂σ is a (K̂, Ĉ)-quasi-isometric embedding. Therefore, σ is convex cocompact. �

Since the set CC(M) is invariant under conjugation, we immediately see that both C̃C(M)
and its quotient CC(M) are open.

Corollary 2.10. C̃C(M) is open in Hom(π1(M),PSL(2,C)) and CC(M) is open in X(M).

2.6. Extra for experts: the topology of DF (π1(M),PSL(2,C))

Let
DF(π1(M),PSL(2,C)) ⊂ Hom(π1(M),PSL(2,C))

be the set of discrete, almost faithful, representations and let AH(M) be its image in X(M).
The following is a standard consequence of the Margulis-Zassenhaus Lemma. (GET REFS)

Theorem 2.11. With our assumptions on M , DF(π1(M),PSL(2,C)) is a closed subset of
Hom(π1(M),PSL(2,C)) and AH(M) is a closed subset of X(M). Similarly, if Γ is any torsion-
free finitely generated group, DF(Γ,PSL(2,R)) is a closed subset of Hom(Γ,PSL(2,R)).

Since T̂ (S) is also open and connected, this immediately implies that T̂ (S) is a component
of DF (π1(S),PSL(2,R)).

The same logic would imply that if M is closed 3-manifold, then AH(M) is a collection
of components of X(M). However, Mostow’s rigidity theorem implies that if M is a closed
3-manifold and AH(M) is non-empty, then it consists of exactly two points (one for each
orientation on the unique hyperbolic 3-manifold homotopy equivalent to M .

In general, AH(M) will not be open and ĈC(M) will not be closed. We describe a simple
instance of this phenomenon in dimension 2.

Proposition 2.12. If F2 is the free group with 2 generators, then CC(F2,PSL(2,R)) is open, but
not closed, in Hom(F2,PSL(2,R)). Moreover, DF (F2,PSL(2,R)) is closed, but not open, in
Hom(F2,PSL(2,R)).

We first describe the classical Schottky construction of convex cocompact representations of
free groups. If {C1, C2, . . . , C2n−1, C2n} is a family of disjoint geodesics in H2 bounding disjoint
(closed) half-spaces {D1, D2, . . . , D2n−1, D2n} (whose closures are disjoint in H2 ∪ ∂H2), then
we may construct a convex cocompact representation ρ : Fn → PSL(2,R) by letting ρ(ai) be a
Möbius transformation taking D2i−1 to H2 − int(D2i) for all i, where Fn =< a1, . . . , an >. If
P = H2 −

⋃
int(Di), then one may form a complete hyperbolic surface from P by identifying

C2i−1 to C2i by ρ(ai) for all i. Covering space theory then allows us to conclude that P is a
fundamental domain for the action of ρ(Fn) and that orbits of P tesselate H2. (One may also
verify these facts, using the Ping Pong Lemma.)

If we choose x0 ∈ int(P ) and let δ = min{d(Ci, Cj) | i 6= j}, then one may easily check that

d(x0, γ(x0)) ≥ δd(1, γ).

On the other hand, if K = max{d(x0, ρ(ai)(x0))}, then

d(x0, γ(x0)) ≤ Kd(1, γ).

Therefore, τρ is a quasi-isometric embedding, so ρ is convex cocompact. Notice that, in this
case, one may easily see that all representations near to ρ are also convex cocompact, since
wiggling the representation, just amounts to wiggling the Ci.
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We now observe that not all discrete, faithful representations of F2 are convex cocompact.
Suppose that C1 is the x-axis, C2 is the line Re(z) = 1, C3 is a semi-circle based at 1/4 with

radius 1/8 and C4 is a semi-circle based at 3/4 with radius 1/8. Let ρ0(a1) =

[
1 1
0 1

]
and let

ρ0(a2) be a Möbius transformation taking the half-space “below” C3 to the half-space “above”
C4 and preserving the height of points on C3. Let P be the (closure of the) region between C1

and C2 and above C3 and C4. Consider the hyperbolic surface X obtained from identifying C1

with C2 by ρ0(a1) and identifying C3 with C4 by ρ0(a2) and the sequence of regions Xn given by
the quotient of {z ∈ P |e−n ≤ Im(z) ≤ en}. Notice that Xn contains the ball of radius n about
the quotient of i+ 1/2 and exhausts X. It follows that X is complete. Covering space theory,
then guarantees that ρ0 : F2 → PSL(2,R) is discrete and faithful and that P is a fundamental
domain for the action of ρ0(F2) on H2. However, τρ is not a quasi-isometric embedding, since
if we choose x0 = i+ 1/2, then

d(x0, ρ0(an)(x0)) = 2 log
n+
√
n2 + 4

2
∼ 2 log n

so ρ0 is not convex cocompact.
Notice that it is important to be careful in checking completeness. Suppose that we choose

C1, C2, C3 and C4 as for ρ0 but then let ρ̂0(a1) to be given by z 7→ 1
2z+ 1 and ρ̂0(a2) = ρ0(a2).

