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Abstract

This text investigates a natural question arising in the topological theory of
3-manifolds, and applies the results to give new information about the deformation
theory of hyperbolic 3-manifolds. It is well known that some compact 3-manifolds
with boundary admit homotopy equivalences that are not homotopic to homeo-
morphisms. We investigate when the subgroup R(M) of outer automorphisms of
π1(M) which are induced by homeomorphisms of a compact 3-manifold M has fi-
nite index in the group Out(π1(M)) of all outer automorphisms. This question is
completely resolved for Haken 3-manifolds. It is also resolved for many classes of
reducible 3-manifolds and 3-manifolds with boundary patterns, including all pared
3-manifolds.

The components of the interior GF(π1(M)) of the space AH(π1(M)) of all
(marked) hyperbolic 3-manifolds homotopy equivalent to M are enumerated by the
marked homeomorphism types of manifolds homotopy equivalent to M , so one may
apply the topological results above to study the topology of this deformation space.
We show that GF(π1(M)) has finitely many components if and only if either M has
incompressible boundary, but no “double trouble,” orM has compressible boundary
and is “small.” (A hyperbolizable 3-manifold with incompressible boundary has
double trouble if and only if there is a thickened torus component of its characteristic
submanifold which intersects the boundary in at least two annuli.) More generally,
the deformation theory of hyperbolic structures on pared manifolds is analyzed.

Some expository sections detail Johannson’s formulation of the Jaco-Shalen-
Johannson characteristic submanifold theory, the topology of pared 3-manifolds,
and the deformation theory of hyperbolic 3-manifolds. An epilogue discusses re-
lated open problems and recent progress in the deformation theory of hyperbolic
3-manifolds.
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Preface

This work addresses a question about homotopy equivalences and homeomor-
phisms of 3-manifolds, and gives an application to the topology of deformation
spaces of hyperbolic 3-manifolds. Although the topological question is quite natu-
ral, it did not receive much attention until motivated by the geometric application.
It is simply this: in the group of homotopy classes of self-homotopy-equivalences
of a 3-manifold, when does the subgroup consisting of the classes that contain a
homeomorphism have finite index?

Most of our results will apply only to Haken 3-manifolds, although in chap-
ter 12 we develop rather general versions of our theorems for reducible 3-manifolds.
For closed Haken manifolds, Waldhausen proved that all homotopy classes con-
tain homeomorphisms, so we need only consider Haken manifolds with nonempty
boundary. This case breaks into two very different subcases, the manifolds with
incompressible boundary and those with compressible boundary. We resolve the
question completely, giving exact conditions for the subgroup of classes realizable
by homeomorphisms to have finite index.

In the case when the boundary is incompressible, our principal means to ex-
amine homotopy equivalences and homeomorphisms of Haken 3-manifolds is the
characteristic submanifold theory due independently to Jaco-Shalen and Johann-
son. For our geometric application, we need to consider a more general version of
the question, in which we work with maps that preserve certain submanifolds of the
boundary. The formulation of the characteristic submanifold given by Johannson,
with its elegant theory of boundary patterns, provides exactly the kind of control
that we need. For this reason, almost all of our work is carried out in the context of
manifolds with boundary patterns. A complete resolution of the realization ques-
tion for Haken manifolds with boundary patterns seems out of reach, and our main
results are restricted to the case when the submanifolds forming the boundary pat-
tern are disjoint. But these do include as a very special case the boundary patterns
which arise in the study of the deformation theory of hyperbolic 3-manifolds.

The statements of the main results require a number of preliminary concepts.
Consequently, they cannot conveniently be given until rather late in the develop-
ment of our exposition, indeed not until chapter 8. To motivate so much preliminary
work, we state and discuss restricted versions of the main results in chapter 1. There
we lay out the general program and provide several examples illustrating some of
the phenomena that can occur.

Chapter 2 contains an exposition of Johannson’s version of the characteristic
submanifold theory. We review the concepts which underlie his main results, give
a variety of examples of boundary patterns and characteristic submanifolds, and
develop some technical results which we need for our later work. All of Johannson’s
theory takes place under the assumption that the 3-manifold satisfies a certain
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incompressibility condition on its boundary (namely, that the boundary pattern
has the property of being useful). To work with manifolds that do not satisfy this
condition (that is, to allow some boundary patterns that are not useful, in the
technical sense), we use a second kind of characteristic structure, the characteristic
compression body invented by Bonahon. For manifolds with boundary patterns,
we need a relative version of his theory, which we develop in chapter 3. (Both
the characteristic compression body and our relative version are generalizations
of the Abikoff-Maskit decomposition which was developed earlier in the context
of Kleinian groups.) With these topological concepts in place, we can prove in
chapter 4 some results about homotopy equivalences and homotopy types of 3-
manifolds with boundary patterns, which generalize theorems of Johannson and
Swarup.

Geometry enters, at least implicitly, in chapter 5, where we introduce the
boundary patterns naturally associated to manifolds with hyperbolic structures.
These are called pared structures. We review the definitions and some known
results, including the strong restrictions on the structure of the characteristic sub-
manifold associated to a pared structure. In chapter 6, we define small 3-manifolds.
These arise as exceptional cases for our main topological results, in the case where
the manifold has compressible boundary. We determine which of the small mani-
folds have pared structures, and prove a technical result which lists the homotopy
types all of whose homeomorphism classes are either compression bodies or small
manifolds.

The actual geometric theory which we use draws on work of many mathemati-
cians, including Ahlfors, Bers, Kra, Marden, Maskit, Sullivan, and Thurston. We
consider deformation spaces of well-behaved (i. e. geometrically finite) structures
on a 3-manifold, or more generally, on a pared 3-manifold. The Parameterization
Theorem given in chapter 7 shows that each of the components of such a defor-
mation space is a manifold parameterized by natural geometric data and that the
components are enumerated by topological data. As an application of our topolog-
ical results we will be able to determine exactly when such deformation spaces have
finitely many components. We state our topological and geometric results in full
generality, in chapter 8, and show how the hyperbolic results follow from the main
topological theorems. The succeeding two chapters complete the proof of those
topological theorems.

Chapter 11 is independent; it shows how certain homotopy equivalences that
arise in the proofs of the main topological theorems are related to the homotopy
equivalences called Dehn flips by Johannson.

In chapter 12, we extend the main theorems to the case when the 3-manifold is
reducible, although for simplicity we restrict to the case of trivial boundary pattern.
Again, there is a division into the cases when the boundary is incompressible or
not. When it is compressible, we again find that the realizable automorphisms have
infinite index unless the manifold is “small,” as redefined for the reducible case. In
the incompressible case, the result is that the realizable automorphisms have finite
index if and only if the same is true for each irreducible prime summand of the
manifold.

The epilogue, chapter 13, surveys some results and conjectures related to our
main topics, and discusses some recent developments.
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Not many readers will want to work straight through the details of all of the
preliminary material. The shortest route to understanding the statements and un-
derlying ideas of the main theorems will of course depend greatly on the background
that the reader brings to the task, but here is one possible approach. One should
certainly begin with a study of chapter 1, especially the examples. One might then
continue with a quick examination of the first three sections of chapter 2 and a
more careful review of sections 2.9 and 2.11 (reading “incompressible boundary”
for “useful boundary pattern”, if desired). The first three sections of chapter 3 will
give the main ideas from the theory of characteristic compression bodies, and from
chapter 4 only the statements of the main results are needed. From chapter 5, one
needs only the definitions, the description of the characteristic submanifold for the
pared case, and the concept of double trouble, and from chapter 6, only the defi-
nitions and the statements of the main results. From chapter 7 one needs enough
definitions to understand the statement of the Parameterization Theorem, and at
this point there should be enough in place to understand the statements of the
main results in chapter 8 and the derivation of the main hyperbolic results from
the main topological results, as well as to understand the outlines of the proofs
given in the succeeding two chapters. Chapter 11 and perhaps chapter 12 are likely
to be of interest only to the most topologically-oriented readers, but we hope that
chapter 13 will stimulate the further interest of topologists and geometers alike.

We thank the referee for an extraordinarily careful reading of the manuscript,
and for pointing out many corrections and improvements.





CHAPTER 1

Introduction

1.1. Motivation

Although most of the work that follows involves results of a purely topological
nature, it was motivated by questions arising in the deformation theory of hyper-
bolic 3-manifolds. We begin by introducing these questions and then proceed to
the topological question which will occupy most of our attention.

We will say that a compact, oriented, irreducible 3-manifold M is hyperboliz-
able if its interior admits a (complete) hyperbolic structure. Thurston has shown
that a compact, oriented, irreducible 3-manifold with nonempty boundary is hy-
perbolizable if and only if it is atoroidal. If M has no torus boundary components
then there is a convex cocompact uniformization of M , i. e. a discrete faithful rep-
resentation ρ : π1(M) → PSL(2,C) such that there exists a orientation-preserving
homeomorphism from M to (H3 ∪ Ω(ρ))/ρ(π1(M)) (where Ω(ρ) is the domain of
discontinuity for the action of ρ(π1(M)) on C).

We will be interested in studying the space CC(M) of all convex cocompact
uniformizations of M . The work of Ahlfors, Bers, Kra, Marden and Maskit allows
one to give an explicit parameterization of CC(M). Each component of CC(M)
is homeomorphic to T (∂M)/Mod0(M) where T (∂M) is the Teichmüller space of
all hyperbolic structures on ∂M and Mod0(M) is the group of isotopy classes of
orientation-preserving homeomorphisms of M which are homotopic to the identity.
Teichmüller space is a finite-dimensional cell and Mod0(M) acts discontinuously and
freely on T (∂M), so each component of CC(M) is a finite-dimensional manifold.
If M has incompressible boundary, then Mod0(M) is trivial, so T (∂M) is simply
a cell.

The most basic form of our motivating question is as follows:

Hyperbolic Question (convex cocompact case): For which compact hyper-
bolizable 3-manifolds M without torus boundary components does the space CC(M)
of convex cocompact uniformizations of M have finitely many components?

To give our topological enumeration of the components of CC(M) we intro-
duce the following notation. The outer automorphism group Out(π1(M)) is equal
to the quotient of the group Aut(π1(M)) of automorphisms of π1(M) by the normal
subgroup Inn(π1(M)) of inner automorphisms of π1(M). If h : M →M is a home-
omorphism, then h determines a well-defined element of Out(π1(M)), although it
does not determine a well-defined element of Aut(π1(M)) unless we make a choice
of basepoint for M which is preserved by h. In this case we will say that the element
of Out(π1(M)) determined by h is realized by h. By R(M) we denote the subgroup
of Out(π1(M)) consisting of elements which are realized by homeomorphisms of M ,
and byR+(M) the subgroup realizable by orientation-preserving homeomorphisms.
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2 1. INTRODUCTION

The work of Ahlfors, Bers, Kra, Marden and Maskit shows that the compo-
nents of CC(M) are in a one-to-one correspondence with the cosets of R+(M) in
Out(π1(M)). We will show that if M has no torus boundary components, then
CC(M) has finitely many components if and only if either M has incompressible
boundary, M is a compression body, or M is obtained from one or two I-bundles
(over closed surfaces) by adding a 1-handle. This result is obtained as an immediate
corollary of our complete answer to the following topological question.

Finite Index Realization Problem (absolute case): For which compact, ir-
reducible, orientable 3-manifolds M does the group R(M) of outer automorphisms
which are realizable by homeomorphisms of M have finite index in Out(π1(M))?

We will answer the topological question by using the characteristic submanifold
theory of Johannson and Jaco-Shalen and the compression body decomposition
of Bonahon and McCullough-Miller. We will see that R(M) has finite index in
Out(π1(M)) if and only if M is a compression body, M is obtained from one or
two I-bundles by adding a 1-handle, or M has incompressible boundary and every
Seifert-fibered component of the characteristic submanifold of M is either “not
complicated” or disjoint from the boundary of M . A precise statement will be
given in section 1.2.

It is also natural to consider the space CC(π1(M)) of convex cocompact uni-
formizations of manifolds homotopy equivalent to M . A result of Swarup guar-
antees that the set of compact irreducible 3-manifolds homotopy equivalent to M
is finite, and Thurston’s geometrization theorem implies that each of these is also
hyperbolizable. Hence, we need only analyze which 3-manifolds M are homotopy
equivalent to compact irreducible 3-manifolds M ′ such that R(M ′) has infinite in-
dex in Out(π1(M ′)). We will show that if M is hyperbolizable and has no torus
boundary components, then CC(π1(M)) has finitely many components if and only
if either M has incompressible boundary, is a handlebody, or is obtained from one
or two I-bundle(s) (over closed surfaces) by adding a 1-handle.

In order to study deformation spaces of hyperbolic structures on hyperboliz-
able manifolds with torus boundary components we will need to study geomet-
rically finite uniformizations of M . Topologically, we will study manifold pairs
(M,P ) where M is a compact hyperbolizable 3-manifold and P is a collection
of disjoint incompressible annuli and tori in the boundary of M . A geometri-
cally finite uniformization of the pair (M,P ) is a discrete faithful representation
ρ : π1(M) → PSL(2,C) for which there is an orientation-preserving homeomor-
phism from M − P to (H3 ∪ Ω(ρ))/ρ(π1(M)). We will let GF(M,P ) denote the
space of geometrically finite uniformizations of (M,P ).

Thurston’s geometrization theorem asserts that if M has nonempty boundary,
then GF(M,P ) is nonempty if and only if (M,P ) is a pared 3-manifold (see sec-
tion 5.1 for the definition of a pared manifold). Let Aut(π1(M), π1(P )) be the group
of automorphisms of π1(M) which take the fundamental group of any component
of P to a subgroup conjugate to the fundamental group of some component of
P . Define Out(π1(M), π1(P )) to be the quotient Aut(π1(M), π1(P ))/ Inn(π1(M)),
R(M,P ) to be the subgroup of Out(π1(M), π1(P )) consisting of elements which
are realized by homeomorphisms of the pair (M,P ), and R+(M,P ) to be the
orientation-preserving elements of R(M,P ). The work of Ahlfors, Bers, Kra, Mar-
den and Maskit implies that the components of GF(M,P ) are in one-to-one corre-
spondence with the cosets of R+(M,P ) in Out(π1(M), π1(P )).
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By GF(π1(M), π1(P )) we denote the set of geometrically finite uniformizations
of manifold pairs homotopy equivalent to (M,P ). The complete forms of our mo-
tivating hyperbolic questions are the following:

Hyperbolic Questions: For which pared manifolds (M,P ) does GF(M,P ) have
finitely many components? For which (M,P ) does GF(π1(M), π1(P )) have finitely
many components?

A manifold pair (M,P ) is a specific case of Johannson’s general theory of
manifolds with boundary patterns. A boundary pattern m on M is a collection
of submanifolds of ∂M such that any two elements intersect in a (possibly empty)
collection of arcs and circles, while any three elements intersect in a finite collection
of points. One can define Out(π1(M), π1(m)) and R(M,m) much as above. One
then asks the general topological question:

Finite Index Realization Problem: For which compact orientable irreducible
3-manifolds with boundary pattern (M,m) does the subgroup R(M,m) realizable by
homeomorphisms have finite index in Out(π1(M), π1(m))?

We will answer this topological question for a variety of boundary patterns,
which includes all pared 3-manifolds. Full statements of the results are given in
chapter 8.

1.2. The main theorems for Haken 3-manifolds

In this section we will develop the notation necessary to give a complete state-
ment of our results for Haken 3-manifolds with nonempty boundary but empty
“boundary pattern”. We will also provide outlines of their proofs, which serve as
outlines for the proofs of the more general forms of our results.

We first introduce more formally the notation involved in our hyperbolic ques-
tion. Let M be a compact, oriented, hyperbolizable 3-manifold. Let D(π1(M))
denote the space of discrete, faithful representations of π1(M) into PSL(2,C) and
let AH(π1(M)) denote D(π1(M))/PSL(2,C) where PSL(2,C) acts by conjugation.
If ρ ∈ AH(π1(M)), then let Nρ denote H3/ρ(π1(M)). Further denote by Ω(ρ)
the maximal open subset of C on which ρ(π1(M)) acts discontinuously, and let
N̂ρ = (H3∪Ω(ρ))/ρ(π1(M)). We call N̂ρ the conformal extension of Nρ. When N̂ρ
is compact, ρ is said to be convex cocompact. Let CC(π1(M)) denote the space of
convex cocompact elements of AH(π1(M)). We further define CC(M) to consist of
all ρ ∈ CC(π1(M)) such that there exists an orientation-preserving homeomorphism
from M to N̂ρ.

We also consider the space A(M) of oriented compact irreducible 3-manifolds
homotopy equivalent to M . Two elements M1 and M2 of A(M) are regarded as
equivalent if there exists an orientation-preserving homeomorphism from M1 to M2.

Now we will define the space A(M) of marked, oriented, compact, irreducible
3-manifolds homotopy equivalent to M . Its basic objects are pairs (M ′, h′) where
M ′ ∈ A(M) and h′ : M → M ′ is a homotopy equivalence. Two pairs (M1, h1)
and (M2, h2) are considered equivalent when there exists an orientation-preserving
homeomorphism φ : M1 →M2 such that φ ◦ h1 is homotopic to h2. Then A(M) is
the set of all equivalence classes of such pairs.

Since each element M ′ of A(M) is a K(π, 1) every element α of Out(π1(M ′))
is realized by a homotopy equivalence hα : M ′ → M ′. Let A0(M ′) be the set of
elements ofA(M) of the form (M ′, h′) for some homotopy equivalence h′ : M →M ′.
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If we fix a homotopy equivalence h0 : M →M ′, then we can define a surjective map
J : Out(π1(M)) → A0(M) by letting J(α) = (M ′, hα ◦ h0). Then, by definition,
J(α) = J(α′) if and only if α′ ◦ α−1 ∈ R+(M ′). Thus, the elements of A0(M ′)
are enumerated by the cosets of R+(M ′) in Out(π1(M ′)). Consequently, we may
identify A(M) with ⊔

M ′∈A(M)

Out(π1(M ′))/R+(M ′).

For any element ρ ∈ CC(π1(M)) there exists a homotopy equivalence hρ : M →
N̂ρ such that (hρ)# = ρ (where we regard ρ as an identification of π1(M) with the
fundamental group ρ(π1(M)) of Nρ). Consequently, there is a well-defined map
Θ: CC(π1(M)) → A(M) given by letting Θ(ρ) = (N̂ρ, hρ). (In fact, Θ extends
to a function defined on AH(π1(M)) simply by letting a compact core for Nρ play
the same role as N̂ρ.) Thurston’s Geometrization Theorem guarantees that Θ is
surjective if M is a compact hyperbolizable 3-manifold with no torus boundary
components.

For ρ ∈ CC(M), results of Ahlfors-Bers [6], Bers [13], Kra [66], and Maskit [76]
provide a parameterization of the set QC(ρ) of elements of CC(π1(M)) which are
quasiconformally conjugate to ρ. (Two representations ρ1, ρ2 : π1(M)→ PSL(2,C)
are said to be quasiconformally conjugate when there exists a quasiconformal home-
omorphism φ : C → C such that ρ2(g) = φ ◦ ρ1(g) ◦ φ−1 for all g ∈ π1(M).) Let
T (∂M) denote the Teichmüller space of all (marked) hyperbolic structures on ∂M
and let Mod0(M) denote the set of isotopy classes of orientation-preserving dif-
feomorphisms of ∂M which extend to diffeomorphisms of M which are homotopic
to the identity. We recall that T (∂M) is homeomorphic to a finite-dimensional
Euclidean space and that Mod0(M) acts properly discontinuously and freely on
T (∂M). This parameterization is summarized in the following theorem. (See sec-
tions 7.1 and 7.2 for more details.)

Quasiconformal Parameterization Theorem: (Ahlfors, Bers, Kra, Maskit)
Let M be a compact 3-manifold with boundary and ρ ∈ CC(M). Then QC(ρ) may
be identified with T (∂M)/Mod0(M).

Marden’s Isomorphism Theorem ([75]) implies that if (M ′, h′) ∈ A(M), then
Θ−1(M ′, h′) = QC(ρ) for any ρ ∈ Θ−1(M ′, h′). Marden’s Stability Theorem ([75])
implies that if ρ ∈ CC(π1(M)), then QC(ρ) is an open subset of AH(π1(M)).
Hence CC(π1(M)) is an open subset of AH(π1(M)). Since Θ is surjective we have
the following parameterization of CC(π1(M)). (See section 7.3.)

Parameterization Theorem: If M is a hyperbolizable compact oriented 3-mani-
fold with no torus boundary components, then CC(π1(M)) is homeomorphic to the
disjoint union ⊔

(M ′,h′)∈A(M)

T (∂M ′)/Mod0(M ′)

It follows that the components of CC(π1(M)) are enumerated by A(M) which
we have identified with ⊔

M ′∈A(M)

Out(π1(M ′))/R+(M ′).

In particular, the components of CC(M) are enumerated by the cosets of R+(M)
in Out(π1(M)).
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The problem of determining the M for which R+(M) has finite index in
Out(π1(M)) is purely topological. It turns out that the Johannson-Jaco-Shalen
characteristic submanifold theory is quite well-adapted to answering this question
when M has incompressible boundary. In the discussion of this question it is often
simpler to consider R(M). Note that R+(M) has index 1 or 2 in R(M).

If M is an orientable compact irreducible 3-manifold with incompressible boun-
dary then Johannson [58] and Jaco-Shalen [56] have exhibited a characteristic
submanifold which captures all the “essential fibered submanifolds” of M . An I-
bundle V is said to be admissibly imbedded in M if ∂M ∩ V is the associated
∂I-bundle. A Seifert fibered space V is said to be admissibly imbedded in M if
V ∩∂M is a union of fibers of V . The characteristic submanifold Σ of M consists of
admissibly imbedded I-bundles and Seifert fibered spaces in M and is well-defined
up to isotopy. It is characterized by the property that it is the “minimal” such
submanifold so that any “essential” map of a Seifert fibered space or I-bundle into
M is homotopic to a map whose image lies entirely in Σ. In chapter 2 we give a
summary of Johannson’s version of this theory, and discuss most of the results from
[58] that will be used in our work.

Since M is aspherical, every element of Out(π1(M)) is realized by a homotopy
equivalence of M . Johannson’s Classification Theorem asserts that any homotopy
equivalence from M to M is homotopic to one which preserves the characteristic
submanifold Σ and is a homeomorphism on its complement. In particular we may
assume that it is a homeomorphism on each component of the frontier of Σ in M .
(The frontier of Σ in M is the closure of ∂Σ−∂M .) Thus we may pass to a subgroup
of finite index in Out(π1(M)) such that each element is realized by a homotopy
equivalence which preserves each element of the characteristic submanifold and is a
homeomorphism on its complement. By this means, the problem quickly reduces to
the study of homotopy equivalences of Seifert fiber spaces and I-bundles. The Baer-
Nielsen theorem implies that every boundary-preserving homotopy equivalence of
a surface is homotopic to a homeomorphism. Hence, perhaps after passing to
another finite index subgroup of Out(π1(M)), we may assume that each element
is realized by a homotopy equivalence which is also a homeomorphism on each
I-bundle component of Σ. Waldhausen’s theorem assures us that if a homotopy
equivalence preserves the boundary of a Seifert fibered component V of Σ, then
it is homotopic to a homeomorphism on V . Hence, we only need worry about
Seifert fibered components of Σ which intersect the boundary of M and typically
these will give rise to infinitely many cosets of nonrealizable outer automorphisms.
(See examples 1.4.3 and 1.4.4 in the next section.) The most technical portion
of the proof involves analyzing exactly which Seifert fibered components of Σ are
“atypical.” This completes the outline of the proof of our first topological theorem,
which we now state in the “absolute” case (i. e. the case when the boundary pattern
is empty).

Main Topological Theorem 2 (absolute case): Let M be a compact, orientable,
irreducible 3-manifold with incompressible and nonempty boundary. Then, R(M)
has finite index in Out(π1(M)) if and only if every Seifert fibered component V of
the characteristic submanifold that intersects ∂M satisfies one of the following:

(1) V is a solid torus, or
(2) V is an S1-bundle over the Möbius band or annulus and no component of

∂V contains more than one component of V ∩ ∂M , or
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(3) V is fibered over the annulus with one exceptional fiber, and no component
of V ∩ ∂M is an annulus, or

(4) V is fibered over the disk with two holes with no exceptional fibers, and
V ∩ ∂M is one of the boundary tori of V , or

(5) V = M , and either V is fibered over the disk with two exceptional fibers, V
is fibered over the Möbius band with one exceptional fiber, or V is fibered
over the torus with one hole with no exceptional fibers, or

(6) V = M , and V is fibered over the disk with three exceptional fibers each
of type (2, 1).

We will now outline the main topological result in the case when M has com-
pressible boundary. An irreducible, orientable, compact connected 3-manifold V
is called a compression body if it has a boundary component F such that the ho-
momorphism π1(F )→ π1(V ) induced by inclusion is surjective (see Bonahon [16],
McCullough-Miller [89], or Brin-Johannson-Scott [21]). A compression body has a
simple topological structure: it either is a handlebody, or is obtained from a prod-
uct (

⋃m
i=1 Fi)× I, where each Fi is a closed orientable surface of positive genus, by

attaching 1-handles along disks in
⋃m
i=1(Fi × {1}). Maskit [76] and McCullough-

Miller [89] proved that R(M) has finite index in Out(π1(M)) whenever M is a
compression body.

If M has a compressible boundary component but is not a compression body,
then it contains a loop C which is not freely homotopic into the boundary of M .
Suppose further that C is based at a point in a compressing disk D of M , and there
exists a regular neighborhood N of D such that C intersects only one component
of N − D. The regular neighborhood N is homeomorphic to D2 × I. Construct
a homotopy equivalence h from M to M which is the identity on M − N , by
cutting M apart along D, dragging one copy of D once around C, and gluing
back together. Example 1.4.1 describes this construction in a specific case. Such a
homotopy equivalence takes loops in the boundary of M to loops that are not freely
homotopic into the boundary, so it cannot be homotopic to a homeomorphism. If
there are infinitely many “inequivalent” choices of C, then R(π1(M)) has infinite
index in Out(π1(M)). So if M is not a compression body, then typically R(π1(M))
has infinite index in Out(π1(M)).

Our main topological result for manifolds with compressible boundary deter-
mines the 3-manifolds that are “atypical.” A Haken 3-manifold M is small if it can
be described in one of the following three ways:

I. M is obtained from a twisted I-bundle over a closed surface by gluing on
a 1-handle,

II. M is obtained from the boundary connected sum of two product I-bundles
over closed surfaces by gluing a twisted I-bundle to one or both of the
incompressible boundary components, or

III. M is obtained from the boundary connected sum of two product I-
bundles over homeomorphic closed surfaces by gluing the two incompress-
ible boundary components.

Main Topological Theorem 1 (absolute case): Let M be a compact, orientable,
irreducible 3-manifold with compressible boundary. Then, R(M) has finite index in
Out(π1(M)) if and only if M is either small or a compression body.
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We will see in sections 5.2 and 7.1 that if M is a compact hyperbolizable 3-
manifold with incompressible boundary and no torus boundary components, then
the characteristic submanifold of any element of M consists entirely of I-bundles
and solid tori. Hence the following Main Hyperbolic Theorem is an immediate
corollary of our Main Topological Theorems and the Parameterization Theorem.

Main Hyperbolic Theorem (convex cocompact case): Let M be a hyper-
bolizable, compact 3-manifold with no torus boundary components.

(1) If M has compressible boundary, then CC(M) has finitely many compo-
nents if and only if M is either small or a compression body.

(2) If M has incompressible boundary, then CC(M) has finitely many compo-
nents.

Swarup [118] proved that A(M) is always finite. We will see, in section 5.2,
that if M has incompressible boundary then so does every element of A(M). In
section 6.2 we will determine exactly which compact hyperbolizable 3-manifolds
with compressible boundary have the property that every element of A(M) is either
small or a compression body. Given this analysis, the following is an immediate
corollary of our Main Hyperbolic Theorem:

Main Hyperbolic Corollary (convex cocompact case): Let M be a hyper-
bolizable, compact 3-manifold with no torus boundary components.

(1) If M has compressible boundary then CC(π1(M)) has finitely many com-
ponents if and only if π1(M) is either a free group or a free product of
two groups, of which one is the fundamental group of a closed surface
(orientable or nonorientable) and the other is either infinite cyclic or the
fundamental group of a closed surface.

(2) If M has incompressible boundary, then CC(π1(M)) has finitely many
components.

Remarks: (i) The algebraic condition in part 1 implies that π1(M) is the funda-
mental group of either a handlebody, a small manifold, or the boundary connected
sum of two untwisted I-bundles.
(ii) It is conjectured that CC(π1(M)) is dense in AH(π1(M)). A version of this con-
jecture first appeared in a paper by Bers [12] (see also Sullivan [116] and Thurston
[121]). Although it has recently (see Anderson and Canary [8]) been discovered
that closures of components of CC(π1(M)) can intersect, we still conjecture that
AH(π1(M)) has finitely many components if and only if A(M) is finite. Some
partial results in the direction of this conjecture will be described in section 13.

We will also prove a version of our Main Hyperbolic Theorem which applies
to all pared manifolds. The statement will be quite similar although we will en-
counter one new phenomenon. If M is hyperbolizable, has incompressible boundary
and has torus boundary components, then its characteristic submanifold contains
Seifert-fibered components which are homeomorphic to T 2 × I. If there exists a
component V of the characteristic submanifold such that V is homeomorphic to
T 2 × I and V ∩ ∂M contains more than one annulus then R(M) will have infinite
index in Out(π1(M)) (see example 1.4.2). In this case we will say that M has
double trouble. We will see that when M is a compact hyperbolizable 3-manifold
with incompressible boundary, GF(M,P ) has infinitely many components if and
only if M has double trouble.



8 1. INTRODUCTION

It is particularly simple to state our results when P is the collection of torus
boundary components of M . In this case, we often denote GF(M,P ) simply by
GF(M) and GF(π1(M), π1(P )) by GF(π1(M)). Then GF(π1(M)) is the interior
of AH(π1(M)) (as a subset of the appropriate character variety). We will see that
GF(M) has finitely many components if and only if either M has incompressible
boundary and does not have double trouble, or M is a compression body, or M is a
small manifold. Moreover, GF(π1(M)) has finitely many components if and only if
either M has incompressible boundary and does not have double trouble or π1(M)
is either a free group, a free product of two (closed, but not necessarily orientable)
surface groups, a free product of a (closed, but not necessarily orientable) surface
group and an infinite cyclic group, or a free product of a finite number of free
abelian groups of rank 2.

1.3. The main theorems for reducible 3-manifolds

In chapter 12, the Main Topological Theorems are extended to reducible 3-
manifolds, that is, 3-manifolds which are nontrivial connected sums. The extended
results apply also to manifolds which are nonorientable.

The formulation of the results involves the Poincaré associate P (M) of a re-
ducible 3-manifold M . This is the manifold obtained from M by replacing each
connected summand of M that is simply-connected by a 3-sphere summand. Put
differently, each 2-sphere boundary component of M is filled in with a 3-ball, and
any homotopy 3-balls in M not diffeomorphic to the genuine 3-ball are replaced
by genuine 3-balls. We prove in proposition 12.1.4 that R(M) has finite index
in Out(π1(M)) if and only if R(P (M)) has finite index in Out(π1(P (M))). By
virtue of this, the extended results need only be proven for 3-manifolds that have
no nontrivial simply-connected summands.

As in the irreducible case, the Finite Index Realization Problem breaks into
the cases when ∂M is compressible and when it is incompressible. In the former
case, there is a direct analogue of Main Topological Theorem 1:

Theorem 12.2.1: Let M be a compact 3-manifold with compressible boundary,
with P (M) reducible. Then R(M) has finite index in Out(π1(M)) if and only if M
is small.

Here, small means that P (M) is a connected sum P#Q, where P is either a solid
torus or a solid Klein bottle, and Q is a 3-manifold with finite fundamental group.
The proof of theorem 12.2.1 involves many of the same ideas used for Main Topo-
logical Theorem 1.

When ∂M is incompressible, the Finite Index Realization Problem reduces to
the case that P (M) is irreducible. It is stated in terms of the decomposition of
P (M) as a connected sum of prime 3-manifolds. The irreducible summands in this
decomposition are uniquely determined.

Theorem 12.3.1: Let M be a compact 3-manifold with incompressible boundary.
Write P (M) as (#r

i=1Mi)#(#s
j=1Nj) where each Mi is irreducible and each Nj is

either S2 × S1 or the unique nontrivial S2-bundle over S1. Then R(M) has finite
index in Out(π1(M)) if and only if R(Mi) has finite index in Out(π1(Mi)) for all
1 ≤ i ≤ r.
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The proof of theorem 12.3.1 draws on ideas developed in [86]. The algebraic un-
derpinnings of these methods are the generators and relations for the automor-
phism group of a free product of indecomposable groups, which were first given by
Fouxe-Rabinovitch [40, 41]. These are also used in the proof of Main Topological
Theorem 1.

1.4. Examples

In this section we will give explicit examples illustrating some of the topo-
logical phenomena which underlie our results. Examples 1.4.1 to 1.4.4 describe
phenomena which affect whether the index of R(M) in Out(π1(M)) is finite. Ex-
amples 1.4.5 and 1.4.6 show some ways to produces homotopy equivalent hyper-
bolizable 3-manifolds which are not homeomorphic.

The first two examples illustrate the two basic types of phenomena which may
cause R(M) to have infinite index in Out(π1(M)) when M is a hyperbolizable man-
ifold. The first can occur only when M has a compressible boundary component,
and the second only when M has a torus boundary component.

Example 1.4.1. A 3-manifold with compressible boundary for which the real-
izable subgroup has infinite index

When M has a compressible boundary component but is not a compression
body the following construction often yields an infinite collection of distinct cosets
ofR(M) in Out(π1(M)). Let C be a simple closed curve inM with its basepoint in a
1-handle of M , but which does not pass over the 1-handle. A homotopy equivalence
of M can be constructed by taking a map which is the identity off of the 1-handle
and wraps the 1-handle around C (and then over the original 1-handle). Below, we
describe a specific example and give the resulting automorphism explicitly.

Let S be a surface of genus two and let L be the 3-manifold obtained by
taking the boundary connected sum of two copies of S× I. Form M1 by gluing two
copies of L together along an incompressible boundary component. Then π1(M1) ∼=
π1(S) ∗ π1(S) ∗ π1(S) and has a presentation

〈a1, b1, a2, b2, c1, d1, c2, d2, e1, f1, e2, f2 | [a1, b1] = [a2, b2],

[c1, d1] = [c2, d2], [e1, f1] = [e2, f2]〉

where {a1, b1, a2, b2} and {e1, f1, e2, f2} generate the fundamental groups of the
two incompressible boundary components of M1 and {c1, d1, c2, d2} generates the
fundamental group of the surface we glued along to form M1. The images of the
fundamental groups of the two compressible boundary components are generated
by {a1, b1, a2, b2, c1, d1, c2, d2} and {c1, d1, c2, d2, e1, f1, e2, f2}. It is known that M1

is hyperbolizable.
Define an automorphism φ which fixes a1, b1, a2, b2, c1, d1, c2, and d2 and acts

on the remaining generators by

e1 7→ a1e1a
−1
1 , f1 7→ a1f1a

−1
1 , e2 7→ a1e2a

−1
1 , f2 7→ a1f2a

−1
1 .

An element of π1(M) is called peripheral if it is conjugate into the image of the
fundamental group of a boundary component of M . More topologically, an element
of π1(M) is peripheral if the free homotopy class of loops that it determines has
a representative lying entirely within the boundary of M . Since homeomorphisms
preserve the boundary, a realizable automorphism must take peripheral elements
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Figure 1.1. A 3-manifold with compressible boundary for which
the realizable subgroup has infinite index

to peripheral elements. Thus, no nonzero power φk of φ is realizable by a homeo-
morphism of M1, since φk takes the peripheral element c1e1 to the nonperipheral
element c1ak1e1a

−k
1 . This automorphism is induced by a homotopy equivalence

which is the identity off of the 1-handle in the second copy of L (the copy whose
fundamental group is generated by {c1, d1, c2, d2, e1, f1, e2, f2}), and which sends
this handle around a loop representing a1. Figure 1.1 illustrates such a path based
at a point in this 1-handle. Since no power of φ is realizable, the powers of this ho-
motopy equivalence represent distinct cosets of the realizable subgroup, so R(M1)
has infinite index in Out(π1(M1)) and CC(M1) has infinitely many components.

Example 1.4.2. A 3-manifold with incompressible boundary for which the re-
alizable subgroup has infinite index

The following example illustrates the phenomenon caused by double trouble.
Again we will first describe the general strategy and then give a specific example
(from Thurston [120]). Begin with a submanifold V homeomorphic to T 2× I which
intersects ∂M in a torus T 2×{0} and a collection of at least two annuli in T 2×{1},
no pair of which are isotopic in ∂M . The homotopy equivalence is the identity off
of a regular neighborhood of one component A of the frontier of V in M , and wraps
a collar neighborhood of A once around T 2 × {1}. Arcs in ∂M which cross A are
carried to arcs in M which travel around T 2 × {1}, and loops which cross these
annuli in an essential way can be carried to nonperipheral loops.

Let S be a surface of genus two and α a separating curve on S. Let K be the
2-complex (imbedded in 3-space R3) formed by attaching a torus T to S along the
curve α (where α is glued to the longitude of T ). Let M2 be the manifold obtained
by taking a regular neighborhood (in R3) of K. Notice that M2 is homeomorphic
to S × I with a tubular neighborhood of α × { 1

2} removed. Figure 1.2 illustrates
the construction of M2.

Let h be a homotopy equivalence of π1(K) constructed by fixing T and every
point on S except an annulus with one boundary component being α. Then take
this annulus and wrap it around the meridian c of T . A presentation for π1(M2) is
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Figure 1.2. A 3-manifold for which the realizable subgroup has
infinite index

given by
〈a1, b1, a2, b2, c | [a1, b1] = [a2, b2], [[a1, b1], c] = 1〉 .

In this presentation, the peripheral subgroups are generated by {a1, b1, a2, b2} and
{a1, b1, c

−1a2c, c
−1b2c}. The automorphism φ induced by h has the effect

a1 7→ a1, b1 7→ b1, c 7→ c, a2 7→ ca2c
−1, b2 7→ cb2c

−1 .

No nonzero power φk of φ is realizable by a homeomorphism. For if k > 0, φk

takes the peripheral element a1a2 to the nonperipheral element a1c
ka2c

−k, while if
k < 0 it takes the peripheral element a1c

−1a2c to a1c
k−1a2c

1−k. Hence R(M2) has
infinite index in Out(π1(M2)).

The characteristic submanifold Σ of M2 has three components, as illustrated
schematically in figure 1.2. Two of the components are product I-bundles over the
tori with one hole, labelled T1 and T2, which are the components of the complement
in S of a regular neighborhood of α. The other component V is homeomorphic to
T 2 × I. One of the boundary components of V lies in ∂M , and the other meets
each of the other two boundary components of M2 in an annulus whose center
circle is homotopic to α. If we let P2 denote the torus boundary component of
M2, then a geometrically finite uniformization of (M2, P2) is explicitly constructed
in Kerckhoff-Thurston [64]. Since the components of GF(M2, P2) = GF(M2) are
enumerated by Out(π1(M2))/R+(π1(M2)), we see that there are infinitely many
components of GF(M2).

The next two examples illustrate phenomena related to the presence of more
complicated Seifert fibered spaces in the characteristic submanifold, which can oc-
cur only in nonhyperbolizable examples. Roughly speaking, if Σ has Seifert-fibered
components which are complicated and meet the boundary of M , then R(M) will
have infinite index in Out(π1(M)), while if all Seifert-fibered components that meet
the boundary are uncomplicated, such as the solid torus, the index can be finite.
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However, in the borderline cases the way in which the components meet the bound-
ary can affect the index, as illustrated in examples 1.4.3 and 1.4.4. In both of these
examples, Σ is the product of the circle and the disk with two holes, but in exam-
ple 1.4.3 the index is infinite and in example 1.4.4 it is finite.

Example 1.4.3. A characteristic submanifold which is just complicated enough
to make the realizable subgroup have infinite index

Let F be a disk with two holes, with boundary components C1, C2, and C3,
and let Σ=F ×S1. Let S be a compact hyperbolizable 3-manifold whose boundary
is a single incompressible torus, and form M3 by identifying the torus boundary
component of S with the boundary torus C1× S1 of Σ. In example 2.10.3 below, it
will be verified that Σ is the characteristic submanifold of M3. We first construct a
homotopy equivalence h0 of F which fixes C1 and is not homotopic to a homeomor-
phism. Let γ be a properly imbedded arc in F whose endpoints lie in C2 and C3

and let N be a collar neighborhood of γ. Let α be a loop in the interior of F which
is homotopic to C1, intersects γ only at its basepoint, and is disjoint from one of
the components of N − γ. Let h0 be the identity on F − N and let it map N to
the union of N and a regular neighborhood of α by wrapping N once about α (and
then continuing over N) so that each component of N ∩ ∂F is wrapped around α.
The map h0 is an example of a sweep; sweeps are described in more detail in lemma
10.2.4 and the discussion preceding it. Define a homotopy equivalence h of M3 by
taking the product of h0 and the identity on the S1-factor on Σ, and by taking the
identity on S. The peripheral loop in M3 represented by C2 is carried by hk to the
element represented by C2C

k
1 in π1(F )× Z=π1(Σ) ⊂ π1(M3). If |k| ≥ 2, this loop

is not homotopic into ∂M3 so hk is not homotopic to a homeomorphism. Therefore
R(M3) has infinite index in Out(π1(M3)).

Example 1.4.4. A characteristic submanifold which is not quite complicated
enough to make the realizable subgroup have infinite index

Form M4 from the manifold M3 in example 1.4.3 by attaching another copy
S′ of S to Σ along C2 × S1. In example 2.10.3 below, it will be verified that the
characteristic submanifold Σ of M4 is also Σ = F × S1. We will show that R(M4)
has finite index in Out(π1(M4)).

Any outer automorphism of π1(M4) can be induced by a homotopy equivalence.
By Johannson’s Classification Theorem (theorem 2.11.1 below), such a homotopy
equivalence is homotopic to a map f which carries S ∪ S′ to S ∪ S′ by a home-
omorphism and carries Σ to Σ by a homotopy equivalence. By another result of
Johannson, theorem 2.11.2 below, the mapping class group of S is finite. It follows
that when the automorphism lies in a certain finite-index subgroup of Out(π1(M4)),
the restriction of f to S ∪ S′ is isotopic to the identity. Then, the restriction of
f to Σ is isotopic to the identity on (C1 ∪ C2) × S1. Such a homotopy equiva-
lence of Σ is homotopic, relative to (C1 ∪C2)× S1, to a homeomorphism (this can
be proven directly, or extracted from proposition 10.2.2 and lemma 10.2.3 below).
Consequently, f is homotopic on M4 to a homeomorphism, and its induced outer
automorphism is realizable.

The remaining examples illustrate two ways in which manifolds can be homo-
topy equivalent but not homeomorphic. In the first case the manifolds have in-
compressible boundary, while in the second case each has a compressible boundary
component. All four of the manifolds are hyperbolizable, and in fact these examples
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Figure 1.3. Homotopy equivalent but not homeomorphic books
of I-bundles

describe the two basic phenomena that produce hyperbolizable 3-manifolds which
are homotopy equivalent but not homeomorphic.

Example 1.4.5. Homotopy equivalent but not homeomorphic 3-manifolds with
incompressible boundary

Let X be a 2-complex built by attaching surfaces of genus 3, 5, 7 and 9, each
with one boundary component, along their common boundary circle. One may
imbed X in R3 in two different ways, obtaining image 2-complexes X1 and X2 such
that in X1 the surfaces occur in the cyclical order 3, 5, 7, 9, while in X2 they occur
in the cyclical order 3, 7, 5, 9. Let Mi be a regular neighborhood of Xi. Since M1

and M2 both have X as a deformation retract, they are homotopy equivalent. But
they are not homeomorphic, since M1 has boundary components of genus 8, 12, 16
and 12, while M2 has boundary components of genus 10, 12, 14, and 12. Figure 1.3
shows schematic diagrams of M1 and M2. These manifolds are examples of books
of I-bundles, which will be defined in example 2.10.4.

Example 1.4.6. Homotopy equivalent but not homeomorphic 3-manifolds with
compressible boundary

Let S be a closed surface of genus at least 2. Let M1 be obtained by attaching
a 1-handle to S × I such that both ends are attached to S × {1}. Let M2 be
obtained by attaching a 1-handle to S× I with one end attached to S×{0} and the
other attached to S × {1}. Both M1 and M2 have the one-point union of S with a
circle as a deformation retract, so they are homotopy equivalent. But they are not
homeomorphic, since they have different numbers of boundary components. The
manifold M1 is an example of a compression body, as defined at the beginning of
chapter 3, and M2 is an example of a small manifold, as defined in section 6.1. Also,
these are hyperbolizable 3-manifolds. We saw in the Main Hyperbolic Corollary in
section 1.2 that it is of interest to know which homotopy types of hyperbolizable
3-manifolds have the property that each of their homeomorphism classes is either a
compression body or a small manifold. Theorem 6.2.1 determines all such homotopy
types, and shows that each of them contains either one or two homeomorphism
classes. The pair M1 and M2 illustrates the homotopy types that contain two
classes.





CHAPTER 2

Johannson’s Characteristic Submanifold Theory

A remarkable structure theory for Haken manifolds with incompressible bound-
ary was developed independently by W. Jaco and P. Shalen [56] and K. Johann-
son [58]. For a Haken manifold M with incompressible boundary, they defined a
codimension-zero submanifold Σ, called the characteristic submanifold. It consists
of fibered manifolds — I-bundles and Seifert-fibered spaces. It has the enclosing
property, which means that every “essential” map of an annulus or torus into M
is homotopic into Σ. Essentiality is a strengthening of the condition that the map
induce an injection on fundamental groups. Johannson’s Classification Theorem
shows that any homotopy equivalence h : M → N of Haken manifolds with incom-
pressible boundary is homotopic to one which is a homotopy equivalence on the
characteristic submanifolds and a homeomorphism of their complements. The ho-
motopy equivalence of the characteristic submanifolds can usually be assumed to
be a fiber-preserving map, and thereby can be effectively analyzed. In this chapter
we will review Johannson’s version of the characteristic submanifold theory and
develop some technical results which will be needed in our work. We include nu-
merous examples, some of which illustrate aspects of our main results, and others
which should be of general interest.

A properly imbedded surface S in a 3-manifold M is called compressible if
either it is a 2-sphere that bounds a ball or a 2-disk that is parallel into ∂M , or
there is a 2-disk D in M with D∩S=∂D but ∂D not bounding a disk in S. Such a
disk D is called a compression. If S is not compressible, it is called incompressible.
When S is connected and two-sided in M , the Loop Theorem shows that S has a
compression if and only if the homomorphism π1(S)→ π1(M) induced by inclusion
is not injective.

A 3-manifold is said to be irreducible if every embedded 2-sphere bounds a
ball. A compact, orientable, irreducible 3-manifold is said to be Haken if it is
the 3-ball or it contains a properly imbedded two-sided incompressible surface. It
is well known (see, for example, lemma 6.8 in Hempel [51]) that every compact,
orientable, irreducible 3-manifold with nonempty boundary is Haken.

We will begin with a review of fibered 3-manifolds in section 2.1. Sections 2.2
through 2.5 contain an introduction to Johannson’s theory of boundary patterns,
which provides the technical underpinning for his formulation of the characteristic
submanifold. A boundary pattern of a 3-manifold is a collection of connected 2-
manifolds in its boundary, whose interiors are disjoint. A boundary pattern is called
useful when these 2-manifolds are incompressible, and satisfy a certain restriction
on their configuration. This is the natural generalization of the property of having
an incompressibile boundary to the setting of manifolds with boundary patterns. In
Johannson’s theory all maps are required to be admissible, which means that they
take manifolds of the boundary pattern of the domain into those of the boundary
pattern of the range.

15
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After setting up the basic constructs for boundary patterns and admissible
maps, we develop the 3-dimensional concepts which are needed to define the char-
acteristic submanifold. The small but important collection of “exceptional” fibered
manifolds is examined in section 2.6. These include all the manifolds which admit
both an I-fibering and a Seifert fibering, and those that admit nonisotopic fiberings.
They are called exceptional because they must be excluded from many of the results
that are stated later. Next we examine the surfaces in fibered 3-manifolds which
either are unions of fibers or are transverse to all the fibers of a fibered manifold.
These vertical and horizontal surfaces are discussed in section 2.7. In section 2.8,
we examine the mappings between fibered manifolds. Apart from some fairly ob-
vious exceptions, an essential map from a fibered 3-manifold to itself is homotopic
to a map that takes fibers to fibers, and hence induces a map between the quotient
2-manifolds of the fibered 3-manifolds. This allows us later to reduce problems
about mappings between fibered manifolds to more accessible questions about the
induced map on the quotient 2-manifolds.

Section 2.9 gives the definition and basic properties of the characteristic sub-
manifold, and assembles results from [58] in order to give a convenient character-
ization of the characteristic submanifold. A variety of examples of characteristic
submanifolds are given in section 2.10, then in section 2.11 we discuss the central
result for homotopy equivalences, Johannson’s Classification Theorem. A few topo-
logical results, which do not fit very well anywhere else, are collected in section 2.12.

2.1. Fibered 3-manifolds

In this section we review the theory of fibered 3-manifolds. The facts in this
section all follow from the elementary theory of fiber bundles and from the gen-
eral classification of Seifert-fibered 3-manifolds. There are many fine references for
Seifert-fibered 3-manifolds, including [51, 54, 56, 103, 104, 113, 114, 126, 127].
A nice treatment which includes the nonorientable case is given in sections 1.7, 5.2
and 5.3 of [103], and we follow this reference for our description of the fundamental
groups.

We first review 3-dimensional I-bundles and S1-bundles. Let I = [0, 1], and let
B be a connected 2-manifold. There is an I-bundle over B having orientable total
space. If B is orientable, this bundle is just the product B×I. If B is nonorientable,
it is the quotient of B̃ × I obtained by identifying (x, t) with (τ(x), 1− t) where τ
is the nontrivial covering transformation for the orientable double cover B̃. The
boundary of the I-bundle is homeomorphic to B×∂I∪∂B×I if B is orientable. If B
is nonorientable, then the boundary is homeomorphic to B̃ ∪∂B× I, where the two
preimage circles of a boundary component C of B are joined by the annulus C × I.

The Finite Index Theorem (Theorem 10.5 of Hempel [51]) provides an ex-
tremely useful characterization of I-bundles. Here we give its statement specialized
to the irreducible orientable case:

Theorem 2.1.1. (Finite Index Theorem) Let M be a compact orientable ir-
reducible 3-manifold, and F (6= D2 or S2) a compact, connected, incompressible
surface in ∂M . If the index of π1(F ) in π1(M) is finite, then either

(i) π1(M) ∼= Z, F is an annulus, and M is a solid torus, or
(ii) π1(F )=π1(M) and M=F × I with F =F × {0}, or
(iii) π1(F ) has index 2 in π1(M) and M is a twisted I-bundle over a compact

surface N with F as the associated ∂I-bundle.
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For S1-bundles over surfaces with nonempty boundary, the classification is anal-
ogous. For each compact 2-manifold B with nonempty boundary, there is an S1-
bundle over B which has orientable total space. It is obtained by taking two copies
of the orientable I-bundle over B, and identifying each endpoint of a fiber with
the endpoint of the corresponding fiber in the other copy (i. e. it is the double of
the I-bundle along the associated ∂I-bundle). This is the unique S1-bundle over B
with orientable total space, where unique means here that any other such bundle
is homeomorphic to this one by a homeomorphism that for each x ∈ B takes the
fiber over x in the first bundle to the fiber over x in the second. If B is orientable,
the bundle is just the product B × S1. If B is nonorientable, it is characterized by
the property that the preimage of any simple closed loop is a torus if the loop is
orientation-preserving and is a Klein bottle if it is orientation-reversing.

When B is closed, the S1-bundles with orientable total space are classified by
an integer b. Orient the total space E, let B0 result from removing the interior of
a small 2-disk from B, and let E0 be the preimage of B0. Fix a cross-section of
E0, and let its boundary be a loop c in the torus ∂E0. Let t be a circle fiber in
∂E0, oriented so that the pair (c, t) determines the positive orientation on ∂E0. A
cross-sectional disk of the solid torus E − E0 then determines an element ct−b, and
the integer b is the invariant. There are other choices of cross-section, but all meet
the boundary of E0 in a loop isotopic to c. Reversing the orientation on E replaces
b by −b.

Since we use only orientable 3-manifolds, we speak of “the” I-bundle over B,
and when B is connected with nonempty boundary, we speak of “the” S1-bundle
over B.

Particularly important are the S1-bundles which are homeomorphic to I-bun-
dles:

(a) The S1-bundle over the disk is the solid torus. It is the total space of the
I-bundles over the annulus and the Möbius band.

(b) The S1-bundle over the annulus is S1 × S1 × I, which is the I-bundle over
the torus.

(c) The S1-bundle over the Möbius band is the I-bundle over the Klein bottle.
One way to see this is to cut it apart along an annulus A which is the
preimage of a nonseparating arc in the Möbius band. The result is [0, 1]×
[0, 1]×S1 = (S1×[0, 1])×I, and under the reidentification of the two copies
of A, (S1 × [0, 1])× {1/2} becomes a Klein bottle which is a cross-section
of the I-bundle.

These are the only orientable 3-manifolds which are both an I-bundle and an S1-
bundle. For in an S1-bundle V , the fundamental group of the fiber determines an
infinite cyclic normal subgroup of π1(V ). An I-bundle over B has fundamental
group π1(B), and the annulus, Möbius band, torus, and Klein bottle are the only
2-manifolds whose fundamental groups have an infinite cyclic normal subgroup.
As we will note below, these 3-manifolds are also the only ones with nonempty
boundary which admit nonisotopic Seifert-fiberings.

A Seifert-fibered 3-manifold V is one which is a union of disjoint fibers which
are circles, each having a closed neighborhood which is a fibered solid torus Tµ,ν for
some relatively prime pair µ, ν with µ ≥ 1. This means that Tµ,ν is the quotient
space of D2× I that results from identifying (x, 0) with (exp(2πiν/µ)x, 1), and the
circles are unions of arcs of the form {x} × I in D2 × I. The fiber which is the
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quotient of {0} × I is a core circle of Tµ,ν , while the other fibers represent µ times
the core circle. Collapsing each of the circles of Tµ,ν to a point defines a quotient
map from Tµ,ν to a disk D2. If ν=0, then this makes Tµ,ν an S1-bundle over D2,
but if ν 6= 0, then Tµ,ν is an S1-bundle only over D2 − {0} and the core circle is
called an exceptional fiber.

There is a homeomorphism from Tµ,ν+µ to Tµ,ν that takes fibers to fibers, so
we may always select ν so that 0 ≤ ν < µ. If ν 6= 0, define p and q by p=µ, qν=1
(mod µ), and 0 < q < p. We say that the core circle of Tµ,ν is an exceptional fiber
of type (p, q). If m is the boundary of D2 and t is an S1-fiber in ∂Tµ,ν , then a
cross-section c of the fibering of ∂Tµ,ν can be selected so that m=pc+ qt.

The quotient space of V determined by collapsing each fiber to a point is a
2-manifold B, and the quotient map from V to B is called a Seifert fibering of V
over B.

We will now give a general construction of the orientable Seifert-fibered 3-
manifolds and their fundamental groups. We start with the case when ∂V 6= ∅.
Let B0 be a connected surface with nonempty boundary. Denote the boundary
components of B0 by c0, . . . , cs, where s ≥ 0. The fundamental group of B0 is free,
and we select generating sets

{a1, b1, . . . , ag, bg, c1, . . . , cs}, or

{v1, . . . , vg, c1, . . . , cs}

according as B0 is orientable or not. Here, g ≥ 0 if B0 is orientable and g ≥ 1
if B0 is nonorientable. We describe these generators explicitly as follows. Fix a
basepoint x0 ∈ c0. The generators will be represented by oriented simple loops
in B0 based at x0. We will use the same letter to denote the loop in B0 and
the element of π1(B0, x0) that it represents. If B0 is orientable, each pair {ai, bi}
determines a torus connected summand of B0. The loops ai and bi intersect at
one point other than x0, and these are the only pairs of representative loops that
intersect at any point other than x0. For suitable orientations on the ai, bi, and cj ,
the boundary component c0 represents

∏g
i=1[ai, bi]

∏s
j=1 cj . If B0 is nonorientable,

each generating loop vi passes through a crosscap (i. e. a projective plane connected
summand) of B0. In this case, c0 represents

∏g
i=1 v

2
i

∏s
j=1 cj .

Now let E0 be the S1-bundle over B0. Orient the fiber of E0, and use a cross-
section of the fibering to regard B0 as a submanifold of E0. The fiber represents
an element t of π1(E0), which has presentation

〈ai, bi, cj , t | [ai, t]=[bi, t]=[cj , t]=1〉, or

〈vi, cj , t | vitv−1
i = t−1, [cj , t]=1〉 .

Here and in the remainder of this section, the ranges for the indices in all presen-
tations will be 1 ≤ i ≤ g, 1 ≤ j ≤ s, and (later) 1 ≤ k ≤ r.

Now, to form a Seifert-fibered 3-manifold with nonempty boundary, we fix some
r with 0 ≤ r ≤ s, and choose relatively prime pairs (pk, qk), 1 ≤ k ≤ r, with pk ≥ 2
and 0 < qk < pk. For each k with 1 ≤ k ≤ r, there is a torus boundary component of
E0 whose fundamental group is generated by t and ck; along each of these boundary
components we attach a fibered solid torus Tµk,νk to E0 so that t is identified with
the fiber and ck with the cross-section c in Tµk,νk , thus the boundary of a meridian
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disk represents cpkk t
qk . The resulting manifold V has fundamental group

〈ai, bi, cj , t | [ai, t]=[bi, t]=[cj , t]=cpkk t
qk =1, 〉, or

〈vi, cj , t | vitv−1
i = t−1, [cj , t]=cpkk t

qk =1〉 .

Let B be formed from B0 by filling in each Ck with a disk, for 1 ≤ k ≤ r. The
bundle fibering of E0 over B0 extends to a Seifert fibering of V over B. The core
circle of each Tµk,νk is an exceptional fiber of type (pk, qk).

Thus far we have constructed a Seifert-fibered 3-manifold with boundary. For
the closed case, one has r = s, and an additional solid torus with the product
fibration D2 × S1 is glued to the boundary component containing c0 so that its
fibers agree with the fibers of V and so that the boundary of its meridian disk
represents c0t−b, for some integer b. The effect on the fundamental group is to add
one additional relation, obtaining

〈ai, bi, cj , t | [ai, t]=[bi, t]=[cj , t]=c
pj
j t

qj =1,
∏

[ai, bi]
∏
cj = tb 〉, or

〈vi, cj , t | vitv−1
i = t−1, [cj , t]=c

pj
j t

qj =1,
∏
v2
i

∏
cj = tb 〉 .

The infinite cyclic subgroup 〈t〉 generated by the fiber t is normal, and is central
if and only if B is orientable. Taking the quotient of π1(V ) by this subgroup yields
the exact sequences given below for the four cases: ∂V 6= ∅ and B orientable,
∂V 6= ∅ and B nonorientable, ∂V =∅ and B orientable, ∂V =∅ and B nonorientable.
For each group, R denotes the set of relations for π1(V ) given above:

1 −→ 〈t〉 −→ 〈ai, bi, cj , t | R 〉 −→ 〈ai, bi, cj | cpkk = 1〉 −→ 1,

1 −→ 〈t〉 −→ 〈vi, cj , t | R 〉 −→ 〈vi, cj . . . , cs | cpkk = 1〉 −→ 1,

1 −→ 〈t〉 −→ 〈ai, bi, cj , t | R 〉 −→
〈ai, bi, cj | c1 · · · cs

∏
[ai, bi] = 1, cpjj = 1〉 −→ 1, or

1 −→ 〈t〉 −→ 〈vi, cj | R 〉 −→ 〈vi, cj | c1 · · · cs
∏
v2
i = 1, cpjj = 1〉 −→ 1 .

In the first two of these extensions, corresponding to the cases when ∂V 6= ∅, the
quotient group is a free product of cyclic groups; the ai, bi, vi, and the cj with
j > r are generators of infinite cyclic factors, and the ck with k ≤ r are generators
of finite cyclic factors.

Note that in a Seifert-fibered manifold, the preimage in V of a simple loop in
B which is disjoint from the images of the exceptional fibers is a torus if the loop
is orientation-preserving and is a Klein bottle if the loop is orientation-reversing.

Some of the treatments of Seifert fiberings in the literature use the language of
orbifolds to describe the quotient object of a Seifert-fibered 3-manifold (see [113],
or for a much more general context [19]). The quotient orbifold is obtained from
the quotient surface B by declaring each point corresponding to an exceptional fiber
of type (p, q) to be an order p cone point. The quotient group in the extensions
given above is the orbifold fundamental group of this quotient orbifold. We will not
need the orbifold viewpoint in our work, so we do not discuss it further.

A map between fibered manifolds is called fiber-preserving if the image of each
fiber of the domain lies in a fiber of the range. Two fibered structures on a manifold
V are called isotopic if there is a fiber-preserving homeomorphism between them
which is isotopic to the identity.
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Here are some of the fibered manifolds that occur most frequently. As shown in
the Unique Fibering Theorem 2.8.1 below, they are the only cases (with nonempty
boundary) which admit nonisotopic Seifert fiberings.

Example 2.1.2. The solid torus.

The solid torus V = D2 × S1 is the I-bundle over the annulus and also over
the Möbius band; in the latter case the annulus B̃ in ∂V wraps twice in the longi-
tudinal direction, and (for some choice of longitude in the boundary) once in the
meridianal direction. It also admits infinitely many Seifert fiberings. One is the
product fibering, the others each have exactly one exceptional fiber. The latter are
distinct up to isotopy, and distinct up to fiber-preserving homeomorphism except
that the fibering with exceptional fiber of type (p, q) is homeomorphic to the one
with exceptional fiber of type (p, p−q), by a homeomorphism which (up to isotopy)
is the identity on the S1-factor and is complex conjugation in the D2-factor.

Example 2.1.3. The I-bundle over the torus.

The I-bundle over the torus is S1×S1× I. It admits infinitely many nonisotopic
Seifert fiberings, one for each pair {(p, q), (−p,−q)} of pairs of relatively prime
integers. These are all product fiberings, in which the fiber represents ±(p, q) ∈
π1(V ) ∼= Z × Z. Any two of these fiberings are equivalent by a fiber-preserving
homeomorphism.

Example 2.1.4. The I-bundle over the Klein bottle.

The I-bundle over the Klein bottle admits two Seifert fiberings. One is as the
S1-bundle over the Möbius band, as discussed in example (c) above. The other
Seifert fibering has quotient surface a disk and two exceptional fibers of type (2, 1).
To see this alternate fibration, take an arc that cuts the disk into two disks, each
containing one exceptional point. The preimage of each half disk is a solid torus,
and the two solid tori intersect in an annulus whose core curve wraps once around
the meridian and twice arounds the longitude of each solid torus. This core curve
is the boundary of a Möbius band in each solid torus. In fact this Möbius band is
the zero section of a twisted I-bundle structure on each solid torus. When the two
solid tori are glued together so that the two copies of the annulus are identified,
the two Möbius bands form a Klein bottle, which is the zero section of the I-bundle
structure on the union. As detailed in lemma 2.8.5 below, these are the only two
Seifert fiberings up to isotopy.

2.2. Boundary patterns

In this section, we introduce Johannson’s theory of boundary patterns. A
boundary pattern for a 3-manifold is a set m of 2-manifolds in its boundary,
which satisfy certain conditions. In particular, they meet only in their bound-
aries. Roughly speaking, the part of the boundary that lies in the elements of m
is no longer “free”, and in the context of Johannson’s theory the manifold behaves
in some respects as though its only boundary were the part that does not lie in
elements of m. In particular, if all of its boundary lies in elements of m, then the
3-manifold enjoys some of the properties of closed 3-manifolds. For example, if the
boundary pattern is also “useful,” there is an analogue of Waldhausen’s fundamen-
tal theorem for closed manifolds which assures that all homotopy equivalences are
homotopic to homeomorphisms (see theorem 2.5.6 below). In this section we will
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give many examples of boundary patterns, most of which will be used in our later
work.

Precisely, a boundary pattern m for an n-manifold M is a finite set of compact,
connected (n − 1)-manifolds in ∂M , such that the intersection of any i of them is
empty or consists of (n − i)-manifolds. Thus when n= 3, the components of the
intersections of pairs of elements of the boundary pattern are arcs or circles, and
if three elements meet, their intersection consists of a finite collection of points at
which three intersection arcs meet.

On a 2-manifold, a boundary pattern is simply a collection of arcs and circles
in the boundary, which are disjoint except that two arcs may meet in an endpoint,
or in both endpoints. In particular, an i-faced disk is a 2-disk whose boundary
pattern has i elements, such that every point in the boundary lies in some element
of the boundary pattern. For an i-faced disk (but not for any other manifolds), the
elements of the boundary pattern are called faces. A 4-faced disk is called a square.
An i-faced disk with i ≤ 3 is called a small-faced disk. Squares and small-faced disks
play important roles in Johannson’s theory. A 2-manifold with boundary pattern is
called an annulus if it is S1× I with boundary pattern consisting of the components
of its boundary. This boundary pattern is often denoted by ∅ (see example 2.2.1
below). To indicate a 2-manifold homeomorphic to S1 × I, but not necessarily
having the boundary pattern ∅, we use the term topological annulus. Similarly,
a 2-manifold with boundary pattern is called a Möbius band if it is a topological
Möbius band and carries the boundary pattern ∅ having the entire boundary as its
only element.

For a boundary pattern m, we denote by J(m) the union of ∂F for all F ∈ m.
When M is 2-dimensional, J(m) is a finite collection of points, and when M is
3-dimensional, it is a union of circles and trivalent graphs.

The symbol |m| will mean the set of points of ∂M that lie in some element
of m. It is important in arguments to distinguish between the elements of m and
the points of M which lie in these elements, and we will always be precise in this
distinction. The elements of m are called bound sides, and the closures of the
components of ∂M − |m| are called free sides. When |m|= ∂M , m is said to be
complete. Provided that ∂M is compact, we define the completion of m to be the
complete boundary pattern m which is the union of m and the collection of free
sides. Note that J(m)=J(m).

Boundary patterns arise naturally in various ways. Here are some examples.

Example 2.2.1. Trivial (but important) examples

For any manifold M , one has the empty boundary pattern ∅. Its completion ∅
is the set of boundary components of M . When ∂M is empty, ∅ is the only possible
boundary pattern on M .

Example 2.2.2. A boundary pattern containing a square

Here is an explicit example of a 3-manifold S with boundary pattern s such
that one of the elements of s is a square. Its other two elements are topological
annuli, although they are not annuli as 2-manifolds with boundary pattern (that
is, they do not carry the boundary pattern ∅). This boundary pattern will be
examined further in examples 2.4.7 and 2.10.10, and will be used in example 2.10.11
to construct characteristic submanifolds with certain properties.
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Figure 2.1. A boundary pattern containing a square

Let S be a 3-manifold with boundary. Let A0 and A1 be disjoint annuli in a
component of ∂S, and fix an arc α=[0, 1] in ∂S running from A0 to A1 and meeting
them only in its endpoints. Let N = [0, 1] × [−1, 1] ⊂ ∂S so that α= [0, 1] × {0}
and N ∩ (A0 ∪A1)=∂α× [−1, 1], i. e. N is a bicollar neighborhood of the arc α in
the manifold ∂S − (A0 ∪A1). Putting s={A0, N,A1} gives a boundary pattern as
described above. Figure 2.1 shows a picture of such a boundary pattern.

Example 2.2.3. Seifert-fibered 3-manifolds
Some information on Seifert-fibered 3-manifolds was given in section 2.1. As

used in Johannson’s theory, they always have a boundary pattern which is adapted
to the fibered structure. A Seifert fibering on a 3-manifold (V, v) with boundary
pattern is called an admissible Seifert fibering when the elements of v are the preim-
ages of the elements of a boundary pattern of the quotient surface. Equivalently,
the elements of v are tori or fibered annuli.

Example 2.2.4. I-bundles
There are nonhomeomorphic I-bundle structures on a 3-dimensional orientable

handlebody, and for a given homeomorphism class there are many nonisotopic struc-
tures. These can be distinguished in a natural way using boundary patterns. As-
sume that a handlebody V carries a fixed structure as an I-bundle over B. Each
component of the associated ∂I-bundle is a 2-manifold in ∂V , called a lid of the
I-bundle. There are two lids when the bundle is a product, and one when it is
twisted. Let b be a boundary pattern on B. The preimages of the elements of
b form a collection of squares and annuli in ∂V , called the sides of the I-bundle.
The lid or lids, together with the sides, if any, form a boundary pattern v on V
(in this somewhat unfortunate terminology, a side is always a bound side, and a
free side is never a side). When V carries this boundary pattern, the fibering is
called an admissible I-fibering of (V, v) over (B, b). Note that an I-bundle over a
closed 2-manifold is admissibly I-fibered if and only if its boundary pattern is ∅.
We emphasize that for an admissible I-fibering, the lids are always elements of the
boundary pattern. Consequently, the bundle projection map from V to B is never
an admissible map.

Example 2.2.5. The submanifold boundary pattern
Let X be a submanifold of positive codimension of a manifold with boundary

pattern (M,m), such that X ∩ ∂M = ∂X. Define x by

x = {components of X ∩G | G ∈ m} .
Provided that ∂X meets each intersection of a collection of elements of m trans-
versely, x is a boundary pattern on X.

Suppose now that X is a codimension-zero submanifold of M . Then x will be
a boundary pattern provided that Fr(X)∩ ∂M meets each intersection of elements
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of m transversely, where Fr(X) is the frontier (that is, the topological boundary)
of X.

Unless otherwise stated, it will be assumed that all submanifolds of M meet
these transversality conditions, and carry the boundary pattern x. To emphasize
this, we sometimes say that (X,x) is a submanifold of (M,m).

Example 2.2.6. The proper boundary pattern on a codimension-zero subman-
ifold

For codimension-zero submanifolds, a boundary pattern other than the sub-
manifold boundary pattern of the previous example is sometimes used. Let x
denote the submanifold boundary pattern on X, and let x′ denote the collection of
components of Fr(X). The boundary pattern x ∪ x′ is called the proper boundary
pattern on X.

Example 2.2.7. Product boundary patterns
If (M,m) and (N,n) are compact connected manifolds with boundary patterns,

then the product (M,m)×(N,n) is defined to be M×N with the boundary pattern

{F ×N | F ∈ m} ∪ {M ×G | G ∈ n} .

To verify the boundary pattern condition, we note that if dim(M) = m and
dim(N)=n, then F1×N ∩ · · · ∩Fi×N ∩M ×G1 ∩ · · · ∩M ×Gj = (F1 ∩ · · · ∩Fi)×
(G1∩· · ·∩Gj), which is a manifold of dimension (m− i)+(n−j)=(m+n)−(i+j),
verifying the boundary pattern condition. The main cases of interest for us are

(M,m)× (I, ∅) = (M × I, {F × I | F ∈ m})
(M,m)× (I, {0}) = (M × I, {F × I | F ∈ m} ∪ {F × {0}})

(M,m)× (I, ∅) = (M × I, {F × I | F ∈ m} ∪ {M × {0}} ∪ {M × {1}})

In particular, the admissibly fibered product I-bundle over (F, f) is (F, f)× (I, ∅).
Example 2.2.8. Splitting (M,m) along a submanifold
Let F be a properly imbedded two-sided 2-manifold in (M,m), with the sub-

manifold boundary pattern f . A sufficiently small product neighborhood F×[−1, 1]
of F with its submanifold boundary pattern will be (F, f)× ([−1, 1], ∅). The mani-
fold obtained from (M,m) by splitting along F is M − (F × (−1, 1)) with its proper
boundary pattern. In this way, boundary patterns can be used to “remember” a
sequence of splittings of a 3-manifold along two-sided surfaces. Among the pow-
erful technical tools used in [58] are hierarchies for 3-manifolds, remembered by
the resulting boundary patterns, and satisfying certain strong incompressibility as-
sumptions.

In the next section we will give another example of a boundary pattern.

2.3. Admissible maps and mapping class groups

For manifolds with boundary patterns, one usually restricts attention to maps
which take manifolds of the boundary pattern of the domain into those of the
boundary pattern of the range; such maps are called admissible. We will define
admissible homotopy equivalences, and three groups of automorphisms H(M,m),
Out(π1(M), π1(m)), and R(M,m). Obtaining information about these groups of
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automorphisms is the ultimate objective of most of the topological work in this
paper.

Precisely, a map f from (M,m) to (N,n) is called admissible when m is the
disjoint union

m =
⊔
G∈n
{components of f−1(G)} .

Notice that the requirement that the union be disjoint implies that for each element
F of m, there is exactly one element of n that contains the entire image of F .
For elements of m that meet, the elements of n that contain their images must
be distinct. Thus, two neighboring bound sides F1 and F2 must be mapped to
neighboring bound sides G1 and G2, in such a way that F1 ∩ F2 consists of some
components of the preimage of G1 ∩G2 in F1 ∪ F2. Moreover, the full preimage of
the intersection of two elements of n must consist of components of intersections of
pairs of elements of m.

When (X,x) is a submanifold of (M,m), the inclusion map of X is admissible.
If additionally (X,x) is admissibly imbedded in (M,m), then X cannot meet the
closure of ∂M − |m|. In particular, an element of x which does not meet any other
element of x must be imbedded in the manifold interior of some element of m.

An admissible homotopy between maps from (M,m) to (N,n) is a homotopy
which is admissible as a map from (M,m)× (I, ∅) to (N,n). An admissible isotopy
is an isotopy which is an admissible homotopy. An admissible map f : (M,m) →
(N,n) is called an admissible homotopy equivalence if there is an admissible map
g : (N,n)→ (M,m) such that gf and fg are admissibly homotopic to the identity
maps. When the elements of m (and consequently of n) are pairwise disjoint, this
simply says that f : (M, |m|)→ (N, |n|) is a homotopy equivalence of pairs.

The group of admissible isotopy classes of admissible homeomorphisms from
(M,m) to (M,m) is denoted by H(M,m). Suppose that 〈h〉 ∈ H(M,m). Since
h−1(|m|) = |m|, h must carry each free side of (M,m) homeomorphically to a free
side of (M,m). Therefore h is also admissible for (M,m). That is, H(M,m) =
H(M,m).

If m is a boundary pattern for M , for which the elements of m are incom-
pressible, define Out(π1(M), π1(m)) to be the group of outer automorphisms [φ] of
π1(M) such that for each F ∈ m, φ#(π1(F )) is conjugate in π1(M) to π1(G) for
some G ∈ m. Sending h to its induced outer automorphism defines a homomor-
phism H(M,m) → Out(π1(M), π1(m)), and we define R(M,m) to be the image
of this homomorphism. Elements of R(M,m) are said to be realizable and we call
R(M,m) the realizable subgroup of Out(π1(M), π1(m)). The subgroup of H(M,m)
consisting of orientation-preserving elements is denoted by H+(M,m), and its im-
age in Out(π1(M), π1(m)) is denoted by R+(M,m). Of course, these have index
at most 2 in H(M,m) and R(M,m). Our main topological theorem characterizes,
in a fairly general setting, when R(M,m) has finite index in Out(π1(M), π1(m)).

We will close this section with another example of a boundary pattern. Al-
though it will not be used in any of our geometric applications, we include it in
order to illustrate another way to use boundary patterns to exert control on map-
ping classes.

Example 2.3.1. Tiling a submanifold of ∂M
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Figure 2.2. The cell complex dual to a triangulation of ∂M − F

Let F be a 2-manifold in ∂M , and let G=M − F . We will construct a com-
plete boundary pattern m on M that contains the components of F among its
elements, and such that H(M,m) contains a subgroup of finite index isomorphic to
H(M rel G) (the relative mapping class group, consisting of the path components
of the space of homeomorphisms of M that fix each point of G). After giving this
construction, we show how to modify it to obtain a boundary pattern for which
H(M,m) is itself isomorphic to H(M rel G). In example 2.4.10 we will verify that
when F is incompressible, these boundary patterns satisfy the condition of being
“useful”, which is needed to apply the full strength of Johannson’s theory. Thus, the
mapping class groups H(M,m) of manifolds with useful boundary pattern include
as special cases all relative mapping class groups H(M rel G) for which ∂M −G is
incompressible.

Let T be a triangulation of G, and let T ′ be its first barycentric subdivision.
Figure 2.2 illustrates the cell complex structure C on G dual to T : each 2-cell is
the closed star in T ′ of a vertex of T , each 1-cell is the intersection of two 2-cells,
and each vertex is either the intersection of three 2-cells (if it was the barycenter
of a 2-simplex of T ) or is the intersection of two 2-cells with ∂G (if it was the
barycenter of a 1-simplex of ∂G). Note that the intersection of any two 2-cells is
empty or is a single arc, and the intersection of any three is empty or is a single
point. Consequently the set whose elements are the components of F and the 2-cells
of C is a complete boundary pattern m. We call it a boundary pattern obtained by
tiling G.

Each class in H(M,m) induces a well-defined permutation on the elements of
m; let H0(M,m) be the subgroup of finite index that permutes the 2-cells of C
trivially. We will show that the inclusion of groups of homeomorphisms induces an
isomorphism H(M rel G)→ H0(M,m). Let 〈h〉 ∈ H0(M,m). Since any two 2-cells
of C intersect in at most one 1-cell, and any three 3-cells intersect in at most one 0-
cell, h must also preserve each 1-cell and 0-cell of C. It fixes both endpoints of each
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Figure 2.3. The subdivision of a tiling cell

1-cell, so by admissible isotopy we may assume that h is the identity on each 1-cell
of C. By the Alexander trick on each 2-cell of C, we may change h by admissible
isotopy to be the identity on all of G. This shows that H(M rel G) → H0(M,m)
is surjective. By a similar argument, using the cells of C × I, one may prove that it
is injective.

In fact, one can even select m so that H(M,m) equals H0(M,m), hence is
isomorphic to H(M rel G). The idea is to break each 2-cell c of C into smaller 2-
cells. Figure 2.3 illustrates this subdivision for a 7-faced 2-cell. An annular regular
neighborhood A of ∂c in an n-faced 2-cell c is broken into n 5-faced 2-cells c1, . . . ,
cn, by introducing n 1-cells, each running from an interior point of one of the faces
of c to the inner circle of A. Each of these 1-cells will be a common face of two
adjacent ci’s. Each ci will have two faces on ∂c, but the arc of intersection of ci
with the inside circle of A will be subdivided into a very large number of faces, to
be determined later.

Let B be a smaller annulus in c whose outer circle is the inner circle of A. It is
subdivided into a circle of 4- and 5-faced 2-cells: for each adjacent pair of ci’s there
is one 5-faced cell containing the two faces that meet their intersection arc, and all
the rest of the cells are 4-faced. Adjacent 2-cells of B meet in a single face. Each
5-faced cell of B has two faces on the inner circle of A, and each 4-faced cell of B
has one face on the inner circle of A. The remainder of c is a central 2-cell d whose
boundary is the inner circle of B. We repeat the process with each 2-cell of C. The
arcs that subdivide the first annulus A in each 2-cell are chosen to meet the 1-cell
faces of c in points different from any corresponding arcs that meet the 1-cell faces
and lie in 2-cells adjacent to c; this ensures that the graph formed by the 1-cells in
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Figure 2.4. The modified subdivision of a tiling cell

the subdivision has valence 3 at each vertex, and thus the 2-cells of the subdivision
will form a boundary pattern.

