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Abstract

Let M be a compact, oriented, irreducible, atoroidal 3-manifold with non-empty bound-
ary. Let CC0(M) denote the space of convex cocompact Kleinian groups uniformizing
M . We show that any Kleinian group in the boundary of CC0(M) whose limit set is
the whole sphere can be approximated by maximal cusps. Density of maximal cusps
on the boundary of Schottky space is derived as a corollary. We further show that
maximal cusps are dense in the boundary of the quasiconformal deformation space of
any geometrically finite hyperbolic 3-manifold with connected conformal boundary.

1 Introduction

Let M be a compact, hyperbolizable 3-manifold whose (non-empty) boundary consists of
surfaces of genus at least two. The space CC0(M) of convex cocompact uniformizations
of M is a component of the interior of the space AH(π1(M)) of all marked hyperbolic
3-manifolds homotopy equivalent to M . We show that if a hyperbolic 3-manifold in the
boundary of CC0(M) has empty conformal boundary, i.e. all of its ends are geometrically
infinite, then it may be approximated by maximal cusps. Recall that maximal cusps are
geometrically finite hyperbolic 3-manifolds such that every component of their conformal
boundary is a thrice-punctured sphere. As a corollary we show that maximal cusps are
dense in the boundary of CC0(M) if the boundary of M is connected.

We view this result as part of a family of recent results which study the topology of
AH(π1(M)). Recall that each component of the interior of AH(π1(M)) can be identified
with CC0(M

′) where M ′ is homotopy equivalent to M . It is conjectured that AH(π1(M))
is the closure of its interior. Thurston’s Ending Lamination Conjecture provides a conjec-
tural classification of the manifolds in AH(π1(M)). In this classification, geometrically finite

∗Research supported in part by grants from the National Science Foundation
†Rsearch supported in part by The David and Elaine Potter Charitable Foundation

1
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hyperbolic 3-manifolds correspond to “rational points” in the boundary of CC0(M). (Each
ending invariant of a geometrically finite hyperbolic 3-manifold is either a point in a Te-
ichmüller space or a finite leaved geodesic lamination. The finite leaved laminations are the
“rational points” in the space of geodesic laminations.) So one may think of our corollary as
saying that “rational points” are dense in the boundary of CC0(M) whenever the boundary
of M is connected. Our main result can then be thought of as asserting that, in general, the
“most irrational” points in ∂CC0(M) can be approximated by “rational points.”

McMullen [Mc 1] was the first to study the density of “rational points” in the boundary
of deformation spaces of Kleinian groups. He showed that “maximal cusps” are dense in
the boundary of any Bers slice of quasifuchsian space. Recall that if S is a closed surface
then quasifuchsian space QF (S) is the space of convex cocompact uniformizations of S × I.
A Bers slice of QF (S) consists of convex cocompact uniformizations of S × I such that
the component of the conformal boundary corresponding to S × {0} has a fixed conformal
structure. In his setting a “maximal cusp” is a geometrically finite manifold in the boundary
of QF (S) whose conformal boundary consists of one copy of S and a collection of thrice-
punctured spheres. He later claimed that maximal cusps, in the sense of this paper, are dense
in the boundary of Schottky space, i.e. the space of convex cocompact uniformizations of
a handlebody. This result was used by Culler, Shalen and their coauthors in a series of
papers which studied the relationship between the topology of a hyperbolic 3-manifold and
its volume. We make central use of the analytical machinery developed by McMullen [Mc 1].

We now develop the notation needed to state our results precisely. Let M be a com-
pact, oriented, irreducible, atoroidal 3-manifold with non-empty boundary. If ρ : π1(M) →
PSL2(C) is any discrete, faithful representation we let Ω(ρ) denote the domain of disconti-
nuity of the action of ρ(π1(M)) on the Riemann sphere Ĉ. Then

N̄ρ = (H3 ∪ Ω(ρ))/ρ(π1(M))

is a 3-manifold with boundary. The interior Nρ = H3/ρ(π1(M)) of N̄ρ inherits the structure
of a hyperbolic 3-manifold, while the boundary of N̄ρ, which is denoted ∂cNρ and called the
conformal boundary, has a natural conformal structure induced from that on the sphere at
infinity. We will identify π1(N̄ρ) with the subgroup ρ(π1(M)) of PSL2(C).

A discrete, faithful representation ρ: π1(M) → PSL2(C) is called a convex cocompact
uniformization of M if there exists an orientation-preserving homeomorphism h:M → N̄ρ

such that the two isomorphisms h∗: π1(M) → π1(N̄ρ) and ρ : π1(M) → ρ(π1(M)) = π1(N̄ρ)
differ by inner automorphisms. In this situation, if we view h∗ as a representation of π1(M)
into PSL2(C) then ρ and h∗ are conjugate representations. We shall indicate this by writing
[h∗] = [ρ], and in general we shall use the notation [ρ] to denote the conjugacy class of a
representation ρ. Note that if ∂M contains no tori, then Thurston’s Uniformization Theorem
implies that there exists a convex cocompact uniformization of M .

Let CC0(M) denote the set of conjugacy classes of convex cocompact uniformizations
of M . The space CC0(M) naturally sits inside the set AH(π1(M)) of conjugacy classes of
discrete faithful representations of π1(M)) into PSL2(C). (We give AH(π1(M)) the quotient
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topology induced by the compact-open topology on the space of discrete faithful represen-
tations.) Marden [Mar 1] showed that CC0(M) is an open subset of AH(π1(M)). Bers,
Kra and Maskit (see [Bers 2]) showed that CC0(M) may be parameterized as the quotient
T (∂M)/Mod0(M) where T (∂M) is the Teichmüller space of all (marked) conformal struc-
tures on M and Mod0(M) is the group of all isotopy classes of homeomorphisms of M which
are homotopic to the identity.

A collection C of disjoint simple closed curves in a surface S is called a pants decomposition
of S if each component of S−C is an open pair of pants. A discrete, faithful representation
ρ : π1(M)→ PSL2(C) is called amaximally cusped uniformization ofM if there exists a pants
decomposition C of ∂M and an orientation-preserving homeomorphism h : M − C → N̄ρ

such that [h∗] = [ρ]. The conjugacy class of a maximally cusped uniformization of M will
be called a maximal cusp for M . Every maximally cusped uniformization of M lies in the
boundary of CC0(M) (see [Ke-Mas-Se, Theorem III] and [Oh, Theorem 5.1].)

The following theorem is the main result of the paper.

Theorem 6.1 (Approximations by maximal cusps) Let M be a compact, oriented, irre-

ducible, atoroidal 3-manifold whose boundary is non-empty and contains no tori. If [ρ] is

an element of ∂CC0(M) such that Ω(ρ) = ∅, then [ρ] is the limit of a sequence of maximal

cusps in ∂CC0(M).

If Hg is a handlebody of genus g, then CC0(Hg) is known as Schottky space. We may
combine our main theorem with Marden’s observation that there is a dense subset in the
boundary of Schottky space consisting of conjugacy classes of representations with empty
domain of discontinuity to obtain the following immediate corollary.

Corollary 15.1 If Hg is a handlebody of genus g ≥ 2, then maximal cusps are dense in the

boundary of the Schottky space CC0(Hg).

One may combine the main theorem with work of Anderson, Canary, Kapovich, Minsky
and Sullivan to obtain the following generalization of Corollary 15.1.

Corollary 15.3 Let M be a compact, oriented, irreducible, atoroidal 3-manifold with (non-
empty) connected boundary which is not a torus. Then maximal cusps are dense in the
boundary of CC0(M).

In a final section, we notice that the same techniques may be used to obtain an ana-
logue of our main theorem in the setting of geometrically finite uniformizations of pared
3-manifolds. In particular, we will generalize our results to the setting where M is allowed
to have toroidal boundary components. We then combine this result with work of Ander-
son, Canary, Evans, Kapovich and Sullivan, to show that maximal cusps are dense in the
boundary of the quasiconformal deformation space of any geometrically finite hyperbolic
3-manifold with connected conformal boundary.

The outline of a proof of Corollary 15.1 was provided to the authors of the present paper
by Curt McMullen. The result was quoted as Theorem 8.9 of [CS2] and was used in the
proof of Theorem 8.2 of [CS2]. The latter theorem was also quoted and used on page 23 of
[CHS]. Likewise, Corollary 15.1 was quoted in the discussion beginning Section 5 of [ACCS]
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and was used in the proof of Theorem 5.2 of [ACCS]. These applications of Corollary 15.1
were crucial to the proofs of the main results of [CS2], [ACCS] and [CHS], and therefore to
the results of the subsequent papers [CS3], [CS4], [CS5], [CS6]. In these papers, the authors
obtain lower bounds for the volume of a hyperbolic 3-manifold under a variety of topological
restrictions. No proof of Corollary 15.1 has appeared to date, and it is hoped that the present
paper will fill the resulting gap in the literature.

Acknowledgments. We would like to record our gratitude to Curt McMullen both for
assuring us that Corollary 15.1 is true and for showing us the way to the proof, from which
we were led to the proof of the more general Theorem 6.1. We are grateful to Howard Masur
for providing us with our first correct proof of Lemma 2.1. The authors also wish to thank
Ken Bromberg, J. Kahn, J.H. Hubbard and Frédéric Paulin for many enjoyable and helpful
discussions. S. Hersonsky would like to thank the Institut des Hautes Etudes Scientifiques,
where he did part of his work on this paper.

2 Background Material and Outline

In this section, we survey some of the basic material from Teichmüller theory and the defor-
mation theory of Kleinian groups which will be used throughout the paper. We also explain
the construction of a metric on the space AH(π1(M)) of conjugacy classes of discrete faithful
representations which will be used in the proof. We finish by giving a brief outline of the
argument.

We recommend the books of Gardiner [Ga] and Imayoshi-Taniguchi [ImTa] as sources
for Teichmüller theory and the papers by Bers [Bers 2] and Canary-McCullough [CaMc] as
references for the deformation theory of Kleinian groups.