The region Xn is not preserved by the gluings ρ̂(ai), the quotient of P is not complete and, in
fact, ρ̂0 is convex cocompact. One may see that the quotient of P is not complete, by considering
the path in the quotient which is the union of horizontal segments in P of height 2n for all n.
This path has finite length but leaves every compact subset of the quotient of P . Notice that
the lines {ρ̂(an1 )(C0)} accumulates at the line Re(z) =

∑n
i=0

1
2n = 2, so the translates of P do

not tesselate H2. A fundamental domain for the action of ρ̂(F2) is given by looking at the region
below the circle of radius 2 about z = 2 and above the circle of radius 1 about z = 2 and above
C3 and C4. One may then use this picture, just as above, to show that ρ̂0 is convex cocompact.

We now observe that ρ is a limit of a sequence {ρn} of representations whose image is not
discrete and faithful. For all n ≥ 2, let ρn(a) be an element of PSL(n,R) which fixes ni + 1

2
and takes i to i+ 1 and let ρn(b) = ρ(b). It is then easy to check that {ρn} converges to ρ and
that ρn(F2) is either indiscrete or not faithful (since either ρn(a) has finite order, or < ρn(a) >
is indiscrete). Similarly, we choose ρ̂n(a) ∈ PSL(2,R) to take the interior of the circle R−n of
radius n about −n to the exterior of the circle Rn of radius n about n+ 1, so that the “height”
(i.e. the imaginary component) of points on R−n is preserved and let ρ̂n(b) = ρ(b). Then ρ̂n is
convex cocompact for all n and lim ρ̂n = ρ.

2.7. Extra for Experts: the proof of the Local-to-global principle

We will only use this fact for bi-infinite quasigeodesics in H3, where the proof is easier, but
we state the general fact here. See Coornaert-Delzant-Papadopoulos [14, Thm. 3.1.4] for a
complete proof.

Theorem 2.13. (Local to Global Principle) Given K ≥ 1, C ≥ 0 and δ ≥ 0, there exists K̂,

Ĉ and A so that if J is an interval in R, X is δ-hyperbolic and h : J → X is a (K,C)-quasi-
isometric embedding restricted to every connected subsegment of J with length ≤ A, then h is a
(K̂, Ĉ)-quasi-isometric embedding.
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We will give a sketch of the proof in the case when X = H3 and J = R which is based on
an argument of Minsky [25]. (The assumption that J = R is simply for convenience, while the
restriction to X = H3 significantly simplifies the proof).

Proof. We will make use of an elementary lemma in hyperbolic geometry.

Lemma 2.14. Given S > 0, T > 0, there exists B = B(S, T ) > 0 so that if P and Q are totally
geodesic hyperplanes in H3, p ∈ P , q ∈ Q and x ∈ H3, and px and qx are geodesic segments
perpendicular to P and Q respectively, so that d(p, x) ≥ B, d(q, x) ≥ B, and d(x, pq) ≤ S , then
d(P,Q) ≥ T .

(The idea of the proof of the lemma is that if B is large enough, then px and pq are nearly
tangent, so pq is nearly orthogonal to P . Similarly, pq is nearly orthogonal to Q. So we choose
B large enough that the angles between pq and both P and Q is at least .75. Notice that pq
has length at least 2B − 2S. Let C = {(P,Q,L)} be the set of triples where P and Q are
geodesic hyperplanes which are joined by a geodesic segment L which makes angle at least .75
with each of P and Q and d(P,Q) ≤ T . If we also assume pq passes through a fixed point, then
C is a compact set of configurations. Therefore, there is an upper bound R on the length of L.
So, if we also choose B large enough that 2B − 2S > R, then our assumptions guarantee that
d(P,Q) ≥ T .)

Given K ≥ 1 and C ≥ 0, let R = R(K,C, cosh−1(2)) be the constant provided by the Fellow
Traveller property and let B = B(2R, 2R) be the constant provided by Lemma 2.14. Choose
A ≥ 4K(B + C +R).

For all i ∈ Z, let ti = iA
2 and yi = h(ti). Let Gi = yiyi+1 be the geodesic segment with

vertices yi and yi+1 and midpoint mi. Notice that d(yi, yi+1) ≥ A
2K − C, so

d(mi, yi+1) ≥ A

4K
− C

2
≥ B.

Similarly, d(mi+1, yi) ≥ L.
By the Fellow Traveller Property, there exists si ∈ [ti, ti+1] such that d(f(si),mi) ≤ R. The

Fellow traveller property, then implies that d
(
yi, h(si)h(si+1)

)
≤ R. Choose zi ∈ h(si), h(si+1),

so that d(zi, yi) ≤ R. Since mi,mi+1 are h(si)h(si+1) are geodesics whose endpoints are a
distance at most R apart, the convexity of the distance function implies that the Hausdorff
distance between mi,mi+1 are h(si)h(si+1) is at most R. Therefore, d(zi,mimi+1) ≤ R, so
d(yi,mimi+1) ≤ 2R. Lemma 2.14 then implies that

d(Pi, Pi+1) ≥ 2R for all i ∈ Z.