The number of faces of each ci can be chosen arbitrarily. Therefore, we can
perform the construction in such a way that all the ci and all the central d pro-
duced from 2-cells of C have different numbers of faces. Then, any homeomorphism
admissible for (M,m) must preserve each ci and d, since all have different numbers
of faces. This forces the intermediary 4- and 5-faced cells each to be preserved as
well. Therefore, H0(M,m)=H(M,m).

This version of the construction produces numerous essential squares (defined
in section 2.4 below). For example, the frontier of a regular neighborhood of any of
the 4-faced 2-cells that lies in B is an essential square. Moreover, if the original cell
c was 4-faced, then a loop parallel to the boundary of c and slightly inside c will
bound a square (and if c was 3-faced, such a loop will bound a 3-faced disk that
gives a violation of usefulness of the boundary pattern, as defined in section 2.4
below). To eliminate these, we modify the construction as shown in Figure 2.4. We
begin as before, but this time the annulus B is subdivided into a circle of 5- and
6-faced 2-cells. Each has two faces on the inner circle of B. Let C be an even
smaller annulus whose outer circle is the inner circle of B. It is subdivided into a
circle of 5-faced cells, each meeting one face from each of two adjacent 5- or 6-faced
cells in B, and having one face on the inner circle of C. As before, the remainder
of c is a central 2-cell d whose boundary is the inner circle of C. This eliminates
all the essential squares except possibly one near the boundary of c, in case c was
4-faced. To eliminate such squares, we add two more arcs near each of the arcs
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that runs from an interior point of a face of c, and two 5-faced 2-cells in A as seen
in Figure 2.4. This eliminates these remaining squares (as well as 3-faced disks
violating usefulness, in case c was 3-faced).

We will see in example 2.4.10 below that under minimal assumptions on the
triangulation, both of these retilings produces a boundary pattern that satisfies the
condition of usefulness. For the second one, the characteristic submanifold will be
disjoint from G.

2.4. Essential maps and useful boundary patterns

In this section we are going to introduce two of the important concepts in
Johannson’s theory: essential maps and useful boundary patterns. To motivate
these, we first recall a bit of the history of the theory of 3-manifolds, focusing on
some of its classical arguments. Essentiality and usefulness are the conditions that
allow these arguments to be carried out in the more general context of 3-manifolds
with boundary patterns.

One of the great advances in the theory of 3-manifolds was the Loop Theorem
proved by C. D. Papakyriakopoulos in 1957, a generalization of a result formu-
lated many years earlier by M. Dehn, known as Dehn’s Lemma. Along with the
Sphere Theorem, also proved by Papakyriakopoulos, the Loop Theorem and Dehn’s
Lemma allow singular maps to be replaced by imbeddings, giving a means to uti-
lize homotopy-theoretic or algebraic information about M to obtain topological
results. In particular, when F is a two-sided imbedded surface in a 3-manifold M
and π1(F )→ π1(M) is not injective (for some choice of basepoint), the existence of a
“compressing” disk is guaranteed; this is an imbedded diskD inM withD∩F = ∂D
and ∂D a loop which is not contractible in F . Such a disk allows a surgery pro-
cess called compression to be performed on F that produces a lower-genus surface
in M . Precisely, one fixes a product region D × [−1, 1] with D = D × {0} and
D× [−1, 1]∩F = ∂D× [−1, 1], and replaces F by (F −∂D× (−1, 1))∪D×{−1, 1}.
When this process cannot be performed further, the resulting surface is still two-
sided, and the inclusion induces an injection on the fundamental group (for every
choice of basepoint).

Suppose that M and N are closed irreducible 3-manifolds and f : M → N is
a map which is transverse to a fixed two-sided imbedded incompressible surface
G in N . If the preimage surface f−1(G) admits compressing disks, then f can be
changed by homotopy to achieve a compression of f−1(G). The construction of this
homotopy is rather complicated; lemma 6.5 of [51] contains a detailed description.
When this simplification is repeated as many times as possible, the result is a new
map f for which f−1(G) has no compressing disks. Some of its components may be
2-spheres. Since M is irreducible, these are compressible (bound 3-balls in M), and
there is a second homotopy process for changing f to remove any such 2-spheres
from the preimage of G. If these two homotopy processes are carried out as far as
possible, the result is a map homotopic to f for which f−1(G) is incompressible.
This is a key step in Waldhausen’s method for proving that homotopy equivalences
between closed Haken 3-manifolds are homotopic to homeomorphisms [128].

For irreducible manifolds with boundary, one often needs a stronger condition
on imbedded surfaces than just being incompressible. Additionally, there should
be no boundary-compressing disks. A boundary-compressing disk for a (properly)
imbedded surface F has boundary consisting of an arc in ∂M and an arc in F
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which is not properly homotopic in F into ∂F ; a compression along such a disk
creates a further simplification of F . Again, when F is a preimage surface f−1(G),
a homotopy process allows these simplifications to be accomplished by homotopy of
f . Also, any components f−1(G) that are boundary-parallel disks may be removed
by homotopy, resulting in a preimage surface which is incompressible and boundary-
incompressible.

In Johannson’s extension of these ideas to the context of irreducible 3-manifolds
with boundary pattern, the role of compressing disks is played by admissibly imbed-
ded small-faced disks. Incompressibility and boundary-incompressibility become
the condition of essentiality: there are no small-faced compressing disks with one
face an essential loop or arc in F and (when they are 2- or 3-faced) the other faces in
elements of m. Essentiality is actually defined for admissible maps rather than just
for submanifolds, and for admissible maps between manifolds of any dimensions.
The Loop Theorem extends to show that if a surface imbedded in M has singular
compressing disks, in this more general sense, then it has an imbedded one.

A boundary pattern will be called useful if every imbedded small-faced disk
admits an admissible isotopy that shrinks it down to a point. This property is
somewhat analogous to the property that an irreducible 3-manifold has incompress-
ible boundary. A more direct analogue of incompressible boundary is the property
that the completed boundary pattern m is useful, and this is a frequent hypothesis
for the stronger results in Johannson’s theory. In section 4.1, we will observe that
admissible homotopy equivalences preserve usefulness of boundary patterns, and
prove that they preserve usefulness of completed boundary patterns.

Following Johannson, we now give the precise definition of essential maps and
essential submanifolds. An admissible loop or path is a map h : (K, k) → (X,x),
where in the case of a loop (K, k) is (S1, ∅), and for a path it is (I, ∅), and where
(X,x) is a 2- or 3-manifold. The loop or path is called inessential if it is homotopic
through admissible maps to a constant map. That is, the final map of the homotopy,
the constant map, might not be admissible, but all earlier maps are admissible. If
it is not inessential, it is called essential. A circle or arc admissibly imbedded in
(X,x) is called essential if its inclusion map is essential.

A map f : (X,x) → (Y, y) between 2- or 3-manifolds (not necessarily of the
same dimension) is called essential when for any essential loop or path h : (K, k)→
(X,x), the composition fh : (K, k) → (Y, y) is essential. It is immediate that
essential maps always induce injections on fundamental groups, for any choice of
basepoints.

Note that if the domain of f contains no essential loop or arc, then f is auto-
matically essential. In particular, any admissible map with domain a small-faced
disk is essential. It may be philosophically disquieting that all such maps are es-
sential, but as noted in the first paragraph on p. 32 of [58], this convention seems
to lead to fewer technical complications (see for example the remark after theo-
rem 2.5.4 below). In fact, there are seven (compact, connected) 2-manifolds (F, f)
that contain no essential loop or arc. Since F must be simply-connected, it is either
S2 or D2. In the latter case, any two elements of f must meet, since otherwise there
is an essential arc connecting them, so (F, f) is a small-faced disk. The possible
(F, f) are: S2, (D2, ∅), (D2, {k}) where k is an arc, (D2, {k, `}) where k and ` are
arcs meeting in an endpoint, and the three small-faced disks.
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We will now show that for maps between most surfaces whose boundary pat-
terns consist of their boundary components, there is a relatively simple test for
essentiality: it is equivalent to π1-injectivity. The cases when F is an annulus
or Möbius band must be excluded, since then there can be an admissible map
(F, ∅) → (G, ∅), taking F into a small neighborhood of a boundary component of
G, which is injective on fundamental groups but is not essential.

Lemma 2.4.1. Let f : (F, ∅) → (G, ∅) be an admissible map between connected
2-manifolds which is injective on fundamental groups. If F is not an annulus or
Möbius band, then f is essential.

Proof. We may assume F is not S2 or D2, since then f is essential by def-
inition. Since f is injective on fundamental groups, we need only prove it takes
essential paths to essential paths. Let α be an essential path in F connecting
boundary components β and γ (possibly β = γ), and suppose the restriction of f
to α is inessential. Then the images under f of the loops β and αγα are homo-
topic preserving basepoints into the same boundary component of G. Since f# is
injective, there are nonzero powers m and n so that βm and αγnα−1 represent the
same element of π1(F ). Let F̃ be the covering corresponding to this element. It
has cyclic fundamental group, and since βm and γn both lift to boundary com-
ponents of F̃ , it is either of the form S1 × I or S1 × I − C for some closed subset
C ⊂ S1 × {1}. If the latter occurs, then since both βm and αγnα have lifts which
are closed loops, α must have a lift which has both endpoints in S1×{0}. This lift
is admissibly homotopic into S1 × {0}, so α is inessential in (F, ∅), contrary to its
selection. Therefore F̃ is homeomorphic to S1× I and is a finite cover of F , so F is
either an annulus or a Möbius band. �

A 2-dimensional submanifold (F, f) of (M,m) is called essential if and only
if the inclusion map of (F, f) into (M,m) is essential. For codimension-zero sub-
manifolds, this condition is not quite strong enough. For example, if W is a reg-
ular neighborhood of an essential loop in the interior of M , with empty boundary
pattern, or a regular neighborhood in M of an arc or circle of intersection of two
elements of m, with the submanifold boundary pattern, then the inclusion of (W,w)
into (M,m) is an essential map. So as in [58] we define a codimension-zero subman-
ifold (W,w) of (M,m) to be essential when its frontier is an essential 2-manifold
in (M,m). This implies that the inclusion of (W,w) into (M,m) is an essential
map. To see this, denote the frontier of (W,w) by (F, f), and suppose there is
an essential loop or path h : (K, k) → (W,w) which is inessential as a map into
(M,m). Then there is a map g : (D, d) → (M,m) with (D, d) a small-faced disk
whose restriction to ∂D − |d| is h. We may assume that g is transverse to F . The
restriction of g to each preimage arc of F is inessential in (M,m). If all of these
arcs were inessential in F , then by doing cutting and pasting we could assume that
this preimage is empty, so that h would be inessential in (W,w). Therefore some
preimage arc must be essential in F , showing that F is not essential in (M,m).

We will now define useful boundary patterns for 3-manifolds. First, note that
each element of m is incompressible if and only if whenever D is an admissibly
imbedded 1-faced disk in (M,m), ∂D bounds a disk in |m| which does not meet
J(m) (where as defined in section 2.2, J(m) =

⋃
F∈m ∂F ). We say that m is useful

when the boundary of every admissibly imbedded small-faced disk in (M,m) bounds
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a disk D in ∂M such that D ∩ J(m) is the cone on ∂D ∩ J(m). This cone is empty
if (D, d) is 1-faced, is an arc if it is 2-faced, and is a cone on three points if it is
3-faced.

Here are some examples of useful boundary patterns.
Example 2.4.2. Trivial (but important) examples

The empty boundary pattern is always useful, and the boundary pattern ∅ is
useful if and only ∂M is incompressible.

Example 2.4.3. Fibered 3-manifolds
The product of a small-faced disk with S1 yields a boundary pattern on a

product fibered torus which is not useful. With very few exceptions, however, the
boundary patterns on admissibly fibered 3-manifolds are useful and even have useful
completion; lemma 2.6.1 below details the failures of usefulness in the fibered case.

Example 2.4.4. 3-manifolds containing no essential circles or arcs
There are eight irreducible 3-manifolds (M,m) with nonempty boundary and

useful boundary pattern that contain no essential arc or loop. Although these will
not be needed for our work, we determine them here to provide another example.
Suppose that (M,m) is a connected irreducible 3-manifold with useful boundary
pattern which contains no essential path or loop. Then M is simply-connected, so
is a 3-ball, and either m={∂M} or each element of m is a 2-disk. In the latter case,
any two elements must meet, since otherwise there is an essential path connecting
them, and must meet in a single arc or a circle, since otherwise there will be a
2-faced disk in (M,m) which violates the definition of usefulness. There cannot be
more than four disks. For if there are three whose union is not all of ∂M , they
must be configured as three of the faces of the tetrahedron, by usefulness, and since
there are no violations of usefulness by 3-faced disks, a fourth disk that meets all
three of them, each in an arc, can only be the other face. Thus there are only
eight possibilities: (1) (D3, ∅), (2) the suspensions of the small-faced disks, with
boundary pattern consisting of the suspensions of their faces, and (3) (T, t), where
T is a tetrahedron and t is some nonempty subset of the set of faces of T .

Example 2.4.5. Boundary patterns with disjoint elements
Much of our later work concerns 3-manifolds with boundary patterns m which

consist of disjoint incompressible submanifolds. Any such boundary pattern is use-
ful, since the incompressibility prevents violations of usefulness by 1-faced disks,
and the disjointness of the elements ensures that there are no admissibly imbedded
2- or 3-faced disks at all. If ∂M and ∂M − |m| are incompressible, then the com-
pleted boundary pattern m is also useful. To see this we first note that there are
still no admissibly imbedded 3-faced disks, and that the incompressibility assump-
tions ensure that there are no violations of usefulness by 1-faced disks. Suppose
that D is a 2-faced disk admissibly imbedded in (M,m). Since ∂M is incompress-
ible, ∂D bounds a disk D0 in ∂M for which ∂D0 ∩ J(m) consists of two points.
Now D0 cannot contain any circles of J(m) since this would lead to a violation of
incompressibility of the elements of m. Since J(m) consists of circles, D0 ∩ J(m)
must consist of a single arc, and D does not violate the usefulness condition.

When ∂M is compressible, violations of usefulness by 2-faced disks occur read-
ily. For example if F is a disk with g holes, g ≥ 1, and (M,m) = (F × I, {F ×{1}}),
then there are numerous nonseparating admissible 2-faced disks in (M,m). Some of
our later work, however, will concern boundary patterns a for which each element is
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either closed or is an annulus. In this case, unless (M,a) is the product of a 2-faced
disk with S1, such a boundary pattern will have useful completion if and only if
each free side is incompressible. For later reference we state this as a lemma and
prove it here. It will apply to the boundary patterns associated to pared manifolds,
which will be introduced in chapter 5.

Lemma 2.4.6. Let (M,a) be an irreducible 3-manifold such that the elements of
a are disjoint, incompressible, and each element either is closed or is an annulus.
Assume that (M,a) is not the product of a 2-faced disk with S1. Then a is useful
if and only if (M,a) has no compressible free side.

Proof. If some free side is compressible, then a is not useful. Conversely,
suppose each free side is incompressible. Then each 1-faced admissible disk is
parallel into an element of a, so we need only check that there are no nontrivial
2- or 3-faced disks. Since the elements of a are disjoint, the bound sides of any
surface admissibly imbedded in (M,a) must alternate between those contained in
elements of a and those in free sides of (M,a). Consequently, there are no admissibly
imbedded 3-faced disks.

If D is an admissible 2-faced disk then its boundary is a compressible loop
intersecting some annulus A of a in a single arc α. If α begins and ends on the
same boundary component of A, then α is parallel, in A, to an arc in ∂A. Since
∂M − |a| is incompressible, ∂D − α must be parallel, in ∂M − |m|, to the same arc
in ∂A, showing that D does not give a violation of usefulness. So we may assume
that α joins distinct boundary components of A. Let C be the boundary of a regular
neighborhood of A ∪ ∂D in ∂M . It is null-homotopic in M , since it is homotopic
into A− ∂D. Also, it lies in a free side W of (M,a); since W is incompressible, C
bounds a disk in W . It follows that W is an annulus, so W ∪ A is a compressible
torus boundary component of M . Since M is irreducible, it must be a solid torus.
Since D meets each of the annuli of a in a single arc, (M,a) is the product of a
2-faced disk with S1, contrary to hypothesis. �

Example 2.4.7. A useful boundary pattern containing a square
In example 2.2.2 we gave an explicit example of a 3-manifold with boundary

pattern (S, s) such that one of the elements of s was a square N and the other
two A0 and A1 were topological annuli. Using the notation of that example, we
will now verify that if ∂S, A0, and A1 are incompressible, then s is useful. This
fact will be used in example 2.10.11 when we use (S, s) to construct characteristic
submanifolds with certain properties.

Recall that α is an arc in ∂S running from A0 to A1 and meeting them only in its
endpoints, so that N=[0, 1]× [−1, 1] ⊂ ∂S with α=[0, 1]×{0} and N ∩ (A0∪A1)=
∂α× [−1, 1]. Observe that J(s) consists of the boundary components C0 and C1 of
A0 and A1 that do not meet N , together with the graph G obtained from the four
sides of N by adding as edges the remainders of the two boundary components Bj
of the Aj that do meet N . The circles B0, B1, C0, and C1 are essential in S.

Suppose that D is an admissibly imbedded small-faced disk in (S, s) which gives
a violation of usefulness. Since ∂S is incompressible, ∂D bounds a disk D0 in ∂S.
If D is 1-faced, then ∂D must be disjoint from J(s). Since each component of J(s)
contains an essential circle, J(s) ∩ D0 is empty and D cannot violate usefulness.
Suppose that D is 2-faced, so that D∩J(s) consists of two points a and b contained
in edges of J(s). Since no component of J(s) can be separated by a single point, a
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and b are both contained in a single component of J(s). If they were contained in
C0 or C1, then they would be connected by a single arc in J(s) ∩D0 and D could
not violate usefulness. So a and b both lie in G. Since C0 and C1 are essential, they
cannot be contained in D0, so J(s) ∩D0 is contained in G. Since a and b together
separate G, and J(s) ∩ D0 is not just a single arc, each of the edges α × {±1}
contains one of a or b. But then, D0 contains either B0 or B1, contradicting their
essentiality. Finally, suppose that D is 3-faced, so that ∂D ∩ J(s) contains three
points. Every simple loop in J(s) that contains any of the points must contain
exactly two of them (since the loop must enter and leave D0 exactly once). The
only such three-point subsets consist of a point in one of the edges α × {−1} or
α×{1} together with points in the each of the two edges that form B0 or in each of
the two edges that form B1. These are joined in G by a cone on three points, and
this must be J(s)∩D0 since otherwise D0 would contain one of the Bi. Therefore,
no small-faced disk in (S, s) can give a violation of usefulness, so (S, s) is useful.

Example 2.4.8. Gluing 3-manifolds with boundary patterns

Let (M,m) be a 3-manifold with boundary pattern. In this rare instance, we
do not assume that M is connected, because we want to consider either gluing
two manifolds together along elements of their boundary patterns, or identifying
two elements of the boundary pattern of a single manifold. Suppose that F1 and
F2 are two elements of m, with F1 ∩ F2 = ∅. For each i, let fi be the boundary
pattern consisting of the components of Fi ∩ G as G ranges over the elements of
m − {F1, F2}. Let h : (F1, f1) → (F2, f2) be an admissible homeomorphism, and
form the quotient manifold N from M by identifying each x with h(x).

Each time an element k1 of f1 is identified to an element k2 of f2, there are
elements G1 and G2 in m (possibly G1 = G2) such that ki is a component of Gi∩Fi.
Define a boundary pattern n on N as follows. Start with the disjoint union of the
elements of m− {F1, F2}, and if x lies in a component of such a G1 ∩ F1, identify
x with the copy of h(x) that lies in the component G2 that contains the image of
G1∩F1. The collection of components of the quotient space is n. In particular, the
common image of k1 and k2 is properly imbedded in the component that contains
the images of G1 and G2. Therefore the surface (F, f) in (N,n) which is the image
of (F1, f1) and (F2, f2) is properly and admissibly imbedded.

In this construction, usefulness is preserved. Since this provides a general
method for constructing new useful boundary patterns from old, we prove this fact
as a lemma. It will be applied in example 2.10.11 below to give examples illustrating
some cases of Main Topological Theorem 2.

Lemma 2.4.9. Let (N,n) be formed from (M,m) by identifying faces (F1, f1)
and (F2, f2) as described above. If m is useful, then n is useful.

Proof. Let (D, d) be an admissible small-faced disk imbedded in (N,n). We
must show that ∂D bounds a disk D0 in ∂N , such that D0 ∩ J(n) is the cone on
∂D0 ∩ J(n). The existence of such a D0 is not altered by performing surgery on
D along circles in the interior of D, nor by admissible isotopy of D. So when we
perform these operations, we can call the result D as well.

By admissible isotopy, put D transverse to F . If there are circle intersections,
perform surgery on D, starting from an innermost intersection circle, to assume
that D intersects F only in arcs.
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If D is not disjoint from F , consider an intersection arc k of D ∩ F which is
outermost on D. It is the frontier of a disk E in D which meets F only in k. With
the boundary pattern consisting of k and the components of the intersections of E
with elements of n, E is admissibly imbedded in (M,m). It will be a small-faced,
except in the case when (D, d) was 3-faced, k connects two different faces of (D, d),
and E contains the third face of (D, d) so is a square. If this happens, then D − E
either meets F only in k, in which case we take it as E, or contains more intersection
arcs, in which case we use an outermost disk cut off by one of those arcs as E. So
we can always choose E to be small-faced.

Since m was useful, ∂E bounds a disk E0 in ∂M , such that E0 ∩ J(m) is the
cone on ∂E0∩J(m). There is an admissible isotopy of D that pushes ∂D∩E across
E0∩∂N . It changes k, and any other intersections ofD with F∩E0, into intersection
that are circles. After performing surgery to remove these circle intersections, the
number of intersections of D with F has been reduced. Eventually, we make D
disjoint from F .

Since m was useful, ∂D bounds a disk D0 in ∂M , such that D0 ∩ J(m) is the
cone on ∂D0 ∩ J(m). The latter condition ensures that D0 does not meet either of
the Fi, so D0 lies in ∂N after the identifications. �

The converse of lemma 2.4.9 is false. An extreme example arises from taking
two handlebodies with boundary pattern ∅ and identifying their boundaries to form
a closed 3-manifold. A more amusing example is to stack two cubes one on top
of the other, where the bottom cube has complete boundary pattern consisting of
the top, the left- and right-hand faces, and the remainder, and the top cube has
complete boundary pattern consisting of the bottom, the front and back faces, and
the remainder. The boundary patterns on the original cubes are not useful, but n is
the useful boundary pattern consisting of two disks with a common boundary circle
that looks like the seam of a baseball. Examples resulting in more complicated
useful boundary patterns can be constructed by gluing together two non-useful
boundary patterns on two 3-balls.

Example 2.4.10. Tiling a submanifold of ∂M
Recall the boundary pattern m obtained by tiling a submanifold G = ∂M − F ,

using the dual cell-complex C of a triangulation T of G as in example 2.3.1. It will
be useful provided that

(1) F is incompressible,
(2) the intersection of each 2-simplex of T with ∂G is a vertex or a 1-simplex,

and
(3) any three vertices such that any two bound a 1-simplex of T are the

vertices of a 2-simplex of T .
Many triangulations satisfy conditions (2) and (3), for example any triangulation
that is the barycentric subdivision of another triangulation.

To see that m is useful if conditions (1), (2), and (3) are satisfied, we note first
that by condition (1) all elements of m are incompressible, so there are no violations
of usefulness by 1-faced disks. If two elements of m meet, then at least one is a
disk, and their intersection is a single arc, so again using condition (1) there are no
violations of usefulness by 2-faced disks. Consider an admissibly imbedded 3-faced
disk E. Suppose first that its faces lie in three 2-cells of C. Regard each of the
2-cells as having a boundary pattern consisting of the 1-cells of C in its boundary.
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The face of E in each 2-cell is admissibly isotopic in that 2-cell to a union of two
arcs each of which is the portion of a 1-simplex of T that runs from its barycenter
to one of its endpoints. By condition (3), the union of these six arcs is the boundary
of a 2-simplex D of T . It is possible that D meets ∂G; if so, replace it by a slightly
smaller disk that does not. Then D meets J(m) in a cone on three points, and since
E is admissibly isotopic so that ∂E=∂D, E does not give a violation of usefulness.
Suppose now that one of the faces of E lies in F . Then the other two lie in two
2-cells C1 and C2 of C. Now C1 and C2 both meet ∂G, and C1 ∩ C2 is a single
1-cell α, since it is the dual 1-cell to a 1-simplex of the triangulation, and two such
intersection cells would correspond to distinct 1-simplices with common endpoints.
At least one endpoint of α is the barycenter of a 2-simplex of the triangulation, so
lies in the interior of G. The other endpoint of α must lie in ∂G, for if it were in
the interior, then the 1-simplex of the triangulation dual to α would meet ∂G in its
endpoints, (since these are the common intersection point of the simplices of the
subdivision that form C1 and C2), giving a violation of condition (2). Since α has
an endpoint in ∂G, the union of the two faces of E in G is parallel in C1 ∪C2 into
∂G. Now, condition (1) shows that ∂E bounds a disk D in ∂M , and the face of E
in F is parallel in D into ∂F . The intersection of α∪ ∂F with D is a cone on three
points, so again E does not violate usefulness.

Note that if one now subdivides C as in the final two constructions of exam-
ple 2.3.1 of section 2.3, the resulting cell complex is also dual to a triangulation
satisfying conditions (1), (2), and (3), so it yields a useful boundary pattern m for
which H(M,m) ∼= H(M rel F ).

2.5. The classical theorems

We will now examine how some of the fundamental results of the theory of
3-manifolds extend to manifolds with boundary pattern. The Loop Theorem of
Papakyriakopoulos can be formulated as saying that ∂M is incompressible if and
only if for every admissible map f : (D, d)→ (M, ∅) where (D, d) is a 1-faced disk,
there is a map g : D → ∂M such that g|∂D = f |∂D. Notice that f need not be an
embedding. That usefulness is a natural generalization of boundary irreducibility
is seen in the following version of the Loop Theorem. It is given as proposition 2.1
in [58].

Theorem 2.5.1. (Loop Theorem) Let (M,m) be a 3-manifold with boundary
pattern. Then m is useful if and only if for any admissible map f : (D, d)→ (M,m),
with (D, d) a small-faced disk, there exists a map g : D → ∂M so that g|∂D = f |∂D
and g−1(J(m)) is the cone on g−1(J(m)) ∩ ∂D.

Using the Loop Theorem, we can reformulate the definition of usefulness in
terms of maps of small-faced disks.

Proposition 2.5.2. Let m be a boundary pattern on an irreducible 3-manifold
M . Then m is useful if and only if every admissible map of a small-faced disk
into (M,m) is admissibly homotopic to a constant map.

Proof. Suppose that (M,m) is useful, and let f : (D, d) → (M,m) be an
admissible map of a small-faced disk. By the Loop Theorem 2.5.1, there exists a
map g : D → ∂M so that g|∂D = f |∂D, and g−1(J(m)) is the cone on g−1(J(m))∩
∂D. Regard the 3-ball as the cone on D, that is, the quotient space D× I/(x, 1) ∼
(y, 1) for all x, y ∈ D. Define a map H from the cone on D into M as follows.
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On D × {0}, it is f . Using g, extend this to the cone on ∂D in such a way that
the preimage of J(m) is the cone on f−1(J(m)) ∩ ∂D. Since M is irreducible,
π3(M) = 0, so the map may be extended to the cone on D; this may be done in
such a way that the preimage of ∂M is exactly the cone on ∂D. Now, let q be the
quotient map from D × I to the cone on D, then Hq is a homotopy from f to a
constant map through admissible maps.

For the converse, we will show that if m is not useful, then there exists an
admissible map of a small-faced disk into (M,m) which is not admissibly homotopic
to a constant map. When m is not useful, the Loop Theorem 2.5.1 yields an
admissible map f : (D, d) → (M,m), where (D, d) is a small-faced disk, for which
there is no map g : D → ∂M so that g|∂D = f |∂D and g−1(J(m)) is the cone on
g−1(J(m)) ∩ ∂D. Suppose for contradiction that f is admissibly homotopic to a
constant map. Then there would be a homotopy of f through admissible maps to
a constant map, say K : D × I → M . It induces a map H from the cone on D,
and the restriction of H to the cone on ∂D would be a map g of the kind already
excluded. �

As discussed above, the Loop Theorem of Papakyriakopoulos is often used
in procedures where the preimage of a surface under a map between 3-manifolds
is being simplified. To extend these to 3-manifolds with boundary patterns, the
following analogue of Dehn’s Lemma is needed. It is given as lemma 4.2 of [58].

Lemma 2.5.3. (Compression Lemma) Let (M,m) be a 3-manifold with use-
ful boundary pattern, and let (F, f) be an admissibly imbedded surface in M with
F ∩ ∂M = ∂F , none of whose components is a small-faced disk. Then (F, f) is
inessential in (M,m) if and only if there is an admissibly imbedded disk (D, d) in
(M,m) such that (D, d) is a small-faced disk and D ∩ F is a face of (D, d) which
is an essential arc or circle in F .

Using the Compression Lemma, Johannson deduces the following general the-
orem for simplifying the preimage of an essential surface. It is lemma 4.4 of [58].

Theorem 2.5.4. (Essential Preimage Theorem) Let (Mi,mi) be irreducible and
aspherical 3-manifolds with useful boundary patterns. Let (F, f) be an essential
surface imbedded in (M2,m2), with F ∩ ∂M2 = ∂F , such that no component of
(F, f) is a 2-sphere or a small-faced disk. Then any admissible map f : (M1,m1)→
(M2,m2) is admissibly homotopic to a map g such that g−1(F ) is an essential
surface in (M1,m1), no component of which is a 2-sphere or a small-faced disk.
Moreover:

(i) If in addition m1 is useful, then g may be chosen so that g−1(F ) is essen-
tial in (M1,m1), and no component of g−1(F ) is a 2-sphere or a small-
faced disk in (M1,m1).

(ii) Suppose that f−1(F ) is already an admissible surface in (M1,m1), m1 is
useful, (N,n) is an essential codimension-zero submanifold in (M1,m1)
such that f−1(F ) is disjoint from N , and no component of the frontier of
N is a 2-sphere or a small-faced disk. Then the homotopy of f may be
chosen to be constant on N .

An example here will illustrate one of the reasons that all maps whose domains have
no essential 1-submanifolds are considered to be essential. Let (S, s) be a square,
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and let (M2,m2) be (S, s)× S1. Let D be a small disk that meets one of the sides
of S in an arc α in the interior of the side, so that d= {α} is a boundary pattern
on D. Put (M1,m1) = (D, d) × S1. The inclusion map i : (M1,m1) → (M2,m2) is
admissible. Let F =(S, s)× {p} for some p ∈ S1, an essential surface in (M2,m2).
Then i−1(F )=D×{p}, and this preimage surface cannot be eliminated or simplified
by admissible homotopy of i. So to make the Essential Preimage Theorem true as
stated here, this copy of (D, d) is allowed as an essential surface in (M1,m1). Note
that according to statement (i) in the Essential Preimage Theorem, such examples
cannot arise when m1 has useful completion.

The classical Baer-Nielsen theorem asserts that if f : F → G is a homotopy
equivalence between two compact surfaces (other than disks) such that f(∂F ) =
∂G, then f is properly homotopic to a homeomorphism. We will make frequent
use of the following generalization of the Baer-Nielsen theorem (see proposition 3.3
of [58]).

Theorem 2.5.5. (Baer-Nielsen Theorem) Let (F, f) and (G, g) be connected
surfaces with complete boundary patterns. Suppose that (F, f) is not a 1-faced disk
or the 2-sphere, and that G is not the projective plane. Then any essential map
f : (F, f)→ (G, g) is admissibly homotopic to a covering map. If the restriction of
f to ∂F is a local homeomorphism, then the homotopy may be chosen to be constant
on ∂F .

Waldhausen’s generalization of the Baer-Nielsen theorem to dimension 3 ex-
tends to manifolds with complete and useful boundary patterns, as given in propo-
sition 3.4 of [58]:

Theorem 2.5.6. (Waldhausen’s Theorem) Let (M,m) and (N,n) be connected
irreducible 3-manifolds with complete and useful boundary patterns. Suppose that
M has nonempty boundary and (M,m) is not a 3-ball with one or two bound sides.
Then any essential map f : (M,m)→ (N,n) is admissibly homotopic to a covering
map. If the restriction of f to ∂M is a covering map, then the homotopy may be
chosen to be constant on ∂M .

A strong property of essential surfaces is given in the next result. Two disjoint
admissibly imbedded surfaces (F, f) and (G, g) in a 3-manifold (M,m) are admis-
sibly parallel if there is a component of the complement of F ∪ G whose closure,
with the proper boundary pattern, is a product I-bundle whose lids are F and G.
The next result is proposition 19.1 of [58]. It is stated there for complete boundary
pattern, but since we assume that f and g are complete, one can apply it to (M,m)
to obtain the version stated here.

Theorem 2.5.7. (Parallel Surfaces Theorem) Let (M,m) be an irreducible 3-
manifold with boundary pattern whose completion is useful, and let (F, f) and (G, g)
be connected essential surfaces, with complete boundary patterns, admissibly and
essentially imbedded in (M,m), and properly imbedded in M . Assume that (G, g)
is admissibly homotopic into (F, f). Then (G, g) is admissibly isotopic into (F, f).
Moreover, if F and G are disjoint, then (G, g) is admissibly parallel to (F, f).
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2.6. Exceptional fibered 3-manifolds

We gave a brief description of fibered 3-manifolds in section 2.1, and in exam-
ples 2.2.3 and 2.2.4 of section 2.2, we defined their admissible fiberings. In this sec-
tion, we will discuss the exceptional fibered manifolds. As detailed in lemma 2.6.1,
the cases listed below as (EF1)-(EF5) include all the admissibly fibered manifolds
with complete boundary pattern which are not irreducible or whose boundary pat-
terns are not useful. The remaining cases, (EIB) and (ESF), are those which con-
tain a horizontal square, annulus, or torus (that is, an imbedded square, annulus,
or torus which meets all fibers transversely).

Many of the exceptional fibered manifolds admit more than one isotopy class
of fibering, in fact some have both I- and Seifert fiberings. By the Unique Fibering
Theorem 2.8.1 below, the exceptional manifolds include all manifolds with complete
boundary pattern which admit more than one isotopy class of admissible fibering.

All of the manifolds in (EF4), (EF5), and (ESF) are closed, and consequently
are not relevant for most of our later work, but we include them here in order to
give a fuller exposition of Johannson’s theory. Recall that the terms annulus and
Möbius band refer to 2-manifolds which carry the boundary pattern ∅.
Exceptional Fibered Manifolds: An orientable 3-manifold (V, v) with an admis-
sible fibering as an I-bundle or Seifert-fibered space is called an exceptional fibered
manifold if its completion (V, v) is one of the following:

(EF1) An I-bundle over a small-faced disk.
(EF2) The S1-bundle over an i-faced disk, i=2, 3, or a Seifert-fibered space over

a 1-faced disk with at most one exceptional fiber.
(EF3) An I-bundle over the 2-sphere or projective plane.
(EF4) A Seifert-fibered space with the 2-sphere as quotient surface and at most

three exceptional fibers.
(EF5) A Seifert-fibered space with the projective plane as quotient surface and

at most one exceptional fiber.
Certain other manifolds are frequently exceptional cases because they admit a hor-
izontal square, annulus, or torus. These are:

(EIB) A manifold (V, v) such that (V, v) can be admissibly fibered as an I-bundle
over the square, annulus, Möbius band, torus, or Klein bottle.

(ESF) A closed 3-manifold which can be obtained by gluing two I-bundles over
the torus or Klein bottle together along their boundaries.

Note that some of the manifolds in (EIB) may be Seifert-fibered; the condition in
(EIB) only says that the completed boundary pattern can be given some admissible
fibering as an I-bundle. If (V, v) admits an I-fibering over the square, annulus,
Möbius band, torus, or Klein bottle, then (V, v) admits a (possibly nonisotopic)
one over the same surface, unless V fibers over the Klein bottle and v = ∅, or V
fibers over the torus and either v=∅ or v is a single torus boundary component. To
see this, one notes that v is obtained from v by removing a collection of elements
that are pairwise disjoint subsets of ∂V , and considers the five bundles case-by-case.

The manifolds in cases (EF1) and (EF2) have boundary patterns that are not
useful, and those in case (EF3) and some of those in cases (EF4) and (EF5) are
not irreducible. These are the only such fibered manifolds, as we now check.

Lemma 2.6.1. Let (V, v) be an admissibly fibered I-bundle or Seifert-fibered
3-manifold.
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(i) If (V, v) is not an exceptional case (EF1) or (EF2), then v is useful.
(ii) If (V, v) is not an exceptional case (EF3), (EF4), or (EF5), then V is

Haken.

Proof. Without loss of generality we may assume that v is complete. Assume
first that v is not useful. The Loop Theorem 2.5.1 yields an imbedded small-faced
disk D whose boundary does not bound a disk D0 in ∂V whose intersection with
J(v) is the cone on ∂D0 ∩ J(v).

Suppose that (V, v) is an I-bundle. If D is 1-faced, then ∂D lies in a side of
(V, v), since the lids are incompressible. Since ∂D does not bound a disc in the
side, the side must be a compressible annulus, so V is an I-bundle over the 1-faced
disk as in (EF1).

Suppose D is 2-faced. If both faces lie in sides, then V is an I-bundle over a
2-faced disk as in (EF1). Suppose one face lies in a lid. If the bundle is a product,
then the face lying in a side G of V is parallel into the lid (in a square, every arc
with both endpoints in one edge is parallel into that edge, and similarly for an arc
in an annulus with both endpoints in one boundary component), and again using
incompressibility of the lid, D0 must exist. Suppose the bundle is twisted. Lift
D to a 2-faced admissible disk D̃ in the product I-bundle Ṽ which double covers
V . This cover is not an I-bundle over a disk, since then π1(V ) would be of order
2, so by the product case already completed, D̃ bounds a disk D̃0 in ∂Ṽ whose
intersection with J(ṽ) is the cone on J(ṽ)∩∂D̃0. Now D̃0 cannot meet its translate
under the covering transformation, since its boundary does not meet the boundary
of the translate and if one were contained in the other, the covering transformation
would have a fixed point. So D̃0 descends to D0 in ∂V , showing that D did not
violate usefulness.

Suppose that D is 3-faced. If it has a face in a lid, it meets two sides and D0

exists, much as for the 2-faced case. If it meets three sides of V , then V must be
the I-bundle over the triangle as in (EF1).

Assume now that V is Seifert-fibered. If ∂D is not essential in ∂V , then it
bounds a disk D0 in ∂V . Since D has at most three faces, and J(v) consists of
parallel circles in tori, it follows that D0 ∩ J(v) is the cone on ∂D0 ∩ J(v). So ∂D
is essential in ∂V . Therefore ∂V is compressible, so V is a solid torus. Cutting V
along D yields a product (D, d)× (I, ∅), where d is the boundary pattern on D. If
D is 1-faced, then V is as in (EF2). If i = 2 or i = 3, then the identifications of
ends producing V from D × I must preserve the faces of D, since otherwise there
would be adjacent faces of D lying in the same element of v. Again, (V, v) is as
in (EF2).

Assume now that (V, v) is not Haken. If (V, v) is Seifert-fibered, then from
[126] (see the discussion in chapter 8 of [103], or Lemma VI.15 and Remark VI.16
of [54]), V must be either of type (EF4) or type (EF5). If (V, v) is an I-bundle
with π2(V ) 6= 0, it must be an I-bundle over a 2-sphere or a projective plane, as
in (EF3). If π2(V )=0, then (V, v) is irreducible and has nonempty boundary, so it
is Haken. �

2.7. Vertical and horizontal surfaces and maps

In the study of fibered manifolds, an important role is played by surfaces which
either are unions of fibers or are transverse to all the fibers of a fibered manifold.



40 2. JOHANNSON’S CHARACTERISTIC SUBMANIFOLD THEORY

Assume that V carries a fixed structure as an I-bundle or Seifert-fibered space, with
quotient surface B. Let p : V → B be the quotient map, and let G be a manifold.
A map g : G→ V is called vertical if its image is a union of nonexceptional fibers.
It is called horizontal if g−1(∂V ) = ∂G and g is transverse to the fibers. When g
is horizontal, pg is a branched covering map. Branch points can occur only if V is
Seifert-fibered, and then they lie over the exceptional points of B. A submanifold of
V is called vertical or horizontal when its inclusion map is vertical or horizontal. In
a 3-manifold, a vertical submanifold can be 1-, 2-, or 3-dimensional, but a horizontal
submanifold can only be 2-dimensional.

In general, an essential surface in a fibered manifold is isotopic to one which is
horizontal or vertical. The next result, proposition 5.6 in [58], makes this precise.

Theorem 2.7.1. (Vertical-horizontal Theorem) Let (M,m) be an I-bundle or
Seifert-fibered space, with fixed admissible fibration, but not one of the exceptional
fibered manifolds (EF1)-(EF5). Let (G, g) be an essential surface in (M,m) with
complete boundary pattern, none of whose components is a 2-sphere or a small-faced
disk. Then G is admissibly isotopic to a vertical surface or to a horizontal surface.
If, in addition, B is any element of m which is not a lid of (M,m), such that B∩G
is either horizontal or vertical, then the admissible isotopy of G may be chosen to
be constant on B ∩G.

As a first application of the Vertical-horizontal Theorem, we classify the es-
sential surfaces with complete boundary pattern in I-bundles. Let (V, v) be an
admissibly fibered I-bundle over (B, b), such that (V, v) is not an exceptional case
(EF1)-(EF5). Let (F, f) be a surface with complete boundary pattern, admissibly
and essentially imbedded in (V, v), and which is not a 2-sphere or a small-faced
disk. By the Vertical-horizontal Theorem 2.7.1, (F, f) is admissibly isotopic to a
vertical or horizontal surface. If F meets a lid of (V, v), then this surface must
be vertical, an annulus or Möbius band. If F is disjoint from the lids of (V, v),
then the surface must be horizontal. Suppose first that (V, v) is a product bundle
(B, b)× (I, ∅). Then (F, f) is admissibly homotopic into B×{1/2}. By the Parallel
Surfaces Theorem 2.5.7, (F, f) is admissibly isotopic to B × {1/2}. Suppose now
that (V, v) is a twisted I-bundle. If F is orientable, then it lifts to the 2-fold cover-
ing of (V, v) by a product bundle, where it is admissibly homotopic to a lid. This
admissible homotopy projects to an admissible homotopy of (F, f) into the lid of
(V, v), so by the Parallel Surfaces Theorem 2.5.7, it is admissibly parallel to the lid.
Suppose F is nonorientable. Choose a small regular neighborhood of F that meets
each I-fiber J in segments which are neighborhoods of the points of F ∩ J . The
frontier F̃ of this regular neighborhood is orientable and essential, so is parallel to
the lid and its projection to the standard cross-section of the I-fibering is a double
covering of B. Therefore F meets each fiber in a single point, so is isotopic to the
standard cross-section.

For squares, annuli, and tori which are not imbedded, propositions 5.10 and
5.13 (and the remark following it) of [58] give the following verticalization result
for maps:

Theorem 2.7.2. (Essential Singular Annulus and Torus Theorem) Let (M,m)
be an I-bundle or Seifert-fibered space with a fixed admissible fibration, but not one
of the exceptional fibered manifolds (EF1)-(EF2). Suppose f : (T, t) → (M,m) is
an essential map of a square or annulus into (M,m). Then either
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(i) there exists an admissible homotopy which makes f vertical, or
(ii) (M,m) is one of the exceptions (EIB).

Moreover,
(iii) if k is any bound side of (T, t) which is mapped by f into a lid of (M,m),

then f is admissibly homotopic to a vertical map by a homotopy which is
constant on k.

Suppose f : T →M is an essential map of a torus into (M,m), and that (M,m) is
not one of the exceptional fibered manifolds (EF4). Then

(iv) there exists an admissible Seifert fibration of (M,m), possibly not isotopic
to the original one, and an admissible homotopy which makes f vertical
with respect to this fibration.

2.8. Fiber-preserving maps

The most powerful tool for analyzing admissible homotopy equivalences be-
tween 3-manifolds with useful boundary patterns is Johannson’s Classification The-
orem 2.11.1, which we will state in section 2.9. Roughly speaking, it says that an
admissible homotopy equivalence is admissibly homotopic to one which fails to be
a homeomorphism only on certain fibered submanifolds. The results of the present
section then allow one, apart from exceptional cases, to deform the map to be fiber-
preserving on these fibered submanifolds. A fiber-preserving map between fibered
3-manifolds is very closely related to the map it induces between the quotient 2-
manifolds, thus some questions about homotopy equivalences between 3-manifolds
can eventually be reduced to 2-dimensional problems which are much easier to an-
alyze. This will be the philosophy used in chapter 10 below. In preparation for
this and other parts of our work, we present in this section the necessary results on
fiber-preserving maps.

We will first give a couple of uniqueness results that ensure that apart from
exceptional cases, an admissible homeomorphism between admissibly fibered man-
ifolds is admissibly isotopic to a fiber-preserving homeomorphism. More difficult
are results which guarantee that essential maps are admissibly homotopic to fiber-
preserving maps. We give several such results, whose ultimate objective is the
Fiber-preserving Self-map Theorem 2.8.6. It says that if f : (V, v) → (V, v) is an
essential self-map of an admissibly fibered irreducible I-bundle or Seifert-fibered
space, such that v is useful and nonempty, then under minimal hypotheses on f
and (V, v), f is admissibly homotopic to a map which is fiber-preserving with re-
spect to the given fibering.

The first result shows that the fibering of a fibered manifold is usually unique
up to isotopy. It follows from corollary 5.9 of [58].

Theorem 2.8.1. (Unique Fibering Theorem) Suppose that (M1,m1) and
(M2,m2) are each an I-bundle or Seifert-fibered space with a fixed admissible
fibration, but neither is a solid torus with mi = ∅, or an exceptional fibered
manifold (EF3)-(EF5), (EIB), or (ESF). Then every admissible homeomorphism
h : (M1,m1) → (M2,m2) is admissibly isotopic to a fiber-preserving homeomor-
phism. Moreover,

(i) the conclusion holds if the (Mi,mi) are each admissibly I-fibered as ex-
ceptional cases (EIB), provided that h maps lids to lids, and
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(ii) if (M1,m1) is an I-bundle and h : (M1,m1) → (M1,m1) is the identity
on one lid, then the isotopy may be chosen to be constant on this lid.

Applied to the identity map, the Unique Fibering Theorem 2.8.1 shows that apart
from exceptional cases any two Seifert fiberings on (M,m) are admissibly isotopic.
We will now give another convenient criterion, which provides a relative version of
unique fibering. Also, when one of mi (hence also the other) contains an annulus,
any admissible homeomorphism will satisfy the hypothesis of theorem 2.8.2. In par-
ticular, it applies to some of the exceptional cases excluded in the Unique Fibering
Theorem 2.8.1, such as the Seifert manifolds which can be admissibly I-fibered over
the annulus or Möbius band.

Theorem 2.8.2. (Seifert Fibering Isotopy Criterion) Suppose that each of
(M1,m1) and (M2,m2) is a Seifert-fibered space with nonempty boundary and with
fixed admissible fibration, but that neither (Mi,mi) is a solid torus with mi=∅. Let
f : (M1,m1) → (M2,m2) be an admissible homeomorphism, and suppose that for
some nonexceptional fiber τ in M1, f(τ) is homotopic in M2 to a nonexceptional
fiber. Then f is admissibly isotopic to a fiber-preserving homeomorphism. If f is
already fiber-preserving on some union F of elements of m1, then the isotopy may
be chosen to be relative to F .

Theorem 2.8.2 holds true for almost all closed manifolds (for example, all those
to which the Unique Fibering Theorem 2.8.1 applies). It fails in the case of S3,
which has nonisomorphic fiberings with isotopic fibers. An extensive analysis of
the question of deforming homeomorphisms of Seifert-fibered 3-manifolds to fiber-
preserving homeomorphisms is given in [57].

Proof. We will first show that after admissible isotopy of f there is a fiber τ ′

in ∂M1 for which f(τ ′) is a fiber of M2. If F is nonempty, this is immediate. If m1

contains an annulus, let τ ′ be a boundary component of this annulus. Then f(τ ′)
is a boundary component of an annulus of m2, so is a fiber of M2. If F is empty
and m1 and m2 contain no annuli, then the hypothesized fiber τ is homotopic to a
fiber τ ′ in ∂M1 (since any two nonexceptional fibers are homotopic). Since f(τ ′) is
homotopic to f(τ), it is homotopic in M2 to a fiber σ in the boundary component of
M2 that contains f(τ ′). This says that the element of π1(M2) represented by f(τ ′)
is conjugate to the element represented by σ (after selecting suitable orientations).
Since σ is a fiber, the element it represents generates a cyclic normal subgroup of
π1(M2), so f(τ ′) and σ represent the same element of π1(M2). So if f(τ ′) is not
homotopic to σ in ∂M2, then the boundary torus that contains them is compressible,
showing that M2 is a solid torus. Since m2 contains no annuli, this case is excluded
by hypothesis. We conclude that f(τ ′) and σ are homotopic, and hence isotopic, in
∂M2. After changing f by admissible isotopy, we may assume that there is a fiber
τ in ∂M1 for which f(τ) is a fiber of M2.

If F has components that are annuli, then f is isotopic relative to F to a
homeomorphism that is fiber-preserving on the boundary tori of M1 that contain
these annuli. Replacing the annuli of F with these tori, we may assume that F is
a union of boundary components of M1.
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We now apply Lemma VI.19 of [54], which says that if τ ′ is in ∂M1 and f(τ ′)
is a fiber of M2, then f is isotopic relative to τ ′ to a fiber-preserving homeomor-
phism. The proof of Lemma VI.19 in [54] proceeds by an induction in which the
inductive step produces the isotopy relative to boundary components on which the
homeomorphism is already fiber-preserving, so the isotopy may be taken relative
to F .

It remains to show that this isotopy of f to a fiber-preserving homeomorphism
can be chosen to be admissible. In the special case when m1 and m2 do not contain
annuli, all isotopies are admissible and the proof is complete. Suppose now that m1

and m2 contain annuli. Let G be the union of the components of ∂M1 that contain
annuli of m1. Since f takes annuli of m1 homeomorphically to annuli of m2, we can
change f , by an admissible isotopy, to assume that it is fiber-preserving on each
component of G. Since our method allows the isotopy making f fiber-preserving
to be selected to be relative to any boundary components on which f is already
fiber-preserving, there is such an isotopy that is relative to F ∪G. This isotopy is
relative to the annuli of m1, so is admissible. �

A more difficult issue is when a map between two different fibered manifolds is
homotopic to a fiber-preserving one. Sufficient conditions are given in proposition
28.4 of [58]:

Theorem 2.8.3. (Fiber-preserving Map Theorem) Let each of (M1,m1) and
(M2,m2) be an I-bundle or Seifert-fibered space with a fixed admissible fibering.
Assume that

(i) neither of the (Mi,mi) is a solid torus with mi = ∅, or one of the excep-
tional fibered manifolds (EF1)-(EF5) or (ESF),

(ii) neither (Mi,mi) is one of the exceptional manifolds (EIB), and
(iii) if (M2,m2) is an I-bundle, then M1 is neither a ball nor a solid torus.

Then every essential map f : (M1,m1) → (M2,m2) is admissibly homotopic to a
map which is fiber-preserving with respect to the given fiberings.

We will need a version of the Fiber-preserving Map Theorem that applies to
the exceptional cases (EIB).

Theorem 2.8.4. (I-bundle Mapping Theorem) Suppose that each of (M1,m1)
and (M2,m2) is an irreducible I-bundle with a fixed admissible fibration, and that
each mi has useful completion. Then every essential map f : (M1,m1)→ (M2,m2)
that takes lids to lids is admissibly homotopic to a fiber-preserving map.

Proof. We will follow the general approach of the proof of proposition 28.4 of
[58]. Each of (EF1)-(EF5) consists of manifolds (V, v) for which either V is closed,
or V is not irreducible, or v is not useful, so neither of (Mi,mi) can be one of these
exceptional cases.

Consider first the case when m1 is complete. Then f is also admissible and
essential as a map to (M2,m2). By Waldhausen’s Theorem 2.5.6, f : (M1,m1) →
(M2,m2) is admissibly homotopic to a covering map. Use this map to lift the
admissible fibration of (M2,m2) to a fibration of (M1,m1). Since f carries lids to
lids, statement (i) of the Unique Fibering Theorem 2.8.1, applied to the identity map
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Figure 2.5. A horizontal square in f−1(A)

of (M1,m1), shows that this fibering is admissibly isotopic to the original fibering
of (M1,m1), and it follows that f is admissibly homotopic to a fiber-preserving
map. From now on, assume that m1 is not complete.

Case 1: (M2,m2) is an I-bundle over a disk.

Since f is essential, f# : π1(M1)→ π1(M2) is injective, and therefore M1 is also
an I-bundle over the disk. Since m1 has useful completion, (M1,m1) has at least
one bound side which is not a lid. Since f maps lids to lids, it maps at least one
side to a side. The statement called Case 1 in the proof of proposition 28.4 of [58]
now applies directly.
Case 2: (M2,m2) is an I-bundle over a nonclosed surface other than a disk.

Let A be a system of disjoint vertical squares, essentially imbedded in (M2,m2),
which cuts M2 into balls. Using the Essential Preimage Theorem 2.5.4, f can be
changed by admissible homotopy so that f−1(A) is essential in (M1,m1), and has
no component which is a 2-sphere or a small-faced disk. By the Vertical-horizontal
Theorem 2.7.1, it may be assumed that each component of f−1(A) is horizontal or
vertical.

Since f# : π1(M1) → π1(M2) is injective, the components of f−1(A) must be
disks. If each component of f−1(A) is vertical, and hence is a square, then cutting
M1 andM2 alongA and f−1(A) and applying Case 1 completes the argument. Some
care is needed to ensure that the deformations fit together to give a deformation
on M1. The key facts are that any two fiber-preserving maps between squares
are homotopic, and that any two homotopies on a square S (or annulus or torus)
which have the same starting map and same ending map are homotopic (as maps
from S × I to S, relative to S × ∂I). So, once one has the deformation from f
to a fiber-preserving map on the cut-apart M1, one may first deform it to agree
on the two copies of f−1(A), then may assume that the homotopies from f to the
fiber-preserving map agree on each copy. This way, the homotopy on the cut-apart
M1 may be pieced together to give a homotopy on M1.

Suppose that some component of f−1(A) is horizontal. Any horizontal surface
in an I-bundle is a covering space of the base surface, and consequently must meet
every fiber. Since the components of f−1(A) are disks, it follows that (M1,m1) is
an I-bundle over the disk. So when (M1,m1) is not an I-bundle over the disk, the
proof of Case 2 is complete.

When (M1,m1) is an I-bundle over the disk, it is possible for the components
of f−1(A) to be horizontal. Figure 2.5 illustrates how this can occur: Start with
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a linear imbedding of a square into itself that preserves the lower-left and upper-
right corners, takes the lower-right corner to a point on the bottom edge near the
lower-left corner, and takes the upper-left corner to a point on the upper edge near
the upper-right corner. In coordinates (x, t) on the square [−1, 1] × [0, 1], such an
imbedding can be defined by j(x, t) = (−1 + 3t/2 + (x + 1)/4, t). The preimage of
the vertical line {0}× [0, 1] is the straight line connecting (−1, 2/3) to (1, 1/3), that
is, the points of the form (x, 1/2 − x/6). For a three-dimensional example, take
the product of this example with the interval [−1, 1]. Precisely, let J=[−1, 1] and
I = [0, 1], and let V = J × J × I be the I-bundle over the square J × J . Give V
the boundary pattern v = {J × {−1} × I, J × {1} × I, J × J × {0}, J × J × {1}}.
An admissible imbedding taking lids to lids can be defined from (V, v) to (V, v) by
taking (x, y, t) to (−1 + 3t/2 + (x + 1)/4, y, t). For this imbedding, the preimage
of the vertical square {0}× J × I is the horizontal square consisting of all points of
the form (x, y, 1/2 − x/6). The range V may be replaced by a larger I-bundle by
adding other I-bundles to it along its free sides {−1} × J × I and {1} × J × I.

Suppose, then, that (M1,m1) is an I-bundle over the disk and some component
of f−1(A) is horizontal. The sides of (M1,m1) must be pairwise disjoint. For since
f maps lids to lids, it must map the intersection of two sides to the intersection of
two sides of (M2,m2). The latter intersection does not meet A, so the preimage
intersection would be a fiber disjoint from the preimage of A, a contradiction.
Applying statement (iii) of the Essential Singular Annulus and Torus Theorem 2.7.2
to the free sides of (M1,m1), there is an admissible homotopy of f which makes
the restriction of f to the free sides of (M1,m1) vertical. Since f maps lids to lids,
we may assume it is fiber-preserving on these free sides. Now each side has top
and bottom edges mapping to the lids, and its other edges mapping to fibers in a
side of (M2,m2), so f can be changed to be fiber-preserving on the sides as well.
The argument is now completed as in Case I of Proposition 28.4 of [58]; details are
given in the following paragraph.

Let L1 and L2 be the lids of (M1,m1), and for i=1, 2 let τi be the involution of
(Mi,mi) that reflects each fiber across its intersection with a 0-section. Since f is
fiber-preserving on the sides of (M1,m1), we have τ2f = fτ1 on ∂L1 ∪ ∂L2. Define
g : ∂M1 →M2 by g=f on L1 ∪ ∂L1 × I and g = τ2fτ1 on L2. On L2, f and g are
maps from a disk into a lid of (M2,m2) which agree on ∂L2, so they are homotopic
(the lid is aspherical since (M2,m2) is not an exception (EF3)). So we may change
f by admissible homotopy so that it agrees with g on all of ∂M1. Now g already
takes the endpoints of every fiber of M1 to the endpoints of a fiber of M2, so it
extends to a fiber-preserving map G : (M1,m1)→ (M2,m2) (one way to do this is
to fix an I-structure on (M2,m2), for which by homotopy we could assume that f
and therefore g are either the identity or reflection on each fiber in ∂L1 × I, and
extend g using the identity or reflection from each fiber in L1 × I). Since G and f
agree on ∂M1, and π3(M2) = 0, there is a homotopy relative to ∂M1 that changes
f to the fiber-preserving map G.

Case 3: (M2,m2) is an I-bundle over a closed surface.

Since no two elements of m2 and hence no two elements of m1 can meet, m1

must consist only of lids. Let A be a vertical essential annulus in (M2,m2). As in
Case 2, we may assume that f−1(A) is essential in (M1,m1), and that each com-
ponent of f−1(A) is horizontal or vertical. If each component of f−1(A) is vertical,



46 2. JOHANNSON’S CHARACTERISTIC SUBMANIFOLD THEORY

we can cut M1 along f−1(A) and M2 along A, and apply Case 2 to complete the
proof. Again some care is needed to ensure that deformations on the pieces fit
together to give a deformation of M1. This time, components of f−1(A) can be
annuli as well as squares. On an annulus, it is not true that there is a deformation
between any two homotopies between two given maps, since the components of the
space of admissible homotopy equivalence of the annulus are not simply-connected.
Indeed, they have infinite cyclic fundamental group, generated by composition of
the basepoint homotopy equivalence and the isotopy from the identity to the iden-
tity that rotates in the S1-factor. However, taking the fibering to be the product
fibering S1 × I, this isotopy from the identity to the identity is fiber-preserving at
each stage, and this allows one to adjust the fiber-preserving map on the cut-apart
M1 in a neighborhood in one of the copies of each annulus of f−1(A) so that the
homotopies between the starting and ending maps can be made to agree on both
copies of the annulus. Then, they define the desired homotopy on M1.

Again, though, it can happen that the components of f−1(A) are horizontal.
For example, start with the imbedding j of the square J × I into itself in Case 2
above, and take j × idS1 : J × I × S1 → J × I × S1. The preimage of the vertical
annulus {0} × I× S1 will be a horizontal annulus in J × I× S1.

Suppose some component of f−1(A) is horizontal. Since horizontal surfaces
meet every fiber, no component of f−1(A) can be vertical. Since f# : π1(M1) →
π1(M2) is injective, and f−1(A) is two-sided in M1, the horizontal component must
be a disk or annulus. Disks are impossible since m1 can consist only of lids, and m1

has useful completion. So f−1(A) contains a horizontal annulus. Since a horizontal
surface is a covering space of the base surface of the I-bundle, (M1,m1) is an I-
bundle over an annulus or Möbius band.

Let T be a free side of (M1,m1). Since m1 consists of lids, T is an annulus.
Let k be a boundary component of T . Note that k is disjoint from f−1(A), since
otherwise there would be a vertical component of f−1(A). By statement (iii) of the
Essential Singular Annulus and Torus Theorem 2.7.2, f is admissibly homotopic to
a map g, which agrees with f on k, such that the restriction of g to T vertical. Since
g agrees with f on k, T is disjoint from g−1(A). Applying statement (ii) of the
Essential Preimage Theorem 2.5.4, with N a regular neighborhood of T , we may
further change g by admissible homotopy relative to T to ensure that g−1(A) is
essential in (M1,m1), and each component of g−1(A) is horizontal or vertical. But
since g is unchanged on T , g−1(A) is disjoint from T . Therefore each component of
g−1(A) is vertical. One may now complete the proof by arguing exactly as above
when f−1(A) was vertical. �

The twisted I-bundle over the Klein bottle has unique fibering properties, which
we detail in the next lemma.

Lemma 2.8.5. Let W be the twisted I-bundle over the Klein bottle, with funda-
mental group presented as 〈a, b | bab−1 =a−1〉.

(i) There are two isotopy classes of Seifert fiberings, one as the S1-bundle
over the Möbius band, and one which has quotient space the disk and has
two exceptional fibers of type (2, 1). For the first, the fibers represent the
element a, and for the second, the nonexceptional fibers represent b2.
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(ii) Suppose that (W,w) has a fixed admissible Seifert fibering. Then any
essential map f : (W,w) → (W,w) is admissibly homotopic to a fiber-
preserving map. If w = ∅, then f is admissibly homotopic to a fiber-
preserving covering map.

Proof. Observe that π1(∂W ) is the subgroup generated by a and b2. The
fibers of the S1-bundle structure represents a, and the nonexceptional fibers of
the fibering over the disk represent b2. Moreover, since b(aib2j)b−1 = a−ib2j , the
only cyclic normal subgroups generated by a simple closed curve in ∂W are those
generated by a and b2. These are the only possible nonexceptional fibers for Seifert
fiberings, since the fiber generates an infinite cyclic normal subgoup. So given
an arbitrary fibering, a principal fiber in the boundary must be homotopic, hence
isotopic, to either a or b2. By the Seifert Fibering Isotopy Criterion 2.8.2, the
fiberings must be isotopic to one of the two standard fiberings.

We now prove (ii). If w 6= ∅ (equivalently, w contains an annulus), then the
Fiber-preserving Map Theorem 2.8.3 applies. So we may assume that either w=∅
or w=∅.

We will first show that f is admissibly homotopic to a covering map. If w=∅,
then the result follows from Waldhausen’s Theorem 2.5.6. Suppose w = ∅. Let
p : W → K be the I-fibering over the Klein bottle. The restriction of f to ∂W is an
essential map (since it is injective on fundamental groups), so by the Baer-Nielsen
Theorem 2.5.5, p ◦ f |∂W is homotopic to a covering map. Therefore the image of
(p ◦ f |∂W )# : π1(∂W ) → π1(K) lies in the orientation-preserving subgroup, which
is the subgroup generated by a and b2. This implies that f is homotopic to a map
taking ∂W to ∂W . Again Waldhausen’s Theorem shows that f is homotopic to a
covering map. So we may assume that f is a covering map.

SinceW is compact, f must be a finite-sheeted covering, and if W̃ is the covering
space of W corresponding to the image of f# then f lifts to a homeomorphism
f̃ : W → W̃ . Regarding π1(W̃ ) as a subgroup of π1(W ), write f̃#(a) = aibj and
f̃#(b) = akb` for some i, j, k, and `. Since a is homotopic into ∂W and b is not,
we must have j even and ` odd. This implies that f̃#(bab−1) = a−ibj , and since
this must equal f̃#(a−1) = a−ib−j , we must have j= 0. Therefore, f̃#(a) = ai and
f̃#(b2)=akb`akb`=aka−kb2`=b2`, and these two elements generate π1(∂W̃ ).

Suppose first that W has the fibering with principal fiber a. Then (since we
know that ai and b2` generate π1(∂W̃ )) the fiber of the lifted fibering of W̃ is
ai. Since f̃#(a) = ai, the Seifert Fibering Isotopy Criterion 2.8.2 shows that f̃ is
isotopic to a fiber-preserving homeomorphism and consequently f is homotopic to
a fiber-preserving covering map. If W has the fibering with principal fiber b2, then
the fiber of W̃ is b2`= f̃#(b2), and again the conclusion follows. �

For maps whose domain and range are the same manifold with a fixed fibering,
we can combine the previous three results into the following statement, which is
convenient for our purposes.

Theorem 2.8.6. (Fiber-preserving Self-map Theorem) Let (V, v) be an irre-
ducible I-bundle or Seifert-fibered space with a fixed admissible fibering, such that
v is useful, but not one of the exceptional cases (EF4), (EF5), or (ESF). Let
f : (V, v)→ (V, v) be an essential map. Assume that
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(i) if the admissible fibering of (V, v) is as an I-bundle, then f takes lids to
lids, and

(ii) if the admissible fibering of (V, v) is as a Seifert-fibered space, then (V, v) 6=
(S1 × S1 × I, ∅).

Then f is admissibly homotopic to a map which is fiber-preserving with respect to
the given fibering.

Proof. Since v is useful, (V, v) is not one of the exceptional cases (EF1) or
(EF2). Since V is irreducible, (V, v) is not one of the exceptional cases (EF3).
Exceptional cases (EF4), (EF5), and (ESF) are ruled out by hypothesis.

If (V, v) is fibered as an I-bundle, then using hypothesis (i), the I-bundle Map-
ping Theorem 2.8.4 applies directly to give the result. So we may assume that
(V, v) is Seifert-fibered.

Since v is useful, (V, v) is not a solid torus with v=∅, so hypothesis (i) of the
Fiber-preserving Map Theorem 2.8.3 is satisfied. Its hypothesis (iii) holds vacuously
for Seifert-fibered spaces, so if (V, v) does not admit an I-fibering which makes it
an exceptional case (EIB), then the Fiber-preserving Map Theorem 2.8.3 applies
to complete the proof.

In the remaining cases, (V, v) can be fibered as an I-bundle over the square,
annulus, Möbius band, torus or Klein bottle. An I-bundle over the square cannot
be Seifert-fibered, so this case does not occur. Hypothesis (ii) implies that (V, v)
cannot be fibered as an I-bundle over the torus. If (V, v) can be fibered as the
I-bundle over the Klein bottle, then lemma 2.8.5 completes the proof.

Suppose (V, v) can be fibered as an I-bundle over the annulus or Möbius band.
In these cases, (V, v) is a solid torus with useful boundary pattern. For the I-bundle
over the annulus the Seifert fibering is nonsingular and for the I-bundle over the
Möbius band there is one exceptional fiber of type (2, 1). If v is not complete, then
lemma 28.1 of [58] applies to yield the conclusion. Suppose v is complete. Applying
Waldhausen’s Theorem 2.5.6, we may change f by admissible homotopy to be a
covering map. There are two Seifert fiberings of (V, v): the given fibering and the
lift of the given fibering using f . By the Seifert Fibering Isotopy Criterion 2.8.2,
these two fiberings are isotopic, and it follows that f is admissibly homotopic to a
fiber-preserving covering map. �

2.9. The characteristic submanifold

We are now ready for the central concept in Johannson’s theory, the charac-
teristic submanifold. This is an essential codimension-zero submanifold (Σ, σ) in
(M,m) whose components are admissibly fibered. In particular, any components
that are I-fibered must have their lids contained in elements of m. Whenever we
discuss the characteristic submanifold of a 3-manifold, it is to be assumed that the
boundary pattern is useful. Then, the existence and uniqueness of the characteristic
submanifold are guaranteed. Also, we work only with Haken manifolds.

The characteristic submanifold can be characterized in several ways. The way
we choose to define it is as a maximal (“full”) essential admissibly fibered sub-
manifold (Σ, σ) of (M,m) such that every essential fibered submanifold of (M,m)
is admissibly isotopic into Σ (the “engulfing” property), and every essential map
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of a square, annulus, or torus into (M,m) is admissibly homotopic into Σ (the
“enclosing” property).

When (V, v) is admissibly fibered, the characteristic submanifold of (V, v) is
(V, v) itself. At the other extreme are the manifolds (W,w) for which the char-
acteristic submanifold of (W,w) is as small as possible. For any square, annulus,
or torus F of w, a regular neighborhood of F in W is an essential admissibly
fibered submanifold of (W,w), so by the engulfing property must be isotopic into
the characteristic submanifold of (W,w). If every component of the characteristic
submanifold of (W,w) is just a regular neighborhood of a square, annulus, or torus
of w, then (W,w) is said to be simple.

After giving some formal definitions and stating the existence and uniqueness,
we will combine some results from [58] to give a convenient characterization of
the characteristic submanifold of a 3-manifold with complete and useful boundary
pattern. Roughly speaking, (Σ, σ) is the characteristic submanifold if and only if
it is a maximal essential fibered submanifold and each of its complementary pieces
in M is either simple or can be admissibly fibered as an I- or S1-bundle over the
square or annulus. In section 2.10, we will give examples of 3-manifolds and their
characteristic submanifolds.

Recall that unless otherwise stated, codimension-zero submanifolds (X,x) of
(M,m) carry the submanifold boundary pattern, which ensures that the inclusion
(X,x) to (M,m) is admissible. An admissibly fibered I-bundle or Seifert-fibered
space (X,x) in (M,m) is said to be admissible in (M,m) when the inclusion of
(X,x) into (M,m) is also admissible. As mentioned in section 2.2, this implies that
X does not meet ∂M − |m|.

Let (M,m) be a Haken 3-manifold, possibly closed, with useful boundary pat-
tern. A disjoint collection (Σ, σ) of essential admissible I-bundles and Seifert-fibered
spaces is a characteristic submanifold for (M,m) if

(1) (Σ, σ) is full, i. e. the union of Σ with any of the complementary compo-
nents of M cannot be fibered as a disjoint union of essential admissible
I-bundles and Seifert-fibered spaces,

(2) (Engulfing Property) every essential admissible I-bundle or Seifert-fibered
space (X,x) in (M,m) is admissibly isotopic into Σ, and

(3) (Enclosing Property) every essential map f : (T, t)→ (M,m) of a square,
annulus, or torus into (M,m) is admissibly homotopic to a map with
image in Σ.

Combining corollaries 10.9 and 10.10 and theorem 12.5 of [58], we obtain the
following fundamental existence and uniqueness result.

Theorem 2.9.1. (Existence and Uniqueness) Let (M,m) be a Haken 3-man-
ifold with useful boundary pattern. Then there exists a characteristic submanifold
in (M,m). Any two characteristic submanifolds in (M,m) are admissibly isotopic.

The Engulfing Property implies that every essentially imbedded square, annu-
lus, or torus in (M,m) is admissibly isotopic into Σ, since such a surface can be
thickened to a fibered manifold. Also, if (M,m) itself can be admissibly fibered
as an I-bundle or Seifert fibered space, then the Engulfing Property and the full-
ness condition imply that (M,m)=(Σ, σ), as mentioned in the introduction to this
section.

There is a more general version of the Enclosing Property given as proposition
13.1 of [58]:
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Theorem 2.9.2. (Extended Enclosing Theorem) Let (M,m) be a Haken 3-
manifold with useful boundary pattern, and let (Σ, σ) be its characteristic subman-
ifold. Let (X,x) be an admissibly fibered I-bundle or Seifert fibered space whose
completed boundary pattern is useful. Suppose that (X,x) is not one of the ex-
ceptional cases (EF1)-(EF5). Then every essential map f : (X,x) → (M,m) is
admissibly homotopic into Σ.

Simple 3-manifolds are the analogues of acylindrical 3-manifolds in the setting
of manifolds with boundary pattern. They arise naturally in the characteristic
submanifold theory, since the complement S of the characteristic submanifold is
“relatively acylindrical,” i. e. every essential annulus or torus is homotopic into the
frontier of S in M .

Precisely, a 3-manifold with useful boundary pattern (W,w) is called simple if
w is useful and every component of the characteristic submanifold of (W,w) is a
regular neighborhood (F, f) × (I, {0}) of a square, annulus, or torus F of w. As
usual, “square” and “annulus” here mean that if F is given the boundary pattern
consisting of the components of its intersections with the other elements of w, then
it either is a square or is an annulus with boundary pattern ∅. We remark that the
manifolds of the form (F, f) × (I, k), where (F, f) is a square, annulus, or torus,
and k is either {0} or ∅ are not simple; if (W,w) is one of these manifolds, then the
characteristic submanifold of (W,w) is all of W . This is not a regular neighborhood
of an element of w, since it has no admissible deformation retraction to an element
of w.

We now obtain a convenient characterization of the characteristic submanifold.
Recall from example 2.2.6 that the proper boundary pattern on a submanifold
consists of the intersections of the submanifold with the boundary pattern of the
ambient manifold, together with the components of the frontier of the submanifold.

Theorem 2.9.3. Let (M,m) be a Haken 3-manifold with complete and use-
ful boundary pattern, let (Σ, σ) be an essential admissible fibered submanifold of
(M,m). Let (S, s) be M − Σ with its proper boundary pattern. Then (Σ, σ) is
characteristic for (M,m) if and only if

(i) (Σ, σ) is full,
(ii) (Σ, σ) contains a regular neighborhood of every element of m that is a

square, annulus, or torus, and
(iii) every component of (S, s) is either simple or can be admissibly fibered as

an I-bundle or S1-bundle over a square or annulus.

Proof. Assume that (Σ, σ) is characteristic. By definition, it is full. Let F be
an element of m which is a square, annulus, or torus. There is a collar neighborhood
of F which is an admissibly imbedded copy of (F, f) × (I, {0}) with F =F × {0}.
This neighborhood can be admissibly Seifert-fibered if F is an annulus or torus,
and can be admissibly I-fibered if F is a an annulus or a square. Moreover, it is
essential. For suppose that (D, d) is a small-faced disk in (M,m) with one face
k essential in F × {1}. Notice that D ∩ F × I = k, since F × {1} is essential in
F × I. Adding k × I ⊂ F × I to D would produce a small-faced disk imbedded
in (M,m) that shows that m is not useful. By the Engulfing Property, F × I is
admissibly isotopic into (Σ, σ), so Σ contains a regular neighborhood of F . The
assertion about the complementary components is remark 3 on p. 159 of [58].
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Assume now that (i), (ii), and (iii) hold. We will verify that (Σ, σ) is “com-
plete”, as defined on p. 90 of [58]. That is, if (T, t) is any essential admissible
square, annulus, or torus in (S, s), then either

(1) T ∩ Σ is nonempty, and the component of (S, s) that contains T can be
admissibly fibered as an I- or S1-bundle over a square or annulus, or

(2) T ∩ Σ is empty, and T is admissibly parallel in (S, s) to a component of
S ∩ Σ.

This will finish the proof, since by (i), (Σ, σ) is full, and by corollary 10.10 of [58],
a full, complete, essential fibered submanifold of (M,m) must be characteristic.

Let (W,w) be the component of (S, s) that contains (T, t). By hypothesis (iii),
the boundary pattern w is complete and useful. Let (Γ, γ) be the characteristic
submanifold of (W,w). By the Engulfing Property, we may assume that (T, t) lies
in (Γ, γ).

Suppose first that T ∩Σ is nonempty, so T meets some component F of S ∩Σ.
Note that T must be a square or an annulus, since if it were a torus it would not
be admissibly imbedded in (W,w). We must show that (W,w) can be fibered as
an I-bundle or S1-bundle over a square or annulus. Suppose not, then by assump-
tion (iii), (W,w) is simple. Since (Σ, σ) is admissibly fibered, F must be a square,
annulus, or torus, so from the direction of the theorem already proven, Γ contains
a regular neighborhood F × I of F . Since (W,w) is simple, the component of (Γ, γ)
that contains F must be a regular neighborhood F × I of F , with F = F × {0}.
Since (Γ, γ) 6= (W,w), F × {1} is a component of the frontier of F × I, so ∂T lies
in F × {0} ∪ ∂F × I. In this case, T would be inessential, which is a contradiction.

Suppose now that T is disjoint from Σ. If (W,w) can be admissibly fibered as
an I- or S1-bundle over the square or annulus, then since T is essential and disjoint
from Σ, the Vertical-horizontal Theorem 2.7.1 shows that T is parallel in (W,w)
to a component of Σ ∩W . So assume that (W,w) is simple. As in the previous
case, T lies in a component of Γ which is a regular neighborhood of an element
F of w. Since (W,w) cannot be admissibly fibered as an I- or S1-bundle over the
square or annulus, the argument of the previous paragraph shows that (T, t) cannot
meet F . So (T, t) is admissibly parallel to F . Since by (ii), every square, annulus,
and torus of m must be contained in the topological interior of Σ, F cannot be in
m, so F is a component of S ∩ Σ. We have verified the completeness condition,
and as already mentioned, this together with assumption (i) implies that (Σ, σ) is
characteristic. �

2.10. Examples of characteristic submanifolds

Before proceeding further with the theory of the characteristic submanifold, we
give some examples.

Example 2.10.1. Admissibly fibered manifolds

Suppose that (V, v) is admissibly fibered as an I-bundle or Seifert fibered space,
and v is useful. For each free side (G, g) of (V, v), choose a regular neighborhood
(G, g) × (I, ∅) admissibly imbedded in (V, v). We may select these neighborhoods
to be disjoint, and let W be their union. Then V −W is an admissibly imbedded
fibered submanifold. It is full, since its union with any of its complementary com-
ponents is not an admissible fibered submanifold of (V, v) (because it would not be
admissibly imbedded in (V, v)). It satisfies the Engulfing and Enclosing Properties,
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since (V, v) is itself admissibly isotopic into V −W . Therefore V −W is the char-
acteristic submanifold of (V, v). It may seem unnatural that (V, v) is not equal to
its characteristic submanifold. This type of example rarely arises in practice, since
in most applications (notably, when invoking the Classification Theorem 2.11.1)
one uses the characteristic submanifold for the completed boundary pattern, and
the characteristic submanifold of (V, v) is (V, v) itself.

Example 2.10.2. Hyperbolizable manifolds
Recall that a 3-manifold M with incompressible boundary is hyperbolizable if

its interior admits a complete hyperbolic structure. Our work in section 5.2 will
give a complete description of the characteristic submanifold of a hyperbolizable 3-
manifold, in a more general context, so here we give only a brief sketch. (See Morgan
[96] for a discussion of the topological properties of hyperbolic 3-manifolds.)

If M is closed and hyperbolizable, then it contains no essential tori or annuli.
Its characteristic submanifold is empty, since it contains no essential I-bundles or
Seifert fibered spaces.