2.1 Beltrami differentials and quadratic differentials

Let X be a finite type Riemann surface. A Beltrami differential µ is a differential of type
(−1, 1) on X, i.e. it is given in a local coordinate z as f(z) dz̄

dz
, where f is a measurable

function. If w(z) is another local coordinate then µ is written as g(w) dw̄
dw

where g(w(z)) =

f(z)dw
dz
/dw
dz
. The function f depends on the choice of coordinate, but the modulus |µ|(z) =

|f(z)| of f is invariant under change of coordinates and hence is a globally defined real-valued
measurable function on X. Let B(X) denote the space of bounded Beltrami differentials on
X with L∞-norm

||µ|| = sup
x∈X

|µ|(x)

and let B1(X) ⊂ B(X) denote the open unit ball in B(X).
The Teichmüller space T (X) of all marked Riemann surfaces which are quasi-conformally

homeomorphic to X can be identified with B1(X)/Q0(X), where Q0(X) denotes the group
of all quasiconformal self-homeomorphisms of X that are homotopic to the identity. The
marked Riemann surface X is the image of the origin under this quotient map, and will be
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referred to as the basepoint of T (X). The Teichmüller space T (X) can also be thought of as
the space of pairs (Y, f) where Y is a Riemann surface and f : X → Y is a quasiconformal
homeomorphism, and where two pairs (Y1, f1) and (Y2, f2) are equivalent if there exists a
conformal map g : Y1 → Y2 which is homotopic to f2 ◦ f−11 . The pair (Y, f) can be identified
with the equivalence class of the Beltrami differential (fz̄/fz)

dz̄
dz

of f .
Let B0(X) denote the the orbit of 0 ∈ B1(X) under Q0(X). Elements of B0(X) are

called trivial Beltrami differentials, since they are the Beltrami differentials of quasiconformal
homeomorphisms in Q0(X). We let Φ : B1(X) → B1(X)/Q0(X) be the projection map.
In this situation, the tangent space to the image of the origin in the quotient T (X) =
B1(X)/Q0(X) can be identified with the vector space quotient of the tangent space of B1(X)
at 0 by the tangent space to B0(X) at 0.

One may use quadratic differentials to define a norm on the tangent space of T (X). A
quadratic differential φ is given locally as f(z)dz2. If w(z) is another local coordinate then
φ can be written as g(w)dw2 where g(w(z)) = f(z)( dw

dz
)2. The modulus |φ| of a quadratic

differential is a non-negative real-valued 2-form on the Riemann surface X and thus has a
well defined integral over X. We obtain a finite dimensional normed linear space by defining
Q(X) to be space of holomorphic quadratic differentials φ on X such that

||φ|| =
∫

X
|φ| <∞.

Suppose that µ is a Beltrami differential on X and that φ is a quadratic differential on
X given respectively in a local coordinate z as µ = f(z) dz̄

dz
and φ = g(z)dz2. The product

of µ and φ, which is given in the local coordinate z as φµ = f(z)g(z)dzdz̄, is a complex
valued 2-form on X and hence has a well-defined integral over X. We may therefore define
a real-valued bilinear pairing between B(X) and Q(X) by the formula

〈φ, µ〉 = Re
∫

X
φµ. (1)

Let N(X) denote the set of all µ ∈ B(X) such that 〈φ, µ〉 = 0 for all φ ∈ Q(X). (These
are called infinitesimally trivial Beltrami differentials.) It can be shown that N(X) is equal
to the tangent space of B0(X) at the origin and that the tangent space to the Teichmüller
space T (X) at the base point can be identified with the quotient B(X)/N(X). We abuse
notation by identifying tangent vectors at the origin of B1(X) with elements of the linear
space B(X). Associated to such a tangent vector µ ∈ B(X) at the origin of B1(X) there
is then a tangent vector DΦ(µ) to T (X) at the base point of the Teichmüller space. The
Teichmüller metric is a Finsler metric with infinitesimal form

||DΦ(µ)|| = sup{〈φ, µ〉 | φ ∈ Q(X), ||φ|| = 1}. (2)

If Y is a marked Riemann surface which is quasiconformally homeomorphic to X, we
may view Y as a point of T (X). There is a canonical identification of the tangent space of
T (X) at Y with the tangent space of T (Y ) at its basepoint. This gives rise to a norm on
the tangent space at any point of T (X) which is the infinitesimal form of the Teichmüller
metric on T (X).
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2.2 Controlled pinching

It will be important for us to know that one can pinch the length of a curve of length less
than L in half in a controlled manner. In particular, the pinching is accomplished by a
bounded length deformation in Teichmuller space such that the tangent vector the path at
each point is represented by a unit norm Beltrami differential supported on the 2L-thin part
of the surface. Although this fact is well-known in Teichmüller theory we will provide an
outline of the proof.

If X is a finite type Riemann surface which is not homeomorphic to a sphere, a torus
or an annulus, then the conformal structure on X is compatible with a unique hyperbolic
metric, called the Poincaré metric. If x is a point of X then we define injX(x) to be half
the length of the shortest non-trivial loop through x, measured in the Poincaré metric. The
L-thin part of X is the set of points on which injX(x) ≤ L. We say that x is in the L-thin
part associated to a curve γ on X, if there exists a non-trivial loop based at x which is
homotopic to γ and has length at most 2L.

If γ is a simple closed curve on a finite area hyperbolic surface X we will write lX(γ) for
the length of the closed geodesic in the homotopy class of γ.

We remind the reader that the Euclidean annulus A(R) = {z : 1 < |z| < R} has conformal
modulus mod(A) = logR. Notice that A(R) is conformally isomorphic to a right cylinder
of height mod(A)/2π and of circumference 1. Since any annulus in a Riemann surface is
conformal to A(R) for some (unique) R, any such annulus has a well-defined modulus.

If β : [0, B] → T (X) is a differentiable path and β(t) = (Xt, gt), then for each t ∈ [0, B]
there is a map Φt : B1(Xt) → T (X) such that Φt(0) = β(t). The tangent vector β ′(t) then
lives in DΦt(B(Xt)) which may be identified with the tangent space to T (X) at β(t).

Lemma 2.1 Let L0 > 0 be given, let X be a finite area hyperbolic surface, and let γ be a
simple closed geodesic on X of length L ≤ L0. There exists a positive number B depending
only on L0 and a differentiable path β : [0, B] → T (X), with β(t) = (Xt, gt), such that the
following conditions hold:

1. β(0) = (X, id),

2. for all t ∈ [0, B] we have lXt(gt(γ)) ≤ L,

3. β ′(t) = DΦt(µt), ||µt|| ≤ 1 and the support of µt is contained in the 2L-thin part
associated to the curve gt(γ), and

4. lXB
(gB(γ)) ≤ L

2
.

Recall that ||µt|| denotes the L∞-norm of |µt|. Thus, applying equation (2) in section 2.1,
we see that ||µt|| ≤ 1 implies that ||β ′(t)|| ≤ 1, so β([0, B]) has length at most B in T (X).

Proof of 2.1: One may argue as in the proof of Proposition 2 in Maskit [Mas 2] to
show that there is a constant a > 0 (depending only on L0) such that if X is a finite area
hyperbolic surface and γ is a geodesic of length L ≤ L0, then there is an annulus A contained
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within the 2L-thin part associated to γ such that γ is a core curve of A and mod(A) ≥ a
L
.

Moreover, Proposition 1 of [Mas 2] shows that if A′ is an incompressible annulus in a finite
area hyperbolic surface with modulus at least 4π2

L
, then the geodesic homotopic to the core

curve of A′ has length at most L
2
. Set

B =
1

2
log

(
4π2

a

)
.

Let A be the annulus provided by the previous paragraph and let m = mod(A). We may
conformally identify A with the planar annulus

{1 < |z| < em}

and let
At = {1 < |z| < eme2t}.

Let ft : A→ At be the Teichmüller map

ft(z) = z|z|e2t−1

with associated Beltrami differential µt. The resulting path β̂ : [0,∞) → T (A) is a unit
speed geodesic in T (A) and each tangent vector β̂ ′(t) is represented by a unit norm Beltrami
differential supported on At.

Extend each µt to a Beltrami differential µ̂t on X by setting µ̂t equal to 0 on X−A. Then
one may use the Measurable Riemann Mapping Theorem to produce a path of quasiconformal
maps {gt : X → Xt} and hence a path β : [0, B] → T (X). For each t in the interval [0, B]
the annulus gt(A), is conformally equivalent to At and the tangent vector β ′(t) is represented
by a unit-norm Beltrami differential supported on gt(A). Moreover, gB(A) has modulus at
least 4π2

L
, so lXB

(gB(γ)) ≤ L
2
as required.

It remains to check that for all t ∈ [0, B] we have that lXt(gt(γ)) ≤ L and that gt(A) is
contained in the 2L-thin part of Xt. Notice that Xt is conformally equivalent to the surface
obtained by cutting X along γ and inserting a Euclidean annulus Et whose core geodesic
has length L. The conformal equivalence maps the annulus gt(A) to the annulus A′t which
is obtained by cutting A along γ and inserting Et.

It follows from Proposition 2.2 of Tanigawa [Tan] (see also the discussion preceding
Theorem 3.1 of McMullen [Mc 2]) that the hyperbolic metric on Xt is (pointwise) bounded
from above by the singular metric which agrees with the hyperbolic metric on X and with
the Euclidean metric on Et. Since A is contained in the 2L-thin part of X associated to γ,
we see immediately gt(A) is contained in the 2L-thin part of Xt associated to gt(γ) and that
lXt(gt(γ)) ≤ L.

2.1
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2.3 The deformation space CC0(M)

Let M be a compact, oriented, irreducible, atoroidal 3-manifold with non-empty boundary
and no toroidal boundary components. Let [ρ0] denote a fixed conjugacy class in CC0(M).
Then there exists a homeomorphism h : M → N̄ρ0 such that [h∗] = [ρ0] and ∂cNρ0 is
a Riemann surface homeomorphic to ∂M . If [ρ] is another conjugacy class in CC0(M)
then Marden’s Isomorphism theorem [Mar 1] implies that there exists a quasiconformal map
φ̃ : Ĉ → Ĉ such that φ̃ρ0(g)φ̃

−1 = ρ(g) for all g ∈ π1(M). The map φ̃ descends to a
quasiconformal map φ : ∂cNρ0 → ∂cNρ and φ extends to a homeomorphism φ̄ : N̄ρ0 →
N̄ρ such that [(φ̄ ◦ h)∗] = [ρ]. In particular, (∂cNρ, φ) may be thought of as a point in
the Teichmüller space T (∂cNρ0) of all (marked) Riemann surfaces homeomorphic to ∂cNρ0 .
However, if we precompose φ by a quasiconformal self-map ψ of ∂cNρ0 which extends to
a homeomorphism of N̄ρ0 that is homotopic to the identity, then (∂cNρ, φ ◦ ψ) is another
point in T (∂cNρ0) which is naturally associated to ρ. Using work of Bers, Kra and Maskit
(see Bers [Bers 2] or [CaMc]) we may identify CC0(M) with T (∂cNρ0)/Mod0(ρ0), where
Mod0(ρ0) denotes the group of isotopy classes of quasiconformal automorphisms of ∂cNρ0

which extend to maps of N̄ρ0 that are homotopic to the identity. Maskit [Mas 1] showed
that Mod0(ρ0) acts freely and properly discontinuously on T (∂cNρ0).