We next claim that Pi−1 and Pi+1 lie on opposite sides of Pi. If not, then yi−1 and yi+1 lie
on the same side of Pi, so the geodesic segment yi−1yi+1 lies on the opposite side of Pi from yi,
but

d(yi, Pi) = d(yi,mi) ≥
A

4K
− C > 2R, so d

(
f(si), yi−1, yi+1

)
> R

which would contradict the Fellow Traveller Property. It follows that Pi−1 lies on the opposite
side of Pi as Pi+1. Therefore, since d(Pi, Pi+1) ≥ 2R for all i and are ordered monotonically, we
see that

d(ym, yn) ≥ (|m− n| − 1)2R for all m,n ∈ Z,
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If a, b ∈ R, choose m,n ∈ Z so that a ∈ [tm−1, tm] and b ∈ [tn, tn+1]. Then

|a− tm| <
A

2
, |b− tn| <

A

2
, d(f(a), f(tm)) ≤ KA

2
+ C d(f(b), f(tn)) ≤ KA

2
+ C

so

d(f(a), f(b)) ≥ 2R(|m− n| − 1)−KA− 2C

=
4R

A
|tm − tn| − 2R−KA− 2C

≥ 4R

A
|b− a| − 6R−KA− 2C

Since, |ti − ti+1| = A
2 , d(f(ti), f(ti+1)) ≤ KA

2 + C, so we see that

d(f(tm), f(tn)) ≤ |m− n|
(
KA

2
+ C

)
.

Therefore,

d(f(a), f(b)) ≤ |m− n|
(
KA

2
+ C

)
+KA+ 2C

=
2

A
|tm − tn|

(
KA

2
+ C

)
+KA+ 2C

≤ |b− a|
(
K +

2C

A

)
+A

(
K +

2C

A

)
+KA+ 2C

We conclude that f is a (K̂, Ĉ)-quasi-isometry where

K̂ = max

{
A

R
,K +

2C

A

}
and Ĉ = A

(
K +

2C

A

)
+ 6R+KA+ 2C.

�

3. Quasifuchsian groups

If S is a closed oriented surface, we consider quasifuchsian space

QF (S) = CC(S × [0, 1]).

Representations in QF (S) are called quasifuchsian representations and their images are called
quasifiuchsian groups.

If ρ ∈ QF (S), then C1(Nρ) is a closed, irreducible, orientable 3-manifold homotopy equiv-
alent to S. It follows from basic results on the topology of 3-manifolds (REF) that C1(Nρ)

is homeomorphic to S × [0, 1], and hence that N̂ρ is homeomorphic to S × [0, 1] and Nρ is

homeomorphic to S× (0, 1). Moreover, hρ : S× [0, 1]→ N̂ρ is homotopic to a homeomorphism.
Since S × [0, 1] admits an orientation-reversing homeomorphism, we may assume that hρ is
orientation-preserving. Therefore, we get a map

B : QF (S)→ T (S)× T (S̄) given by B(ρ) = (∂cNρ, hρ)

where S̄ is S with the opposite orientation. The main goal of this section is to show that B is
a homeomorphism.
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3.1. Quasiconformal maps and Beltrami differentials

We begin with a brief survey of the theory of quasiconformal maps (without proof). Roughly,
quasiconformal maps are orientation preserving homeomorphisms which distort the conformal
structure by a bounded amount. One may view them as the conformal analogue of bilipschitz
maps, which distort the metric structure a bounded amount. Good references for the theory
of quasiconformal maps are the books of Lehto-Virtanen [21] and Lehto [20]. This section is
plagiarized from the research monograph of Canary-McCullough [12].

Given a function f : D → C defined on a domain D in C, we may write it as f(x, y) =
u(x, y) + iv(x, y). We say f is ACL (absolutely continuous on lines) if given any rectangle
R = [a, b]× [c, d] in D both u and v are absolutely continuous restricted to almost every vertical
and almost every horizontal line segment in R. If f is ACL then the partial derivatives of u
and v exist almost everywhere and we define fx = ux + ivx and fy = uy + ivy. Then, we let
fz = 1

2(fx − ify) and fz̄ = 1
2(fx + ify). (Recall that the Cauchy-Riemann equations assert

that if f is analytic then fz̄ = 0 for all z ∈ D.) We define the Beltrami differential of f to be

µf =
fz̄
fz

Notice that if f is differentiable at a point z and Jf(z) is its Jacobian, then the image

of the unit circle (in the tangent space Tz(D)) under Jf(z) is an ellipse, the ratio of the lengths

of the axes is given by K(z) =
1 + |µf (z)|
1− |µf (z)|

and the angle that the preimage of the (longer) axis

makes with the x-axis is 1
2 arg(µf (z)).

One says that an orientation-preserving homeomorphism f : D → D′ is K-quasiconformal if
f is ACL and |µf | ≤ K−1

K+1 almost everywhere. This says that, typically, very small circles are
taken to curves very much like ellipses with eccentricity at most K. One way of formalizing
this is by defining

H(z) = lim sup
r→0

maxθ |f(z + reiθ)− f(z)|
minθ |f(z + reiθ)− f(z)|

.

An orientation-preserving homeomorphism f : D → C ∪ {∞} is K-quasiconformal if and only
if H is bounded on D − {∞, f−1(∞)} and H(z) ≤ K almost everywhere in D (see pages 177
and 178 in Lehto [20]). If one uses the spherical metric on C, then one need not exclude ∞ and
f−1(∞) from consideration.

One may check that the composition of a K1-quasiconformal map and a K2-quasiconformal
map is a K1K2-quasiconformal map. Another useful fact is:

Proposition 3.1. (Lehto-Virtanen [21, Thm. 1.5.1]) A quasiconformal map is conformal if and
only if it is 1-quasiconformal.