Suppose next that M is hyperbolizable, its boundary consists entirely of tori
and M is not an I-bundle over the torus or annulus. (In this case, the hyperbolic
structure on the interior of M must have finite volume.) Then, M has incompress-
ible boundary and theorem 2.9.3 implies that the characteristic submanifold Σ of
(M, ∅) must contain a regular neighborhood of each component of ∂M . Thus, there
can be no I-bundles in Σ unless M is an I-bundle over the torus or Klein bottle.
We have explicitly ruled out the I-bundle over the torus and the I-bundle over the
Klein bottle is not hyperbolizable. Since there are no essential annuli in M and
every essential map of a torus into M is homotopic into ∂M , every Seifert-fibered
component of Σ is a regular neighborhood of a component of ∂M , so (M, ∅) is
simple. Conversely, if (M, ∅) is a simple Haken 3-manifold and each component of
∂M is a torus, then Thurston’s Geometrization Theorem (see section 7.1 below)
implies that M is hyperbolizable.

Finally, suppose thatM is hyperbolizable and has a boundary component which
is not a torus. The characteristic submanifold Σ of (M, ∅) can now contain I-bundles
which meet ∂M in their associated ∂I-bundles. Since every essential torus in M is
boundary parallel, any Seifert-fibered component of Σ is homeomorphic to either
the solid torus or T 2 × I. Each solid torus component will meet ∂M in a collection
of incompressible annuli, and each T 2× I will meet ∂M in one of its boundary tori,
together with a possibly empty collection of annuli in its other boundary torus.

Example 2.10.3. Gluing hyperbolizable 3-manifolds to Seifert fibered spaces
Let N be a hyperbolizable 3-manifold with a single torus boundary component,

but not a solid torus. Let V be a Seifert-fibered space whose boundary consists of
incompressible tori. We may form a new manifold M by gluing copies of N to some
of the boundary components of V . Then (V, ∂M) is a full, essential fibered sub-
manifold of (M, ∅), and its complement is simple. Therefore, theorem 2.9.3 implies
that (V, ∂M) is the characteristic submanifold of (M, ∅). Notice that examples 1.4.3
and 1.4.4 from chapter 1 are of this form.

Example 2.10.4. Books of I-bundles
Books of I-bundles were defined and used in [31], and provide the basis for the

main construction in [8]. In example 1.4.5 we gave an explicit construction of one.
Following [31], a compact connected orientable 3-manifold M is a book of I-bundles
if M=E ∪ V where
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(i) E is an I-bundle over a nonempty compact 2-manifold B, not necessarily
connected or orientable,

(ii) each component of V is homeomorphic to a solid torus,
(iii) E ∩ V is the inverse image of ∂B under the bundle projection E → B,

and
(iv) each component of E ∩ V is an annulus in ∂V which is homotopically

nontrivial in V .

Assume that no component of B is a disk, 2-sphere, or projective plane, and assume
that ∂M is incompressible (that is, no component V0 of V has V0 ∩ E equal to a
single annulus whose core circle generates π1(V0)). Let n be the total number of
components of V and E. Suppose some component E0 of E is the I-bundle over the
annulus and has an attaching annulus whose core circle generates the fundamental
group of the solid torus V0 of V that contains it. Let V1 be the solid torus of V
containing the other attaching annulus of E0, then E0 may be removed from E and
V1 replaced by V1 ∪ E0 ∪ V0 to give a book of I-bundle structure with smaller n.
So we may assume there are no such components of E. If V0 is a component of V
such that V0 ∩E consists of two annuli whose core circles generate π1(V0), then V0

may be added to E to give a book of I-bundles structure with smaller n. So we
may assume there are no such V0. The characteristic submanifold of (M, ∅) then
consists of the union Σ of E with the solid tori in V obtained by removing an open
collar of E ∩ V in V . For this is a full, essential fibered submanifold containing
all tori and annuli of the boundary pattern (of which there are none), and each
component of the complement is A2 × I, so theorem 2.9.3 applies. Proposition 4.3
of [31] characterizes books of I-bundles as the atoroidal Haken 3-manifolds with
nonempty boundary such that each component of the closure of ∂M − ∂Σ is an
annulus.

Example 2.10.5. Fiber bundles over S1

Let h : F → F be an orientation-preserving homeomorphism of a compact
connected orientable 2-manifold. It determines a compact orientable Haken 3-
manifold M(h) formed by gluing M ×{0} to M ×{1} using h, and all 3-manifolds
which fiber over S1 with compact fiber can be described in this way. According
to Theorem 4 of Thurston [122] or Theorem 0.1 of Handel-Thurston [46], F can
be written as the union A ∪ B of two compact 2-manifolds, one of which may be
empty, such that A ∩ B consists of noncontractible simple closed curves, and such
that h is isotopic to a homeomorphism g such that

(i) g(A)=A and g|A has finite order, and
(ii) g(B) =B, and if α is any simple closed curve in B not parallel into ∂B,

and n 6= 0, then (g|B)n(α) is not homotopic to α.

Note that M(g) is homeomorphic to M(h). Take such a decomposition for which
the number of components of A and B is minimal. For each boundary component
of F that is contained in B, remove an open collar neighborhood of the component
from B, and add its closure to A. Put Σ =M(g|A) and S =M(g|B). Now M(g)
decomposes into Σ∪S, and if we let σ be the set of boundary components of Σ that
are boundary components of M(g), then (Σ, σ) is an essentially imbedded Seifert
fibered manifold in (M(g), ∅). On the other hand, each component of S is either
homeomorphic to S1 × S1 × I (corresponding to components of B that are annuli)
or is hyperbolizable with finite volume (see Thurston [124] or Otal [107].) When
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components of S that are homeomorphic to S1 × S1 × I arise, the Seifert fiberings
of the adjacent components cannot be extended over the I-bundle, otherwise the
annulus in B could have been added to A. Thus, (Σ, σ) is full. Since Σ contains
all of ∂M(g), theorem 2.9.3 shows that (Σ, σ) is the characteristic submanifold
of (M(g), ∅).

Example 2.10.6. Drilling out fibers
Let (M,m) be a Haken 3-manifold with useful boundary pattern and character-

istic submanifold (Σ, σ). Let f1, f2, . . . , fn be distinct fibers of Σ, not contained in
the frontier of Σ, and choose disjoint closed fibered regular neighborhoods W1, . . . ,
Wn of the fi, also disjoint from the frontier of Σ. Let N be the submanifold which
results from removing the topological interior of ∪Wi from M , and let n be the
proper boundary pattern on N . It is immediate to verify that Σ∩N , as a submani-
fold of (N,n), satisfies conditions (i), (ii), and (iii) of theorem 2.9.3, hence Σ∩N is
characteristic in (N,n). A special case of this construction is used in [9], where the
fibers whose neighborhoods are removed are the core circles of fibered solid torus
components of the characteristic submanifold of a hyperbolic 3-manifold.

Example 2.10.7. Completions of boundary patterns with disjoint elements
In many of our applications of the characteristic submanifold theory, the ele-

ments of the boundary pattern (M,m) of the 3-manifold will be disjoint. In this
case, no element of m can be a square, and any element that is topologically an
annulus will have boundary pattern ∅ and hence will be an annulus as a 2-manifold
with boundary pattern. By theorem 2.9.3, the characteristic submanifold of (M,m)
will contain a regular neighborhood of every element of m that is an annulus or a
torus. In particular, these annuli and tori will be elements of the boundary pattern
of the characteristic submanifold. For reference, we state this fact as a lemma.

Lemma 2.10.8. Let (M,m) be a 3-manifold with boundary pattern whose com-
pletion is useful, such that the elements of m are disjoint. Let (Σ, σ̂) be the char-
acteristic submanifold of (M,m). Then Σ contains a regular neighborhood of each
torus and annulus of m, and consequently each such torus or annulus is an element
of σ̂.

Another easy observation is the following:
Lemma 2.10.9. Let (M,m) be a 3-manifold with boundary pattern whose com-

pletion is useful, such that the elements of m are disjoint. Let (Σ, σ̂) be the char-
acteristic submanifold of (M,m), and let (V, v̂) be a component of (Σ, σ̂) which is
an I-bundle over (B, b). If a lid of (V, v̂) is contained in a torus or annulus of m,
then M=V .

Proof. By lemma 2.10.8, (V, v̂) contains a regular neighborhood of the torus
or annulus F of m that contains its lid, so the lid must equal F and the sides of
(V, v̂) must lie in ∂M . Since the other lid of V , if any, lies in ∂M , the frontier of V
is empty and hence V =M . �

Example 2.10.10. A simple 3-manifold whose boundary pattern contains a
square

In example 2.2.2, we constructed a 3-manifold with boundary pattern (S, s)
such that one of the elements of s was a square N , and in example 2.4.7 we verified
that when ∂S and the annuli of s are incompressible, the completion s was useful.
Assume now also that S is irreducible, that A0 and A1 are not isotopic in ∂S, and
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that (S, ∅) is simple, i. e. (S, ∅) contains no essential tori or annuli. We will prove
that the characteristic submanifold of (S, s) consists of a regular neighborhood of
N . That is, (S, s) is simple.

We will examine the essential tori, annuli, and squares in (S, s). An essential
torus would be essential in (S, ∅), violating simplicity. Also by simplicity, an essen-
tial annulus A would have to be parallel to an annulus A′ in ∂S. Since ∂A must be
disjoint from J(s), A′ ∩ J(s) must consist of components of J(s). The component
G cannot be one of these, since then A0 and A1 would be isotopic. Since the two
circle components C0 and C1 of J(s) are not isotopic, they cannot both lie in A′.
But then, A is not essential, since if A′ does not meet J(s), then A has a 2-faced
compression, and if A′ contains one of the Ci, then A has a 3-faced compression.

Consider now an essential square T in (S, s). We will show that T is admissibly
parallel to N . Since ∂S is incompressible, ∂T bounds a disk T0 in ∂S, for which
∂T0 ∩ J(s) consists of the four corners of T . Suppose for contradiction that some
component of T0 ∩ J(s) is an arc β. If β connects adjacent corners of T , then a
nearby arc in T0 parallel to β and connecting opposite faces of T is homotopic (rel
endpoints) to an essential arc in T , so gives a violation of the essentiality of T . But
if β connects nonadjacent corners of T0, then each of the other corners would have
to separate J(s), which is impossible. So no component of T0 ∩ J(s) is an arc, and
T0 ∩ J(s) must be contained in G. If it is not connected, then there is an arc in T0

connecting opposite sides of T and disjoint from J(s), again violating essentiality.
The connected subgraphs of G that are bounded by four points are of two kinds,
those containing two vertices of J(s) and those containing four vertices. If T0∩J(s)
has two vertices, then there is an arc β in T0 connecting opposite faces of T and
meeting T0∩J(s) in a single point, so β is admissibly homotopic to a constant map.
Since β is homotopic (rel endpoints) to an essential arc in T , it gives a violation
of essentiality. So T0 ∩ J(s) must contain all four vertices of G. It must appear as
four edges bounding a square in the interior of T0, each of whose corners is joined
to a vertex of T by an arc. The only four edges of G that bound a disk in ∂S are
the four sides of N , so we conclude that T is admissibly parallel to N .

Now let Σ be the characteristic submanifold of (S, s). By theorem 2.9.3(b), Σ
contains a regular neighborhood of N . From above, every component of the frontier
of Σ is a square admissibly parallel to N , so (using also the fullness property of Σ)
it follows that Σ is just an admissible regular neighborhood of N .

Example 2.10.11. I-bundle configurations

Main Topological Theorem 2, stated in chapter 8, gives an answer to the Finite
Index Realization Problem for (M,m) in terms of the characteristic submanifold
(Σ, σ̂) of (M,m). It says that the index is finite if every component V of (Σ, σ̂)
occurs in a certain list of possible configurations. Here we will give explicit examples
illustrating the following three configurations from that list:

(7) V is a 3-ball.
(8) V is I-fibered over a topological annulus or Möbius band and no compo-

nent of V ∩ ∂M − |m| is a square which meets two different components
of the frontier of V .

(9) V is I-fibered over the disk with two holes, and V ∩∂M − |m| is an annulus.

In the theorem, the elements of the boundary pattern m are assumed to be disjoint
submanifolds of ∂M , so our examples will also have this property.
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Figure 2.6. A 3-ball component of a characteristic submanifold

Here is an example where V is a 3-ball, as in item (7). In fact, V will be an I-
bundle over the square. Let (S1, s1) and (S2, s2) be two copies of a simple 3-manifold
as in example 2.10.10. Each si has two elements Ai0 and Ai1 that are disjoint
incompressible topological annuli in ∂Si. The remaining element of si is a square Ni
that meets Ai0 and Ai1 in opposite sides. Form M by identifying N1 and N2, in such
a way that N1∩A1j is identified with N2∩A2j for j=0, 1. The boundary pattern m
consists of two elements A1j∪A2j , for j=0, 1, each of which is a disk with two holes.
In example 2.4.7 we checked that each si was useful, so lemma 2.4.9 shows that m is
useful. Let V be the union of the characteristic submanifolds of (S1, s1) and (S2, s2).
Then V is a regular neighborhood of N1 = N2 in M . Let v be the submanifold
boundary pattern of V as a submanifold of (M,m). Then (V, v) is admissibly fibered
as an I-bundle over a square and is admissibly imbedded in (M,m). Theorem 2.9.3
shows that (V, v) is the characteristic submanifold of (M,m). Figure 2.6 shows a
schematic diagram of M and V .

We next construct a manifold (M,m) such that the characteristic submanifold
(V, v) of (M,m) is admissibly I-fibered over a topological annulus, and V ∩∂M − |m|
is a square which meets only one component of the frontier of V . This example
satisfies the conditions of item (8). We start with a single copy (S, s) of a simple
3-manifold as in example 2.10.10. Let V =A× I where A is an annulus, and let β
be an arc in ∂A. Obtain M from S and V by identifying N with β × I, in such
a way that the arcs β × {j} are identified with the arcs Aj ∩ N for j = 0, 1. Put
Fj=(A×{j})∪Aj , a disk with two holes, and m={F0, F1}. Theorem 2.9.3 shows
that (V, v) is the characteristic submanifold of (M,m) where v is the submanifold
boundary pattern on V as a submanifold of (M,m) . Notice that V ∩ ∂M − |m| is
the square (∂A× I)−N .

We may similarly construct a manifold (M,m) such that the characteristic
submanifold (V, v) of (M,m) is admissibly I-fibered over a Möbius band and V ∩
∂M − |m| is a square which meets only one component of the frontier of V . In
the construction in the previous paragraph we simply replace V with an I-bundle
over the Möbius band and let m be the single surface F which is a disk with three
holes, consisting of the union of A0 and A1 with the annulus which is the lid of V ,
meeting each Ai in an arc in one of its boundary circles.
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We can also construct manifolds (N,n) where a component of the characteristic
submanifold (V, v) of (N,n) is an I-bundle over a topological annulus or Möbius
band and V ∩ ∂N − |n| is a square which meets two components of the frontier of
V , so V fails the conditions of items (8). To do so, we proceed as before but glue
two different copies of (S, s) to disjoint squares in a side of V .

Our next examples illustrate the conditions of item (9). One can verify that
(S, {A0}) is simple. Let V be an I-bundle over the disk with two holes and form M
by attaching S to V by identifying a side of V with A0. If we let m be the lids of V ,
then (V, v) is the characteristic submanifold of (M,m) where v is the submanifold
boundary pattern. In this case, V ∩ ∂M − |m| consists of two annuli, so fails the
conditions of item (9). We form N by attaching copies of S to two sides of V and
let n be the lids of V . Then (V, v) is the characteristic submanifold of (N,n) and
V ∩∂N − |n| is a single side of V , so the conditions of item (9) hold in this example.

2.11. The Classification Theorem

The central result of Johannson’s theory of homotopy equivalences of Haken
manifolds is the Classification Theorem, which is given as theorem 24.2 in [58]. It
will be our main tool for the analysis of homotopy equivalences of 3-manifolds.

Theorem 2.11.1. (Classification Theorem) Let (M1,m1) and (M2,m2) be com-
pact irreducible 3-manifolds with boundary patterns whose completions are useful
and nonempty. Let V1 and V2 denote the characteristic submanifolds of (M1,m1)
and (M2,m2) respectively. Let v1, v2, w1 and w2 denote the proper boundary pat-
terns of V1, V2, M1 − V1, and M2 − V2 respectively. Then every admissible ho-
motopy equivalence f : (M1,m1) → (M2,m2) is admissibly homotopic to a map
g : (M1,m1) → (M2,m2) for which g−1(V2) = V1, g|V1 : (V1, v1) → (V2, v2) is an
admissible homotopy equivalence, and g|M1−V1

: (M1 − V1, w1)→ (M2 − V2, w2) is
an admissible homeomorphism.

Note that the Vi are the characteristic submanifolds for the completed boundary
patterns mi of the (Mi,mi). However, their boundary patterns vi and wi are the
proper boundary patterns (that is, they include the components of the frontiers of
the respective submanifolds), as submanifolds of the (Mi,mi) with their original
boundary patterns.

We remark that a stronger statement than the Classification Theorem is true
for closed Haken manifolds. For by Waldhausen’s Theorem 2.5.6, f is homotopic
to a homeomorphism h, and since the characteristic submanifold is unique up to
isotopy, we may change h so that it carries V1 homeomorphically to V2 and M1 − V1

homeomorphically to M2 − V2.
When (M,m) is simple, the Classifcation Theorem shows that every admissible

homotopy equivalence of (M,m) is admissibly homotopic to a homeomorphism.
This is augmented by the following result, given as proposition 27.1 in [58]. It is
the natural generalization of the fact that the mapping class group of an acylindrical
3-manifold is finite.

Theorem 2.11.2. (Finite Mapping Class Group Theorem) Let (M,m) be a
simple 3-manifold with complete and useful boundary pattern. Then H(M,m) is
finite.
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We will need the following application of the Classification Theorem, in the
proof of our characterization of small homotopy types in section 6.2.

Lemma 2.11.3. Let (W,w) be a compact orientable irreducible 3-manifold with
boundary pattern, such that the completion of w is useful. Suppose that f : (W,w)→
(Σ, σ) is an admissible homotopy equivalence, where (Σ, σ) is an admissibly fibered
I-bundle, and no lid of (Σ, σ) is contained in σ. Then there is an admissible fibering
of (W,w) as an I-bundle for which f is admissibly homotopic to a fiber-preserving
homeomorphism.

Proof. We may assume that Σ and W are connected. Since no lid of (Σ, σ)
is contained in σ, the elements of σ must be squares and annuli which are all
the sides of (Σ, σ). By the Classification Theorem 2.11.1, (W,w) must equal its
characteristic submanifold. We claim that (W,w) may be admissibly fibered as an
I-bundle. If it is Seifert-fibered, no homotopy equivalence between W and Σ could
be fiber-preserving, since the image of a fiber would be contractible. So the Fiber-
preserving Map Theorem 2.8.3 implies that W is either a solid torus or the I-bundle
over the torus or Klein bottle. Suppose that W , and hence Σ, is a solid torus. Since
W is Seifert-fibered and w is useful, each component of w is an annulus. Since Σ
is I-fibered and each component of w is an annulus, σ must consist either of two
annuli, A1 and A2, such that π1(Ai) → π1(Σ) are isomorphisms, or of a single
annulus A such that the image of π1(A) → π1(Σ) has index 2. Therefore w must
be the same, and (W,w) can be admissibly fibered as an I-bundle. If W , and hence
Σ, is an I-bundle over the torus or Klein bottle, then σ must be empty (since it
contains no lid), hence w is also empty and again (W,w) can be admissibly fibered
as an I-bundle.

Since each element of σ is a square or annulus, no lid of (W,w) can be in w
unless (W,w) is fibered over the square, annulus, or Möbius band, but in these
cases the I-fibering may be reselected so that the lids are not in w. So in all cases,
we may assume that w consists of the sides of the I-bundle (W,w), since otherwise
the lids would not be free sides of (W,w).

The restriction of f to a free side of (W,w) (i. e. a lid of (W,w)) is an admissible
map to (Σ, σ), and carries its boundary into |σ|. Also, it is essential, since any
essential loop or arc in the lid is also essential in (W,w), and f is an admissible
homotopy equivalence. Lemma 5.5 of [58] and the remark immediately following it
show that every essential map of an orientable surface into an I-bundle, for which
the image of the boundary does not meet the lids, is admissibly homotopic to a
map into a lid. Applying this, we may assume that f is admissible as a map from
(W,w) to (Σ, σ).

We will show that f is admissibly homotopic to a map which is essential as
a map from (W,w) to (Σ, σ). Since f is an admissible homotopy equivalence, its
restriction to any essential circle in W , or any essential arc in (W,w) with both
endpoints in elements of w, is essential. There are no essential arcs in (W,w) which
have one endpoint in a lid and the other in a side, so if f fails to be essential as a
map from (W,w) to (Σ, σ), there must be an essential arc α with endpoints in a lid
or lids of (W,w) to which the restriction of f is inessential.

Suppose first that (W,w) is a product I-bundle G × I. Then α must have
endpoints in different lids of (W,w), and f(α) must have endpoints in the same lid
of (Σ, σ), so both lids of (W,w) must be carried to a single lid G′ of (Σ, σ). Since
G × {0} → W and f : W → Σ induce surjections on the fundamental groups, it
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follows that G′ → Σ does as well. Therefore, by the Finite Index Theorem 2.1.1,
(Σ, σ) is a product I-bundle G′ × I. So f can be changed by admissible homotopy
to take the two lids of (W,w) to different lids of (Σ, σ), and f will then be essential
on all essential arcs of (W,w).

Suppose now that (W,w) is twisted with lid L. Let β be an arc in L connecting
the endpoints of α. Since the loop α ∪ β represents the nontrivial coset of π1(L)
in π1(W ), it follows that f carries π1(W ) to π1(L′), where L′ is a lid of (Σ, σ).
Since f is an isomorphism on fundamental groups, π1(L′) must equal π1(Σ) so Σ
is a product I-bundle. Let (N,n) be a cross-section of (W,w) and (F, f) a cross-
section of (Σ, σ). Note that N is nonorientable and F is orientable. Since (N,n)
is admissibly homotopy equivalent to (W,w), and (F, f) to (N,n), it follows that
(N,n) is admissibly homotopy equivalent to (F, f). Since these have complete
boundary patterns, the Baer-Nielsen Theorem 2.5.5 implies that N and F are
homeomorphic, a contradiction.

We have established that after admissible homotopy, f is essential as a map
from (W,w) to (Σ, σ). By Waldhausen’s Theorem 2.5.6, f is admissibly homotopic
to a homeomorphism g. Since the elements of w are the sides of the I-bundle
structure on (W,w), g takes lids to lids. So by the Unique Fibering Theorem 2.8.1,
g is admissibly isotopic to a fiber-preserving homeomorphism. �

Suppose an admissible homotopy is given between two maps of (M,m) which
preserve the characteristic submanifold of (M,m) and its complement. The next
result, corollary 18.2 of [58], enables us to deform the homotopy to one which
preserves the characteristic submanifold and its complement at each level.

Theorem 2.11.4. (Homotopy Splitting Theorem) Let (M,m) be a Haken 3-
manifold whose completed boundary pattern m is useful, and let Σ be the character-
istic submanifold of (M,m). Assume that M is not a torus bundle over S1. Suppose
H : (M × I,m× I)→ (M,m) is an admissible homotopy such that H−1

0 (Σ)=Σ and
H−1

1 (Σ)=Σ. Then H is admissibly homotopic, relative to M × ∂I, to H ′ such that
(H ′t)

−1(Σ)=Σ for all t ∈ I.

Remark: In [58], corollary 18.2 is stated only for the case when M has nonempty
boundary, but this is used in the proof (of the auxiliary result proposition 18.1)
only to conclude that the components Y1 and Y2 of V in the last full paragraph on
p. 156 are distinct, in the case when the manifold called Z is T 2 × I. But if M is
closed, and Y1 = Y2, then by the argument in the second paragraph of the proof
of proposition 18.1, Y1 is T 2 × I, so M would be a torus bundle over the circle.
Since M may be assumed not to be Seifert-fibered, these are the torus bundles
for which the monodromy homeomorphism h of the torus used to construct the
bundle M=(T 2× I)/(x, 0) ∼ (h(x), 1) induces an automorphism of π1(T 2) ∼= Z⊕Z
whose trace has absolute value at least 3, i. e. the torus bundles which admit a Sol
geometry (see [113], [121]). Theorem 2.11.4 fails for these cases; the characteristic
submanifold is T 2× [0, 1/2], and the homeomorphism defined by f([x, t])=[h(x), t]
is isotopic to the identity, but not homotopic to the identity preserving T 2×[0, 1/2].

2.12. Miscellaneous topological results

In this section we collect some results from low-dimensional topology which
will be needed later, but do not fit conveniently in the previous sections.
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The proof of the next lemma will use some constructions with homotopies.
If H : F × I → F is a homotopy, then H denotes the reverse homotopy defined
by H(x, t) = H(x, 1 − t). The product of two homotopies H and K, such that
H1 = K0, is the homotopy H ∗ K that sends (x, t) to H(x, 2t) for 0 ≤ t ≤ 1/2
and to K(x, 2t − 1) for 1/2 ≤ t ≤ 1. We will use the concept of the trace of a
homotopy at a point. In chapter 10, we will use a more general version of the
trace, which will be discussed in detail at that time. For now, we simply define
the trace of a homotopy H between two maps that preserve a basepoint x of F
to be the element t(H) of π1(F, x) represented by the restriction of H to x × I.
Note that t(H)= t(H)−1 and t(H ∗K)= t(H)t(K). If both H|F×{0} and H|F×{1}
are the identity map of F , then t(H) is a central element of π1(F ), since if α is
any loop in F based at x, representing an element a ∈ π1(F ), then α × {0} and
(x× I) ∗ (α× {1}) ∗ (x× I) are homotopic in F × I, preserving basepoints, and the
composition of H with this homotopy is a homotopy between loops representing a
and t(H) a t(H)−1.

Theorem 6.4 of [35] asserts, in part, that if h is a homeomorphism of a compact
2-manifold (orientation-preserving, if F is a disk or an annulus), and h is homotopic
to the identity map, then h is isotopic to the identity map. We will need a version
of this result for surfaces with boundary patterns.

Lemma 2.12.1. Let h : (F, f)→ (F, f) be a homeomorphism of a compact con-
nected 2-manifold, and let H : F × I → F be an admissible homotopy from h to
the identity. Then there is a deformation of H, relative to F × ∂I and through
admissible homotopies, to an admissible isotopy, unless either

(i) F =D2, h is orientation-reversing, and f is either empty, or a single arc
in ∂D2, or two disjoint arcs in ∂D2, or

(ii) (F, f)=(S1 × I, ∅) and h is orientation-reversing, or
(iii) (F, f)=(Möbius band, ∅).

In case (iii), h is still admissibly isotopic to the identity.

Proof. Assuming that h is not as in (i) or (ii), we will show that either (iii)
occurs, or H is deformable to an isotopy. Since h is admissibly homotopic to the
identity, it preserves each element of f .

Suppose for contradiction that h moves some boundary component of F to a
different boundary component. Since h is homotopic to the identity, these com-
ponents are homotopic in F , so F is an annulus with empty boundary pattern.
Since (ii) does not hold, h must be orientation-preserving, but then it induces the
nontrivial automorphism on π1(F ), so cannot be homotopic to the identity. So we
may assume that h preserves each boundary component of F .

Suppose for contradiction that h reverses the orientation on some boundary
component of F . Then the component and its reverse represent conjugate elements
of π1(F ); since no nontrivial element of a free group is conjugate to its inverse, the
component must be contractible in F , so F is a 2-disk D2. If |f |= ∂D2, then h

cannot be admissibly homotopic to the identity, and if f contains two arcs that meet
in one endpoint, then h cannot preserve each of them and also reverse orientation.
Therefore f must consist of disjoint arcs. If there are more than two of them, then
since h reverses orientation it cannot preserve each of them. Since (i) does not hold,
we may assume that h is orientation-preserving on each element of f .
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As a consequence of these initial observations, h must preserve every element
of the completed boundary pattern f , and every endpoint of every arc of f .

Since H is admissible, it too must preserve each intersection point of two arcs
of f at each level, and we may further deform it to preserve any endpoint of an arc
of f at each level.

Next, we will deform H to preserve each element of f . Suppose k is an arc of
f − f . Its endpoints are preserved at each level, so H preserves ∂(k × I). Since
F × I is aspherical, there is a deformation of H relative to ∂k × I (and, as with all
our deformations, admissibly and relative to F ×∂I) to make it preserve k×I. Now
suppose that k is a circle. Regard the restriction of H to k × I as an admissible
map from an annulus into (F, f). If this map is essential, then by the Baer-Nielsen
Theorem 2.5.5, it is homotopic to a covering map. The only surfaces covered by the
annulus are the annulus and the Möbius band. Since h(k) = k and the restriction
of H to k× I is essential, F must be a Möbius band. Since k was a circle of f − f ,
f must be empty, giving case (iii). In that case, every homeomorphism homotopic
to the identity is isotopic to the identity, for it is isotopic to be the identity on the
boundary and then Theorem 3.4 of [35] applies. But H is not deformable to an
isotopy, since its trace at a point in ∂F is not homotopic to a loop in ∂F . From
now on, we assume that (iii) does not occur. Then the restriction of H to k × I is
inessential, so we may deform H to preserve each element of f − f . So H is then
admissible for (F, f).

If two homeomorphisms of a 1-manifold are properly homotopic, then they
are isotopic, so using the homotopy extension property we may deform H through
admissible homotopies to be an isotopy on k for each k ∈ f ; that is, on all of ∂F .
Our result then follows from the next lemma:

Lemma 2.12.2. Let F be a compact surface. If G : F × I→ F × I is a homotopy
between homeomorphisms, and is an isotopy on ∂F ×I, then there is a deformation
of G, relative to ∂(F × I), to an isotopy.

Proof. We may assume G is the identity map on F × {0}, since if G(x, 0) =
(g(x), 0), and there is a deformation Dt from (g−1 × 1I) ◦ G to an isotopy, then
(g × 1I) ◦ Dt is a deformation from G to an isotopy. (Here and in the ensuing
argument, subscripts of s or t on maps indicate that they are isotopic deformations
starting at s=0 or t=0 and going to s=1 or t=1.)

Since G is admissible for the complete boundary pattern on (F × f) × (I, ∅),
Waldhausen’s Theorem 2.5.6 implies that we may assume that G is a homeomor-
phism (when F is a small-faced disk, the boundary pattern on F × I will not be
useful, but for these cases one can use the Alexander trick instead). Define maps
Gt : F × I → F × I as follows. Let ks : ∂F → ∂F be the restriction of G to
∂F × {s}. By the Isotopy Extension Theorem (see for example section 5 of [108]),
there is an extension of ks to an isotopy Ks : F → F , with K0 the identity. Define
Jt : F × I → F × I by Jt(x, s) = (K−1

st (x), s), and put Gt = Jt ◦G. Then G0 = G,
and for x ∈ ∂F , G1(x, s) = (K−1

s × 1I)(G(x, s)) = (k−1
s (ks(x)), s) = (x, s).

Lemma 3.5 of [128] says that a homeomorphism from F × I to F × I which is
the identity on F ×{0}∪∂F × I is isotopic relative to ∂(F × I) to a level-preserving
homeomorphism. So, there is a deformation Lt from L0 = G1 to L1, relative to
∂(F × I), with L1 a level-preserving homeomorphism, i. e. an isotopy. Now, define
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Pt = J−1
t ◦ L1. Then P1 is an isotopy, and agrees with the original G on ∂(F × I).

On ∂(F × I), the deformation Rt = (Gt) ∗ (Lt) ∗ (Pt) we have constructed from G
to P1 is Jt ◦G, followed by the constant deformation which is J1 ◦G at every time,
followed by the reverse of Jt ◦ G. Letting S be the product J ∗ (constant J1) ∗ J ,
the deformation defined by putting Tt = S−1

t ◦ Rt is a deformation from G to P1,
relative to ∂(F × I). This completes the proof of Lemma 2.12.2 and hence the proof
of Lemma 2.12.1. �

�

Another result concerning isotopies of homeomorphisms of surfaces will find
use in chapter 9, specifically in propositions 9.2.1 and 9.2.2. It will allow certain
homeomorphisms to be adjusted so that they preserve elements of the boundary
pattern that are annuli, thereby making them admissible.

Lemma 2.12.3. Let G be a compact 2-manifold, and let G1 be a 2-dimensional
submanifold each of whose components is incompressible and not simply connected,
and such that each boundary component of G1 lies in either the boundary or the
interior of G. Suppose that h : G → G is a homeomorphism such that for each
component B of G1, h#(π1(B)) is conjugate to π1(B). Then h is isotopic to a
homeomorphism that preserves G1.

Proof. By replacing each maximal subcollection of parallel annuli by their
union with the annuli in G separating them, we may assume that no pair of compo-
nents of G1 are homotopic annuli. For each B, both B and h(B) lift to the covering
space of G corresponding to the subgroup π1(B), and the lifts are deformation re-
tracts of this covering. Therefore the boundary components of the lifts are pairwise
isotopic in the covering, and hence the boundary components of B and h(B) are
pairwise homotopic in G. Since homotopic simple closed curves in surfaces are
isotopic, h(∂B) is isotopic to ∂B and hence h may be changed by isotopy to make
h(B)=B (if G is a torus and B an annulus, the isotopy taking ∂(h(B)) to B might
take h(B) to the complementary annulus to B, but in this case a further isotopy
takes it to B). We can proceed inductively to make h preserve all the components
of G1; the only complication that could arise would occur when B is an annulus
and the isotopy moving h(B) to B pushed h(B) across some annulus in G1 which
is already preserved by h. But this cannot occur, since we have arranged that no
two annuli in G1 are homotopic. �

The next lemma is needed for proposition 2.12.5.

Lemma 2.12.4. Let X be a topological space, and let h : X × [0, 1)→ X × [0, 1)
be a homeomorphism which restricts to the identity on X ×{0}. Then h is isotopic
to the identity relative to X × {0}.

Proof. Use a homeomorphism from [0, 1) to [0,∞) to regard X × [0, 1) as
X × [0,∞). Write h(x, s) = (h1(x, s), h2(x, s)). We will define two isotopies of h
whose product is the desired isotopy. The first will change h to be the identity on
X × [0, 1] by “pushing h onto X × [1,∞)”. Define

Kt(x, s) =

{
(x, s) 0 ≤ s ≤ t
(h1(x, s− t), t+ h2(x, s− t)) t ≤ s ,
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so that K0 = h and K1 restricted to X × [0, 1] equals the identity. The second
isotopy conjugates the homeomorphism K1 by the homeomorphisms of X × [0,∞)
that multiply by larger and larger numbers 1

1−t in the second coordinate. The effect
is to make the homeomorphism the identity on X × [0, 1

1−t ], so that at time 1 all
points will be fixed. Writing K1(x, s)=(k1(x, s), k2(x, s)), define

Lt(x, s) =

{
(k1(x, (1− t)s), k2(x, (1− t)s)/(1− t)) 0 ≤ t < 1
(x, s) t=1 ,

so that L0 =K1 and L1 is the identity. Note that L is continuous at t= 1 since
K1(x, (1 − t)s) = (x, (1 − t)s) when s < 1/(1 − t). The product KL is the desired
isotopy from h to the identity relative to X × {0}. �

The following proposition will be used in chapter 7, in the definition of the
function Θ which is a key ingredient in the proof of the Parameterization Theorem.

Proposition 2.12.5. Let M and M ′ be compact orientable 3-manifolds, and
let C and C ′ be compact 2-manifolds contained in ∂M and ∂M ′. Suppose that
j : M−C →M ′−C ′ is a homeomorphism. Then j is isotopic to a homeomorphism
that extends to a homeomorphism from M to M ′.

Proof. Assuming that C is connected, we will construct an isotopy from j to
a homeomorphism that extends to C. It will be evident from the construction that
the isotopy may be chosen to be fixed on any specified compact subset of M − C,
so the argument can be repeated (taking as the compact subset the union of the
components of C to which the homeomorphism has already been extended) until
the homeomorphism extends to all of C.

Fix a collar neighborhood C × I of C so that C =C × {1}. Denote C × {0}
by F and j(F ) by F ′. Now F ′ separates M ′ − C ′ and hence M ′. Let W ′ be the
component of M ′ cut along F ′ that contains j(C × [0, 1)). Then C ′ ⊆ W ′ and
W ′ − C ′=j(C × [0, 1)).

We claim that there are coordinates on W ′ as F ′ × [0, 1] so that F ′=F ′ ×{0}.
First, note that if the interior of a 3-manifold is irreducible, then so is the 3-
manifold. So if F is not a 2-sphere, W ′ is irreducible. Now, since C ′ ⊆ ∂W ′, we
have π1(W ′)=π1(W ′−C ′)=π1(j(C × [0, 1))), so the inclusion of F ′ to W ′ induces
an isomorphism on fundamental groups. If F ′ is not a disk or sphere, then the Finite
Index Theorem 2.1.1 applies immediately to establish the claim. If F ′ is a disk,
then since W ′ is irreducible and simply-connected, it is a 3-ball and has the desired
product structure. Suppose that F ′ is a 2-sphere. Then W ′ is simply-connected, so
∂W ′ consists of k 2-spheres for some k ≥ 2, and π2(W ′) ∼= H2(W ′) ∼= Z

k−1. Since
π2(W ′) ∼= π2(C× [0, 1)) ∼= Z, ∂W ′ consists of two 2-spheres. Since j(C× [0, 1)) can
contain no fake 3-cells, W ′ is homeomorphic to S2 × I and has the desired product
structure.

Now j(∂F×[0, 1)) is a collar neighborhood of ∂F ′×{0} in ∂F ′×[0, 1]∪F ′×{1},
so by uniqueness of collars we may change the product structure on F ′ × [0, 1] so
that C ′ = F ′×{1}, and consequently j(F × [0, 1)) = F ′× [0, 1). Identify F ′× [0, 1)
with F × [0, 1) using the homeomorphism (j|F )−1 × 1[0,1). Applying lemma 2.12.4,
we may change j by isotopy, fixed outside of W , so that j is the identity map of
F × [0, 1) with respect to these coordinates. Then, j extends continuously by using
j|F on C × {1}. �





CHAPTER 3

Relative Compression Bodies and Cores

In this section we will define and study a second kind of characteristic struc-
ture. The submanifolds that determine this structure generalize the characteristic
compression body invented by Bonahon [16] and subsequently developed by Mc-
Cullough and Miller [89]. A compression body is a 3-manifold which is made by
attaching 1-handles to the “tops” of a collection of I-bundles. We will see that
each free side of a 3-manifold (M,m) with boundary pattern has a neighborhood
in M which is a (relative) compression body. This neighborhood, and moreover
the union of a disjoint collection of such neighborhoods for all the free sides, is
unique up to admissible isotopy. However, the closure of the complement of such a
union has a much stronger characteristic property: it is preserved up to admissible
homotopy by admissible homotopy equivalences. We will apply this characteristic
property in chapter 4 to obtain finiteness results on homotopy types of 3-manifolds
with boundary pattern, and in chapter 6 to classify the “small” pared manifolds
needed for our main theorems.

More precisely, an (orientable) compression body is a 3-manifold V which ei-
ther is a handlebody or can be constructed as follows. Start with a collection
{Fi | 1 ≤ i ≤ m} of closed orientable connected 2-manifolds, none of which is a
2-sphere. Form a connected irreducible 3-manifold V from

⋃m
i=1 Fi× I by attaching

1-handles to
⋃m
i=1 Fi × {1}. The boundary ∂V consists of

⋃
Fi × {0}, together

with one distinguished boundary component which is the union of the intersection
of ∂V with

⋃m
i=1 Fi × {1} and the intersection of ∂V with the 1-handles. Bona-

hon observed that a compact boundary component F of an irreducible 3-manifold
M has a neighborhood which is a compression body with distinguished boundary
component F , and whose frontier is incompressible and is exactly

⋃
Fi×{0}. This

compression body is unique up to isotopy in M . One can think of it as the minimal
irreducible submanifold of M such that every loop in F which is contractible in M
is contractible in the submanifold. The characteristic compression body neighbor-
hood was used by Bonahon to study cobordism of group actions on 2-manifolds,
and by McCullough-Miller to study mapping class groups of 3-manifolds.

For compact orientable irreducible 3-manifolds with boundary pattern, we use
a relativized version of these ideas. Given a free side F of (M,m), we construct an
admissibly imbedded neighborhood (V, v) of F . It has a structure that we call a
relative compression body, defined in section 3.1. We actually use two similar but
distinct types of relative compression body neighborhood. For each type, the fron-
tier is incompressible, and any loop in F which is contractible in M is contractible
in V .

The first type, called a minimally imbedded relative compression body neigh-
borhood, is selected to be as small as possible, in the sense that if W is any other
relative compression body neighborhood of F , then V is admissibly isotopic into

65
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the topological interior of W . The second, called the normally imbedded relative
compression body neighborhood, is as small as possible subject to the condition
that no component of its frontier is admissibly homotopic into an element of m.
For either of these two types, there exists a disjoint union of such neighborhoods
for all the free sides of (M,m). The union of these neighborhoods is unique up to
admissible isotopy, so the same is true of the submanifold M ′ which is the closure of
their complement. If the neighborhoods were minimally imbedded, M ′ is called the
maximal incompressible core, and if they were normally imbedded, it is the normal
core. Unless all free sides are incompressible, these will not be cores in the sense
that their inclusions into M are homotopy equivalences. Each of these two types
of incompressible core has the following characteristic property: any admissible
homotopy equivalence f : (M,m) → (N,n) is admissibly homotopic to one which
carries the core of (M,m) into the core of (N,n), and restricts to an admissible
homotopy equivalence between the cores.

The existence and uniqueness results for these two types of neighborhoods are
proven in sections 3.2 and 3.4. Sections 3.3 and 3.5 detail the properties of the
maximal and normal incompressible cores.

If the boundary pattern of the normal core has useful completion, the normal
core is called the useful core, and the original boundary pattern m is said to be
usable. In particular, we will see in chapter 5 that the boundary pattern associated
to a pared structure is usable. In section 4.2, we will use the characteristic property
of the normal core to prove that the admissible homotopy type of a manifold (M,m)
with usable boundary pattern contains only finitely many elements up to admissible
homeomorphism.

In the setting of convex cocompact hyperbolic 3-manifolds, the fundamental
groups of normally imbedded compression body neighborhoods of compressible
components of the conformal boundary correspond to the function groups in the the
Abikoff-Maskit [3] decomposition of a convex cocompact Kleinian group into func-
tion groups and web groups. In a future paper, we will develop the refined relative
compression body neighborhood of the free side of a pared manifold. This decom-
position provides the topological analogue of Abikoff and Maskit’s decomposition in
the setting of geometrically finite hyperbolic 3-manifolds. Our decomposition will
be somewhat finer in the setting of geometrically infinite hyperbolic 3-manifolds.

3.1. Relative compression bodies

For 1 ≤ i ≤ m let Fi be a connected (orientable) 2-manifold, not a 2-sphere,
with a complete boundary pattern fi. Form a connected irreducible 3-manifold V

from
⋃m
i=1 Fi × I by attaching k 1-handles to the manifold interior of

⋃m
i=1 Fi ×

{1}. Denote by F the union of the intersection of ∂V with
⋃m
i=1 Fi × {1} and the

intersection of ∂V with the 1-handles. Let v be a boundary pattern for V such that

(1) F is a free side,
(2)

⋃
∂Fi × I ⊆ |v|, and

(3) if G ∈ v and G meets ∂Fi × I, then each component of G ∩ (∂Fi × I) is of
the form s× I for some s ∈ fi.

A manifold with boundary pattern (V, v) is called a relative compression body if
either V is a handlebody and v is empty, or V is constructed as above and v
satisfies conditions (1), (2), and (3). The free side F is called the distinguished free
side of (V, v). We denote each Fi × {0} by Fi and call it a constituent of V .
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Figure 3.1. A compression body with k=m=2

As indicated above, m denotes the number of constituents of (V, v) and k
denotes the number of 1-handles. Figure 3.1 shows a compression body with m=2
and k = 2: F1 is a genus-2 surface with two boundary components, and F2 is a
closed surface of genus 3. The distinguished free side F has genus 6 and has two
boundary components.

Observe that V is a handlebody if and only if every Fi has nonempty boundary.
If V is a handlebody and F =∂V , then there are no constituents and we define m
to be 0 and k to be the genus of V . When k=0, V is either a product F1 × I with
F =F1 × {1}, or V is a 3-ball and F = ∂V ; only in these cases is π1(F ) → π1(V )
injective.

For a relative compression body (V, v), the homomorphism π1(F ) → π1(V )
induced by inclusion is always surjective. If m is positive, then π1(V ) ∼= π1(F1) ∗
· · · ∗ π1(Fm) ∗H, with H a free group of rank k + 1−m. Lemma 3.1.1 assures us
that all admissibly and properly embedded incompressible surfaces are associated
to constituent surfaces.

Lemma 3.1.1. Let (V, v) be a relative compression body with distinguished free
side F , and let (G, g) be a connected surface with complete boundary pattern which
is admissibly and properly imbedded in (V, v), with G 6= S2. Assume that π1(G)→
π1(V ) is injective. Then there is a unique constituent Fi of (V, v) such that (G, g)
is admissibly isotopic into Fi × I. If in addition, there is an admissible isotopy of
(G, g) carrying ∂G into ∂F , then (G, g) is admissibly isotopic to Fi × {1/2}.

Proof. We may assume that V is not a handlebody with empty boundary
pattern, since then there are no admissibly imbedded incompressible surfaces with
complete boundary pattern. Let E be a union of cocore disks for the 1-handles of
V . Since g is complete, ∂G is disjoint from E. Since G is incompressible, there is
an isotopy of G fixed on ∂G that moves G into V −E. (This is a standard argument
in 3-manifold theory. First move G to be transverse to E, so that the intersection
consists of circles. Since π1(G) → π1(V ) is injective, any circle of intersection C
must be contractible in G and hence bounds a disk D in G. If C is chosen so that
D is innermost among all such disks, then D together with the disk D′ that C
bounds in E forms an imbedded 2-sphere in V . Since V is irreducible, this bounds
a 3-ball in V , and there is an isotopy of G that moves D across the ball and off
of E, eliminating C as a circle of intersection, and any other intersection circles
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that were contained in D′. Repeat this process until G is disjoint from E.) Since
V −E admits an admissible deformation retraction to

⋃
Fi× I, (G, g) is admissibly

isotopic into Fi × I for some i.
If ∂G and hence |g| are nonempty, then since the isotopy is admissible, i is

uniquely determined. Suppose that G is closed. Since G 6= S2, π1(G) is nontrivial.
Now π1(V ) is a free product of the form π1(Fi) ∗ K and π1(G) is conjugate into
π1(Fi). Since a subgroup of a free product can be conjugate into at most one free
factor (e. g. by considering the normal form of elements), G cannot be homotopic
into any other Fj × I.

To verify the additional assertion, suppose that (G, g) is admissibly isotopic
so that ∂G ⊆ ∂F , where ∂G may be empty. As before, we may assume that G is
contained in some Fi× I. Using proposition 3.1 of [128], any incompressible surface
in Fi × I with its boundary in Fi × {1} is parallel to Fi × {1}. This implies that
(G, g) is admissibly isotopic to Fi × {1/2}. �

Let F be a free side of (M,m) and suppose that (V, v) is a codimension-zero
submanifold of (M,m) with F ⊂ V . We say that (V, v) is a relative compression
body neighborhood of F if

(a) (V, v) is a relative compression body with distinguished free side F ,
(b) the frontier of V is incompressible in M , and
(c) no ∂Fi meets a free side of (M,m).

Condition (c), together with condition (3) in the definition of relative compression
body, ensures that ∂Fi lies in the manifold interior of the union of the elements of
m that meet ∂F .

The next theorem is a key property of the complement N of a collection of
disjoint relative compression body neighborhoods in M . It guarantees that an
admissible homotopy between two maps into M , both of whose images lie in N ,
has a deformation to a homotopy whose entire image lies in N .

Theorem 3.1.2. (Homotopy Enclosing Property) Let (M,m) be a compact
irreducible 3-manifold with boundary pattern, and let V be the union of a collec-
tion of disjoint relative compression body neighborhoods of some of the free faces
of (M,m), for which each constituent either is properly imbedded or is contained
in ∂M . Put N = M − V , with the submanifold boundary pattern n. Let (X,x)
be a compact n-manifold with boundary pattern, 1 ≤ n ≤ 3. Assume that each
component of X either has nonempty boundary pattern or is not simply-connected.
Suppose that f0, f1 : (X,x)→ (N,n) are essential maps, and H : X × I →M is an
admissible homotopy from f0 to f1 as maps into (M,m). Then H is homotopic,
relative to X × ∂I and admissibly with respect to the product boundary pattern on
(X,x)× (I, ∅), to a map H ′ : X × I → N which is an admissible homotopy from f0

to f1 as maps into (N,n).

Proof. We may assume that X is connected, hence that f0(X) lies in some
component (N1, n1) of (N,n). Let M̃ be the covering space of M corresponding to
the subgroup π1(N1) ⊆ π1(M).

Let Ej , 1 ≤ j ≤ p be a collection of cocore 2-disks for the 1-handles of the
components of V . Let W be the result of removing from M small open regular
neighborhoodsN(Ej) (pairwise disjoint, lying in V , with closures disjoint from |m|).
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Let W1 be the component of W that contains N1, and denote by Di, 1 ≤ i ≤ q, the
components of the frontier of

⋃
N(Ej) that lie in W1.

Now N1 meets V in a union
⋃
Ci of constituents that are properly imbedded

in M . Since the Ej are a collection of cocore disks for the 1-handles of V , there is a
deformation retraction from W1 to N1 ∪ (∪Ci× I), fixed on |w1|. There is a further
admissible deformation retraction from (N1 ∪ (∪Ci × I), w1) to (N1, n1) (this uses
the remark after (c) in the definition of relative compression body neighborhood).

The inclusion map of W1 to M lifts to an imbedding into M̃ carrying W1 onto a
submanifold W̃1. The elements of w1 lift to W̃1, forming a boundary pattern w̃1 for

M̃ . Also, theDi lift to disks D̃i in the free sides of (W̃1, w̃1). Since π1(W̃1)→ π1(M̃)

is an isomorphism, the remainder of M̃ is obtained by attaching simply-connected
3-manifolds along

⋃
D̃i. Therefore (W̃1, w̃1) is a deformation retract of (M̃, w̃1).

Let f̃0 : X → W̃1 ⊂ M̃ be the lift of f0. The admissible homotopy H from f0 to
f1 lifts to an admissible homotopy H̃ from f̃0 to some lift f̃1 of f1. We claim that
f̃1(X) lies in W̃1. Since f1(X) lies in W1, f̃1(X) is either entirely contained in or
entirely disjoint from W̃1. If x is nonempty, then H(|x|) ⊂ |w1| so H̃(|x|×I) ⊂ |w̃1|,
and hence f̃1(X) meets W̃1. If x is empty, then π1(X) 6= 0 so X contains an
essential circle C. But then f̃1(C) cannot lie in the complement of W̃1, since the
complement is simply-connected. Again, f̃1(X) meets W̃1, so f̃1(X) ⊆ W̃1, and the
claim is established.

Composing H̃ with the deformation retraction of M̃ to W̃1 and the projection
to M defines an admissible deformation from H to a homotopy having image in W1.
Since (W1, w1) admits an admissible deformation retraction to (N1, n1), there is a
further admissible deformation of H yielding a homotopy having image in N1. �

3.2. Minimally imbedded relative compression bodies

A relative compression body neighborhood (V, v) of F for which each con-
stituent is properly imbedded is said to be minimally imbedded. In this case, each
constituent is a free face of (V, v).

Proposition 3.2.1. Let (M,m) be a compact orientable irreducible 3-manifold
with boundary pattern. Let F be a free side. Then F has a minimally imbedded
relative compression body neighborhood (V, v). Any two minimally imbedded relative
compression body neighborhoods of F are isotopic by an admissible ambient isotopy.

Proof. By (inductive application of) the Loop Theorem, there exists a se-
quence D1, . . . , D` of disjoint compressing disks with boundary in F so that the
frontier of a small regular neighborhood N of F ∪ (

⋃`
i=1Di) is incompressible in

M −N . We allow ` to be zero, meaning that the collection of disks is empty, when
π1(F ) → π1(M) is injective; in this case N is just a product neighborhood of F .
We may choose N so that if G is any element of m that meets F , then N ∩ G is
a regular neighborhood in G of G ∩ F , and so that the boundary of the frontier
of N lies in the manifold interior of the union of the elements of m that meet F .
If any component of the frontier of N is a 2-sphere, then since M is irreducible it
bounds a component of M −N which is a 3-ball; adding the union of such balls
to N results in a manifold V which is a minimally imbedded relative compression
body neighborhood of F .
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For later reference, we isolate the next step as a lemma.

Lemma 3.2.2. Let F be a free side of (M,m) and let (V, v) be a minimally
imbedded relative compression body neighborhood of F in (M,m). Let V ′ be any
irreducible codimension-zero submanifold of M which is a neighborhood of F having
incompressible frontier. Then there is an admissible ambient isotopy of (M,m) that
moves V into the topological interior of V ′.

Proof. Suppose first that M is a handlebody and F =∂M . Since M contains
no closed incompressible surfaces, the frontiers of V and V ′ must be empty, so
V =V ′=M . Otherwise, consider a small regular neighborhood N(V ) in V of the
union of F with the cocore disks for the 1-handles of V . Recall that

⋃
∂Fi×I ⊆ |v|,

where Fi are the constituents of V , and that if G ∈ v and G meets ∂Fi × I, then
each component of G ∩ (∂Fi × I) is of the form s × I for some s ∈ fi, a complete
boundary pattern for Fi. We may further assume that N(V ) meets

⋃
∂Fi × I in⋃

∂Fi × [δ, 1], where δ is chosen close enough to 1 so that
⋃
∂Fi × [δ, 1] ⊂ V ′.

Since the frontier of V ′ is incompressible, there is an ambient admissible isotopy
fixed on ∂M that moves the cocore disks of V into V ′. Therefore we may assume
that N(V ) lies in the topological interior of V ′. For each constituent Fi of V , let
Xi be the component of V −N(V ) that contains Fi. It can be given coordinates as
a product Fi × [0, δ] with Fi=Fi × {0}, with Fi × {δ} a component of the frontier
of N(V ), and agreeing with the previous coordinates on ∂Fi × [0, δ]. There is an
admissible isotopy of M fixed on N(V ) and pulling Xi into any given neighborhood
of N(V ), so there exists an admissible isotopy moving V into the topological interior
of V ′. �

To prove the uniqueness of the minimally imbedded relative compression body
neighborhood, suppose that V and V ′ are two minimally imbedded relative com-
pression body neighborhoods of F . By lemma 3.2.2, we may assume that V is
contained in the topological interior of V ′. By lemma 3.1.1, the first constituent
F1 of V is admissibly isotopic in V ′ to G1 × {1/2} for some constituent G1 of V ′.
This extends to an admissible isotopy of V in M that is fixed on M − V ′ and hence
keeps V in V ′. Then, since G1 is properly imbedded in M , there is an ambient
isotopy keeping V in V ′ that moves F1 to G1. Inductively, suppose that the first
r constituents F1, . . . , Fr of V equal the first r constituents G1, . . . , Gr of V ′. By
lemma 3.1.1, Fr+1 is admissibly isotopic in V ′ to some Gi×{1/2}. Therefore there
is an admissible isotopy of V in V ′, fixed on F1, . . . , Fr, that moves Fr+1 onto
Gi × {1/2}. If i ≤ r, then since Gi ⊂ V , V must be contained in Gi × [0, 1/2],
a contradiction since F ⊂ V . So we may assume that i = r + 1, and obtain an
admissible ambient isotopy of M keeping V in V ′ and moving Fr+1 to Gr+1. When
the induction is completed, each constituent of V is a constituent of V ′. Since the
union of the constituents of V is the entire frontier of V in M , we have V =V ′. �

We will often need collections of disjoint minimally imbedded relative compres-
sion body neighborhoods of free sides of (M,m).

Proposition 3.2.3. Let (M,m) be a compact orientable irreducible 3-manifold
with a boundary pattern, and let S1, . . . , Sr be a collection of free sides of (M,m).
Then there exist disjoint minimally imbedded relative compression body neighbor-
hoods for the Si. Their union is unique up to admissible isotopy of (M,m).
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Proof. Let V1 be a minimally imbedded relative compression body neighbor-
hood of S1 in (M,m). Let M1 be M − V1 with its submanifold boundary pattern
m1. By induction, there exist disjoint minimally imbedded relative compression
body neighborhoods V2, . . . , Vr of the free sides S2, . . . , Sr of (M1,m1). Then
V1, . . . , Vr are disjoint minimally imbedded relative compression body neighbor-
hoods of S1, . . . , Sr in (M,m). Given two such collections Vj and V ′j , by proposi-
tion 3.2.1 we may assume that V1 = V ′1 . By induction on r, there is an admissible
isotopy of M1 moving the remaining Vj onto the V ′j . Since this isotopy is admis-
sible, it preserves the free sides of (M1,m1) that are the constituents of V1, so it
extends to an admissible isotopy of M preserving V1. �

We close this section with a characterization of relative compression bodies.
We will not use it further in the present work, but it should be included as part of
the general theory.

Corollary 3.2.4. Let (W,w) be a compact orientable irreducible 3-manifold
with boundary pattern. Then (W,w) is a relative compression body if and only if
there exists a free side F of (W,w) such that π1(F )→ π1(W ) is surjective.

Proof. By construction, if (W,w) is a relative compression body then it has
a free side F with π1(F ) → π1(W ) surjective. Conversely, given F , let (V, v) be a
minimally imbedded relative compression body neighborhood of F . Let V1 be the
component of W − V that contains the constituent F1. Since π1(F ) → π1(W ) is
surjective, V1 ∩ V = F1. Since F1 is incompressible, π1(F1) → π1(V1) is injective.
Also, π1(F1) → π1(V1) is surjective, otherwise by putting W ′ = W − V1 we would
have that π1(W ) is a free product with amalgamation π1(W ′) ∗π1(F1) π1(V1) with
the image of π1(F )→ π1(W ) contained in π1(W ′), and π1(F )→ π1(W ) could not
be surjective. By the Finite Index Theorem 2.1.1, V1 must be a product F1 × I
with F1 =F1 × {0}. Therefore, if we add this component to V , (V, v) will still be a
relative compression body. Repeating with the other constituents of V shows that
(W,w) is a relative compression body. �

3.3. The maximal incompressible core

Let V (M) be a union of disjoint minimal relative compression body neighbor-
hoods of the free sides of (M,m), and let M ′ = M − V (M), with the submanifold
boundary pattern m′= { components of F ∩M ′ | F ∈ m}. Since each component
of the frontier of M ′ is incompressible, and M ′ cannot be enlarged while retaining
this property, we call (M ′,m′) the maximal incompressible core of (M,m). It is not
usually a core in the sense that the inclusion M ′ →M is a homotopy equivalence.
In fact, M ′ can be empty; this occurs exactly when M is a handlebody and m is
empty. At the other extreme, M ′ is homotopy equivalent to M exactly when all free
faces of M are incompressible; in this case (M ′,m′) is an admissible deformation
retract of (M,m). From proposition 3.2.3, we know that V (M) is unique up to
admissible ambient isotopy, and consequently so is M ′.

The submanifold V (M) is not characteristic for admissible homotopy equiva-
lences. That is, an admissible homotopy equivalence (M,m) → (N,n) need not
be admissibly homotopic to one that takes V (M) to V (N). Example 1.4.6 pro-
vides a simple example of this. In that example, (M1, ∅) is obtained from S × I
by attaching both ends of a 1-handle to S × {1}, while (M2, ∅) is obtained from
S × I by attaching opposite ends of a 1-handle to different boundary components
of S × I. For M1, V (M1) has two components: S × [0, 1/4] and the union of
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the 1-handle with S × [3/4, 1]. On the other hand, V (M2) is connected: it con-
sists of the union of the 1-handle with S × [0, 1/4] ∪ S × [3/4, 1]. No homotopy
equivalence from M1 to M2 is homotopic to one taking V (M1) into V (M2), since
(provided that one selects the basepoint for V (M1) in the component that contains
the 1-handle) π1(V (M1))→ π1(M1) is surjective, but π1(V (M2))→ π1(M2) is not.
Example 1.4.1 gives a self-homotopy-equivalence of a 3-manifold (M, ∅) which is
not homotopic to one preserving V (M). The type of homotopy equivalence used in
that example will be studied in detail in section 9.3.

In contrast, the maximal incompressible core M ′ is characteristic for admissi-
ble homotopy equivalences. By theorem 3.3.2 below, every admissible homotopy
equivalence f : (M,m)→ (N,n) is admissibly homotopic to one that carries M ′ into
the maximal incompressible core N ′ of N and restricts to an admissible homotopy
equivalence from (M ′,m′) to (N ′, n′). This characteristic property is a consequence
of theorem 3.1.2 and the following property of the maximal incompressible core that
applies to all essential maps.

Proposition 3.3.1. Let (M,m) and (N,n) be compact connected orientable
irreducible 3-manifolds with boundary patterns, and let (M ′,m′) and (N ′, n′) be
their maximal incompressible cores. Let f : (M,m)→ (N,n) be an admissible map
which is injective on fundamental groups. Then f is admissibly homotopic to a map
which carries (M ′,m′) into (N ′, n′).

Proof. If M ′ is empty, there is nothing to prove. When M ′ is nonempty, N ′

must also be nonempty, since N ′ is empty only when N is a handlebody and n is
empty. But either π1(M ′) is not free so π1(N) is also not free, or m is nonempty,
in which case n is nonempty.

Let (Vi, vi) and (Wj , wj) be the disjoint minimally imbedded relative com-
pression body neighborhoods for the free sides of (M,m) and (N,n) respectively.
Let E be the union of the cocores of the 1-handles of the Wj . Since M and N
are irreducible, we may change f by admissible homotopy so that each compo-
nent of f−1(E) is incompressible (as for example in lemma 6.5 of [51]). Since
f# : π1(M) → π1(N) is injective, the components of f−1(E) must be simply-
connected, and since M and N are irreducible, components that are 2-spheres may
be eliminated by further homotopy of f . So we may assume that each component of
the preimage is a properly imbedded 2-disk. Since the boundaries of the disks of E
lie in the free sides of (N,n), each disk in f−1(E) has boundary in ∂M −|m|. Since
the union of the frontiers of the Vi is incompressible, there is an ambient isotopy,
fixed on |m|, which moves f−1(E) into

⋃
Vi. Changing f by this isotopy, we may

assume that f−1(E) ⊂
⋃
Vi and hence that f(M ′) is disjoint from E. Since N ′ is

nonempty, N −E admits an admissible deformation retraction to N ′, and we may
change f by admissible homotopy so that f(M ′) ⊂ N ′. �

The characteristic property now follows easily.

Theorem 3.3.2. Let (M,m) and (N,n) be compact irreducible 3-manifolds with
boundary patterns, and let (M ′,m′) and (N ′, n′) be their maximal incompressible
cores. Let f : (M,m) → (N,n) be an admissible homotopy equivalence. Then f is
admissibly homotopic to a map which carries (M ′,m′) into (N ′, n′). Moreover, the
restriction of this map to M ′ is an admissible homotopy equivalence from (M ′,m′)
to (N ′, n′).
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Proof. By proposition 3.3.1, we may assume that f(M ′) ⊂ N ′. For an ad-
missible homotopy inverse g of f , we may likewise assume that g(N ′) ⊆ M ′. The
restriction of gf to M ′ is admissibly homotopic to the inclusion. By theorem 3.1.2,
it is admissibly homotopic to the inclusion by a homotopy with image in M ′, that
is, it is admissibly homotopic to the identity as a map from M ′ to M ′. Similarly,
the restriction of fg to N ′ is admissibly homotopic to the identity on N ′. �

3.4. Normally imbedded relative compression bodies

Suppose that (V, v) is a relative compression body neighborhood of a free side
F of (M,m). A component R of M − V is called spurious if (X,x) is of the form
(G× [−1, 0], {G×{−1} ∪ ∂G× [−1, 0]}) where G×{0} is a constituent of V . Note
that x consists of a single element, which is homeomorphic to G. The union of
V with R is still a relative compression body; the constituent G is replaced by
a new constituent ∂R−G. Conditions (a), (b), and (c) of section 3.1 are still
satisfied. We define the normally imbedded relative compression body neighborhood
of a free side F to be the union of a minimally imbedded relative compression body
neighborhood V of F with all spurious components of M − V .

Proposition 3.4.1. Let (M,m) be a compact orientable irreducible 3-manifold
with a boundary pattern. Let F be a free side. Then F has a normally imbedded
relative compression body neighborhood (W,w). Any two normally imbedded relative
compression body neighborhoods of F are isotopic by an admissible ambient isotopy.

Proof. The existence was explained above. To establish uniqueness, suppose
(W,w) is as constructed above, using a minimally imbedded relative compression
body neighborhood V , and suppose that (W ′, w′) is any other normally imbedded
relative compression body neighborhood of F . We may form W ′ by adding the
spurious components of M − V ′ to V ′, for some minimially imbedded relative com-
pression body neighborhood V ′ of F . By proposition 3.2.1, we may assume that
V =V ′, and hence that W =W ′. �

We also have the analogue of proposition 3.2.3.
Proposition 3.4.2. Let (M,m) be a compact orientable irreducible 3-manifold

with boundary pattern. Then there exist disjoint normally imbedded relative com-
pression neighborhoods for the free sides of (M,m). Their union is unique up to
admissible isotopy of (M,m).

Proof. Let (Vi, vi) be disjoint minimally imbedded relative compression body
neighborhoods of the free sides of (M,m). Observe that if X is a spurious compo-
nent for some Vi, then X is disjoint from all other Vj . For if not, some Vj would be
entirely contained in X, but X does not meet any free side of (M,m). Adding in
the spurious components, we obtain disjoint normally imbedded compression body
neighborhoods of the free sides.

In order to establish uniqueness, consider two collections of disjoint normally
imbedded relative compression neighborhoods for the free sides of (M,m). Each
may be obtained from a minimally imbedded collection by adding the spurious
components. By proposition 3.2.3, we may assume that the minimally imbedded
collections are equal, so both normally imbedded collections are formed by adding
the spurious complementary components to the same minimally imbedded collec-
tion. �
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3.5. The normal core and the useful core

Let V (M) be the union of a collection of disjoint normally imbedded relative
compression neighborhoods for the free sides of (M,m). We define the normal core
of (M,m) to be the submanifold M ′ = M − V (M) with submanifold boundary
pattern m′. By proposition 3.4.2, the normal core is unique up to ambient isotopy.
With respect to admissible homotopy equivalences, we will prove in theorem 3.5.1
that the normal core has the same characteristic property as the maximal incom-
pressible core.

Let (M ′,m′) be the normal core of (M,m). We say that m is usable if either
M ′ is empty (which occurs when (M,m) is a relative compression body such that
Fi×{0}∪∂Fi×I ∈ m for every constituent) or m′ has useful completion. When m is
usable, we call (M ′,m′) the useful core of (M,m). After proving the characteristic
property of the normal core, we will prove lemma 3.5.2 which will imply that all
pared 3-manifolds have usable boundary pattern.

Theorem 3.5.1. Let (M,m) and (N,n) be compact connected orientable ir-
reducible 3-manifolds, and let (M ′,m′) and (N ′, n′) be their normal cores. Let
f : (M,m) → (N,n) be an admissible homotopy equivalence. Then f is admissibly
homotopic to a map which carries (M ′,m′) into (N ′, n′). Moreover, the restriction
of f is an admissible homotopy equivalence from (M ′,m′) to (N ′, n′).

Proof. Let V (M) be a disjoint collection of minimally imbedded relative com-
pression body neighborhoods of the free sides of (M,m), and let M ′′=M − V (M)
be the maximal incompressible core. The normal core M ′ is obtained from M ′′ by
deleting its spurious components. Similarly, we fix V (N), N ′′, and N ′. By theo-
rem 3.3.2, we may assume that f carries M ′′ to N ′′ and restricts to an admissible
homotopy equivalence (M ′′,m′′)→ (N ′′, n′′).

Let (R, r) be a component of (M ′′,m′′), let (Y, y) be the component of (N ′′, n′′)
that contains f(R), and let g : (R, r) → (Y, y) be the restriction of f . It suffices
to prove that if (Y, y) is spurious, then so is (R, r). Assume that (Y, y) = (G ×
[−1, 0], {G× {−1} ∪ ∂G× [−1, 0]}) where G× {0} is a constituent of a component
of V (N). Since g is an admissible homotopy equivalence, r contains exactly one
element G′. For every essential map of a circle C into R, g(C) is homotopic in Y
into G×{0}∪ ∂G× I, so is inessential in (Y, y). Since g is an admissible homotopy
equivalence, this implies that C is inessential in (R, r), so C is homotopic in R
into G′. Thus every loop in R is freely homotopic into G′, so theorem 3.1 of
[21] shows that π1(G′) → π1(R) is surjective. Since G × {−1} ∪ ∂G × [−1, 0] is
incompressible in Y and g is an admissible homotopy equivalence, it follows that
G′ is also incompressible, so π1(G′) → π1(R) is injective. By the Finite Index
Theorem 2.1.1, R is of the form G′ × [−1, 0] with G′=G′ × {−1}. Since R cannot
meet the free faces of M (since V (M) contains a neighborhood of the free faces),
the frontier of R is ∂G′ × [−1, 0] ∪ G′ × {0}. After reselecting the coordinates on
(R, r), we see that it is a spurious component of M ′′. �

We close with the observation that if the boundary pattern consists entirely of
closed incompressible surfaces and disjoint incompressible annuli, then the bound-
ary pattern is usable. In particular, the pared 3-manifolds studied in chapter 5
always have usable boundary patterns.
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Lemma 3.5.2. Let (M,a) be an orientable 3-manifold with a boundary pattern
which consists of closed incompressible surfaces and disjoint incompressible annuli.
Then a is usable.

Proof. The normal core (M ′, a′) has incompressible free sides, and the ele-
ments of its boundary pattern are disjoint incompressible annuli and closed surfaces.
By lemma 2.4.6, each component either has boundary pattern with useful comple-
tion, or else with its completed boundary pattern is the product of a 2-faced disk
with S1. But the latter cannot occur, since it would form a spurious component of
the normal core. �





CHAPTER 4

Homotopy Types

Homotopy equivalent closed Haken 3-manifolds must be homeomorphic; in-
deed, Waldhausen’s Theorem 2.5.6 shows that admissibly homotopy equivalent
Haken 3-manifolds with complete and useful boundary patterns must be admis-
sibly homeomorphic. When the boundary pattern is not complete and useful, the
admissible homotopy type may contain distinct homeomorphism types, as seen in
examples 1.4.5 and 1.4.6 of chapter 1.

The main results of this chapter, given in section 4.2, form a generalization
of a theorem of Johannson [58, 59] and Swarup [118]. They showed that for a
Haken 3-manifold M , there are only finitely many homeomorphism classes of irre-
ducible orientable 3-manifolds homotopy equivalent to M . We extend this in two
stages. First, we show in theorem 4.2.1 that the analogous statement holds for the
admissible homotopy type of a manifold with a boundary pattern whose comple-
tion is useful. The proof follows Swarup’s approach closely, and makes essential
use of Johannson’s Classification Theorem 2.11.1. The second stage is to extend
to 3-manifolds whose boundary pattern is usable. This extension follows quickly
from the first stage by using some of the results about useful cores developed in
section 3.5.

Underlying the proofs of the main results is a technical result on boundary
patterns: if two 3-manifolds with boundary pattern are homotopy equivalent (by
an admissible homotopy equivalence with admissible homotopy inverse), then the
boundary pattern of one is useful if and only if the boundary pattern of the other is
useful. Moreover, the same statement is true for the completions of the boundary
patterns. This invariance is not difficult for the boundary pattern itself, but for
the completions the argument is much more involved. We give these arguments in
section 4.1. As we explain in that section, our applications to hyperbolic manifolds
require this invariance only for the special case of pared manifolds, where a much
easier proof is available.

Throughout this chapter, we work only with compact orientable irreducible
3-manifolds.

4.1. Homotopy equivalences preserve usefulness

As discussed above, the main result of this section is the following invariance
of usefulness.

Theorem 4.1.1. Let (M,m) and (N,n) be compact orientable irreducible 3-
manifolds with boundary pattern, which are admissibly homotopy equivalent.

(i) If m is useful, then so is n.
(ii) If m is useful, then so is n.

77
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None of our hyperbolic applications depends on theorem 4.1.1. In addition
to deducing corollary 4.1.2, we will make direct use of it twice. It will be used
to deduce proposition 5.2.2, which is essentially a restatement of theorem 4.1.1
in the context of pared 3-manifolds. As we detail in the paragraph before its
statement, proposition 5.2.2 can also be deduced from basic topological properties
of pared manifolds. The other use of theorem 4.1.1 is in proving the finiteness of
the admissible homotopy types for certain classes of 3-manifolds with boundary
patterns, in theorems 4.2.1 and 4.2.3. Our hyperbolic applications of this finiteness
involve only the case of pared manifolds, for which proposition 5.2.2 can substitute
for theorem 4.1.1 in the proofs of theorems 4.2.1 and 4.2.3.

As an immediate consequence of theorem 4.1.1 and theorem 3.5.1, we deduce
that the property of having a usable boundary pattern is invariant under admissible
homotopy equivalence.

Corollary 4.1.2. Let (M,m) and (N,n) be compact orientable irreducible 3-
manifolds with nonempty boundary, which are admissibly homotopy equivalent. If
m is usable, then n is usable.

Proof. By theorem 3.5.1, their normal cores (M ′,m′) and (N ′, n′) are admis-
sibly homotopy equivalent. If m′ is useful, then part (ii) of theorem 4.1.1 implies
that n′ is also useful. �

Part (i) of theorem 4.1.1 is an immediate consequence of proposition 2.5.2.
Suppose that m is useful, but that n is not useful. By proposition 2.5.2, there
exists an admissible map s : (D, d) → (N,n), where (D, d) is a small-faced disk,
which is not admissibly homotopic to a constant map. If g : (N,n) → (M,m)
is an admissible homotopy equivalence, then gs is not admissibly homotopic to a
constant map of (D, d) to (M,m) (for if it were, then composing the homotopy with
an admissible homotopy inverse f : (M,m) → (N,n) of g would show that fgs is
admissibly homotopic to a constant map, but fgs is admissibly homotopic to s).
Again by proposition 2.5.2, this shows that m is not useful. This approach cannot
be used in part (ii), since composition with g need not take maps admissible for
(N,n) to maps admissible for (M,m).

The proof of part (ii) of theorem 4.1.1 is an adaptation of the following method
for proving that if an irreducible 3-manifold M has incompressible boundary, then
any 3-manifold N homotopy equivalent to M also has incompressible boundary (as
usual, all 3-manifolds under discussion are assumed to be compact and orientable).
Given a homotopy equivalence f : M → N , suppose that one has an essential
compressing disk E for ∂N . By the usual compression process (as in lemma 6.5
of [51], or lemma 2.1 of [36]), one may change f by homotopy so that f−1(E) is
incompressible. Since f is a homotopy equivalence and E is a disk, this implies
that each component of f−1(E) is simply-connected. Since M is irreducible, all 2-
sphere components may be eliminated. Since the boundary of M is incompressible,
all disk components are parallel into the boundary. By pushing portions of M
across these regions of parallelism, one can construct a homotopy starting at the
identity of M and ending at a map whose image is disjoint from all the disks in
f−1(E). Composing this homotopy with f yields a homotopy from f to a map with
image in N − E. This implies that f does not induce a surjection on fundamental
groups, so could not have been a homotopy equivalence.

The argument above generalizes to give the following result:
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Lemma 4.1.3. Let (M,m) and (N,n) be irreducible 3-manifolds with boundary
patterns, which are admissibly homotopy equivalent. If (N,n) has a compressible
free side, then so does (M,m).

Proof. Let (D, ∂D) ⊆ (N, ∂N − |n|) be a properly imbedded disk whose
boundary is essential in ∂N − |n|. Let f : (M,m)→ (N,n) be an admissible homo-
topy equivalence. Since f is admissible, f−1(D) ∩ |m| is empty. As in the sketch
given before the statement of the lemma, we may assume that every component of
f−1(D) is a disk whose boundary is essential in ∂M − |m|. To show that (M,m)
has a compressible free side, it remains to show that f−1(D) is not empty.

There is an essential circle or arc in (N,n) which is not admissibly homotopic
to an arc disjoint from D (if D separates, and a component of the complement is
simply-connected, it will be an arc having one or both endpoints in the portion of
|n| that lies in that component). Under an admissible homotopy inverse to f , this
circle or arc determines an admissible homotopy class of circles or arcs which are
not admissibly homotopic to circles or arcs disjoint from f−1(D). Consequently,
f−1(D) cannot be empty. �

Proof of Theorem 4.1.1. We have already explained how part (i) follows
from proposition 2.5.2. To establish part (ii), assume that m is useful. Then m is
useful, and by part (i), n is useful. By lemma 4.1.3, all free sides of (N,n) must
be incompressible, so we need only consider an admissibly imbedded i-faced disk
D in (N,n), with i = 2 or i = 3. If all faces of D lie in |n|, then since n is useful,
D cannot violate the usefulness condition for n. Therefore we assume that a face
of D is contained in a free side of (N,n). Since two free sides cannot meet, D must
have exactly one face in a free side of (N,n), and its remaining one or two faces
must lie in elements of n.

We may assume that f is transverse to D, first by making it transverse when
restricted to elements of m, and then on the rest of M . By standard arguments
(see for example lemma 6.5 of [51] or lemma 2.1 of [36]) we may assume that each
component of the preimage is simply-connected, and since M is irreducible that
each component is a j-faced disk, admissibly imbedded in (M,m).

Suppose it happens that each component of f−1(D) is either a 2-faced or a
3-faced disk in (M,m), with exactly one of its faces lying in a free side of (M,m).
Since m is useful, each such component (F, f) separates M into two components,
one of which is a ball B which is the cone on F in such a way that the elements of its
boundary pattern are the cones on the elements of f . There is a homotopy of maps
from M into M , starting at the identity, that is admissible for (M,m) and moves
M into M−F . For example, suppose F is a 3-faced disk, so that B is a tetrahedron
with base F . One of its triangular faces, say G, is the cone on the element k of
f that lies in a free side of (M,m), so G lies in a free side of (M,m). There is a
deformation retraction of B to F that pushes G through B, while preserving the
other two triangular faces. Extending this to a map of M using the identity on
M −B, then pushing a little bit farther to move M completely off of B, gives the
desired homotopy. The construction is quite similar if F is two-sided. Then, B is
a trihedron with base F and two triangular faces, one of which lies in a free side of
(M,m), and the deformation retraction pushes that face across B while preserving
the other face. Changing the admissible homotopy equivalence f by this homotopy
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Figure 4.1. Construction of a homotopy moving f(W ) to D

removes F and possibly other components from the preimage of D. Repeating this
operation for the remaining components, we may assume that f−1(D) is empty.