Since ∂cNρ0 is homeomorphic to ∂M we may identify T (∂cNρ0) with T (∂M) and Mod0(ρ0)
with the group Mod0(M) of isotopy classes of homeomorphisms of M that are homotopic
to the identity. The space T (∂M) may be identified with the set of equivalence classes
of pairs (Y, f), where Y is a Riemann surface, f : ∂M → Y is an orientation-preserving
homeomorphism, and two pairs (Y1, f1) and (Y2, f2) are equivalent if there exists a conformal
map g : Y1 → Y2 that is homotopic to f2◦f−11 . For the remainder of the paper, we will identify
CC0(M) with T (∂M)/Mod0(M) and let qM : T (∂M)→ CC0(M) denote the quotient map.
With this identification, if (Y, f) ∈ T (∂M) and qM(Y, f) = [ρ], then one may identify ∂cNρ

with the Riemann surface Y and f extends to a homeomorphism f̄ : M → N̄ρ such that
[f̄∗] = [ρ].

If a is any element of π1(M), then there is a natural map Υa : CC0(M)→ CC0(S
1×D2)

given by Υa([ρ]) = [ρa] where ρa denotes the restriction of ρ to the cyclic subgroup 〈a〉 of
π1(M) generated by a. We can identify CC0(S

1×D2) with T (T 2)/Mod0(S
1×D2). Explicitly,

T (T 2) can be identified with H2 so that Mod0(S
1 × D2) is generated by z 7→ z + 1. Let

qT : T (T 2)→ CC0(S
1 ×D2) denote the quotient map. Notice that, since T (∂M) is simply

connected, Υa lifts to a map Υ̃a : T (∂M)→ T (T 2).
Since Mod0(M) and Mod0(S

1×D2) act freely, properly discontinuously and by isometries
(of the Teichmüller metrics) on T (∂M) and T (T 2), both CC0(M) and CC0(S

1×D2) inherit
the structure of a smooth manifold with a quotient Teichmüller metric. It follows that if
qM(Y, f) = [ρ] then we have an identification between the tangent spaces T[ρ](CC0(M)) and
T(Y,f)(T (∂M)) and between the tangent spaces TΥa([ρ])(CC0(S

1 ×D2)) and T
Υ̃a(Y,f)

(T (T 2)).

Moreover, we have a projection map Φ = qM ◦ Φ from B1(Y )→ CC0(M) whose derivative,
at the basepoint, agrees with DΦ once we have identified T[ρ](CC0(M)) with T(Y,f)(T (∂M)).

If we set Γ = ρ(π1(M)), then we may identify B1(Y ) with the space B1(Ω(Γ),Γ) of Γ-
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invariant Beltrami differentials on Ω(Γ). (A Beltrami differential µ̃ on Ω(Γ) is said to be Γ-

invariant if µ̃(γ(z)) = µ̃(z)
(
γ′(z) / γ ′(z)

)
for all γ ∈ Γ, in which case µ̃ is a lift of a Beltrami

differential µ on Y .) Similarly, we may identify B1(Υ̃a(Y )) with B1(Ω(〈ρ(a)〉), 〈ρ(a)〉). The
map Υ̃a lifts again to a map

Υ̂a : B1(Ω(Γ),Γ)→ B1(Ω(〈ρ(a)〉), 〈ρ(a)〉)

which is simply the inclusion map. (Formally, if µ ∈ B1(Ω(Γ),Γ), then Υ̂a(µ) is obtained
from µ by setting Υ̂a(µ) equal to 0 at any point in Ω(〈ρ(a)〉) − Ω(Γ).) We thus have the
following commutative diagram:

B1(Y )
Υ̂a→ B1(Υ̃a(Y ))

Φ ↓ Φ ↓
T (∂M)

Υ̃a→ T (T 2)
qM ↓ qT ↓

CC0(M)
Υa→ CC0(S

1 ×D2)

Taking derivatives we obtain:

B(Y )
DΥ̂a→ B(Υ̃a(Y ))

DΦ ↓ DΦ ↓
T(Y,f)(T (∂M))

DΥ̃a→ T
Υ̃a(Y,f)

(T (T 2))

DqM ↓ DqT ↓
T[ρ](CC0(M))

DΥa→ TΥa([ρ])(CC0(S
1 ×D2))

.

Notice that DΥ̂a : B(Y ) → B(Υ̃a(Y )) is simply the inclusion map from B(Ω(Γ),Γ)
to B(Ω(〈ρ(a)〉), 〈ρ(a)〉), since it is the derivative of the inclusion map. In particular, if
DΦ(µ) ∈ TY (T (∂M)) and µ̃ is a lift of µ to Ω(Γ), then µ̃ is also the lift of a representative
of DΥ̃a(DΦ(µ)) to Ω(〈ρ(a)〉).

2.4 Pinchable collections of curves

If M is a compact, oriented, atoroidal, irreducible 3-manifold with no toroidal boundary
components, then a disjoint collection of non-parallel simple closed curves C in ∂M is said
to be pinchable if every curve in C is homotopically non-trivial in M and if there is no
essential annulus in M both of whose boundary components are homotopic in ∂M to curves
in C.

It is a consequence of Thurston’s uniformization theorem (see Morgan [Mo]) that if C is
any pinchable pants decomposition of ∂M , then there exists a maximal cusp [ρ] such that
M−C is homeomorphic to N̄ρ by an orientation-preserving homeomorphism h :M−C → Nρ

with [h∗] = [ρ]. Keen, Maskit and Series [Ke-Mas-Se] established that the maximal cusp [ρ]
is uniquely determined by the free homotopy classes (in M) of the curves in C.
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If ρ ∈ CC0(M) and C = {c1, . . . , cm} is a pinchable collection of curves in ∂cNρ then
each element of C is associated to a conjugacy class of hyperbolic elements of ρ(π1(M)),
since each element of C is homotopically non-trivial in N̄ρ and every non-trivial element of
ρ(π1(M)) is hyperbolic. The conjugacy classes are distinct, since otherwise there would be
an essential annulus in N̄ρ joining distinct elements of C. Each element in the conjugacy
class determined by an element of C is primitive, since otherwise there would be an essential
annulus in N̄ρ with both boundary components parallel to a single component of C.

2.5 A metric on AH(π1(M))

Proposition 2.2 below assures us that we may find a finite collection of elements of π1(M)
whose squared traces give rise to a proper embedding of AH(π1(M)) into Cm for some m.
We may then use this embedding to construct a metric on AH(π1(M)).

Let G be a finitely generated group. If we let τg(ρ) denote the square of the trace of ρ(g),
then τg is a well defined continuous function on Hom(G,PSL2(C)). (Notice that although
the trace of an element of PSL2(C) is not well defined, its square is well defined.) Since τg
is invariant under conjugation, it descends to a continuous function τ̄g : AH(G)→ C.

Proposition 2.2 Let M be a compact, orientable, irreducible, atoroidal 3-manifold whose
boundary has a non-torus component. Suppose that F is a finite set of primitive conjugacy
classes in π1(M). Then there exists a finite set {a1, . . . , am} of primitive elements of π1(M)
such that

1. no a±1i belongs to a conjugacy class in F ;

2. if [ρ1], [ρ2] ∈ AH(π1(M)) and τ̄ai([ρ1]) = τ̄ai([ρ2]) for all i = 1, . . . , m, then [ρ1] = [ρ2];
and

3. given any K > 0, the set

{[ρ] ∈ AH(π1(M))|
m∑

i=1

|τ̄ai(ρ)| ≤ K}

is compact.

If A = {a1, . . . , am} is a collection of primitive elements of π1(M) which satisfies condi-
tions (2) and (3) of Proposition 2.2 then we call A an allowable collection of test elements.
Then τ : AH(π1(M))→ Cm given by τ(ρ) = (τai(ρ)) is a proper embedding of AH(π1(M))
into Cm. We let dA be the metric on AH(π1(M)) which it inherits as a subset of Cm.
Explicitly,

dA([ρ1], [ρ2]) =

√√√√
m∑

i=1

|τ̄ai([ρ1])− τ̄ai([ρ2])|2.

The following three lemmas will be needed for the proof of Proposition 2.2. Our first
lemma will be used to obtain Property 1.
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Lemma 2.3 Let G be a finitely generated group which admits a homomorphism onto Z⊕Z.
Let F be a finite set of conjugacy classes in G. Then there is a finite set {h1, . . . , hn} of
generators of the group G with the property that no power of any element of a conjugacy
class in F can be written as a non-empty positive word in h1, . . . , hn.

Proof of 2.3: We may assume without loss of generality that F−1 = F . We fix a
generating set {g1, . . . , gn} for G and a surjective homomorphism φ : G → Z ⊕ Z. We set
vi = φ(gi) ∈ Z ⊕ Z for i = 1, . . . , n. Since the homomorphism φ is surjective, the elements
v1, . . . , vn generate Z ⊕ Z. If we regard Z ⊕ Z as a lattice in R2, it follows that two of the
vectors vi, which after re-indexing we may take to be v1 and v2, are linearly independent in
R2. Hence if Lj denotes the linear subspace of R2 spanned by v1 + jv2 for each j ≥ 0, the
Lj are all 1-dimensional and pairwise distinct.

We fix a finite set S ⊂ Z⊕ Z−{0} ⊂ R2−{0} such that φ maps every conjugacy class in
F to an element of S∪{0}. Since the Li are distinct 1-dimensional subspaces ofR2 and 0 6∈ S,
there is an integer m ≥ 0 such that Lm ∩ S = ∅. We set L = Lm. We also set d1 = g1g

m
2 ,

and observe that {d1, g2, . . . , gn} is a generating set for G, and that w1 = φ(d1) = v1 +mv2
is a non-zero vector in L. Let r ⊂ L denote the open ray from the origin which contains w1.
Since the finite set S is disjoint from L, there is an open neighborhood V of r in R2, whose
frontier is the union of two rays from the origin, such that S ∩ V = ∅. Note that 0 6∈ V .

For i = 2, . . . , n and for each k ≥ 0, let us set d
(k)
i = gid

k
1, and w

(k)
i = φ(d

(k)
i ) = vi + kw1.

For each k ≥ 0 the set {d1, d(k)2 , . . . , d(k)n } generates G. We have

w
(k)
i

k
=
vi
k
+ w1 → w1 ∈ r

as k →∞, and since V is invariant under positive dilatations it follows that for large enough
k we have w

(k)
i ∈ V for i = 2, . . . , n. Fixing such a k, we claim that the generating set

{d1, d(k)2 , . . . , d(k)n } has the property stated in the lemma, that no power of any element of a

conjugacy class in F can be written as a non-empty positive word in d1, d
(k)
2 , . . . , d(k)n .