The most fundamental result concerning quasiconformal maps is the Measurable Riemann
Mapping Theorem (see Ahlfors-Bers [3] or Lehto [20]) which asserts that the Beltrami differential
determines the quasiconformal map (up to normalization) and that every Beltrami differential
(of norm less than 1) determines a quasiconformal map.

Measurable Riemann Mapping Theorem: Suppose that µ ∈ L∞(C,C) and ||µ||∞ < 1. Then
there exists a unique quasiconformal map φµ : C→ C whose Beltrami differential is µ and such
that φµ fixes 0, 1, and ∞. Moreover, φµ depends analytically on µ.
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Notice that one may combine the Measurable Riemann Mapping Theorem and the traditional
Riemann Mapping Theorem to observe that the same result holds for the upper half-plane H2.
This version of the result is used in traditional Teichmüller theory and also plays a role in our
proof of the Quasiconformal Parameterization Theorem.

Measurable Riemann Mapping Theorem (Disk version): Suppose that µ ∈ L∞(H2,C) and
||µ∞|| < 1. Then there exists a unique quasiconformal map φµ : H2 → H2 whose Beltrami
differential is µ and such that φµ fixes i, 2i, and 3i. Moreover, φµ depends analytically on µ.

An alternative characterization of quasiconformal mappings of C is obtained by considering
bilipschitz homeomorphisms of H3. The Fellow Traveller property may be easily used to show
that any bilipschitz homeomorphism of H3 to itself extends continuously to a homeomorphism
of ∂H3 to itself. (EXERCISE). One must work a little harder (although not too much harder)
to show that this extension is quasiconformal. (I like how this is written up in Thurston’s notes
[31], but one may find this argument many places.) It is a deeper fact that any quasiconformal
automorphism of ∂H3 extends to a bilipschitz map of H3. (One place to read an exposition is
in Matsuzaki-Taniguchi [24, Thm 5.3.1].)

Proposition 3.2. Let φ : C→ C be an orientation-preserving homeomorphism. Then φ is quasi-
conformal if and only if it extends to a homeomorphism Φ: H3 ∪C→ H3 ∪C whose restriction
to H3 is bilipschitz (with respect to the hyperbolic metric).

Notice that one can show that a bilipschitz map extends to a well-defined map of the boundary
using only the Fellow Traveller Property. One must work a little harder (although not too much
harder0 to show that this extension is quasiconformal. The fact that quasiconformal maps
extend to bilipschitz maps is a deeper fact.

It will also be useful to know that quasiconformal homeomorphisms take sets of measure zero
to sets of measure zero. (FIND REF)

Theorem 3.3. If f : C ∪ {∞} → C ∪ {∞} is a quasiconformal map and E ⊂ C has measure
zero, then f(E) has measure zero.

3.2. The geometry of quasifuchsian hyperbolic 3-manifolds

If H is a totally geodesic hyperplane in H3, then one may parameterize a component of H3\H
by H × (0,∞) where the first coordinate associated to a point x is its nearest point retraction
onto H and the second coordinate is its distance from H. In these coordinates, the metric takes
the form ds2 = cosh2 tds2

H + dt2, where ds2
H is the intrinsic hyperbolic metric on H and t is the

real coordinate.
If ρ is convex cocompact, then we identified Nρ − C1(Nρ) with C1(Nρ) × (1,∞). We may

then show that in these coordinates Nρ − C1(Nρ) is bilipschitz to the metric

cosh2 tds2
∂C1(Nρ) + dt2

where ds2
∂C1(Nρ) is the intrinsic metric on ∂C1(Nρ) and t is the real coordinate. (The argument

is relatively elementary, but tedious, so we will not give it. I promise not to assign it as an
exercise if you promise not to ask me to do it.)

We can use this to show that any two quasifuchsian representations are quasiconformally
conjugate.
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Theorem 3.4. If ρ1, ρ2 ∈ QF (S), then there exists a quasiconformal map φ : ∂H3 → ∂H3, so
that ρ2(γ) = φ ◦ ρ2(γ) ◦ φ−1 for all γ ∈ Γ.

Proof. Let hρi : S×[0, 1]→ C1(Nρi) be orientation-preserving homeomorphism in the homotopy
class of ρi. Since C1(Nρi) is a compact C1-manifold, we may assume that hρi is bilipschitz. So

h = hρ2 ◦ h−1
ρ1 : C1(Nρ1)→ C1(Nρ2)

is a bilipschitz homeomorphism. We may then extend h radially in the coordinates to obtain
an orientation-preserving bilipschitz homeomorphism

H : Nρ1 → Nρ2

where if x ∈ Nρ1 − C1(Nρ1) has coordinates (y, t), then H(x) has coordinates (h(y), t).

Then H lifts to an orientation-preserving bilipschitz homeomorphism H̃ : H3 → H3 which
conjugates the action of ρ1(π1(S)) to the action of ρ2(π1(S), so, perhaps after precomposition
by an element of ρ1(π1(S)),

H̃ ◦ ρ1(γ) = ρ2(γ) ◦ H̃
for all γ ∈ π1(S). Then H̃ extends to a quasiconformal homeomorphism φ : ∂H3 → ∂H3 so that

φ ◦ ρ1(γ) = ρ2(γ) ◦ φ
for all γ ∈ π1(S). �

If ρ1 is Fuchsian, then its limit set has measure zero, which implies that Λ(ρ2) = φ(Λ(ρ1))
also has measure zero.