Once we know that f−1(D) is empty, we may derive a contradiction. If D
is nonseparating, or separates N into two components neither of which is simply-
connected, then f could not induce a surjection on fundamental groups. Suppose,
then, that one of the components N0 of N cut along D is simply-connected, and
hence is a 3-ball. We may assume that f(M) ∩ N0 is empty. For if not, then
f(M) ⊂ N0, so M and hence N are simply-connected, and the other component
of N − D is also simply-connected and may be chosen as N0. Now ∂D bounds a
disk D0 in the boundary of N0. Since f(M) ∩N0 is empty and f is an admissible
homotopy equivalence, there cannot be any element G of n completely contained
in D0. Since the elements of n are incompressible, they must meet D0 in disks.
If i= 2, only one component G of n meets ∂D0, and G ∩ D0 must be a disk, so
this shows that D0 ∩ J(n) is the cone on ∂D0 ∩ J(n). If i= 3, let G1 and G2 be
the elements of n that meet ∂D0. No component of G1 ∩ G2 can be completely
contained in D0, since the image of f would not meet that component of G1 ∩G2,
and f could not have an admissible homotopy inverse. So the disks G1 ∩D0 and
G2 ∩D0 meet in a single arc, and again D0 ∩ J(n) is the cone on ∂D0 ∩ J(n). This
contradicts the selection of D as a disk that violates the usefulness condition for n.
Therefore the theorem is reduced to showing that f may be changed by admissible
homotopy so that each component of f−1(D) is either a 2-faced or a 3-faced disk
in (M,m), with exactly one of its faces lying in a free side of (M,m).

The first step is to get rid of preimage disks that have more than 3 faces. To
measure the progress in eliminating such disks, define the complexity of f to be
the tuple (. . . , nj , nj−1, . . . , n4), where nj is the number of components of f−1(D)
that are j-faced disks. Since all but finitely many of the nj are 0, the complexities
are well-ordered by the lexicographical ordering, so every decreasing sequence of
complexities is finite.
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Write (F, f) for f−1(D), where f is the boundary pattern as a submanifold of
(M,m), and suppose that some nj > 0. Then there exists an essential arc µ in
(F, f). Since f maps it into (D, d), f(µ) is inessential. Because f is an admissible
homotopy equivalence, this implies that µ is inessential in (M,m). We can now
apply the Compression Lemma 2.5.3 to obtain an admissibly imbedded disk (W,w)
in (M,m) such that (W,w) is a k-faced disk, 2 ≤ k ≤ 3, and such that W ∩ F is a
face α of (W,w) which is essential in (F, f).

We claim that f |W is admissibly homotopic, keeping f |α fixed, to a map into
D. Figure 4.1 illustrates the construction. Let W ′ be an abstract disk, and write
∂W ′ as the union α′ ∪ β′ of two arcs which meet in their endpoints. Form a disk
W ∪W ′ by identifying α with α′. Let W ′′ be another abstract disk. Identify its
boundary with ∂(W ∪W ′), and regard W ∪W ′∪W ′′ as the boundary of a 3-ball B.

Using a homotopy of f |α that moves f(α) through D to an imbedding onto
an arc in D ∩ |n|, we construct a map f ′ : W ′ → D such that f ′(α′) = f(α) and
f ′(β′) ⊂ D∩|n|. The map f |W ∪f ′ : W ∪W ′ → N is admissible as a map into (N,n)
for some structure on W ∪W ′ as a (k− 1)-faced disk; each face of W ∪W ′ consists
of the union of an element γ of w with the arc in β′ which is the preimage of the
element of n that contains f(γ). Since n is useful, (f |W ∪ f ′)|∂(W∪W ′) extends to
f ′′ : W ′′ → |n| such that (f ′′)−1(J(n)) is the cone on (f ′′)−1(J(n))∩∂W ′′ (this cone
is an arc, when k = 3, and is empty, when k = 2). Assuming that f ′′ is selected to
be transverse to D, (f ′′)−1(D) consists of W ′′∩W ′ together with some circles in the
interior of W ′′. By cutting and pasting, we may assume that (f ′′)−1(D)=W ′′∩W ′.

Since π2(N)=0, f |W ∪f ′∪f ′′ extends to a map from B into N . The transverse
preimage of D consists of W ′ together with some closed surfaces in the interior of
B, and by the usual simplification process we may assume that the preimage of D
is just W ′. We regard this map of B as a homotopy starting at f |W , through maps
from W to N for which the preimage of D consists only of α, and which agree with
f |α on α, and ending at a map from W into D. Using such a homotopy, f may be
changed by admissible homotopy first to add W to the preimage of D, and then
to perform surgery on F along α. Figure 4.2 illustrates the effect of the homotopy.
The component of (F, f) that contained α is a j-faced disk that is replaced by two
disks each of which is admissibly homotopic to a disk obtained from a component
of F − α by appending a copy of W . Each of the resulting disks has fewer than j
sides (since α was essential), so the complexity of f is reduced.

Since all sequences of descending complexities are finite, after finitely many
repetitions we arrive at the situation where all nj = 0, so f−1(D) consists of small-
faced disks. (Actually, if i= 2, then there can be no 3-faced disks in (F, f), since
then f would map two adjacent faces of a 3-faced disk to the same face of (D, d),
violating admissibility.)

Next, we eliminate 1-faced disks in f−1(D). Such a disk E gives a compression
of an element of m. Since m is useful, E is admissibly parallel to a disk E0 in an
element of m. Since M is irreducible, E0 ∪ E bounds a 3-ball B in M . We will
show that there is an admissible homotopy of f that removes E, and possibly some
other components, from f−1(D). If ∂E is contained in a free side of (M,m), then
there is an admissible homotopy (through imbeddings), starting at the identity
map of M and supported in a regular neighborhood of B, that moves M into
M −B. Composing f with this homotopy gives an admissible homotopy from f to
a map from which E has been removed from the preimage of D (along with any
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Figure 4.2. Effect of a homotopy that simplifies f−1(D)

other components which may have been contained in B). Suppose now that ∂E is
contained in an element F of m. Let γ be the face of D which contains f(∂E), and
let G be the element of n that contains γ. Since γ is an arc, and G is aspherical
(unless (N,n) = (D3, ∅), in which case m must consist of one 2-sphere, (M,m)
must be (D3, ∅), and the theorem holds), f |E0 : E0 → G is homotopic relative to
∂E0 to a map into γ. So we may change f by admissible homotopy to add E0 to
the preimage of D. Since N is aspherical, we may change f by a further admissible
homotopy to add the rest of B to the preimage, and by a small further homotopy
to remove all of B from the preimage. The net effect is to remove E (and possibly
other 1-faced disks contained in B) from the preimage of D. Repeating, we may
assume that for each disk (E, e) in f−1(D), (E, e) is j-faced with 2 ≤ j ≤ 3.

The last step is to ensure that each of the preimage disks has exactly one of
its faces in a free side of (M,m). Suppose E is a 2-faced disk in f−1(D) and both
faces lie in |m|. Since f is admissible, we must have i= 3 and f maps the faces of
E to the two faces of D that lie in elements of n. Since m is useful, ∂E bounds
a disk E0 in |m| such that E0 ∩ J(m) is the cone on ∂E0 ∩ J(m). Let α be the
arc E0 ∩ J(m), let G′ and G′′ be the two bound sides of n that contain faces of D,
and let p be the point G′ ∩ G′′ ∩D. Note that f carries α into G′ ∩ G′′ and both
endpoints of α are mapped to p, so we may think of f(α) as a loop.

Suppose for contradiction that the loop f(α) based at p is not null-homotopic in
G′∩G′′. Then the component of G′∩G′′ containing p must be a circle, rather than
an arc. Since α is homotopic relative to its endpoints into E, f |α is contractible in
N . Since G′ and G′′ are incompressible, fα is contractible in each of them, so they
are 2-disks whose union is ∂N , which is impossible since then the 3-faced disk D
could not exist. We conclude that f |α is contractible in G′ ∩G′′, so f is admissibly
homotopic to a map taking α to p. Since f carries ∂E0 into the arc D ∩ (G′ ∪G′′),
and G′ and G′′ are aspherical, we may change f by a further admissible homotopy
to add E0 to f−1(D). Since M is irreducible, E ∪ E0 bounds a 3-ball in M , and
since π3(N) = 0, f can be changed to add all of this 3-ball to f−1(D). By a small
further admissible homotopy, f can be changed to remove E from f−1(D).

Now suppose that E is a 3-faced disk and all faces lie in |m|. Since D has at
most two faces in |n|, this would imply that f carries two adjacent elements of m
into a single element of n, which is impossible. So we may assume that every disk
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in f−1(D) has a face in a free side of (M,m). As we have already observed, this
completes the proof. �

4.2. Finiteness of homotopy types

In this section we generalize the Johannson-Swarup finiteness results, as ex-
plained in the introduction to this chapter. In the case when the boundary pattern
is useful, we follow Swarup’s approach closely, making essential use of Johannson’s
Classification Theorem 2.11.1. We then extend to 3-manifolds whose boundary
pattern is usable. This second stage follows quickly from the first by using some of
the results about useful cores developed in section 3.5.

Theorem 4.2.1. Let (M,m) be a compact, orientable, irreducible 3-manifold
with boundary pattern m whose completion is useful and nonempty. Then the ad-
missible homotopy type of (M,m) contains only finitely many admissible homeo-
morphism types of compact orientable irreducible 3-manifolds.

Before beginning the proof, we will discuss Dehn twist homeomorphisms of
3-manifolds, which make their first appearance here, and will be used on various
occasions in our later arguments. Suppose that S1×S1×I is a collar neighborhood of
a torus T = S1×S1×{0} which either lies in the interior ofM , or is a torus boundary
component of M . Fix a basepoint x0 =(1, 1, 0) ∈ S1×S1×{0}, and let γ be the loop
that send t to (e2πipt, e2πiqt, 0) for some integers p and q. Define a homeomorphism
h of M to be the identity off of S1×S1× I, while there it will be h(e2πiu, e2πiv, w)=
(e2πi(u+pw), e2πi(v+qw), w). This is called a Dehn twist homeomorphism about T
with trace g, where g is the element of π1(M,x0) represented by γ. The isotopy
class of a Dehn twist depends only the torus T , the trace, and (if T is in the
interior) the side of T on which the collar neighborhood is selected, but not on the
representative path for the trace nor the choice of collar neighborhood.

Similarly, one can define a Dehn twist homeomorphism about any connected 2-
manifold F which either is properly and two-sidedly imbedded in M , or lies in ∂M .
Fix a collar F × I, which meets ∂M in ∂F × I, and a loop jt in the group of
diffeomorphisms Diff(F ), with j0 and j1 both equal to the identity idF , then define
h(w) = w for w /∈ F × I and h(x, t) = (jt(x), t) for (x, t) ∈ F × I. The isotopy class
of h depends only on the element of π1(Diff(F ), idF ) represented by jt. The cases
that we will use will be when F is an annulus, for which π1(Diff(F ), idF ) ∼= Z with
elements classified by the trace, and, in chapter 12, when F is a 2-sphere, for which
π1(Diff(F ), idF ) ∼= Z/2 with the nontrivial element represented by letting jt be an
orthogonal rotation through an angle 2πt, fixing the basepoint and its antipode.

Proof of theorem 4.2.1. We follow the argument in [118]. Let C be the
collection of (admissible homeomorphism classes of) admissibly fibered (orientable)
I-bundles and Seifert fiber spaces, which are irreducible and have nonempty bound-
ary. Define C(G,n) to be the collection of elements (Σ, σ) of C such that π1(Σ) ∼= G
and σ has cardinality n, and define C0(G,n) to be the subset of C(G,n) consisting
of those manifolds for which the boundary pattern has disjoint elements.

Consider the I-bundles in C(G,n). An I-bundle is completely determined by
the admissible homeomorphism type of its quotient surface (B, b), and there are
only finitely many admissible homeomorphism types of (B, b) with a given Euler
characteristic and cardinality of b. Therefore there are only finitely many I-bundles
in each C(G,n).
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Assume that G is not infinite cyclic. By proposition 1.5 of [118], there are
only finitely many Seifert fibered manifolds (Σ, σ) in C0(G,n). From this we will
deduce the same for C(G,n). If (Σ, σ) ∈ C(G,n), then an annulus or torus of |σ|
may be made up of several annuli of σ, but every element of C(G,n) arises by
subdividing some elements of the boundary pattern of one of the finitely many
elements (Σ0, σ0) of C0(G,m) for some m ≤ n. If (Σ0, σ0) has a unique admissible
Seifert fibering up to isotopy, then it can give rise to only finitely many elements
of C(G,n). If its Seifert fibering is not unique, then since Σ is irreducible and has
nonempty boundary, the Unique Fibering Theorem 2.8.1 shows that (Σ0, σ0) can
be admissibly fibered as the I-bundle over either the Klein bottle or the torus. In
the first case, lemma 2.8.5 shows that there are only two isotopy classes of Seifert
fiberings. In the second case, there are infinitely many isotopy classes, but all
are homeomorphic preserving fibers. In both cases, only finitely many elements of
C(G,n) can arise from subdividing elements of σ0. Thus if G is not infinite cyclic,
C(G,n) contains only finitely many Seifert fibered manifolds.

Define Am(n) to be the subset of C consisting of all elements such that (Σ, σ)
is a Seifert fibered solid torus, σ has cardinality n and contains an incompressible
annulus F such that the index of π1(F ) in π1(Σ) has order m, 1 ≤ m < ∞. By
proposition 1.5′ of [118] and a subdivision argument as in the case of C(G,n),
Am(n) is finite.

Lemma 4.2.2. Let (Σ, σ) ∈ C. Suppose that σ′ ⊆ σ and that σ′ does not
contain a lid of any I-fibered component of (Σ, σ). Let E(Σ, σ, σ′) be the group
of path components of the space of admissible self-homotopy equivalences of (Σ, σ)
which take each element of σ′ to itself by a homeomorphism. Let c be the number
of components of |σ′|. There exist a finite group A of order at most 8c and a
homomorphism ψ : E(Σ, σ, σ′) → A such that if ψ(f) = 0 then the restriction of f
to |σ′| extends to an admissible homeomorphism of (Σ, σ).

Proof. We can ignore components of Σ that do not meet |σ′|, since on these
components the extension can be selected to be the identity map. We may assume
that Σ is connected, since if there is a homomorphism as in the lemma for each
component, then their direct product satisfies the lemma for their union.

When (Σ, σ) is an I-bundle, every element of σ′ is a square or annulus, so has
(admissible) mapping class group of order at most 8. Let A be the direct product
of these mapping class groups, and define ψ by restriction. If ψ(f) = 0, then the
identity map is admissibly isotopic to a homeomorphism whose restriction to |σ′|
agrees with the restriction of f , and the lemma is verified. From now on, we assume
that (Σ, σ) is Seifert fibered.

Suppose |σ′| equals ∂Σ. By Waldhausen’s Theorem 2.5.6, f is admissibly ho-
motopic to a homeomorphism h. Thus the lemma holds in this case by taking
A={0}.

If Σ=S1×S1×I, and no element of σ′ is an annulus, then every homeomorphism
of |σ′| that extends to a homotopy equivalence of Σ extends to a homeomorphism,
so again we may take A={0}.

In all other cases, the Fiber-preserving Self-map Theorem 2.8.6 shows that every
element of E(Σ, σ, σ′) preserves the fiber up to homotopy. Let A be a direct product
of copies of Z/2, two for each component of |σ′|, and define ψ(f) to be the nontrivial
element in the (2i− 1)th coordinate if and only if f reverses the orientation of the
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ith component of |σ′|, and to be the nontrivial element in the (2i)th coordinate if
and only if f reverses the orientation in the fiber of the ith component of |σ′|. Then
if ψ(f) = 0, f is orientation-preserving on each component of |σ′|, and preserves
the orientation of the fiber in each component of |σ′|. Since these components
are fibered tori and annuli, this shows that the restriction of f to |σ′| is isotopic
(preserving the elements of σ′) to a fiber-preserving homeomorphism. In turn, this
is isotopic to a product of Dehn twists about a fiber. Since |σ′| 6= ∂Σ, we can
choose for each component X of |σ′| an annulus imbedded in Σ with one boundary
circle a fiber contained in X and the other boundary circle a fiber contained in
∂Σ− |σ′|. The Dehn twists of the components of |σ′| extend to Dehn twists about
these annuli, giving the extension of the restriction of f . �

To complete the proof of theorem 4.2.1, suppose that f : (M,m) → (N,n) is
an admissible homotopy equivalence. Theorem 4.1.1, implies that n has useful
completion. Let (V, v) be the characteristic submanifold of (M,m). By the Classi-
fication Theorem 2.11.1, we may assume that the restriction of f to (M − V ,m′) is
an admissible homeomorphism, and the restriction of f to (V, v′) is an admissible
homotopy equivalence, where m′ and v′ are the proper boundary patterns. If V
is empty, there is only one admissible homeomorphism type in the admissible ho-
motopy type of (M,m). If V =M , then since C(G,n) is finite if G is not infinite
cyclic, and Am(n) is finite, the finiteness has already been verified. Therefore we
may assume that V is nonempty and V 6= M .

Since C(G,n) and Am(n) are finite, the admissible homotopy type of (V, v)
consists of some finite number t1 of admissible homeomorphism types. Let c be
the number of elements of v′, and let t = t1(c! (8c + 1) + 1). We will show that
if (N1, n1), . . . , (Nm, nm) is any collection of t compact orientable irreducible 3-
manifolds admissibly homotopy equivalent to (M,m), then for some i 6= j, (Ni, ni)
is admissibly homeomorphic to (Nj , nj).

The Classification Theorem 2.11.1 implies that any admissible homotopy equiv-
alence from (M,m) to (Ni, ni) is admissibly homotopic to a map which restricts
to an admissible homotopy equivalence between the characteristic submanifolds of
(M,m) and (Ni, ni) and an admissible homeomorphism on the complements of
the characteristic submanifolds (with their proper boundary patterns). Note that
this homeomorphism carries the elements of the proper boundary pattern that lie
in the frontier of the characteristic submanifold of (M,m) to the elements of the
proper boundary pattern that lie in the frontier of the characteristic submanifold
of (Ni, ni). Since there are t1 admissible homeomorphism types in the admissible
homotopy type of the characteristic submanifold of (M,m), there is a subcollection
of at least c!(8c + 1) + 1 of the Ni such that the characteristic submanifolds are ad-
missibly homeomorphic. So we may select notation so that for 1 ≤ i ≤ c!(8c+1)+1,
each (Ni, ni) can be constructed from a fibered manifold (Σ, σ) and a simple man-
ifold (S, s) by identifying pairs of elements of σ and s by homeomorphisms (each
pair corresponding to a component of the frontier of Σ in Ni).

For each i with 2 ≤ i ≤ c!(8c + 1) + 1, use the Classification Theorem 2.11.1 to
select an admissible homotopy equivalence fi : (N1, n1) → (Ni, ni) which restricts
to a homeomorphism from (S, s) to (S, s) and an admissible homotopy equivalence
from (Σ, σ) to (Σ, σ). Regard these restrictions as self-homotopy-equivalences of
Σ, and for each i let gi be an admissible homotopy inverse for fi. Let σ′′ be the
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elements of σ that lie in the frontier of Σ in N1. Since fi||σ′′| is a homeomorphism,

we may assume that gi|fi(|σ′′|) =
(
fi||σ′′|

)−1.
There are at least 8c+1 values of i for which the fi induce the same permutation

on the components of |σ′′|. Choose one, i0, and for each of the others define
ki = figi0 . Let σ′ = {fi0(G) | G ∈ σ′′}. Notice that σ′ does not contain a lid of
any I-fibered component V of (Σ, σ), since each element of σ′ lies in the frontier
of V in Ni0 and the lids must lie in |ni0 |. Using the notation of lemma 4.2.2,
each ki|Σ ∈ E(Σ, σ, σ′), and that lemma shows that for some i and j with i 6= j,
the homeomorphism

(
kj ||σ′|

)(
ki||σ′|

)−1 extends to a homeomorphism k : (Σ, σ) →
(Σ, σ). A homeomorphism h : (Ni, ni) → (Nj , nj) is given by taking k on Σ and(
kj |S

)(
ki|−1

S

)
on S. �

The usable case now follows easily:
Theorem 4.2.3. Let (M,m) be a compact orientable irreducible 3-manifold

with nonempty boundary, with m usable. Then the admissible homotopy type of
(M,m) contains only finitely many admissible homeomorphism classes of compact
orientable irreducible 3-manifolds with boundary pattern.

Proof. Let (M ′,m′) be the useful core of (M,m). By theorem 4.2.1, there
are only finitely many admissible homeomorphism classes of orientable 3-manifolds
in the admissible homotopy type of (M ′,m′). By theorem 3.5.1, any compact ori-
entable irreducible manifold admissibly homotopy equivalent to (M,m) is obtained
from a manifold admissibly homotopy equivalent to (M ′,m′) by attaching 1-handles
along the free sides. The number of handles added is determined by π1(M) so there
are only finitely many resulting manifolds, up to admissible homeomorphism. �



CHAPTER 5

Pared 3-Manifolds

This chapter concerns pared 3-manifolds, which arise naturally in the study
of hyperbolic 3-manifolds. Topologically, a pared structure is a special type of
boundary pattern, whose elements consist of disjoint incompressible annuli and tori,
satisfying some strong additional conditions. Thurston’s Geometrization Theorem
asserts that these conditions are precisely what is needed to guarantee a hyperbolic
structure on the interior of the manifold in which the elements of the boundary
pattern correspond to “cusps” of the hyperbolic structure (see chapter 7).

In section 5.1, we will define pared 3-manifolds and give some of their basic
properties. Their topological properties are explored more fully in section 5.2. In
particular, a pared structure determines a boundary pattern which is usable (as
defined in section 3.5), and whose completion is useful if and only if all the free
sides are incompressible.

In section 5.3 we investigate the characteristic submanifold of a pared 3-
manifold with incompressible free sides. Theorem 5.3.4 shows that its fibering
can be chosen so that each component that is an I-bundle has quotient surface of
negative Euler characteristic, and each Seifert fibered component is either a solid
torus or a thickened torus. If the characteristic submanifold has a T 2×I component
with at least two frontier annuli, then we say that the pared manifold has double
trouble. In theorem 5.3.6, we verify, using the Classification Theorem, that hav-
ing double trouble is an invariant of pared homotopy type. It will turn out that a
pared 3-manifold with no compressible free side has double trouble if and only if the
realizable automorphisms have infinite index in the (relative) outer automorphism
group. This topological result plays a key role in the proof of the Main Hyperbolic
Theorem in the incompressible case.

5.1. Definitions and basic properties

We begin by defining pared manifolds and developing some of their basic prop-
erties. Let M be a compact, orientable, irreducible 3-manifold with nonempty
boundary which is not a 3-ball, and let P ⊆ ∂M . We say that (M,P ) is a pared
3-manifold (see Morgan [96]) if the following three conditions hold.

(P1) Every component of P is an incompressible torus or annulus.
(P2) Every noncyclic abelian subgroup of π1(M) is conjugate into the funda-

mental group of a component of P .
(P3) Every map φ : (S1 × I,S1 × ∂I) → (M,P ) which induces an injection on

fundamental groups is homotopic, as a map of pairs, to a map ψ such that
ψ(S1 × I) ⊂ P .

We single out three special cases, called elementary pared manifolds, which
are so simple that they are sometimes exceptions to results about pared manifolds,

87
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or if not exceptions, may require special arguments. These arguments are never
difficult, and will sometimes be ignored in our proofs. Let T 2 and A2 denote the
torus and annulus respectively. If (M,P )=(T 2× I, T 2×{0}), or (A2× I, A2×{0}),
or (A2 × I, ∅), then (M,P ) is said to be elementary, otherwise it is nonelementary.
The elementary pared 3-manifolds correspond to the hyperbolic 3-manifolds with
abelian fundamental groups.

In the next lemma we collect some basic properties of nonelementary pared
3-manifolds.

Lemma 5.1.1. Let (M,P ) be a nonelementary pared 3-manifold.

(i) Every toroidal component of ∂M is contained in P .
(ii) M is not homeomorphic to T 2 × I, to the I-bundle over the Klein bottle,

or to the solid torus.
(iii) M does not contain an imbedded Klein bottle.
(iv) For each component Q of P , the subgroup π1(Q) is a maximal abelian

subgroup of π1(M).

Proof. Suppose that M has a toroidal boundary component T that is not
contained in P . Assume first that T is compressible. Since M is irreducible, it
must be a solid torus, and P is nonempty since (M,P ) is nonelementary. By (P1)
and (P3), P must consist of a single incompressible annulus A. Let A′ be the closure
of ∂M − A. By (P3), A′ must be properly homotopic into A, so the pair (M,A)
has the form (A2× I, A2×{0}) (for the homotopy yields a meridian disk of M that
meets A and A′ each in a single arc, showing that π1(A) → π1(M) is surjective).
Therefore (M,P ) would be elementary. Assume now that T is incompressible. By
(P2), π1(T ) is conjugate into π1(T ′) for some torus boundary component T ′ in P .
By lemma 5.1 of [128], this implies that M=T ×I. By (P3), P contains no annulus
in T , so P =T ′ and again (M,P ) would be elementary. This proves (i).

If M is a solid torus or I-bundle over the torus or Klein bottle, then each
boundary component of M is a torus so would have to be in P . For an I-bundle
over the Klein bottle or torus, condition (P3) would be violated. For the solid torus,
the incompressibility in condition (P1) would be violated. This verifies (ii).

Suppose that M contains a compressible Klein bottle K. If a separating es-
sential loop in K bounds a compressing disk in M , then surgery on K along this
disk yields two disjoint imbedded projective planes. This is impossible since M is
irreducible (the projective planes are one-sided since M is orientable, and a regular
neighborhood of a one-sided projective plane is an RP3-summand). If a nonseparat-
ing loop bounds a compressing disk, then surgery along this disk yields a 2-sphere
which bounds a ball in M , showing that K separates M . This is impossible, since
M is orientable.

Suppose now that K is an imbedded incompressible Klein bottle in M . Then
π1(K) contains a maximal abelian subgroup isomorphic to Z×Z, and by condition
(P2) there must be a torus component Q of ∂M such that this subgroup is conjugate
into π1(Q). Since M is aspherical, there exists a homotopy H : T 2×I→M mapping
T 2×{0} into Q and T 2×{1} onto K by the double covering map. This homotopy
induces a map from (N, ∂N) into (M,Q), where N is the twisted I-bundle over the
Klein bottle, which induces an injection on fundamental groups. By Waldhausen’s
Theorem 2.5.6, this map is homotopic to a finite covering map, so π1(Q) has finite
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index in π1(M). The Finite Index Theorem 2.1.1 now shows that M is the I-bundle
over the Klein bottle, contradicting part (ii). So (iii) is now verified.

For (iv), consider a component Q of P , such that π1(Q) is not a maximal
abelian subgroup of π1(M). Let A be an abelian subgroup of π1(M) containing
π1(Q) as a proper subgroup. Suppose first that A is not cyclic. By condition (P2),
A is conjugate into π1(Q′) for some torus component Q′ of P . If Q′=Q, then there
would be a map from (Q × I, Q × ∂I) to (M,Q) which had degree 1 on Q × {0}
and degree not equal to ±1 on Q × {1}. Since the degree is not ±1 on Q × {1},
this map is essential, and we may apply Waldhausen’s Theorem and the Finite
Index Theorem as in the proof of (iii) to derive a contradiction. If Q 6= Q′, then
there exists a map of an annulus into M which maps one boundary circle to Q and
the other into Q′ and which induces an injection on fundamental groups. Such an
annulus would contradict (P3), so we have established property (iv) for toroidal
components of P .

Suppose now that A is cyclic, so Q is a annulus and there is a loop γ in M
whose nth power is homotopic to the core circle of Q, for some n ≥ 2. There is a
homotopy S1×I carrying S1×{0} to a core circle of Q and S1×{1} to γ by a degree n
map. This induces a map f from the quotient space A0 obtained from S1 × I by
identifying (z, 1) with (exp(2πi/n) z, 1) for each z ∈ S1. Notice that A0 imbeds in a
solid torus T so that the quotient of S1×{1} is the core circle, and S1×{0} lies in
∂T and represents n times the core circle. Then, there is a deformation retraction
of T to A0, so f extends to a map F : T → M , in such a way that an annulus
neighborhood B of S1 × {0} in ∂T is taken to Q. By property (P3) applied to the
annulus ∂T −B, we may change F by a homotopy fixed on B so that it takes all of
∂T to Q. Now, let C be a meridian circle of T , bounding a meridian disk D. The
restriction of F to C is null-homotopic in Q, since it is null-homotopic in M and Q
is incompressible, so there is a map from D to Q that agrees with F on ∂D. Since
π2(M) = 0, this map and F |D are homotopic relative to ∂D, so we may change F
by homotopy relative to ∂T so that it maps D to Q. Regard T as constructed by
attaching a 3-cell E to D ∪ ∂T using a map φ : ∂E → D ∪ ∂T . Since π2(Q) = 0,
there is a map from E to Q that agrees with F ◦ φ on ∂E. Since π3(M) = 0, this
map and F ◦ φ are homotopic relative to ∂E, so F may be changed by homotopy
to carry all of T to Q. But then, the core circle of Q would be a proper power in
π1(Q). This contradiction completes the proof of assertion (iv). �

5.2. The topology of pared manifolds

In this section we will examine the topology of pared 3-manifolds in greater
depth. First, note that a pared 3-manifold (M,P ) has a boundary pattern p whose
elements are simply the components of P . By lemma 3.5.2, this boundary pattern
is usable. We call p the boundary pattern associated to (M,P ). We will check that
the completion of this boundary pattern is useful if and only if all the free faces are
incompressible. This leads to an easy reproof of theorem 4.1.1 for the special case of
pared 3-manifolds. This special case is stated as proposition 5.2.2. We also establish
a convenient property of pared 3-manifolds with respect to homotopy: homotopic
admissible maps are always admissibly homotopic. Next, we will examine some
properties related to relative compression body neighborhoods in pared manifolds.
Notably, the normal core of a pared 3-manifold is also pared. We then examine
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the characteristic submanifold of a pared manifold (with respect to its completed
boundary pattern).

We say that (M,P ) satisfies Bonahon’s condition (B) if for every nontrivial
free decomposition H1 ∗H2 of π1(M), there exists an element g of π1(M) which is
conjugate to an element of π1(P ) but is not conjugate into either H1 or H2. As we
see in the next lemma, this is equivalent to usefulness of the completed boundary
pattern p.

Lemma 5.2.1. Let (M,P ) be a pared nonelementary 3-manifold, and let p be
its associated boundary pattern. The following are equivalent.

(i) (M,P ) satisfies Bonahon’s condition (B).
(ii) The free sides of (M,p) are incompressible.
(iii) The completion p is useful.

Proof. The equivalence of (i) and (ii) was observed by Bonahon in proposition
1.2 of [17]. The equivalence of (ii) and (iii) is immediate from lemma 2.4.6. �

Two pared 3-manifolds (M,P ) and (N,Q) are called pared homotopy equivalent
when they are homotopy equivalent as pairs, and a homotopy equivalence of pairs is
called a pared homotopy equivalence. These notions coincide with admissibly homo-
topy equivalent and admissible homotopy equivalence for the associated manifolds
(M,p) and (N, q). Theorem 4.1.1 shows that that if two pared manifolds are pared
homotopy equivalent, then the completions of their associated boundary patterns
are either both useful or both not useful. In the case of pared manifolds, however,
this follows just from lemma 5.2.1 by verifying that Bonahon’s condition (B) is a
pared homotopy invariant, or alternatively it follows by combining lemmas 4.1.3
and 5.2.1. For reference, we state the result here.

Proposition 5.2.2. Let (M,P ) and (N,Q) be pared 3-manifolds which are
pared homotopy equivalent. Let p and q be their associated boundary patterns. Then
p is useful if and only if q is useful.

The next lemma implies that a homotopy between admissible homotopy equiv-
alences can always be taken to be admissible for the associated boundary patterns.

Proposition 5.2.3. Let (M,P ) and (N,Q) be pared 3-manifolds, and suppose
that f, g : (M,P )→ (N,Q) are maps which induce injections of π1(M) into π1(N).
If f and g are homotopic as maps from M to N , then they are homotopic as maps
of pairs.

Proof. Let H be a homotopy from f to g. Suppose first that A is an annulus
component of P . Let C be the core circle of A. The restriction of H to C × I is an
incompressible map (C × I, C × ∂I) → (N,Q). Since N is pared this is homotopic
as a map of pairs to a map into Q. Therefore it is homotopic relative to C × ∂I to
a map into Q. Using the homotopy extension property, H may be changed near A
so that it carries A into Q at all times.

Now consider a torus component T . Choose essential circles C1 and C2 in T
meeting in one point p. We regard C1 and C2 as 1-cells attached to the 0-cell p.
As in the annulus case, we may assume that H maps C1× I to Q. Regard C2× I as
the quotient of a disk D, obtained by identifying two 1-cells in ∂D to form {p}× I.
Then, the restriction of H to C2×I is induced by a map of D into N that carries ∂D
to Q. Since Q is incompressible, there is another map of C2× I into Q which agrees
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with H on the boundary of C2 × I. Since π2(N) = 0, this map and the restriction
of H are homotopic relative to the boundary of C2 × I, so H may be changed so
that it maps C1 ∪ C2 to Q at all times. Since T is obtained by attaching a 2-cell
E to C1 ∪C2, the same argument using E and the fact that π3(N)=0 allows us to
change H so that it maps T to Q at all times.

Repeating these procedures for all components of P results in an admissible
homotopy from f to g. �

We now examine some properties related to relative compression body neigh-
borhoods in pared manifolds. First, we note that in pared manifolds, torus and
annulus constituents of a minimally imbedded relative compression body can occur
only in a very special configuration.

Lemma 5.2.4. Let (M,P ) be a pared manifold, and let V be a minimal compres-
sion body neighborhood of a free side F of (M,P ). Suppose that some constituent
Fi of V is a torus or annulus. Then the component of M − V that contains Fi is
of the form Fi × [−1, 0], where Fi = Fi × {0} and Fi × {−1} ∪ ∂Fi × [−1, 1] is a
component of P .

Proof. The lemma is obvious if (M,P ) is elementary, so assume that (M,P )
is nonelementary. Suppose first that Fi is a torus. Then π1(Fi) is conjugate into the
fundamental group of a component G of P . This implies that Fi is homotopic into
G. By theorem 3.1.2, Fi is homotopic into G in M − V , so the Parallel Surfaces
Theorem 2.5.7 implies that Fi and G cobound a product which is the asserted
component of M − V

Suppose Fi is an annulus. Since ∂Fi ⊂ P , pared condition (P3) implies that
Fi is properly homotopic into P and hence into P ∩M − V (since P meets V in
collar neighborhoods of annuli of P ). Again by theorem 3.1.2, Fi is homotopic in
M − V into P . Let W be the component of M − V that contains Fi and let w be
the submanifold boundary pattern. Since (W,w) has no compressible free sides,
yet its completion contains a 2-faced disk whose boundary does not bound a disk
in ∂W , lemma 2.4.6 implies that W is a product of a 2-faced disk with S1, so has
the asserted form. �

It is immediate from lemma 5.2.4 and the definition of a normally imbedded
relative compression body neighborhood that no properly imbedded constituent of
a normally imbedded relative compression body neighborhood of a free side is an
annulus or torus. Thus we have:

Lemma 5.2.5. Let (N,Q) be a pared manifold, and let U be a normally imbed-
ded relative compression body neighborhood of a free side F of (N,Q). If G is a
constituent of U that is a torus or annulus, then G× {0} ∪ ∂G× I is a component
of Q.

Lemma 3.5.2 shows that the boundary pattern of the normal core of a pared
manifold always has a useful completion. We now check that the normal core is
also pared.

Proposition 5.2.6. Let (M,P ) be a pared manifold with normal core (M ′, p′).
Put P ′ = |p′|. Then each component of (M ′, P ′) is a nonelementary pared manifold.
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Proof. If (M,P ) is elementary, then M ′ is empty, so we may assume that
(M,P ) is nonelementary. Since M is irreducible and the frontier of M ′ is incom-
pressible and contains no 2-spheres, M ′ is irreducible. By construction, each com-
ponent of P ′ is either a torus component of P or an annulus which is a deformation
retract of an annulus of P , so (M ′, P ′) satisfies pared condition (P1). Property
(P3) follows from (P3) for (M,P ) using the Homotopy Enclosing Theorem 3.1.2.

To establish property (P2), suppose that H is a noncyclic abelian subgroup of
π1(M ′) (where π1(M ′) is based at a point in some component of M ′). By (P2)
for M , H must be isomorphic to Z × Z and be conjugate in π1(M) into π1(T ),
where T is a torus component P . Suppose that T is not in M ′. Then there is a
normally imbedded relative compression body neighborhood V in M which has T
as a constituent and meets M ′ in some other constituents. Regarding V as the
union of T × I with some 1-handles, it follows that π1(M) is of the form π1(T ) ∗G
where π1(M ′) is a subgroup of G. But then, the subgroup H cannot be conjugate
into π1(T ), since a nontrivial subgroup of a free product can be conjugate into
at most one free factor. We conclude that T ⊂ M ′, and hence in M ′ ∩ P = P ′.
Since M ′ is aspherical, there is a map of a torus into M ′ which carries π1(T )
isomorphically to H. Since M is aspherical and H is conjugate in π1(M) into
π1(T ), this map is homotopic in M to a map whose image lies in T . The Homotopy
Enclosing Theorem 3.1.2 shows that there is a deformation of this homotopy to a
homotopy in M ′. Therefore H is conjugate in π1(M ′) into the fundamental group
of a component of P ′, verifying (P2).

Finally, suppose that a component of (M ′, P ′) were elementary. It cannot be
(A2× I, ∅), since the free sides of (M ′, P ′) are incompressible. If it is (A2× I, {A2×
{0}}) or (T 2 × I, {T 2 × {0}}), it forms a spurious component and cannot be part
of the normal core (or alternatively, it violates lemma 5.2.5). �

5.3. The characteristic submanifold of a pared manifold

In this section we investigate the characteristic submanifold of a pared 3-
manifold with incompressible free sides. The main result, theorem 5.3.4, shows
that both the I-bundle components and the Seifert-fibered components are severely
constrained. In fact, the Seifert-fibered components are either solid tori or thick-
ened tori (S1×S1×I), and each component of the latter type meets the boundary in
a torus boundary component plus some other annuli. If a thickened torus compo-
nent meets the boundary in at least two annuli, the pared manifold is said to have
double trouble, a condition which plays an important role in the main theorems.
The final result of the present section is that the property of having double trouble
is preserved by admissible homotopy equivalences.

We begin by studying the I-bundle components of the characteristic submani-
fold.

Lemma 5.3.1. Let (M,P ) be a pared nonelementary 3-manifold whose associ-
ated boundary pattern p has useful completion p. Let (Σ, σ̂) denote the characteristic
submanifold of (M,p). Let (V, v̂) be a component of (Σ, σ̂) which is an I-bundle.
Then

(i) the lids of (V, v̂) must be contained in free sides of (M,p), and
(ii) every element of v̂ which is not a lid is an element of p.
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Proof. Lemma 2.10.9 shows that a lid of (V, v̂) could lie in |p| only if M
is homeomorphic to an I-bundle over the torus or Klein bottle, or a solid torus,
contradicting lemma 5.1.1. So (i) holds. Consequently, any element of v̂ which is
not a lid must be contained in an element of p. By lemma 2.10.8, it must equal the
element of p. �

In the pared setting, no element of p is a square, so part (ii) of lemma 5.3.1 has
the following immediate consequence.

Corollary 5.3.2. Let (M,P ) be a pared 3-manifold whose associated boundary
pattern p has useful completion p. Let (Σ, σ̂) denote the characteristic submanifold
of (M,p). Then no bound side of an I-bundle component of (Σ, σ̂) is a square. In
particular, no component of (Σ, σ̂) is an I-bundle over a disk.

The following corollary is also an easy consequence of lemma 5.3.1.
Corollary 5.3.3. Let (M,P ) be a pared 3-manifold, whose associated bound-

ary pattern p has useful completion p. Let (Σ, σ̂) denote the characteristic subman-
ifold of (M,p), and let (V, v) be a component of (Σ, σ̂) which is an I-bundle over a
topological annulus or Möbius band. Then (V, v) can be given an admissible Seifert
fibering.

Proof. The underlying space of V is a solid torus. By lemma 5.3.1, each
bound side of (V, v) is an element of p, and hence must be an annulus (rather than
a square). But any solid torus with boundary pattern consisting of incompressible
annuli can be given an admissible Seifert fibering. �

Suppose that (M,P ) is a pared 3-manifold for which the completion p of the associ-
ated boundary pattern p is useful. Corollary 5.3.3 allows us to adopt the following
convention:
Convention: The fibering of the characteristic submanifold of (M,p) is selected
so that none of its components is an I-bundle over a topological annulus or Möbius
band.
Equivalently, every solid torus component of the characteristic submanifold is
Seifert fibered.

We can now describe the characteristic submanifold of a boundary pattern
associated to a pared 3-manifold.

Theorem 5.3.4. (Pared Characteristic Submanifold Restrictions) Let (M,P )
be a nonelementary pared 3-manifold whose associated boundary pattern p has use-
ful completion p. Let (Σ, σ̂) denote the characteristic submanifold of (M,p), with
fibering selected so that no component of (Σ, σ̂) is an I-bundle over an annulus or
Möbius band.

(i) Suppose (V, v̂) is an I-bundle component of (Σ, σ̂). Then each of its lids
lies in a free side of (M,p), its bound sides are elements of p, and its base
surface has negative Euler characteristic.

(ii) Suppose (V, v̂) is a Seifert fibered component of (Σ, σ̂). Then V is home-
omorphic either to T 2 × I or to a solid torus. If V is homeomorphic
to T 2 × I, then one of its boundary components lies in P and the other
elements of v̂ are annuli in free sides of (M,p).
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Proof. We have already completed most of the work for the consideration of
the I-bundle components of (Σ, σ̂). Let (V, v̂) be an I-bundle component of (Σ, σ̂).
Since M is irreducible, the base surface is not a 2-sphere or projective plane. By
corollary 5.3.2, the base surface is not a disk. By hypothesis, the base surface is
not a topological annulus or Möbius band, and by lemma 5.1.1 and lemma 5.3.1,
the base is not a torus or Klein bottle. The other assertions of statement (i) follow
from lemma 5.3.1.

Let (V, v̂) be a component of (Σ, σ̂) which is Seifert fibered over (B, b). By
lemma 5.1.1, M cannot contain an imbedded Klein bottle, so B is orientable.

Every essential map of a torus into V must be homotopic into ∂M , and hence
into ∂V . In particular, a vertical essential torus, when projected to the base surface
B of V , must have image a loop which is homotopic into ∂B. Thus every essential
loop in B is homotopic into ∂B, so B is a disk or an annulus.

Suppose that B is a disk. We will prove that V is a solid torus. If not, then V
has at least two exceptional fibers. As in section 2.1 we have an exact sequence

1→ 〈t〉 → π1(V )→ 〈c1, . . . , cr | cpii = 1 for 1 ≤ i ≤ r〉 → 1 .

The boundary circle of B is represented by the loop c1c2 · · · cr. If r= 2 and p1 =
p2 =2, then V would be homeomorphic to the I-bundle over the Klein bottle, which
would contradict assertion (iii) of lemma 5.1.1. Therefore we assume that either
r > 2 or one of the pi > 2. Then, there is a loop in B0 which represents an element
of 〈c1, . . . , cr | cpii = 1 for 1 ≤ i ≤ r〉 which is not conjugate to a power of one of
the ci or of the boundary circle. The preimage of this loop in V is an immersed
incompressible torus which cannot be homotopic into ∂V , contradicting the fact
that V is pared. We conclude that there is at most one exceptional fiber, and
therefore V is a solid torus.

Suppose now that B is an annulus. Then V has two torus boundary components
T1 and T2. We claim that V = T 2 × I. By (P2) each Ti is homotopic into a torus
component Pi of P . If P1 6= P2, then since a fiber of V in T1 is homotopic to a fiber
in T2, a violation of (P3) would occur. So P1 = P2, and by homotopy extension
starting at the inclusion map of V we obtain an admissible map from (V, ∅) to (M,p)
carrying T1 ∪ T2 into P1. This map cannot be essential, since then Waldhausen’s
Theorem 2.5.6 would show it is homotopic to a finite covering, and (M,P ) would be
elementary. So arguing as in the second paragraph of the proof of proposition 5.2.3,
the map is homotopic relative to ∂V to a map into P1 (alternatively, the map
lifts to the covering of M corresponding to the subgroup π1(P1) of π1(M), and
P1 is a deformation retract of this covering). Since π1(V ) → π1(M) is injective,
we conclude that π1(T ) ∼= Z × Z, so V = T 2 × I. Using the Parallel Surfaces
Theorem 2.5.7, T 2×{1/2} is parallel to P1, and using fullness of the characteristic
submanifold, P1 ⊂ V and hence P1 is one of the Ti. Since M is nonelementary, the
other boundary component of V cannot lie in ∂M . None of the elements of v can
be annuli of P , since then condition (P3) would be violated. Therefore all other
elements of v are annuli imbedded in free sides of (M,p). �

We will say that (M,P ) has double trouble if there are two simple closed curves
γ1 and γ2 in ∂M−P that are not homotopic in ∂M to each other, but are homotopic
in M to an essential simple closed curve γ in a torus component of P . The next
lemma characterizes double trouble in terms of the characteristic submanifold.
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Lemma 5.3.5. Let (M,P ) be a pared 3-manifold whose associated boundary pat-
tern (M,p) has useful completion. Let (Σ, σ̂) denote the characteristic submanifold
of (M,p). Then (M,P ) has double trouble if and only if (Σ, σ̂) contains a Seifert
fibered component (V, v̂) which is homeomorphic to T 2× I and whose frontier in M
has at least two components (which are necessarily annuli).

Proof. Suppose p is useful and (Σ, σ̂) contains a Seifert fibered component
(V, v̂) which is homeomorphic to T 2× I and whose frontier has at least two compo-
nents. By the Pared Characteristic Submanifold Restrictions (theorem 5.3.4), one
of its boundary components is a torus component of P , and there must be at least
two annuli in v̂ lying in ∂M − P .

The core curves of distinct annuli of v̂ cannot be homotopic to each other in
∂M . For if so, then there are two such curves that cobound an annulus A in ∂M ,
meeting M − V in an annulus A′. The component W of M − V that meets A′ is
bounded by A′ and an annulus A′′ in the frontier of V . By the Enclosing Property,
A′ is admissibly homotopic into Σ. The restriction of such a homotopy to an arc in
A′ connecting its boundary components shows that the proper boundary pattern
on W is not useful. Lemma 2.4.6 then shows that W is the product of a 2-faced
disk and a circle, violating the fullness of Σ. However, the core curves of the annuli
of v̂ are homotopic to each other in V and hence are homotopic to some curve in
the other component of ∂V , which is a toroidal component of P . Thus (M,P ) has
double trouble.

Conversely, suppose (M,P ) has double trouble. Let γ1 and γ2 be two simple
closed curves in ∂M − P which are not homotopic to each other in ∂M but are
both homotopic to a curve γ in a toroidal component T of P . For each i let Ai be a
singular annulus spanned by γi and γ. Then each Ai is admissibly homotopic to an
annulus A′i in a component (Vi, v̂i) of the characteristic submanifold. But since T
is entirely contained in a single component (V, v̂) of the characteristic submanifold,
we must have V1 = V2 = V . By the Pared Characteristic Submanifold Restric-
tions 5.3.4, V is homeomorphic to T 2 × I and one of its boundary components is
a torus component of P . Since γ1 and γ2 are homotopically distinct in ∂M , the
components of ∂A′1 and ∂A′2 lie in distinct annuli of v̂. Thus, there must be more
than one component of the frontier of V . �

The final result of this section asserts that the property of having double trouble
is a pared homotopy type invariant.

Theorem 5.3.6. Let (M,P ) be a pared 3-manifold whose associated boundary
pattern p has useful completion, and let (N,Q) be a pared 3-manifold which is
pared homotopy equivalent to (M,P ). Then (M,P ) has double trouble if and only
if (N,Q) does.

Proof. By proposition 5.2.2, q has useful completion. By the Classification
Theorem 2.11.1, the characteristic submanifolds of (M,p) and (N, q) (with their
proper boundary patterns in (M,p) and (N, q) ) are admissibly homotopy equiva-
lent. Recall that, by the Finite Index Theorem 2.1.1, any component of the char-
acteristic submanifold of (M,p) or (N, q) which is homotopy equivalent to T 2 × I
is homeomorphic to T 2 × I. By the Pared Characteristic Submanifold Restrictions
(theorem 5.3.4), each component of their characteristic submanifolds that is home-
omorphic to T 2 × I has proper boundary pattern consisting of one boundary torus
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and the components of its frontier. Admissibly homotopy equivalent components
have the same number of elements in their boundary patterns, so lemma 5.3.5
implies the assertion of the theorem. �



CHAPTER 6

Small 3-Manifolds

In this section we introduce and study small 3-manifolds. Examples 1.4.1, 1.4.2,
and 1.4.3 of chapter 1 suggest that it is quite common for the group R(M,m) of
outer automorphisms which are realizable by admissible homeomorphisms to have
infinite index in Out(π1(M), π1(m)). The Main Topological Theorems, stated in
section 8.1, make this precise; they give the relatively short list of manifolds for
which the index is finite. Main Topological Theorem 1 shows that the only manifolds
on this list which have a compressible free side are the relative compression bodies
and a few others which we will call small.

We will especially focus on the small pared manifolds, which are characterized in
lemma 6.1.1. In chapter 7 we will see that the components of the space GF(M,P ) of
geometrically finite uniformizations of a pared 3-manifold (M,P ) are enumerated
by the cosets of R+(M,P ) in Out(π1(M), π1(P )) (see corollary 7.3.1.) It will
then follow, from Main Topological Theorem 1, that if (M,P ) has a compressible
free side, then GF(M,P ) has finitely many components if and only if (M,P ) is
either small or is a relative compression body (see the Main Hyperbolic Theorem
in chapter 8).

A pared homotopy type of pared manifolds is said to be small if every pared
3-manifold in its homotopy type is either a relative compression body or is small.
In theorem 6.2.1, we will identify exactly which pared homotopy types are small.
The space GF(π1(M), π1(P )) of all geometrically finite uniformizations of pared
manifolds which are pared homotopy equivalent to (M,P ) is a natural object of
study in the deformation theory of hyperbolic 3-manifolds as it corresponds to
the interior of the space of (conjugacy classes of ) discrete faithful representations
of π1(M) into PSL(2,C) such that all elements of π1(P ) are taken to parabolic
elements. It will then follow that if a pared 3-manifold (M,P ) has a compressible
free side, then GF(π1(M), π1(P )) has finitely many components if and only if the
pared homotopy type of (M,P ) is small (see the Main Hyperbolic Corollary in
chapter 8).

6.1. Small manifolds and small pared manifolds

In this section, we will define small manifolds, and then determine which of
them are pared.

Definition: Let (M,a) be an orientable 3-manifold with a boundary pattern whose
elements are disjoint and incompressible, and which is not a relative compression
body. Assume that (M,a) has a compressible free side F , and that all other free
sides of (M,a) are incompressible. Assume further that every element of a that
meets ∂F is an annulus. Let (V, v) be a normally imbedded relative compression
body neighborhood of F . We say that (M,a) is small if one of the following occurs,

97
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where as usual k is the number of 1-handles of V and F1, . . . , Fm are the constituents
of V .

I. k=1, m=1, and if W =M − V , then either
(a) W is a twisted I-bundle with F1 as its lid, or
(b) W is a solid torus, F1 is an annulus, and π1(F1) → π1(W ) is not

surjective.
II. k=1, m=2, F1 separates M , and for each of the one or two components

W of M − V , with frontier G, either
(a) W is an I-bundle with G as one of its lids,
(b) W is a solid torus, G is an annulus, and π1(G) → π1(W ) is not

surjective, or
(c) W is either S1 × S1 × I or the I-bundle over the Klein bottle, and G

is an annulus.
III. k=1, m=2, F1 does not separate M , and if W =M − V , then either

(a) (W,F1, F2) is homeomorphic to (F1 × [0, 1], F1 × {0}, F1 × {1}),
(b) W is a solid torus, F1 and F2 are essential annuli in ∂W , and

π1(F1)→ π1(W ) is not surjective, or
(c) W is S1 × S1 × I, F1 and F2 lie in different boundary components

of W , and at least one of F1 or F2 is an annulus.

In this definition, the statement that W is an I-bundle does not mean that with its
submanifold boundary pattern it is admissibly fibered, only that topologically it is
an I-bundle.

We refer to small manifolds by their type, such as type Ia, etc. Type IIa
indicates a manifold of type II where M − V has only one component (that is, one
of the constituents of V lies in ∂M), and this component satisfies condition II(a).
Type IIab indicates a manifold of type II where M − V has two components, one
satisfying condition II(a) and the other condition II(b). Type IIbx indicates a
manifold of type II where M − V has one or two components, at least one of which
satisfies condition II(b).

In a small manifold of type IIa, M − V is a twisted I-bundle, since otherwise
(M,P ) would be a relative compression body. Similarly, in a small manifold of type
IIaa, at least one of the components of M − V is a twisted I-bundle.

We note that the elements of a cannot be disks, since the free sides other than
F are incompressible. The definition implies that the elements of a that do not
meet F must be of three kinds:

(i) annuli parallel to annuli that meet ∂F ,
(ii) incompressible submanifolds of the torus boundary component of W that

does not meet F , where M is of type IIcx and W =S1 × S1 × I as in case
II(c), and

(iii) incompressible submanifolds of Fi × {−1}, where M is of type IIax and
Fi× [−1, 0] is a product I-bundle component of M − V with ∂Fi× [−1, 0]
contained in P , and Fi × {0} equals Fi × [−1, 0] ∩ V and is a constituent
of V .

For if a component W of M − V is not as in (ii) or (iii), then each component of
∂W ∩ ∂M is an annulus, and the only incompressible surfaces in an annulus, other
than disks, are annuli. For pared small manifolds, only elements as in (iii) can



6.1. SMALL MANIFOLDS AND SMALL PARED MANIFOLDS 99

occur, since annuli as in (i) would violate the definition of pared manifold, while
tori as in (ii) cannot occur by lemma 6.1.1 below.

Lemma 6.1.1. A small manifold (M,a) is pared if and only if all the following
hold:

(i) it is of type Ia, IIa, IIaa, or IIIa,
(ii) each element of a is an annulus or torus,
(iii) for each constituent Fi of V that is a torus, Fi ∈ a,
(iv) for each constituent Fi of V that is an annulus, Fi ∪ (∂Fi × I) ∈ a, and
(v) no two annuli in a are homotopic.

Conditions (iii) and (iv) are together equivalent to the assertion that any constituent
that is a torus or annulus is contained in |a|. Condition (iv) is redundant, since it
is implied by (v).

Proof. Assume that (M,a) is pared. Since (M,a) is small, M 6= V and
therefore (M,a) cannot be elementary. We will first rule out the types other than
those listed in (i). For a small manifold of type Ib, IIbx, or IIIb, the component
of the frontier of M − V which is contained in a solid torus is an annulus which
violates condition (P3) of the definition of a pared 3-manifold. Consider a small
manifold of type IIcx. Suppose first that there is a component W of M − V which
is homeomorphic to S1 × S1 × I. Its frontier is an annulus G in S1 × S1 × {1}, and
by lemma 5.1.1 its other boundary component S1×S1×{0} must be an element of
a. Then W contains an annulus with one end a boundary component of G and the
other end in S1 × S1 × {0}, violating condition (P3). For the other case of a small
manifold of type IIcx, there is a component of M − V that is a twisted I-bundle
over the Klein bottle, violating lemma 5.1.1(iii). In a manifold of type IIIc, (P2) is
violated. This verifies assertion (i).

Condition (ii) is immediate from the definition of pared, conditions (iii) and (iv)
follow from lemma 5.2.5, and (v) follows from (P3).

Conversely, assume that the five conditions hold for (M,a). By (ii), every
element of a is an annulus or torus, and these are incompressible by definition since
(M,a) is small. Thus (P1) holds. To establish (P2) suppose that A is a noncyclic
abelian subgroup of π1(M). Since (M,a) is small and is one of the types allowed
in (i), π1(M) is a free product having one of the three forms H, π1(G1) ∗ H, or
π1(G1) ∗ π1(G2) ∗ H where H is free and each π1(Gi) is the fundamental group
of a closed orientable or nonorientable surface S. If S is an orientable surface,
then it appears as one of the constituents Fi of V ; if a nonorientable surface, then
it appears as the 0-section of a twisted I-bundle component of M − V . Since A is
freely indecomposable and not infinite cyclic, the Kurosh Subgroup Theorem shows
it is conjugate into one of the π1(Gi). The only closed surfaces whose fundamental
group contains a noncyclic abelian group are the Klein bottle and torus. If a Klein
bottle occurred, then one of the Fi must be a torus bounding a twisted I-bundle
over the Klein bottle in M , which is excluded by condition (iii). Therefore A is
conjugate into some π1(Fi) where Fi is a torus, and by condition (iii), Fi ∈ a. This
verifies condition (P2).

Let f : (S1× I,S1×∂I)→ (M, |a|) be an incompressible map of pairs. Since f is
incompressible and f(S1×∂I) is disjoint from the 1-handles of V , we may change f
by a homotopy of pairs so that its image is disjoint from the cocores of the 1-handles
of V . The union of the constituents is a deformation retract of the complement in
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V of the cocores of its 1-handles, so we may assume by further homotopy of pairs
that the image of f lies in M − V ∪ (

⋃
Fi).

If the image of f lies in some Fi which is contained in ∂M (necessarily a torus
or annulus), then since Fi ⊆ |a|, condition (P3) is verified for f . So we may assume
that the image of f lies in some component W of M − V . By condition (i), W is
an I-bundle, at least one of whose lids is a constituent of V .

Suppose first that W is a product I-bundle Fi × [−1, 0] with Fi × {0} a con-
stituent of V and Fi × {−1} ⊂ ∂M . Since M is not a relative compression body,
this can occur only when M is of type IIaa. We may assume that the image of
f lies in Fi × {−1}. By (iii), Fi is not a torus, so |a| ∩ Fi × {−1} is a collection
of incompressible annuli. Suppose for contradiction that the loops f(S1 × {0})
and f(S1 × {1}) lie in two different annuli in this collection, say A1 and A2. In
π1(Fi×{−1}), their center circles represent elements x and y. By (iii) and (iv), Fi
has negative Euler characteristic, so the subgroup H generated by x and y is free
of rank at most 2. The map f lifts to the covering of Fi × {−1} determined by
this subgroup, so some powers of x and y are conjugate in H and therefore H is
free of rank 1. Therefore the covering is an open annulus, and since x and y lift to
elements represented by simple closed curves, they are freely homotopic. Therefore
A1 and A2 are homotopic, violating condition (v). So f(S1 × {0}) and f(S1 × {1})
both lie in a single annulus A1 of |a| ∩ Fi × {−1}. An arc γ connecting S1 × {0}
and S1 × {1} determines an element g ∈ π1(Fi × {−1}) with gxpg−1 =xq for some
nonzero p and q. By a similar covering space argument, g lies in the cyclic subgroup
generated by x, so the restriction of f to γ is homotopic relative to its endpoints
to a map into A1. This shows that the lift of f to the covering space determined
by π1(A1) carries both boundary components of S1 × I to the same annulus Ã1

of the preimage of A1. Since there is a deformation retraction from this covering
space to Ã1, f is homotopic as a map of pairs to a map taking S1 × I to A1, and
condition (P3) is verified for f .

Suppose that W is a twisted I-bundle over a nonorientable surface N , whose
lid is a constituent G of V . This can occur when M is of type Ia, IIa, or IIaa.
By (iv), G is not an annulus so N is not a Möbius band. Let A1, . . . , Ar be the
annuli which are the preimages in the I-bundle W of the boundary components
of N . Each boundary component of an Ai meets an element of a which meets a
boundary component of F , and by the definition of small manifold (or by (ii)) this
element is an annulus. By (v), Ai must be entirely contained in an annulus of a.
So f is homotopic (as a map of pairs) to a map into N , carrying S1 × ∂I into ∂N .
Since N is not an annulus or Möbius band, the Baer-Nielsen Theorem 2.5.5 implies
that f is not essential. That is, the restriction of f to an arc connecting the two
boundary components of S1 × I is properly homotopic into ∂N . Again, covering
space arguments show that f is homotopic as a map of pairs into |a|.

Finally, suppose that W is a product I-bundle with both lids constituents of V .
This occurs when M is of type IIIa. Then M − V is of the form F1 × I and by (v),
∂F1× I ⊂ |a|. Since, by (iv) F1 is not an annulus, f is (as in the case when W was
a twisted I-bundle) homotopic as a map of pairs into ∂F1 × I. This completes the
verification of pared condition (P3). �
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6.2. Small pared homotopy types

A pared homotopy type is called small if each of the homeomorphism types
that it contains is either a relative compression body or a pared small manifold.
To list the small pared homotopy types, it is convenient to introduce a definition.
A remote annulus of a pared relative compression body or a pared small manifold
(M,P ) is an annulus of P that does not meet the compressible free side F . Note
that pared small manifolds of types Ia, IIa, and IIIa never have remote annuli, since
in these cases each component of M − V is an I-bundle meeting ∂M only in its sides
(a twisted I-bundle for types Ia and IIa and a product I-bundle for type IIIa).

We will denote by (M ′, p′) and (M ′′, p′′) respectively the normal core and max-
imal incompressible core of (M,p). Recall that M ′ and M ′′ differ only in that the
spurious components of M ′′ are deleted to obtain M ′; when (M,P ) is pared, these
components must be of the form F×[0, 1/2] where F×{0} is a torus or annulus con-
stituent of a normally imbedded relative compression body V and F×{0}∪∂F×[0, 1]
is a component of P . Observe that for any pared relative compression body or pared
small manifold with no remote annuli, every component of (M ′, p′) is an admissible
I-bundle, each of whose lids is a free side of (M ′, p′).

Theorem 6.2.1. The small pared homotopy types of pared 3-manifolds are the
following:

(i) The homotopy type of a pared relative compression body having each con-
stituent either a torus or annulus. It is the only element in its pared
homotopy type.

(ii) The homotopy type of a pared relative compression body having exactly two
constituents and one 1-handle, and no remote annuli, or a pared small
manifold of type Ia, IIa, or IIaa having no remote annuli. It is the only
element in its pared homotopy type.

(iii) The homotopy type of a pared small manifold of type IIIa. Its pared homo-
topy type consists of itself together with a relative compression body having
exactly one constituent and one 1-handle, no remote annuli, and whose
constituent is not an annulus or torus. Each such relative compression
body is in one such homotopy type.

The manifolds in (i) include the case when P is empty and M is a handlebody. An
explicit example of a homotopy type as in (iii) was given as example 1.4.6.

Proof. Fix a pared manifold (M,P ) and consider a pared manifold (N,Q)
which is pared homotopy equivalent to (M,P ). We will first show that if (M,P )
is one of the manifolds listed in the theorem, then (N,Q) is a relative compression
body or is small. Denote by (M ′, p′) and (N ′, q′) the normal cores of (M,p) and
(N, q) respectively, and by (M ′′, p′′) and (N ′′, q′′) their maximal incompressible
cores. By theorem 3.5.1, (N ′, q′) is admissibly homotopy equivalent to (M ′, p′),
and by theorem 3.3.2, (N ′′, q′′) is admissibly homotopy equivalent to (M ′′, p′′).

Case I. (M,P ) is a relative compression body with every constituent either an
annulus or a torus.

Since M ′ is empty, so is N ′, so (N,Q) must be a pared relative compression
body and every one of its constituents is a a torus in Q or annulus contained in
an annular component of Q. Moreover, every annular component of P and Q must
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contain exactly one constituent. Since P and Q are homotopy equivalent, (N,Q)
has the same constituents as (M,P ). Since π1(M) ∼= π1(N), they also have the
same number of 1-handles, so they are pared homeomorphic. Note that this includes
the case when P is empty and M is a handlebody.

For the remaining cases, let V be a normally imbedded relative compression
body neighborhood of the compressible free side of (M,P ). We may assume that
some constituent of V , say F1, is not a torus or annulus, since otherwise case I
applies. As noted above, for any relative compression body or pared small manifold
with no remote annuli, (M ′, p′) is an admissible I-bundle, each of whose lids is a
free side of (M ′, p′). So by lemma 2.11.3, (N ′, q′) and (M ′, p′) are admissibly
homeomorphic. Also, (N ′′, q′′) and (M ′′, p′′) are admissibly homeomorphic. For
the spurious components of (M ′′, p′′) are all of the form (F × [−1, 0], {F × {−1} ∪
∂F × [−1, 0]}), with F an annulus or torus. Each spurious component of M ′′

corresponds under the admissible homotopy equivalence to a spurious component
(G × [−1, 0], {G × {−1} ∪ ∂G × [−1, 0]}) of N ′′. Since the only orientable surface
homotopy equivalent to an annulus is an annulus, and similarly for the torus, we
have F homeomorphic to G. Moreover, any homotopy equivalence from the annulus
to itself is homotopic to a homeomorphism, and similarly for the torus. It follows
that the admissible homotopy equivalence from (F × [−1, 0], {F × {−1} ∪ ∂F ×
[−1, 0]}) to (G× [−1, 0], {G× {−1} ∪ ∂G× [−1, 0]}) is admissibly homotopic to a
homeomorphism.

Case II. (M,P ) is small of type Ia.

We have (N ′, q′) admissibly homeomorphic to (M ′, p′), so N ′ is a twisted I-
bundle, whose lid is the free side of (N ′, q′). Since π1(N) ∼= π1(N ′) ∗ Z, N can
be formed by attaching a 1-handle to the lid of N ′, so (N,Q) is homeomorphic
to (M,P ).

Case III. (M,P ) has no remote annuli and is either a relative compression body
with exactly one 1-handle and two constituents, or is small of type IIa or IIaa.

In these cases M ′′ has two components M ′′1 and M ′′2 which are I-bundles with
a constituent of V as one lid. Since (N ′′, q′) is homeomorphic to (M ′′, p′), and
π1(N) ∼= π1(M) ∼= π1(M ′′1 ) ∗π1(M ′′2 ), N can be formed by adding a single 1-handle
that connects a lid of M ′′1 to a lid of M ′′2 . Therefore (N,Q) is homeomorphic to
(M,P ).

Case IV. (M,P ) is a pared small manifold of type IIIa.

Note that (M,P ) cannot have remote annuli, since such annuli would be ho-
motopic to annuli that meet free sides. Since (M ′, p′) and (N ′, q′) are admissibly
homeomorphic, (N,Q) can be obtained from (F1 × I, ∂F1 × I) by adding 1-handles
along F1 × ∂I. Since π1(N) ∼= π1(M), only one 1-handle is added. If the attaching
disks lie in different ends, then (N,Q) is homeomorphic to (M,P ), while if they lie
in the same end then (N,Q) is a relative compression body with one constituent
and one 1-handle, whose pared homeomorphism type is uniquely determined by F1

and hence by (M,m).
For any relative compression body having exactly one constituent and one

1-handle, no remote annuli, and whose constituent is not an annulus or torus,
reattaching one end of its 1-handle yields a homotopy equivalent pared manifold
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which is a pared small manifold of type IIIa. This gives the last assertion in
statement (iii) of theorem 6.2.1.

This completes the proof that the manifolds listed in theorem 6.2.1 have small
pared homotopy types. It remains to prove that the homotopy type is not small
assuming that (M,P ) is either

(1) a pared relative compression body not among those listed in the statement
of theorem 6.2.1, that is, some constituent is not an annulus or torus, and
either
(a) k=1 and m=1, and (M,P ) has a remote annulus,
(b) k=1 and m=2, and (M,P ) has a remote annulus, or
(c) k ≥ 2, or

(2) a pared small manifold of type IIaa, and has a remote annulus.
Suppose (M,P ) is a pared relative compression body with k = 1, m= 1, and

having a remote annulus. Then its constituent F1 contains an incompressible free
side G of (M,P ) that is not homeomorphic to F1. Form (N,Q) pared homotopy
equivalent to (M,P ) by reattaching one end of the 1-handle of M to a disk in the
interior of G, and letting Q be the copy of P in N . In N there is a normally
imbedded relative compression body U having two constituents, homeomorphic
to F1 and G, and one 1-handle; its frontier is the original constituent F1 and
the frontier of a regular neighborhood of G. If S is a free side of (N,Q), then
π1(S) → π1(N) is not surjective, so (N,Q) is not a relative compression body. If
(N,Q) were small, then since N − U is connected and (N,Q) is pared, it would be
of type IIIa. This is impossible because F1 is not homeomorphic to G. Since (N,Q)
is not a relative compression body and is not small, the pared homotopy type of
(M,P ) is not small.

Assume that (M,P ) is a pared relative compression body with k=1, m=2, and
having a remote annulus. Again there is an incompressible free side G contained in
a constituent, say F1, and not homeomorphic to F1. Form (N,Q) by reattaching
the 1-handle of (M,P ) that lies in F1 × {1} to G. As in the previous paragraph,
(N,Q) is pared homotopy equivalent to (M,P ), and is not a relative compression
body. If it were small, then it would have to be of type IIaa, but the component of
the normal core that is contained in F1 × I does not satisfy condition II(a), II(b),
or II(c) in the definition of small. Again, the pared homotopy type of (M,P ) is not
small.

Assume now that (M,P ) is a pared relative compression body with at least
two 1-handles. Let F1, . . . , Fm be its constituents, where we may assume that F1 is
not an annulus or a torus. If m=1, then attaching one end of one of the 1-handles
to F1 − P yields a manifold which is not a relative compression body and is not
small. If m ≥ 2, regard M as constructed so that for each 1 ≤ i < m, there is a
1-handle with one end attached to a disk in Fi × {1} and the other to a disk in
Fi+1 × {1}. If m= 2, then there is a second 1-handle, and by reattaching one end
of it in a component of F1 − P we obtain a manifold pared homotopy equivalent
to (M,P ) but not a relative compression body and not small. If m > 2, let H be
the 1-handle attached to F1 × {1} and F2 × {1}. Reattach the end of H that is in
F2 × {1} to a component of F2 − P to obtain a manifold which is pared homotopy
eqivalent to (M,P ) but not a relative compression body and not small.

Finally, suppose that (M,P ) is a pared small manifold of type IIaa which has a
remote annulus. We may assume that the component of M − V which contains F1



104 6. SMALL 3-MANIFOLDS

is of the form F1× [−1, 0], and that there is an annulus component of P lying in the
interior of F1×{−1}. One end of the 1-handle of V lies in F1×{1}; by reattaching
that end to a component of F1×{−1}−P , we produce a manifold (N,Q) which is
pared homotopy equivalent to (M,P ). There is no free side S of (N,Q) for which
π1(S)→ π1(N) is surjective, so (N,Q) is not a relative compression body. If (N,Q)
were small, then it would be of type IIaa, but the component of the normal core
that is contained in F1 × I does not satisfy condition II(a), II(b), or II(c) in the
definition of small. �



CHAPTER 7

Geometrically Finite Hyperbolic 3-Manifolds

In this section we discuss deformation spaces of geometrically finite hyperbolic
3-manifolds. In section 7.1 we introduce geometrically finite hyperbolic 3-manifolds
and define more formally the spaces GF(M,P ) and GF(π1(M), π1(P )) which we
will study. In section 7.2 we review the quasiconformal deformation theory of
Kleinian groups as developed by Ahlfors, Bers, Kra and Maskit. In section 7.3 we
combine this deformation theory with the work of Marden and Thurston to obtain
parameterizations of the spaces GF(M,P ) and GF(π1(M), π1(P )).

7.1. Basic definitions

A Kleinian group is a discrete faithful representation ρ : G → PSL(2,C) of
a group G into PSL(2,C). We will always regard PSL(2,C) as the group of
Möbius transformations of the Riemann sphere C = C ∪ {∞}. Every Möbius
transformation extends continuously to a homeomorphism of H3 ∪ C which is
an orientation-preserving isometry of hyperbolic 3-space H3. Moreover, every
orientation-preserving isometry of H3 extends continuously to a homeomorphism of
H

3 ∪C whose restriction to C is a Möbius transformation. Hence, we may identify
PSL(2,C) with the group of orientation-preserving isometries of H3. (See Maskit
[78] or Kapovich [61] for more details on the theory of Kleinian groups.)

If ρ : G→ PSL(2,C) is a Kleinian group, then the action of ρ(G) on C partitions
C into two sets. The domain of discontinuity Ω(ρ) is the maximal open subset of
C on which ρ(G) acts discontinuously. The limit set Λ(ρ) is the complement in C
of Ω(ρ). If G does not contain an abelian subgroup of finite index then Λ(ρ) is a
perfect set, and thus uncountable. In this case Ω(ρ) inherits a canonical hyperbolic
metric, called the Poincaré metric, on which ρ(G) acts as a group of isometries. If G
is torsion-free, then ρ(G) acts freely on Ω(ρ) and Ω(ρ)/ρ(G) inherits the structure
of a hyperbolic Riemann surface.

We define
N(ρ)=H3/ρ(G)

and
N̂(ρ)=(H3 ∪ Ω(ρ))/ρ(G).

The surface ∂N̂(ρ) = Ω(ρ)/ρ(G) is called the conformal boundary at infinity for
N(ρ). Ahlfors’ Finiteness Theorem ([4], see also Bers [15]) asserts that if G is
finitely generated then the conformal boundary is both topologically and analyti-
cally finite.

Ahlfors’ Finiteness Theorem: Suppose that G is a finitely generated, non-
abelian, torsion-free group and ρ : G → PSL(2,C) is a discrete faithful represen-
tation. Then the conformal boundary Ω(ρ)/ρ(G) is a finite area hyperbolic surface,
possibly disconnected.

105
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Let (M,P ) be an oriented pared 3-manifold. Let D(π1(M), π1(P )) denote the
space of discrete faithful representations ρ : π1(M) → PSL(2,C) such that ρ(g) is
parabolic if g ∈ π1(P ). Let

AH(π1(M), π1(P )) = D(π1(M), π1(P ))/PSL(2,C)

where PSL(2,C) acts by conjugation.
A representation ρ ∈ AH(π1(M), π1(P )) is said to be a geometrically finite

uniformization of (M,P ) if there exists an orientation-preserving homeomorphism
from M − P to N̂(ρ). We will let GF(M,P ) denote the space of geometrically
finite uniformizations of (M,P ). The representation ρ ∈ AH(π1(M), π1(P )) lies in
GF(π1(M), π1(P )) if and only if it is a geometrically finite uniformization of a pared
manifold (M ′, P ′) which is pared homotopy equivalent to (M,P ). In general we will
say that a discrete faithful representation ρ : π1(M) → PSL(2,C) is geometrically
finite if it lies in GF(M ′, P ′) for some pared manifold (M ′, P ′).

The next result guarantees the existence of hyperbolic 3-manifolds uniformizing
pared 3-manifolds with nonempty boundary.

Thurston’s Geometrization Theorem: If (M,P ) is an oriented pared 3-mani-
fold with nonempty boundary, then there exists a geometrically finite uniformization
of (M,P ).

Remarks: 1) The space AH(π1(M), π1(P )) naturally sits as a closed subset
of the character variety XT (π1(M), π1(P )) (which is a quotient of the set of con-
jugacy classes of representations of π1(M) into PSL(2,C) such that the image of
every element of π1(P ) has trace ±2). See Chapter V of Morgan-Shalen [97] or
Section 4.3 of Kapovich [61] for more details. The full version of Marden’s Stabil-
ity Theorem (Proposition 9.1 in [75]) implies that GF(π1(M), π1(P )) is an open
subset of AH(π1(M), π1(P )) (as a subset of XT (π1(M))). A result of Sullivan
[116] shows that GF(π1(M), π1(P )) is the interior of AH(π1(M), π1(P )), again as
a subset of XT (π1(M), π1(P )). Conjecturally (see Bers [12], Sullivan [116], and
Thurston [121]) GF(π1(M), π1(P )) is dense in AH(π1(M), π1(P )). In the epilogue,
we will discuss further the global topology of AH(π1(M), π1(P )).

2) Our definition of geometric finiteness differs somewhat from the standard
definitions. The most classical definition is that a Kleinian group Γ is geometrically
finite if there is a finite-sided convex fundamental polyhedron for its action on H3,
see Bowditch [20] for a complete discussion of various other equivalent definitions.

We will give a brief outline of a proof that our definition is equivalent to the
standard definitions. If N(ρ) is homeomorphic to M−P where (M,P ) is a pared 3-
manifold, then it follows immediately from Theorem 1 in Abikoff [2] that ρ(π1(M))
is geometrically finite in the classical definition. (In Abikoff’s language our defi-
nition implies immediately that N̂(ρ) has a well-positioned ample submanifold R
such that ∂R−∂C has characteristic zero. The submanifold R may be constructed
by simply taking the portion of N̂ which is identified with the complement in M
of a regular neighborhood of P .) Corollary 6.10 in Morgan [96] asserts that if ρ
is geometrically finite, in the standard definition, then N̂(ρ) is homeomorphic to
M − P where P is a pared manifold. (In [96], a hyperbolic 3-manifold N = H

3/Γ
is said to be geometrically finite if any ε-neighborhood of its convex core C(N)
has finite volume; this is shown to be equivalent to the classical definition in [20].
Corollary 6.10 in [96] asserts that, if Γ does not have a finite index Fuchsian sub-
group, then C(N) is homeomorphic to M −P where (M,P ) is a pared 3-manifold.
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However, Morgan’s statement that N is homeomorphic to C(N) is incorrect if ∂N̂
is nonempty. It should assert that N̂ is homeomorphic to C(N), which follows from
the fact that N̂ − C(N) is homeomorphic to ∂N̂ × (0, 1]. If Γ contains a Fuchsian
subgroup of finite index, then it is easily checked that N̂ is homeomorphic to M−P
where M is an I-bundle and M − P is the associated ∂I-bundle.)

7.2. Quasiconformal deformation theory: a review

In this section we briefly review the quasiconformal deformation theory of
Kleinian groups. In particular, we will outline the proof of the Quasiconformal Pa-
rameterization Theorem which gives a complete description of the space of Kleinian
groups which are quasiconformally conjugate to a given geometrically finite Kleinian
group.

Good references for the theory of quasiconformal maps are the books of Lehto-
Virtanen [71] and Lehto [70]. Good references for Teichmüller theory are the books
of Abikoff [1], Gardiner [44] and Lehto [70]. An excellent, analytically oriented,
survey of the quasiconformal deformation theory of Kleinian groups is given in a
paper of Bers [14]. We will take a more topological viewpoint.

7.2.1. Quasiconformal maps and Beltrami differentials. Given a func-
tion f : D → C defined on a domain D in C, we may write it as f(x, y) =
u(x, y) + iv(x, y). We say f is ACL (absolutely continuous on lines) if given any
rectangle R= [a, b] × [c, d] in D both u and v are absolutely continuous restricted
to almost every vertical and almost every horizontal line segment in R. If f is
ACL then the partial derivatives of u and v exist almost everywhere and we define
fx=ux + ivx and fy=uy + ivy. Then, we let fz= 1

2 (fx − ify) and fz̄= 1
2 (fx + ify).

(Recall that the Cauchy-Riemann equations assert that if f is analytic then fz̄=0

for all z ∈ D.) We define the Beltrami differential of f to be µf =
fz̄
fz

. Notice that

if f is differentiable at a point z and Jf(z) is its Jacobian, then the image of the
unit circle (in the tangent space Tz(D)) under Jf(z) is an ellipse, the ratio of the

lengths of the axes is given by K(z)=
1 + |µf (z)|
1− |µf (z)|

, and the angle that the preimage

of the (longer) axis makes with the x-axis is 1
2 arg(µf (z)).