Indeed, suppose to the contrary that for some element a ∈ G whose conjugacy class
belongs to F , some power of a, say ah with h ∈ Z, can be written as a non-empty positive
word in d1, d

(k)
2 , . . . , d(k)n . Since F−1 = F we may take h to be non-negative. Set z = φ(a).

Then hz = φ(ah) is a linear combination, with strictly positive coefficients, of some non-

empty subset of {w1, w
(k)
2 , . . . , w(k)

n } ⊂ V . As V is clearly invariant under positive linear
combinations it follows that hz ∈ V and hence that z ∈ V . But since the conjugacy class of
a belongs to F we have z ∈ S ∪ {0}, and the latter set is disjoint from V .

2.3

In the remainder of the section we will make use of the theory of the SL2(C)-character
variety of G, which is presented in Section 1 of [CS1]. Let R(G) = Hom(G, SL2(C)). For
each g ∈ G let tg : R(G) → C be the function defined by tg(ρ) = trace ρ(g). Let T denote
the ring generated by all functions of the form tg for g ∈ G. The discussion given in [CS1]
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depends on a finite subset W ⊂ G such that the functions tg for g ∈ W generate T ; in what
follows we shall fix a generating set {h1, . . . , hn} for G, and take W to consist of all elements
of the form hi1 · · ·hik with 1 ≤ i1 < · · · < ik ≤ n. It follows from Proposition 4.4.2 of [Sh]
that W has the required property. According to the definition given in [CS1], the SL2(C)-
character variety of G, denoted by X(G), is the set t(R(G)) ⊂ CW , where t : R(G)→ CW is
the map defined by t(ρ) = (tg(ρ))g∈W . Corollary 1.4.5 of [CS1] asserts that X(G) is a closed
affine algebraic subset of CW . Moreover (see Proposition 1.5.2 in [CS1]) if ρ1, ρ2 ∈ R(G) are
irreducible, then t(ρ1) = t(ρ2) if and only if ρ1 and ρ2 are conjugate.

The following result is standard and we will omit its elementary proof.

Lemma 2.4 Let G be a finitely generated group, and let (ρi)i≥0 be a sequence of repre-
sentations in R(G) such that (t(ρi))i≥0 converges in X(G) to t(ρ), where ρ ∈ R(G) is an
irreducible representation. Then there is a sequence of representations (ρ′i)i≥0 in R(G) such
that ρ′i is conjugate to ρi for each i ≥ 0, and (ρ′i)i≥0 converges to ρ in R(G).

The next lemma will allow us to obtain properties 2 and 3 of Proposition 2.2. We recall
that a representation into PSL2(C) or SL2(C) is reducible if it is conjugate to a representa-
tion whose image lies entirely in the subgroup of upper triangular matrices, otherwise the
representation is called irreducible.

Lemma 2.5 Let G be a finitely generated, non-abelian, torsion-free group, let {h1, . . . , hn}
be a generating set for G, and let Q denote the set of all elements of G that may be written as
positive words of length at most n+1 in the hi. If ρ1 and ρ2 are irreducible representations of
G in PSL2(C) such that τg(ρ1) = τg(ρ2) 6= 0 for every g ∈ Q, then ρ1 and ρ2 are conjugate.
Furthermore, if K > 0 then

K = {[ρ] ∈ AH(G) |
∑

g∈Q
|τ̄g([ρ])| ≤ K}

is a compact subset of AH(G).

Proof of 2.5: To prove the first assertion of the lemma, we consider the free group Fn

on generators x1, . . . , xn and the homomorphism h : xi 7→ hi from Fn to G. It is clearly
enough to prove that the conclusion holds when G, ρ1 and ρ2 are replaced by Fn, ρ1 ◦ h and
ρ2 ◦h; hence we may assume without loss of generality that G = Fn is free on the generators
h1, . . . , hn.

For i = 1, . . . , n we choose matrices Ã
(1)
i , Ã

(2)
i ∈ SL2(C) which map to ρ1(hi) and ρ2(hi)

under π. Since τhi(ρ1) = τh2(ρ2), we may choose the A
(j)
i in such a way that traceA

(1)
i =

traceA
(2)
i for i = 1, . . . n. For j = 1, 2 we define a representation ρ̃j : Fn → SL2(C) by

ρ̃j(hi) = Ai, so that π ◦ ρ̃j = ρj.
We claim that t(ρ̃1) = t(ρ̃2). By definition this means that trace ρ̃1(g) = trace ρ̃2(g)

for every g ∈ W ⊂ Q. Any element g ∈ W may by definition be written in the form
hi1 · · ·hik with 1 ≤ i1 < · · · < ik ≤ n, and we prove the required equality by induction on
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k ≥ 1. For k = 1 the equality follows from our choice of the A
(j)
i . For k > 1 we may write

g = ab where a = hi1 · · ·hik−1
and b = hik , so that by the induction hypothesis we have

trace ρ̃1(a) = trace ρ̃2(a) = α, say, and by the base case trace ρ̃1(b) = trace ρ̃2(b) = β, say.
Since g ∈ W ⊂ Q, the hypothesis gives τg(ρ1) = τg(ρ2). Hence trace ρ̃1(g) = ± trace ρ̃2(g).
To complete the induction we will assume that trace ρ̃1(g) = − trace ρ̃2(g) and obtain a
contradiction. Set γ = trace ρ̃1(g), so that trace ρ̃2(g) = −γ. From the identity

(traceY )(traceZ) = traceY Z + traceY Z−1,

which holds for all Y, Z ∈ SL2(C) (see [CS1], proof of Proposition 1.4.1), by setting Y = ρ̃j(g)
and Z = ρ̃j(b) for j = 1, 2, we obtain

trace ρ̃j(gb) = (trace ρ̃j(g))(trace ρ̃j(b))− trace ρ̃j(a),

so that trace ρ̃1(gb) = γβ − α and trace ρ̃2(gb) = −(γβ + α). But we have gb ∈ Q, so that
τgb(ρ1) = τgb(ρ2) and hence trace ρ̃1(gb) = ± trace ρ̃2(gb); that is,

γβ − α = ±(γβ + α).

But this last equality is possible only if one of the (complex) numbers α, β or γ is 0; and
since a, b and g belong to W ⊂ Q, the hypothesis implies that the numbers τa(ρ1) = α2,
τb(ρ1) = β2 and τg(ρ1) = γ2 are nonzero. This is the desired contradiction, and the claim is
proved.

Since ρj : G→ PSL2(C) is assumed to be irreducible for j = 1, 2 it follows that ρ̃j : G→
PSL2(C) is irreducible. Since t(ρ̃1) = t(ρ̃2), it now follows that ρ̃1 and ρ̃2 are conjugate.
This immediately implies that ρ1 and ρ2 are conjugate. This proves the first assertion in the
free case. (An alternate proof of the first assertion is provided by Lemma 3.1 of [BZ].)

To establish the second assertion, we need to show that any sequence [ρi] of points of K
has a convergent subsequence. We construct, for each i, a representation ρ̃i : Fn → SL2(C)
such that π ◦ ρ̃i = ρi ◦ h. For each i ≥ 0 and each g ∈ Q, the hypothesis guarantees that

|tg(ρ̃i)| =
√
|τg(ρi)| is bounded as i→∞. As this applies in particular when g ∈ W , it follows

that in the sequence (t(ρ̃i)i≥0) of points of X(Fn), all the coordinates are bounded. Hence
after passing to a subsequence we may assume that (t(ρ̃i)) converges to a point χ = t(ρ̃) for
some ρ̃ ∈ R(Fn). Since G is isomorphic to the torsion-free, non-abelian, discrete subgroup
ρ0(G) of PSL2(C), there exist elements a and b of G which generate a free subgroup of rank
2. If ρ̃ were reducible, then we would have ta(ρ̃) = taba−1b−1(ρ̃) = 2. But, since K ⊂ AH(G),
Jørgensen’s inequality (see [Jo, Lemma 1]) guarantees that |ta(ρ̃i)2−4|+|taba−1b−1(ρ̃i)−2| ≥ 1
for all i. Hence ρ̃ must be irreducible.

It now follows from Lemma 2.4 that the ρ̃i are conjugate in SL2(C) to representations ρ̃′i
such that ρ̃′i → ρ̃. If P : SL2(C)→ PSL2(C) denotes the natural homomorphism, it follows
that ρ′i = P ◦ ρ̃′i converges to ρ = P ◦ ρ̃i, and hence that [ρi] = [ρ′i] converges to [ρ]. But, ρ
is a discrete faithful representation, since the discrete faithful representations form a closed
subset of Hom(G,PSL2(C)) (see [Jo, Theorem 1].)

2.5
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Proof of Proposition 2.2: Since M is a compact orientable 3-manifold with a non-torus
boundary component, it follows from Poincaré-Lefschetz duality that the first betti number
ofM is at least 2. Hence there is a surjective homomorphism φ : π1(M)→ Z⊕Z. Moreover,
π1(M) is finitely generated and non-abelian. By Lemma 2.3 it follows that there is a finite
set {h1, . . . , hn} of generators of the group G with the property that no power of any element
of a conjugacy class in F can be written as a non-empty positive word in h1, . . . , hn.

Now set m =
∑n+1

i=1 n
i, and let Q = {b1, . . . , bm} be the nontrivial elements of π1(M)

which can be written as positive words of length at most n + 1 in the hi. Since π1(M)
admits a discrete faithful representation in PSL2(C), the centralizer of the nontrivial element
bi ∈ π1(M) is a free abelian group of rank at most 2, for i = 1, . . . , m. Hence we may
write bi as a positive power adii of some primitive element of π1(M). It follows from our
choice of {h1, . . . , hn} that no a±1i belongs to a conjugacy class in F . This is conclusion
1 of the proposition. To prove conclusion 2, suppose that [ρ1], [ρ2] ∈ AH(π1(M)) satisfy
τ̄ai([ρ1]) = τ̄ai([ρ2]) for all i = 1, . . . , m. Since π1(M) is non-abelian and torsion-free and ρi
is discrete and faithful, for i = 1, 2, ρi(π1(M)) is not solvable, ρi is irreducible and τg(ρi) 6= 0
for any g ∈ π1(M). If bi ∈ Q, then τ̄ai([ρ1]) = τ̄ai([ρ2]), which implies, since bi = adii , that
τ̄bi([ρ1]) = τ̄bi([ρ2]). Hence by the first assertion of Lemma 2.5 we have [ρ1] = [ρ2].

To prove conclusion 3, we apply the second assertion of Lemma 2.5. Let

K′ = {[ρ] ∈ AH(π1(M))|
m∑

i=1

|τ̄ai([ρ])| ≤ K}.