Corollary 3.5. If ρ ∈ QF (S), then Λ(ρ) has measure zero.

3.3. Simultaneous uniformization

Bers [6] showed that B gives a complete parametrization of QF (S).

Theorem 3.6. The map
B : QF (S)→ T (S)× T (S̄)

is a homeomorphism.

Proof. We first prove that B is injective. If B(ρ1) = B(ρ2), then there exists a conformal
map ψ : ∂cNρ1 → ∂cNρ2 in the homotopy class of hρ2 ◦ h−1

ρ1 . This map lifts to a conformal

homeomorphism ψ̃ : Ω(ρ1)→ Ω(ρ2) so that ρ2(γ) = φ̃ ◦ ρ1(γ) ◦ φ̃−1 for all γ ∈ π1(S).

We may use the radial coordinates on N̂ρi−C1(Nρi) to extend ψ to a differentiable bilipschitz
homeomorphism Ψ from Nρ1 \ intC1(Nρ1) to Nρ2 \ intC1(Nρ2). Since C1(Nρ1) and C1(Nρ2) are
homeomorphic, we may then extend Ψ to a differentiable bilipschitz diffeomorphism from Nρ1

to Nρ2 . The map Ψ lifts to a bilipschitz map from H3 to H3 which admits a continuous extension

to a quasiconformal homeomorphism C of ∂H3. By construction, C agrees with ψ̃ on Ω(ρ1).
(Bers uses a more analytic argument to construct the extension C.)

Since Λ(ρ1) has measure zero and C is conformal on Ω(ρ1), we conclude that C is conformal
and that ρ2(γ) = C ◦ ρ1(γ) ◦ C−1 for all γ ∈ π1(S). Therefore ρ1 = ρ2 ∈ QF (S).

The fact that B is surjective is an application of the Measurable Riemann Mapping Theorem.
Suppose that (Y, Z̄) ∈ T (S)× T (S̄). Let ρ0 be a Fuchsian group so that B(ρ0) = (X, X̄). Let
ψ : X ∪ X̄ → Y ∪ Z̄ be an orientation-preserving diffeomorphism (in the correct homotopy
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class). We may lift ψ to a map ψ̃ : Ω(ρ0)→ H2 ∪H2 and compute its Beltrami differential µψ̃.

We may then extend µψ̃ to a Beltrami differential on ∂H3 by setting it equal to 0 on Λ(ρ0).

The Measurable Riemann Mapping Theorem implies that there exists a quasiconformal map
φ : ∂H3 → ∂H3 with Beltrami differential µ.

By construction, if γ ∈ π1(S), then φ ◦ ρ0(γ) and φ have the same Beltrami differentials on

Ω(ρ0), since they differ by postcomposition by a conformal automorphism. Therefore, ψ̃ ◦ρ0(γ)

and ψ̃ have the same Beltrami differential on Ω(ρ0) and hence on Ĉ (since Ω(ρ) has full measure).
The uniqueness portion of the Measurable Riemann Mapping Theorem, that φ ◦ ρ0(γ) ◦ φ−1 is
conformal on φ(Ω(ρ0)). Since φ(Ω(ρ0)) is full measure and φρ0(γ)φ−1 is quasiconformal then

implies that they differ by post-composition by a conformal automorphism, so φ ◦ ρ0(γ) ◦ φ−1

is conformal. Therefore, we obtain a faifthful representation ρ : π1(S) → PSL(2,C) defined by
ρ(γ) = φ ◦ ρ0(γ) ◦ φ−1 for all γ ∈ Γ. ρ is discrete since ρ(π1(S)) acts properly discontinuously
on φ(Ω(ρ0)).

Then N̂ρ is an irreducible, orientable manifold homotopy equivalent to S. It has two boundary

components which are homotopic, hence homologous, which implies that N̂ρ is compact, and

hence that ρ is convex cocompact. Since φ and ψ̃ have the same Beltrami differential on Ω(ρ0),

we see that φ ◦ ψ̃−1 is a conformal homeomorphism from H2 ∪ H2 to Ω(ρ) which descends to
a conformal homeomorphism from Y ∪ Z̄ to ∂cNρ. Therefore, B(ρ) = (Y, Z̄). (If one prefers a
more geometric argument, one may use work of Douady and Earle [15] to extend the quotient

of φ to a homeomorphism of N̂ρ0 to N̂ρ which is bilipschitz on Nρ0 .) Therefore, ρ ∈ QF (S) and
B(ρ) = (Y, Z̄).) We have now shown that B is surjective which completes the proof.

�

An excellent, analytically oriented, survey of the quasiconformal deformation theory of
Kleinian groups is given in a paper of Bers [8]. A full treatment from a more topological
viewpoint is given in Canary-McCullough [12].

3.4. Extra for experts: limit sets of convex cocompact Kleinian groups

4. Laminations and pleated surfaces

4.1. Geodesic laminations

A geodesic lamination on a hyperbolic surface X is a closed set which is a disjoint union of
simple complete geodesics, i.e. geodesics in the disjoint union are either simple closed geodesics
or bi-infinite simple geodesics. The simplest examples are disjoint unions of simple closed
geodesics. We will primarily be interested in maximal finite-leaved geodesics. In fact every
geodesic lamination is a (Gromov-Hausdorff) limit of a sequence of a sequence of finite-leaved
geodesic laminations.