One says that an orientation-preserving homeomorphism f : D → D′ is K-
quasiconformal if f is ACL and |µf | ≤ K−1

K+1 almost everywhere. This says that,
typically, very small circles are taken to curves very much like ellipses with eccen-
tricity at most K. One way of formalizing this is by defining

H(z) = lim sup
r→0

maxθ |f(z + reiθ)− f(z)|
minθ |f(z + reiθ)− f(z)|

.

An orientation-preserving homeomorphism f : D → C ∪ {∞} is K-quasiconformal
if and only if H is bounded on D−{∞, f−1(∞)} and H(z) ≤ K almost everywhere
in D (see pages 177 and 178 in Lehto [70]). If one uses the spherical metric on C,
then one need not exclude ∞ and f−1(∞) from consideration.

One may check that the composition of a K1-quasiconformal map and a K2-
quasiconformal map is a K1K2-quasiconformal map. Another useful fact is:

Proposition 7.2.1. (Theorem 1.5.1 in Lehto-Virtanen [71]) A quasiconformal
map is conformal if and only if it is 1-quasiconformal.
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The most fundamental result concerning quasiconformal maps is the Measur-
able Riemann Mapping Theorem (see Ahlfors-Bers [6] or Lehto [70]) which asserts
that the Beltrami differential determines the quasiconformal map (up to normal-
ization) and that every Beltrami differential (of norm less than 1) determines a
quasiconformal map.

Measurable Riemann Mapping Theorem: Suppose that µ ∈ L∞(C,C) and
‖µ‖∞ < 1. Then there exists a unique quasiconformal map φµ : C→ C whose Bel-
trami differential is µ and such that φµ fixes 0, 1, and ∞. Moreover, φµ depends
analytically on µ.

Notice that one may combine the Measurable Riemann Mapping Theorem and
the traditional Riemann Mapping Theorem to observe that the same result holds for
the upper half-plane H2. This version of the result is used in traditional Teichmüller
theory and also plays a role in our proof of the Quasiconformal Parameterization
Theorem.

Measurable Riemann Mapping Theorem (Disk version): Suppose that
µ ∈ L∞(H2,C) and ‖µ‖∞ < 1. Then there exists a unique quasiconformal map
φµ : H2 → H

2 whose Beltrami differential is µ and such that φµ fixes i, 2i, and 3i.
Moreover, φµ depends analytically on µ.

An alternative characterization of quasiconformal mappings of C is obtained
by considering biLipschitz homeomorphisms of H3. Any orientation-preserving
biLipschitz homeomorphism of H3 extends continuously to a homeomorphism of
H

3 ∪ C whose restriction to C is quasiconformal (see for example Theorem 3.22 in
Matsuzaki-Taniguchi [82]). On the other hand, any quasiconformal map φ : C→ C

extends to an orientation-preserving homeomorphism Φ: H3 ∪ C → H
3 ∪ C such

that the restriction of Φ to H3 is a biLipschitz homeomorphism (see, for example,
Theorem 5.31 in Matsuzaki-Taniguchi [82]). Combining these results gives:

Proposition 7.2.2. Let φ : C → C be an orientation-preserving homeomor-
phism. Then φ is quasiconformal if and only if it extends to a homeomorphism
Φ: H3 ∪ C → H

3 ∪ C whose restriction to H3 is biLipschitz (with respect to the
hyperbolic metric).

7.2.2. Teichmüller spaces and modular groups. Let S0 and S be hyper-
bolic Riemann surfaces. An orientation-preserving homeomorphism φ : S0 → S is
K-quasiconformal if whenever U0 ⊂ S0 and U ⊂ S are local coordinates so that
φ(U0) ⊂ U , then φ|U0 is K-quasiconformal. (Equivalently, we could have required
that the lift φ̃ : H2 → H

2 of φ be K-quasiconformal.) If φ is quasiconformal, we will
call (S, φ) a quasiconformal deformation of S0. Two quasiconformal deformations
(S1, φ1) and (S2, φ2) of S0 are said to be equivalent if there exists a conformal map
g : S1 → S2 which is homotopic to φ2 ◦ φ−1

1 . The Teichmüller space T (S0) of S0 is
the space of equivalence classes of quasiconformal deformations of S0. (Actually if
S0 does not have finite area this definition gives rise to what is usually called the
reduced Teichmüller space.)

Let ψ : S → S′ and ψ′ : S → S′ be two quasiconformal maps between Riemann
surfaces. We say that {ψt}t∈[0,1] is a strong quasiconformal isotopy between ψ and
ψ′ if it is an isotopy such that each ψt is a quasiconformal map and the Beltrami
differential µt of ψt depends continuously on t. The following proposition is the
quasiconformal analogue of the Baer-Nielsen theorem (Theorem 2.5.5).
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Proposition 7.2.3. (Earle-McMullen [33]) Let S and S′ be two finite area
Riemann surfaces. If ψ : S → S′ and ψ′ : S → S′ are homotopic quasiconformal
maps, then there exists a strong quasiconformal isotopy between ψ and ψ′.

As an immediate corollary we obtain the following stronger characterization of
the equivalence of two quasiconformal deformations.

Corollary 7.2.4. Let S0 be a finite area hyperbolic Riemann surface. Two
quasiconformal deformations (S1, φ1) and (S2, φ2) of S0 are equivalent if and only
if there exists a conformal map g : S1 → S2 which is strongly quasiconformally
isotopic to φ2 ◦ φ−1

1 .

Teichmüller proved, among other things, that the Teichmüller space of a finite
area Riemann surface is a cell. (See any of the above references on Teichmüller
theory for a proof of Teichmüller’s theorem, or see Bers [11].)

Teichmüller’s Theorem: If S0 is a finite area, hyperbolic Riemann surface which
is homeomorphic to a closed surface of genus g with p punctures, then T (S0) is
homeomorphic to R6g+2p−6.

Notice that if h : S1 → S2 is a homeomorphism between two finite area Riemann
surfaces, then one can find an isotopic quasiconformal homeomorphism j : S1 → S2.
If S1 is compact any isotopic diffeomorphism will do. If S1 is noncompact, we recall
that each end of S1 and S2 has a neighborhood which is conformally equivalent to
a punctured disk. Hence, one may choose j to be an isotopic diffeomorphism which
is conformal on a neighborhood of each end of S1. Notice that j gives rise to a
homeomorphism between T (S1) and T (S2) simply by identifying (S, φ : S1 → S)
with (S, φ ◦ j−1).

If F is an oriented topological surface, then the Teichmüller space T (F ) of
(equivalence classes of) marked hyperbolic structures on F consists of pairs (S, φ)
where S is a finite area hyperbolic surface and φ : F → S is an orientation-preserving
homeomorphism. Two pairs (S1, φ1) and (S2, φ2) are called equivalent if there exists
a conformal map g : S1 → S2 which is homotopic to φ2 ◦ φ−1. If S is a hyperbolic
surface and f : F → S is an orientation-preserving homeomorphism, then f induces
an identification of T (F ) and T (S).

The modular group Mod(S0) is the group of (isotopy classes of) orientation-
preserving diffeomorphisms of S0. If [h] is an isotopy class in Mod(S0), then we
may choose a representative h which is quasiconformal. Then [h] acts on T (S0) by
taking (the equivalence class of) (S, φ) to (the equivalence class of) (S, φ ◦ h). One
may readily check that the action of [h] is independent of our choice of representative
and that Mod(S0) acts as a group of homeomorphisms of T (S0). Harvey [47] gives
a more complete discussion of the modular group. Notice that if f : F → S is an
orientation-preserving homeomorphism of F , then f induces an identification of
Mod(F ) with Mod(S).

The following theorem combines results of various authors. We will say that
a group G of automorphisms of a space acts almost effectively if there is a finite
normal subgroup G0 such that G/G0 acts effectively.

Theorem 7.2.5. Let S be a finite area hyperbolic Riemann surface which is
homeomorphic to the interior of a compact surface F . Then Mod(S) is isomorphic
to an index two subgroup of Out(π1(F ), π1(∂F )), and Mod(S) acts almost effectively
and properly discontinuously on T (S).
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We note that, in fact, Mod(S) usually acts effectively on T (S). In particular,
it always acts effectively if g has genus at least 3. For a complete enumeration of
situations when Mod(S) does not act effectively see MacBeath-Singerman [74].

7.2.3. Quasiconformal deformation theory of Kleinian groups. For the
remainder of the section, we will assume that (M,P ) is an oriented pared manifold
and ρ0 ∈ AH(π1(M), π1(P )). A quasiconformal deformation of ρ0 is a pair (ρ, φ̃)
where ρ : π1(M) → PSL(2,C) is a representation of π1(M) and φ̃ : C → C is a
quasiconformal map such that ρ(g) = φ̃ ◦ ρ0(g) ◦ φ̃−1 for all g ∈ π1(M). Note that
if (ρ, φ̃) is a quasiconformal deformation of ρ0, then ρ ∈ AH(π1(M), π1(P )).

We now define the quasiconformal deformation space Q̂C(ρ0) to be the space
of all quasiconformal deformations of ρ0, where (ρ, φ̃) and (ρ′, φ̃′) are said to be
equivalent if

(1) there exists γ ∈ PSL(2,C) such that ρ′=γ ◦ ρ ◦ γ−1, and
(2) there exists an equivariant strong quasiconformal isotopy {ψ̃t} between φ̃

and γ−1 ◦ φ̃′, where equivariant means that ρ(g) ◦ ψ̃t = ψ̃t ◦ ρ(g) for all
g ∈ π1(M) and all t.

Notice that condition (1) is equivalent to saying that there exists γ ∈ PSL(2,C)
such that (ρ, φ̃′′) is a quasiconformal deformation of ρ0, where φ̃′′ = γ−1 ◦ φ̃′. Con-
dition (2) then assures us that there is a quasiconformal isotopy between the maps
φ : ∂N̂(ρ0) → ∂N̂(ρ) and φ′′ : ∂N̂(ρ0) → ∂N̂(ρ). A 3-dimensional characterization
of this equivalence is given by corollary 7.2.8.

If (ρ, φ̃) is a quasiconformal deformation of ρ0, then φ̃ descends to a homeomor-
phism φ : ∂N̂(ρ0)→ ∂N̂(ρ). If ρ0 is geometrically finite, then Marden [75] observed
that φ extends to a “quasiconformal” homeomorphism Φ: N̂(ρ0) → N̂(ρ). Later,
Douady-Earle [32], Reimann [111], Thurston [120], and Tukia [125] proved that
φ extends to a biLipschitz homeomorphism of N(ρ0) to N(ρ), with no hypotheses
on ρ0.

Proposition 7.2.6. (Douady-Earle, Reimann, Thurston, Tukia) Let (ρ, φ̃) be
a quasiconformal deformation of ρ0. Then there exists a continuous extension of
φ : ∂N̂(ρ0)→ ∂N̂(ρ) to a homeomorphism Φ: N̂(ρ0)→ N̂(ρ), whose restriction to
N(ρ0) is biLipschitz. Moreover, Φ depends continuously on the Beltrami differential
µφ̃ of φ̃, and Φ is an isometry if φ̃ is conformal.

An immediate corollary of the above result is the fact that any quasiconformal
deformation of a geometrically finite Kleinian group is itself geometrically finite.

Corollary 7.2.7. If ρ0 ∈ GF(M,P ) and (ρ, φ̃) is a quasiconformal deforma-
tion of ρ0, then ρ ∈ GF(M,P ).

As another corollary of proposition 7.2.6 we obtain a 3-dimensional character-
ization of the equivalence of two quasiconformal deformations of ρ (compare with
corollary 7.2.4).

Corollary 7.2.8. Let ρ0 be a finitely generated Kleinian group. Two quasi-
conformal deformations (ρ, φ̃) and (ρ′, φ̃′) are equivalent in Q̂C(ρ0) if and only if
there exists a homeomorphism G : N̂(ρ)→ N̂(ρ′) which is an isometry with respect
to the hyperbolic metric on N(ρ) and is isotopic to Φ′ ◦ Φ−1.
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Proof. First suppose that (ρ, φ̃) and (ρ′, φ̃′) are equivalent. Let γ be the
element of PSL(2,C) such that ρ′=γ ◦ ρ ◦ γ−1 and there exists a strong equivari-
ant quasiconformal isotopy {ψ̃t} between φ̃ and γ−1 ◦ φ̃′. Then γ descends to a
homeomorphism G : N̂(ρ) → N̂(ρ′) which is an isometry on N(ρ) and ∂N̂(ρ) and
{ψ̃t} descends to a strong equivariant quasiconformal isotopy {ψt} between φ and
G−1 ◦ φ′. Proposition 7.2.6 can then be used to extend {ψt} to an isotopy between
Φ and G−1 ◦Φ′. Hence, there exists a homeomorphism G : N̂(ρ)→ N̂(ρ′) which is
an isometry with respect to the hyperbolic metrics on both N(ρ) and ∂N̂(ρ) and
is isotopic to Φ′ ◦ Φ−1.

Now suppose that there exists a homeomorphism G : N̂(ρ)→ N̂(ρ′) such that
G is an isometry with respect to the hyperbolic metrics on both ∂N̂(ρ) and N(ρ)
and G is isotopic to Φ′ ◦ Φ−1. Let S be a component of ∂N̂(ρ), then (φ′ ◦ φ−1)|S
is isotopic to the isometry G|S . Hence, by proposition 7.2.3, there exists a strong
quasiconformal isotopy between (φ′ ◦ φ−1)|S and G|S .

Let γ be the lift of G|∂N̂(ρ) to a conformal map from Ω(ρ) to Ω(ρ′). We note
that γ extends to a conformal map defined on all of C, since it is the extension of
the isometry G̃ which is the lift of G|N(ρ) to H3. In particular, ρ′=γ ◦ ρ ◦ γ−1.

We may lift the strong quasiconformal isotopies between φ′ ◦ φ−1 and G on
each component of ∂N̂ρ to obtain a strong quasiconformal isotopy {ψ̃t}, defined
only on Ω(ρ), between φ̃′ ◦ φ̃−1 and γ. We then extend each ψ̃t to a function
defined on all of C by setting ψ̃t(ξ) = φ̃′ ◦ φ̃−1(ξ) = γ(ξ) for all ξ ∈ Λ(ρ). Maskit’s
Extension Theorem (see [76]), which we state below, insures that {ψ̃−1

t ◦ φ̃′} is a
strong equivariant quasiconformal isotopy between φ̃ and γ−1 ◦ φ̃′.

Maskit’s Extension Theorem: Let ρ : π1(M)→ PSL(2,C) be a finitely generated
Kleinian group. Suppose that a function f : C → C is quasiconformal on Ω(ρ),
f(Ω(ρ))=Ω(ρ), f is equal to the identity map on Λ(ρ), and

ρ(g) ◦ f=f ◦ ρ(g)

for all g ∈ π1(M). Then f is a quasiconformal homeomorphism.

We have completed the proof that (ρ, φ̃) and (ρ′, φ̃′) are equivalent, and hence
the proof of corollary 7.2.8. �

Remark: Instead of invoking Maskit’s Extension Theorem to produce the strong
quasiconformal isotopy above, one may use the structure of geometrically finite
hyperbolic 3-manifolds to produce an isotopy of biLipschitz homeomorphisms be-
tween G and Φ′ ◦ Φ−1. This isotopy then lifts to an isotopy of biLipschitz home-
omorphisms of H3 between G̃ and Φ̃′ ◦ Φ̃−1. The biLipschitz homeomorphisms in
the lifted isotopy then extend to quasiconformal homeomorphisms of C which give
a quasiconformal isotopy between γ and φ̃′ ◦ φ̃−1. With a little more care, one can
make sure that the quasiconformal isotopy produced agrees with {ψ̃t} on Ω(ρ0) and
hence is strong. This argument is more topological than the argument given above,
but also more complicated.

Let S1, . . . , Sn denote the components of ∂N̂ρ0 . We can then define

T (ρ0) = T (S1)× · · · × T (Sn) .
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If (ρ, φ̃) is a quasiconformal deformation of ρ0, then φ̃ induces a quasiconformal
homeomorphism φ : ∂N̂(ρ0) → ∂N̂(ρ). Hence, if Si is any component of ∂N̂(ρ0),
then (φ(Si), φ|Si) is an element of T (Si). We define a map Z : Q̂C(ρ0)→ T (ρ0) by
setting

Z(ρ, φ̃) = ((φ(S1), φ|S1), . . . , (φ(Sn), φ|Sn)) .
The first fundamental theorem of the quasiconformal deformation theory of

Kleinian groups is due to Bers [13]. It asserts that if ρ0 is geometrically finite, then
the map Z is a homeomorphism.

Theorem 7.2.9. (Bers [13]) Let (M,P ) be an oriented pared 3-manifold with
∂M −P nonempty. If ρ0 ∈ GF(M,P ), then Z : Q̂C(ρ0)→ T (∂ρ0) is a homeomor-
phism.

Sketch of the proof of theorem 7.2.9. Assume that Z(ρ, φ̃)=Z(ρ′, φ̃′).
Then for every component Si of ∂N̂(ρ0), there exists a conformal map from φ(Si) to
φ′(Si) which is strongly quasiconformally isotopic to φ′◦φ−1. We may then proceed
exactly as in the proof of corollary 7.2.8, to construct a strong quasiconformal
isotopy {ψt}, defined only on Ω(ρ), between φ̃′ ◦ φ̃−1 and a conformal map ψ̃1, such
that ψ̃t ◦ ρ(g)=ρ′(g) ◦ ψ̃t for all g ∈ π1(M). As in the proof of corollary 7.2.8, we
may extend ψ̃t to a strong equivariant quasiconformal isotopy, defined on all of C,
such that ψ̃1 is conformal on Ω(ρ).

We now make our only use of the fact that ρ0 (and hence ρ) is geometrically
finite. Ahlfors [5] proved that if ρ is geometrically finite, then Λ(ρ) has measure
zero. Proposition 7.2.1 then guarantees that ψ̃1 is conformal and thus gives an
element of PSL(2,C). Hence, again exactly as in the proof of corollary 7.2.8, we
see that (ρ, φ̃) and (ρ′, φ̃′) are equivalent. Therefore, Z is injective.

We now show that Z is surjective. Let

σ=((S′1, φ
′
1), . . . , (S′n, φ

′
n)) ∈ T (ρ0).

If U is a component of Ω(ρ) which covers Si, then we may lift φ′i to a quasiconformal
map φ̃U : U → U ′ where U ′ is the appropriate cover of S′i. Let µU be the Beltrami
differential of φ̃′i. (Although the image of φ̃U does not, a priori, lie in C, we may
still use local coordinates to construct a Beltrami differential.) By examining each
component separately we obtain a Beltrami differential µ defined on all of Ω(ρ0).
We then set µ=0 on Λ(ρ0) to obtain a Beltrami differential defined on C. Choose
φ̃ to be a quasiconformal map with Beltrami differential µ. By construction, for
any g ∈ π1(M), φ̃ and φ̃ ◦ ρ0(g) have the same Beltrami differential. Hence, by the
uniqueness portion of the Measurable Riemann Mapping Theorem, φ̃◦ρ0(g)◦ φ̃−1 is
a Möbius transformation. Thus, we obtain a quasiconformal deformation (ρ, φ̃) of
ρ0 by setting ρ(g)= φ̃ ◦ ρ0(g) ◦ φ̃−1 for all g ∈ π1(M). One may use the uniqueness
portion of the disk version of the Measurable Riemann Mapping Theorem to check
that Z(ρ, φ̃) = σ. Therefore, Z is surjective and we have completed our sketch of
proof. �

Let QC(ρ0) be the space consisting of all (conjugacy classes of) representations
ρ : π1(M)→ PSL(2,C) such that there exists a quasiconformal map φ̃ : C→ C such
that (ρ, φ̃) ∈ Q̂C(ρ0). It is this space which we will be directly interested in, since
it arises as a subset of AH(π1(M), π1(P )).
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We let Mod0(M,P ) denote the group of (isotopy classes of) orientation-preser-
ving homeomorphisms of ∂M − P which extend to homeomorphisms of M which
are homotopic to the identity. If f : M − P → N̂(ρ0) is a homeomorphism, then
Mod0(M,P ) is naturally identified with a subgroup Mod0(ρ0) of Mod(S1)× · · · ×
Mod(Sn). Explicitly, if [h] ∈ Mod0(M,P ), then we let h̄ : ∂N̂(ρ0) → ∂N̂(ρ0) be a
quasiconformal map which is isotopic to fhf−1 and we identify [h] with

([h̄|S1 ], . . . , [h̄|Sn ]) ∈ Mod(S1)× · · · ×Mod(Sn).

Maskit [76] showed that Mod0(ρ0) acts freely on T (ρ0).
If ρ0 ∈ GF(M,P ), then T (ρ0) can be identified with the Teichmüller space

T (∂M,P ) of all marked hyperbolic structures (of finite area) on ∂M − P . The
group Mod0(M,P ) acts on T (∂M,P ) and the homeomorphism f : M−P → N(ρ0)
gives rise to an identification of T (ρ0)/Mod0(ρ0) with T (∂M,P )/Mod0(M,P ).

It is the second fundamental theorem of the quasiconformal deformation theory
of Kleinian groups that if ρ0 is a geometrically finite uniformization of (M,P )
then QC(ρ0) is homeomorphic to T (ρ0)/Mod0(ρ0). This result combines Bers’
work [13] with work of Kra [66] and Maskit [76]. Since Mod0(ρ0) acts freely and
properly discontinuously on T (ρ0), QC(ρ0) is a manifold. Corollary 7.2.7 implies
that QC(ρ0) ⊂ GF(M,P ).

Quasiconformal Parameterization Theorem: Let (M,P ) be an oriented pared
3-manifold with ∂M − P is nonempty. If ρ0 ∈ GF(M,P ), then

QC(ρ0) ∼= T (ρ0)/Mod0(ρ0).

Moreover, T (ρ0)/Mod0(ρ0) is identified with T (∂M,P )/Mod0(M,P ).

Sketch of proof. We define a forgetful map F : Q̂C(ρ0)→ QC(ρ0). Clearly
F is surjective, so the result will follow once we check that F (ρ, φ̃)=F (ρ′, φ̃′) if and
only if there exists [h] ∈ Mod0(ρ0) such that [h](Z(ρ, φ̃))=Z(ρ′, φ̃′).

First take [h] ∈ Mod0(ρ0) and (ρ, φ̃) ∈ Q̂C(ρ0). Let h′ : ∂N(ρ0) → ∂N(ρ0)
be a quasiconformal map in the homotopy class of [h]. Theorem 8.1 in Marden
[75] implies that there exists a quasiconformal map ψ̃ : C → C whose restriction
to Ω(ρ) is a lift of h′ and such that ψ̃|Λ(ρ) is the identity map. Then (ρ, φ̃ ◦ ψ̃)
is a quasiconformal deformation of ρ0, [h](Z(ρ, φ̃)) = Z(ρ, φ̃ ◦ ψ̃), and F (ρ, φ̃) =
F (ρ, φ̃ ◦ ψ̃) = ρ.

Now suppose that F (ρ, φ̃)=F (ρ′, φ̃′). By proposition 7.2.6, there are extensions
Φ: N̂(ρ0)→ N̂(ρ) and Φ′ : N̂(ρ0)→ N̂(ρ′) of φ and φ′. Since ρ′ is conjugate to ρ,
we may assume, perhaps after altering φ̃ by post-composing by a Möbius transfor-
mation, that ρ′=ρ. Thus N̂(ρ) and N̂(ρ′) may be canonically identified and Φ′ is
homotopic to Φ. This implies that φ−1 ◦ φ′ has an extension to a homeomorphism
Φ−1 ◦ Φ′ which is homotopic to the identity and hence gives rise to an element
[h] ∈ Mod0(ρ0) such that [h](Z(ρ, φ̃))=Z(ρ′, φ̃′), where h = φ−1 ◦ φ′. �

Remark: Sullivan [115] extended the Quasiconformal Parameterization theorem
to all finitely generated Kleinian groups. In particular, if ρ0 : π1(M)→ PSL(2,C) is
any finitely generated, torsion-free Kleinian group, then Q̂C(ρ0) is homeomorphic
to T (ρ0). The key added ingredient in Sullivan’s approach is a theorem stating
that if (ρ, φ̃) is a quasiconformal deformation of a finitely generated Kleinian group
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ρ0 such that φ̃ is conformal on Ω(ρ0), then φ̃ is a Möbius transformation. This
theorem replaces the use of the fact that Λ(ρ0) has measure zero in our approach.

If we let Mod0(ρ0) denote the group of isotopy classes of homeomorphisms of
∂N̂(ρ0) which extend to homeomorphisms of N̂(ρ0) which are homotopic to the
identity, then one may extend the proof of the Quasiconformal Parameterization
Theorem to show that QC(ρ0) is homeomorphic to T (∂N̂(ρ0))/Mod0(ρ0). In order
to do so, one must show that every element [h] of Mod0(ρ0) has a representative
h whose lift h̃ to Ω(ρ0) admits an extension to a quasiconformal map of C. (To
accomplish this, let j : N̂(ρ0) → N̂(ρ0) be a diffeomorphism which is homotopic
to the identity such that [j|∂N̂(ρ0)] = [h]. If ∂N̂(ρ0) is compact, then h = j|∂N̂(ρ0)

will be quasiconformal. If not, we may deform j so that h is conformal on a
neighborhood of each end of ∂N̂(ρ0), which suffices to guarantee that h is quasi-
conformal on ∂N̂(ρ0). Since j is homotopic to the identity map, we can choose a lift
h̃ : H3 ∪Ω(ρ0)→ H

3 ∪Ω(ρ0) of h such that h̃ ◦ ρ0(g) = ρ0(g) ◦ h̃ for all g ∈ π1(M).
If we let h̃(z) = z for all z ∈ Λ(ρ0), then Maskit’s Extension Theorem guarantees
that the restriction of h̃ to C is the desired quasiconformal homeomorphism of C.)

7.3. The Parameterization Theorem

In this section we make use of the Quasiconformal Parameterization Theorem,
Marden’s Isomorphism Theorem and Marden’s Stability Theorem to give parame-
terizations of the spaces GF(M,P ) and GF(π1(M), π1(P )).

Let (M,P ) be an oriented pared manifold. We first consider the space A(M,P )
of oriented pared manifolds homotopy equivalent to (M,P ). We will consider two
oriented pared manifolds (M1, P1) and (M2, P2) to be equivalent if there exists an
orientation-preserving pared homeomorphism h : (M1, P1)→ (M2, P2).

We will also consider the space A(M,P ) of marked, oriented pared manifolds
homotopy equivalent to (M,P ). Its basic objects are pairs ((M ′, P ′), h′) where
(M ′, P ′) ∈ A(M,P ) and h′ : (M,P ) → (M ′, P ′) is a pared homotopy equivalence.
We will consider two pairs ((M1, P1), h1) and ((M2, P2), h2) to be equivalent if there
exists an orientation-preserving pared homeomorphism j : (M1, P1) → (M2, P2)
such that j ◦h1 is admissibly homotopic to h2. A(M,P ) is the space of equivalence
classes of such pairs.

We next define a function Θ: GF(π1(M), π1(P )) → A(M,P ). Given an ele-
ment ρ ∈ GF(π1(M), π1(P )), there exists an orientation-preserving homeomorph-
ism j : N̂(ρ)→M ′−P ′ where (M ′, P ′) ∈ A(M,P ). On the other hand, ρ gives rise
to an identification of π1(M) with π1(N̂(ρ)) and hence to a homotopy equivalence
rρ : M → N̂(ρ), well-defined up to homotopy. In order to construct Θ we must show
that j ◦ rρ is homotopic to a pared homotopy equivalence hρ : (M,P ) → (M ′, P ′).
Let A be a component of P . Our assumptions imply that j ◦ rρ(A) is homotopic
to an unique component A′ of P ′. Hence, we may change j ◦ rρ by homotopy
to a homotopy equivalence such that j ◦ rρ(A) = A′ (without changing the im-
age of j ◦ rρ on any component of P − A). We may therefore, by applying the
above procedure to each component, change j ◦rρ to a pared homotopy equivalence
hρ : (M,P )→ (M ′, P ′). We then set Θ(ρ)=((M ′, P ′), hρ). It remains to check that
this gives a well-defined element of A(M,P ). Suppose hρ and h′ρ are two pared ho-
motopy equivalences constructed as above. Then suppose that hρ is homotopic to
j◦rρ and h′ρ is homotopic to j′◦rρ for some, perhaps different, orientation-preserving



7.3. THE PARAMETERIZATION THEOREM 115

homeomorphism j′ : N̂(ρ) → M ′ − P ′. Proposition 2.12.5 implies that j′ ◦ j−1 is
homotopic to a map which extends to a orientation-preserving pared homeomor-
phism φ : (M ′, P ′) → (M ′, P ′). We then note that φ ◦ hρ is homotopic to h′ρ. By
proposition 5.2.3 they are admissibly homotopic. It follows that ((M ′, P ′), hρ) is
equivalent to ((M ′, P ′), h′ρ) and hence that our map Θ is well-defined.

The two key tools in our proof of the Parameterization Theorem both come
from Marden’s seminal paper [75]. Marden’s Isomorphism Theorem (Theorem
8.1 in [75]) will allow us to conclude that if Θ(ρ) = Θ(ρ′), then ρ and ρ′ are
quasiconformally conjugate.

Marden’s Isomorphism Theorem: Suppose that ρ0 and ρ are elements of
GF(π1(M), π1(P )). Then ρ ∈ QC(ρ0) if and only if there exists an orientation-
preserving homeomorphism s : N̂(ρ0)→ N̂(ρ) such that s ◦ rρ0 is homotopic to rρ.

Marden’s Stability Theorem (Proposition 9.1 in [75]) will allow us to conclude
that Θ is a continuous (i. e. locally constant) map.

Marden’s Stability Theorem: If ρ0 ∈ GF(π1(M), π1(P )), then there exists a
neighborhood U of ρ in AH(π1(M), π1(P )) such that if ρ ∈ U , then ρ is quasicon-
formally conjugate to ρ0.

We are now ready to give our parameterization:

Parameterization Theorem: Let (M,P ) be an oriented pared 3-manifold such
that ∂M − P is nonempty. Then GF(π1(M), π1(P )) is homeomorphic to⊔

((M ′,P ′),h′)∈A(M,P )

T (M ′, P ′)/Mod0(M ′, P ′).

Proof. We first show that Θ is continuous, i. e. locally constant. Marden’s
Stability Theorem implies that if ρ0 ∈ GF(π1(M), π1(P )), then there exists a neigh-
borhood U of ρ0 such that if ρ ∈ U , then ρ is quasiconformally conjugate to ρ0.
Marden’s Isomorphism Theorem (or proposition 7.2.6) then implies that if ρ ∈ U
then there exists an orientation-preserving homeomorphism s : N̂(ρ0)→ N̂(ρ) such
that s ◦ rρ0 is homotopic to rρ. Let j : N̂(ρ) → M ′ − P ′ be a homeomorphism.
Then, hρ0 can be chosen to be homotopic to j ◦ s ◦ rρ0 and hρ can be chosen to be
homotopic to j ◦ rρ. It follows that hρ and hρ0 can be chosen to be homotopic and,
by proposition 5.2.3, to be admissibly homotopic. Thus, Θ(ρ) = Θ(ρ0) if ρ ∈ U .
Therefore, Θ is locally constant.

Next we will use Marden’s Isomorphism Theorem to show that if Θ(ρ1)=Θ(ρ2),
then ρ2 ∈ QC(ρ1). Suppose that Θ(ρ1) = Θ(ρ2) and let ji : N̂(ρi) → Mi − Pi be
homeomorphisms and let hρi be pared homotopy equivalences homotopic to ji ◦rρi .
Since Θ(ρ1) = Θ(ρ2) there exists an orientation-preserving pared homeomorphism
s : (M1, P1) → (M2, P2) such that s ◦ j1 ◦ rρ1 is homotopic to j2 ◦ rρ2 . Thus,
s′=j−1

2 ◦ s ◦ j1 : N̂(ρ1)→ N̂(ρ2) is an orientation-preserving homeomorphism such
that s′◦rρ1 is homotopic to rρ2 . Hence, Marden’s Isomorphism Theorem guarantees
that ρ2 ∈ QC(ρ1).

We will use Thurston’s Geometrization Theorem to show that Θ is surjective.
When ((M ′, P ′), h′) ∈ A(M,P ), it implies that there exist a geometrically finite
hyperbolic 3-manifold N and an orientation-preserving homeomorphism j : M ′ −
P ′ → N̂ from M ′ − P ′ to the conformal extension N̂ of N . Since we may identify
π1(N̂) with a subgroup of PSL(2,C), we may think of j# : π1(M ′) → π1(N̂) as
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an element of GF(M ′, P ′). We then let ρ = (j ◦ h′)#. It is easy to check that
ρ ∈ GF(M,P ) and Θ(ρ)=((M ′, P ′), h′).

Thus, if ((M ′, P ′), h′) is any element of A(M,P ), then Θ−1((M ′, P ′), h′) is
nonempty and is of the form QC(ρ) for any ρ ∈ Θ−1((M ′, P ′), h′). The Quasi-
conformal Parameterization Theorem implies that, in this circumstance, QC(ρ) is
homeomorphic to T (M ′, P ′)/Mod0(M ′, P ′). The result follows. �

We will actually make most use of the following nearly immediate corollary of
the Parameterization Theorem.

Corollary 7.3.1. Let (M,P ) be an oriented pared 3-manifold. The compo-
nents of GF(π1(M), π(P )) are enumerated by elements of A(M,P ). The compo-
nents of GF(M,P ) are in a one-to-one correspondence with the cosets of R+(M,P )
in Out(π1(M), π1(P )).

Proof. The first assertion of the corollary follows immediately from the Pa-
rameterization Theorem and the fact that T (M ′, P ′)/Mod0(M ′, P ′) is connected
for all oriented pared manifolds (M ′, P ′).

To prove the second assertion we first note that ρ ∈ GF(M,P ) if and only if
Θ(ρ) = ((M,P ), h′) for some pared homotopy equivalence h′. Hence the compo-
nents of GF(M,P ) can be identified with the set A0(M,P ) of elements of the form
((M,P ), h′) in A(M,P ). We first note that every element α ∈ Out(π1(M), π1(P ))
is realized by a pared homotopy equivalence hα : (M,P ) → (M,P ). Moreover, by
proposition 5.2.3, any two pared homotopy equivalences realizing α are admissi-
bly homotopic. Hence, there is a well-defined surjection J : Out(π1(M), π1(P ))→
A0(M,P ) given by taking α to ((M,P ), hα). Moreover, J(α) = J(α′) if and only
if there is an orientation-preserving pared homeomorphism s : (M,P ) → (M,P )
with hα′ homotopic, hence admissibly homotopic, to s ◦ hα, i. e. if and only if
α′ ◦ α−1 ∈ R+(M,P ). Therefore, J(α) = J(α′) if and only if α and α′ lie in the
same right coset of R+(M,P ) in Out(π1(M), π1(P )) and the result follows. �

Remarks: 1) One may extend Θ to a map Θ: AH(π1(M)) → A(M,P ). If
ρ ∈ AH(π1(M)), then Θ(ρ) records the marked homeomorphism type of a (rel-
ative) compact core for N̂(ρ). Anderson and Canary [8] showed that Θ is not
always continuous on AH(π1(M), π1(P )), even if we assume that P is empty. This
phenomenon shows that distinct components of GF(M,P ) may “bump,” i. e. have
intersecting closures. This phenomenon has been completely analyzed when M has
incompressible boundary and P is empty by Anderson, Canary and McCullough
[9]. See the epilogue for more details.

2) Marden’s original isomorphism theorem incorporates Waldhausen’s Theo-
rem. It asserts that if ρ1, ρ2 ∈ GF (π1(M), π1(P )) and there exists an orientation-
preserving homeomorphism f : Ω(ρ1) → Ω(ρ2) which induces an isomorphism
φ : ρ1(π1(M)) → ρ2(π1(M)), then there exists a quasiconformal homeomorphism
of H3 ∪ C which induces φ. Our version is an immediate corollary of the original
statement and Proposition 7.2.6.



CHAPTER 8

Statements of Main Theorems

8.1. Statements of Main Topological Theorems

We are now ready to state the complete versions of our main topological the-
orems which characterize when the group R(M,a) of outer automorphisms which
are realizable by homeomorphisms has finite index in the group Out(π1(M), π1(a))
of all outer automorphisms.

Main Topological Theorem 1 concerns the case where (M,a) has a compressible
free side. It requires strong restrictions on the boundary pattern, but nonetheless
applies to all pared 3-manifolds which have a compressible free side.

Main Topological Theorem 1: Let (M,a) be a compact orientable irreducible 3-
manifold with boundary pattern consisting of a (possibly empty) collection of disjoint
incompressible submanifolds. Suppose there exists a free side F which is compress-
ible in M , such that each element of a that meets F is an annulus. Then R(M,a)
has finite index in Out(π1(M), π1(a)) if and only if either (M,a) is a relative com-
pression body or (M,a) is small.

Main Topological Theorem 2 applies when the elements of the boundary pat-
tern of M are disjoint, and the completion of the boundary pattern is useful. In
particular, by lemma 5.2.1, it will apply to all pared 3-manifolds which do not have
a compressible free side.

Main Topological Theorem 2: Let M be a compact orientable irreducible 3-
manifold with nonempty boundary and a (possibly empty) boundary pattern m
whose completion is useful. Assume that the elements of m are disjoint. Let m′

be the set of elements of m that are not annuli. Then R(M,m) has finite index in
Out(π1(M), π1(m)) if and only if every Seifert-fibered component V of the charac-
teristic submanifold of (M,m) that meets ∂M − |m| satisfies one of the following:

(1) V is a solid torus, or
(2) V is either S1×S1×I or the I-bundle over the Klein bottle, and no bound-

ary component of V contains more than one component of V ∩∂M − |m′|,
or

(3) V is fibered over the annulus with one exceptional fiber, and no component
of V ∩ ∂M − |m′| is an annulus, or

(4) V is fibered over the disk with two holes with no exceptional fibers, and
V ∩ ∂M − |m′| is one of the boundary tori of V , or

(5) V =M and V is fibered either over the disk with two exceptional fibers,
or over the Möbius band with one exceptional fiber, or over the torus with
one hole with no exceptional fiber, or

(6) V =M and V is fibered over the disk with three exceptional fibers, each of
type (2, 1),
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and every I-bundle component V of the characteristic submanifold of (M,m) which
has all of its lids contained in |m| and meets ∂M−|m| satisfies one of the following:

(7) V is a 3-ball, or
(8) V is I-fibered over a topological annulus or Möbius band and no component

of V ∩ ∂M − |m| is a square which meets two different components of the
frontier of V , or

(9) V is I-fibered over the disk with two holes, and V ∩ ∂M − |m| is an an-
nulus, or

(10) V =M and V is I-fibered over the torus with one hole.
We note that since the elements of m are disjoint, if an I-bundle component of
the characteristic submanifold of (M,m) has a lid contained in |m| and meets
∂M − |m|, then its other lid (if it has one) must also be contained in |m|. Ex-
amples 1.4.3 and 1.4.4 illustrate item (4) of the theorem, and example 2.10.11
illustrates items (7), (8), and (9).

Although Main Topological Theorem 2 is stated for Haken manifolds with
nonempty boundary, it holds true for closed Haken manifolds as well. In the
closed case, of course, no component of the characteristic submanifold can meet the
boundary, so the topological conditions in Main Topological Theorem 2 are trivially
satisfied. On the other hand, since Haken manifolds are aspherical, every outer au-
tomorphism of the fundamental group is induced by a homotopy equivalence, and
in the closed case Waldhausen’s Theorem 2.5.6 shows that every homotopy equiv-
alence is homotopic to a homeomorphism. That is, R(M) = Out(π1(M)).

The proofs of Main Topological Theorems 1 and 2 comprise chapters 9 and 10
respectively.

8.2. Statements of Main Hyperbolic Theorem and Corollary

We are now ready to state our main hyperbolic theorem which characterizes
exactly when there are finitely many components of the space GF(M,P ) of geomet-
rically finite uniformizations of a pared manifold. Recall that small pared manifolds
were completely described in lemma 6.1.1.

Main Hyperbolic Theorem: Let (M,P ) be a pared 3-manifold and let p be the
associated boundary pattern on M .

(1) If (M,p) has a compressible free side then GF(M,P ) has finitely many
components if and only if (M,p) is either small or a relative compression
body.

(2) If (M,p) has no compressible free side then GF(M,P ) has finitely many
components if and only if (M,P ) does not have double trouble.

We may use our Main Hyperbolic Theorem to completely characterize when
GF(π1(M), π1(P )) has finitely many components. Recall that the homotopy type
of (M,P ) is said to be small if and only if every element of A(M,P ) is either small
or a relative compression body. The small homotopy types of pared 3-manifolds
were completely described in theorem 6.2.1.
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Main Hyperbolic Corollary: Let (M,P ) be a pared 3-manifold and let p be the
associated boundary pattern on M .

(1) If (M,p) has a compressible free side, then GF(π1(M), π1(P )) has finitely
many components if and only if the pared homotopy type of (M,P ) is
small.

(2) If (M,p) has no compressible free side, then GF(π1(M), π1(P )) has finitely
many path components if and only if (M,P ) does not have double trouble.

8.3. Derivation of hyperbolic results

In this section we derive the Main Hyperbolic Theorem and the Main Hy-
perbolic Corollary from the Parameterization Theorem and the Main Topological
Theorems.

Proof of Main Hyperbolic Theorem. If ∂M−P is empty, then the Mos-
tow Rigidity Theorem [98], as extended by Prasad [110], asserts that GF(M,P ) is
either empty or a single point. Since (M,P ) cannot have double trouble if ∂M−P is
empty, the theorem holds in this case. So we may assume that ∂M−P is nonempty.

Corollary 7.3.1 shows that the components of GF(M,P ) are in one-to-
one correspondence with the cosets of R+(M,P ) in Out(π1(M), π1(P )). Thus
GF(M,P ) has finitely many components exactly when R(M,P ) has finite index
in Out(π1(M), π1(P )).

Suppose (M,p) has a compressible free side. By Main Topological Theorem 1,
R+(M,P ) has finite index in Out(π1(M), π1(P )) if and only if (M,p) is either small
or a relative compression body.

Suppose (M,p) does not have a compressible free side. By lemma 5.2.1, the
completion of (M,p) is useful. Therefore Main Topological Theorem 2 applies
to show that R(M,P ) has finite index in Out(π1(M), π1(P )) if and only if every
Seifert-fibered component of the characteristic submanifold (Σ, σ) of (M,p) which
meets ∂M − P satisfies one of conditions (1)-(6) and every I-bundle component of
(Σ, σ) either has all lids contained in ∂M −P or satisfies one of conditions (7)-(10).
For the I-bundle components, the Pared Characteristic Submanifold Restrictions
(theorem 5.3.4) guarantee that every lid is contained in ∂M − P . They also guar-
antee that each Seifert-fibered component is either a solid torus or is a T 2 × I that
meets P in one if its boundary tori, and meets ∂M − P in a possibly empty col-
lection of annuli in its other boundary torus. The solid torus components satisfy
condition (1) of Main Topological Theorem 2. The T 2×I components satisfy condi-
tion (2) precisely when each meets ∂M−P in at most one annulus. By lemma 5.3.5,
this is equivalent to saying that (M,P ) does not have double trouble. �

We now turn our attention to the Main Hyperbolic Corollary.

Proof of Main Hyperbolic Corollary. We first note that by definition,

GF(π1(M), π1(P )) =
⊔

(M ′,P ′)∈A(M,P )

GF(M ′, P ′).

Lemma 3.5.2 implies that the boundary pattern associated to (M ′, P ′) is usable
whenever (M ′, P ′) ∈ A(M,P ), so theorem 4.2.3 implies that A(M,P ) is finite.
Thus, GF(π1(M), π1(P )) has finitely many components if and only if GF(M ′, P ′)
has finitely many components for all (M ′, P ′) ∈ A(M,P ).
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We recall from lemma 4.1.3 that (M,P ) has a compressible free side if and
only if (M ′, P ′) has a compressible free side for all (M ′, P ′) ∈ A(M,P ). Thus, the
Main Hyperbolic Theorem implies that if (M,P ) has a compressible free side, then
GF(π1(M), π1(P )) has finitely many components if and only if every (M ′, P ′) ∈
A(M,P ) is either small or a relative compression body, i.e. if and only if the pared
homotopy type of (M,P ) is small. Statement (1) follows.

If (M,P ) does not have a compressible free side, then the Main Hyperbolic
Theorem guarantees that GF(π1(M), π1(P )) has finitely many components if and
only if every element of A(M,P ) does not have double trouble. However, by theo-
rem 5.3.6, (M,P ) has double trouble if and only if every element of A(M,P ) has
double trouble. Statement (2) follows. �



CHAPTER 9

The Case When There Is a Compressible Free Side

In this section, we give the proof of our first main topological result, which
characterizes when the group R(M,a) of realizable automorphisms has finite index
in the group Out(π1(M), π1(a)) of all outer automorphisms in the case that (M,a)
has a compressible free side. Recall that small manifolds were defined in section 6.1.

Main Topological Theorem 1: Let (M,a) be a compact orientable irreducible 3-
manifold with boundary pattern consisting of a (possibly empty) collection of disjoint
incompressible submanifolds. Suppose there exists a free side F which is compress-
ible in M , such that each element of a that meets F is an annulus. Then R(M,a)
has finite index in Out(π1(M), π1(a)) if and only if either (M,a) is a relative com-
pression body or (M,a) is small.

Maskit [77] proved that R(M,a) has finite index in Out(π1(M), π1(a)) for relative
compression bodies which are pared manifolds, and McCullough and Miller [89]
showed this for compression bodies (i. e. relative compression bodies with empty
boundary pattern).

Even when (M,a) is a compression body, it rarely happens that R(M,a) is all
of Out(π1(M), π1(a)).

Example 9.0.1. A compression body (V, ∅) for which R(V, ∅) is a proper sub-
group of Out(π1(V )).

Let V be a compression body with two constituents F1 and F2 which are closed
surfaces, so that V is obtained from F1 × I and F2 × I by attaching a 1-handle
connecting a disk in F1 × {1} to a disk in F2 × {1}. Let h be an orientation-
reversing homeomorphism of F1 which leaves the disk in F1 × {1} invariant. The
homeomorphisms h× idI on F1× I and idF2× idI on F2× I extend over the 1-handle
to a homotopy equivalence of V . This homotopy equivalence is not homotopic to a
homeomorphism, for such a homeomorphism would have to be orientation-reversing
on the boundary component F1 × {0} and orientation-preserving on the boundary
component F2 × {0}. One can construct similar examples where the boundary
pattern is nonempty.

Our next example shows that Main Topological Theorem 1 can fail without the
assumption that every element of a that meets F is an annulus.

Example 9.0.2. A relative compression body (V, v) such that R(V, v) has infi-
nite index in Out(π1(V ), π1(v)).

Let V be a compression body with one constituent F1, which is a compact
surface of genus 2 with one boundary component. Give V the boundary pattern
v={F1×{0} ∪ ∂F1× I}, so that (V, v) is a relative compression body. Now π1(F1)
is a free group of rank 4 and we may choose generators a, b, c, and d so that the
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boundary circle of F1 is [a, b][c, d]. For each n, there is an automorphism αn which
fixes b, c, and d, and sends a to acn. Since F1 is aspherical, αn can be realized by
a homotopy equivalence of F1 × {0} ∪ ∂F1 × I. This can be extended to F1 × I,
preserving each attaching disk of a 1-handle of V , and then extended to the 1-
handles. The result is an admissible homotopy equivalence of (V, v). If n 6= 0, the
automorphism cannot be realized by a homeomorphism of F1×{0}∪∂F1× I, since
αn does not preserve the boundary circle of F1 up to conjugacy. Consequently, αn
cannot be realized by an admissible homeomorphism of (V, v). Thus, α−1

m αn=αn−m
can only be realized by an admissible homeomorphism when m=n. Therefore, the
αn represent infinitely many distinct cosets of R(V, v) in Out(π1(V ), π1(v)).

The proof of Main Topological Theorem 1 will occupy the remainder of this
section. In section 9.1, we collect some algebraic facts that will be needed in the
later arguments. Section 9.2 contains the proof of Main Topological Theorem 1 in
the cases when the index is finite, while in section 9.3, the infinite index cases are
treated.

To prove that the index is infinite in the cases when (M,a) is not a relative
compression body and not small, we need only a much weaker condition on the
boundary pattern than the one given in our Main Topological Theorem 1. It is
sufficient to assume that no boundary circle of F is contractible in M . In section 9.3,
we use only this weaker assumption, emphasizing it by using m to denote the
boundary pattern. In fact, as we explain in that section, one can dispense even
with this assumption, but this would require the definition of some additional types
of small manifolds.

9.1. Algebraic lemmas

We collect here a few algebraic lemmas that will be used in the proof of propo-
sition 9.2.2, which treats the case where (M,a) is a small 3-manifold. Some of
these lemmas will also be useful in chapter 10 in the proofs of theorem 10.1.1 and
lemma 10.3.6.

Lemma 9.1.1. Let G = G1 ∗ G2 be a free product of groups. Let H be any
subgroup of G that contains G1. Then G1 is a free factor of H.

Proof. Form a K(G, 1)-complex K by taking the 1-point union of a K(G1, 1)-
complex (K1, k1) and a K(G2, 1)-complex (K2, k2). Take the basepoint to be the
join point k0 = k1 = k2, and let (K̃, k̃0) be the covering space corresponding to H.
Then the inclusion map from (K1, k1) to (K, k0) lifts to an imbedding ĩ : (K1, k1)→
(K̃, k̃0), and (K̃, k̃0) is the 1-point union of ĩ(K1) and another complex. Therefore
G1 is a free factor of H. �

In the next lemma, we find particularly nice representative automorphisms
for certain elements of the outer automorphism groups of a free product G1 ∗ G2.
Recall that two automorphisms φ1 and φ2 represent the same outer automorphism
if there is an inner automorphism µ such that φ1 =µφ2. Note that precomposition
and postcomposition by inner automorphisms have the same possible effects, since
if µ(x) is conjugation by x, then φµ(x) = µ(φ(x))φ. Also, we recall the normal
form for elements in the free product G1 ∗G2. It says that each nontrivial element
can be written uniquely as a product g1g2 · · · gn where each gi lies in one of the



9.1. ALGEBRAIC LEMMAS 123

factors G1 or G2, but for no i do gi and gi+1 lie in the same factor (in particular,
no gi is equal to 1).

Lemma 9.1.2. Let G1 ∗ G2 be a free product of two groups, and let φ be an
automorphism of G1 ∗G2.

(i) Suppose that each φ(Gi) is conjugate to Gi. Then one may alter φ, by
composing by an inner automorphism, so that φ(Gi) = Gi for each i.
Moreover, the restriction of φ to each Gi is uniquely determined by the
element of Out(G1 ∗G2) represented by φ.

(ii) Suppose that φ(G1) is conjugate to G1, and G2 is infinite cyclic. Then one
may alter φ, by composing by an inner automorphism, so that φ(G1)=G1

and, if ω generates G2, φ(ω) = γω±1 for some γ ∈ G1. Moreover, the
element γ, the exponent of ω, and the restriction of φ to G1 are uniquely
determined by the element of Out(G1 ∗G2) represented by φ.

Proof. In case (i), for i = 1, 2 there exist elements αi ∈ G1 ∗ G2 so that
φ(Gi) = αiGi α

−1
i for i = 1, 2. Changing φ by postcomposing by conjugation by

α−1
1 , we have φ(G1) =G1 and φ(G2) =α−1

1 α2G2 (α−1
1 α2)−1. Since φ is surjective,

elements of the forms g1 and α−1
1 α2 g2 (α−1

1 α2)−1 must still generate G1 ∗ G2. It
follows, by normal form considerations, that α−1

1 α2 = h1h2 with hi ∈ Gi (where
either of the hi might equal 1). Changing φ by postcomposing by conjugation by
h−1

1 , we have φ(Gi) = Gi for i = 1, 2. That is, there are automorphisms ϕi of Gi so
that for all gi ∈ Gi, φ(gi) =ϕi(gi). Further conjugating by any nontrivial element
results in an automorphism that no longer preserves at least one of G1 and G2, so
the ϕi are uniquely determined.

In case (ii), we have, after composing φ by an inner automorphism, that φ(g1)=
ϕ1(g1) for all g1 ∈ G1 and some ϕ1 ∈ Aut(G1). Since φ(G1) and φ(ω) generate
G1 ∗ G2, normal form considerations show that φ(ω) = γ1ω

±1γ2 for γ1, γ2 ∈ G1.
Postcomposing with the inner automorphism that conjugates by γ2, we have φ(ω) =
(γ2γ1)ω±1. As in case (i), γ = γ2γ1, the exponent of ω, and ϕ1 are uniquely
determined. �

The next lemma will be used in the proof of proposition 9.2.2 to realize au-
tomorphisms of the fundamental groups of small manifolds of type II and III by
homeomorphisms, and also at the very end of the proof of theorem 10.1.1. For a
collection {H1, . . . Hk} of subgroups of a group G, denote by Aut(G;H1, . . . ,Hk)
the subgroup of Aut(G) consisting of those automorphisms that preserve each Hj .

Lemma 9.1.3. Let T be a torus.

(i) Let C be an essential simple loop in T . Then Aut(π1(T × I);π1(C)) is
a semidirect product Z ◦ (Z/2 × Z/2), where the infinite cyclic subgroup
is generated by the induced automorphism of a Dehn twist in the annulus
C × I in T × I.

(ii) Let C1 and C2 be essential simple loops in T with C1 6= ±C2 in π1(T ).
Then Aut(π1(T × I);π1(C1), π1(C2)) is finite.

Proof. In case (i), choose a basis of π1(T ) ∼= Z × Z so that π1(C) equals
Z×{0}. Now Aut(Z×Z) ∼= GL(2,Z), and the automorphisms that preserve π1(C)

are of the form
(
a b
0 d

)
. Sending this matrix to (a, d) defines a homomorphism to
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Z/2 × Z/2 which splits and has kernel generated by
(

1 1
0 1

)
, which is induced by

the Dehn twist about C.
Part (ii) follows since C1 and C2 must represent linearly independent primitive

elements in π1(T ). �

9.2. The finite-index cases

In this section we prove that the index of R(M,m) in Out(π1(M), π1(m))
is finite when (M,m) is a relative compression body (proposition 9.2.1) or when
(M,m) is small (proposition 9.2.2).

Homeomorphisms of compression bodies (i. e. the cases when m is empty, and
consequently all constituents are closed) were extensively studied in [89]. It seems
likely that the entire theory there could be adapted to the relative case, but for
brevity we will treat here only the portion needed for our present purposes.

Recall that π1(V ) is a free product of the form

G1 ∗ · · · ∗Gm ∗Gm+1 ∗ · · · ∗Gm+`,

where Gi = π1(Fi) for 1 ≤ i ≤ m and Gm+j is infinite cyclic for 1 ≤ j ≤ `.
The latter correspond to 1-handles of V . We first recall some algebraic work of
Fouxe-Rabinovitch [40, 41] which gives generators for the subgroup Autp(π1(V )) of
Aut(π1(V )) which consists of the automorphisms which take each Gi to a conjugate
of itself, 1 ≤ i ≤ m. We then show that most of these generators can be realized
by “slide homeomorphisms” of V which are the identity on ∂V − F . These “slide
homeomorphisms” will be used in the proofs of both propositions 9.2.1 and 9.2.2.

For 1 ≤ j ≤ `, fix a generator aj of Gm+j . Extend this collection to a set of gen-
erators for π1(V ) by adding generators for each Gi with i ≤ m. Fouxe-Rabinovitch
[40, 41], showed that the collection of all automorphisms of the following type
generate Autp(π1(V )):

(1) right slide automorphisms which slide 1-handle factors: If 1 ≤ j ≤ `, 1 ≤
i ≤ m+ `, i 6= m+ j and x ∈ Gi, then we can define ρi,m+j(x) : π1(V )→
π1(V ) by setting ρi,m+j(x)(aj) = ajx and letting ρi,m+j(x) fix all other
generators of π1(V ).

(2) left slide automorphisms which slide 1-handle factors: If 1 ≤ j ≤ `, 1 ≤
i ≤ m+ `, i 6= m+ j and x ∈ Gi, then we can define λi,m+j(x) : π1(V )→
π1(V ) by letting λi,m+j(x)(aj)=x−1aj and letting λi,m+j(x) fix all other
generators of π1(V ).

(3) slide automorphisms which slide constituent factors: If 1 ≤ j ≤ m, 1 ≤
i ≤ m+ `, i 6= j and x ∈ Gi, we define µi,j(x) : π1(V )→ π1(V ) by letting
µi,j(x)(g)=x−1gx for all g ∈ Gj and letting µi,j(x) fix all other generators
of π1(V ).

(4) interchange automorphisms which interchange infinite cyclic factors cor-
responding to 1-handles: If 1 ≤ i, j ≤ ` and i 6= j, then we define
ωm+i,m+j : π1(V )→ π1(V ) by letting ωm+i,m+j(ai)=aj , ωm+i,m+j(aj)=
ai, and letting ωm+i,m+j fix all other generators of π1(V ).

(5) automorphisms which flip an infinite cyclic factor corresponding to a
1-handle: If 1 ≤ j ≤ `, we define σm+j : π1(V ) → π1(V ) by setting
σm+j(aj)=a−1

j and letting σm+j fix all other generators of π1(V ).
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(6) factor automorphisms: If 1 ≤ i ≤ m and φ ∈ Aut(Gi), then we can define
φi : π1(V )→ π1(V ) by setting φi(g)=φ(g) if g ∈ Gi and letting φi fix all
other generators of π1(V ).

Remark: The papers of Fouxe-Rabinovitch actually concern free products G1∗· · ·∗
Gm∗Gm+1∗· · ·∗Gm+` in which eachGi for i > m is infinite cyclic and eachGi for i ≤
m is indecomposable and not infinite cyclic, but the latter hypothesis is used only
to know that every automorphism preserves the conjugacy classes of these first m
factors, possibly permuting them. In that case, the subgroup Autp(G1 ∗ · · · ∗Gm+`)
has finite index in Aut(G1 ∗ · · · ∗ Gm+`). The Fouxe-Rabinovitch generators used
in the original papers include interchanges of any two isomorphic free factors, and
they generate all of Aut(G1 ∗ · · · ∗Gm+`). We will define and use these additional
interchange automorphisms in chapter 12.

Every automorphism ϕ in Autp(G1 ∗ · · · ∗Gm+`) can be written as ϕ1ϕ2, where
ϕ1 is a product of slide automorphisms, flip automorphisms and interchange auto-
morphisms, and ϕ2 =

∏m
i=1 φi where each φi is a factor automorphism associated

to Gi. This is an immediate consequence of the following easily checked relations
among our generators for Autp(π1(V )). In this list, φ stands for an element of
Aut(Gi), and i, j, and k represent indices with i 6= j. In this list and through-
out the rest of this chapter, we assume that the subscripts of these generating
automorphisms lie in the appropriate ranges for which the generating automor-
phisms are defined. That is, for ρj,k(x) and λj,k(x), we have 1 ≤ j ≤ m + ` and
m+ 1 ≤ k ≤ m+ `, while for µj,k(x), we have 1 ≤ j ≤ m+ ` and 1 ≤ k ≤ m. Also,
for φi, 1 ≤ i ≤ m, while for ωi,j and σj , m+ 1 ≤ i, j ≤ m+ `.

(1) If ρj,k(x) is a right slide automorphism, then φiρj,k(x) = ρj,k(x)φi.
(2) If ρi,k(x) is a right slide automorphism, then φiρi,k(x) = ρi,k(φ(x))φi.
(3) If λj,k(x) is a left slide automorphism, then φiλj,k(x) = λj,k(x)φi.
(4) If λi,k(x) is a left slide automorphism, then φiλi,k(x) = λi,k(φ(x))φi.
(5) If µj,k(x) is a slide automorphism, then φiµj,k(x) = µj,k(x)φi.
(6) If µi,k(x) is a slide automorphism, then φiµi,k(x) = µi,k(φ(x))φi.
(7) If ωj,k is an interchange automorphism, then φiωj,k = ωj,kφi.
(8) If σj is a flip automorphism, then φiσj = σjφi.
(9) If ψ ∈ Aut(Gj), then φiψj = ψjφi.

(10) If ψ ∈ Aut(Gi), then φiψi = (φψ)i.

Remark: Fouxe-Rabinovitch gave a complete list of defining relations among his
generators for Aut(G1 ∗ · · · ∗ Gm+`), for the case of no infinite cyclic free factors
in [40] and for the general case in [41]. These relations are listed in a convenient
form in [89]. The proofs of the completeness of the sets of relations in [40] and
[41] are quite complicated, but they were confirmed by Gilbert [45] using methods
developed by McCool [83, 84]. We will not rely on any of these results, since we
will use only certain easily checked relations (those given above and some additional
ones used in chapter 12), and will never need the fact that the Fouxe-Rabinovitch
relations are a complete set of defining relations.

We will now explain how to realize each slide automorphism, interchange auto-
morphism and flip automorphism of the type described above, by a homeomorphism
of V that fixes ∂V − F , and hence is admissible.

First we give a general description of a slide homeomorphism of V . Let D×I be
a 1-handle of V . Let {Jt} be an isotopy of V − (D × I) such that J0 is the identity,
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each Jt fixes a basepoint v and is the identity on ∂V −F , and J1 is the identity on
D × ∂I. Moreover, each Jt fixes one of the attaching disks for D × I. If D × {k}
(k ∈ {0, 1}) is the other attaching disk, and α is the loop in ∂V traced out by the
image under the homotopy of the basepoint of D × {k}, (where k = 0 or k = 1)
then we say that Jt “slides” the attaching disk D×{k} around the loop α. A slide
homeomorphism of V which slides D × {k} around α is obtained by extending J1

over D × I by using the identity map.
Now we describe how most of the specific generating automorphisms for

Aut(π1(V )) can be realized. When m ≥ 1, it will be convenient to regard m− 1 of
the 1-handles h′2, . . . , h

′
m as connecting F1 × {1} to Fi × {1}, and the remaining `

of the 1-handles h1, . . . , h` as having both ends attached in F1 × {1}.
Choose the basepoint v of V to lie in the interior of V , and in F1 × {1/2} if

m ≥ 1.
Each generator aj is represented by a loop which is the path product of an arc

α0
j that runs from v to the “left” attaching disk for hj , the core arc αcj of hj , and an

arc α1
j from the “right” attaching disk back to v. For each j with 2 ≤ j ≤ m, let βj

be obtained as the product of an arc β0
j in F1× I joining the v to the left attaching

disk of h′j , the core arc βcj of h′j , and an arc β1
j in Fj × I from the endpoint of βcj

to a basepoint vj ∈ Fj × {1/2}. We regard π1(Fj , vj) as a subgroup of π1(V, v) by
identifying a loop γ based at vj with the loop βj ∗ γ ∗ βj based at v.

If ρi,m+j(x) is a right slide automorphism, we choose the sliding isotopy Jt on
V − hj so that α1

j ∗ J1(α1
j ) represents x and each Jt fixes α0

j . The right attaching
disk of hj slides around x−1.

If λi,m+j(x) is a left slide automorphism, we choose Jt so that J1(α0
j ) ∗ α0

j

represents x−1 and each Jt fixes α1
j . The left attaching disk for hj slides around x−1.

We next consider a slide automorphism µi,j(x). If 2 ≤ j ≤ m, we use an isotopy
Jt so that J1(β0

j ) ∗ β0
j represents x−1. Suppose now that j = 1. Let f be a home-

omorphism of V which fixes ∂V and realizes the inner automorphism of π1(V, v)
given by conjugation by the element x−1, i. e. f#(g) = x−1gx for all g ∈ π1(V, v).
Compose f with the slide homeomorphisms inducing µi,k(x−1) for each 2 ≤ k ≤ m
such that k 6= i and ρi,k(x−1) and λi,k(x−1) for each m+ 1 ≤ k ≤ m+ ` such that
k 6= i. (Since the automorphisms induced by these homeomorphisms commute, the
order of composition is irrelevant.) If i > m, the resulting composition conjugates
the elements of G1 by x−1 and fixes all other generators, hence induces µi,1(x).
Moreover, the composition is a homeomorphism which is the identity on ∂V − F .
If 2 ≤ i ≤ m, however, it still conjugates each element of Gi by x−1. In this case,
identify x with x′ ∈ π1(Fi, vi) and let r0 be a homeomorphism of Fi× I which is the
identity on ∂(Fi× I), induces the identity automorphism on π1(Fi× I, vi), and such
that β1

i ∗ r0(β1
i ) represents x′. Extend r0 to a homeomorphism r of V by letting it

be the identity off of Fi× I. The composition of r with the homeomorphism already
constructed is the identity on ∂V − F and induces µi,1(x).

To realize an interchange automorphism ωm+i,m+j one uses an isotopy Jt on
V − (hi ∪ hj) such that J1 fixes ∂V − F , interchanges the left attaching disk of
hi and the left attaching disk of hj , interchanges the right attaching disk of hi
and the right attaching disk of hj , interchanges α0

i and α0
j , and interchanges α1

i

and α1
j (we must assume here that the α`k have been chosen “unknotted” and

“unlinked” to ensure that isotopies interchanging them exist). One extends J1 to
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a homeomorphism f of V which fixes ∂V − F and realizes ωm+i,m+j by extending
J1 so that it interchanges hi and hj .

To realize a flip automorphism σm+j , one uses an isotopy Jt on V − hj such that
J1 fixes ∂V − F , interchanges the left attaching disk of hj and the right attaching
disk of hj , and interchanges α0

j and α1
j . One extends J1 to a homeomorphism of V

realizing σj by extending it to be a homeomorphism of hj which interchanges its
attaching disks.

We remark that these descriptions do not specify the slide homeomorphisms up
to isotopy, since there are generally many choices of the isotopy Jt that achieve the
specified conditions. The arcs around which the attaching disks slide in realizing
the ρi,j(x), λi,j(x), and µi,j(x) need not be isotopic in ∂V , although they will be
homotopic in V . Different choices will change the resulting homeomorphisms by
Dehn twists about properly imbedded 2-disks. We refer the reader to section 2 of
McCullough-Miller [89] for a more detailed discussion.

We are now ready to establish our main result for relative compression bodies.
As mentioned in the introduction, Maskit [77] proved proposition 9.2.1 for relative
compression bodies which are pared manifolds, and McCullough and Miller [89]
proved it for compression bodies.

Proposition 9.2.1. Let (V, v) be an orientable relative compression body, such
that the elements of v are disjoint and incompressible. Let F be a compressible free
side, such that each element of v that meets F is an annulus. Then R(V, v) has
finite index in Out(π1(V ), π1(v)).

We reiterate that example 9.0.2 shows that proposition 9.2.1 can fail without the
assumption that every element of v that meets F is an annulus.

Proof of proposition 9.2.1. Let {Fi} be the constituents of V , if any. No
Fi is a disk, since the elements of v that meet F are incompressible annuli, and by
the definition of relative compression body no Fi is a 2-sphere. Denote by A the
union of the annuli in |v| that meet F .

Select coordinates on V as a relative compression body so that each component
C × I of ∂Fi × I is a collar neighborhood of a boundary component of an annulus
AC of A. If Fi is not an annulus, then AC ∩Fi is a collar neighborhood of C in Fi.
If Fi is an annulus, then AC ∩ Fi may be such a collar neighborhood for C, or it
may happen that ∂Fi × I ∪ Fi is a single annulus component of |v|.

Let Out0(π1(V ), π1(v)) be the subgroup of finite index in Out(π1(V ), π1(v))
consisting of the automorphisms which induce the trivial permutation on the (con-
jugacy classes of the) subgroups of π1(V ) corresponding to the elements of v. Since
V is aspherical, and the elements of v are disjoint, any φ in Out0(π1(V ), π1(v)) may
be realized by a homotopy equivalence f that maps each element of v to itself by
a homotopy equivalence. By passing to a further finite index subgroup, still called
Out0(π1(V ), π1(v)), we may assume that f is homotopic to the identity map on
each annular element of v. So, we may alter f so that it restricts to the identity
map on each annulus in |v|. In particular, f preserves each component of ∂Fi.

We will first show that there is a subgroup Out1(π1(V ), π1(v)) of finite index in
Out0(π1(V ), π1(v)) such that if φ lies in Out1(π1(V ), π1(v)), then f is homotopic,
relative to A, to an admissible homotopy equivalence that preserves each Fi, and
restricts to a homeomorphism on Fi. Adjust f , relative to A, so that its restriction
to Fi is transverse to the cocores of the 1-handles of V . The boundary (if any) of
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each Fi is preserved by f , so the preimage in Fi of the cocores consists of disjoint
closed curves, but no arcs. Since Fi is incompressible, these closed curves are
contractible in Fi. Using asphericity of V , f can be changed by homotopy relative
to A so that f(Fi) is disjoint from the cocores. Then, f(Fi) lies in a product with
one end equal to some Fj , so f may be changed further so that f(Fi) ⊆ Fj for
some j. If Fi has nonempty boundary, then j = i since f preserves the boundary
of Fi.

Let fi : Fi → Fj be the restriction of f to Fi. Since f# (and hence (fi)#) is
injective, the Baer-Nielsen Theorem 2.5.5 implies that fi is properly homotopic to
a finite covering map, so f#(π1(Fi)) has finite index in π1(Fj). Since f#(π1(Fi))
is a free factor of π1(V ), lemma 9.1.1 implies that it is a free factor of π1(Fj).
Since it also has finite index, f#(π1(Fi)) = π1(Fj), so fi is properly homotopic
to homeomorphism. From now on, we assume that each fi is a homeomorphism.
Since the subgroups corresponding to different Fj are not conjugate in π1(V ), the
permutation of the Fi is uniquely determined by the homotopy class of f . So by
passing to a subgroup Out1(π1(V ), π1(v)) of finite index in Out0(π1(V ), π1(v)), we
may assume that f preserves each Fi.

Suppose B is an element of v contained in the interior of some Fi (hence not
one of the annuli of A). By asphericity and the definition of Out0(π1(V ), π1(v)),
fi(B) is homotopic in V into B. By theorem 3.1.2, the homotopy may be assumed
to take place in Fi × I, and then by a further deformation to a homotopy into
Fi, showing that fi(B) is homotopic in Fi into B. Using lemma 2.12.3, we may
change f by homotopy to be admissible. Thus, if φ ∈ Out1(π1(V ), π1(v)), then f
is homotopic, relative to A, to an admissible homotopy equivalence that preserves
each Fi and restricts to a homeomorphism on each Fi.

Pass to a finite index subgroup Out2(π1(V ), π1(v)) of Out1(π1(V ), π1(v)) so
that if φ ∈ Out2(π1(V ), π1(v)), then each fi is orientation-preserving. We may
also assume that f(v) = v. Since φ is induced by a homotopy equivalence f
which preserves each Fi, φ takes Gi to a conjugate of itself for each 1 ≤ i ≤
m. As explained at the start of this section, this implies that f# : π1(V, v) →
π1(V, v) can be written as ϕ1ϕ2, where ϕ1 is a product of generators of the form
ρj,k(x), λj,k(x), µj,k(x), σj , and ωj,k, and ϕ2 =

∏m
i=1 φi where each φi is a factor

automorphism induced by an automorphism of Gi. In the case when m = 0, we
take Out2(π1(V )) = Out(π1(V )) and ϕ2 to be the identity.

To finish the proof, we will construct an admissible homeomorphism gs that
realizes φ. Recall that we showed that each slide automorphism, flip automorphism
or interchange automorphism of the type used above can be realized by a home-
omorphism which is the identity on ∂V − F . So there exists a homeomorphism
g of V which is the identity on ∂V − F and induces ϕ1. Then g−1f induces ϕ2.
For each i, let ψi be the automorphism of Gi which induces φi, i.e. φi = (ψi)i.
Since g is the identity on ∂V − F , each ψi must be induced by fi, up to inner
automorphism. Since fi is orientation-preserving, it can be extended to a homeo-
morphism si of π1(V ) which is the identity on ∂V − (F ∪ Fi) and induces φi on
π1(V ). (To construct si, extend fi first to Fi × [0, 1/2] using an isotopy from fi
to a homeomorphism f ′i which fixes vi and induces ψi on π1(Fi × {1/2}, vi), then
extend to a homeomorphism on the rest of Fi × I which fixes the attaching disks
of the 1-handles of V , fixes β1

i if i ≥ 2 and fixes each α0
k, α1

k and β0
j if i = 1, then

extend using the identity on the rest of V .) Let s be the composition
∏m
i=1 si ; then
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s−1g−1f is the identity on ∂V − F (so gs is admissible) and induces the identity
automorphism on π1(V ) (so gs realizes φ). �

The next proposition establishes our main result for small manifolds.
Proposition 9.2.2. Let (M,a) be a compact orientable irreducible 3-manifold

with boundary pattern consisting of a (possibly empty) collection of disjoint in-
compressible submanifolds. If (M,a) is small, then R(M,a) has finite index in
Out(π1(M), π1(a)).

Proof. When (M,a) is small, its fundamental group is a free product of the
form G1 ∗ G2, where corresponding to the types of small manifold defined in sec-
tion 6.1 we have one of the following:

I. G1 is either
(a) the fundamental group of a nonorientable surface and contains π1(F1)

as a subgroup of index 2, or
(b) infinite cyclic and contains π1(F1) as a proper subgroup,
and G2 is infinite cyclic.

II. G1 is either
(a) the fundamental group of a nonorientable surface, and contains

π1(F1) as a subgroup of index at most 2, or
(b) infinite cyclic and contains π1(F1) as a proper subgroup, or
(c) the fundamental group of the torus or Klein bottle, and π1(F1) is

infinite cyclic,
and G2 either equals π1(F2), or satisfies (a), (b), or (c) with π1(F2) in
place of π1(F1).

III. Either
(a) G1 =π1(F1), and G2 is infinite cyclic, or
(b) G1 and G2 are both infinite cyclic and π1(F1) and π1(F2) are sub-

groups of (the same) finite index in G1, or
(c) G1 is Z×Z, G2 is infinite cyclic, π1(F1) is either G1 or is a primitive

infinite cyclic subgroup of G1, and π1(F2) is a primitive infinite cyclic
subgroup of G1.

As in the proof of proposition 9.2.1, Out(π1(M), π1(a)) contains a subgroup
Out0(π1(M), π1(a)) of finite index so that each φ in this subgroup is induced by a
homotopy equivalence f which preserves each component of |a| and restricts to the
identity homeomorphism on the union A of the annuli in |a| that meet F . From
now on, we will consider only automorphisms that lie in this subgroup. Let V be a
normally imbedded relative compression body neighborhood of F . We will examine
each type of small manifold in turn.

Suppose M is of type I. Let W denote M − V . Suppose first that M is of type
Ia, so that W is a twisted I-bundle. Let F0 be the zero section of W , and choose
the basepoint of M to lie in F0. Then G1 = π1(F0), and G2 is infinite cyclic and
is generated by an element ω represented by a loop which travels once over the
1-handle of V . Since the boundary (if any) of F0 is homotopic into A, and f is the
identity on A, we may assume that f fixes ∂F0. In particular, the image under f of
∂F0 is disjoint from the 1-handle of M . Using asphericity, f is homotopic, relative
to A, so that f(F0) ⊆ W and hence so that f(F0) ⊂ F0 (since f is the identity
on ∂F0, this actually forces f(F0) = F0). By the Baer-Nielsen Theorem 2.5.5,
f |F0 : F0 → F0 is homotopic to a covering map from F0 to F0. If ∂F0 6= ∅, then,
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since f fixes ∂F0, this map is a homeomorphism. If ∂F0 = ∅, then since π1(F0) is
indecomposable, lemma 9.1.1 shows that f#(π1(F0))=π1(F0), so again the covering
map is a homeomorphism. Therefore φ(π1(F0)) is conjugate to π1(F0), and after
conjugation φ preserves the index 2 subgroup π1(F1) ⊂ π1(F0) which consists of all
orientation-preserving loops.

Lemma 9.1.2 applies to show that there exist unique elements ϕ1 ∈ Aut(G1)
and γ ∈ π1(F0), so that, perhaps after composing by an inner automorphism,
φ(g1) =ϕ1(g1) for all g1 ∈ G1 = π1(F0) and φ(ω) = γωε where ε=±1. We define
a homomorphism from Out0(π1(M), π1(a)) to Z/2 by sending φ to ε and a second
homomorphism from the kernel of the first to π1(F0)/π1(F1) ∼= Z/2 by sending
φ to the coset of γ. The latter is a homomorphism since each φ preserves the
subgroup π1(F1) of π1(F0). Let Out1(π1(M), π1(a)) be the kernel of this second
homomorphism.

If φ ∈ Out1(π1(M), π1(a)), then we may assume that there exists ϕ1 ∈ Aut(G1)
and γ ∈ π1(F1) such that φ(g1) =ϕ1(g1) for all g1 ∈ π1(F0) and φ(ω) =γω. Since
ϕ1 preserves the peripheral structure of F0, it is realizable by a homeomorphism
h1 of F0. Passing to another finite-index subgroup Out2(π1(M), π1(a)), we may
assume that the basepoint-preserving lift of h1 to F1 is orientation-preserving. This
ensures that there is an extension of h1 to an orientation-preserving admissible
homeomorphism h of M whose induced automorphism sends g1 to ϕ1(g1) and
sends ω to ω. Let h′ be an admissible homeomorphism which is the identity on
W and slides one end of the handle around a loop in F1 × {1} which represents
γ. (The details in the construction of h′ resemble those in the construction of the
realization of a left slide automorphism.) Then h′h is an admissible homeomorphism
inducing φ. Therefore, Out2(π1(M), π1(a)) ⊂ R(M,a), so R(M,a) has finite index
in Out(π1(M), π1(a)).

Now suppose that M is of type Ib, so that W is a solid torus. In this case π1(M)
is free on two generators: ω1, represented by a core curve of W , and ω2, represented
by a loop which travels once over the 1-handle attached to F1×{1}, entering on an
end we will call the left-hand attaching disk and leaving by the right-hand attaching
disk. Now F is a torus with two holes whose boundary components are fixed by
f (since they lie in A), hence are fixed up to conjugacy by φ. Each boundary
component of F represents the same nonzero power ω`1, so φ(ω`1)=gω`1g

−1 for some
g ∈ π1(M). Since roots are unique in free groups, φ(ω1)=gω1g

−1. By lemma 9.1.2
we may assume that φ fixes ω1 and takes ω2 to ωn1ω

ε
2 where n is a well-defined

integer and ε=±1. Define a homomorphism from Out0(π1(M), π1(a)) to Z/2 by
sending φ to ε. Define a second homomorphism from the kernel of the first to Z/`
by sending φ to n. Suppose that φ is in the kernel Out1(π1(M), π1(a)) of the second
homomorphism. We may assume that φ(ω1)=ω1 and φ(ω2)=ωr`1 ω2 for some r. In
the portion of F1×{1} that lies in the boundary of W , we can choose a loop based
at the left-hand attaching disk of the 1-handle that represents ` times the generator
of π1(W ). Sliding the left-hand attaching disk of the 1-handle r times around the
reverse of this loop, we obtain a slide homeomorphism that induces φ. We may
choose the slide homeomorphism to fix ∂M − F . In particular, it will preserve |a|,
so will be admissible. Therefore, Out2(π1(M), π1(a)) ⊂ R(M,a), so R(M,a) has
finite index in Out(π1(M), π1(a)).
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Assume that M is of type II, and write Wi for the component of M − V that
contains Fi. When Wi is a solid torus or an I-bundle with one of its lids as a con-
stituent, arguments similar to the type I case show that if φ ∈ Out0(π1(M), π1(a))
then φ(Gi) is conjugate to either G1 or G2. When Fi is an annulus and Wi is
an I-bundle over the torus or Klein bottle, Gi is a noncyclic indecomposable free
factor of G1 ∗G2, so is conjugate to a unique indecomposable free factor of G1 ∗G2.
In particular, if φ ∈ Out0(π1(M), π1(a)), then φ(Gi) is again conjugate to either
G1 or G2. Therefore, in all cases there exists a subgroup Out1(π1(M), π1(a)) of
Out0(π1(M), π1(a)) of index at most 2 such that φ(Gi) is conjugate to Gi for each i.