It is easy to check that if A ∈ PSL2(C), then |tr(Ad)| ≤ (|tr(A)| + 1)d + 1 for any positive
integer d, so K′ is a closed subset of

K =

{
[ρ] ∈ AH(π1(M))|

m∑

i=1

|τ̄bi([ρ])| ≤ m
(
(
√
K + 1)D + 1

)2
}

where D = max{d1, . . . , dm}. But Lemma 2.5 implies that K is compact, so K′ is also
compact.

2.2

2.6 An outline of the argument

In order to provide an outline of the argument we fix a point [ρ] on the boundary of CC0(M)
such that Ω(ρ) = ∅. Let ([ρ̄n]) be a sequence in CC0(M) converging to [ρ]. We must find a
sequence ([ρ̂n]) of maximal cusps in ∂CC0(M) which also converges to [ρ].

The following observation of Bers allows us to conclude that ∂cNρ̄n has a pants decom-
position of uniformly bounded length.
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Proposition 2.6 (Bers) Given any A > 0, there exists a constant k1 such that any hyper-
bolic surface of area at most A has a pants decomposition of length at most k1.

In the proof of Proposition 4.1 we use Proposition 2.6 together with Lemma 2.1 and
Sullivan’s rigidity theorem to produce a new sequence ([ρn]) in CC0(M) converging to [ρ]
such that if Cn is the shortest pants decomposition of ∂cNρn , then the length l(Cn) of Cn in
∂cNρn , converges to 0. Proposition 3.1 will allow us to conclude that, for all large enough n,
Cn is pinchable.

Proposition 2.2 allows us to choose an allowable collection A = {a1, . . . , am} of test
elements such that no element of A is taken to a parabolic element by ρ.

Our main local estimate, Theorem 14.1, asserts that if ρ ∈ CC0(M) and µ is a unit norm
Beltrami differential supported on the portion of the 2L-thin part of ∂cNρ associated to a
pinchable collection of simple closed geodesics, thenDΥa(DΦ̄(µ)) has length O(L) (assuming
that L is sufficiently close to 0 and that ρ(a) has moderate real translation length.) By
iterative application of Lemma 2.1 we may produce, for each n, an infinite path βn: [0,∞)→
T (∂M) which begins at a lift of ρn to T (∂M) and which pinches the length of Cn to 0.
For each t the tangent vector β ′n(t) is represented by a Beltrami differential supported on
the appropriate thin part. If we apply the estimate coming from Theorem 14.1 we see that
Υai(βn) has length O(l(Cn)) in CC0(S

1 × D2) for each ai ∈ A. It is then easily checked
that qM(βn) has length O(l(Cn)) in the dA-metric on AH(π1(M)) and hence accumulates at
some conjugacy class [ρ̂n]. Since the homotopy class of any component of Cn is mapped to
a parabolic by ρ̂n, one may apply work of Keen, Maskit and Series [Ke-Mas-Se], to see that
[ρ̂n] is a maximal cusp. The estimates also give that ([ρ̂n]) converges to [ρ].

In section 6 we will assemble the proof, assuming Theorem 14.1. Most of the remainder
of the paper will be devoted to the analytical proof of this local estimate. An outline of the
ideas underlying the analytical arguments is given in section 7. Extensions and corollaries
of the Main Theorem appear in sections 15 and 16.

Our rough outline of argument is similar to the outline of proof of McMullen’s result in
[Mc 1], although there are several key differences. Most importantly, McMullen bounds the
rate of change of the Schwarzian derivative during the pinching. Since there is no analogue
of the Schwarzian derivative in our setting, we instead bound the change of the complex
lengths of a collection of test elements. We do so by bounding the induced deformation in
the Teichmüller space of the torus associated to each test element. The proof of Theorem
14.1, which is used to obtain the bounds, uses much of the analytical machinery developed in
[Mc 1] in combination with a number of estimates obtained by applying the Margulis lemma
to the subgroup generated by a test element and a pinching element. This change also
necessitated the development, in section 2.5, of an explicit metric on AH(π1(M)) associated
to a well-chosen collection of test-elements. Furthermore, in McMullen’s setting any pants
decomposition is pinchable, which is not the case in our situation. Proposition 3.1 was
developed to check that our chosen pants decompositions are indeed pinchable.
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3 Bounded pants are eventually pinchable

In this section we will see that if a sequence ([ρn]) in CC0(M) converges to [ρ], where
Ω(ρ) = ∅, and if Cn is a bounded length collection of curves in the conformal boundary of
Nρn , then Cn is pinchable for all large enough n.

Proposition 3.1 Let M be a compact, oriented, atoroidal, irreducible 3-manifold whose
boundary is non-empty and contains no tori. Let (ρn) be a sequence of convex cocompact
uniformizations of M converging to ρ : π1(M) → PSL2(C), such that Ω(ρ) = ∅. If K > 0
and, for each n, Cn is a collection of disjoint simple closed geodesics on ∂cNρn of total length
at most K, then Cn is pinchable for all sufficiently large n.

In the proof, we will need to use a few facts about the convex core of a hyperbolic 3-
manifold. The convex core C(N) of a hyperbolic 3-manifoldN = H3/Γ is the smallest convex
submanifold whose inclusion is a homotopy equivalence. More concretely, if Λ(Γ) = Ĉ−Ω(Γ)
is the limit set of Γ then C(N) is the quotient of the convex hull CH(Λ(Γ)) under the action
of Γ. The hyperbolic metric on N induces an intrinsic metric on the 2-manifold ∂C(N)
which is itself hyperbolic. The nearest point retraction r : N → C(N) sends a point of N to
the (unique) point nearest to it in the convex core. There is a continuous extension of r to
a map r̄ : N ∪ ∂cN → C(N). If Γ does not preserve a circle in Ĉ, then r̄ is homotopic to a
homeomorphism between N̄ and C(N). (See Epstein-Marden [Ep-Mar] for more details on
the convex core and the nearest point retraction.)

Canary [Ca] showed that curves of “moderate” length in the conformal boundary also
have “moderate” length in the boundary of the convex core, with respect to its intrinsic
metric.

Theorem 3.2 Let N be a hyperbolic 3-manifold and let γ be a closed geodesic of length L
in ∂cN , then

l∂C(N)(r(γ)
∗) ≤ 45Le

L
2

where r(γ)∗ denotes the geodesic in the intrinsic metric on ∂C(N) in the homotopy class of
r(γ).

Proof of Proposition 3.1: Let {g1, . . . , gk} be a set of generators for π1(M). Fix a point
x0 ∈ H3. Since (ρn) converges, there exists a uniform upper bound S on d(x0, ρn(gi)(x0))
for all i and n. Moreover, there exists δ > 0 such that if d(x0, x) ≤ S, then d(x, γ(x)) ≥ 2δ
for any γ ∈ ρn(π1(M) − {id}) and any n. In particular, if γi,n is the image in Nn = Nρn of
the geodesic joining x0 to ρn(gi)(x0), then injNn

(y) ≥ δ at any point y of γi,n.
Let r̄n : N̄n → C(Nn) be the nearest point retraction. Theorem 3.2 implies that r̄n(Cn) is

homotopic, in ∂C(N), to a collection C ′n of curves in ∂C(N) of length at mostK ′ = 45KeK/2.
We notice that for all large enough n, ρn(π1(M)) does not preserve a circle, since otherwise
ρ(π1(M)) would preserve a circle. This would imply that Λ(ρ) is contained in a circle, which
would contradict our assumption that Ω(ρ) = ∅. Therefore, we may assume that r̄n is
homotopic to a homeomorphism for all n.



§3. Bounded pants are eventually pinchable 17

If the theorem fails, we can pass to a subsequence, again called (ρn), such that Cn is
not pinchable for any n. Therefore, there exists, for all n, a surface Bn which is either a
compressing disk or an immersed essential annulus with boundary contained in Cn. So, there
exists a surface B ′n in C(Nn), which is properly homotopic, in C(Nn), to r̄n(Bn) and is either
a compressing disk or an immersed essential annulus with boundary contained in C ′n. In
particular, the boundary of B ′n has length at most 2K ′.

We claim that each surface B ′n is homotopic, rel boundary, to a surface Yn with the
following property: if x is a point of Yn and if the injectivity radius injNn

(x) is greater than
δ, then the distance in Nn from x to ∂Yn is less than k(δ) for some uniform constant k(δ).

To construct Yn we first subdivide ∂B′n into subarcs of length less than 1. If B ′n is a disk
we arrange that there are at least three subarcs in the subdivision, and if B ′n is an annulus
then we arrange that there be at least one subdivision point on each boundary component.
We may then extend this subdivision of ∂B ′n to a topological triangulation of B ′n with all
vertices on the boundary. That is, we have a collection E of arcs in B ′n, which are either
elements of the subdivision of ∂B ′n or properly embedded arcs whose endpoints are also
endpoints of subdivision arcs; furthermore the closure of each component of B ′n−E is a disk
whose boundary consists of three arcs of E . In the case that B ′n is an annulus we may easily
arrange that each arc of E which is not contained in ∂B ′n has an endpoint on each boundary
component. For each arc e ∈ E let e′ be the geodesic arc which is homotopic rel endpoints
to e. For each component t of B ′n − E , if we denote the arcs that comprise ∂t̄ by e1, e2 and
e3, then we define t′ to be the geodesic triangle bounded by e′1, e

′
2 and e′3. The union of the

triangles t′ is an immersed hyperbolic surface Xn. Since the area of a hyperbolic triangle is
at most the length of any of its sides, Xn has area at most 2K ′.

The surface B′n is homotopic to Xn by a homotopy Hn such that the track of any point
on ∂B′n has length less than 1. Let Yn be the union of Xn with the annulus (or annuli) which
is the image of ∂B′n × [0, 1] under the homotopy Hn. Clearly Yn is homotopic rel boundary
to B′n.

If Xn is a disk, x ∈ Xn and d(x, ∂Xn) = R, then Xn contains an embedded hyperbolic

ball of radius R, so Xn has area at least 2πR2. So R ≤
√

K′

π
. It follows that if x ∈ Yn, then

d(x, ∂Yn) ≤
√

K′

π
+ 1.

Now suppose that Xn is an annulus. If x ∈ Xn, then again there is not an embedded

hyperbolic ball of radius
√

K′

π
about x. If x ∈ Xn and injNn(x) ≥ δ, then injXn(x) ≥ δ,

so either d(x, ∂Xn) ≤
√

K′

π
or there exists a geodesic (in Xn) loop β based at x in X of

length at least 2δ and at most 2
√

K′

π
. If d(β, ∂Xn) = R and d(x, ∂Xn) >

√
K′

π
, then by

considering cylindrical coordinates about β, we see that Xn must have area at least δR. It

follows that d(x, ∂Xn) ≤
√

K′

π
+ 2K′

δ
in either case. Therefore, if y ∈ Yn and injNn(y) ≥ δ,

then d(y, ∂Yn) ≤
√

K′

π
+ 2K′

δ
+ 1.