We now explain how to obtain a maximal finite-leaved geodesic lamination whose complement
is a finite collection of ideal triangles. We begin with the case of a pair of pants with geodesic
boundary. Consider the three common perpendicular geodesic segments which join pairs of
sides. These geodesic segments decompose the pair of pants into two all-right angled hexagons.
One can spin the vertices along the geodesic, reducing the angle and lengthening each segment.
If one takes a limit as one spins a larger and larger amount, each geodesic segment will converge
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to a bi-infinite geodesic each of whose ends spirals about one of the closed geodesics. The
complement of the three leaves is a union of two ideal triangles.

If one prefers one may add more edges (but not vertices) to obtain a triangulation of the pair
of pants. If one spins this larger configuration each of the added edges converges to one of the
limits of the original three edges.

Given a geodesic pants decomposition of a hyperbolic surface, one may perform the same
operation on each pair of pants to obtain a finite leaved lamination contains the original pants
decomposition suc h that each component of its complement is an ideal triangle. More generally,
given a collection C of disjoint simple closed geodesics on the surface, one may place one vertex
on each component of C and complete C to a triangulation T . If we spin T about C we
obtain a finite-leaved geodesic lamination whose closed geodesics are exactly C and so that all
other geodesics are bi-infinite geodesics each of whose ends spiral about a component of C. All
maximal finite-leaved laminations may be obtained in this manner.

It is much harder to draw a picture of a “typical” geodesic lamination has uncountably
many leaves and the intersection with a short goedesic segment transverse to the lamination is
typically a Cantor set.

If X = H2/ΓX , then a geodesic lamination λ lifts to a ΓX -invariant geodesic lamination λ̃.
Notice that the collection Cλ of pairs of points in ∂H2×∂H2 which arise as endpoints of geodesics
in λ̃. If h : X → Y is a homeomorphism and Y = H2/ΓY , then h lifts to a homeomorphism h̃ :

H2 → H2 conjugating the action of ΓX to ΓY . h̃ extends to a homeomorphism ∂h : ∂H2 → ∂H2

conjugating the action of ΓX to ΓY . One way then transport λ on X to a geodesic lamination
on Y , we simply look at the geodesic lamination determined by the pairs of points given by
(∂H × ∂h)(Cλ). The set (∂h× ∂h)(Cλ) gives rise to a ΓY -invariant geodesic lamination on H2,
which descends to a lamination on Y . Therefore, it makes sense to talk about the spaceGL(S)
of geodesic laminations on S.

More complete discussion of geodesic laminations is contained in the notes of Canary-Epstein-
Green [10] or the book of Casson-Bleiler [13].

4.2. Pleated surface

A pleated surface in a quasifuchsian hyperbolic manifold is a pair (X, f) where X is a hy-
perbolic surface, N is a quasifuchsian hyperbolic manifold and f : X → N is a homotopy
equivalence, so that

(1) f is a pathwise isometry, i.e. if α is a rectifiable path in X then f(α) is a rectifiable
path in N of the same length at α.

(2) If x ∈ X, then some geodesic segment with x in its interior maps to a geodesic segment
in N .

We define the pleating locus of (X, f) to be the set of points on X so that there any two
geodesics with x in their interior lie inside a common geodesic segment through x.

It is an EXERCISE to show the the pleating locus of (X, f) is always a geodesic lamination
and that f is a totally geodesic map on the complement of the pleating locus. (We will not
need to do this exercise, since the pleated surfaces we construct will have these properties by
construction.
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The most fundamental example of a pleated surface is the boundary of the convex core. This
makes intuitive sense, but is non-trivial to check. We won’t need it, so we will not attempt a
proof (although we may wave our hands). See Epstein-Marden [16] for a carful proof.

Let h : S → N be a homotopy equivalence and let λ be a maximal finite-leaved geodesic
lamination on S. We will construct a (probably new) hyperbolic structure on X and pleated
surface (Y, f) whose pleating locus agrees with λ (after accounting for the change in hyperbolic
structure). One may assume that λ is obtained by starting wlth a collection C of closed
geodesics, extending to a triangulation T and then spinning T about C. First, alter h so that
it maps each component c of C to the closed geodesic in the homotopy class of h(c). Then if
e is an edge of T (which does not lie in a component of C), then alter h so that it maps e to
the geodesic segment homopic h(e) rel endpoints. Then if F is a face of T , its edges map to
a geodesic triangle in N , so we may alter h to be totally geodesic on F . The resulting map
ĥ : S → N is called a simplicial hyperbolic surface, since its pull-back metric is hyperbolic
except along the vertices of C. Moreover, the total angle of the singular hyperbolic structure
at any vertex is at least 2π.

If one spins T about C in X and simultaneously spin ĥ(T ) about ĥ(C), the limiting map will
be a pleated surface h∞ : Y → Nρ, where Y is the limit of the singular hyperbolic structures on
the spun surfaces, and the pleating lamination is contained in λ. (If one wants to think about this
more abstractly, then we could have just considered the limit map Lρ : ∂∞π1(S)→ Λ(ρ) which
is a ρ-equivariant homeomorphism. Here ∂∞π1(S) is the Gromov boundary of the hyperbolic

group π1(S). Then the pleating locus of h̃∞ is the set of geodesic spanned by pairs of points
in Lρ(Cλ), one then fills in all the ideal triangles in S − λ by totally geodesic ideal triangles in
H3. The construction is equvariant so descends to the pleated surface h∞.)