We may apply lemma 9.1.2(i) to show each φ in Out1(π1(M), π1(a)) has a
unique representative that preserves both Gi; denote its restriction to Gi by ϕi. If
Wi is a solid torus or a twisted I-bundle with one of its lids as a constituent, one may
use the methods of the type I case to show that there exists a finite index subgroup
of Out1(π1(M), π1(a)), such that if φ lies in the subgroup, then there exists a
homeomorphism hi of Wi that preserves Fi, induces ϕi relative to a basepoint of
Wi that lies in Fi, and extends to an admissible homeomorphism of (M,a) inducing
the factor automorphism (ϕi)i. If Wi is an I-bundle with Fi as lid and wi is its
submanifold boundary pattern, then we may combine methods of type I case and
the proof of proposition 9.2.1 to show that there exists a finite index subgroup
of Out1(π1(M), π1(a)), such that if φ lies in the subgroup, then there exists an
admissible homeomorphism hi of (Wi, wi) that preserves Fi, induces ϕi relative to
a basepoint of Wi that lies in Fi, and extends to an admissible homeomorphism of
(M,a) inducing the factor automorphism (ϕi)i.

For the remaining possibilities, assume that Fi is an annulus and Wi is the
I-bundle over the Klein bottle or torus. Suppose first that Wi is the I-bundle over
the Klein bottle. Since Out(π1(Wi)) is finite, we may pass to another subgroup
of finite index to assume that ϕi is inner. Since π1(∂Wi) has index 2 in π1(Wi),
we may further assume that ϕi is conjugation by an element in π1(∂Wi). Then,
there is a Dehn twist hi about ∂Wi that induces ϕi, relative to a basepoint in Fi.
Since hi is the identity on ∂Wi, it extends to M using the identity on M −W1.
Suppose now that Wi is the I-bundle over the torus. If the component of ∂Wi that
lies in ∂M does not contain any annuli of |a| that are not homotopic to Fi, then
by lemma 9.1.3(i) there is a finite index subgroup of Aut(π1(Wi);π1(Fi)) generated
by a Dehn twist in an annulus that meets ∂Wi in loops homotopic into Fi. So hi
may be chosen to preserve |a| and to be the identity on Fi. Again, hi extends using
the identity to the rest of M . Finally, if ∂Wi does contain annuli of a that are not
homotopic to Fi, then lemma 9.1.3(ii) shows that we may pass to a finite-index
subgroup to assume that ϕi is the identity automorphism. In this case, we just
take hi equal to the identity.

If φ lies in the intersection of all the relevant finite index subgroups, then
h1h2 is an admissible homeomorphism of M which induces φ. So we have shown
that R(M,a) has finite index in Out(π1(M), π1(a)) if (M,a) is a small manifold of
type II.

Finally, assume that M is of type III. Again, let W denote M − V . We write
π1(M) ∼= G1∗Z, where the second factor is generated by ω, which is represented by a
loop that goes once over the 1-handle of V . As in the previous cases, we may assume,
after passing to a finite index subgroup Out1(π1(M), π1(a)) of Out(π1(M), π1(a)),
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that φ preserves G1 up to conjugacy. Using lemma 9.1.2, we may assume that
φ(g1)=ϕ1(g1) and φ(ω)=γω±1, where ϕ1 ∈ Aut(G1) and γ ∈ G1.

Suppose M is of type IIIa. Since ϕ1 preserves the peripheral structure of
π1(F1), there is a homeomorphism h1 of F1 that induces ϕ1 on π1(F1). There is a
homeomorphism of M that induces ϕ1 on π1(F1) and sends ω to ω±1; on F1× I this
is of the form h1 × idI or h1 × r, where h1 is a homeomorphism of F1 that induces
ϕ1 and r is reflection in the I-fibers, depending on whether ω is sent to ω or ω−1.
Composing this with a homeomorphism which slides the left end of the 1-handle
around a loop in F1 × {1} representing γ if ω is sent to ω, or the right end of the
1-handle around a loop in F2 × {1} representing γ if ω is sent to ω−1, we obtain a
homeomorphism inducing φ. It may be chosen to be admissible, since every element
of a is an annulus parallel to an annulus that meets F . In this case every element
of Out1(π1(M), π1(a)) is realizable by an admissible homeomorphism.

If M is of type IIIb, then W is a solid torus and the argument is similar to the
type Ib case. The surface F is a sphere with four holes, but otherwise there is little
change.

If M is of type IIIc, then either part (i) or (ii) of lemma 9.1.3 shows that there
is a subgroup of finite index in Aut(π1(S1 × S1 × I);π1(F1), π1(F2)) realizable by
homeomorphisms of S1×S1× I that preserve the elements of the boundary pattern
and the attaching disks for the 1-handle. Passing to a subgroup of finite index in
Out(π1(M), π1(a)), we may assume that ϕ1 lies in this subgroup. The composition
of a homeomorphism realizing ϕ1 and a Dehn twist about S1 × S1 × {1/2} that
sends ω to γω induces φ. �

9.3. The infinite-index cases

In this section we complete the proof of Main Topological Theorem 1 by proving
that R(M,a) has infinite index in Out(π1(M), π1(a)) whenever (M,a) is not a
relative compression body and is not small. For this part of the proof we do not
need the full strength of the hypotheses on a, we use only the assumption that no
boundary circle of F is compressible. To indicate this weaker hypothesis, we will
now denote the boundary pattern by m. At the end of this section, we discuss some
further possible weakenings of this hypothesis.

Proposition 9.3.1. Let (M,m) be a compact orientable irreducible 3-manifold
with boundary pattern consisting of a (possibly empty) collection of disjoint sub-
manifolds. Suppose there exists a free side F which is compressible in M , but no
boundary circle of F is contractible in M . If (M,m) is not a relative compression
body and is not small, then R(M,m) has infinite index in Out(π1(M), π1(m)).

Here is a sketch of the proof of proposition 9.3.1. Let (V, v) be a minimally
imbedded relative compression body neighborhood of the compressible free side F
of (M,m). For a loop α in M , we define a “wrapping” homotopy equivalence h(α)
of (M,m) which takes a 1-handle of V and maps it to a loop that goes around
α and then goes once over the handle. Provided that α itself does not go over
the 1-handle, h(α) will be an admissible homotopy equivalence with admissible
homotopy inverse h(α−1), where α−1 denotes the reverse path for α. To detect
that the induced outer automorphism h(α)# is not realizable by an admissible
homeomorphism, we select a certain loop β in F and observe that h(α)(β) is not
freely homotopic to a loop disjoint from a properly imbedded constituent F1 of V .
If there were an admissible homeomorphism inducing h(α)#, then h(α)(β) would
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be freely homotopic into a free side of (M,m) and hence to be disjoint from F1.
To show that R(M,m) has infinite index in Out(π1(M), π1(m)), we find sequences
{h(αr)}, so that for any i 6= j, h(αi)#h(α−1

j )# cannot be induced by an element of
H(M,m). This implies that the induced automorphisms h(αr)# represent distinct
cosets of R(M,m) in Out(π1(M), π1(m)). The proof breaks into various cases,
according to the way in which the constituents of V separate M , and the nature of
the complementary components.

Proof. Let (V, v) be a minimally imbedded relative compression body neigh-
borhood of F , with constituents F1, . . . , Fm. Since F is compressible, k ≥ 1,
where k denotes the number of 1-handles of V . The assumption that the bound-
ary circles of F are not contractible in M implies that no constituent Fi is simply
connected. Since (M,m) is not itself a relative compression body, we may assume
that either F1 is nonseparating, or for the component M1 of M − V that meets F1,
π1(F1)→ π1(M1) is not surjective. We select the basepoint of M to lie in F1. We
will need rather precise descriptions of π1(M).

(i) When F1 is separating, regard π1(M) as a free product with amalgamation
π1(M1)∗π1(F1)π1(M −M1). As explained on p. 187 of [73], every element
of π1(M1) ∗π1(F1) π1(M −M1) can be expressed as a product g1g2 · · · gn
where each gi is in one of the factors π1(M1) or π1(M −M1), successive
gi’s come from different factors, and if n > 1 then no gi is in π1(F1).
Such a product is called cyclically reduced if n= 1 or if g1 and gn lie in
different factors. Every element is conjugate to an element that can be
written in cyclically reduced form. According to theorem IV.2.8 in [73],
if g1 · · · gn is cyclically reduced, then any element in cyclically reduced
form conjugate to g1 · · · gn can be obtained by cyclically permuting the gi
and then conjugating by an element of π1(F1). In particular, an element
written in cyclically reduced form which has length n ≥ 2 cannot be
conjugate into π1(M1) or π1(M −M1).

(ii) When F1 is nonseparating, M is obtained from a manifold M0 by iden-
tifying two copies of F1 in ∂M0. Under the quotient map from M0 to
M , one component V0 of the preimage of V maps homeomorphically to
V ; the other is a copy F0 of F1. Let the copy of the basepoint of M
that lies in V0 be the basepoint of M0, and choose a path τ in M0 from
that basepoint to the other copy of the basepoint of M , that lies in F0.
Now π1(F1) sits naturally as a subgroup of π1(M0), since there is a copy
of F1 in V0 that contains the basepoint. Using the path τ , we regard
π1(F0) as a subgroup of π1(M0). In M , τ becomes a closed loop, repre-
senting an element t ∈ π1(M). By Van Kampen’s Theorem, π1(M) is an
HNN extension π1(M0)∗π1(F1), where tπ1(F1)t−1 =π1(F0). As explained
on pp. 181-187 of [73], every element of π1(M0)∗π1(F1) can be written
in the form g0t

ε1g1t
ε2g2 · · · gn−1t

εngn where each gi ∈ π1(M0) and each
εi =±1. This element is called reduced if there is no consecutive subse-
quence t−1git with gi ∈ π1(F0) and there is no consecutive subsequence
tgit
−1 with gi ∈ π1(F1). It is called cyclically reduced if gn = 1 and all

its cyclic permutations ending in a power of t are reduced. According to
theorem IV.2.5 of [73], if g0t

ε1 · · · gn−1t
εn is cyclically reduced, then any
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conjugate element in cyclically reduced form also has exactly n appear-
ances of t±1. In particular, a cyclically reduced element in which a power
of t appears cannot be conjugate into π1(M0)

We illustrate the conjugacy condition in the HNN case with an example that will
be useful in Case IIIb below. Note first that since F1 is a constituent of V , we have
π1(M0)=π1(F1)∗H where π1(F0) ⊆ H. In particular, π1(F0)∩π1(F1)={1}. Now,
suppose that there exists a loop α in M − V , based at the basepoint in F1 and not
(based) homotopic back into F1. Writing α ' τ−1τατ−1τ shows that α represents
an element of the form t−1g1t, where g1 /∈ π1(F0) since α is not homotopic into
F1. Now suppose that δ is a loop that represents an element g0 ∈ π1(V )− π1(F1).
Then the element represented by δα is g0t

−1g1t. Since g0 /∈ π1(F1) and g1 /∈ π1(F0),
this element is cyclically reduced. Since it contains appearances of t±1, it is not
conjugate into π1(M0).

We will now detail the general construction of a wrapping homotopy equiva-
lence. Typically, these will be used to wrap a 1-handle around some non-peripheral
curve in M . Let D be a disk, let d0 be the origin contained in D, and assume
that D × I is a 1-handle of V such that ∂D × I ⊂ F . Let α be a loop based at
{d0} × {3/4} ∈ D × {3/4} such that α is disjoint from D × [0, 3/4). Construct
a map h(α) : (M,m) → (M,m) which (1) is the identity outside D × I, (2) maps
each D × {t} to itself for t ∈ [0, 1/4] ∪ [3/4, 1], and (3) collapses each D × {t} to
{d0}×{t} for 1/4 ≤ t ≤ 3/4, and then maps the resulting interval {d0}× [1/4, 3/4]
around the path ({d0} × [1/4, 3/4]) ∗ α. Observe that if β is another loop based
at {d0} × {3/4} ∈ D × {3/4} and disjoint from D × [0, 3/4), then h(α) ◦ h(β) is
admissibly homotopic to h(αβ) relative to M −D × I. In particular, h(α−1) is an
admissible homotopy inverse to h(α).

In each case of the ensuing proof, we will construct a sequence {h(αr)}
whose induced automorphisms h(αr)# will represent distinct cosets of R(M,m)
in Out(π1(M), π1(m)). So we will need to show that if i 6= j, then h(αi)#h(α−1

j )#

does not lie in R(M,m). To prove that h(αi)#h(α−1
j )# does not lie in R(M,m)

we will find a loop ν in ∂M , whose image under h(α), where α = αiα
−1
j , is not

peripheral, i. e. is not homotopic into ∂M . This loop ν will either be a loop β that
intersects ∂(D × {3/4}) in one point, or a loop of the form γδ where γ and δ are
arcs with endpoints in ∂(D × {3/4}) and γδ intersects ∂(D × {3/4}) transversely
in two points. Now h(α)(`) is homotopic to a loop obtained from ` by inserting α
or α−1 at each (transverse) crossing of ` over ∂(D × {3/4}). Thus h(α)(`) will be
freely homotopic to αβ, in the first case, and to γαδα−1 in the second. In each case,
the loops will be chosen so that h(α)(`) is not freely homotopic to a loop which is
disjoint from F1. If there were an admissible homeomorphism f realizing φ, then
f(`) would lie in a free side of (M,m) and hence would be disjoint from F1.

The element of π1(M) represented by a loop whose name is a Greek letter will
be denoted by the corresponding Roman letter, thus α represents the element a
and so on. We must have m ≥ 1, since otherwise M is a handlebody with m = ∅,
and hence a compression body. In all the cases given below, the notation is as in (i)
and (ii) above. In particular, M1 denotes the component of M − V that contains
F1, and M0 denotes the manifold obtained by splitting M along F1, when F1 is
separating.

The argument is simplest when there are at least as many 1-handles as con-
stituents, i. e. when k ≥ m.
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Case I: k ≥ m.
In this case, the wrapping homotopy equivalences will affect a 1-handle D × I

in V for which D×{0} does not separate V . We may choose the compression body
structure on V so that both ends of D × I lie in F1 × {1}. Fix a loop β in F that
intersects ∂(D × {3/4}) transversely in a single point, oriented so that it passes
over D × I from D × {0} to D × {1}. There are four subcases:

Case Ia: F1 does not separate M .
Let τ be a loop in M based in D × {3/4} and disjoint from D × [0, 3/4),

which represents the element t in the HNN decomposition π1(M) =π1(M0)∗π1(F1)

described in (ii) above. Then h(τ iτ−j)(β) represents an element conjugate to bti−j

with b ∈ π1(M0). This is cyclically reduced, so when i 6= j it is not conjugate
into π1(M0). Therefore h(τ i−j)(β) is not homotopic to a loop disjoint from F1.
(For this case, one can avoid the HNN theory by simply observing that under
the homomorphism from π1(M0)∗π1(F1) to Z that sends t to 1 and all elements of
π1(M0) to 0, bti−j maps to i − j.) So, h(τ i−j) does not lie in R(M,m) and thus
R(M,m) has infinite index in Out(π1(M), π1(m)).

Case Ib: V has only one constituent (m = 1), and π1(F1) has infinite index
in π1(M1).

Since m = 1, F1 is separating. Choose loops {αr | 1 ≤ r } that represent
infinitely many distinct cosets of π1(F1) in π1(M1). Then h(αiα−1

j )(β) represents an
element conjugate to (aia−1

j )b, with aia−1
j in π1(M1)−π(F1) and b ∈ π1(M −M1)−

π1(F1). Provided that i 6= j, this element is cyclically reduced and has length 2 with
respect to the amalgamated free product decomposition as described in (i) above,
so is not conjugate to an element of π1(M1) or π1(M −M1). Therefore h(αiα−1

j )(β)
is not freely homotopic to a loop disjoint from F1, which as we have seen shows
that the h(αi)# represent distinct cosets of R(M,m) in Out(π1(M), π1(m)).

Case Ic: V has only one constituent (m=1), and π1(F1) has finite index in π1(M1).
Since π1(F1) has finite index in π1(M1), the Finite Index Theorem 2.1.1 shows

that either M1 is an I-bundle with F1 as a lid, or M1 is a solid torus and F1 is
an annulus. Since (M,m) is not small, there must be a second 1-handle in V .
Let α be the product of a loop α′ such that a′ ∈ π1(M1) − π1(F1) and a loop
α′′ in V that goes once over the second 1-handle in V . Then h(αr)(β) represents
an element conjugate to (a′a′′)rb with a′ ∈ π1(M1) − π1(F1), and a′′ and a′′b in
π1(V )− π1(F1). When r > 0, a cyclically reduced form for this element in the free
product with amalgamation π1(M)=π1(V )∗π1(F1) π1(M1) is a′ ·a′′ ·a′ · . . . ·a′ ·a′′b,
which has length at least 2. So when r > 0, h(αr)(β) is not freely homotopic to
a loop disjoint from F1. Again the h(αr)# represent distinct cosets of R(M,m) in
Out(π1(M), π1(m)).

Case Id: V has at least two constituents (m ≥ 2), and F1 separates M .
Since F1 separates, our choice of F1 implies that π1(F1) → π1(M1) is not

surjective. Let α be the product of a loop α′ such that a′ ∈ π1(M1)−π1(F1) and a
loop α′′ such that a′′ is a nontrivial element of π1(F2). An argument similar to the
one in Case Ic then applies to complete the proof that R(M,m) has infinite index
in Out(π1(M), π1(m)).

For the remaining cases, we may assume that every imbedded 2-disk separates
V , that is, that k=m− 1. We choose the compression body structure with exactly
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m − 1 1-handles Di × I, 1 ≤ i ≤ m − 1, so that Di × {0} is attached to Fi × {1}
and Di × {1} is attached to Fi+1 × {1}. Arcs in V from the basepoint in F1 to
these handles are used to regard loops based at points in the handles as elements
of π1(M).

For the remaining cases, we may assume that every imbedded 2-disk separates
V , that is, that k=m− 1. We choose the compression body structure with exactly
m− 1 1-handles Di× I, 1 ≤ i ≤ m− 1, so that Di×{0} is attached to Fi×{1} and
Di × {1} is attached to Fi+1 × {1}, except that when m ≥ 2, D2 × {0} is attached
to F3 × {1} and D2 × {1} is attached to F2 × {1}. Arcs in V from the basepoint
in F1 to these handles are used to regard loops based at points in the handles as
elements of π1(M).

Case II: k = m− 1 and m ≥ 3.
Again there is a natural subdivision into subcases.

Case IIa: F1 does not separate M .
We choose the compression body structure and notation so that F1 and F2

lie in the same component of M − V . Choose a loop τ based at D2 × {3/4} and
disjoint from D2 × [0, 3/4), which represents the HNN generator t of π1(M) =
π1(M0)∗π1(F1). The homotopy equivalences h(τ r) are defined using the 1-handle
D2 × I. Choose an arc γ with endpoints in D2 × {3/4} which is disjoint from
D2 × [0, 3/4) and which represents a nontrivial element g ∈ π1(F1). Choose an
arc δ with endpoints in D2 × {3/4} which is disjoint from D2 × (3/4, 1] and which
represents a nontrivial element d ∈ π1(F3), and so that γδ is a loop. Now h(τ r)(γδ)
represents an element conjugate to gt−rdtr. Also, g /∈ π1(F0) (because π1(F1) ∩
π1(F0)={1}) and d /∈ π1(F1), so when r < 0 this element is cyclically reduced and
hence is not conjugate into π1(M0). So for r < 0, h(τ r)# is not induced by any
admissible homeomorphism, showing that they represent distinct cosets ofR(M,m)
in Out(π1(M), π1(m)).

Case IIb: F1 separates M .
Since π1(F1) must be a proper subgroup of π1(M1), we can choose a loop α

based at D2 ×{3/4} representing an element of the form a1a2 with a1 ∈ π1(M1)−
π1(F1) and a2 ∈ π1(F2)−{1}. Let γδ be as in Case IIa. Then h(αr)(γδ) represents
an element conjugate to g(a1a2)−rd(a1a2)r. Written in normal form, this is

ga−1
2 · a

−1
1 · a

−1
2 · . . . · a

−1
1 · d · a1 · a2 · . . . · a1

with a±1
1 in π1(M1)−π1(F1), and ga−1

2 , d, and a±1
2 in π1(M −M1)−π1(F1), when

r > 0. As before, this shows that if r > 0, then h(αr)# is not induced by an
admissible homeomorphism.

We have now treated all cases for which k ≥ m or m > 2, so from now on we
may assume that k=1 and m=2. We next handle the cases in which the normalizer
of π1(F1) has infinite index in π1(M1).

Case III: k = 1, m=2 and the normalizer of π1(F1) has infinite index in π1(M1).
Choose elements ar ∈ π1(M1) representing distinct cosets of the normalizer

of π1(F1) in π1(M1). For each aia
−1
j with i 6= j, choose gi,j in π1(F1) so that

(aia−1
j )gi,j(aia−1

j )−1 ∈ π1(M1) − π1(F1). Let γi,j be an arc in F with endpoints
in ∂(D1 × {3/4}) and disjoint from D1 × (3/4, 1], which represents gi,j , and let δ
be an arc in F with endpoints in ∂(D1 × {3/4}) and disjoint from D1 × [0, 3/4),
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representing a nontrivial element of π1(F2), such that γi,jδ is a loop intersecting
∂(D1×{1/4}) in two points. Then h(αiα−1

j )(γi,jδ) represents an element conjugate
to (aia−1

j )gi,j(aia−1
j )−1d.

Case IIIa: F1 separates M .
Since (aia−1

j )gi,j(aia−1
j )−1 ∈ π1(M1)− π1(F1) and d ∈ π1(M −M1)− π1(F1),

h(αiα−1
j )(γi,jδ) is not homotopic to a loop disjoint from F1. As usual, this shows

that the h(αi)# represent distinct cosets of R(M,m) in Out(π1(M), π1(m)).

Case IIIb: F1 does not separate M .
Notice that (aia−1

j )gi,j(aia−1
j )−1 can be represented by a loop in M based in

F1 and contained in π1(M − V ), and not based homotopic into F1. As explained
in the example after (ii) above, this shows that δ(aia−1

j )gi,j(aia−1
j )−1 represents

an element of the form g0t
−1g1t where g0 /∈ π1(F1) and g1 /∈ π1(F0), and this

element cannot be conjugate into π1(M0). So again R(M,m) has infinite index in
Out(π1(M), π1(m)).

The remaining case requires more elaborate preparation.

Case IV: k= 1, m= 2 and for each component G of the frontier of V in M which
is contained in a component W of M − V , the normalizer of π1(G) in π1(W ) has
finite index.

Since M is not small, the Finite Index Theorem 2.1.1 ensures that F1 may be
chosen so that π1(F1) has infinite index in π1(M1). We will use the following result,
which is lemma 1.6 of [117].

Lemma 9.3.2. Let M be an orientable irreducible 3-manifold and S an incom-
pressible component of ∂M . Suppose there is a subgroup H of finite index in π1(S)
which is normal in a subgroup H ′ of π1(M). Then either

(i) H ′ ⊂ π1(S), or
(ii) π1(S) is of index 2 in π1(M), S=∂M , and M is compact and homeomor-

phic to the I-bundle over a nonorientable surface.

We first claim that F1 is an annulus contained in a torus boundary component
of M1. Let N be the covering of M1 corresponding to the normalizer of π1(F1).
Then N is compact and there is an exact sequence

1→ π1(F1)→ π1(N)→ Q→ 1

with Q infinite. According to theorem 11.1 of [51], one of the following must hold:
(1) π1(F1) ∼= Z,
(2) π1(F1) 6∼= Z and N is a fiber bundle over S1 with fiber a compact manifold,
(3) π1(F1) 6∼= Z and N is the union of two twisted I-bundles along their lids,

or
(4) N contains a two-sided projective plane.

Suppose for contradiction that case (1) does not hold. Case (4) cannot hold
since N is orientable. In cases (2) and (3), each component of ∂N and hence of
∂M1 is an incompressible torus. Since π1(F1) 6= Z and F1 is incompressible, F1

must be a torus boundary component of M1. By lemma 9.3.2, π1(F1) has index 2
in π1(M1), which would be a contradiction. We conclude that case (1) holds, so F1

is an annulus. By corollary 12.8 of [51], N is Seifert fibered so ∂N and hence ∂M1

consist of tori. This proves the claim.
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Let T be the boundary torus of M1 which contains F1. Since π1(F1) has
infinite index in π1(M1), M1 is not a solid torus and therefore T is incompressible.
If possible, choose F1 so that the normalizer of π1(T ) in π1(M1) has infinite index.
By a trick which involves altering the boundary pattern, the remaining possibilities
will be reduced to cases already considered.

Case IVa: The normalizer of π1(T ) in π1(M1) has infinite index in π1(M1).
Let m′ be the boundary pattern on M obtained by removing from m all

elements of m that meet T . If F2 does not meet T , then (M,m′) has F ∪
(∂F1 × I) ∪ (T ∩ ∂M) as a free side. If F2 does not lie in T , then (M,m′) has
F ∪ (∂F1 × I) ∪ (∂F2 × I) ∪ (T ∩ ∂M) as a free side. In either case, V ∪ (T × I)
is a minimally imbedded relative compression body neighborhood of this free side
where T × I is a collar neighborhood of T in M1. Either case Ib (if F2 ⊂ T ) or case
IIIa or IIIb (if F2 6⊂ T ) applies to show that there are infinitely many admissible
homotopy equivalences h(αi) of (M,m′), such that h(αiα−1

j )# is not induced by
an admissible homeomorphism of (M,m′), and hence not by an admissible home-
omorphism of (M,m). Moreover, we may assume that the 1-handle of V ′ is the
same as the 1-handle of V , so that the h(αi) are the identity on ∂M − F . This
shows that each h(αi)# lies in Out(π1(M), π1(m)). Therefore the h(αi)# represent
distinct cosets of R(M,m) in Out(π1(M), π1(m)).

Case IVb: The normalizer of π1(T ) in π1(M1) has finite index in π1(M1).
By lemma 9.3.2, M1 is either T × I or the I-bundle over the Klein bottle.
Suppose for contradiction that F1 separates M , and let M2 the the component

of M − V that contains F2. If the index of π1(F2) in π1(M2) is finite, then either
M2 is an I-bundle with F2 as its lid, or F2 is an annulus and M2 is a solid torus. If
the index is infinite, then since we are not in case IVa, we have as for F1 that F2 is
an annulus and M2 is either T × I or the I-bundle over the Klein bottle. In any of
these cases, M would be small. So F1 and F2 must be nonseparating annuli which
meet M1. They must lie in the same boundary torus T of M1, otherwise M1 must
be T × I and M is small of type IIIc.

Let the components of T − (F1 ∪ F2) be A and B, and form a new boundary
patternm′ onM by removing from m all elements that meet A. There are boundary
circles Ci of Fi so that Ci× I meets A, so F ∪ (C1× I)∪ (C2× I)∪A is a free side of
(M,m′). A minimally imbedded compression body neighborhood of this free side
has exactly one 1-handle, and one constituent which is an annulus (the frontier of a
regular neighborhood of F1∪A∪F2 in M1). Case Ib applies to (M,m′), and exactly
as in case IVa this shows thatR(M,m) has infinite index in Out(π1(M), π1(m)). �

Finally, we note that the case where components of ∂F are allowed to be
compressible can undoubtedly be handled using methods similar to those in the
proof of proposition 9.3.1. Since this would require the definition of additional
small manifolds (for example, a twisted I-bundle with boundary pattern consisting
of its sides together with a collection of disjoint disks in its lid), we have restricted
to the case when ∂F is incompressible.



CHAPTER 10

The Case When the Boundary Pattern Is Useful

The main goal of this chapter is to prove Main Topological Theorem 2, stated in
chapter 8. Roughly speaking, it says that for a 3-manifold with a boundary pattern
whose completion is useful, the subgroup of automorphisms of the fundamental
group that can be realized by homeomorphisms has finite index in the group of all
automorphisms if and only if the components of the characteristic submanifold that
meet the boundary of the 3-manifold are not too complicated. The characteristic
submanifold is taken with respect to the completed boundary pattern.

For the index of the realizable subgroup to be finite, all the Seifert-fibered com-
ponents of the characteristic submanifold that meet the boundary must be from a
certain list that fiber over surfaces of very small genus, and have few exceptional
fibers. However, the way in which these components meet the boundary can also
affect the index. This is illustrated in examples 1.4.3 and 1.4.4 from chapter 1.
These examples have homeomorphic characteristic submanifolds (the product of
circle and a disk with two holes), but in example 1.4.3 the characteristic submani-
fold meets the boundary in two tori, and the index is infinite, while in example 1.4.4
it meets the boundary in a single torus, and the index is finite. Thus both the topo-
logical types of these components and their intersection with the boundary must
be taken into account. The I-bundle components of the characteristic submanifold
are similarly constrained.

The first stage of the proof of Main Topological Theorem 2 is theorem 10.1.1.
It states that the realizable automorphisms have finite index if and only if for each
component of the characteristic submanifold, the subgroup of a certain group of
admissible self-homotopy-equivalences realizable by homeomorphisms has finite in-
dex. Its proof is complicated, and will be sketched in detail in section 10.1 after
the necessary notation has been set up. To complete the proof of Main Topological
Theorem 2, we must determine the fibered manifolds for which the realizable sub-
group in theorem 10.1.1 has finite index. The case of I-fibered manifolds is handled
first, in section 10.2, then the Seifert-fibered case, in section 10.3. In section 10.4,
these elements are assembled into the formal proof of Main Topological Theorem 2.

We now set up some basic notation, and use it to give a more precise rendering
of the previous outline. Let M be a compact orientable irreducible 3-manifold
with a (possibly empty) boundary pattern m whose completion m is useful and
nonempty. This excludes the possibility that (M,m) is one of the exceptional
fibered manifolds (EF1)-(EF5) or (ESF), defined in section 2.6. Throughout this
section, we work under the strong assumption that the elements of m are disjoint;
consequently, unless (M,m)=(D3, d) where d consists of a single 2-disk, no element
of m is simply-connected, since an element of m that met a disk of m would be
compressible and m could not be useful.

139
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In section 10.1, we will define a subgroup Out2(π1(M), π1(m)) which has finite
index in Out(π1(M), π1(m)). An admissible homotopy equivalence that induces an
automorphism in Out2(π1(M), π1(m)) and preserves the characteristic submanifold
of (M,m) must preserve each component Vi of this characteristic submanifold,
in fact it must preserve each component of the frontier of each Vi. Restricting
such a homotopy equivalence to the Vi produces a homotopy equivalence on each
Vi, which lies in a certain group E(Vi, vi′, vi′′) of homotopy equivalences. This
restriction is well-defined on elements of Out2(π1(M), π1(m)), so this process defines
a homomorphism Ψ from Out2(π1(M), π1(m)) to a product

∏n
i=1 E(Vi, vi′, vi′′).

Each group E(Vi, vi′, vi′′) contains a subgroup H(Vi, vi′, vi′′) consisting of the
classes which are realizable by orientation-preserving homeomorphisms. The crucial
property of Ψ is that (apart from one exceptional type of manifold) up to finite index
the subgroup R(M,m) is the preimage Ψ−1(

∏n
i=1H(Vi, vi′, vi′′)). This leads to the

main result of section 10.1, theorem 10.1.1, which states that R(M,m) has finite
index in Out(π1(M), π1(m)) precisely when each H(Vi, vi′, vi′′) has finite index in
E(Vi, vi′, vi′′).

In section 10.2, the I-fibered manifolds for which H(Vi, vi′, vi′′) has finite index
are determined. Actually, this section treats all fibered manifolds which are bundles,
so applies to the Seifert-fibered manifolds with no exceptional fibers (apart from the
exceptional case of S1×S1×I with boundary pattern ∅), as well as all I-bundles. For
bundles, proposition 10.2.2 shows that the realization question can be translated
directly into a realization question for the base surface (B, b). One simply needs to
tell when the realizable subgroup H(B, b) has finite index in the group of admissible
homotopy equivalences E(B, b). For this two-dimensional problem, lemmas 10.2.3
and 10.2.4 treat the finite- and infinite-index cases respectively.

The remaining Seifert-fibered manifolds are treated in section 10.3. Specialized
arguments are used for the cases when V is a solid torus, or fibers over the disk
with two exceptional orbits of type (2, 1) (the latter is a Seifert fibering on the
I-bundle over the Klein bottle). Lemma 10.3.6 addresses the remaining cases for
which the sum of the number of exceptional fibers and the rank of H1(B) is 2;
provided that the boundary patterns are suitably restricted, these comprise most
of the cases when the index is finite. Lemma 10.3.7 treats the cases when the sum
is at least 3. There is exactly one such manifold where the index is finite, the
manifold that fibers over the 2-disk with three exceptional fibers of type (2, 1), and
has empty boundary pattern. For the other cases, as well as the infinite-index cases
in lemma 10.3.6 that are not covered by proposition 10.2.2, homotopy equivalences
that we call “sweeps” are used to produce representatives for infinitely many cosets
of the subgroup of realizable automorphisms.

In the remainder of this introductory section, we develop some notation that
will be used throughout this chapter. Let Σ be the characteristic submanifold of
(M,m), and let σ̂ be the proper boundary pattern on Σ as a submanifold of (M,m).
Thus σ̂ consists of the components of the intersections of Σ with each element of
m, together with the set of components of the frontier of Σ, which we denote by
σ′′. Let (V1, v̂1), . . . , (Vn, v̂n) be the components of (Σ, σ̂), and denote the set of
components of the frontier of Vi by vi′′.
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Let σ and vi be the elements of σ̂ and v̂i that lie in |m|; that is, these are
the submanifold boundary patterns on Σ and Vi as submanifolds of (M,m). By
lemma 2.10.8, each annulus and torus in m must be an element of σ.

Let m̃ ∪ σ′′ be the proper boundary pattern on M − Σ as a submanifold of
(M,m), that is, the set m̃= {components of F ∩M − Σ | F ∈ m}, together with
the set σ′′ of components of the frontier of M − Σ. For each component Sj of
M − Σ, let sj denote the set of elements of m̃∪ σ′′ that lie in Sj ; this is the proper
boundary pattern on Sj .

For each i, if (Vi, v̂i) is Seifert-fibered let vi′ denote the elements of vi that are
not annuli belonging to m, while if (Vi, v̂i) is an I-bundle let vi′=vi. Let σ′ denote⋃n
i=1 vi

′.
Let (V, v′∪v′′) be one of the (Vi, vi′∪vi′′). Define E(V, v′, v′′) to be the group of

path components of the space of admissible homotopy equivalences from (V, v′∪v′′)
to (V, v′ ∪ v′′) which preserve each element of v′ ∪ v′′ and whose restriction to
each element of v′′ is a homeomorphism which is isotopic to the identity. Define
H(V, v′, v′′) to be the subgroup of E(V, v′, v′′) consisting of all classes which contain
orientation-preserving homeomorphisms.

10.1. The homomorphism Ψ

The goal of this section is to prove the following theorem, which reduces the
finite index realization problem in the useful case to the analysis of homotopy
equivalences of I-bundles and Seifert-fibered manifolds.

Theorem 10.1.1. Let M be a compact orientable irreducible 3-manifold, with
a boundary pattern m whose completion is useful and nonempty. Assume that the
elements of m are disjoint. Then R(M,m) has finite index in Out(π1(M), π1(m))
if and only if for each component Vi of the characteristic submanifold of (M,m),
the subgroup H(Vi, vi′, vi′′) of elements of E(Vi, vi′, vi′′) realizable by orientation-
preserving homeomorphisms has finite index in E(Vi, vi′, vi′′).

To prove the theorem, we will define a subgroup Out2(π1(M), π1(m)) of
finite index in Out(π1(M), π1(m)), and construct a homomorphism Ψ from
Out2(π1(M), π1(m)) to

∏n
i=1 E(Vi, vi′, vi′′). Defining Ψ on a subgroup of finite

index allows numerous simplifications, for example it allows one to work using ho-
motopy equivalences that preserve each component of Σ. The basic idea in defining
Ψ is to take a homotopy equivalence that induces the automorphism, deform it
so that it preserves Σ, and then take its restrictions to the components of Σ as
the coordinates in

∏n
i=1 E(Vi, vi′, vi′′). Roughly speaking, an automorphism can be

realized by an orientation-preserving admissible homeomorphism of (M,m) if and
only if each of these restrictions is admissibly homotopic to a homeomorphism, so
one can think of Ψ as isolating the parts of the automorphism that might fail to be
realizable by homeomorphisms and allowing us to test them individually.

The difficulty in defining Ψ is that an automorphism determines a homotopy
equivalence only up to homotopy, not up to admissible homotopy. Indeed, there
are many admissible homotopy equivalences of the (Vi, vi) that are homotopic but
not admissibly homotopic to the identity. For example, we will see in the proof of
proposition 10.2.1 that the “sweep” construction mentioned above produces numer-
ous such examples. Consequently, a homomorphism from a finite-index subgroup of
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Out(π1(M), π1(m)) to
∏n
i=1 E(Vi, vi ∪ vi′′) would not be well-defined. Fortunately,

by using vi′ ∪ vi′′ rather than vi ∪ vi′′, we can define Ψ.
Here is a step-by-step summary of how we proceed.

1. In lemma 10.1.2, we find a subgroup Out1(π1(M), π1(m)) of finite index
in Out(π1(M), π1(m)), whose elements are realizable by admissible homo-
topy equivalences satisfying four properties called (C1)-(C4). In partic-
ular they preserve each component of Σ and M − Σ, and restrict to an
orientation-preserving homeomorphism on each component of the latter.

2. To examine the difference between homotopy and admissible homotopy,
we introduce the trace. The trace is defined for an element F of m with
respect to a homotopy between two admissible homotopy equivalences,
each of which preserves F . As shown in lemma 10.1.5, the trace for F
measures the inability to deform the homotopy to one that preserves F .
Lemma 10.1.6 tells when nontrivial traces can arise. Its proof shows that
apart from one exceptional case, they can arise only when F is an annulus
in a Seifert-fibered component V of Σ, and the two homotopy equivalences
differ by a “sweep” that moves F around a loop in V . Sweeps are certain
homotopy equivalences that will be defined precisely in section 10.2.

3. We prove proposition 10.1.4, which says that if two homotopy equivalences
satisfying the conditions of lemma 10.1.2 induce the same outer automor-
phism on π1(M), then their restrictions to M − Σ and Σ are admissibly
homotopic, provided that we use the boundary pattern σ′ ∪ σ′′ on Σ.

4. By virtue of proposition 10.1.4, the restriction homomorphism that takes
an element of Out1(π1(M), π1(m)), represents it by an admissible homo-
topy equivalence satisfying the conditions of lemma 10.1.2, and restricts
it to an element of the group of homotopy equivalences on each compo-
nent of the characteristic submanifold and each component of its com-
plement is well-defined. We show in lemma 10.1.7 that the restrictions
to components of M − Σ form a finite group. Passing to the kernel of
these restrictions produces a finite-index subgroup Out2(π1(M), π1(m))
of Out1(π1(M), π1(m)). Roughly speaking, these are the automorphisms
that are trivial on M − V . The homomorphism Ψ is just the restriction
homomorphism, restricted to this subgroup of automorphisms.

5. After seeing in lemma 10.1.8 that (apart from an exceptional case) Ψ is
surjective, we show that Ψ−1(

∏n
i=1H(Vi, vi′, vi′′)) is closely related to the

realizable subgroup R(M,m) of Out(π1(M), π1(m)). The precise state-
ment is theorem 10.1.9.

6. Theorem 10.1.1 is deduced from theorem 10.1.9.

From now until the deduction of theorem 10.1.1 from theorem 10.1.9, we will
assume that M is not the 3-ball. Also, as we have indicated, there are some
exceptional cases, for which certain of the results in this section do not hold. At
various times, we will exclude the following possibilities for (M,m):

(E1) M = S1 × S1 × I, m contains an annulus, and (M,m) can be admissibly
Seifert-fibered (i. e. all annuli in m are homotopic in M).

(E2) (M,m) is an admissibly fibered twisted I-bundle.
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Note that for both of these exceptional cases, the characteristic submanifold of
(M,m) is all of M .

Our first lemma uses the Classification Theorem 2.11.1 to realize automor-
phisms in Out(π1(M), π1(m)) by admissible homotopy equivalences that preserve
Σ and M − Σ.

Lemma 10.1.2. Out(π1(M), π1(m)) has a subgroup Out1(π1(M), π1(m)) of fi-
nite index in which each element can be induced by an admissible homotopy equiv-
alence f : (M,m)→ (M,m) satisfying the following conditions:

(C1) f preserves Σ and M − Σ, its restriction to (M − Σ, m̃∪σ′′) is an admis-
sible homeomorphism, and its restriction to (Σ, σ ∪ σ′′) is an admissible
homotopy equivalence.

(C2) f preserves each component of Σ and each component of M − Σ.
(C3) f preserves each element of m and each element of σ′′.
(C4) The restrictions of f to the components of M − Σ are orientation-

preserving homeomorphisms, and the restriction of f to each element of
σ′′ that is a square or an annulus is admissibly isotopic to the identity.

There are many places in this chapter where we use the assumption that the
elements of m are disjoint, but lemma 10.1.2 appears to be one of the most crucial,
since as the next example shows, it is false without this assumption.

Example 10.1.3. A 3-manifold (M,m) such that no subgroup of finite index
in Out(π1(M), π1(m)) can be realized by admissible homotopy equivalences.

Let M = F × S1 where F is a closed surface of genus 2 with one boundary
component. Let f be a complete boundary pattern on F consisting of arcs, and let
m = {k × S1 | k ∈ f}. So m consists of annuli, each of whose fundamental groups
is generated by a loop that generates the center of π1(M) = π1(F )× Z. Since the
center is characteristic, Out(π1(M), π1(m)) = Out(π1(M)). However, the subgroup
of Out(π1(M)) realizable by homotopy equivalences that preserve ∂M has infinite
index (example 9.0.2 displays an infinite set of distinct coset representatives for the
realizable subgroup.)

Proof of lemma 10.1.2. Any element of Out(π1(M), π1(m)) can be induced
by a homotopy equivalence f of M , since M is aspherical, and since the ele-
ments of m are disjoint, f may be chosen to be admissible for (M,m). By def-
inition, each element of Out(π1(M), π1(m)) permutes the conjugacy classes of the
subgroups of π1(M) corresponding to the elements of m, so there is a subgroup
Out0(π1(M), π1(m)) of finite index in Out(π1(M), π1(m)) consisting of automor-
phisms that fix the conjugacy classes of these subgroups. Suppose f induces an
automorphism in Out0(π1(M), π1(m)). Since M is aspherical, and the elements of
m are incompressible and aspherical, any two elements of m which determine the
same conjugacy class in π1(M) are homotopic in M . Since the elements are also
disjoint, f may be changed by homotopy to take each element F of m to itself,
and each (f |F )# : π1(F ) → π1(F ) will be an isomorphism. Since the elements of
m are aspherical and disjoint, f : (M, |m|) → (M, |m|) is a homotopy equivalence
of pairs, and hence is an admissible homotopy equivalence. By the Classification
Theorem 2.11.1, f can be changed by admissible homotopy so that it satisfies (C1).

Let E0(M,m) denote the group of admissible homotopy classes of admissible
homotopy equivalences of (M,m) that send each element of m to itself. Sending an
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admissible homotopy class to its induced automorphism defines a homomorphism

E0(M,m) −→ Out0(π1(M), π1(m)) .

So far, we have shown that this homomorphism is surjective, and that any element
of E0(M,m) contains a homotopy equivalence which satisfies (C1).

Suppose two admissible homotopy equivalences satisfying (C1) and preserving
the elements of m are admissibly homotopic. By the Homotopy Splitting Theo-
rem 2.11.4, we may assume that for all t ∈ I the homotopy satisfies H−1

t (Σ)=Σ. It
follows that H−1

t (M − Σ) =M − Σ. Thus, taking an element of E0(M,m), select-
ing a representative that satisfies (C1), and restricting it to components of Σ and
M − Σ gives restrictions that are well-defined up to admissible homotopy on each
component of (Σ, σ ∪ σ′′) and (M − Σ, m̃∪ σ′′). This shows that the permutations
induced on components of Σ, components of M − Σ, components of Σ ∩M − Σ,
and elements of m by elements of E0(M,m) are well-defined. Therefore, there is a
subgroup E1(M,m) of finite index in E0(M,m) realizable by admissible homotopy
equivalences which satisfy (C1)-(C3).

Define a homomorphism from E1(M,m) to a product of m copies of Z/2, where
m is the number of components of M − Σ, by taking −1 in each coordinate corre-
sponding to a component on which the restriction of f is not admissibly homotopic
to an orientation-preserving homeomorphism. Each element in the kernel is rep-
resentable by an f satisfying (C1)-(C3) whose restriction to each component of
M − Σ is orientation-preserving. Replace E1(M,m) by this kernel. The mapping
class groups of the square and the annulus are finite, so after replacing E1(M,m)
by a subgroup of finite index, we may assume that the restriction to each element
of σ′′ that is a square or an annulus is admissibly isotopic to the identity. Letting
Out1(π1(M), π1(m)) be the image of E1(M,m) in Out0(π1(M), π1(m)) gives the
desired subgroup of finite index in Out(π1(M), π1(m)). �

The next proposition is the step that necessitates the definition of σ′ and its
ensuing complications. The “sweep” homotopy equivalences that we will use in
sections 10.2 and 10.3 show that the proposition would fail drastically if one were
to use σ instead of σ′ in its statement.

Proposition 10.1.4. Suppose that two admissible homotopy equivalences f and
f ′ of (M,m) satisfy conditions (C1)-(C4), and induce the same automorphism in
Out1(π1(M), π1(m)). If (M,m) is not an exceptional case (E2), then there exists
a homotopy from f to f ′ which preserves Σ and M − Σ and restricts to admissible
homotopies on (M − Σ, m̃ ∪ σ′′) and on (Σ, σ′ ∪ σ′′).

We will first motivate the proof of proposition 10.1.4, and present some of the
ideas used in it. The condition that f and f ′ induce the same outer automorphism
tells us that there is a homotopy from f to f ′, but the homotopy need not be ad-
missible. To keep track of where an element of m moves during such a homotopy,
we use the trace. The trace is defined for an element F of m with respect to a
homotopy between two admissible homotopy equivalences, each of which preserves
F . It measures the inability to deform the homotopy to one that preserves F . If
the homotopy is between two admissible homotopy equivalences that satisfy the
conditions (C1)-(C4), and it does not admit a deformation to a homotopy that
preserves F , then lemma 10.1.6 below shows that either (M,m) is an exceptional
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manifold of type (E2), or F is an annulus of m that lies in a Seifert-fibered com-
ponent of Σ. To exclude such annuli, we have to work with σ′ rather than σ in
proposition 10.1.4. In fact, homotopies with nontrivial trace occur in the proof of
proposition 10.1.4. These homotopies move annuli of m around nontrivial paths in
Seifert-fibered components of Σ, and the homotopy equivalence which is the end
result of such a homotopy is called a “sweep”. In many cases, sweeps are not ad-
missibly homotopic to homeomorphisms, and they will be used in the cases when
the realizable automorphisms have infinite index in a way somewhat analogous to
the way that wrapping homotopy equivalences were used in chapter 9. Although
sweeps appear in the proof of proposition 10.1.4, we delay their general definition
until section 10.2 (just before lemma 10.2.4) so as not to run too far afield of the
development of Ψ, which is the central theme of the current section.

To define the trace, consider an element F ∈ m and a homotopy between
two admissible homotopy equivalences f and f ′ that preserve F . Fix a basepoint
p in the interior of F . Change f and f ′ by admissible homotopy, so that they
both preserve p. During the homotopy from f to f ′, p then moves around a loop
representing an element α of π1(M,p) (i. e. the restriction of the homotopy to {p}×I
is a loop based at p which represents the element α).

The element α lies in the normalizer of π1(F, p) in π1(M,p). For suppose that β
is a loop at p representing an element of π1(F, p). The restrictions of the homotopy
to the loops {p}× [0, t] ∗ (β ×{t}) ∗ {p} × [0, t] give a path homotopy from f ◦ β to
α ∗ (f ′ ◦ β) ∗ α−1. Since f# and f ′# preserve the subgroup π1(F, p) of π1(M,p), it
follows that α is in the normalizer.

A different choice of admissible homotopies making f and f ′ preserve p will
change α by (pre- and post- ) multiplication by elements of π1(F, p). Strictly
speaking, then, the trace of F during the homotopy is defined to be the double coset
π1(F, p)απ1(F, p) in the normalizer of π1(F, p) in π1(M,p), although in practice we
will just refer to α as the trace. In particular, we say that the trace lies in π1(F )
to mean that this double coset equals π1(F, p).

A key property of the trace is that if one changes the homotopy by a deforma-
tion which restricts to an admissible homotopy on M × ∂I, then the trace will be
unchanged. For the endpoints of {p} × I move only within F , so α is changed only
by pre- and post-multiplication by elements of π1(F, p).

Here is the main property of the trace that we will use.

Lemma 10.1.5. Let F ∈ m, and let f and f ′ be admissible homotopy equiv-
alences of (M,m) that preserve F . Suppose that H : M × I → M is a homotopy
from f to f ′, not necessarily admissible. Let N be an open neighborhood of F . If
the trace of F during H lies in π1(F ), then there is a deformation of H relative to
(M −N × I) ∪ (M × ∂I) so that H(F × I) ⊂ F .

Proof. Suppose that the trace α of the homotopy H lies in π1(F, p). The
first step will be to observe that there is a deformation of H (all deformations of
homotopies will be relative to (M −N × I)∪ (M ×∂I) ) to a product of homotopies
K ∗ L ∗K ′, where K and K ′ are admissible homotopies fixed on M −N × I, and
each Lt fixes p.

Note first that any given homotopy K starting at f can become the first part of
H, and analogously, any homotopy K ′ ending at f ′ can become its final part. For
one can use first a deformation of H to C ∗H, where C is the constant homotopy
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that equals f at every step, then a deformation of C to K ∗K to change C ∗H to
K ∗ (K ∗ L), where as usual K denotes the reverse homotopy defined by K(x, t) =
K(x, 1−t). Using this principle, we may change H to K∗(K∗H ∗K ′)∗K ′, where K
is an admissible homotopy fixed on M −N that first moves f(p) to p, then moves
p around a loop in F that represents α, and where K ′ moves p to f ′(p). Then, the
trace of K ∗ H ∗ K ′ will be trivial, as an element of π1(F ). We will now use the
homotopy extension property to deform K ∗H ∗K ′ to a homotopy L that fixes p at
each level. Starting with K ∗H ∗K ′ on (M× I)×{0}, construct a partial homotopy
on the subspace (M × I × {0}) ∪ (M × ∂I × I) ∪ (M −N × I × I) ∪ ({p} × I × I)
of (M × I) × I as follows. On all of these except {p} × I × I it will agree with
K ∗H ∗K ′ at each time, while on {p}× I× I a contraction of the trace of K ∗H ∗K ′
to the constant loop at p is used. Applying the Homotopy Extension Property, this
partial homotopy extends to a homotopy (M × I) × I → M , whose restriction to
(M × I)× {1} is L.

We have a deformation of the original H to K ∗ L ∗K ′. Since K and K ′ are
admissible, and hence preserve F , it is now sufficient to find a deformation of L
to a homotopy that preserves F . Let g and g′ be the starting and ending maps of
L. Since each Lt fixes p, g# and g′# are the same automorphism on π1(M,p), and
hence on the subgroup π1(F, p). Since F is aspherical, this implies that g and g′

are homotopic on F . Now select a homotopy h′ between the restrictions of g to F
and g′ to F . Using an extension L′ of h′ to an admissible homotopy of g, relative
to p and fixed on M −N , deform L to L′ ∗ (L′ ∗L). Since L′ preserves F , we need
only show that there is a deformation of L′ ∗ L to a homotopy that preserves F .
That is, we may assume that for our original L from g to g′, each Lt fixes p, and g
and g′ agree on F .

Since M is Haken, it is aspherical, and we can now use a standard technique
to make the homotopy agree with g on F at each level. It is convenient to regard
L as a map from M × I to M × I, by using Lt to send M × {t} to M × {t}. We
will change L only on M −N× I, using the homotopy extension property to extend
homotopies defined on subsets of F × I. Regard F as triangulated with p as a
vertex, and let T be a maximal tree in the 1-skeleton F (1). Since p is a deformation
retract of T , the restriction of L to T × I is homotopic to the identity, so we may
assume that each Lt is the identity on T . If σ is a 1-simplex of F not in T , then
the restriction of L to σ × I, together with the map defined on σ × I using g|σ at
every level, define a map from the 2-sphere into M × I. Since π2(M × I)=0, these
two maps are homotopic relative to σ × ∂I ∪ ∂σ × I, so we may assume that each
Lt agrees with g on σ. Repeating for all 1-simplices of F not in T , we may assume
that each Lt agrees with g on F (1). Since π3(M × I)=0, a similar argument using
the 2-simplices of F allows us to make each Lt agree with g on all of F . �

Lemma 10.1.5 shows that the traces of the homotopy at the elements of m
represent the only obstruction to making the homotopy admissible. When the
trace does not lie in π1(F, p), there might still exist an admissible homotopy from
f to f ′, but there is no deformation of the given homotopy relative to M × ∂I to a
map taking p into F , so certainly no deformation that makes it preserve F .

In our applications of lemma 10.1.5, we will be working with boundary patterns
whose elements are disjoint. Then, if all the relevant traces are trivial, lemma 10.1.5
can be applied repeatedly to produce an admissible homotopy from f to f ′.
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Next, we will analyze more carefully what happens when the trace of a homo-
topy between two of the homotopy equivalences produced by lemma 10.1.2 does
not lie in π1(F ).

Lemma 10.1.6. Let F be an element of m and let α be the trace of F during
a homotopy between two admissible homotopy equivalences f and f ′ which satisfy
conditions (C1)-(C4). Suppose α does not lie in π1(F ). Then F is contained in
a component (V, v̂) of the characteristic submanifold of (M,m), and α ∈ π1(V, p).
Moreover, either

(i) F is an annulus and (V, v̂) is Seifert-fibered, or
(ii) (M,m) is an exceptional case (E2).

Proof. Consider any essential closed curve in F passing through p. The im-
ages of this curve during the homotopy from f to f ′ form an admissible singular
annulus in (M,m), with both ends in F . Since α does not lie in π1(F, p), this annu-
lus is essential. By the enclosing property of the characteristic submanifold, these
annuli are admissibly homotopic into Σ. Therefore every essential closed curve in
F is homotopic in F into Σ ∩ F . Since F is not simply-connected, there is at least
one essential closed curve in F , so Σ ∩ F is nonempty. Also, since the frontier of
Σ is essential, the boundary circles of Σ ∩ F are essential in F . Since F is a 2-
manifold and is not simply-connected, it follows that some component F1 of Σ∩F
is a deformation retract of F . Since Σ is admissibly fibered, and F1 is an element
of the submanifold boundary pattern σ and is not simply-connected, F1 is either a
torus or annulus, or is a lid of an I-bundle component of (Σ, σ̂).

Let V be the component of Σ which contains F1. We will show that f(F1) ⊆ F1

and f ′(F1) ⊆ F1. Since f and f ′ satisfy (C1)-(C4), each carries V into V and F
into F , so also carries V ∩ F into V ∩ F . Now if F is an annulus, then F ⊂ V by
lemma 2.10.8. In this case, F1 =F so f and f ′ preserve it. If F1 is not an annulus,
then only one component of V ∩ F can be a deformation retract of F (all other
components would be boundary-parallel annuli), so again f and f ′ preserve F1.

To complete the proof, it suffices to show that if (V, v̂) is an I-bundle, or if F1

is a torus and (V, v̂) is Seifert-fibered, then (M,m) is an exceptional case (E2).
We have seen that there are essential annuli containing α which are homo-

topic into V . Therefore α ∈ π1(V, p), so α is an element of π1(V ) − π1(F1) which
normalizes π1(F1).

Assume for now that (V, v̂) is an I-bundle and that F1 is a side of (V, v̂).
Then F = F1, since F1 is an annulus, and (V, v̂) must be the I-bundle over the
Möbius band, since otherwise π1(F1, p) equals its own normalizer in π1(V, p). By
lemma 2.10.8, Σ and hence V contain a regular neighborhood of F . Since (V, v̂) is
admissibly imbedded in (M,m), its lid must also be an element of m, and hence
(V, v̂)=(M,m), so (M,m) is an exceptional case (E2).

Assume now that (V, v̂) is an I-bundle and that F is a lid of (V, v̂). Since α
is not in π1(F, p), (V, v̂) must be twisted. To show that (M,m) is an exceptional
case (E2), it remains to argue that M=V .

Regard (V, v̂) as the quotient of F × I by an involution of the form τ ×ρ, where
τ is a free orientation-reversing involution of F and ρ(t)=1− t. We will show that
f and τf ′ are homotopic maps from F to F . Let q : F × I → V be the quotient
map. We choose coordinates on F ⊂ V so that q(x, 0)=x and q(x, 1)=τ(x). Now
f : F → F admits two lifts to the covering q : F × I → V . One, say f̃ , carries F
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to F × {0}, and has the form f̃(x) = (f(x), 0). The other carries F to F × {1},
sending x to (τf(x), 1). The two lifts of f ′ have the same form. The restriction to
F of the homotopy from f to f ′ is an essential map (F × I, F × ∂I) → (M,m) so
by the Extended Enclosing Theorem 2.9.2 it is admissibly homotopic into Σ and
hence into V . Therefore there is a map h : F × I → V which restricts to f |F and
f ′|F on F × {0} and F × {1} respectively, and whose trace at F does not lie in
π1(F ). Let h̃ : F × I → F × I be the lift of h for which h̃(F × {0}) = F × {0}.
Since the trace of the homotopy at F does not lie in π1(F ), h̃(F × {1})=F × {1}.
Thus h̃(x, 0)=(f(x), 0) and h̃(x, 1)=(τf ′(x), 1). If p : F × I→ F ×{0} denotes the
projection, then qph̃ is a homotopy from f to τf ′ as maps from F to F .

Suppose for contradiction that M 6= V , and let A be a component of the frontier
of V , so A is a side of (V, v̂). It meets two boundary circles C1 and C2 of F , and
τ(C1)=C2 since they cover the same boundary circle of F/τ . By condition (C4), f
and f ′ restrict to the identity on A, so each preserves C1 and preserves C2. Since
f and τf ′ are homotopic as maps into F , C1 is homotopic to τf ′(C1) =C2 in F .
Therefore F must be an annulus, so (V, ṽ) is the I-bundle over the Möbius band. By
lemma 2.10.8, Σ and hence V contain a regular neighborhood of F . So ∂V ⊆ ∂M ,
which implies that M=V and M is an exceptional case of type (E2).

Now assume that (V, v) is Seifert-fibered and that F1 is a torus. Since π1(F )
does not equal its normalizer in π1(V ), lemma 9.3.2 shows that V must be home-
omorphic to the I-bundle over the Klein bottle. So F = ∂V . Consequently, the
frontier of V is empty, and M = V . Moreover, v= ∅, so (M,m) is an exceptional
case (E2). �

With the properties of the trace developed, we can now proceed with proposi-
tion 10.1.4.

Proof of proposition 10.1.4. By hypothesis, f and f ′ induce the same
outer automorphism so there is a homotopy from f to f ′. We will improve it
to one which preserves Σ and M − Σ and restricts to admissible homotopies on
(M − Σ, m̃ ∪ σ′′) and on (Σ, σ′ ∪ σ′′).

Suppose F is an element of m such that the trace of the homotopy at F is
nontrivial. Since (M,m) is not an exceptional case (E2), lemma 10.1.6 shows that
F is an annulus that lies in a Seifert-fibered component V of Σ. By lemma 2.10.8,
V contains a regular neighborhood of F in ∂M , so F is disjoint from the elements
of v′∪v′′. By lemma 10.1.6, the trace at F lies in π1(V ). It can be represented by a
loop in V based at p that misses the exceptional fibers. Define a partial homotopy
on F starting at f ; on F it first shrinks f(F ) down to the fiber that contains p, then
moves this fiber through a path of fibers in such a way that p moves around the
trace, returning to the original fiber. Also, outside a regular neighborhood of F ,
define the partial homotopy to equal f at every level. By the homotopy extension
property, this partial homotopy extends to a homotopy KF of M . Assuming that
the regular neighborhood of F is sufficiently small, each level of KF preserves Σ
and agrees with f on |m− {F}| ∪M − Σ.

Let K be the product of the homotopies KF for all F for which the trace of
the original homotopy was nontrivial. Deform the original homotopy (relative to
M ×∂I) to a product K ∗K ′, where K ′ starts by doing the reverse of K, then does
the original homotopy. For every element of m, the trace during K ′ is trivial, so by
lemma 10.1.5 there is a deformation of K ′ to a homotopy which is admissible for
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(M,m). By the Homotopy Splitting Theorem 2.11.4, we may then deform K ′ so
that each level, K ′ preserves Σ and M − Σ. Then, K ∗K ′ satisfies the conclusion
of proposition 10.1.4. �

Recall that S1, . . . , Sm are the components of M − Σ, with their proper bound-
ary patterns sj as submanifolds of (M,m). We will now define a homomorphism

Φ: Out1(π1(M), π1(m))→
m∏
j=1

E(Sj , sj)

where E(Sj , sj) denotes the group of path components of admissible homotopy
equivalences of (Sj , sj). If M = Σ, then

∏m
j=1 E(Sj , sj) is the trivial group and Φ

is the zero homomorphism. Otherwise, given an element φ of Out1(π1(M), π1(m)),
use lemma 10.1.2 to choose an admissible homotopy equivalence inducing φ and
satisfying (C1)-(C4). By proposition 10.1.4, the restriction of this homotopy equiv-
alence to each (Sj , sj) is a well-defined element of E(Sj , sj). The element with these
coordinates is defined to be Φ(φ).

Lemma 10.1.7. The image of Φ is finite.

Proof. Since the homotopy equivalences used to define Φ satisfy condition
(C4), the coordinate of Φ(φ) in each E(Sj , sj) lies in the subgroup H(Sj , sj) of
elements that are realizable by orientation-preserving admissible homeomorphisms.

As explained in section 2.9, each (Sj , sj) is either simple or is an I-bundle over
a square, annulus, or torus. If (Sj , sj) is simple, then by the Finite Mapping Class
Group Theorem 2.11.2, H(Sj , sj) is finite. The same is true if (Sj , sj) is an I-bundle
over a square or annulus, so it remains only to consider the case when (Sj , sj) is

an I-bundle over a torus, say (Sj , sj) = (T × I, ∅). Such a component cannot meet
∂M , since if so it would have to contain a torus component of ∂M (since it has the
boundary pattern ∅, but by lemma 2.10.8, every torus boundary component must
lie in Σ.

Let V1 and V2 be the components of Σ that meet Sj (possibly V1 =V2); they are
Seifert-fibered since they meet M − Σ in tori, whereas the frontier of any I-bundle
component of Σ must consist of annuli and squares. Suppose f is an admissible
homotopy equivalence which satisfies conditions (C1)-(C4). Then f preserves V1

and V2 and restricts to a homeomorphism on each component of their frontiers.
Neither (Vi, v̂i) is (S1 × S1 × I, ∅), for if so, then either V1 =V2, which would imply
that M is closed (it would be a torus bundle over the circle), or V1 6= V2, in which
case one of them could be refibered so that the fibering on V1∪V2 extended over Sj
violating the maximality of Σ. So by the Fiber-preserving Self-map Theorem 2.8.6,
f must preserve the fiber of each (Vi, v̂i) up to homotopy. The fibers of V1 and V2

must represent linearly independent elements of π1(T ), since otherwise their Seifert
fiberings would extend over Sj . The only elements of Out(π1(T )) ∼= GL(2,Z) which
have determinant 1 and preserve two linearly independent elements are the identity
I2 and −I2. Therefore (since f is orientation-preserving on (Sj , sj)) there are at
most two possibilities for the restriction of f to Sj ; it can be admissibly isotopic to
the identity or to a homeomorphism preserving the levels T ×{t} and sending each
element of π1(Sj) to its negative. �
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Define Out2(π1(M), π1(m)) to be the kernel of Φ. Lemma 10.1.7 shows that
Out2(π1(M), π1(m)) has finite index in Out(π1(M), π1(m)). It consists of the ele-
ments of Out(π1(M), π1(m)) induced by admissible homotopy equivalences which
satisfy (C1)-(C4) and whose restrictions to M − Σ are admissibly homotopic to the
identity. Provided that (M,m) is not an exceptional case (E2), proposition 10.1.4
shows that restricting such a homotopy equivalence to Σ determines a well-defined
homomorphism

Ψ: Out2(π1(M), π1(m))→
n∏
i=1

E(Vi, vi′, vi′′) .

Lemma 10.1.8. Assume that (M,m) is not an exceptional case (E1) or (E2).
Then Ψ is surjective.

Proof. An element of
∏n
i=1 E(Vi, vi′, vi′′) can be represented by an admissible

homotopy equivalence of (Σ, σ′ ∪ σ′′) which is the identity on |σ′′|. This extends
using the identity map on M − Σ to a homotopy equivalence f of M which satisfies
(C1)-(C4), except that it may fail to be admissible, by failing to preserve annuli of
m that lie in Seifert-fibered components of Σ. We will show that it can be selected
to preserve these annuli as well. Then, its induced automorphism is an element of
Out2(π1(M), π1(m)) which Ψ maps to the given element of

∏n
i=1 E(Vi, vi′, vi′′).

Each element of m that is not an annulus in a Seifert-fibered component of Σ
is actually mapped to itself by f , since it is contained in |σ′|∪ |m̃|. Now consider an
annulus F of m contained in a Seifert-fibered component (V, v̂). By lemma 2.10.8,
V contains a regular neighborhood of F .

Suppose that M 6= V , so the frontier of V is nonempty. Since f is isotopic to
the identity on each component of the frontier of Σ, the fiber of V is preserved up
to homotopy. Since the core circle of the annulus is a fiber, f is homotopic, without
changing it on M − Σ or the rest of |m|, to a map preserving F .

From now on, assume that M =V , so v′′=∅. If the Fiber-preserving Self-map
Theorem 2.8.6 applies to (V, v′), then the unoriented fiber of V is preserved up to
homotopy by f , so f may be changed by homotopy so that it preserves all annuli of
m. If the Fiber-preserving Self-map Theorem 2.8.6 does not apply to (V, v′), then
since (V, v′) is Seifert-fibered, either (V, v′) does not have useful boundary pattern,
or (V, v′)=(S1 × S1 × I, ∅).

Suppose that (V, v′) does not have useful boundary pattern. Since (V, v̂) is
Seifert-fibered, and v′′ is empty, no element of v′ can be an annulus (for since
M = V , it would be an annulus of m, so by definition would not be in v′). So
v′ can only fail to be useful when V has a compressible boundary torus. Since
V is irreducible, this implies that V is a solid torus, so (M,m) is a fibered solid
torus and v′ is empty. Now E(V, ∅, ∅) has two elements, classified by their effect
on π1(V ), and each element is realizable by an admissible homotopy equivalence
which preserves each element of m. (The nontrivial element is induced by the
homeomorphism from S1 × D2 to S1 × D2 which sends (θ, z) to (θ, z), where the
bars denote complex conjugation. Since this preserves the unoriented fiber up to
homotopy, it is homotopic to a homotopy equivalence that preserves each annulus
of m.) Therefore Ψ: Out2(π1(M), π1(m))→ E(V, ∅, ∅) is an isomorphism of groups
of order two.
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Finally, suppose that (V, v′)=(S1×S1×I, ∅). Since (M,m) is not an exceptional
case of type (E1), m cannot contain annuli. Thereforem=v′, which is empty or con-
sists of one or both boundary components of V . So we have Out2(π1(M), π1(m)) ∼=
GL(2,Z), E(V, v′, ∅) ∼= GL(2,Z), and Ψ: GL(2,Z) → E(V, v′, ∅) is an isomor-
phism. �

The following theorem details the properties of Ψ. From it, we will deduce
theorem 10.1.1.

Theorem 10.1.9. Let M be a compact, orientable, irreducible 3-manifold, with
a boundary pattern m whose completion is useful and nonempty. Assume that the
elements of m are disjoint and that (M,m) is not an exceptional case (E1) or (E2),
and let φ be an element of Out2(π1(M), π1(m)). Let H(Vi, vi′, vi′′) be the subgroup
of elements of E(Vi, vi′, vi′′) realizable by orientation-preserving homeomorphisms.

(i) If φ can be induced by an orientation-preserving homeomorphism that pre-
serves each element of m, then Ψ(φ) lies in

∏n
i=1H(Vi, vi′, vi′′).

(ii) If Ψ(φ) lies in
∏n
i=1H(Vi, vi′, vi′′), then φ can be induced by an orientation-

preserving homeomorphism which preserves Σ and M − Σ, restricts to the
identity map on M − Σ, and preserves each element of m that is not an
annulus in a Seifert-fibered component of Σ.

Proof. To prove part (i), suppose φ ∈ Out2(π1(M), π1(m)). By definition,
Ψ(φ) is obtained as the restriction of a homotopy equivalence f inducing φ, which
satisfies (C1)-(C4). Suppose φ can be induced by an orientation-preserving homeo-
morphism h of M that preserves each element of m. Since h is a homeomorphism,
it is admissible for (M,m). Because the characteristic submanifold of (M,m) is
unique up to admissible isotopy, we may deform h by admissible isotopy to assume
that it preserves Σ. Since φ ∈ Out2(π1(M), π1(m)), the kernel of Φ, the restric-
tion of h to M − Σ is admissibly homotopic to the identity. Using lemma 2.12.1,
we may assume that the admissible homotopy is an isotopy on the frontier of Σ.
Therefore it extends to an admissible homotopy of M which is an isotopy on Σ.
The homeomorphism resulting from this homotopy restricts to show that Ψ(φ) lies
in
∏n
i=1H(Vi, vi′, vi′′).

For (ii), suppose that Ψ(φ) lies in
∏n
i=1H(Vi, vi′, vi′′). By definition of Ψ,

there exists an admissible homotopy equivalence f of (M,m) which satisfies (C1)-
(C4) and restricts to representatives of the coordinates of Ψ(φ) on the Vi. Since φ
lies in Out2(π1(M), π1(m)), the restriction of f to M − Σ is admissibly homotopic
to the identity. Since Ψ(φ) lies in

∏n
i=1H(Vi, vi′, vi′′), the restriction of f to each

(Vi, vi′∪vi′′) is admissibly homotopic to an orientation-preserving homeomorphism.
Extend such a homotopy to M − Σ to get a homotopy from f to a map g, which
preserves each element of m that is not an annulus in a Seifert-fibered component
of Σ. The restriction of g to M − Σ is admissibly homotopic to the identity. Again
using lemma 2.12.1, we may assume that the homotopy is an isotopy on |σ′′|.
Such a homotopy extends to an isotopy on M − Σ, fixed outside a neighborhood
of the frontier of Σ, which results in a homeomorphism h which is the identity on
M − Σ and preserves each element of m which is not an annulus in a Seifert-fibered
component of Σ. �

Using theorem 10.1.9, we can now prove theorem 10.1.1.
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Proof of theorem 10.1.1. Assume for now that M is not a 3-ball or
S1 × S1 × I (in particular, (M,m) is not an exceptional case (E1)), and is not
an exceptional case (E2).

If R(M,m) has finite index in Out(π1(M), π1(m)), then a finite-index sub-
group of Out2(π1(M), π1(m)) can be realized by orientation-preserving homeomor-
phisms that preserve each element of m. By lemma 10.1.8, Ψ is surjective, so theo-
rem 10.1.9(i) shows that

∏n
i=1H(Vi, vi′, vi′′) has finite index in

∏n
i=1 E(Vi, vi′, vi′′).

For the converse, we assume that
∏n
i=1H(Vi, vi′, vi′′) has finite index in∏n

i=1 E(Vi, vi′, vi′′). We will show that the automorphisms in a subgroup of finite
index in Out2(π1(M), π1(m)) (and hence of finite index in Out(π1(M), π1(m))) can
be realized by admissible orientation-preserving homeomorphisms of (M,m).

By theorem 10.1.9(ii), each element in a finite-index subgroup of Out2(π1(M),
π1(m)) can be realized by an orientation-preserving homeomorphism h that pre-
serves Σ and restricts to the identity map on M − Σ, and preserves each element
of m that is not an annulus in a Seifert-fibered component of Σ.

Since M is not S1 × S1 × I, no torus of ∂M is homotopic into another torus
boundary component. This implies that the permutation that h induces on torus
boundary components of V depends only on its induced outer automorphism. So by
passing to a smaller finite-index subgroup of Out2(π1(M), π1(m)), we may assume
that h preserves each torus boundary component of M .

Suppose that M 6= Σ. Then h is the identity on the frontier of Σ. On any
component of Σ ∩ ∂M that is an annulus A, h fixes the boundary circles of A,
so h can be changed by isotopy in a neighborhood of A so that it preserves each
fiber in A, and in particular it preserves any annulus of m that lies in A. On any
torus component of Σ ∩ ∂M , h preserves the oriented fiber up to homotopy, and
is orientation-preserving. So h can be changed by isotopy in a neighborhood of
the torus boundary components to take each fiber in Σ ∩ ∂M to itself, and hence
preserve each element of m in these torus boundary components.

Suppose that M = Σ. By the Fiber-preserving Self-map Theorem 2.8.6, h
preserves the unoriented fiber of M up to homotopy. By passing to a smaller
subgroup in Out2(π1(M), π1(m)) we may assume that h preserves the oriented
fiber up to homotopy. Therefore it is isotopic to a homeomorphism that preserves
each fiber in each boundary component, hence each element of m.

It remains to examine the cases when M is a 3-ball or S1 × S1 × I. If M is the
3-ball, then Out(π1(M), π1(m)) and each E(Vi, vi′, vi′′) is finite, so both indices in
the theorem are finite.

Assume now that M is homeomorphic to S1 × S1 × I.
Suppose first that m contains no annuli, that is, m = ∅. Then V = M , v′ =

m, and v′′ = ∅. In this case, E(V, v′, ∅) ∼= Out(π1(M), π1(m)) and H(V, v′, ∅) ∼=
R(M,m), so the theorem is a tautology. In fact, E(V, v′, ∅) ∼= GL(2,Z), while
H(V, v′, ∅) corresponds to GL(2,Z), if v′ is empty, and to SL(2,Z) if not (for if v′ is
nonempty, the homeomorphism cannot interchange the boundary components, and
being orientation-preserving it must induce an element of SL(2,Z)). So the indices
are finite.

Suppose m contains annuli, not all of which are pairwise homotopic. Then Σ
has two components, isotopic to S1 × S1 × [0, 1/3] and to S1 × S1 × [2/3, 1]. For
each of these components, v′= ∅ and v′′ is a single boundary component, so each
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E(V, v′, v′′) is the trivial group. On the other hand, lemma 9.1.3(ii) shows that
Out(π1(M), π1(m)) is finite. So the theorem holds in this case.

Finally, suppose that (M,m) contains annuli, all of which are pairwise ho-
motopic (that is, (M,m) is an exceptional case (E1)). Then M = V , v′′ = ∅
and v′ = ∅. Since m contains at least one annulus, lemma 9.1.3(i) shows that
Out(π1(M), π1(m)) has an infinite cyclic subgroup of finite index, generated by a
Dehn twist homeomorphism which preserves each element of m. So R(M,m) has
finite index in Out(π1(M), π1(m)). Now, v′ is either empty or is one of the bound-
ary components of M , so as in the cases when m=∅, H(V, v′, ∅) has index at most 2
in E(V, v′, ∅). So the theorem holds (somewhat by accident) in this case as well.

The remaining case is when (M,m) is an exceptional case (E2), that is, when
(M,m) is an admissibly fibered twisted I-bundle over a nonorientable surface (N,n).
We have V = M , v′ = m, and v′′ = ∅. By lemma 10.1.2, the elements in a
finite-index subgroup of Out(π1(M), π1(m)) can be induced by admissible homo-
topy equivalences of (M,m).

Suppose first that the lid of (M,m) is not contained in m. Since the elements
of m are disjoint, m consists exactly of the sides of (M,m), and n consists of the
boundary components of N . Lemma 2.11.3 shows that any admissible homotopy
equivalence of (M,m) is admissibly homotopic to a homeomorphism, so R(M,m)
has finite index in Out(π1(M), π1(m)). Lemma 2.11.3 also shows that H(V, v′, ∅)
equals E(V, v′, ∅), so the theorem holds in this case.

Assume now that the lid of (M,m) is contained in m. Since the elements of
m are disjoint, the lid is the only element of m, and n = ∅. We will use the
following commutative diagram, in which the vertical maps are inclusions, and the
second horizontal map of each row takes homotopy classes to their induced outer
automorphisms.

H(V, v′, ∅) =−−−−→ H(M,m) −−−−→ R(M,m)y y y
E(V, v′, ∅) =−−−−→ E(M,m) −−−−→ Out(π1(M), π1(m))

Suppose first that H(V, v′, ∅) has finite index in E(V, v′, ∅). Since the homo-
morphism in the bottom row has image of finite index, the diagram shows that
R(M,m) has finite index in Out(π1(M), π1(m)).

Conversely, assume R(M,m) has finite index in Out(π1(M), π1(m)). We claim
that H(M,m) is the full preimage of R(M,m). Let f be an admissible homotopy
equivalence of (M,m) for which f# lies in R(M,m). Then there is an admissible
homeomorphism h of (M,m) with h# = f#, so (fh−1)# is the identity automor-
phism of π1(M). Let p : M → N be the projection, and fix an admissible section
s : (N, ∅) → (M,m). Then p(fh−1)s induces the identity outer automorphism on
π1(N), and since N is aspherical, p(fh−1)s is homotopic to the identity on N . By
part (iv) of proposition 10.2.2 below, it follows that fh−1 is admissibly homotopic
to a homeomorphism of M , and hence that f is. This proves the claim. Now, the
diagram implies that H(V, v′, ∅) has finite index in E(V, v′, ∅). �

10.2. Realizing homotopy equivalences of I-bundles

In this section and the next, we examine the groups E(V, v′, v′′) that appear
in theorem 10.1.1. The main results tell exactly when H(V, v′, v′′) has finite index
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in E(V, v′, v′′). Throughout this section we assume that (V, v) is an I-bundle or
S1-bundle. The remaining Seifert-fibered cases are examined in section 10.3.