Let k(δ) = 2K′

δ
+
√

K′

π
+1. In either case, if y ∈ Yn and injNn(y) ≥ δ, then d(y, ∂Yn) ≤ k(δ).

Since the surface Yn is essential and the loops {γi,n} represent generators of π1(Nn, y0,n)
(where y0,n is the image of x0 in Nn), at least one of these loops must meet Yn. Since each
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of these loops has length at most S and every point on each loop has injectivity radius at
least δ, the distance from y0,n to ∂Yn is at most 1+ S + k(δ). This implies that the distance
from x0 to the boundary of ∂CH(Λ(ρn)) is uniformly bounded for all n.

Without loss of generality we may assume that we are working in the ball model and
that x0 is the origin. The inequalities above imply that there exists ε > 0 depending only on
δ and S such that Ω(ρn) contains a disk of radius at least ε in the spherical metric on S2

∞.
We may pass to a subsequence so that (Λ(ρn)) = (Ĉ − Ω(ρn)) converges, in the Hausdorff
topology on closed subsets of Ĉ, to Λ̂. It is immediate that Ĉ − Λ̂ must contain a ball of
radius at least ε. Since Ĉ− Λ̂ ⊂ Ω(ρ), this contradicts our assumption that Ω(ρ) = ∅.

3.1

4 Approximating by sequences with short pants decompositions

In this section we combine Lemma 2.1 and Lemma 3.1 to show that if [ρ] ∈ ∂CC0(M) and
Ω(ρ) = ∅, then ρ may be approximated by convex cocompact uniformizations of M whose
conformal boundaries contain increasingly short pinchable pants decompositions.

Proposition 4.1 Let M be a compact, oriented, irreducible, atoroidal 3-manifold and let
[ρ] ∈ ∂CC0(M), where Ω(ρ) = ∅. There exists a sequence (ρn) of convex cocompact uni-
formizations of M converging to ρ and a sequence (Cn) of pinchable pants decompositions of
∂cNρn such that the length l(Cn) of Cn in ∂cNρn converges to 0.

Proof of 4.1: Since [ρ] ∈ ∂CC0(M), we may choose a sequence ρ̄n of convex cocompact
uniformizations of M which converge to ρ. Bers’ inequality (Proposition 2.6) implies that,
for all n, there exists a pants decomposition of ∂cNρ̄n of length at most k1.

Let B be the constant provided by Lemma 2.1 when L0 = k1 and let K = κB where κ
is the number of curves in a pants decomposition of ∂M . We may iteratively apply Lemma
2.1 to obtain a 1-Lipschitz path βn : [0,∞) → T (∂M) such that qM(βn(0)) = [ρn] and the
surface βn(Kj) has a pants decomposition of length at most k1

2j
.

Let [ρn,j] = qM(βn(Kj)). Since the Teichmüller distance between [ρ̄n] and [ρn,j] is at

most Kj, there exists a e2Kj-quasiconformal map fn,j : Ĉ→ Ĉ such that ρ̄n,j = fn,jρ̄f
−1
n,j .

For this paragraph let j be any fixed positive integer. By post-composing each fn,j
by a Mobius transformations, we may assume that a subsequence of (fn,j) converges to a
e2Kj-quasiconformal map fj such that fjρf

−1
j is a discrete faithful representation. Since

Λ(ρ) = Ĉ, Sullivan’s rigidity theorem ([Sull 1, Theorem VII]) implies that fj is a Mobius
transformation. Therefore, a subsequence of ([ρ̄n,j]) converges to [ρ] in CC0(M).

A diagonalization argument then provides a sequence (ρn) which converges to ρ, such that
if Cn is the shortest pants decomposition of ∂cNρn , then l(Cn) converges to 0. Proposition
3.1 implies that Cn is pinchable for all large enough n, so by excising finitely many terms,
we may assume that Cn is pinchable for all n.

4.1
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5 The main global estimate

In this section, we use Lemma 2.1 and the main local estimate to obtain an estimate on
the distance between a representation with a “short” pants decomposition of its conformal
boundary and its associated maximal cusp. This estimate is the key step in the proof of the
main theorem.

Proposition 5.1 Let M be a compact, oriented, irreducible, atoroidal 3-manifold whose
boundary is non-empty and contains no tori and let A = {a1, . . . , am} be an allowable col-
lection of test elements in π1(M). Given D0 > d0 > 0, there exists L1 > 0 and G > 0 such
that if [ρ] ∈ CC0(M) and

1. C is a pinchable pants decomposition of ∂cNρ of length L < L1,

2. no element of A represents a curve in C, and

3. D0

2
≥ lρ(ai) ≥ 2d0 for all i = 1, . . . , m, where lρ(ai) denotes the real translation distance

of ρ(ai),

then there exists a maximal cusp [ρ̂] ∈ ∂CC0(M) such that

dA([ρ], [ρ̂]) ≤ G L.

The proof of Proposition 5.1 follows rather quickly from the main local estimate:

Theorem 14.1 Given d0 > 0, there exists D6 > 0 and K0 > 0 with the following properties.
Suppose that M is a compact, oriented 3-manifold, a is a primitive element in π1(M), [ρ] ∈
CC0(M) and l(ρ(a)) > d0. Suppose that C is a pinchable collection of disjoint simple closed
geodesics in ∂cNρ, none of which represents ρ(a), such that each element of C has length at
most L where

L ≤ D6e
−l(ρ(a)).

If µ is a unit-norm Beltrami differential on ∂cNρ which is supported on the union of the
2L-thin parts associated to elements of C, then

||DΥa(DΦ̄(µ))|| ≤ K0L.

The proof of Theorem 14.1 will occupy Sections 8 - 14. An outline of the proof of Theorem
14.1 appears in section 7.
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Proof of Proposition 5.1: (Assuming Theorem 14.1) We recall that qT : T (T 2) →
CC0(S

1 ×D2) is the quotient map and we identify π1(S
1 ×D2) with Z. Let

Es =
{
σ ∈ T (T 2)| 2d0 ≤ l(qT (σ)(1)) ≤ D0/2

}

where l(qT (σ)(1)) denote the real translation distance of qT (σ)(1). Similarly, we let

Ef =
{
ρ ∈ T (T 2)| d0 ≤ l(qT (σ)(1)) ≤ D0

}
.

By assumption, for each i = 1, · · · , m, we have that Υai([ρ]) ∈ qT (Es). The sets qT (Es)
and qT (Ef ) are compact subsets of CC0(S

1 × D2). Let δ be the distance, measured in the
(quotient) Teichmüller metric on CC0(S

1×D2), between qT (Es) and the boundary of qT (Ef)
Let h : M → N̄ρ be an orientation-preserving homeomorphism such that [h∗] = [ρ]. Let

B be the constant provided by Lemma 2.1 when L0 = D6 and let B′ = κB where κ is
the number of curves in a pants decomposition of ∂M . Assuming that L1 ≤ D6, we may
apply Lemma 2.1 κ times to obtain a path β : [0, B ′] → T (∂M) with β(t) = (Xt, gt ◦ h)
such that (i) β(0) = (∂cNρ, h), (ii) lXt(gt(C)) ≤ L for all t, (iii) lXB′ (gB′(C)) ≤ L

2
, and

(iv) β ′(t) is represented, for all t, by a unit norm Beltrami differential µt supported on the
2L-thin part of Xt associated to gt(C). If [ρt] = qM(β(t)) and N̄t = N̄ρt , then gt extends to
a homeomorphism ḡt : N̄ρ → N̄t such that [ρt] = [(gt ◦ h)∗].

LetD6 andK0 be the constants associated to d0 in the main local estimate, Theorem 14.1.
Then assuming that L1 ≤ D6e

−D0 , Theorem 14.1 implies that

||DΥai(DΦ̄(µt))|| = ||DΥ̃ai(β
′(t))|| ≤ K0L

for all t such that Υ̃ai(β(t)) ∈ Ef . Therefore, Υ̃ai(β([0, B
′]))∩Ef has length at most K0B

′L.
If we have assumed that L1 <

δ
K0B′

, then this implies that the entire path lies in Ef .
We may iterate this process (reducing the length of C by a factor of 2 at each stage)

to produce an infinite path β : [0,∞) → T (∂M) such that lXt(gt(C)) ≤ L
2n

and β ′(t) is
supported on the L

2n−1 -thin part of Xt for all t ∈ [nB′, (n + 1)B′]. Applying the argument

above we see that Υ̃ai(β([0,∞)) ∩ Ef has length at most

K0B
′
(
L +

L

2
+ · · ·+ L

2k
+ · · ·

)
= 2K0B

′L.

In particular, if L1 ≤ δ
2K0B′

, then Υ̃ai(β([0,∞)) lies entirely in Ef for all i. Let

L1 = min{D6e
−D0 ,

δ

2K0B′
}.

If [ν] ∈ CC0(S
1 × D2), then let τ̄0([ν]) denote the square of the trace of ν(1) where 1

denotes the generator of π1(S
1 × D2) ∼= Z. Then τ̄0 : CC0(S

1 × D2) → C is a smooth
function and τ̄a([ρ]) = τ̄0(Υa([ρ])) for all [ρ] ∈ CC0(M) and all a ∈ π1(M). Since qT (Ef ) is
compact and τ̄0 is smooth, there exists K3 > 0 such that if ν1, ν2 ∈ qT (Ef ), then

|τ̄0(ν1)− τ̄0(ν2)| ≤ K3d(ν1, ν2)
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(where the metric on the right is the quotient Teichmüller metric on CC0(S
1 × D2).) It

follows that, for all i,

τ̄0(qT (Υ̃ai(β([0,∞)))) = τai(qM(β([0,∞)))

has length at most 2K3K0B
′L in C. By definition then qM (β([0,∞))) has length at most

2mK3K0B
′L in the dA-metric on AH(π1(M)). Therefore, there is a conjugacy class [ρ̂] ∈

AH(π1(M)) which is an accumulation point of {qM(β(n))}.
Let C ′ = h−1(C). If η is a curve in C ′, then lXt(gt(h(η))) converges to 0. Let b be an

element of π1(M), such that η is a representative of ρ(b). A result of Sugawa [Su, Proposition
6.1], stated below as Proposition 11.2, implies that the complex translation length of ρt(b)
also converges to 0. Thus, ρ̂(b) is parabolic. Since, C ′ is a maximal, collection of disjoint
simple closed curves in ∂M , Theorem III in [Ke-Mas-Se] guarantees that ρ̂ is a maximally
cusped uniformization of M . Noticing that

dA([ρ̂], [ρ]) ≤ 2mK0K3B
′L,

completes the proof of the result if we take G = 2mK0K3B
′.