4.3. Uniform injectivity

Thurston proved a uniform injectivity theorem for pleated surfaces which will be crucial in
the next section. The proof simply involves studying limits of pleated surfaces, so is a typical
Thurstonian compactness argument.

If ρ ∈ QF (S) and f : X → Nρ is a pleated surface in the homotopy class of ρ, then one
obtains a map

Pf : λ→ P(T 1Nρ)

where P(T 1Nρ) is the projective unit tangent bundle. Here, Pf (x) is the direction of the pleating
locus through f(x).

Uniform Injectivity Theorem: (Thurston [30]) Given ε0 > 0 and S, if ρ ∈ QF (S) and f : X →
Nρ is a pleated surface, then Pf is uniformly injective, i.e. for all ε > 0, there exists δ > 0 so
that if x, y ∈ λ, injX(x) ≥ ε > 0, injX(y) ≥ ε > 0 and d(x, y) ≥ ε, then d(Pf (x), Pf (y)) ≥ δ.

Roughly, if x and y are both in the thick part of X and are not nearby in X, then the pleating
loci through f(x) and f(y) are not both nearby and nearly parallel.

4.4. Alternation number

If γ is a simple closed geodesic on X and λ is finite leaved lamination on X, then one can
perturb γ to find a representative γ̂ which consists of portions of λ and geodesic jumps of length
at most ε0. We denote by a(γ, λ) the minimal number of jumps one needs here. (I will draw a
picture on the board).
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EXERCISE: There exists C > 0 so that length(γ̂) ≤ length(γ) + Ca(γ, λ).
The upshot is that we don’t mind giving up a multiple of a(λ, γ) it is always fine to work

with γ̂. One may imagine, and you would be correct, that this approximation will allow us to
make use of the uniform injectivity theorem.

5. The double limit theorem and the geometrization of closed 3-manifolds which fibre
over the circle

5.1. Efficiency of pleated surfaces

Thurston showed that pleated surfaces with finite-leaved pleating loci record lengths in the
hyperbolic manifold up to a combinatorially bounded error.

Theorem 5.1. Given ε0 and S, there exists C > 0 so that if ρ ∈ QF (S) and f : X → Nρ is a
pleated surface with finite-leaved pleating locus λ (so that X is homeomorphic to S and f∗ = ρ)
and no closed leaf of λ has length less than ε and α is a simple closed geodesic on X, then

`ρ(α
∗) ≤ `X(α) ≤ `ρ(α∗) + Ca(γ, λ)

where `ρ(α
∗) is the length in Nρ of the closed geodesic α∗ in Nρ in the homotopy class of f(α).

Idea of proof: Let’s assume for simplicity that every closed geodesic in Nρ has length at least ε0.
Let α̂ be the piecewise geodesic approximation to α constructed in the last section. Then f(α̂)
has 2a(γ, λ) geodesic segments. Consider the annulus A which is the domain of the homotopy
from f(α̂) to α∗. We may triangulate A so it has vertices at (the preimage of) the intersection
of the geodesic segments of f(α∗) and one vertex on (the pre-image of) α∗. We may pull this

triangulation tight to obtain a simplicial hyperbolic surface Â realizing the homotopy. The
surface Â has area at most 2πa(γ, λ).

Therefore, in Â only a bounded portion of f(α̂) can’t run parallel to either itself or α∗. This

bound depends on the area of Â which depends on a(γ, λ). However, the uniform injectivity
theorem says that different segments of f(α̂) can’t run nearly parallel to each other. Therefore,
all but a bounded portion of f(α̂) runs nearly parallel to α∗. This implies that the difference
between the length of f(α̂) and α∗ is bounded above by Ca(γ, λ). But `X(α) ≤ `X(α̂) so we
are done. �

So suppose that α and β bind S, i.e. all components of S \ (α ∪ β) are simply connected.
One first consequence of this result is that if you can bound the length of α and β uniformly
over the sequence, then the sequence has a convergent subsequence.

Corollary 5.2. Suppose that α and β bind S, {ρn} is a sequence in QF (S) and there exists K
so that `ρn(α∗) ≤ K and `ρn(β∗) ≤ K for all n. Then {ρn} has a subsequence which converges
in AH(S).

Proof. Let λ be a finite-leaved lamination of S. For simplicity we assume that there is a lower
bound on the length of the simple closed curves in λ which holds in all Nρn . (One can always
arrange this by passing to a subsequence and choosing λ carefully.)

For all n, let fn : Xn → Nρn be a pleated surface with pleating locus (contained in) λ. Then

`Xn(α) ≤ K + Ca(α, γ) and `Xn(β) ≤ K + Ca(β, γ).

Since α and β bind the Xn all lie in a compact portion of T (S).
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Therefore, if we choose x0 ∈ fn(Xn) and lift x0 to x̃0 ∈ H3 (appropriately, there are conjugacy
issues here) if γ ∈ π1(S), there is a uniform upper bound on d(x̃0, ρn(γ)(x̃0)), determined by
its translation distance in Xn (which is bounded). Therefore, one can pass to a subsequence so
that ρn(γ) converges. Since π1(S) is finitely generated, we may pass to a subsequence so that
ρn converges. �

5.2. The conformal boundary and the internal geometry

Bers [7] proved the following lemma using extremal length.