Proposition 10.2.1. Let (V, v) be an irreducible 3-manifold with boundary
pattern whose completion is useful and nonempty, and let (B, b) be a connected
2-manifold with boundary pattern. Suppose that either

(a) there is an admissible I-fibering of (V, v) over (B, b), with projection
p : V → B for which {p−1(k) | k ∈ b} = {G ∈ v | G is not a lid of (V, v)},
or

(b) ∂V 6= ∅, (V, v) 6= (S1 × S1 × I, ∅), and there is an admissible Seifert
fibering p : (V, v)→ (B, b) with no exceptional fibers.

Let v′ and v′′ be two boundary patterns on V with v′ ∪ v′′ = v and which do not
share any common elements. In the I-bundle case, assume that no element of v′′

is a lid. Then:
(1) If |b|=∂B, then the index of H(V, v′, v′′) in E(V, v′, v′′) is finite.
(2) If |b| 6= ∂B, then the index is finite if and only if one of the following

holds:
(i) B is a disk.
(ii) B is an annulus or Möbius band, and each boundary circle of B

contains at most one component of |b| that is an arc.
(iii) B is a disk with two holes, and |b| consists of two boundary circles.
(iv) B is a torus with one hole and |b| is empty.

To prove proposition 10.2.1, we first show in proposition 10.2.2 that an admis-
sible homotopy equivalence of (V, v) is admissibly homotopic to a homeomorphism
if and only if a corresponding admissible homotopy equivalence of the base surface
(obtained by using a section of the bundle, applying the homotopy equivalence
of V , and then projecting) is admissibly homotopic to a homeomorphism. With
some additional argument, which constitutes the actual proof of proposition 10.2.1,
proposition 10.2.2 implies that H(V, v′, v′′) has finite index in E(V, v′, v′′) if and
only if H(B, b) has finite index in E(B, b), where H(B, b) is, as usual, the subgroup
realizable by orientation-preserving homeomorphisms. So we are reduced to de-
termining the (B, b) for which the index is finite (in particular, the Baer-Nielsen
theorem says the index is finite whenever |b|= ∂B). This is accomplished in two
lemmas: the finite index cases are given in lemma 10.2.3 and the infinite index
cases in lemma 10.2.4. These lemmas will also be used in section 10.3. In order to
state and prove lemma 10.2.4, we formally define sweeps of 2-manifolds, the homo-
topy equivalences which are the analogue of the wrapping homotopy equivalences
of 3-manifolds h(α) used in chapter 9. To deduce proposition 10.2.1, we must also
define sweeps of fibered 3-manifolds, which are fiber-preserving homotopy equiva-
lences which project to sweeps of their base surfaces. They too play a major role
in section 10.3. The proof of proposition 10.2.1 closes the section.

Proposition 10.2.2. Let (V, v), (B, b), and p : V → B be as in the statement of
proposition 10.2.1, and fix an admissible section s : (B, b) → (V, v) for p. Suppose
that f : (V, v) → (V, v) is an admissible homotopy equivalence. If (V, v) is an I-
bundle, then assume that f takes each element of v that is a lid to a lid. Then

(i) f is admissibly homotopic to a fiber-preserving map,
(ii) pfs is an admissible homotopy equivalence of (B, b),
(iii) sending f to pfs defines a homomorphism P : E(V, v)→ E(B, b), and
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(iv) f is admissibly homotopic to a homeomorphism if and only if pfs is ad-
missibly homotopic to a homeomorphism.

(v) Suppose that (V, v) is an I-bundle. If some lid of (V, v) is not an element
of v, then P is injective. If every lid of (V, v) is an element of v, then P
has kernel of order 2 generated by a homeomorphism r which is reflection
in the I-fibers, except in the case when (V, v) is the I-bundle over the
Möbius band and v consists of the lid alone, in which case P is injective.

Note that in the Seifert-fibered case, the hypothesis of no exceptional fibers guar-
antees that the section s exists. Part (v) is not needed in our present work, but it
has been included as potentially useful information about P . In a remark at the
end of this section, we explain that P need not be surjective, but it always has
image of finite index.

Proof. Suppose that (V, v) is Seifert-fibered or is an I-bundle having every
lid in v. By the Fiber-preserving Self-map Theorem 2.8.6, we may assume that
f is fiber-preserving. If (V, v) is an I-bundle but not every lid is in v, then b
must be a complete boundary pattern on B (otherwise some element of v would
contain a lid as a proper subset). So, in this case, lemma 2.11.3 implies that f is
admissibly homotopic to a fiber-preserving homeomorphism. This completes the
proof of statement (i).

Let f be an admissible homotopy equivalence of (V, v). By statement (i),
we may assume that f is fiber-preserving and has a fiber-preserving admissible
homotopy inverse g. Since f and g are fiber-preserving, pfspgs=pfgs. Since fg is
admissibly homotopic to the identity map, so is pfgs. Thus, pgs is an admissible
homotopy inverse for pfs. Statement (ii) follows immediately.

The function P which takes the admissible homotopy class of f in E(V, v) to the
admissible homotopy class of pfs in E(B, b) is well-defined. Given any two elements
of E(V, v), statement (i) implies that we may choose fiber-preserving representatives
f and g. In this case, P is a homomorphism, since pfspgs=pfgs, and this verifies
statement (iii).

Assume that f is admissibly homotopic to a homeomorphism g. Since g is
a homeomorphism, it must also be admissible for (V, v). Suppose (V, v) is an I-
bundle. We claim that g must carry lids of (V, v) to lids. By hypothesis, g takes
each element of v that is a lid to a lid. If some lid is not an element of v, then as
noted above, b must be complete, so all sides of (V, v) are elements of v. Since g
must take elements of v − v to elements of v − v, it must take lids to lids.

In either the I-fibered or Seifert-fibered case, we may now apply the Unique
Fibering Theorem 2.8.1 to assume that g is fiber-preserving. If F is the admissible
homotopy from f to g, then pFs is an admissible homotopy on (B, b) from pfs to
the homeomorphism pgs.

For the converse direction of (iv), assume that pfs is admissibly homotopic to a
homeomorphism. We have seen that f is admissibly homotopic to a fiber-preserving
map, so assume that f preserves fibers.

Consider first the case when (V, v) is an I-bundle. We may assume that the
image of s does not meet the lids, so for each b ∈ B, the fiber p−1(b) is the union of
two arcs that meet at the point s(b). Since f preserves fibers, we may change it by
admissible fiber-preserving homotopy so that it preserves the image of s and is a
homeomorphism on each fiber, linear on each of the two arcs in the fiber (in the case
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that the I-bundle is twisted, the fibers may be assumed to carry a linear structure,
since the covering transformation for the 2-fold covering by a product I-bundle may
be chosen to be reflection in the I-fibers). Then, an admissible homotopy from
pfs to a homeomorphism of (B, b) defines a homotopy on s(B) from the restriction
of f to s(B) to a homeomorphism of s(B), and this can be extended linearly on
the two arcs in each fiber to produce a fiber-preserving homotopy from f to a
homeomorphism of (V, v). This completes the proof of (iv) in the I-bundle case.

We will now prove (v), before returning to complete the proof of (iv). In
case pfs is admissibly homotopic to 1B , the previous construction produces an
admissible homotopy from f to a homeomorphism which is the identity on s(B)
and is a linear homeomorphism on the complementary intervals, that is, either to
the identity or to a reflection r.

Suppose first that the I-bundle is a product. If both lids are in v, then they are
interchanged by r, and r cannot be admissibly homotopic to the identity. If exactly
one lid is in v, then r is not admissible, so the previous isotopy of f produced the
identity homeomorphism. If neither lid is in v, then r is admissibly homotopic to
the identity. These cases are as given in (v).

Suppose now that the I-bundle is twisted. If the lid is not in v, then r is
admissibly homotopic to the identity. Suppose that the lid is in v. Now (V, v) is
doubly covered by a product I-bundle (B̃×I, w), and r lifts to a reflection r̃ on B̃×I,
which interchanges its lids. Suppose that r is admissibly homotopic to the identity.
The homotopy lifts to an admissible homotopy from r̃ to a covering transformation,
necessarily nontrivial since the lids are interchanged. It follows that the covering
transformation induces the identity automorphism on π1(B̃ × I). The Lefschetz
fixed-point formula implies that H1(B̃× I) has rank 1, so B̃ is an annulus and B is
a Möbius band. In this case, if the side of (V, v) is also in v, then r is orientation-
reversing on the torus ∂V but would be homotopic preserving ∂V to the identity,
which is orientation-preserving on ∂V . Therefore we must have v consisting of the
lid alone. In this case, r is indeed admissibly homotopic to the identity. To see
this, regard the Möbius band s(B) as an I-bundle over its center circle C. There
is an admissible homotopy from r to the identity which preserves s(B) and at all
times carries each fiber of V homeomorphically to some fiber. The first stage of the
homotopy is an isotopy preserving s(B) and moving a point on C once around C.
At the end of this isotopy, each I-fiber of s(B) over C is reflected across C, but on
the I-fibers of V that meet C, the map is now the identity. The second stage is a
homotopy which preserves s(B) and each I-fiber of s(B), but changes the reflection
on each fiber of s(B) over C to the identity homeomorphism. This completes the
proof of (v).

It remains to prove (iv) when (V, v) is Seifert-fibered. Since it has no exceptional
fibers, p : V → B is an S1-bundle. Since f is a homotopy equivalence, its restriction
to each fiber must have degree ±1 as a map from the circle to the circle.

Assume first that B is orientable, so that V is a product S1-bundle. Using the
section s, we may change f by a fiber-preserving admissible homotopy to a map
g whose restriction to each fiber is a homeomorphism. (Explicitly, the bundle is a
product bundle so its universal covering can be given as α × β : B̃ × R → B × S1,
where β(r) = e2πir and a lift s̃ : B̃ → B̃ × R of s has the form s̃(x) = (x, 0). Let
f̃ : B̃ × R→ B̃ × R be a lift of f . For each (x, n) ∈ B̃ × Z, we have f̃(x, n)=(y, t)
and f̃(x, n + 1) = (y, t + 1) for some (y, t) ∈ B̃ × R. Therefore we can change f̃
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on {x} × [n, n+ 1], relative to {x} × {n, n+ 1}, using a straight-line homotopy in
the R factor of B̃ × R. The result is a map g̃ which is a linear homeomorphism
from {x} × [n, n + 1] to {y} × [t, t + 1]. These homotopies fit together on all of
B̃ × R to give an equivariant homotopy from f̃ to g̃ which induces a homotopy
from f to a map g on V , such that pf = pg and the restriction of g to any fiber
is a homeomorphism to another fiber.) The admissible homotopy from pfs to a
homeomorphism can now be used to change the B-coordinate of g, while keeping
the S1-coordinate unchanged. (Explicitly, if we write g(x, t) = (gB(x, t), gS(x, t)),
then since g is fiber-preserving we have gB(x, t) = pgs(x). If ht is an admissible
homotopy from pgs = pfs to a homeomorphism, the homotopy gt is defined by
gt(x, t) = (ht(x), gS(x, t)).) The result is an admissible fiber-preserving homotopy
from g to a homeomorphism of (V, v).

If B is nonorientable, the orientable double covering map B̂ → B lifts to a
double covering B̂ × S1 → V and the section s : B → V lifts to an equivariant
section from B̂ to B̂ × S1. Since pfs is homotopic to a homeomorphism, f lifts to
f̂ : B̂ × S1 → B̂ × S1. The homotopy of f̂ constructed above is equivariant, so it
induces the desired homotopy of f on V . This completes the proof of (iv) in the
case that (V, v) is a S1-bundle. �

As we have noted, proposition 10.2.2 will reduce proposition 10.2.1 to a matter
of determining when the index of H(B, b) in E(B, b) is finite. In the next lemma,
we treat the finite-index cases. Note that these include all cases when B is a closed
surface, since then |b|=∂B.

Lemma 10.2.3. Let (B, b) be a connected 2-manifold with boundary pattern. If
|b|= ∂B, then the index of H(B, b) in E(B, b) is finite. Also, the index is finite if
any of the following holds.

(i) B is a disk.
(ii) B is an annulus or Möbius band, and each boundary circle of B contains

at most one component of |b| that is an arc.
(iii) B is a disk with two holes, and |b| consists of two boundary circles.
(iv) B is a torus with one hole and |b| is empty.

Proof. If |b|=∂B, then by the Baer-Nielsen Theorem 2.5.5, H(B, b)=E(B, b).
From now on, assume that |b| 6= ∂B. Since b consists of arcs and circles, we
may pass to a subgroup of finite index in E(B, b) for which each homotopy class
can be represented by a homotopy equivalence f which is the identity on |b|. In
the cases when π1(B) is infinite cyclic, we may also assume that f induces the
identity automorphism on π1(B). It suffices to show that for the manifolds listed
in lemma 10.2.3, any such f is admissibly homotopic to a homeomorphism.

When B is a disk, f may be changed by admissible homotopy to be the identity
on all of ∂B. Then, the Alexander construction produces an admissible homotopy
to the identity.

Suppose that B is a Möbius band and at most one component of |b| is an arc.
Since f is assumed to induce the identity automorphism on π1(B), f is admissibly
homotopic to a map which is the identity on ∂B. Let α be an essential arc in B.
Examining the universal cover of B shows that f is homotopic relative to ∂B to
be the identity on α. Then, all components of the (transverse) preimage of α other
than α itself are inessential circles, so f is further homotopic so that f−1(α) =α.
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The Alexander trick applied to the disk that results from cutting B along α now
gives an admissible homotopy from f to the identity.

When B is an annulus having at most one arc of |b| in each boundary circle, we
may again assume that f is the identity on ∂B. Again select an essential arc α, and
let h be a Dehn twist about the center circle of B. For some value of n, h−nf(α)
is homotopic relative to its endpoints to α. Similarly to the Möbius band case,
this implies that h−nf is admissibly homotopic to the identity, so f is admissibly
homotopic to hn.

Suppose that B is a disk with two holes and |b| consists of two boundary circles.
Let α and β be loops based at a basepoint v0 in the interior of V , such that α and
β are freely homotopic to the circles of |b|, and αβ is freely homotopic to the other
boundary circle C. We may assume that f fixes the basepoint v0 in the interior of
B. Since f is assumed to be the identity on |b|, its induced automorphism must
send α to some conjugate γαγ−1 and β to some δβδ−1. Changing f by admissible
homotopy fixing |b| but moving the basepoint, we may assume that γ=1. Since the
images must generate the free group π1(V, v0), δβδ−1 must be of the form αnβα−n

so the induced automorphism carries αβ to αnαβα−n. This implies that the image
of C under f is freely homotopic to C, so f is admissibly homotopic to a map that
preserves all of ∂B. By the Baer-Nielsen Theorem 2.5.5, this map is admissibly
homotopic to a homeomorphism.

Finally, suppose that B is a torus with one hole and |b| is empty. Every au-
tomorphism of π1(B) takes the element represented by the boundary circle C to
itself or its inverse up to conjugacy, since each Nielsen generator [99] of the au-
tomorphism group of a free group on two generators takes the commutator of the
generators to a conjugate of itself or its inverse. Again, this implies that f is ho-
motopic to a map that takes C to C, and the Baer-Nielsen Theorem 2.5.5 shows
that f is admissibly homotopic to a homeomorphism. �

As explained above, to handle the infinite-index cases, we will define a general
kind of admissible homotopy equivalence of a surface, which is the 2-dimensional
analogue of the wrapping homotopy equivalences defined in chapter 9 using 1-
handles of M . Start with a 2-manifold (B, b) and suppose that γ is a properly
imbedded arc in B whose endpoints lie in ∂B − |b|. Let γ × [−1, 1] be a product
neighborhood of γ = γ × {0} with γ × [−1, 1] ∩ ∂B = ∂γ × I ⊆ ∂B − |b| (i. e. a
2-dimensional 1-handle with cocore γ). Suppose further that there is a loop α
in the interior of B, based at a point b0 × {1/2} ∈ γ × {1/2}, and disjoint from
γ× (−1/2, 1/2). Such a loop is called compatible with γ (this depends on the choice
of product neighborhood γ × [−1, 1], a choice that will be understood as having
been made in our arguments). Define an admissible homotopy equivalence h(γ, α)
of (B, b) as follows. It will fix all points outside γ × (−1, 1) (in particular, it is the
identity on |b|). Map each γ×{t} to γ×{t} in such a way that for −1/2 ≤ t ≤ 1/2,
γ × {t} is collapsed to b0 × {t}, then map the arc b0 × [−1/2, 1/2] around the
path product of b0× [−1/2, 1/2] and α. The admissible homotopy inverse of h(γ, α)
is h(γ, α−1). We call h(γ, α) a homotopy equivalence obtained by sweeping γ around
α, or just a sweep. When γ is the frontier of a regular neighborhood of a component
G of |b|, we may also say h(γ, α) is obtained by sweeping G around α. In chapter 11,
we will show explicitly how a sweep can be written as a product of the homotopy
equivalences called Dehn flips by Johannson [58].
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Lemma 10.2.4. Let (B, b) be a connected 2-manifold with boundary pattern.
If |b| 6= ∂B and (B, b) is not one of the cases listed in lemma 10.2.3, then there
exist a properly embedded arc γ ∈ B (whose endpoints lie in ∂B − |b|) and an
orientation-preserving loop α in the interior of B such that no non-zero power of the
sweep h(γ, α) of (B, b) is admissibly homotopic to a homeomorphism. Consequently,
H(B, b) has infinite index in E(B, b).

Proof. Suppose first that B is an annulus or Möbius band. By hypothesis
there must be a component C of ∂B which contains at least two arc components
β1 and β2 of |b|. Let β′ and β′′ denote the components of C − (β1 ∪ β2), so that
C = β1 ∪ β′ ∪ β2 ∪ β′′. Let γ be the frontier of a small regular neighborhood of β1

in B. Taking α to be parallel to the center circle, if B is an annulus, or the square
of the center circle, if B is a Möbius band, we observe that no nonzero power of
h(γ, α) carries both β′ and β′′ to arcs which are admissibly homotopic into ∂B,
so no nonzero power of h(γ, α) can be admissibly homotopic to a homeomorphism
of (B, b).

Suppose that B is not a disk, annulus, or Möbius band, and some component
β of |b| is an arc. Let γ be the frontier of a regular neighborhood of β, and let C
be the boundary circle of B that contains β. Since B is not a disk, annulus, or
Möbius band, there exists an orientation-preserving loop α0 based in β, no power of
which is freely homotopic into C. For some loop α freely homotopic to α0, there is
a homotopy equivalence h(γ, α) obtained by sweeping γ around α. Then, h(γ, α)n

carries C to the loop αn0 C α
−n
0 , and for n 6= 0 this loop is not homotopic keeping

its basepoint in β to a loop in C. Consequently, for n 6= 0, h(γ, α) is not admissibly
homotopic to a homeomorphism.

From now on we will assume that all components of |b| are boundary circles.
Suppose B is a disk with two holes. As in the proof of lemma 10.2.3, choose

generators α and β of π1(B), each homotopic to a boundary circle, so that αβ is
freely homotopic to the third boundary circle. Since (B, b) is not one of the cases
in lemma 10.2.3, we may assume that the boundary circles corresponding to β and
αβ are not components of |b|. Let γ be an arc connecting these two circles. For
n 6= 0, h(γ, α)n carries β to βαn. This is homotopic to a boundary circle only when
n=1, but in that case h(γ, α) carries αβ to αβα, which is not freely homotopic to
a boundary circle. Thus no nonzero power of h(γ, α) is homotopic to a map which
preserves the boundary of B.

The remaining case is thatB is not closed and not a disk, Möbius band, annulus,
torus with one hole, or disk with two holes, and |b| consists of boundary circles, and
there is at least one boundary circle C not contained in |b|. Suppose first that B
is nonorientable. Choose free generators v1, . . . , vg, c1, . . . , cr for π1(B), where each
vi runs through a crosscap and each cj encircles a boundary component, so that C
is represented by c =

∏g
i=1 v

2
i

∏r
j=1 cj . Since B is nonorientable, g ≥ 1, and if r=0

(i. e. if B has only one boundary component) then g ≥ 2 since B is not a Möbius
band. We may choose loops representing the generators so that there is a proper
arc γ, with γ ∩ ∂B ⊂ C, which crosses a loop representing v1 in one point and does
not meet the other generating loops. The element

∏g
i=2 v

2
i

∏r
j=1 cj is represented

by an orientation-preserving loop α compatible with γ. Then, h(γ, α)n carries v1

to v1

(∏g
i=2 v

2
i

∏r
j=1 cj

)n
and carries c to(
v1(

g∏
i=2

v2
i

r∏
j=1

cj)n
)2 g∏

i=2

v2
i

r∏
j=1

cj ,
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so the image of C is not homotopic into ∂B.
Suppose that B is orientable and not planar. We can choose free generators

a1, b1, a2, . . . , bg, c1, . . . , cr for π1(B) so that C is homotopic to
∏g
i=1[ai, bi]

∏r
j=1 cj ,

with g ≥ 1, and if r= 0 then g ≥ 2. This time use an arc γ dual to a1 and a loop
α representing

∏g
i=2[ai, bi]

∏r
j=1 cj .

Finally, if B is planar then it has at least four boundary components, so π1(B)
is generated by c1, . . . , cr where C is homotopic to

∏r
j=1 cj and r ≥ 3. Choose an

arc γ that separates B into an annulus B1, with π1(B1) generated by c1, and a disk-
with-holes B2 with π1(B2) generated by c2, . . . , cr. If α represents c2, then h(γ, α)n

carries C to cn2 c1c
1−n
2

∏r
j=3 cj , which is homotopic into ∂B only when n=0. �

To deduce proposition 10.2.1, we introduce 3-dimensional sweeps, which are
fiber-preserving admissible homotopy equivalences H(γ, α) of (V, v) which project
to sweeps of (B, b). Actually, proposition 10.2.1 can be proved without using 3-
dimensional sweeps, by developing more properties of the homomorphism defined
in proposition 10.2.2. But 3-dimensional sweeps will be used extensively in the
next section, so we introduce them here. In the definition, we allow (V, v) to be
Seifert-fibered, since this generality will be needed later.

To fix notation, let p : V → B be an admissible fibering of (V, v) as an I-bundle
or Seifert-fibered space over (B, b). Suppose that α and γ are an arc and a loop in
B as in the definition of 2-dimensional sweep, and assume further that

(i) α is orientation-preserving, and
(ii) if (V, v) is Seifert-fibered, then α and γ × [−1, 1] are disjoint from the

image of the exceptional fibers.

With these assumptions, there is a neighborhood N of γ × [−1, 1] ∪ α such that

(1) N is disjoint from |b|,
(2) h(γ, α)−1({x})={x} for x ∈ V −N , and
(3) p−1(N) is a product N×I or N×S1 whose fibering agrees with the fibering

of V .

Using such a neighborhood, we can define a fiber-preserving lift of h(γ, α) by
H(γ, α)(x, t) = (h(γ, α)(x), t) on p−1(N), while H(γ, α) will be the identity map
outside of p−1(N). Observe that H(γ, α) is fiber-preserving, and is an admissible
homotopy equivalence (an admissible homotopy from h(γ, α)h(γ, α) to the identity
of B, supported on N , lifts to an admissible homotopy from H(γ, α)H(γ, α) to the
identity of V ). We caution that the admissible homotopy class of H(γ, α) is not
necessarily uniquely defined, since we have made a choice of product structure for
p−1(N). In practice, we simply make a choice and have H(γ, α) available for use;
no uniqueness is ever needed.

If (V, v) is an I-bundle, then H(γ, α) preserves each lid and is the identity on
the sides of (V, v). If (V, v) is Seifert-fibered, then it is the identity on all of |v|. We
call H(γ, α) a homotopy equivalence obtained by sweeping p−1(γ) around α, or just
a sweep, and when p−1(γ) is the frontier of a regular neighborhood of an annulus
component G of |v|, we may say it is obtained by sweeping G around α. We also
may speak of a sweep of p−1(γ) around a loop α in V ; this means a sweep around
the loop in B that is the image of α (providing, of course, that this projected loop
meets the requirements for sweeping to be defined).

We can now deduce proposition 10.2.1.
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Proof of proposition 10.2.1. Let s : B → V be a section for p, whose im-
age is disjoint from the lids of (V, v) if (V, v) is an I-bundle. By proposition 10.2.2,
we can define a homomorphism P : E(V, v′, v′′)→ E(B, b) by sending 〈f〉 to 〈pfs〉.

In the cases listed in lemma 10.2.3, H(B, b) has finite index in E(B, b) so propo-
sition 10.2.2 shows that H(V, v′, v′′) has finite index in E(V, v′, v′′).

In the cases of lemma 10.2.4, let h(γ, α) be a sweep as given in that lemma,
and let H(γ, α) be a lift of h(γ, α) to a sweep of (V, v), so that pH(γ, α)s=h(γ, α).
For n 6= 0, h(γ, α)n is not admissibly homotopic to a homeomorphism of (B, b),
so proposition 10.2.2 implies that H(γ, α)n is also not admissibly homotopic to a
homeomorphism. Therefore the latter represent distinct cosets of H(V, v′, v′′) in
E(V, v′, v′′), and the index is infinite. �

Remark: The homomorphism P in proposition 10.2.2 need not be surjective. For
example, suppose that B is obtained by removing an open disk from a Möbius band.
Its fundamental group is free on generators v1 and c1, where v1 is represented by
the center circle of the Möbius band and c1 by an orientation-preserving loop that
encircles the boundary of the removed disk. There is a homotopy equivalence g
from B to B whose induced automorphism interchanges v1 and c1. If V is the
S1-bundle over B, then g is not the image of a homotopy equivalence of V under
P : E(V, ∅, ∅)→ E(B, ∅). For according to section 2.1, π1(V ) has a presentation

〈t, v1, c1 | v1tv
−1
1 = t−1, [c1, t]=1〉 .

One can check that t generates the unique maximal infinite cyclic normal subgroup
of π1(V ). Consequently any automorphism α of π1(E) must preserve this subgroup,
so must take t to either t or t−1. But if α interchanges v1 and c1, it cannot also
preserve the relations in the group. So g is not in the image of P . In all cases, the
image of P has finite index, since any homotopy equivalence of (B, b) that preserves
the orientation homomorphism π1(B) → Z/2 does lift to a homotopy equivalence
of (V, v).

10.3. Realizing homotopy equivalences of Seifert-fibered manifolds

In this section, we complete the determination of when the groups H(V, v′, v′′)
have finite index in E(V, v′, v′′).

Proposition 10.3.1. Suppose that (V, v′∪v′′) is admissibly Seifert-fibered, and
the completion of v′ ∪ v′′ is useful. If |v′ ∪ v′′|=∂V , then the index of H(V, v′, v′′)
in E(V, v′, v′′) is finite. If |v′ ∪ v′′| 6= ∂V , then the index is finite if and only if one
of the following holds.

(i) V is a solid torus.
(ii) V is either S1 × S1 × I or the I-bundle over the Klein bottle, and each

boundary component of V contains at most one component of |v′∪v′′| that
is an annulus.

(iii) V is fibered over the annulus with one exceptional fiber, and no component
of |v′ ∪ v′′| is an annulus.

(iv) V is fibered over the disk with two holes with no exceptional fiber, and
|v′ ∪ v′′| consists of two boundary tori of V .

(v) V is fibered over the disk with two exceptional fibers, over the Möbius
band with one exceptional fiber, or over the torus with one hole with no
exceptional fiber, and |v′ ∪ v′′| is empty.

(vi) V is fibered over the disk with three exceptional fibers of type (2, 1), and
|v′ ∪ v′′| is empty.
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The proof of proposition 10.3.1 constitutes the remainder of this section. As in the
proof of proposition 10.2.1, the finite-index cases are examined on a case-by-case
basis, and the infinite-index cases are detected using the sweeps H(γ, α) defined in
section 10.2. To demarcate the major case divisions, we organize the proof as a
series of lemmas.

Proof of proposition 10.3.1. When |v′∪v′′|=∂V , Waldhausen’s Theorem
2.5.6 shows immediately that H(V, v′, v′′) = E(V, v′, v′′). From now on, we will
assume that |v′ ∪ v′′| 6= ∂V .

We first treat the cases (i)–(vi) in which |v′∪v′′| 6= ∂V and yet H(V, v′, v′′) has
finite index in E(V, v′, v′′). The following lemma handles case (i).

Lemma 10.3.2. Suppose that V is a solid torus and v′ ∪ v′′ is any boundary
pattern that consists of incompressible annuli. Then E(V, v′, v′′) is finite.

Proof. Let E0 be the subgroup of index at most 2 in E(V, v′, v′′) consisting
of the elements that induce the identity automorphism on π1(V ) ∼= Z. Since V is
aspherical, these are homotopic to the identity map, and are admissibly homotopic
to maps which are the identity on |v′ ∪ v′′| (since by definition each homotopy
equivalence in E(V, v′, v′′) preserves each element of v′ ∪ v′′).

If v′ ∪ v′′ is empty, then E0 is trivial so E(V, v′, v′′) is finite. So we will assume
that |v′ ∪ v′′| is nonempty and not equal to ∂V . Let A0, A1, . . . , An (n ≥ 0) be the
components of |v′ ∪ v′′|. There exists N > 0, such that each π1(Ai) has index N in
π1(V ). To prove that E0 is finite, we will use the traces of a homotopy from f to
the the identity map to define an element T (f) ∈ (Z/N)n, so that T : E0 → (Z/N)n

is an injective homomorphism.
Choose basepoints ai ∈ Ai. Let f represent an element of E0, where f is the

identity on each Ai. For any element of π1(V ), there is a (nonadmissible) homotopy
from the identity map to the identity map whose trace at a0 is the given element
(see section 10.1 for a discussion of the trace; in the present situation the trace is a
well-defined element of π1(V, a0), since the homotopy is between maps that fix a0).
This homotopy just rotates in the S1-factor through the number of turns needed
to achieve the given element of π1(V ) as trace. Given a homotopy from f to the
identity having trace m, we can follow it with a homotopy from the identity to
the identity with trace −m to obtain a homotopy H from f to the identity whose
trace at a0 is zero. By lemma 10.1.5, such a homotopy admits a deformation to a
homotopy which is the identity on A0 at each stage. For each 1 ≤ i ≤ n, define
ti ∈ π1(V ) to be the trace of H at ai. These ti depend only on f and not on the
choice of H. For given two such choices H and H ′, one can form a homotopy from
the identity map to the identity map by taking the reverse of H followed by H ′.
Since this homotopy has trivial trace at a0, it has trivial trace at each ai (for any
homotopy from the identity to the identity, the traces at different basepoints are
freely homotopic, since if γ is a path between the basepoints then the restrictions
of the homotopy to γ(t)× I determines a free homotopy).

Suppose f and f ′ are admissibly homotopic, and each restricts to the identity
on |v′ ∪ v′′|. During any admissible homotopy from f to f ′, each ai must travel
some number of times around Ai, so the values of ti determined by f and f ′

differ by a multiple of N . That is, the residue class of ti in Z/N is well-defined on
elements of E0. Define a homomorphism T : E0 → (Z/N)n by sending the admissible
homotopy class of f to (t1, . . . , tn).
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Consider an element in the kernel of T , and select a representative which is the
identity on |v′ ∪ v′′|. Then for this f each ti is a multiple of N , say ti=kiN . There
is an admissible isotopy {it} of V which starts at the identity, is constant outside a
regular neighborhood of Ai, and moves ai once around Ai (hence N times around
V ). Let hi be the ending homeomorphism of this isotopy. There is a homotopy from
f to h−k1

1 h−k2
2 · · ·h−knn which has trivial trace at each ai, obtained by following the

homotopy from f to the identity map with the isotopy {i−1
t } from the identity map

to h−k1
1 h−k2

2 · · ·h−knn . Lemma 10.1.5 implies that this homotopy is is deformable
to an admissible homotopy. But h−k1

1 h−k2
2 · · ·h−knn is admissibly isotopic to the

identity map. Therefore T is injective, so E0 is finite. �

We remark that the homomorphism T in the proof of lemma 10.3.2 is also
surjective. For example, a homotopy equivalence f with T (f) = (1, 0, . . . , 0) is the
end result of a homotopy starting at the identity that fixes all Ai except A1, rotates
the S1-factor of A1 so that a1 travels once around the S1-factor of V = D2 × S1

(but only part of the way around the S1-factor of A1, since A1 makes N turns
around the S1-factor of V ) and then moves A1 through V , keeping points within
the D2 fibers, until the identity map is achieved on A1.

The manifolds in case (ii), and in (iii) when V is the I-bundle over the Klein
bottle, are covered by the next two lemmas.

Lemma 10.3.3. Suppose that V = S1 × S1 × I and |v′ ∪ v′′| 6= ∂V . Then
H(V, v′, v′′) has finite index in E(V, v′, v′′) if and only if each boundary component
of V contains at most one component of |v′ ∪ v′′| which is an annulus.

Proof. Suppose first that v′∪v′′ contains an annulus. Then proposition 10.2.1
applies, and completes the proof. So assume that v′ ∪ v′′ consists of tori. If v′′

contains a boundary component of V then every element of E(V, v′, v′′) induces
the identity automorphism on π1(V ), so E(V, v′, v′′) is trivial. If v′′ is empty, then
E(V, v′, ∅) ∼= Out(π1(V ), π1(v′)) ∼= GL(2,Z) and since every element of SL(2,Z) can
be induced by an orientation-preserving homeomorphism, H(V, v′, ∅) has index at
most 2 in E(V, v′, ∅) (it has index 1 if v′ is empty, and index 2 otherwise). �

Lemma 10.3.4. Suppose that V is the I-bundle over the Klein bottle, and |v′ ∪
v′′| 6= ∂V . Then H(V, v′, v′′) has finite index in E(V, v′, v′′) if and only if at most
one component of |v′ ∪ v′′| is an annulus.

Proof. Recall from lemma 2.8.5 that there are two Seifert fiberings of the I-
bundle over the Klein bottle. Proposition 10.2.1 could be applied to the nonsingular
fibering, as in lemma 10.3.3. But this is unnecessary, since the following argument
needed for the singular fibering applies to the nonsingular fibering as well.

Since π1(V ) is the fundamental group of the Klein bottle, which has only four
outer automorphisms, we may pass to a subgroup E0(V, v′, v′′) of finite index in
E(V, v′, v′′) to assume that f is homotopic to the identity map. If |v′∪v′′| is empty,
then such a homotopy is automatically admissible, so E(V, v′, v′′) is finite and the
lemma holds.

Suppose |v′ ∪ v′′| consists of a single annulus A. Using the trace, we will con-
struct a certain subgroup E1(V, v′, v′′) of index at most 2 in E0(V, v′, v′′), then show
that every element of E1(V, v′, v′′) is admissibly homotopic to a homeomorphism.
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We will define a homomorphism T : E0(V, v′, v′′)→ π1(V, v0)/π1(∂V, v0), where
this quotient is a cyclic group of order 2. Fix a basepoint v0 in the interior of
an element of v′ ∪ v′′. Let f ∈ E0(V, v′, v′′). We may change f by an admissible
isotopy so that f(v0) = v0. Choose a homotopy ft from the identity map idV to
f , and let tr(ft) denote the trace of ft at v0. Define T (f) to be the element of
π1(V, v0)/π1(∂V, v0) represented by tr(ft).

If gt is another homotopy from idV to f , then gt followed by the reverse of ft
is a homotopy from idV to idV , so its trace lies in the center of π1(V, v0), which is
contained in π1(∂V, v0). Since the trace of this homotopy is tr(gt) tr(ft)−1, T (f)
is independent of the choice of homotopy ft. It is also independent of the isotopy
used to make f(v0) = v0, since the isotopy changing one choice to another has trace
in π1(∂V, v0).

Finally, to see that T is a homomorphism, let ft : idV ' f and gt : idV ' g be
homotopies. The path product gt · (gft) is a homotopy from idV to gf , whose trace
at v0 is tr(gt) g(tr(ft)). So T (gf) =T (g) g#(T (f)). Since π1(∂V, v0) is the unique
rank 2 maximal abelian subgroup of π1(V, v0), g#(T (f)) lies in π1(∂V, v0) if and
only if T (f) does, that is, T (g) g#(T (f)) = T (g)T (f).

Now, define E1(V, v′, v′′) to be the kernel of T , a subgroup of index at most 2.
It remains to show that every element of E1(V, v′, v′′) is admissibly homotopic to a
homeomorphism.

Any element of E1(V, v′, v′′) can be represented by an f which preserves v0 and
is homotopic to the identity by a homotopy whose trace lies in π1(∂V, v0). There is
an isotopy of V (supported in a neighborhood of ∂V ) starting at the identity and
ending at a homeomorphism h which is the identity on A, and which has the same
trace at A as does f . Therefore f is homotopic to h relative to v0. By lemma 10.1.5,
there is a deformation of this homotopy to a homotopy that preserves A, that is,
which is admissible. This completes the proof in the case when |v′ ∪ v′′| is a single
annulus.

The remaining case is when |v′ ∪ v′′| has at least two components A1 and
A2 which are annuli. Let H(γ, α) be a sweep of A1 around a boundary circle of
the quotient surface (B, b). Consider the annuli ∂V − (A1 ∪A2). The restriction
of H(γ, α)n to each of these annuli is an admissible singular annulus, and for no
nonzero n are both of these singular annuli admissibly homotopic into ∂V . There-
fore no nonzero power of H(γ, α) is admissibly homotopic to a homeomorphism, so
these represent infinitely many distinct cosets of H(V, v′, v′′) in E(V, v′, v′′). �

The next lemma will allow us to make certain homotopies between admissible
homotopy equivalences admissible, at the expense of postcomposing one of the maps
by an admissible homeomorphism.

Lemma 10.3.5. Assume that V is not homeomorphic to a solid torus or to the
I-bundle over the Klein bottle. Suppose that T is a torus boundary component of
V with T ⊆ |v′ ∪ v′′|. Let f1, f2 ∈ E(V, v′, v′′), and suppose f1 is homotopic to f2.
Then there exist an admissible homeomorphism h of (V, v′ ∪ v′′) and a homotopy
from f1 to hf2 that preserves each element of v′ ∪ v′′ that lies in T .

Proof. Since f1 and f2 are in E(V, v′, v′′), they preserve each element of v′∪v′′.
We may change f1 and f2 by admissible homotopy so that each preserves a basepoint
v0 in the interior of an element of v′ ∪ v′′ that lies in T .
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Suppose for contradiction that there is no homotopy from f1 to f2 that preserves
T . Then the restriction of a homotopy from f1 to f2 to T × I is an essential map
from T × I to (V, ∅). Since V is not a solid torus, ∅ is useful. By Waldhausen’s
Theorem 2.5.6, this map is admissibly homotopic to a covering map, so π1(T ) has
finite index in π1(V ). By the Finite Index Theorem 2.1.1, V is homeomorphic to
T × I or to the I-bundle over the Klein bottle. The latter is excluded by hypothesis
and the former is impossible since f1 and f2 both preserve T . Therefore there is a
homotopy H from f1 to f2 that preserves T .

Let α be the trace of H at v0. Since H preserves T , α lies in π1(T, v0). Let
Jt be an isotopy of T from idT to idT , whose trace at v0 is α. Construct a Dehn
twist homeomorphism h (see section 4.2) on a collar neighborhood of T using the
Jt on the levels of the collar. Then there is an isotopy from idV to h whose trace
at v0 is α−1, so there is a homotopy from f1 to hf2 which preserves T and whose
trace at v0 is trivial. Its restriction to T admits a deformation to a homotopy that
preserves each element of v′ ∪ v′′ that lies in T , so (using the homotopy extension
property) a homotopy from f1 to hf2 may be found that does the same. �

The cases (iii) with V not the I-bundle over the Klein bottle, (iv), and (v) of
proposition 10.3.1 are addressed in the next lemma.

Lemma 10.3.6. Assume that the sum of the rank of H1(B) and the number of
exceptional fibers is exactly 2, that V is not the I-bundle over the Klein bottle, and
that |v′ ∪ v′′| 6= ∂V . Then H(V, v′, v′′) has finite index in E(V, v′, v′′) if and only if
one of the following occurs.

1. V is fibered over the annulus with one exceptional fiber, and no component
of |v′ ∪ v′′| is an annulus.

2. V is fibered over a disk with two holes with no exceptional fiber, and |v′∪v′′|
consists of two boundary tori of V .

3. V is fibered over either the disk with two exceptional fibers, over the Möbius
band with one exceptional fiber, or over the torus with one hole with no
exceptional fiber, and |v′ ∪ v′′| is empty.

Proof. We will make frequent use of the presentations for the fundamental
groups of Seifert-fibered 3-manifolds, which were discussed in section 2.1. For each
of the manifolds V in the lemma, the fundamental group has a presentation

π1(V ) = 〈t, c1, c2 | cp1
1 = tq1 , cp2

2 = tq2 , c1tc
−1
1 = tε1 , c2tc

−1
2 = tε2〉

where each (pj , qj) is either a relatively prime pair or is (0, 0). Each εj =±1, and
can equal −1 only when pj = 0. As explained in section 2.1, t is represented by
the fiber and the cj correspond to loops in B. For each exceptional fiber, cj is
represented by a loop whose projection to B encircles the exceptional point in B
determined by the fiber, and in this case there is a relation of the form c

pj
j = tqj

where the invariants (pj , qj) are associated to the exceptional fiber. The projections
of the other cj either encircle boundary components, in which case cjtc−1

j = t, or
are orientation-reversing loops, in which case cjtc−1

j = t−1. The projection of c1c2 is
homotopic, missing the exceptional points, to a boundary circle of B. The regular
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fiber represents t, which generates an infinite cyclic normal subgroup of π1(V ), and
there is an exact sequence

1→ 〈t | 〉 → π1(V )→ 〈c1, c2 | cp1
1 =cp2

2 =1〉 → 1 .

Since the quotient group is a nontrivial free product, it has no cyclic normal sub-
group. Therefore any cyclic normal subgroup is contained in the subgroup generated
by t, which must then be the unique maximal cyclic normal subgroup of π1(V ).
Consequently, it must preserved by every automorphism, so any automorphism φ
induces an automorphism φ on

Q = 〈c1, c2 | cp1
1 =cp2

2 =1〉 ∼= (Z/p1Z) ∗ (Z/p2Z).

Note that when φ is the identity on Q, we must have φ(c1)=c1t
m1 and φ(c2)=c2t

m2

for some m1 and m2.
In the parts of cases I, II, and III below for which the index is finite, the strategy

will be to consider the induced automorphism φ ∈ Out(π1(V )) of an element f
of E(V, v′, v′′). By passing to subgroups of finite index in Out(π1(V )), we will
sufficiently restrict φ so that its associated homotopy equivalence f is admissibly
homotopic to a homeomorphism.

In cases I and II, where ε1 = ε2 = 1, we may pass to a subgroup of index 2 to
assume that φ(t)= t. In any of the three cases, when pj 6= 0, the Kurosh subgroup
theorem shows that φ(Z/pjZ) must be conjugate to Z/pjZ, unless p1 =p2 in which
case φ(Z/pjZ) must be conjugate to either Z/p1Z or Z/p2Z. If the latter occurs, by
passing to a smaller subgroup of finite index in Out(π1(V )), we may assume that
each φ(Z/pjZ) is conjugate to Z/pjZ.

Our first case corresponds to statement 3 of the lemma when B is a disk.

Case I: p1 6= 0 and p2 6= 0.
Since there are two exceptional fibers, B is a disk, and consequently ∂V is a

torus. Since V is not the I-bundle over the Klein bottle, we may assume that at
least one of the pj , say p1, is greater than 2. In addition, we may choose notation
so that π1(∂V ) is generated by t and c1c2. By lemma 9.1.2, we may assume that
φ(Z/p1Z) = Z/p1Z and φ(Z/p2Z) = Z/p2Z. So by passing to a subgroup of finite
index in Out(π1(V )), we may assume that φ(t) = t and φ(cj) = cjt

mj . But the
relations cpjj = tqj imply that each mj = 0, so Out(π1(V )) is finite. Therefore, we
may pass to a subgroup of finite index in E(V, v′, v′′) to assume that f is homotopic
to the identity map.

If |v′∪v′′| is empty, then such a homotopy is automatically admissible, and the
proof is complete in this case.

Now suppose that |v′ ∪ v′′| is nonempty. Since |v′ ∪ v′′| is not all of ∂V , it must
contain an annulus A. Let f be the admissible homotopy equivalence obtained by
sweeping A around c2c1. Under fk, a peripheral loop c1c2 based at a basepoint v0 in
A is carried to (c2c1)kc1c2(c2c1)−k. Suppose for contradiction that some nonzero
power fk is admissibly homotopic to the identity. We may assume that f fixes
v0, and since the homotopy is admissible, the trace of homotopy at v0 lies in the
subgroup π1(A, v0) of π1(V, v0). Since A is a fibered annulus, this implies that the
trace is a power of t. Since t is central, this means that fk induces the identity
automorphism (not just the identity outer automorphism) on Q. In particular, the
image of φk(c1c2) in Q would have to equal c1c2. Since c1 has order at least 3, the
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normal form of elements in free products shows that this can only happen when
k=0. Therefore the fk represent distinct cosets of H(V, v′, v′′) in E(V, v′, v′′).

The second case gives statement 1 of the lemma.

Case II: p1 6= 0, p2 =0, and ε2 =1.
In this case there is one exceptional fiber, and B is an annulus since c2tc−1

2 = t.
By lemma 9.1.2, φ may be changed by inner automorphism so that φ(Z/p1Z) =
Z/p1Z and φ(c2)=c`1c

±1
2 . By passing to a finite index subgroup of Out(π1(V )), we

may assume that φ(c1) = c1 and φ(c2) = c2, and hence (using the fact that p1 6= 0
as in case I) that φ(c1)=c1 and φ(c2)=c2t

k for some k.
Assume first that no component of |v′ ∪ v′′| is an annulus; we will argue that

f is admissibly homotopic to a homeomorphism. Suppose first that v′′ contains a
boundary component T of V . Now π1(T ) ∼= Z× Z is generated either by t and c2
or by t and c1c2; since the restriction of f to T is isotopic to the identity, k=0 and
therefore f is homotopic to the identity. Suppose that v′′ does not contain a torus
boundary component of V . Then φ is induced by a homeomorphism in H(V, v′, v′′)
that takes each fiber to itself, in fact by the kth power of a Dehn twist about
a nonseparating essential vertical annulus that meets both boundary components
of V . So again, f is homotopic to a homeomorphism. Since no component of
|v′ ∪ v′′| is an annulus, lemma 10.3.5 now shows that f is admissibly homotopic to
an admissible homeomorphism. So if every component of |v′ ∪ v′′| is a torus, f is
admissibly homotopic to a homeomorphism.

Suppose now that some component of |v′ ∪ v′′| is an annulus A. We may
choose notation so that A lies in the boundary component with fundamental group
generated by t and c2 (by replacing c2 with c1c2 and c1 with c−1

1 , if necessary). Let
f be the sweep of A around a loop that represents c1c2, then an argument exactly
as in case I shows that H(V, v′, v′′) has infinite index.

The next case is statement 3 of the lemma when B is a Möbius band.

Case III: p1 6= 0, p2 = 0 and ε2 =−1.
As in Case II, we may assume that φ(c1)=c1 and φ(c2)=c2. Then, φ(c1)=c1

and φ(c2) = c2t
k for some k. Since tc2t−1 = c2t

−2, we may conjugate by a power
of t to assume that k = 0 or 1, then by passing to a subgroup of finite index in
E(V, v′, v′′) we may assume that each homotopy equivalence is homotopic to the
identity.

If |v′ ∪ v′′| is empty, this completes the proof. Suppose now that |v′ ∪ v′′|
contains an annulus A. The fundamental group of the boundary torus is generated
by t and c1c

2
2. An argument as in case I, sweeping A around c2c1c2, completes the

proof.
The next case gives statement 2, and statement 3 for the case when B is a torus

with one hole.

Case IV: p1 =p2 =0 and ε1 =ε2 =1.
In this case there is no exceptional fiber and B is either a torus with one

hole or a disk with two holes, so this case of the lemma follows immediately from
proposition 10.2.1.

The final two cases do not appear in the three statements of the lemma; they
are the remaining manifolds satisfying the hypotheses and for which the index of
H(V, v′, v′′) is infinite.
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Case V: p1 =0, ε1 =1, and ε2 =−1.
In this case there is no exceptional fiber, and B is a Möbius band minus a disk.

Proposition 10.2.1 again applies.

Case VI: ε2 =ε1 =−1.
Again there is no exceptional fiber, and B is a Klein bottle with one hole. Once

more, proposition 10.2.1 applies. �

Our final lemma of the section handles case (vi) and shows that there are no
other cases for which H(V, v′, v′′) has finite index in E(V, v′, v′′). (The cases where
the sum of the rank of H1(B) and the number of exceptional fibers is 0 or 1 are
handled by lemmas 10.3.2, 10.3.3, and 10.3.4.)

Lemma 10.3.7. Suppose (V, v′∪v′′) is Seifert fibered over (B, b), and |v′∪v′′| 6=
∂V . Assume that the sum of the rank of H1(B) and the number of exceptional fibers
of V is at least 3. Then H(V, v′, v′′) has finite index in E(V, v′, v′′) if and only if B is
the 2-disk, |v′∪v′′| is empty, and there are three exceptional fibers all of type (2, 1).

It is interesting to note that in the case where the index is finite, V has a 2-fold
branched cover which is the product of a circle and a torus with one hole.

Proof. We will use the presentations for the fundamental groups of Seifert-
fibered 3-manifolds given in section 2.1. First we assume B is the 2-disk, |v′ ∪ v′′|
is empty, and there are three exceptional fibers all of type (2, 1). Then π1(V ) can
be presented as

〈c1, c2, c3, t | [cj , t]=1 and c2j = t for 1 ≤ j ≤ 3〉
where the fundamental group of the boundary torus is generated by t and c1c2c3.
Now E(V, ∅, ∅) is just the group of all self-homotopy-equivalences of V , so is isomor-
phic to Out(π1(V )), since V is aspherical. We will show that every automorphism
of π1(V ) preserves π1(∂V ) up to conjugacy, so every homotopy equivalence is ho-
motopic to a map preserving ∂V . By Waldhausen’s Theorem 2.5.6 this proves it is
homotopic to a homeomorphism.

The element t generates the center Z of π1(V ), so every automorphism carries
t to either t or t−1. Every automorphism of π1(V ) induces an automorphism on
π1(V )/Z, which is isomorphic to Z/2 ∗Z/2 ∗Z/2 generated by c1, c2, and c3. From
section 9.2, we have generators of the automorphism group of a free product of
finitely many indecomposable groups. For the special case of Z/2∗Z/2∗Z/2, there
are no infinite cyclic free factors, so the generators ρi,j , λi,j , and σi are not present.
There are no factor automorphisms ϕi, since each of the factors Z/2 has trivial
automorphism group. For a given i 6= j, there is only one generator of the form
µi,j(x), namely µi,j(ci). So the only generators needed are:

(i) the ωi,j , which interchange ci and cj , and
(ii) µi,j(ci), the automorphism that sends cj to cicjci and fixes all other ck.

(Actually, only µ12(c1) is needed, since all other µi,j(ci) can be conjugated to this
one using the ωi,j .) Each of these generators takes c1c2c3 to an element conjugate
to c1c2c3 or its inverse c3c2c1. Therefore every automorphism of π1(V ) takes c1c2c3
to ω(c1c2c3)±1tkω−1 for some ω ∈ π1(V ) and some k, and hence preserves π1(∂V )
up to conjugacy (since the other generator t, being central, equals ωtω−1). That
is, if (V, v′ ∪ v′′) is as in case (vi), then H(V, v′, v′′) = E(V, v′, v′′).
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From now on we suppose that (V, v′ ∪ v′′) is not the exceptional case described
above, and must prove that H(V, v′, v′′) has infinite index in E(V, v′, v′′). We recall
from section 2.1 that π1(V ) has one of the three presentations:

〈a1, b1, . . . , ag, bg, c1, . . . , cs, t | [ai, t]=[bi, t]=1 for 1 ≤ i ≤ g,

[cj , t]=1 for 1 ≤ j ≤ s, and c
pj
j = tqj for 1 ≤ j ≤ r〉 ,

if B is orientable and non-planar,

〈v1, . . . , vg, c1, . . . , cs, t | vitv−1
i = t−1 for 1 ≤ i ≤ g,

[cj , t]=1 for 1 ≤ j ≤ s, and c
pj
j = tqj for 1 ≤ j ≤ r〉 ,

if B is not orientable, or

〈c1, . . . , cs, t | [cj , t]=1 for 1 ≤ j ≤ s, and c
pj
j = tqj for 1 ≤ j ≤ r〉

if B is planar.

We interpret these presentations explicitly as follows. Start with B0, a compact
surface of orientable or nonorientable genus g, and having s+ 1 boundary compo-
nents C, C1, . . . Cs. Fix a basepoint b0 in C. Initially, we regard the generators of
π1(V ) other than t as loops in B0 based at b0. If B0 is orientable, each pair ai, bi
corresponds to a pair of loops determined by a torus summand of B0; ai and bi
intersect at one point other than b0. These are the only loops that intersect at any
point other than b0. If B0 is nonorientable, each vi is a loop that passes through
a crosscap of B0. For 1 ≤ j ≤ s, cj encircles the boundary component Cj . For
the three cases, respectively, the boundary circle C represents

∏g
i=1[ai, bi]

∏s
j=1 cj ,∏g

i=1 v
2
i

∏s
j=1 cj , or

∏s
j=1 cj . In each case, we denote this element by c.

Now, let V0 be the S1-bundle over B0 with orientable total space. The fiber
represents an element t that generates an infinite cyclic normal subgroup of π1(V0).
Finally, form V by filling in the boundary tori that are the preimages of Cj for
1 ≤ j ≤ r with fibered solid tori of type (pj , qj). This adds the remaining relations
c
pj
j = tqj to π1(V ). The orbit surface B is obtained by filling in the circles C1, . . . ,
Cr of B0 with disks. We may regard B0 as a section of V0, contained in V , obtaining
explicit loops representing the generators of π1(V ) other than t.

Observe that the quotient of π1(V ) by the infinite cyclic normal subgroup
generated by t is a group Q given in the three cases by

〈a1, b1, . . . , ag, bg, c1, . . . , cs | c
pj
j = 1 for 1 ≤ j ≤ r〉 ,

if B is orientable and non-planar,

〈v1, . . . , vg, c1, . . . , cs | c
pj
j = 1 for 1 ≤ j ≤ r〉 ,

if B is not orientable, or

〈c1, . . . , cs | c
pj
j = 1 for 1 ≤ j ≤ r〉 if B is planar.

This is also the quotient group of π1(B0) obtained by adding the relations cpjj = 1.
The boundary of V consists of the 1 + s− r tori which are the preimages of the

boundary components C, Cr+1, . . . , Cs of B. We may choose our notation so that
the preimage torus T of C is not entirely contained in |v′ ∪ v′′|. The fundamental
group of T is generated by t and c.

To see that H(V, v′, v′′) has infinite index in E(V, v′, v′′), we will construct an
admissible homotopy equivalence H of V , no nonzero power of which is realizable
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by a homeomorphism of V . To construct H, we start with a certain sweep h(γ, α)
of B0, and lift it to a sweep H(γ, α) of V0 as in the construction in section 10.2.
This H(γ, α) will be the identity on all boundary components other than T , so can
be extended using the identity map on the fibered solid tori of V − V0, obtaining a
fiber-preserving map H. By construction, the automorphism induced by H on the
quotient Q of π1(V ) is the same as that induced on Q, regarded as a quotient of
π1(B0), by h(γ, α). For simplicity of terminology, we regard h(γ, α) as a sweep on
B, by letting it be the identity on the disks of B −B0, and refer to H as the sweep
of the preimage of γ around α.

The first case will require us to use the boundary pattern, since, as we saw
above, the index is finite if |v′ ∪ v′′| is empty. In the other cases, we can make no
assumption about the boundary pattern other than that it is not all of ∂V .

Case I. B is the 2-disk, and there are three exceptional fibers all of type (2, 1), and
|v′ ∪ v′′| is not empty.

Since ∂V is a single torus, there must be an annulus component A of |v′ ∪
v′′|. Its image in B is an arc component of |b|. Let γ be the boundary of a
regular neighborhood of this arc in B0, let b0 be a basepoint in γ, and let H be
a homotopy equivalence of V obtained by sweeping the preimage of γ around a
loop representing c1c2 in π1(B0, b0). Fix a basepoint v0 ∈ A. Since H fixes each
point of A, we have H(v0) = v0. Suppose there is an admissible homotopy from
Hn to a homeomorphism. Since the homeomorphism preserves A, we may assume
that it fixes v0. Since the homotopy is admissible, its trace at v0 must lie in the
subgroup π1(A, v0), which is the subgroup generated by t. Since t is central, the
homeomorphism must induce the same automorphism on π1(V, v0) as does Hn,
and hence must induce the same automorphism on Q. Since the homeomorphism
preserves ∂V and takes t to t±1, it must take c to c±1tk for some k. So its induced
automorphism on Q must carry c to c±1. But the induced automorphism of Hn

carries c=c1c2c3 to (c1c2)n+1c3(c1c2)−n. Using the normal form in the free product
Q, we see that this equals (c1c2c3)±1 only when n=0. So the Hn represent distinct
cosets of H(V, v′, v′′) in E(V, v′, v′′). This completes the proof in Case I.

From now on, we assume that we are not in Case I. Since t generates the unique
infinite cyclic normal subgroup of π1(V ), every automorphism must take t to t±1.
In each of the remaining three cases, H will have the property that for all n 6= 0,
the automorphism it induces on Q carries c to an element not conjugate to c±1 or
to c±1

j for any r + 1 ≤ j ≤ s. If Hn were homotopic to a homeomorphism, then
a loop representing c in π1(V ) would be freely homotopic into ∂V , so the induced
automorphism on Q would carry c to an element conjugate to c±1 or to c±1

j for
some r + 1 ≤ j ≤ s. As usual, it follows that H(V, v′, v′′) has infinite index in
E(V, v′, v′′).

Case II. B is orientable and not planar.
Since B is not planar, we have g ≥ 1 and, by hypothesis, 2g+s ≥ 3. Fix an arc

γ, with endpoints in C−|v′ ∪ v′′| and with γ ⊂ B0 ⊆ B, that meets a1 transversely
in a single point and is disjoint from all other ai, bi, and cj . Choose a loop α in B0,
compatible with γ, representing

∏g
i=2[ai, bi]

∏s
j=1 cj . The effect of h(γ, α) on c is to

insert α at each crossing of c with γ. There are two such crossings, corresponding
to the a1 and the a−1

1 in the expression for c, and they occur in opposite directions.



10.4. PROOF OF MAIN TOPOLOGICAL THEOREM 2 171

So h(γ, α)n carries c to g∏
i=2

[ai, bi]
s∏
j=1

cj

n

a1b1a
−1
1

 g∏
i=2

[ai, bi]
s∏
j=1

cj

−n b−1
1

g∏
i=2

[ai, bi]
s∏
j=1

cj .

For n 6= 0, this is not conjugate to c±1 or to any c±1
j . As explained above, the

induced automorphism of the lifted sweep Hn on Q has the same effect as h(γ, α),
showing that it is not admissibly homotopic to a homeomorphism.

Case III. B is nonorientable.
Since B is not planar, we have g ≥ 1 and, by hypothesis, g + s ≥ 3. Select

γ in B0 having one transverse crossing with v1 and disjoint from all other vi and
cj . Choose α representing

∏g
i=2 v

2
i

∏s
j=1 cj . There are two crossings of c with

γ, corresponding to the v1 in the expression for c, and as in Case II this implies

that h(γ, α)n carries c to
(

(
∏g
i=2 v

2
i

∏s
j=1 cj)

nv1

)2∏g
i=2 v

2
i

∏s
j=1 cj , which is not

conjugate to c±1 or to any c±1
j when n 6= 0. Again, the lifted sweep Hn is not

homotopic to a homeomorphism.

Case IV. B is planar.
By hypothesis s ≥ 3. Select γ in B0 crossing c1 twice and disjoint from the other

cj , and not parallel into ∂B0 (i. e. γ cuts off the exceptional point or boundary com-
ponent encircled by c1 from the rest of the exceptional points and boundary circles).
Let α represent c3c2. Then Hn(γ, α)n carries c to (c3c2)nc1(c3c2)−nc2c3c4 · · · cs. If
s ≥ 4, this is not conjugate in Q to c or any cj , when n 6= 0. Suppose s=3. Since
we are not in case I, we may assume that c3 does not have order 2 in Q. With this
condition, (c3c2)nc1(c3c2)−nc2c3 is not conjugate to c±1 or any c±1

j , when n 6= 0.
As before, this produces the desired H.

We saw at the outset of the proof of lemma 10.3.7 that case IV fails if s =
3 and all cj have order 2 in Q. Indeed, we then have (c3c2)nc1(c3c2)−nc2c3 =
(c3c2)nc1c2c3(c3c2)−n. �

This completes the proof of proposition 10.3.1. �

10.4. Proof of Main Topological Theorem 2

In this section we deduce Main Topological Theorem 2, which was stated in
section 8.1. For convenience, we will restate it here.

Main Topological Theorem 2: Let M be a compact orientable irreducible 3-
manifold with nonempty boundary and a (possibly empty) boundary pattern m
whose completion is useful. Assume that the elements of m are disjoint. Let m′

be the set of elements of m that are not annuli. Then R(M,m) has finite index in
Out(π1(M), π1(m)) if and only if every Seifert-fibered component V of the charac-
teristic submanifold of (M,m) that meets ∂M − |m| satisfies one of the following:

(1) V is a solid torus, or
(2) V is either S1×S1×I or the I-bundle over the Klein bottle, and no bound-

ary component of V contains more than one component of V ∩∂M − |m′|,
or

(3) V is fibered over the annulus with one exceptional fiber, and no component
of V ∩ ∂M − |m′| is an annulus, or
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(4) V is fibered over the disk with two holes with no exceptional fibers, and
V ∩ ∂M − |m′| is one of the boundary tori of V , or

(5) V =M and either V is fibered either over the disk with two exceptional
fibers, or over the Möbius band with one exceptional fiber, or over the
torus with one hole with no exceptional fiber, or

(6) V =M and V is fibered over the disk with three exceptional fibers, each of
type (2, 1),

and every I-bundle component V of the characteristic submanifold of (M,m) which
has all of its lids contained in |m| and meets ∂M−|m| satisfies one of the following:

(7) V is a 3-ball, or
(8) V is I-fibered over a topological annulus or Möbius band and no component

of V ∩ ∂M − |m| is a square which meets two different components of the
frontier of V , or

(9) V is I-fibered over the disk with two holes, and V ∩ ∂M − |m| is an an-
nulus, or

(10) V =M and V is I-fibered over the torus with one hole.

Proof of Main Topological Theorem 2. Theorem 10.1.1 showed that
R(M,m) has finite index in Out(π1(M), π1(m)) if and only if for each compo-
nent (V, v̂) of the characteristic submanifold of (M,m), the subgroup H(V, v′, v′′)
of elements of E(V, v′, v′′) realizable by orientation-preserving homeomorphisms has
finite index in E(V, v′, v′′) (the notations v′, v′′, H(V, v′, v′′), and E(V, v′, v′′) are
defined at the beginning of chapter 10). We will examine the possibilities for each
component (V, v̂) of the characteristic submanifold of (M,m), and show that the
index of H(V, v′, v′′) in E(V, v′, v′′) is as given in the following assertions:

I. If (V, v̂) is Seifert-fibered and does not meet ∂M − |m|, then the index is
finite.

II. If (V, v̂) is Seifert-fibered and meets ∂M − |m|, then the index is finite if
and only if V is one of the cases listed in items (1)-(6) of the theorem.

III. If (V, v̂) is an I-bundle with a lid that meets ∂M − |m|, then the index is
finite.

IV. If (V, v̂) is an I-bundle which does not meet ∂M − |m|, then the index is
finite.

V. If (V, v̂) is an I-bundle whose lid or lids are contained in |m|, but which
does meet ∂M − |m|, then the index is finite if and only if V is one of the
cases listed in items (7)-(10) of the theorem.

We begin with a Seifert-fibered component (V, v̂) of the characteristic subman-
ifold of (M,m). By definition, v′ consists of the components of the intersections of
V with elements of m′, so we have the following observation, which will be used
repeatedly:

(∗) V ∩ (∂M − |m′|) = ∂V − |v′ ∪ v′′| .

If V meets an annulus of m, then by lemma 2.10.8 V contains a regular neigh-
borhood of that annulus, so V meets ∂M − |m|. So if V does not meet ∂M − |m|,
it also does not meet ∂M − |m′|. In particular, if V does not meet ∂M − |m|, then
|v′ ∪ v′′|= ∂V and proposition 10.3.1 shows that H(V, v′, v′′) = E(V, v′, v′′), giving
assertion I. Therefore, we may assume that |v′ ∪ v′′| 6= ∂V .
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If v′ ∪ v′′ does not have useful completion, then lemma 2.6.1 implies that V is
a solid torus. Lemma 10.3.2 then applies to show that E(V, v′, v′′) is finite. (This
case is covered by item (1).)

Proposition 10.3.1 shows that if v′∪v′′ has useful completion, then H(V, v′, v′′)
has finite index in E(V, v′, v′′) if and only if (V, v̂) is as described in items (1)-(6)
of the theorem. Items (1)-(6) correspond to items (i)-(vi) in proposition 10.3.1,
but we have altered the description in order to avoid mentioning v′ and v′′ in the
statement of the Theorem.

In item (2), we may use (∗) to see that the hypothesis in item (ii) of proposi-
tion 10.3.1 (that no boundary component of V contains more than one annulus of
|v′ ∪ v′′|) says exactly that no boundary component of V contains more than one
component of V ∩ (∂M − |m′|).

In item (3), we may again use (∗) to see that the hypothesis in item (iii) of
proposition 10.3.1 (that no component |v′ ∪ v′′| is an annulus) corresponds to the
condition that no component of V ∩ (∂M − |m′|) is an annulus.

In item (4), we use (∗) to see that the hypothesis in item (iv) of propo-
sition 10.3.1 (that |v′ ∪ v′′| consists of two boundary tori) says exactly that
V ∩ (∂M − |m′|) is a single boundary torus.

In items (5) and (6), the condition that V = M corresponds exactly to the
condition that v′′ is empty. Similarly, the hypothesis that V ∩ (∂M − |m′|) is
nonempty is equivalent to m consisting of annuli and hence to the condition that
v′ is empty. This establishes assertion II.

Consider now an I-bundle component (V, v̂) of the characteristic submanifold
of (M,m), I-fibered over (B, b̂). Recall that v′ = v, since V is an I-bundle, and
|v|=V ∩ |m|. Let b′ denote the images in B of the elements of v′ that are not lids,
and let b′′ denote the images of the elements of v′′.

If v′∪v′′ does not have useful completion, then lemma 2.6.1 implies that V is a
(V, v′ ∪ v′′) is an I-bundle over a small-faced disk. It is easy to check that E(V, v′, v′′)
is finite in this case, so we may assume that v′ ∪ v′′ has useful completion.

Suppose first that not all lids of (V, v̂) are contained in |m|. Then some lid lies in
∂M − |m|, so every side of the I-bundle (V, v) lies either in |m| or in the frontier of V .
That is, all sides of (V, v′ ∪ v′′) lie in v′∪v′′, so |b′∪b′′|=∂B. By proposition 10.2.1,
H(V, v′, v′′) has finite index in E(V, v′, v′′), establishing assertion III.

Assume now that all lids of (V, v̂) lie in |m|. This implies that v′ must equal
the set of lids of (V, v̂). For if a side of (V, v̂) were contained in |m|, then since the
elements of m are disjoint, there would be a lid in ∂M − |m|. So v′ equals the set
of lids of (V, v̂), and b′ is empty.

If V does not meet ∂M − |m|, then |b′′| = ∂B and by proposition 10.2.1,
H(V, v′, v′′) has finite index in E(V, v′, v′′), giving assertion IV. Suppose that V does
meet ∂M − |m|. Since |b′∪b′′| 6= ∂B, proposition 10.2.1 then shows thatH(V, v′, v′′)
has finite index in E(V, v′, v′′) if and only if V is as described in items (7)-(10) of
the theorem, giving assertion V and completing the proof. �





CHAPTER 11

Dehn Flips

Dehn flips are certain kinds of homotopy equivalences between 2-manifolds or
3-manifolds, which are homeomorphisms outside a square (in the 2-dimensional
case) or a solid torus (in the 3-dimensional case). Precise definitions are given be-
low. Johannson used Dehn flips to give a description of the homotopy type of a
Haken 3-manifold (see pp. 3, 227, and 243-249 of [58]). According to theorem 29.1
of [58], each Haken 3-manifold M with incompressible boundary contains a union
W of disjoint essential solid tori so that any Haken 3-manifold homotopy equivalent
to M is obtained by Dehn flips along components of W . That is, Dehn flips “gen-
erate” the homotopy type of a boundary-incompressible Haken manifold, which
consequently contains only finitely many homeomorphism types. Moreover, the
proof is constructive in the sense that one can obtain W in a finite number of steps
from a triangulation of M . This compares with our results in section 4.2, where the
finiteness of the admissible homotopy type is obtained whenever the boundary pat-
tern has useful completion (theorem 4.2.1), or even is only usable (theorem 4.2.3),
but the proof is nonconstructive.

When the solid torus used to construct a Dehn flip is a component of the
characteristic submanifold of M , and the core circles of its frontier annuli generate
the fundamental group of the solid torus, the Dehn flip is called a primitive shuffle
homotopy equivalence. These play a central role in [9] (see section 13.2 below).

In this section we will show explicitly how to write sweeps as compositions of
Dehn flips. While not essential to our main program, it seems of interest to clarify
this relationship.

In dimension 2, a Dehn flip is a homotopy equivalence f : F1 → F2 be-
tween 2-manifolds such that for some square W1 ⊂ F1, meeting ∂F1 in two op-
posite sides, and a corresponding square W2 ⊂ F2, we have f−1(W2) = W1 and
f |F1−W1

: F1 −W1 → F2 −W2 a homeomorphism. A good example to keep in mind
is a homotopy equivalence from an annulus to a Möbius band that is a homeomor-
phism outside a regular neighborhood of an arc that connects the two boundary
circles. Note that the composition of any Dehn flip with a homeomorphism is a
Dehn flip. The definition is analogous in dimension 3, with an essential solid torus
(or possibly, in the context of manifolds with boundary pattern, an I-bundle over
the disk) in the role of W1. The frontier of the torus consists of two or more essential
annuli.

A sweep and a Dehn flip are similar in that their restriction to the comple-
ment of a set of squares (or solid tori and 3-balls, in the 3-dimensional case) is
a homeomorphism, but a sweep will generally move points in the square into its
complement, while Dehn flips will preserve the squares. We will show explicitly
that every sweep around a simple closed curve can be written as a composition of
three Dehn flips. Since every sweep is a product of sweeps around simple closed
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Figure 11.1. The surface E

curves (because π1(B − γ) is generated by imbedded loops), this gives an explicit
way to write any sweep (up to admissible isotopy) as a product of Dehn flips.

We first focus on the 2-dimensional case. The idea of the proof is first to iso-
late the key part of the construction. Any sweep h(γ, α) with α a simple loop is
supported on a regular neighborhood of the union of α with the arc γ × {1/2} (for
sweeps we will use the notation given in the definition of h(γ, α) in section 10.1).
This neighborhood is an annulus whose frontier consists of one boundary circle par-
allel to α and two arcs γ+ and k1 in its other boundary circle. We first coordinatize
an annulus E and describe in detail how a sweep of γ about α on a surface contain-
ing E is homotopic to a composition of three Dehn flips. To finish the proof, we
tell how this particular coordinatization can placed on any sweep of an arc about
a simple closed loop.

In dimension 2, the only kind of Dehn flip we will need is when F2 is a surface
S(F1, k) obtained by cutting F1 along k and regluing using an orientation-reversing
homeomorphism of k. The Dehn flip is the identity homeomorphism outside a
regular neighborhood W1 of k in F1, and is a half twist from W1 to a regular
neighborhood of k in F2. In the remainder of our discussion, all Dehn flips will be
of this type.

We will use a surface E which will support the sweep and the Dehn flips.
Figure 11.1 shows E, abstractly and also as it will appear later as s submanifold
of a more complicated surface. To begin the construction of E, let S = [−2, 2] ×
[−2, 2] ⊂ R

2. Let k1 = [−1, 1] × {2}, k2 = [−1, 1] × {−2}, γ+ = {2} × [−1, 1],
and γ− = {−2} × [−1, 1], these are four disjoint arcs in ∂S. Let S′ be the square
[−1, 1] × [−4,−2] ⊂ R2, which intersects S in k2, and let S′′ be obtained from S′

by removing a small open disk centered at (0,−3), leaving a boundary circle α.
Let E = S ∪ S′′. Finally, let β be the arc in E which starts at (0, 2) and travels
straight down {0} × [−4, 2] until it meets α. We regard α as having the clockwise
orientation.

Now let X ′ be a compact surface, connected or not, let α′ be a boundary circle
of X ′, and let k′1 and γ′ be two disjoint copies of [−1, 1] in ∂X ′−α′. Form compact
surfaces X+ (respectively, X−) from the disjoint union X ′ t E by identifying k1

with k′1, α with α′, and γ+ (respectively, γ−) with γ′. The identifications are made
in such a way that the [−1, 1]-coordinates in the two identified arcs agree.
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We now describe a homeomorphism h from X− to S(X+, γ
′). On E, it is the

final homeomorphism of an isotopy of E that starts at the identity. The isotopy
“slides” γ− down the left side of S, along S ∩ ∂E to S′′, along S′′ ∩ ∂E to the
other side of S′′, then up the right side of S and onto γ+. Thus h carries γ− to γ+.
More precisely, it carries (−2, t) ∈ γ− to (2,−t) in γ+. That is, it carries the point
identified with a given t in γ′ in X− to the point identified with t in S(X+, γ

′),
and so it extends using the identity map of X ′ to a homeomorphism h from X− to
S(X+, γ

′). We can easily arrange that the isotopy fix α ∪ β ∪ k1, so that h will be
the identity map on α ∪ β ∪ k1.

We also need a homeomorphism k from S(S(X+, k2), k1) to X−. It is the
identity on X ′ ∪S′′, and on S it sends (x, y) to (−x, y). Note that it is the identity
map on β.

Now, let f1 and f2 be Dehn flips along k1 and k2 respectively, so f1f2 carries
X+ to S(S(X+, k2), k1). We may select f1 and f2 to be the identity on X ′∪S′′∪β.
The composition hkf1f2 carries X+ to S(X+, γ

′) and is the identity on X ′ ∪α∪ β.
Let f0 be a Dehn flip of S(X+, γ

′) along γ′, it may also be selected to be the
identity on X ′ ∪ S′′ ∪ β. Thus, the composition f0hkf1f2 carries X+ to X+ and is
the identity on X ′ ∪ α ∪ β. We will identify f0hkf1f2 as a sweep.

Let ω be the component of E ∩ ∂X+ that contains (2, 2), that is, the arc
in S ∩ ∂E that connects γ+ to k1. There is a deformation retraction from E to
k1∪α∪β∪ω∪γ+, and it follows that a map of X+ that is the identity on X ′∪α∪β
is determined up to homotopy by its effect on ω. Now f2 fixes ω, and f1 moves
it to an arc in S near k1 ∪ ω that connects (2, 1) to (−1, 2). Then, k moves this
arc to an arc in S that connects (−2, 1) to (1, 2), and h move this to an arc in E
that connects (2,−1) to (1, 2) and which circles clockwise around α (i. e. α and
(2, 2) lie in the same component of the complement of the arc in E). Finally, f0

moves it to an arc in E that connects (2, 1) to (1, 2) and circles clockwise around α.
This agrees with the effect on ω of a sweep that carries γ′ clockwise around α (and
which is also the identity on X ′ ∪ α ∪ β), so f0hkf1f2 is homotopic to this sweep.
In fact, the homotopy can be supported on E, so will be admissible provided that
E is disjoint from the boundary pattern of X+.

Now we can explain how to write a sweep h(γ, α) of a surface B as a product
of three Dehn flips. Let γ1 = γ × {1/2}, and let δ1 be the closure of one of the
components of γ1 − ({b0} × {1/2}). Let N be a regular neighborhood of α ∪ γ1,
disjoint from γ (and from all elements of the boundary pattern on the surface).
The frontier of N has three components: a loop parallel to α, an arc parallel to γ,
and an arc k1. Let N1 be a regular neighborhood of α∪δ1, contained in the interior
of N , and let k2 be the component of the frontier of N1 that is an arc. We now
have exactly the configuration described in the previous paragraphs; the square S
corresponds to the submanifold of B bounded by γ, k1, and k2, and the region
S′′ corresponds to the submanifold bounded by k2 and α. The sweep can now
be factored into a product of three Dehn flips exactly as described in the previous
paragraph. The direction of the sweep around α is determined by which component
of γ1 − ({b0} × {1/2}) is used to define δ1.

By taking the product of this 2-dimensional construction with I or S1, we can
write a 3-dimensional sweep as a product of Dehn flips on cubes or solid tori.





CHAPTER 12

Finite Index Realization For Reducible
3-Manifolds

In our work on the Finite Index Realization Problem, we have restricted at-
tention to Haken 3-manifolds, and it is natural to wonder what happens for larger
classes of compact 3-manifolds. In this chapter, we will prove some results for the
case of reducible 3-manifolds. They apply when the 3-manifolds are nonorientable,
as well. In chapter 13, we will give a conjectural view of the Finite Index Realization
Problem for all compact 3-manifolds.

As in the irreducible case, the Finite Index Realization Problem breaks into the
cases when ∂M is compressible and when it is incompressible. But first, there is a
technical reduction. As we will review in section 12.1, any compact 3-manifold can
be factored in an (almost) unique way as a connected sum of prime 3-manifolds.
There are at most two ways that a simply-connected summand can occur. First,
there can be summands that are 3-balls. These appear as product neighborhoods of
2-sphere boundary components. Second, if the Poincaré Conjecture turns out to be
false, then there could be simply-connected prime summands that are homotopy 3-
spheres. These would appear in M as “fake 3-cells”. To make our main results apply
even when there are simply-connected summands, we use the Poincaré associate
P (M), which is the manifold obtained from M by replacing each simply-connected
prime summand with a 3-sphere (see section 12.1 below for a more precise definition,
also see Appendix I of [69] or p. 88 of [51]). We prove in proposition 12.1.4 that
R(M) has finite index in Out(π1(M)) if and only if R(P (M)) has finite index in
Out(π1(P (M))). By virtue of this reduction, we need only consider the Poincaré
associate of M .

The main results of this section apply when P (M) is reducible, and make
no assumption of orientability. When M has compressible boundary, we prove
in theorem 12.2.1 that R(M) has finite index in Out(π1(M)) only when M is a
connected sum of a 3-manifold with finite fundamental group and a 3-manifold
that is a solid torus or solid Klein bottle. This is similar in flavor to the results of
section 9.3, indeed a significant portion of the proof of theorem 12.2.1 is identical to
a portion of the proof of proposition 9.3.1. When M has incompressible boundary,
we prove in theorem 12.3.1 that R(M) has finite index in Out(π1(M)) if and only
if R(Mi) has finite index in Out(π1(Mi)) for each irreducible prime summand Mi

of M .
The proofs of the reduction to P (M) and the main result for the case when ∂M

is incompressible use the concept of uniform mapping classes developed in [86]. In
section 12.1, we review the necessary ideas and results from [86], after setting up
notation and reviewing the general theory of reducible 3-manifolds. The reduction

179



180 12. THE REDUCIBLE CASE

to P (M) is the final result in that section. Sections 12.2 and 12.3 contain the main
results for the cases when ∂M is compressible and incompressible, respectively.