5.1

6 Proof of the main theorem

We are now ready for the proof of our main theorem.

Theorem 6.1 (Approximations by maximal cusps) Let M be a compact, oriented, irre-
ducible, atoroidal 3-manifold whose boundary is non-empty and contains no tori. If [ρ] ∈
∂CC0(M) and Ω(ρ) = ∅, then [ρ] can be approximated by maximal cusps in ∂CC0(M).

Proof of 6.1: Let (ρn) and (Cn) be the sequences of representations and pinchable
pants decompositions given by Proposition 4.1. Let F be the collection, necessarily finite,
of conjugacy classes of primitive parabolic elements in ρ(π1(M)). Let A be an allowable
collection of test elements, provided by Proposition 2.2, which does not contain any elements
of F .

We may choose positive constants d0 and D0 such that

4d0 < lρ(ai) <
D0

4

for all i = 1, . . . , m. We use these values of d0 and D0 in all applications of Proposition 5.1.
Let L1 be the constant provided by Proposition 5.1 with our chosen values of d0 and D0.

Since (ρn) converges to ρ and l(Cn) converges to 0, there exists n0 such that if n ≥ n0,
then
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1. 2d0 ≤ lρn(ai) ≤ D0

2
for all i = 1, . . . , m,

2. 45l(Cn)e
l(Cn)/2 < d0, and

3. l(Cn) < L1.

If ρn(cn) is an element of ρn(π1(M)) representing a curve in Cn, then Theorem 3.2 implies
that there is a representative of ρn(cn) in ∂C(Nρn) of length at most 45l(Cn)e

l(Cn)/2 < d0. It
follows that the real translation length l(ρn(cn)) of ρn(cn) is less than d0. So, no curve in Cn

is represented by an element of A.
Proposition 5.1 then implies that, for all n > n0, there exists a maximal cusp [ρ̂n] ∈

∂CC0(M) such that
dA([ρn], [ρ̂n]) ≤ Gl(Cn).

Since, (dA([ρn], [ρ])) and (l(Cn)) both converge to 0, it is clear that ([ρ̂n]) is a sequence of
maximal cusps in ∂CC0(M) converging to [ρ].

6.1

7 An outline of the proof of the main local estimate

We now outline the proof of the main local estimate, Theorem 14.1. Recall that Theorem
14.1 asserts that if ρ ∈ CC0(M), C is a pinchable collection of geodesics in ∂cNρ of length
at most L, and µ is a Beltrami differential supported on the portion of the 2L-thin part of
∂cNρ associated to C, then DΥa(DΦ(µ)) has length O(L), assuming that L is sufficiently
close to 0 and that ρ(a) has moderate real translation length.

We previously observed that if µ̃ is the lift of µ to Ω(ρ), then µ̃ is also a lift of the
representative of DΥa(DΦ(µ)). The length of DΥa(DΦ(µ)) is thus the supremum of the
values of

∫
F φµ̃ where F is a fundamental domain for 〈ρ(a)〉 and φ is the pull-back of a

unit-norm quadratic differential on T (ρ(a)) = Ω(〈ρ(a)〉)/〈ρ(a)〉.
Since µ is supported on the 2L-thin part of ∂cNρ, µ̃ is supported on the union of the

pre-images of these thin parts. If γ is a hyperbolic element of ρ(π1(M)) associated to a
component of the 2L-thin part, then we will define a seahorse Bγ to be a pre-image of a
specified annulus Aγ on Tγ = Ω(〈γ〉)/〈γ〉; see section 8 for a general discussion of seahorses.
Each component of the pre-image of a thin part is contained in a seahorse Bγ ; see Lemma
14.2. Although the components of the pre-images of the thin parts are disjoint, the associated
seahorses need not be.

In section 13 we will explain how to modify a construction of McMullen, to choose a
collection {Eγ}, indexed by a subset G ′ of G, of disjoint sets each of which is contained in a
seahorse Bγ, contains a slightly smaller seahorse, and is invariant under the “generator” γ
of the seahorse Bγ . Moreover, ∪γ∈G′Eγ will be seen to contain the support of µ̃; see Lemma
14.2.
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We thus reduce the proof of Theorem 14.1 to bounding
∫
Bγ
φνγ for each seahorse Bγ

where γ ∈ G ′ and νγ is the restriction of µ̃ to Eγ. In particular, we need to show that
∣∣∣∣∣

∫

Bγ

φνγ

∣∣∣∣∣ ≤ D3L||φ||Bγ . (3)

for some constant D3 > 0. After summing over all γ ∈ G ′ such that Bγ intersects the
fundamental domain F , this will show that

∣∣∣∣
∫

F
φµ̃

∣∣∣∣ ≤ D3L
∑
||φ||Bγ ≤ K0L

for some positive constant K0.
We use a duality principle (see equation 4 in section 9) to reduce equation 3 to an estimate

on the image of φ by the Theta operator associated to the covering of Aγ by Bγ. Our key
tools are an estimate of McMullen’s in a similar situation, stated here as Theorem 9.1, and
an estimate coming from the Margulis lemma, see section 10.

8 Seahorses

In this section, we briefly review the theory of thickened spirals as developed by McMullen.
A hyperbolic Möbius transformation γ will be said to have complex translation length

λ ∈ C if γ is conjugate in the group of Möbius transformations to z 7→ eλz. We will, without
loss of generality, always assume that the imaginary part of a complex translation length lies
in the interval (−π, π].

Let γ be a Möbius transformation with complex translation length λ and distinct fixed
points a and b. We set Ωγ = Ω(〈γ〉) = C − {a, b} and we observe that Tγ = Ωγ/〈γ〉 is a
torus. Consider the covering map pγ : Ωγ → Tγ. Given q ∈ Ωγ , we will construct an explicit
covering pT : C → Tγ which factors through pγ and satisfies pT (0) = pγ(q). Let Sγ be the
Möbius transformation which takes 0 and ∞ respectively to the fixed points a and b of γ
and satisfies Sγ(1) = q. The map pΩ : C → Ω(〈γ〉) given by pΩ(z) = Sγ(e

λz) is a covering
map whose associated group of covering transformations is generated by z 7→ z + 2πi

λ
. We

set pT = pγ ◦ pΩ. Note that the covering transformation z 7→ z + 1 of pT : C → Tγ covers
the deck transformation γ of the intermediate cover pγ : Ωγ → Tγ .

The conformal structure on the torus Tγ determines a flat metric on Tγ which is unique
up to scaling. The flat metric on Tγ lifts to a flat metric on Ωγ . If s ∈ Ωγ and w ∈ p−1Ω (s),
then gs = pΩ({z ∈ C|Im(z) = Im(w)}) is a geodesic in the flat metric on Ωγ and projects to
a closed geodesic on Tγ that passes through pγ(s). One may easily check that Tγ − pγ(gs) is
an annulus of conformal modulus M(γ) = 4π2Re( 1

λ
).

If m ∈ (0,M(γ)), then we can define C(m) = {z ∈ C| m
4π

< Im(z) < M(γ)
2π

− m
4π
}. We

let B(γ,m, q) = pΩ(C(m)) ⊂ Ωγ and A(γ,m, q) = pT (C(m)) ⊂ Tγ . One may also define
A(γ,m, q) to be the annulus obtained by removing from Tγ a right cylinder of modulus m
with central circle pγ(gq). In particular, q projects to a point in Tγ − A(γ,m, q) at maximal
distance from A(γ,m, q).
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Figure 1: The seahorse B(γ,m, q) where γ has fixed points {0, 1} and complex length
λ = 0.5 + (75π/243)i, m = 4.004π and q =∞.

We will refer to B(γ,m, q) as a seahorse. Our definition of a seahorse coincides with Mc-
Mullen’s “thickened spiral.” If Im(λ) is non-zero, the seahorse is bounded by two exponential
spirals connecting the fixed points of γ.

The shapes of seahorses are studied in Section 3.1 of McMullen [Mc 1].

Proposition 8.1 ([Mc 1, Proposition 3.2]) There exist positive constants c1, C1, c2 and C2

such that if γ is a hyperbolic Möbius transformation with fixed points {0, 1} and q =∞, then

1.
c1
|mλ| < diam(B(γ,m, q)) <

C1

|mλ|
where diam(B(γ,m, q)) denotes the Euclidean diameter of B(γ,m, q), and

2. if m < M(γ)/2, then

c2 (diam(B(γ,m, q)))2 ≤ area(B(γ,m, q)) ≤ C2 (diam(B(γ,m, q)))2 .

9 The Theta operator

Given a holomorphic covering π : Y→X of Riemann surfaces and φ ∈ Q(Y ), one may define
a quadratic differential π∗(φ) as follows. If x ∈ X and U is an evenly covered neighborhood
of x, then we define π∗(φ)(x) by summing (π−1)∗(φ) over the components of π−1(U). In
other words,

π∗(φ)(x) =
∑

w∈π−1(x)

(π−1w )∗φ.

The map φ→π∗(φ) defines an operator, called the Poincaré Theta operator, which is denoted

ΘY/X : Q(Y )→Q(X).

Since,

||ΘY/X(φ)|| ≤
∫

X
π∗|φ| =

∫

Y
|φ| = ||φ||,
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ΘY/X has operator norm at most 1.
If µ ∈ B(X) is a Beltrami differential and φ ∈ Q(Y ), then

∫

Y
φπ∗µ =

∫

X
Θ(φ)µ.

In particular, if ||µ|| ≤ 1, then

∣∣∣∣
∫

Y
φπ∗µ

∣∣∣∣ =
∣∣∣∣
∫

X
Θ(φ)µ

∣∣∣∣ ≤
∫

X
|Θ(φ)µ| ≤ ||Θ(φ)|| . (4)

Inequality 4 plays a key role in the proof of Theorem 14.1.
The following estimate is one of the key tools in McMullen’s work.

Theorem 9.1 (Theorem 3.1 in McMullen [Mc 1]) Let γ be a hyperbolic Möbius transforma-
tion with fixed points 0 and 1. Let m be a real number such that M(γ) > m > 4π and set
B = B(γ,m,∞), A = A(γ,m,∞), and Θ = ΘB/A. There exists a constant C3 > 0 such that
for any γ and m as above we have

‖Θ(dz2)‖A
‖dz2‖B

≤ C3

(
m2

M(γ)2
+
m2

e
m
2

)
.

We will need a similar bound on the image under Θ of the quadratic differential dz2

(z−t)2 .
This differential will arise as the pull-back of a quadratic differential on the torus associated
to one of our test elements. McMullen’s original estimate will be the key tool used in our
proof.