Lemma 5.3. If ρ ∈ QF (S) and α is any simple closed curve in S, then

`ρ(α
∗) ≤ 2`∂cNρ(α).

There is a simple geometric proof of this fact, which only uses basic facts about the Poincaré
metric, see [11, Lemma 2.1] but I won’t have enough time to to give it. (I may try to add it
later if you look for these notes in a few weeks).

Sullivan (see [16]) proved the following much deeper fact. (We are only stating a special case
of his result.)

Theorem 5.4. There exists K > 1 so that if ρ ∈ QF (S), then ∂r : ∂cNρ → ∂C(Nρ) is homotopic
to a K-quasiconformal map.

Either of these results has the following immediate consequence.

Corollary 5.5. Suppose that α and β bind S, {ρn} is a sequence in QF (S) and there exists
K so that `∂CNρ(α

∗) ≤ K and `∂CNρ(β
∗) ≤ K for all n. Then {ρn} has a subsequence which

converges in AH(S).

5.3. Measured laminations and the Double Limit Theorem

A measured lamination is a geodesic lamination which admits a transverse measure, i.e. a
measure on arcs transverse to the lamination which is invariant under homotopies respecting the
lamination. The only finite-leaved laminations which admit transverse measures are weighted
collections of simple closed curves. The space ML(S) of measured laminations is the closure of
the set of weighted multicurves and is homeomorphic to R6g−6.

One may extend the length and alternation functions to continuous function

` : ML(S)×AH(S)→ R and aλ : ML(S)→ R
so that if γ is a simple closed curve with weight one, then `(ρ, γ) = `ρ(γ

∗) and aλ(γ) = a(γ, λ).
(The continuity of length is not as simple to prove as one might think, see Brock [?].)

Thurston showed how to compactify T (S) by P(ML(S)). It has the following crucial prop-
erty: if Xn → [µ], there exists µn ∈ ML(S) so that [µn] → [µ], `Xn(mun) is bounded, but
`X(µn)→∞ for any fixed X ∈ T (S).

We say that a pair of measured lamination (µ+, .µ−) bind S if they do not share any leaves
and every simple closed geodesic intersects one of them transversely. Putting this all together
and taking limits, Thurston proves:

Double Limit Theorem: (Thurston [33]) Suppose that {ρn} is a sequence in QF (S) and B(ρn) =
(Yn, Z̄n)→ (µ+, µ−) and µ+ and µ− bind S. Then {ρn} has a subsequence which converges in
AH(S).
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5.4. Hyperbolization

We say that ψ : S → S is pseudo-Anosov if there does not exists a finite collection C of
(non-parallel) simple closed closed curves, so that ψ(C) is homotopic to C. One easily sees
that if ψ is not pseudo-Anosov, then its mapping torus Mψ is not hyperbolizable. In theses
cases, you must decompose iMψ into geometric pieces by the JSJ decomposition and geometrize
each piece separately. Not all these geometric pieces will be hyperbolic, some of them will be
Seifert-fibred instead.

Thurston proved that if ψ is pseudo-Anosov and X ∈ T (S), then (ψn(X), ψ−n(X)) →
(µ+
ψ , µ

+
ψ ). It then follows from the Double Limit Theorem that if B(ρn) = (ψn(X), ψ−n(X)),

then ρn has a subsequence converging to ρ ∈ AH(S).
There exists a uniformly quasiconformal map φn : ∂cNρn → ∂cNρn such that (φn)∗ = ψ∗.

Then φn lifts (and extends) to a uniformly quasiconformal map φ̃n : ∂H3 → H3 which conjugates
ρn(π1(S)) to itself and induces ψ∗, i.e. φn ◦ ρn(γ) ◦ φ−1 = ρn(ψ∗(γ)) for all γ ∈ π1(S).

Finally, one observes that up to subsequence φn → φ which is quasiconformal and conjugates
ρ(π1(S)) and induces ψ∗. One then checks that Λ(ρ) = ∂H3. Sullivan’s Rigidity Theorem [29]
then implies that φ is conformal. So Γ = 〈ρ(π1(S)), φ〉 is a discrete subgroup of PSL(2,C) (since
the group of isometries of a hyperbolic 3-manifold always acts discretely on the manifold). So
N = H3/Γ is a hyperbolic 3-manifold homotopy equivalent Mψ. Classic results in 3-manifold
topology then imply that N is homeomorphic to Mψ.
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[20] O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1987.
[21] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer-Verlag, 1973.
[22] A. Marden, “The geometry of finitely generated Kleinian groups,” Ann. of Math. 99(1974), 383–462.
[23] B. Martelli, An Introduction to Geometric Topology, CreateSpace, 2016, also available at

http://people.dm.unipi.it/martelli/Geometric_topology.pdf

[24] K. Matsuzaki and M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Mono-
graphs, Clarendon Press, 1998.

[25] Y. Minsky, “Note on dynamics of Out(Fn) on PSL(2,C)-characters,” Israel J. Math., 193(2013), 47–70.
[26] G. Mostow, “Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms,” Publ. Math.

I.H.E.S. 34(1968), 53–104.
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