12.1. Homeomorphisms of connected sums

Recall that the connected sum P#Q of two (connected) 3-manifolds P and Q
is constructed by removing the interior of a closed 3-cell from each of P and Q,
obtaining manifolds that we shall denote by P ′ and Q′, and identifying the result-
ing 2-sphere boundary components by a homeomorphism. In particular, P#S3 is
homeomorphic to P .

Any two 3-balls in P are ambiently isotopic, and there are two isotopy classes
of homeomorphisms that one can use to identify two 2-spheres, so at most two
manifolds can result from a given P and Q. If P and Q are orientable and have
fixed orientations, then we identify the 2-sphere boundary components using an
orientation-reversing homeomorphism so that P#Q will have an orientation that
restricts to the given ones on each of P ′ and Q′. It is possible that P#Q and
P#(−Q) are not homeomorphic, where −Q denotes Q with the other orientation.
When dealing with orientable manifolds, one usually assumes that they carry fixed
orientations, so that the connected sum operation is well-defined. If one of the
summands is nonorientable, then the homeomorphism type of the sum is uniquely
determined. For if Q is nonorientable, there is a homeomorphism of Q′ that reverses
orientation on the 2-sphere boundary component, and this allows a homeomorphism
to be defined between the two manifolds that result by gluing the 2-spheres using
the two isotopy classes of gluing homeomorphism. The homeomorphism of Q′

comes from sliding the 3-ball Q−Q′ around an orientation-reversing loop in Q.
Homeomorphisms based on this type of sliding construction play a key role in the
results we develop in this chapter, and they will be discussed in detail below.

A 3-manifold is prime if it is not the 3-sphere, and whenever it is written as a
connected sum, one of the summands must be the 3-sphere. We will tacitly assume
throughout the remainder of this chapter that our 3-manifolds are not the 3-sphere.
Since our main results are trivially true for the 3-sphere, it does not need to be
excluded from their statements.

The standard references on 3-manifolds, such as [51], detail the Kneser-
Milnor factorization of a compact 3-manifold M 6= S3 as a connected sum
(#r

i=1Mi)#(#s
j=1Nj) with each Mi and Nj prime. The Mi are irreducible, and

each of the Nj is one of the two S2-bundles over S1, either S1 × S2 or the non-
trivial S2-bundle over S1, which has nonorientable total space. The irreducible
prime summands Mi are unique up to homeomorphism. More precisely, if there
is a homeomorphism h from (#r

i=1Mi)#(#s
j=1Nj) to (#r′

i=1Wi)#(#s′

j=1Tj), then
r=r′, and after permutation of the indices, there are homeomorphisms hi from Mi

to Wi for 1 ≤ i ≤ r. If M is orientable and h is orientation-preserving, then all hi
may be chosen to be orientation-preserving. For the summands that are S2-bundles
over S1, the statement is a bit complicated. One always has s= s′. If M and N
are orientable, then all Nj and Tj are orientable so must be S2 × S1. If some Mi

is nonorientable, then all Nj and Tj may be chosen to be S2 × S1. If all Mi are
orientable, but M is nonorientable, then one may choose N1 and T1 to be the non-
trivial S2-bundle over S1 and all other Nj and Tj to be S2 × S1. All that is going
on is that if N is the nontrivial S2-bundle over S1, and P is any nonorientable
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3-manifold, then P#N is homeomorphic to P#(S2×S1), and this accounts for all
nonuniqueness of the summands.

We will now fix some more precise notation. Since we will be drawing on ideas
and results from [86], we will stay close to the notation used there. Let Σ be
the result of removing from a 3-sphere the interiors of r + 2s disjoint (smoothly
imbedded) 3-balls B1, B2, . . . , Br, D1, E1, D2, E2, . . . , Ds, Es. For 1 ≤ i ≤ r, let
M ′i result from removing from Mi the interior of a 3-ball Ci. Construct M from
the disjoint union of Σ and the M ′i and s copies Sj × I of S2× I by identifying each
∂Bi with ∂Ci, each Sj × {0} with ∂Dj , and each Sj × {1} with ∂Ej .

We will use some of the generating automorphisms (and later, some of the re-
lations) of Aut(π1(M)) given in Fouxe-Rabinovitch [41]. These were detailed at
the start of section 9.2, and we will continue to use the notation and terminology
established there. To set notation in the present situation, assume that the fun-
damental group π1(M) is based at a point in the interior of Σ, and regard it as a
free product G1 ∗ · · · ∗Gr ∗Gr+1 ∗ · · · ∗Gr+s, where Gi=π1(Mi) for 1 ≤ i ≤ r and
Gr+j = π1(Nj) for 1 ≤ j ≤ s. Thus all Gr+j are infinite cyclic, and a Gi with i ≤ r
may be infinite cyclic as well, when Mi is a solid torus or solid Klein bottle.

For now, assume that M is orientable. In [86], five kinds of homeomorphisms
of M are defined: Dehn twists about 2-spheres (called “rotations” in [86]), factor
homeomorphisms (supported in one of the M ′i), basic slide homeomorphisms (that
slide an M ′j or one of the two ends of an Sj × I around a loop α in M that passes
through Σ and exactly one Mi or Si × I), interchanges (of a pair of homeomorphic
Mi and Mj , or of an Si × I and an Sj × I), and spins (that interchange the ends
∂Dj and ∂Ej of an Sj × I). Their induced automorphisms on π1(M) are as follows:

(1) Dehn twists about 2-spheres induce the identity automorphism, since they
are supported on simply-connected subsets.

(2) Factor homeomorphisms induce factor automorphisms φi.
(3) Basic slide homeomorphisms induce µi,j(x), when sliding ∂Mj , λi,r+j(x),

when sliding the ∂Dj-end of Sj × I, and ρi,r+j(x), when sliding the ∂Ej-
end of Sj × I. In all cases, the element x represented by α lies in Gi, that
is, in π1(Mi) if i ≤ r and in π1(Ni−r) if i > r.

(4) Interchanges of homeomorphic Mi and Mj induce interchange automor-
phisms ωi,j of the free factors π1(Mi) and π1(Mj) of π1(M). Interchanges
of Si × I and Sj × I induce interchange automorphisms ωr+i,r+j of the
infinite cyclic factors π1(Ni) and π1(Nj) of π1(M).

(5) Spins induce σr+j .

All of these automorphisms were defined in section 9.2, with the exception of
the interchange automorphisms of isomorphic π1(Mi) and π1(Mj). Since these will
be involved in the proof of theorem 12.3.1 below, we will take a moment to define
them carefully here. For notational simplicity, suppose that π1(M1) is isomorphic
to π1(Mi) for 2 ≤ i ≤ `. Fix isomorphisms αi : π1(M1)→ π1(Mi), and let α1 be the
identity on π1(M1). Put αi,j = αj ◦α−1

i . Then, for 1 ≤ i, j ≤ `, ωi,j is defined to be
αi,j(x) for x ∈ π1(Mi) and αj,i(x) for x ∈ π1(Mj), and to fix elements in all other
factors. Sending each ωi,j to the permutation it induces on the set {π1(M1), . . . ,
π1(M`)} defines an isomorphism from the subgroup of Aut(π1(M)) generated by
these ωi,j to the symmetric group on ` letters. This follows since the orbit of each
element x of π1(M1) is exactly {x, α2(x), α3(x), . . . , α`(x)}, so if any composition
of the ωi,j preserves π1(Mk), it must actually restrict to the identity automorphism
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on π1(Mk). In particular, any composition that induces the identity permutation
on {π1(M1), . . . , π1(M`)} must actually be the identity automorphism of π1(M).

As in chapter 9, we will always assume that the subscripts of the Fouxe-
Rabinovitch generators lie in the appropriate ranges for which they are defined.
That is, for µj,k(x), we have 1 ≤ j ≤ r + s and 1 ≤ k ≤ r, while for ρj,k(x) and
λj,k(x), we have 1 ≤ j ≤ r + s and r + 1 ≤ k ≤ r + s. For φi, 1 ≤ i ≤ m, and
for σj , r + 1 ≤ j ≤ r + s. For ωi,j , either 1 ≤ i, j ≤ r and π1(Mi) ∼= π1(Mj), or
r + 1 ≤ i, j ≤ r + s.

The slide homeomorphisms we will use are analogous to the slide homeomor-
phisms of compression bodies that were described in section 9.2, except that 2-
spheres are in the role of the 2-disks used there. Since they play a pivotal role in
our arguments, we describe them more precisely here. Let α be an arc imbedded in
M −M ′j , meeting M ′j only in its endpoints. Let M0 be the manifold resulting from
M by replacing M ′j by the 3-ball Bj . Since M is orientable, a regular neighborhood
of Bj ∪ α must be a solid torus. Choose an isotopy Jt of M0 such that

(i) J0 is the identity map,
(ii) each Jt is the identity outside a regular neighborhood of Bj ∪ α,
(iii) J1 is the identity on Bj , and
(iv) during the isotopy Jt, Bj travels once around α.

Define a homeomorphism h of M by taking J1 on M −M ′j and the identity on
M ′j . We call h a slide homeomorphism which slides Mj around α. Although it will
not have any direct effect on our work, we mention that the slide homeomorphism
is not well-defined up to isotopy by the description we have given here. Different
choices of the isotopy Jt can result in homeomorphisms that differ by a Dehn twist
about the 2-sphere ∂Bj , and such Dehn twists may not be isotopically trivial in
M . In all of our constructions, when we say to slide Mj around α, we really mean
to select one of the possible slide homeomorphisms determined by the choice of Mj

and α.
In order to slide the ∂Dj-end or the ∂Ej-end of Sj × I around a loop, a similar

sliding construction can be performed using the manifold obtained from M by re-
placing Sj × I by the balls Dj and Ej for some fixed j. In this case, the isotopy Jt
slides one of the 3-balls while keeping the other fixed. For interchanges of homeo-
morphic prime summands and spins of an Sj × I (that interchange ∂Dj and ∂Ej),
one uses a sliding construction in which Jt moves both of the filled-in balls, and J1

interchanges them.
When an automorphism of π1(Mi) can be realized by a homeomorphism, we

can try to realize the corresponding factor automorphism of π1(M) using a factor
homeomorphism. If the homeomorphism of Mi is orientation-preserving, we may
change it by isotopy to restrict to the identity on Ci. Then, we restrict it to M ′i and
use the identity map to extend over the rest of M . However, if the homeomorphism
is orientation-reversing on Mi, this is not possible. For nonorientable M , the same
kind of problem arises in the definition of a slide homeomorphism of Mj around
an arc α which reverses the local orientation. Then, a regular neighborhood of
Bj ∪ α is a solid Klein bottle, and the isotopy cannot be chosen so that its final
map J1 is the identity on Bj . To overcome these difficulties, we will use the idea
of a uniform homeomorphism. This appeared in [86], but we will give a complete
and self-contained treatment here.
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From now on, we will allow M to be nonorientable. Form a collection
{M(µ1, . . . , µr, τ1, . . . , τs) | µi, τj ∈ {1,−1}}, where M(µ1, . . . , µr, τ1, . . . , τs) is the
manifold obtained from Σ, the M ′i , and the Sj × I as follows. Identify each ∂Ci to
∂Bi using the same homeomorphism as was used for M , if µi = 1, but using the
composition of this homeomorphism with a standard orientation-reversing reflec-
tion of ∂Ci if µi =−1. Identify Sj × {0} to ∂Dj as it was identified to form M ,
but identify Sj ×{1} to ∂Ej using either the same identification or its composition
with a standard orientation-reversing reflection, as governed by the values of the
additional parameters τ1, . . . , τs. That is, if τi = 1, we identify them as they are
identified to form M , while if τi = −1, we change the identification by composing
it with a standard orientation-reversing reflection of ∂Ej . Notice that M may be
identified with M(1, . . . , 1, 1, . . . , 1).

The disjoint union of all the M(µ1, . . . , µr, τ1, . . . , τs) is a 3-manifold with 2r+s

components, and will be denoted byM. We use µ as an abbreviation for µ1, . . . , µr
and similarly for τ . Thus, a typical component of M may be written as M(µ, τ).
Also, we shorten r 1’s or s 1’s to a single 1, writing M(1, 1) for M(1, . . . , 1, 1, . . . , 1).

A homeomorphism of Mi is isotopic to one which is either the identity or
the standard orientation-reversing reflection on Ci, and its restriction to M ′i can
then be extended on each component of M, provided that we regard it as sending
M(µ1, . . . , µr, τ) to M(µ1, . . . , εµi, . . . , µr, τ), where ε is 1 if the homeomorphism
is the identity on ∂Ci and is −1 if it is the reflection. The resulting homeomor-
phism of M is called a uniform factor homeomorphism. A technical point arises
here in realizing factor automorphisms of π1(M). A factor outer automorphism φi
of π1(M) corresponds to a uniquely determined automorphism φ (not just outer
automorphism) of π1(Mi). So in trying to realize φ by a uniform factor homeomor-
phism, one must work with homeomorphisms of Mi that fix a basepoint in Ci, and
isotopies that preserve this basepoint. Even when Mi is nonorientable, a realizable
automorphism of π1(Mi) is not necessarily realizable by a homeomorphism of Mi

that is the identity on Ci.
We will now discuss uniform slide homeomorphisms of M, beginning with the

case of a uniform slide of an Mj , which realizes µi,j(x). We start with a sliding arc
α in one of the components of M, that meets M ′j only in its endpoints. It defines
corresponding arcs in the other components, provided that we are careful enough
to choose α so that it intersects all the 2-spheres ∂Bk, ∂Dk, and ∂Ek in points
that lie in the circles fixed by the standard orientation-reversing reflections used to
construct the M(µ, τ). This can always be achieved by isotopy of α. When this
condition holds, the portions of α in the copies of the M ′k, the Sk × I, and Σ in
every M(µ, τ) fit together to form a sliding path.

Even though α is not a loop, it makes sense to say that α is orientation-
preserving or orientation-reversing, since it starts and ends in the orientable sub-
manifold Σ. Notice that α may be orientation-preserving in some components of
M and orientation-reversing in others. For example, suppose that an orientation-
preserving sliding arc α in M(1, 1) travels once over Si×I. In a component M(µ, τ)
with τi = −1, the corresponding sliding arc will be orientation-reversing.

In a component M(µ, τ) in which α is orientation-preserving, the slide homeo-
morphism is constructed as in the orientable case. That is, one replaces M ′j with
a ball and chooses an isotopy Jt that moves this ball around α in such a way that
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J1 restricts to the identity on the ball. Then, the slide homeomorphism is J1 on
M(µ, τ)−M ′j and the identity on M ′j .

If α is orientation-reversing in M(µ, τ), we cannot choose Jt so that J1 restricts
to the identity on the filled-in ball, instead we choose it to restrict to the standard
orientation-reversing reflection. The slide homeomorphism is defined on M(µ, τ)
exactly as before, but this time M(µ, τ) is carried to M(µ1, . . . ,−µj , . . . , µr, τ).

The uniform slide homeomorphisms of the ∂Dj-end or ∂Ej-end of Sj × I are
defined similarly. One starts with a sliding arc α in a component of M, with both
ends in ∂Dj or in ∂Ej . It meets Sj × I only in its endpoints, and as in the case of
sliding Mj we may choose α so that it defines sliding arcs in all other components of
M. In a component M(µ, τ) in which α is orientation-preserving, the construction
is exactly as in the orientable case, and preserves the component M(µ, τ). Suppose
instead that α is orientation-reversing in M(µ, τ). If Jt slides the ∂Ej-end of Sj× I,
we define the slide homeomorphism to be the identity on Sj × I, but when Jt slides
the ∂Dj-end, we define it to be the standard orientation-reversing reflection on each
Sj×{t}. This is in accordance with the fact that the M(µ, τ) are always constructed
with Sj ×{0} identified with ∂Dj as it is in M , while the identification of Sj ×{1}
with ∂Ej is either the same as in M or is composed with the standard orientation-
reversing reflection. In either case, M(µ, τ) is carried to M(µ, τ1, . . . ,−τj , . . . , τs).

We use similar constructions for uniform interchanges of homeomorphic Mi and
Mj , uniform interchanges of Si × I and Sj × I, and uniform spins of the Sj × I.
Interchanges slide Mi and Mj along arcs in Σ connecting ∂Bi and ∂Bj . (A tech-
nical point here is that one should choose each isomorphism αi in the definition
of interchange isomorphism to be realizable by a homeomorphism hi : M1 → Mi

that carries C1 to Ci, and then define the interchange homeomorphism realizing
ωi,j to be hjh−1

i on Mi and hih
−1
j on Mj . The interchange homeomorphism then

sends M(µ1, . . . , µi, . . . , µj , . . . , µr, τ) to M(µ1, . . . , µj , . . . , µi, . . . , µr, τ) if hih−1
j is

consistent with the identifications of ∂Bi and ∂Bj with ∂Ci and ∂Cj , but sends
M(µ1, . . . , µi, . . . , µj , . . . , µr, τ) to M(µ1, . . . ,−µj , . . . ,−µi, . . . , µr, τ) if not.) A
uniform interchange of Si × I and Sj × I interchanges the left ends and inter-
changes the right ends by sliding all four along arcs in Σ, and interchanges Si × I
and Sj × I by a homeomorphism which is the identity with respect to the coor-
dinates on each of these copies of S2 × I used in the original construction of M .
This sends M(µ, τ1, . . . , τi, . . . , τj , . . . , τs) to M(µ, τ1, . . . , τj , . . . , τi, . . . , τs). Uni-
form spins slide the two ends of Sj × I along arcs in Σ connecting ∂Dj and ∂Ej ,
and on Sj × I the homeomorphism is the product of a reflection in the I-factor and
the standard orientation-reversing reflection in each Sj × {t}. Therefore, uniform
spins preserve each component of M.

There are two other kinds of uniform homeomorphism. First, we may fix
an orientation-reversing homeomorphism of Σ which restricts to the standard
orientation-reversing reflection on each of its boundary spheres, and define R to
be this homeomorphism on Σ and the identity on each Mi and Sj × I. This R
sends M(µ1, . . . , τs) to M(−µ1, . . . ,−τs). Second, we may perform a Dehn twist
about a 2-sphere in the copy of Σ in one of the M(µ, τ) (while being the identity
map in all other components of M). Any such Dehn twist is considered a uniform
homeomorphism of M.

The uniform mapping class group is defined to be the group of mapping classes
U(M) generated by the uniform homeomorphisms we have described: uniform
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factor homeomorphisms, uniform slide homeomorphisms, uniform interchanges and
spins, R, and Dehn twists about 2-spheres in the copies of Σ.

Since all the manifolds inM differ only by cutting and reattaching along simply-
connected subsets, there is a natural way to identify their fundamental groups with
π1(M). Using these identifications, we may regard a uniform homeomorphism as
inducing an (outer) automorphism on π1(M).

Observe that any slide homeomorphism is isotopic to a composition of slide
homeomorphisms which use sliding paths α which travel around a loop in a single
Mi, or once over Si × I, and do not meet any of the other Mk or Sk × I. This just
corresponds to writing α as a word in the elements of π1(Mi) and π1(Nj) in the
free product decomposition π1(M) = (∗ri=1π1(Mi))∗(∗sj=1π(Nj)). Slide homeomor-
phisms using these restricted sliding paths are called “basic” slide homeomorphisms,
and they induce the standard generating automorphisms ρi,j(x), λi,j(x), and µi,j(x)
for Autp(π1(M)) that were defined in section 9.2 (where the p subscript means the
automorphisms that take each π1(Mi) to a conjugate of itself). Similarly, uniform
spins and uniform interchanges induce the spin automorphisms σj and the inter-
change automorphisms ωi,j respectively. The uniform homeomorphism R and the
Dehn twists about 2-spheres induce the identity automorphism.

When all ∂Mi are incompressible, each π1(Mi) is indecomposable (see for ex-
ample theorem 7.1 of [51]), and is not infinite cyclic. So in this case, we have
given uniform homeomorphisms that realize all Fouxe-Rabinovitch generators of
Out(π1(M)), except for factor automorphisms coming from automorphisms of the
π1(Mi) that cannot be realized by homeomorphisms of Mi, and interchange auto-
morphisms of π1(Mi) and π1(Mj) that are isomorphic but for which Mi and Mj

are not homeomorphic. When ∂Mi is compressible, two other phenomena lead to
nonrealizable Fouxe-Rabinovitch generators. First, when Mi is either a solid torus
or a solid Klein bottle, π1(Mi) is infinite cyclic, but uniform homeomorphisms in-
ducing λj,i(x) or ρj,i(x) cannot exist. This can be shown by methods along the
lines of the proof of proposition 9.3.1 adapted to the reducible case as in the proof
of theorem 12.2.1 below. Second, when Mi other than solid tori or solid Klein bot-
tles have compressible boundary, their fundamental groups will be decomposable
as nontrivial free products. In this case, the Fouxe-Rabinovitch generators defined
with respect to the free product decomposition π1(M) = (∗ri=1π1(Mi))∗(∗sj=1π(Nj))
are far short of a full generating set.

We will now prove a result that relates the uniform homeomorphisms of M to
the homeomorphisms of M . It will furnish one of the main steps in the proof of
theorem 12.3.1 below. Let St(M(µ, τ)) denote the elements of the uniform mapping
class group that preserve the component M(µ, τ). Restricting a homeomorphism
ofM to a homeomorphism of M(µ, τ) induces a homomorphism from St(M(µ, τ))
to H(M). The following result appears as Theorem 2.1 in [86].

Theorem 12.1.1. The homomorphisms St(M(µ, τ))→ H(M(µ, τ)) induced by
restriction are surjective for all (µ, τ).

Before beginning the proof, we give the key topological argument in the form
of a lemma.

Lemma 12.1.2. Let T be a 2-sphere in a component M(µ, τ) of M. Then there
is a composition f of uniform slide homeomorphisms and isotopies such that f(T )
is contained in Σ (that is, in the copy of Σ in f(M(µ, τ))). If T does not separate
M(µ, τ), then f may be chosen so that f(T ) = ∂Dk for some k. Moreover, if X
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Figure 12.1. A sliding path α for clearing out the region Z

is the union of all the ∂Bi, ∂Dj, and ∂Ej in all components of M, then f may be
selected so that any 2-sphere components of X ∩M(µ, τ) that are disjoint from T
are carried by f into the corresponding spheres of X ∩ f(M(µ, τ)).

Proof. We may assume that T meets X transversely. We will apply a se-
quence of uniform slide homeomorphisms and isotopies to reduce their number of
intersection circles.

Consider an intersection circle innermost on T , bounding a disk W on T for
which W ∩ X = ∂W . If W lies in an M ′i or in one of the Sj × I, then there is
an ambient isotopy of M(µ, τ) that pulls W across X, reducing the intersection of
T with X. This isotopy may be selected to fix each component of X in M(µ, τ)
that is disjoint from T ; from now on we tacitly assume that all adjustments will be
carried out so as to disturb components of X only when necessary; this will achieve
the condition in the last sentence of the statement of the lemma. We may assume
there are no isotopies of this first kind, otherwise the intersection can be reduced.

Suppose now that W lies in Σ. There is a disk W ′ on X, bounded by ∂W , and
W ∪W ′ is a 2-sphere S in M. Now S together with some of the 2-spheres of X
bounds a punctured cell Z in Σ. By reselecting W if necessary, we may choose Z
to be an innermost such punctured cell in Σ.

Applying a sequence of uniform slide homeomorphisms and isotopies, we may
“slide the 2-spheres of X that meet Z out of Z.” Here are the details. Suppose, for
example, that ∂Bj lies in Z. As shown in figure 12.1, construct a sliding path α that
starts in ∂Bj , travels through Z until it meets W ′ near T , and exits Z through W ′

into some M ′k or Sk× I. Since there are no isotopies of the first kind, no component
of T ∩M ′k or T ∩ (Sk × I) is a disk. Therefore α can continue, near T but not
crossing it, until it crosses X and reenters Σ. It may be alongside a planar portion
of T that lies inside Z, such as the T0 shown in figure 12.1, but we just continue
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Figure 12.2. Result of a slide that clears Mj out of Z

along T until we emerge into Σ alongside a disk component T1 of T ∩ Σ distinct
from W . Since Z was innermost, T1 cannot lie in Z. Continue α through Σ − Z,
crossing T1 and crossing W into Z, and on to terminate in ∂Bj . Now, slide Mj

around this α (which may, of course, move us to a different component ofM). One
must choose the isotopy Jt in the definition of the slide homeomorphism with some
care so that it has the correct effect on W . Initially, the Jt should move ∂Bj while
keeping W fixed, until ∂Bj approaches the point on α where α passes through W .
The remaining Jt move W , but keep it in Σ so that no additional intersection of W
with ∂Σ is created. Figure 12.2 shows the resulting configuration after this slide.
The disk W of T is repositioned in Σ so that the sphere S no longer encloses ∂Bj .
The new Z has fewer boundary spheres. Continuing this process with the other
spheres of X that lie in Z, we reach the situation where Z is a ball in Σ bounded
by S, and W can be pushed across Z to eliminate ∂W ∩X from T ∩X, as well as
any other intersection circles that lie in W ′. Repeating, we find a composition g
of uniform slide homeomorphisms (and isotopies) such that g(T ) does not meet X
(in g(M(µ, τ))). If g(T ) does not already lie in Σ, then it lies in one of the M ′i or
Sj × I. In this case it is either compressible (i. e. bounds a 3-ball) or parallel to a
2-sphere of X in the frontier of M ′i or Sj × I, so it can be moved by isotopy into Σ.

Suppose that T was nonseparating. Since Σ is simply-connected, g(T ) must
separate Σ, so g(T ) together with some 2-spheres of X bounds a punctured cell Z in
Σ that meets some ∂Dj but not ∂Ej . We may apply uniform slide homeomorphisms
to clear out the region Z until it is a product between g(T ) and ∂Dj , then g(T ) is
isotopic to ∂Dj . �

We isolate the next step, since it will be used again in the last part of the proof
of theorem 12.3.1 below.
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Lemma 12.1.3. Let h be a homeomorphism from M(1, 1) to some M(µ, τ), and
let X be the union of all the ∂Bi, ∂Dj, and ∂Ej in all components of M. Then
there is a composition f of uniform slide homeomorphisms and isotopies such that
fh carries X ∩M(1, 1) to X ∩ fh(M(1, 1)).

Proof. Start with the copy of ∂B1 in M(1, 1) and consider h(∂B1). By
lemma 12.1.2, we may apply a composition f of uniform slide homeomorphisms
(and isotopies) so that fh(∂B1) lies in the copy of Σ in fh(M(1, 1)). Since fh is
a homeomorphism, fh(∂B1) bounds a submanifold Y homeomorphic to M ′1. Since
M ′1 is irreducible, Y can contain only one 2-sphere of X, which bounds one of the
M ′k in fh(M(1, 1)). So Y ∩ Σ consists of a product region between fh(∂B1) and
∂Bk. Changing f by an isotopy that moves fh(∂B1) to ∂Bk, we may assume that
fh(∂B1) equals ∂Bk in fh(M(1, 1)), and fh(M ′1) = M ′k. From now on, we will
simply call the composition h again. Repeating this process with the other ∂Bi,
we may assume that h carries the union of the ∂Bi into X.

Now consider h(∂D1). Since ∂D1 is nonseparating, lemma 12.1.2 shows that
we may apply uniform slide homeomorphisms until h(∂D1) is isotopic to ∂Dk.
By isotopy, we may assume that either h(D1) = Dk and h(E1) = Ek, or that
h(D1) = Ek and h(E1) = Dk. Continuing this process completes the proof. �

Proof of theorem 12.1.1. Without loss of generality we may choose nota-
tion so that (µ, τ) = (1, 1). Let h represent an element of H(M(1, 1)). Applying
lemma 12.1.3, we find a product f of uniform slide homeomorphisms and isotopies
such that fh carries X ∩ M(1, 1) to X ∩ f(M(1, 1)). Composing with uniform
interchanges and spins, if necessary, we may achieve that fh carries each 2-sphere
of X to the corresponding 2-sphere of X in f(M(1, 1)) (i. e. it carries ∂B1 to ∂B1,
and so on). In particular, fh carries each M ′i to M ′i and preserves each end of an
Sj × I. Applying factor homeomorphisms in the Mi, we may assume that fh is
the identity on ∪ri=1M

′
i . Applying R, we may assume that the restriction of fh to

Σ is orientation-preserving. Since each Sj × I is attached to ∂Dj by the standard
homeomorphism, we may further assume that fh is the identity on all the Sj × I.
We then have f(M(1, 1)) =M(1, 1), and fh is the identity except on Σ, where it
restricts to the identity on ∂Σ. It is then isotopic, relative to ∂Σ, to a composition
of Dehn twists about 2-spheres in Σ (see for example Lemma 5.4 of [68]). Com-
posing with their inverses (in fact, they are mapping classes of order 2), we make
fh the identity on Σ as well. So h equals the restriction of f−1 to M(1, 1). �

In the introduction we mentioned the Poincaré associate of M , which is the
3-manifold P (M) obtained from M by replacing each M ′i that is simply-connected
with a 3-ball Ki. Note that none of the prime summands of P (M) is simply-
connected, so P (M) has no 2-sphere boundary components. In P (M), any simply-
connected submanifold bounded by a 2-sphere is a 3-ball.

Proposition 12.1.4. R(M) has finite index in Out(π1(M)) if and only if
R(P (M)) has finite index in Out(π1(P (M))).

Proof. First we note that π1(M) ∼= π1(P (M)). In fact, we may assume that
M1, . . . , Mq are not simply connected, and Mq+1, . . . , Mr are simply connected, so
that P (M) is constructed as (#q

i=1Mi)#(#s
j=1Nj) and M as (#r

i=1Mi)#(#s
j=1Nj).

Then, M is obtained from P (M) by replacing 3-balls Bq+1, . . . , Br with the
simply-connected manifolds M ′q+1, . . . , M

′
r, and there is a natural identification
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of π1(P (M)) with π1(M). Moreover, provided that we choose sliding paths and
their regular neighborhoods so as to avoid the 3-balls Bq+1, . . . , Br, a uniform
homeomorphism of P (M) that does not involve the summands Mq+1, . . . , Mr (or a
path that passes through one of them) can be restricted to the complement of the
Bi with i > q and then extended to a uniform homeomorphism of M by taking it
to be the identity on each M ′i with i > q. With respect to the natural identifica-
tion of the fundamental groups, this uniform homeomorphism will induce the same
automorphism.

The uniform homeomorphisms for P (M) take place on a disjoint union P of
copies of P (M). It may be regarded as obtained from the submanifold of M
consisting of all M(µ, τ) having µq+1 = · · · = µr = 1, by replacing every M ′i with
q + 1 ≤ i ≤ r with a ball. As usual, P (M)(1, 1) = P (M).

Suppose now that φ is an outer automorphism of π1(M) that can be realized
by a homeomorphism h of M . By theorem 12.1.1, there is a composition of uniform
homeomorphisms of M that stabilizes M =M(1, 1) and restricts to h on M(1, 1).
We choose each slide homeomorphisms to be “basic”, i. e. so that its sliding path
passes through only one of the M ′i or Sj× I. Now, from this composition of uniform
homeomorphisms, omit those that are slides or interchanges of simply-connected
prime summands, or factor homeomorphisms supported on simply-connected sum-
mands, or slide homeomorphisms around loops in Mi with i > q. Since all omitted
homeomorphisms induce the identity automorphism, the composition h0 of the re-
maining uniform homeomorphisms of M still induces φ. It might not stabilize
M(1, 1), since a slide homeomorphism of a simply-connected summand around a
nonorientable loop, or an interchange of simply-connected summands, or a fac-
tor homeomorphism which reverses orientation on a simply-connected summand
could move M(1, 1) to some other M(µ, τ). Since the uniform homeomorphisms
of M other than these three kinds have corresponding uniform homeomorphisms
on P, we obtain a composition of uniform homeomorphisms P (h0) of P that cor-
responds to h0, and in particular induces φ. The action of the omitted uniform
homeomorphisms on the components of M could only change µi that correspond
to simply-connected summands, that is, µi with q + 1 ≤ i ≤ r. This might occur,
for example, if one of the uniform homeomorphisms were a factor homeomorphism
which was orientation-reversing on its M ′i . But the simply-connected Mi are all
orientable, so none of the slides of other summands around loops in those Mi can
change a µj or a τj . Therefore P (h0) will stabilize the component P (M)(1, 1), and
the restriction of P (h0) to P (M)(1, 1) induces φ.

For the converse direction, this subtlety does not arise. One can take any com-
position of uniform homeomorphisms in P that stabilizes P (M)(1, 1) and apply the
corresponding uniform homeomorphisms toM, obtaining an element of St(M(1, 1))
that induces the same automorphism on π1(M). �

By virtue of proposition 12.1.4, there is no loss of generality in assuming that no
prime summand of M is simply-connected, when considering finite-index realization
questions. In particular, our previous results apply to many manifolds for which
P (M) is irreducible. That is, when there is one irreducible summand M1 and all
other summands are simply-connected, P (M) will equal M1. If M1 is Haken, then
we can use the Main Topological Theorems to solve the Finite Index Realization
Problem for M1 and hence for M .
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12.2. Reducible 3-manifolds with compressible boundary

Let M be a 3-manifold for which P (M) is reducible. We say that M is small
if P (M) is a connected sum P#Q, where P is either a solid torus or a solid Klein
bottle, and Q is a 3-manifold with finite fundamental group.

Theorem 12.2.1. Let M be a compact 3-manifold with compressible boundary,
with P (M) reducible. Then R(M) has finite index in Out(π1(M)) if and only if M
is small.

We will prove the two directions of theorem 12.2.1 as separate propositions.
Proposition 12.2.2. Let M be a compact 3-manifold with compressible bound-

ary, with P (M) reducible. If M is small, then Out(π1(M)) is finite, and conse-
quently R(M) has finite index in Out(π1(M)).

Proof. By proposition 12.1.4, we may assume that M = P (M), so that no
prime summand is simply-connected. Write M = P#Q as in the definition of
reducible small manifold. Then π1(M)=π1(P )∗π1(Q) where π1(P ) is infinite cyclic.
Let φ represent an element of Out(π1(M)). Since π1(Q) is indecomposable and not
infinite cyclic, the Kurosh subgroup theorem shows that φ(π1(Q)) is conjugate to
π1(Q). So by lemma 9.1.2, we may assume that φ(π1(Q))=π1(Q) and φ(ω)=ωεγ
where ω is a generator of π1(P ), ε ∈ {1,−1}, and γ ∈ π1(Q). Moreover, the
element γ, the power ε, and the restriction φ1 of φ to π1(Q) are uniquely determined
by the element of Out(π1(M)) represented by φ. Sending φ to φ1 determines a
homomorphism Out(π1(M))→ Aut(π1(Q)) whose kernel has finite index. Sending
an element of the kernel to ε determines a homomorphism to Z/2, and sending
an element of its kernel to γ determines an injective homomorphism to Q. So
Out(π1(M)) is finite. �

Proposition 12.2.3. Let M be a compact 3-manifold with compressible bound-
ary, with P (M) reducible. If M is not small, then R(M) has infinite index in
Out(π1(M)).

Proof. Again by proposition 12.1.4, we may assume that M = P (M). In
particular, no component of ∂M is a 2-sphere.

Let F be a compressible boundary component. Now F cannot be a 2-sphere,
and cannot be a projective plane since two-sided projective planes always inject on
fundamental groups (if not, the Loop Theorem would yield a properly imbedded
disk D with ∂D a one-sided loop in F , but the normal bundle of D must be a
product since D is simply-connected).

In this proof, we allow compression bodies to be nonorientable, and to have
constituents that are 2-spheres or projective planes. If we carry out the construction
of a (minimally imbedded) compression body neighborhood F as in section 3.2, we
obtain a compression body neighborhood V of F with incompressible frontier. Since
there is no boundary pattern involved, the constituents of V will be closed surfaces.
(Unlike the case when M is irreducible, V need not be unique up to isotopy, or
even up to ambient homeomorphism. For example, suppose M is the connected
sum of a compression body W with three irreducible manifolds P1, P2, and P3,
where W has two constituents F1 and F2. One choice for V would be a copy
of W whose complementary components are homeomorphic to (F1 × [0, 1/2))#P1

and (F2× [0, 1/2))#P2#P3, another choice would have complementary components
homeomorphic to (F1 × [0, 1/2))#P2 and (F2 × [0, 1/2))#P1#P3.)
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Let F1, . . . , Fm be the constituents of V . Since M is reducible, m ≥ 1. Let Wi

be the component of M − V that contains Fi, of course we might have Wi=Wj for
some i 6= j. As usual, let k be the number of 1-handles of V .

If at least one constituent of V is not a 2-sphere, then we may select V so
that no constituent is a 2-sphere. For suppose that Fm is a 2-sphere and F1 is
not. Choose the compression body structure on V so that only one 1-handle meets
Fm × {1}, and that the other end of this 1-handle lies in F1 × {1}. Take an arc
α that runs from F1 × {0} straight up to F1 × {1}, then through the 1-handle (as
the core 1-disk) to Fm × {1}, and straight down to Fm × {0}. Let N be a regular
neighborhood of α in V , and remove from V the topological interior of N in V . This
produces a new compression body neighborhood of F with both k and m decreased
by 1. Repeating this process, all 2-sphere constituents may be eliminated.

If all constituents are 2-spheres, then the same construction can be used to
eliminate them, until only one remains. Suppose for now that this occurs, so m=1
and F1 =S2. Since F is not a 2-sphere, we have k ≥ 1. Let D×I be a 1-handle of V ;
since m=1, D× {0} does not separate V . If π1(W1) is infinite, then the argument
of Case Ib of the proof of proposition 9.3.1 applies to show that R(M) has infinite
index in Out(π1(M)). If π1(W1) is finite, then we must have k ≥ 2, since M is not
small. So then, the argument of Case Ic of the proof of proposition 9.3.1 applies.
So from now on, we may assume that no constituent of V is a 2-sphere.

One of the Wi, say W1, must be reducible, since otherwise M would be irre-
ducible. So π1(W1) is of the form A ∗B with A and B nontrivial and π1(F1) ⊂ A.
By the normal form for elements of free products, the normalizer of π1(F1) must be
contained in A, so it has infinite index in π1(W1). We will now apply the arguments
from various cases of the proof of proposition 9.3.1.

Suppose first that k ≥ m, so that there is a 1-handle in V whose cocore disk
does not separate V . Then one of Cases Ia, Ib, or Id applies. If m ≥ 3, then one
of Cases IIa or IIb applies. So we may assume that k < m and m ≤ 2. We cannot
have m=1, since then we would have k=0 and F would be incompressible, so k=1
and m=2. Since the normalizer of π1(F1) in π1(W1) has infinite index in π1(W1),
either Case IIIa or IIIb applies to complete the proof. �

12.3. Reducible 3-manifolds with incompressible boundary

When the boundary of M is incompressible, the Finite Index Realization Prob-
lem simply reduces to the irreducible prime summands.

Theorem 12.3.1. Let M be a compact 3-manifold with incompressible bound-
ary. Write the prime factorization of P (M) as (#r

i=1Mi)#(#s
j=1Nj) with the Mi

irreducible. Then R(M) has finite index in Out(π1(M)) if and only if R(Mi) has
finite index in Out(π1(Mi)) for all 1 ≤ i ≤ r.

Proof. Using proposition 12.1.4, we may assume that M = P (M). If i+j ≤ 1,
the theorem is immediate, so we assume that P (M) is reducible.

We will use the manifold M and its uniform homeomorphisms, discussed in
section 12.1. As usual, we regard M as the component M(1, 1) of M. Let
ΦU : U(M) → Out(π1(M)) carry each uniform homeomorphism to the outer au-
tomorphism it induces on π1(M), and let Φ0 : St(M(1, 1)) → Out(π1(M)) be the
restriction of ΦU to St(M(1, 1)).
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Notice that Φ0 is the composition St(M(1, 1))→ H(M)→ Out(π1(M)). Since
by theorem 12.1.1 the restriction St(M(1, 1))→ H(M) is surjective, it follows that
R(M) has finite index in Out(π1(M)) if and only if the image of Φ0 has finite
index. Since St(M(1, 1)) has finite index in U(M), the latter occurs if and only if
the image of ΦU has finite index. So the theorem is reduced to showing that the
image of ΦU has finite index if and only if R(Mi) has finite index in Out(π1(Mi))
for 1 ≤ i ≤ r.

The next part of the proof will use algebraic information about Aut(π1(M))
to show that the image of ΦU has finite index if and only if the image of a cer-
tain composite homomorphism Θ ◦ ΦU carrying Out(π1(M)) to a quotient group
of Out(π1(M)) has finite index. Roughly speaking, this is the quotient by the
subgroup generated by all slide homeomorphisms.

As in section 12.1, we will use the Fouxe-Rabinovitch generators of Aut(π1(M))
as detailed in section 9.2. That is, we regard π1(M) as a free product G1 ∗ · · · ∗Gr ∗
Gr+1 ∗ · · · ∗Gr+s where Gi=π1(Mi) for 1 ≤ i ≤ r and Gr+j=π1(Nj) for 1 ≤ j ≤ s.
Since each Mi has incompressible boundary, each π1(Mi) is an indecomposable
group (see for example theorem 7.1 of [51]), and is not infinite cyclic. So the
Fouxe-Rabinovitch generators defined with respect to the free factors π1(Mi) and
π1(Nj) generate all of Aut(π1(M)).

Recall the interchange automorphisms ωi,j for 1 ≤ i, j ≤ r that were defined in
section 12.1. As noted there, they generate a subgroup Ω of Aut(π1(M)) isomorphic
to a direct product of finite permutation groups. The interchange automorphisms
interact in simple ways with the other generating automorphisms. In fact, the
following relations are easily checked, where i, j, k, and ` are assumed distinct,
with i, j ≤ r.

(1) ωi,jρk,`(x)ωi,j=ρk,`(x), ωi,jρk,j(x)ωi,j=ρk,i(x),
ωi,jρj,k(x)ωi,j=ρi,k(ωi,j(x)), ωi,jρi,j(x)ωi,j=ρj,i(ωi,j(x)),

(2) ωi,jλk,`(x)ωi,j=λk,`(x), ωi,jλk,j(x)ωi,j=λk,i(x),
ωi,jλj,k(x)ωi,j=λi,k(ωi,j(x)), ωi,jλi,j(x)ωi,j=λj,i(ωi,j(x)),

(3) ωi,jµk,`(x)ωi,j=µk,`(x), ωi,jµk,j(x)ωi,j=µk,i(x),
ωi,jµj,k(x)ωi,j=µi,k(ωi,j(x)), ωi,jµi,j(x)ωi,j=µj,i(ωi,j(x)),

(4) ωi,jωk,`ωi,j = ωk,`,
(5) ωi,jσkωi,j = σk,
(6) if φ ∈ Aut(π1(Mk)), then ωi,jφk = φkωi,j ,
(7) if φ ∈ Aut(π1(Mi)), then ωi,jφiω

−1
i,j =(αi,jφαj,i)j , where αi,j and αj,i are

as in the definition of ωi,j .

As a consequence of the last two relations, Ω acts on the direct products∏r
i=1 Aut(π1(Mi)) and

∏r
i=1 Out(π1(Mi)). In particular, there is a semidirect prod-

uct (
∏r
i=1 Out(π1(Mi))) ◦ Ω.

Let N be the subgroup of Aut(π1(M)) generated by all µi,j(x), λi,j(x), ρi,j(x),
all ωr+i,r+j (that is, the ωk,` that interchange infinite cyclic factors), all σj ,
and all φi for which φ is an inner automorphism of π1(Mi). Using the Fouxe-
Rabinovitch relations, in fact just the easily-verified ones listed in section 9.2,
together with those listed in the previous paragraph, one can check that N is
a normal subgroup of Aut(π1(M)). Notice that N contains Inn(G). For ex-
ample, conjugation of π1(M) by an element x from π1(M1) can be written as
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(µ(x))1

∏r
i=2 µ1,i(x)

∏s
j=1 ρ1,r+j(x)λ1,r+j(x), where µ(x) ∈ Inn(π1(M1)) is the in-

ner automorphism defined by µ(x)(g) = x−1gx for all g ∈ π1(M1). It follows that
Aut(π1(M))/N is isomorphic to Out(π1(M))/(N/ Inn(π1(M))).

We define a surjective homomorphism from Aut(π1(M))/N to the semidirect
product (

∏r
i=1 Out(π1(Mi)))◦Ω, by sending each factor automorphism to the outer

automorphism it induces on its π1(Mi), and each interchange automorphism of
non-infinite-cyclic factors ωi,j to the element of Ω that it determines. Since the
factor automorphisms defined using inner automorphisms of the π1(Mi) lie in N ,
one can define an inverse for this homomorphism by sending an outer automor-
phism φ of π1(Mi) to the factor automorphism defined using one of its representa-
tives, and sending ωi,j back to the corresponding interchange automorphism. Let
Θ: Out(π1(M)) → (

∏r
i=1 Out(π1(Mi))) ◦ Ω be the composition of the quotient

map from Out(π1(M)) to Out(π1(M))/(N/ Inn(π1(M))), followed by the natural
isomorphism from Out(π1(M))/(N/ Inn(π1(M))) to Aut(π1(M))/N , followed by
the isomorphism identifying the latter with (

∏r
i=1 Out(π1(Mi))) ◦ Ω.

The composition Θ ◦ ΦU carries U(M) to (
∏r
i=1 Out(π1(Mi))) ◦ Ω. Since each

generator of N is induced by a uniform homeomorphism, N/ Inn(π1(M)) lies in the
image of ΦU . Therefore the image of ΦU has finite index if and only if the image
of Θ ◦ ΦU has finite index. So the theorem is reduced to showing that the image
of Θ ◦ΦU has finite index if and only if R(Mi) has finite index in Out(π1(Mi)) for
1 ≤ i ≤ r.

Since any automorphism in R(Mi) can be induced by a uniform factor homeo-
morphism, the subgroup

∏r
i=1R(Mi) of (

∏r
i=1 Out(π1(Mi))) ◦ Ω lies in the image

of Θ ◦ ΦU . So if each R(Mi) has finite index in Out(π1(Mi)), the image of Θ ◦ ΦU
has finite index.

For the converse, suppose that the image of Θ ◦ ΦU has finite index. Then
it meets each of the subgroups Out(π1(Mk)) of (

∏r
i=1 Out(π1(Mi))) ◦ Ω in a sub-

group of finite index. We must show that for each k, R(Mk) has finite index in
Out(π1(Mk)). For this, it is sufficient to show that if φ is an automorphism of a
π1(Mk), and the factor automorphism φk lies in the image of Θ ◦ ΦU , then φ lies
in R(Mk).

Let h be a uniform homeomorphism of M with Θ ◦ ΦU (h) = φk. By
lemma 12.1.3, there is a composition of slide homeomorphisms f so that fh
preserves X (that is, it carries the copy of X in M(1, 1) to the copy of X in
fh(M(1, 1)) ). Since the induced automorphism of f lies in N , Θ ◦ ΦU (fh) = φk.
Consequently, fh must preserve M ′k (for any permutation of irreducible summands
would show up in Ω). In particular, its restriction to M ′k induces φ. Adding a
3-ball to M ′k, we may extend the restriction of fh to a homeomorphism of Mk

inducing φ. �





CHAPTER 13

Epilogue

In this section, we summarize some related work and discuss the future direction
of research in the topics that have been examined in this book. In section 13.1,
we examine the Finite Index Realization Problem, and in section 13.2 we discuss
recent advances in understanding AH(π1(M)).

13.1. More topology

Main Topological Theorem 1 and theorem 12.2.1 combine to give a rather gen-
eral solution of the Finite Index Realization Problem for compact 3-manifolds with
compressible boundary. For those with incompressible boundary, theorem 12.3.1
shows that one need only solve the Finite Index Realization Problem for irreducible
3-manifolds.

In this section we will examine what is known and what is conjectured for this
case. We will say that M “has finite index realization” when R(M) has finite index
in Out(π1(M)).

From now on we assume that M is irreducible with incompressible boundary,
and for the time being we suppose that M is orientable. Then M satisfies exactly
one of the following:

(1) π1(M) is finite.
(2) π1(M) is infinite, but M is not Haken.
(3) M is Haken.

In particular, case (3) occurs whenever M has nonempty boundary (see for example
Theorem III.10 of [54]).

In case 1, Out(π1(M)) is finite so M automatically has finite index realization.
For case 2, it is conjectured that Out(π1(M)) is finite. Two classes of non-Haken
3-manifolds with infinite fundamental group are known. There is a class of Seifert-
fibered 3-manifolds, determined by Heil [50]. For these, Out(π1(M)) is known to be
finite (p. 21 of [87]). Conjecturally, all non-Haken 3-manifolds which are not Seifert-
fibered admit hyperbolic structures, in which case Out(π1(M)) would be finite for
them as well. Recent work of Gabai and Kazez shows that large classes of non-
Haken 3-manifolds have finite Out(π1(M)). In [42] they show that the fundamental
groups of closed, atoroidal, genuinely laminar 3-manifolds are negatively curved in
the sense of Gromov. By Paulin [109], such a group has finite outer automorphism
group unless it admits an isometric action on some R-tree with almost cyclic edge
stabilizers and without a global fixed point. But the main corollary of [97] shows
that such actions do not exist. Gabai and Kazez have also shown that the mapping
class groups of closed atoroidal genuinely laminar 3-manifolds are finite [43].

As for case 3, Waldhausen’s Theorem 2.5.6 shows that closed Haken 3-manifolds
have finite index realization. For Haken 3-manifolds with incompressible boundary,

195
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our Main Topological Theorem 2 give a complete solution. Simplified to the case of
Haken manifolds with empty boundary pattern, and combined with Waldhausen’s
theorem 2.5.6, it becomes the following:

Theorem 13.1.1. Let M be a Haken 3-manifold with incompressible boundary,
possibly empty. Then R(M) has finite index in Out(π1(M)) if and only if every
Seifert-fibered component V of the characteristic submanifold Σ of (M, ∅) that meets
∂M satisfies one of the following:

(1) V is a solid torus, or
(2) V is an S1-bundle over the Möbius band or annulus, and no component

of ∂V contains more than one component of V ∩ ∂M , or
(3) V is fibered over the annulus with one exceptional fiber, and no component

of V ∩ ∂M is an annulus, or
(4) V is fibered over the disk with two holes with no exceptional fibers, and

V ∩ ∂M is one of the boundary tori of V , or
(5) V = M , and either V is fibered over the disk with two exceptional fibers,

or V is fibered over the Möbius band with one exceptional fiber, or V is
fibered over the torus with one hole with no exceptional fibers, or

(6) V = M , and V is fibered over the disk with three exceptional fibers each
of type (2, 1).

In summary, we expect that a compact orientable 3-manifold M has finite index
realization if and only if every prime summand of M that is a Haken 3-manifold
satisfies the conditions in theorem 13.1.1.

We turn now to the nonorientable case. A one-sided projective plane RP2 in a
3-manifold can only appear in a prime summand which is a real projective 3-space
RP

3, since it must have a tubular neighborhood which is the I-bundle over RP2

with orientable total space. As the I-bundle over RP2 with orientable total space
is homeomorphic to the complement of a 3-ball in RP3, the summand must be
homeomorphic to RP3.

However, two-sided projective planes can appear in more complicated ways in-
side nonorientable irreducible 3-manifolds. A simple family of examples is provided
by the Jaco manifolds [55]. These are constructed by starting with a surface F and
an involution τ of F whose fixed-point set consists of a nonempty finite collection
of points {p1, . . . , pr}. An involution of F × [−1, 1] is defined by sending (x, t) to
(τ(x),−t). Its fixed point set is the collection of points {p1 × {0}, . . . , pr × {0}}.
One may remove invariant open 3-ball neighborhoods of each point in the fixed
point set, to obtain a 3-manifold W . If we restrict the involution to an involution
ρ on W , the quotient J = W/ρ is a 3-manifold having one boundary component
which is a projective plane for each fixed point of the original involution τ . It will
be irreducible provided that F was not S2, and will have incompressible boundary
if F is closed (or F =D2, in which case J is simply RP2 × I).

A 3-manifold is called RP2-irreducible (or P2-irreducible, in the original termi-
nology of [49]) if it is irreducible and contains no two-sided projective planes. A
nonorientable irreducible 3-manifold M must satisfy exactly one of the following:

(1) π1(M) is finite. In this case, a theorem of Epstein [34] shows that M is
homotopy equivalent to RP2 × I.

(2) M is RP2-irreducible, but does not contain a two-sided incompressible
surface.
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(3) M is RP2-irreducible, and does contain a two-sided incompressible surface.
(4) M contains two-sided projective planes.

With respect to finite-index realization, one expects the first three cases to be
analogous to the three orientable cases discussed above. The homeomorphisms for
manifolds as in case 4 are not very well understood, although progress has been
made by G. A. Swarup [119] and by J. Kalliongis [60].

A conjectural description of 3-manifold mapping class groups is given in [88].

13.2. More geometry

In chapter 7 we reviewed the classical deformation theory of Kleinian groups,
which provides a very satisfying parameterization of the space GF(π1(M), π1(P )) of
(marked) geometrically finite uniformizations of pared 3-manifolds homotopy equiv-
alent to (M,P ). The work of Marden and Sullivan tells us that GF(π1(M), π1(P )) is
the interior of the space AH(π1(M), π1(P )) of all (marked) hyperbolic 3-manifolds
homotopy equivalent to M (with cusps associated to every component of P ).
The structure of the complement of GF(π1(M), π1(P )) in AH(π1(M), π1(P )) is
still quite mysterious. However, in recent years, there has been some progress
in our understanding of this space. In many cases, that progress revealed that
AH(π1(M), π1(P )) is a much more complicated object than had originally been
suspected. We will review some of the major conjectures and the progress that has
been made on them.1

13.2.1. Bers’ Density Conjecture. The most basic conjecture concerning
the structure of AH(π1(M), π1(P )) is Bers’ Density Conjecture which predicts that
AH(π1(M), π1(P )) is the closure of GF(π1(M), π1(P )). Bers [12] originally posed
a related conjecture in the context of the Bers Slice. The full conjecture was later
formulated by Sullivan [116] and Thurston [121].

Bers’ Density Conjecture: For a pared 3-manifold (M,P ), AH(π1(M), π1(P ))
is the closure of GF(π1(M), π1(P )).

Bers’ Density Conjecture is an easy consequence of Mostow’s Rigidity Theorem
[98] in the case that every component of ∂M − P is a sphere with three holes; in
this case there is a unique hyperbolic structure on (M,P ). (For an approach to this
fact using Marden’s Isomorphism Theorem see Theorem III in Keen-Maskit-Series
[62].)

The only nontrivial case in which Bers’ Density Conjecture is known to be
true is the case when M is an I-bundle over the torus with one hole and M − P
is the associated ∂I-bundle. This deep result was recently established by Minsky
[94]. In this case, GF(π1(M), π1(P )) is topologically a 4-ball, but McMullen [91]
established that AH(π1(M), π1(P )) is not a manifold.2

1Since the initial submission of this manuscript substantial progress has been made in our
understanding of AH(π1(M)). Surveys of this more recent work are currently being written and
will likely appear contemporaneously with this paper. We will simply note some of the highlights

of this recent progress in a series of footnotes.
2Bromberg [25] and Brock-Bromberg [22] proved that if M has incompressible boundary,

ρ ∈ AH(π1(M)), and ρ(π1(M)) contains no maximal cyclic parabolic subgroups, then ρ lies in the

closure of GF(π1(M)). The Bers Density Conjecture for pared 3-manifolds (M,P ) with ∂M − P
incompressible is a corollary of The Ending Lamination Theorem of Brock-Canary-Minsky [24].)
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13.2.2. Bumping. In chapter 7, we studied the map

Θ: GF(π1(M), π1(P ))→ A(M,P )

which records the (marked) pared homeomorphism type of a geometrically fi-
nite hyperbolic 3-manifold. One may extend Θ to a map defined on all of
AH(π1(M), π1(P )).

In order to describe this decomposition, we briefly recall the thick-thin decom-
position of a hyperbolic 3-manifold. If ε > 0, we let

Nthin(ε) = {x ∈ N | injN (x) < ε}
be the ε-thin-part of the hyperbolic 3-manifold, where the injectivity radius injN (x)
at N at a point x is defined to be half the length of the shortest homotopically non-
trivial closed curve through x. It is a consequence of the Margulis Lemma, see
Chapter D in [10], that there exists a universal constant µ3, such that if ε < µ3,
then every component of the ε-thin-part of a hyperbolic 3-manifold N is either (a) a
solid torus neighborhood of a closed geodesic in N , or (b) a “cusp”, i. e. a quotient
of a horoball in H3 by a group of parabolic isometries. The submanifold N0(ρ) is
obtained from N(ρ) by removing the cuspidal components of N(ρ)thin(ε). (Here we
are assuming that one has fixed a choice of ε < µ3.) A result of McCullough [85]
(see also Kulkarni-Shalen [67]) guarantees that there exists a compact core M(ρ)
for N0(ρ) such that M(ρ) intersects each noncompact component of the boundary
of N0(ρ) in a single incompressible annulus and each compact component of the
boundary of N0(ρ) in a torus. The manifold pair (M(ρ), P (ρ)) is known as the
relative compact core of N(ρ) where P (ρ) = M(ρ) ∩ ∂N0(ρ).

We recall that if ρ is an element of an equivalence class of representations
in AH(π1(M)), then there exists a homotopy equivalence rρ : M → N(ρ) in the
homotopy class determined by ρ. In order to extend Θ, we consider the subset
P̂ (ρ) consisting of the components of P (ρ) which are homotopic to elements of
rρ(P ). Then, by proposition 5.2.3, rρ is homotopic to a pared homotopy equivalence
hρ : (M,P ) → (M(ρ), P̂ (ρ)). We then set Θ(ρ)=((M(ρ), P̂ (ρ)), hρ). One may use
(a generalization of the) work of McCullough, Miller and Swarup [90] to show that
Θ is well-defined and agrees with Θ on GF(π1(M), π1(P )).

One of the recently discovered surprises was that the homeomorphism type
of a 3-manifold does not vary continuously over AH(π1(M), π1(P )). Anderson
and Canary [8] gave the first examples. In their situation, Mn was a book of
I-bundles (see example 2.10.4), and Pn was empty. Explicitly, Mn was obtained
from a collection of n I-bundles over surfaces of genus 1, . . . , n, each with one
boundary component, by attaching the sides of the I-bundles to n disjoint parallel
longitudinal annuli in the boundary of a solid torus. In this case, A(Mn, Pn) =
A(Mn) contains (n−1)! elements which correspond to the different cyclic orderings
of the annuli to which the I-bundles are attached. It is shown that every two
components of GF(π1(Mn)) have intersecting closures in AH(π1(Mn)). The proof
explicitly constructs a sequence of geometrically finite uniformizations of Mn which
converge, in AH(π1(Mn)), to a hyperbolic 3-manifold which is homotopy equivalent,
but not homeomorphic, to Mn.

Holt [52] has further analyzed the collection of examples in [8]. He proves
that, for all n, there is a point in AH(π1(Mn)) which lies in the closure of every
component of GF(π1(Mn)). In later work, he has observed that the intersection
locus of any two components of GF(π1(Mn)) is disconnected.
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Anderson, Canary and McCullough [9] have completely analyzed this phenome-
non in the case when M has incompressible boundary and P consists of the toroidal
boundary components of M . They show that marked homeomorphism type is lo-
cally constant modulo primitive shuffles. Roughly, primitive shuffles are homotopy
equivalences obtained by “shuffling” or “rearranging” the way in which the man-
ifold is glued together along primitive solid torus components of its characteristic
submanifold. Moreover, if the marked homeomorphism types associated to any two
components of GF(π1(M)) differ by a primitive shuffle, then the two components
have intersecting closures. As a result, one obtains a complete enumeration of the
components of the closure of GF(π1(M)) and hence a conjectural enumeration of
the components of AH(π1(M)).

We now state these results more precisely. For i = 1, 2, let Mi be a compact,
orientable, irreducible 3-manifold and let Vi be a codimension-zero submanifold of
Mi. Denote by Fr(Vi) the frontier of Vi in Mi. We always assume that Fr(Vi)
is incompressible in Mi; in particular, no component of Fr(Vi) is a 2-sphere or a
boundary-parallel 2-disk. To avoid trivial cases, we assume that Vi is a nonempty
proper subset of Mi. A homotopy equivalence h : M1 → M2 is a shuffle, with
respect to V1 and V2, if h−1(V2) = V1 and h restricts to a homeomorphism from
M1 − V1 to M2 − V2.

Assume now that M1 and M2 have nonempty incompressible boundary. Let
(Σi, σi) denote the characteristic submanifold of (Mi, ∅). A solid torus component
V of Σi is said to be primitive when for each frontier annulus A of V , π1(A) surjects
onto π1(V ), i. e. its core curve is longitudinal. A shuffle s : M1 →M2 with respect
to V1 and V2 is called a primitive shuffle if

(1) each Vi is a collection of primitive solid torus components of Σ(Mi), and
(2) s restricts to an orientation-preserving homeomorphism carrying M1 − V1

to M2 − V2.
We say that two elements (M1, P1) and (M2, P2) of A(M) are primitive shuffle

equivalent if there exists a primitive shuffle s : M1 → M2 such that [(M2, h2)] =
[(M2, s◦h1)]. It is established in [9] that primitive shuffle equivalence is a finite-to-
one equivalence relation on A(M). Define Â(M) to be the collection of equivalence
classes, and let q : A(M) → Â(M) be the quotient map. One can then define
Θ̂ : AH(π1(M)) → Â(M) by setting Θ̂ = q ◦ Θ. The map Θ̂ records the marked
homeomorphism type up to primitive shuffle equivalence. One of the key results in
[9] is that Θ̂ is continuous.

Theorem 13.2.1. If M is a compact, hyperbolizable 3-manifold with nonempty
incompressible boundary, then Θ̂ : AH(π1(M))→ Â(M) is continuous.
Conversely, it is also shown in [9] that if two elements of A(M) are primitive shuffle
equivalent, then the corresponding components of GF(π1(M)) have intersecting
closures.

Theorem 13.2.2. Let M be a compact, hyperbolizable 3-manifold with non-
empty incompressible boundary, and let [(M1, h1)] and [(M2, h2)] be two elements of
A(M). If [(M2, h2)] is primitive shuffle equivalent to [(M1, h1)], then the associated
components of GF(π1(M)) have intersecting closures.

As an immediate consequence of these two results one sees that two components
of GF(π1(M)) have intersecting closures if and only if their associated marked
homeomorphism types are primitive shuffle equivalent.
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Corollary 13.2.3. Let M be a compact, hyperbolizable 3-manifold with non-
empty incompressible boundary, and let [(M1, h1)] and [(M2, h2)] be two elements
of A(M). The associated components of GF(π1(M)) have intersecting closures if
and only if [(M2, h2)] is primitive shuffle equivalent to [(M1, h1)]
It follows that the components of the closure of GF(π1(M)) are enumerated by the
elements of Â(M).

Corollary 13.2.4. Let M be a compact, hyperbolizable 3-manifold with non-
empty incompressible boundary. Then, the components of the closure GF(π1(M))
of GF(π1(M)) are in a one-to-one correspondence with the elements of Â(M).

One may then combine corollary 13.2.4 with the Main Hyperbolic Corollary to
see that the closure of GF(π1(M)) has finitely many components if and only if M
does not have double trouble.

Corollary 13.2.5. Let M be a compact, hyperbolizable 3-manifold with non-
empty incompressible boundary. Then, GF(π1(M)) has infinitely many components
if and only if M has double trouble. Moreover, if M has double trouble, then
AH(π1(M)) itself has infinitely many components.

The Bers’ Density Conjecture predicts that GF(π1(M)) = AH(π1(M)), so it
is natural to expect that AH(π1(M)) itself has infinitely many components if and
only if M has double trouble.

Conjecture: Let M be a compact, hyperbolizable 3-manifold with nonempty in-
compressible boundary. Then AH(π1(M)) has infinitely many components if and
only if M has double trouble.3

Holt [53] has recently generalized the work in [52] to show that if M has in-
compressible boundary and {[(M1, h1)], . . . , [(Mk, hk)]} are a collection of primitive
shuffle equivalent elements of A(M), then there exists a point ρ ∈ AH(π1(M))
which lies in the closure of the component of GF(π1(M)) associated to [(Mi, hi)]
for all i = 1, . . . , k.

McMullen [91] used the construction in [8] to show that if S is a closed hy-
perbolic surface then AH(π1(S)) is not a manifold. One can further use theorem
13.2.1 to show that AH(π1(M)) is not a manifold whenever M is the domain of a
nontrivial primitive shuffle equivalence, see [9] for details.

Corollary 13.2.6. Let M be a compact, hyperbolizable 3-manifold with non-
empty incompressible boundary. If q : A(M) → Â(M) is not injective, then
AH(π1(M)) is not a manifold.

Bromberg and Holt [26] recently generalized both corollary 13.2.6 and Mc-
Mullen’s result to prove that AH(π1(M)) is not a manifold whenever M contains
an essential annulus A such that π1(A) is a maximal cylic subgroup of π1(M).

Theorem 13.2.7 (Bromberg-Holt). Let M be a compact, hyperbolizable 3-
manifold with nonempty incompressible boundary. If M contains an essential annu-
lus A such that π1(A) is a maximal cyclic subgroup of π1(M)), and C is a component
of GF(π1(M)), then the closure of C is not a manifold. Moreover, AH(π1(M)) is
not a manifold.

3This conjecture is also a corollary of the Ending Lamination Theorem of Brock-Canary-
Minsky [24].
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13.2.3. Marden’s Tameness Conjecture. One of the major conjectures in
Kleinian groups is that every hyperbolic 3-manifold with finitely generated funda-
mental group is topologically tame, i. e. homeomorphic to the interior of a compact
3-manifold. Notice that geometrically finite hyperbolic 3-manifolds are topologi-
cally tame by definition.

Marden’s Tameness Conjecture: If a hyperbolic 3-manifold has finitely gen-
erated fundamental group, then it is homeomorphic to the interior of a compact
3-manifold.

Bonahon [17] established Marden’s Tameness Conjecture for hyperbolic 3-
manifolds with freely indecomposable fundamental group. More generally, Bona-
hon’s result holds for any hyperbolic 3-manifold N such that each component of the
frontier, in N0, of its relative compact core is incompressible. Marden’s conjecture
predicts that N is homeomorphic to the interior of its relative compact core.

Canary [28] showed that topologically tame hyperbolic 3-manifolds are also
geometrically well-behaved. In particular, Marden’s Tameness Conjecture implies
Ahlfors’ Measure Conjecture and a variety of other conjectured geometric properties
of hyperbolic 3-manifolds. We recall that Ahlfors’ Measure Conjecture predicts that
if Γ is a finitely generated discrete subgroup of PSL(2,C), then either its limit set
Λ(Γ) has measure zero or Λ(Γ) = C and Γ acts ergodically on C.

Marden’s conjecture has also been verified for various limits of tame hyperbolic
3-manifolds, see [30], [102] or [37]. The best of these results, due to Evans [37, 38],
shows that if {ρi} is a sequence in AH(π1(M)) which converges to ρ ∈ AH(π1(M)),
ρi is topologically tame for all i, ρi(g) is parabolic for all i whenever ρ(g) is parabolic,
and {ρi(π1(M))} converges geometrically to ρ(π1(M)), then ρ is also topologically
tame. He also shows that if M is not homotopy equivalent to a compression body
then one need not assume that {ρi(π1(M))} converges geometrically to ρ(π1(M)).
In particular, this result implies that a “typical” representation in the boundary of
any component of GF(π1(M)) is topologically tame.4

Although this conjecture is not directly about the deformation theory of
Kleinian groups, we will see in section 13.2.5 that topological tameness also plays
a role in Thurston’s conjectural classification of hyperbolic 3-manifolds.

13.2.4. Laminations and Thurston’s Compactification of Teichmüller
space. In this section we will recall some basic facts about geodesic laminations
and Thurston’s compactification of Teichmüller space by the space of projective
measured laminations. This material will underlie our upcoming discussion of
Thurston’s Ending Lamination Conjecture and Thurston’s Masur Domain Con-
jecuture.

A geodesic lamination on a hyperbolic surface S is a closed subset L of S
which is a disjoint union of simple geodesics. A measured lamination is a geodesic
lamination L together with an invariant transverse measure with support L. (An
invariant transverse measure assigns positive numbers to arcs transverse to L, is
additive, and is invariant with respect to projection along L.) By ML(S) we denote
the space of all measured laminations on S, and the projective lamination space

4Brock, Bromberg, Evans and Souto [23] have recently shown that if ρ lies in the boundary of

GF(π1(M)) and either a) Ω(ρ) is non-empty or b) M is not homotopy equivalent to a compression
body, then N(ρ) is topologically tame.
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PL(S) is (ML(S)− {∅}) /R+ (i. e. two measured laminations are considered pro-
jectively equivalent if they have the same support and their transverse measures
are linear multiples of one another).

Measured laminations are natural generalizations of simple closed curves. A
simple closed geodesic may be thought of as a measured lamination, where we
simply give transverse arcs the counting measure. In fact, (weighted) simple closed
geodesics are dense in ML(S), so we may think of ML(S) as the closure of the
set of simple closed geodesics. We may also speak of the length of a measured
lamination and the intersection number of two measured laminations, both of which
are continuous on ML(S) and agree with the corresponding notions for simple closed
geodesics. (For a more detailed treatment of laminations see Bonahon [18], Hatcher
[48] or Thurston [120] and for the parallel theory of measured foliations see Fathi-
Laudenbach-Poénaru [39].)

Thurston showed that one can use PL(S) to compactify Teichmüller space in
a natural geometric manner (see Thurston [120]):

Theorem 13.2.8 (Thurston). If S is a closed hyperbolic surface of genus g,
PL(S) is a sphere of dimension 6g−7 which may be identified as the compactification
of the Teichmüller space of S, i. e. T (S) ∪ PL(S) ∼= B6g−6. This compactification
is natural in the sense that the action of the mapping class group Mod(S) of S on
T (S) extends continuously to an action on T (S) ∪ PL(S).

The main property of this compactification is that it keeps track of which
curves are getting stretched the most as a sequence goes to infinity in T (S). (This
property is stated in Thurston [124] and may be proven using the techniques of
[123]; versions of this result are established in Fathi-Laudenbach-Poenaru [39] and
Wolf [129].)

Theorem 13.2.9 (Thurston). Let S be a closed hyperbolic surface of genus g,
and τn ∈ T (S) a sequence of hyperbolic structures converging to µ ∈ PL(S) in
the Thurston compactification of Teichmüller space. Then there exist a sequence
of measured laminations µn ∈ ML(S) and a constant K > 0, such that for any
measured lamination λ

i(µn, λ) +K lτ0(λ) ≥ lτn(λ) ≥ i(µn, λ).

Also, lτn(µn) remains bounded and [µn] converges to µ in PL(S).

13.2.5. The Ending Lamination Conjecture. Thurston’s Ending Lami-
nation Conjecture is a conjectural classification of the elements of AH(π1(M)). A
full discussion of this conjecture is beyond the scope of this epilogue, but we will
give an outline of the conjecture in our language. (See [93] or [94] for a more
complete discussion.) Roughly, Thurston proposes that a hyperbolic 3-manifold is
determined up to isometry by its (relative) marked homeomorphism type, captured
by its relative compact core, and geometric invariants, called ending invariants,
which capture the asymptotic geometry of its ends. We will assume for the bulk of
the section that M has incompressible boundary.

Given an element N(ρ) of AH(π1(M)), let (M(ρ), P (ρ)) be its relative compact
core. Each component G of the conformal boundary ∂N̂(ρ) lies on the boundary
of a component X of N0(ρ) −M(ρ) such that X ∼= G × (0, 1) and ∂X = F ∪ G
where F is a free side of (M(ρ), P (ρ)). In this case, F is called a geometrically
finite free side and the ending invariant is the element of T (F ) determined by the
Riemann surface G. If F is a free side of (M(ρ), P (ρ)) which is not geometrically
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finite, Bonahon [17] showed that there is a sequence {αi} of simple closed curves
on F whose geodesic representatives in N(ρ) lie in the component of N0(ρ)−M(ρ)
bounded by F and leave every compact subset ofN(ρ). The geodesic representatives
of αi, in some fixed hyperbolic structure on F , converge to a geodesic lamination
µ (at least up to subsequence). The maximal sublamination λF of µ which is the
support of a measured lamination is the ending invariant associated to F . (Bonahon
also shows that λF is independent of the sequence {αi} chosen and that λF is
filling, i.e. intersects every simple closed geodesic in F transversely.) If M has
incompressible boundary Thurston’s Ending Lamination Conjecture asserts that
the element of AH(π1(M)) is determined by the marked pared homeomorphism
type of (M(ρ), P (ρ)) and its collection of ending invariants.

It follows from the classical theory, see The Parameterization Theorem in chap-
ter 7, that the Ending Lamination Conjecture is valid for geometrically finite hyper-
bolic manifolds. The Ending Lamination Conjecture has only been verified for very
special classes of geometrically infinite manifolds. Minsky verified it for punctured
torus groups in [94] and for hyperbolic 3-manifolds with freely indecomposable
fundamental group and a lower bound on the injectivity radius in [92].5 However,
one may use Thurston’s double limit theorem and relative compactness theorems
to determine exactly which collections of ending invariants can arise, see Ohshika
[101]. Moreover, Thurston’s Ending Lamination Conjecture implies Bers’ Density
Conjecture as one can produce representations with every allowable collection of
ending invariants on the boundary of GF(π1(M)).

One can generalize Thurston’s Ending Lamination Conjecture to the case where
M has compressible boundary. However, one does not know that the ending invari-
ants are defined unless one first knows that the hyperbolic manifold is topologically
tame. Moreover, the ending invariants are naturally only well-defined modulo the
group Mod0(M(ρ), P (ρ)), see section 10 of [28] for more details.

13.2.6. Thurston’s Masur Domain Conjecture. It is also interesting to
study the issue of determining when a sequence in GF(M) converges in AH(π1(M)).
Since each component of GF(M) is parameterized by data lying in T (M) it is very
natural to attempt to determine the convergence from this data.

Thurston’s double limit theorem gives a fairly complete answer to this question
in the situation where M = S × I. It should be remarked that Thurston’s double
limit theorem is the key tool in the proof that atoroidal 3-manifolds which fiber
over the circle are hyperbolizable, see Thurston [124] or Otal [107] for more details.
Two measured laminations λ and µ are said to bind the surface S, if

i(λ, ν) + i(µ, ν) > 0

for every measured lamination ν ∈ ML(S).
Theorem 13.2.10 (Thurston [124]). Let λ and µ be a pair of measured lami-

nations which bind S. Any sequence {ρi} = {(gi, hi)} in

GF(S × I, ∂S × I) ∼= T (S)× T (S)

5Minsky [95] and Brock-Canary-Minsky [24] have established the Ending Lamination Con-

jecture in the case that M has incompressible boundary. More generally, they prove the Ending
Lamination Conjecture for AH(π1(M), π1(P )) when each component of ∂M−P is incompressible.

The proof makes extensive use of the geometric theory of the curve complex developed by Masur
and Minsky [80, 81].
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which converges to (λ, µ) in

(T (S) ∪ PL(S))× (T (S) ∪ PL(S))

has a convergent subsequence in AH(S × I, ∂S × I).
One may combine the double limit theorem with Thurston’s relative compact-

ness theorem to obtain a very satisfying generalization of this to the setting of
3-manifolds with incompressible boundary, see Ohshika [100]. The slightly differ-
ent version given here is from [27].

Thurston defines the window W of M to consist of the I-bundle components
of the characteristic submanifold Σ of M together with regular neighborhoods of
the annular components of the frontiers of Seifert fibred components of Σ. (We
eliminate any redundancies which develop by absorbing any components ofW which
are homotopic into other components into those components.) W is an I-bundle
whose lids lie in ∂M , let w denote the base of this I-bundle.

If µ is any measured lamination on w, then it is double covered by a measured
lamination µ̃ in the lids of W . Let {S1, . . . , Sk} denote the nontoroidal boundary
components of M and let

τ = (τ1, . . . , τk) ∈ (T (S1) ∪ PL(S1))× · · · (T (Sk) ∪ PL(Sk))

We will say that τ binds the window base w if whenever µ is a connected measured
lamination in ML(w), then there is a component ν of µ̃ such that ν ⊂ Si and either
τi ∈ T (Si) or i(ν, τk) > 0.

In the theorem below we assume that C is a component of GF(M) which has
been parameterized by T (S1)× · · · × T (Sk) as in chapter 7.

Theorem 13.2.11. Suppose that M is a hyperbolizable 3-manifold with incom-
pressible boundary. Let {ρi} be a sequence in a component C of GF(M) which
converges to τ ∈ (T (S1)∪PL(S1))× · · ·× (T (Sk)∪PL(Sk)). If τ binds the window
base, then {ρi} has a convergent subsequence in AH(π1(M)).

However, very little of this theory generalizes directly to the setting of manifolds
with compressible boundary. We will describe a conjectural generalization, due to
Thurston, in the case when M is a compression body. The general conjecture is
somewhat more complicated but is in the same spirit.

If M is a compression body then each component C of GF(M) is parameterized
by T (∂M)/Mod0(M). Let F be the compressible boundary component of M and
let {S1, . . . , Sk} denote the other nontoroidal boundary components of M , then

T (∂M) = T (F )× T (S1)× · · · × T (Sk).

Since Mod0(M) is generated by Dehn twists about compressing disks, Mod0(M)
acts trivially on the T (S1)× · · · × T (Sk) factors, so

C ∼= (T (F )/Mod0(M))× T (S1)× · · · × T (Sk).

Masur [79] and Otal [105] have extensively studied the action of Mod0(M) on
the boundary PL(F ) of T (F ). Masur identified an open subsetM of PL(F ), called
the Masur domain, on which Mod0(M) acts properly discontinuously. Kerckhoff
[63] established that the Masur domain has full measure in PL(F ). Let L ⊂ PL(F )
denote the closure of the set of compressible curves in F . Further let L′ denote the
set of laminations which have zero intersection number with some element of L; in
particular, L ⊂ L′. If M is not a boundary connected sum of two I-bundles, then
the Masur domain M = PL(F ) − L′. If M is a boundary connected sum of two
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I-bundles, then let L′′ denote the set of laminations which have zero intersection
number with some element of L′, and define M = PL(F )− L′′.

We may append M/Mod0(M) to T (F )/Mod0(M) as a sort of “boundary at
infinity.” It is not, however, a compactification. If {ρi} is a sequence in C, let
{τi} be the associated sequence in T (F )/Mod0(M). We say that {ρi} converges
into the Masur domain when {τi} converges to a point in M/Mod0(M) within
(T (F ) ∪ M)/Mod0(M). We are now ready to state Thurston’s Masur Domain
Conjecture.

Thurston’s Masur Domain Conjecture: Suppose that M is a compression body
and C is a component of GF(M). If a sequence {ρi} in C converges into the Masur
domain, then {ρi} has a subsequence which converges in AH(π1(M)).

Until recently very little progress had been made on this conjecture, although
see [29] and [105]. However, Kleineidam and Souto [65] recently proved Thurston’s
Masur Domain Conjecture in the case that {τi} converges to a minimal arational
measured lamination in the Masur domain (which is the generic case).
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