Proposition 9.2 Let γ be a hyperbolic Möbius transformation with fixed points 0 and 1 and
complex translation length λ. Let m be a real number such that M(γ) > m > 4π and set
A = A(γ,m,∞), B = B(γ,m,∞), and Θ = ΘB/A. There exist positive constants c4 and C4

such that if γ and m are as above, t is a complex number and |t| > c4/|mλ|, then

‖Θ
(

dz2

(z−t)2
)
‖A

‖ dz2

(z−t)2 ‖B
≤ C4

(
m2

M(γ)2
+
m2

e
m
2

)
.

Proof of 9.2: Let B = B(γ,m, q) and let β0 = supz∈B |z|, so β0 ≤ diam(B) ≤ 2β0.
Proposition 8.1 gives that diam(B) < C1/|mλ|. Choose c4 = 2C1. Since |t| > c4/|mλ|, then
|t| > 2β0. Thus, for every z ∈ B we have

2|t| ≥ |z − t| ≥ |t|
2
.

We also observe that
dz2

(z − t)2
− dz2

t2
=

2zt− z2

t2(z − t)2
dz2.
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and that ∣∣∣∣∣
z(2t− z)

t2(z − t)2

∣∣∣∣∣ dz
2 <

10β0
|t|3 dz

2

for all z ∈ B. Since Θ is a linear operator we have

‖Θ
(

dz2

(z − t)2

)
‖A ≤ ‖Θ

(
dz2

t2

)
‖A + ‖Θ

(
10β0
|t|3 dz

2

)
‖A.

Since 1
(z−t)2 ≥ 1

4t2
for all z ∈ B, ‖ dz2

(z−t)2 ‖B ≥ 1
4
‖dz2

t2
‖B. Combining the last two observations

with the fact that Θ is a linear operator, we obtain

‖Θ( dz2

(z−t)2 )‖A
‖ dz2

(z−t)2 ‖B
≤ 4




1
|t|2 ‖Θ(dz2)‖A

1
|t|2 ‖dz2‖B

+

10β0

|t|3 ‖Θ(dz2)‖A
1
|t|2‖dz2‖B


 = 4

(
1 +

10β0
|t|

)
‖Θ(dz2)‖A
‖dz2‖B

.

Since |t| > 2β0, we see that 4
(
1 + 10β0

|t|

)
< 24. Combining this with McMullen’s estimate,

we obtain
‖Θ( dz2

(z−t)2 )‖A
‖ dz2

(z−t)2 ‖B
≤ 24C3

(
m2

M(γ)2
+
m2

e
m
2

)

and the result follows if we take C4 = 24C3.

9.2

10 An application of the Margulis lemma

The Margulis lemma gives a lower bound on the distance between the axes of hyperbolic
elements of a Kleinian group when one of the hyperbolic elements has a short translation
distance. In this section we will derive an explicit form of this observation which applies to
our situation.

There is a universal constant ε3 > 0, called the Margulis constant, such that any two
infinite order elements of a Kleinian group Γ which both translate some point x ∈ H3 by a
distance less than ε3 lie in an abelian subgroup of Γ (see [BP, Chapter D] for more details.)
Let γ be a primitive hyperbolic element of a Kleinian group Γ and set

Zn
ε3
(γ) = {x ∈ H3|d(x, γn(x)) < ε3}.

The Margulis tube for γ is then defined to be

Zε3(γ) = ∪n∈Z+Z
n
ε3
(γ).

If β ∈ Γ − 〈γ〉, then no non-trivial power of β commutes with a non-trivial power of γ,
so Zε3(β) ∩ Zε3(γ) = ∅. Moreover, since β(Zε3(γ)) = Zε3(βγβ

−1), it follows that β(Zε3(γ)) ∩
Zε3(γ) = ∅.
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Proposition 10.1 There exist positive constants D1 and d1 with the following property.
Suppose that Γ is a Kleinian group, γ is a primitive hyperbolic element in Γ with fixed points
0 and 1 and complex translation length λ and α is a primitive hyperbolic element in Γ with
real translation length l(α) and fixed points t and ∞. If

|λ| ≤ D1e
−l(α)

2 ,

then

|t| ≥ d1
|λ|e

−l(α)
2 .

Proof of 10.1: Let λ = l + iθ. Then Z1
ε3(γ) is empty if l ≥ ε3 and otherwise is a solid

cylinder about Aγ with radius Rγ satisfying ([CS5, 1.3, page 1283])

sinh2(Rγ) =
cosh ε3 − cosh l

cosh l − cos θ
(5)

If D1 ≤ ε3
2
, then l ≤ ε3

2
, so

sinh2(Rγ) ≥
J0

cosh l − cos θ
,

where J0 = cosh ε3 − cosh ε3
2
. Moreover, if D1 ≤ 1, then |λ| ≤ 1, a direct computation shows

that cosh l ≤ 1 + l2 (when l < 1) and that cos θ ≥ 1− θ2/2, hence

cosh l − cos θ ≤ (1 + l2)− (1− θ2/2) ≤ |λ|2.

We therefore have
e2Rγ

4
≥ sinh2(Rγ) ≥

J0
|λ|2 .

Therefore,

Rγ ≥ log

(
J1
|λ|

)
(6)

where J1 = 2
√
J0.

Let L be the unique common perpendicular to the axes Aγ and Aα, with intersection
points Qγ and Qα respectively. Since α(Zε3(γ)) ∩ Zε3(γ) = ∅, Aα ∩ Z1

ε3
(γ) has length less

than l(α), so we may conclude that

d(Qγ, Qα) ≥ Rγ −
l(α)

2
.

If |t| < 2, then d(Qγ , Qα) < 5. If we choose

D1 = min
{
1,
ε3
2
,
J1
e5

}
,
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then equation (6) implies that

Rγ ≥ 5 +
l(α)

2
,

which implies that d(Qγ, Qα) ≥ 5. So we may assume that |t| ≥ 2.
Let b denote the distance from Aα to the point x0 at height 1

2
above the point 1

2
∈ C.

Basic hyperbolic geometry (see, for example, section 7.20 in Beardon [Be]) gives

sinh b = |2t− 1|.

Therefore, since b ≥ d(Qγ, Qα), |t| ≥ 2 and d(Qγ, Qα) ≥ 5, we get that

3|t| ≥ |2t− 1| ≥ sinh(d(Qγ, Qα)) ≥
ed(Qγ ,Qα)

4
.

So,

|t| ≥ ed(Qγ ,Qα)

12
≥ eRγe

−l(α)
2

12
≥ J1

12|λ|e
−l(α)

2 .

We then take d1 =
J1

12
to complete the proof.

10.1

11 Bounds on the Theta operator

In this section, we will consider the pull-back φ of a quadratic differential on the quotient
torus associated to a test element. We restrict φ to a seahorse associated to a pinching
element and bound its image under the corresponding Theta operator. We will later use this
estimate to bound the pairing of a Beltrami differential with φ on the seahorse.

Proposition 11.1 There exist positive constants D2 and D3 with the following property.
Suppose that Γ is a Kleinian group, α and γ are non-commuting primitive hyperbolic elements
of Γ, φ is the pull-back to Ω(Γ) of a quadratic differential on T (α) and q is a fixed point of
α. Let A = A(γ, 1√

L
, q), B = B(γ, 1√

L
, q) and Θ = ΘB/A. If γ has a representative in the

conformal boundary of H3/Γ with length at most L and

L ≤ D2e
−l(α)

2 ,

then
‖Θ(φ)‖A
‖φ‖B

≤ D3L
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Proof of 11.1: We notice that we may first normalize the situation so that the fixed
points of γ are 0 and 1 and q =∞. Let t denote the other fixed point of α and let λ denote
the complex length of γ. We notice that φ must be a complex multiple of dz2

(z−t)2 . Since Θ is

a linear operator we may simply assume that φ = dz2

(z−t)2 .

In order to apply Proposition 9.2, in the case where m = 1√
L
, we need to produce bounds

on |λ| and on t. The following result of Sugawa allows us to translate our bounds on L into
bounds on |λ|.

Proposition 11.2 (Proposition 6.1 of Sugawa [Su]) If γ is a hyperbolic element of a Kleinian
group Γ with complex translation length λ = l+ iθ, which has a representative of length L in
the conformal boundary ∂cN , then

Le
L
2 ≥ |λ|

2

2l
≥ |λ|

2
.

Since

M(γ) = 4π2Re
(
1

λ

)
=

4π2l

|λ|2 ,

Sugawa’s result implies that

1

M(γ)
=
|λ|2
4π2l

≤ Le
L
2

2π2
.

In particular, if L < 1, then, since 2π2

e
L
2
> 1,

M(γ) >
1

L
>

1√
L
.

Moreover, if L < 1
16π2 , then

1√
L
> 4π.

Sugawa’s result also implies that if L < 1 and L ≤ D1

2e
e
−l(α)

2 , then |λ| ≤ D1e
−l(α)

2 .

Proposition 10.1 then implies that |t| ≥ d1

|λ|e
−l(α)

2 . In order to apply Proposition 9.2 we need

to check that |t| ≥ c4
|mλ| . Since we have chosen m = 1√

L
this will hold if c4

√
L ≤ d1e

−l(α)
2 . So,

if L ≤ D2e
−l(α), where

D2 = min





1

16π2
,
D1

2e
,

(
d1
c4

)2


 ,

then |t| ≥ c4
|mλ| and M(γ) > m > 4π. Proposition 9.2 then gives that

‖Θ
(

dz2

(z−t)2
)
‖A

‖ dz2

(z−t)2 ‖B
≤ C4

(
m2

M(γ)2
+

m2

em/2

)
.
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Substituting m = 1√
L
and using the inequality 1

M(γ)
≤

√
e

2π2L we conclude that

‖Θ
(

dz2

(z−t)2
)
‖A

‖ dz2

(z−t)2 ‖B
≤ C4

(
e

4π4
L+

1

Le
1

2
√
L

)

But, there exists a constant J2 > 0 such that 1

Le
1

2
√
L

≤ J2L for all L > 0. Thus, if D3 =

C4(
e

4π4 + J2), then

‖Θ
(

dz2

(z−t)2
)
‖A

‖ dz2

(z−t)2 ‖B
≤ D3L

and we have completed our proof.

11.1

12 Coralling the seahorses

We now begin the process of organizing the seahorses which will contain the pre-image of
the 2L-thin part. We first observe that, as a consequence of the Margulis Lemma and
McMullen’s bounds on the diameter of a seahorse, the seahorses we are considering are not
too large when viewed from the point of view of our test element.

We introduce the notion of a standard fundamental domain in order to make this claim
precise. If α is a hyperbolic Möbius transformation, we will say that an annulus F ⊂ Ĉ is
a standard fundamental domain for 〈α〉 if it is bounded by 2 circles S1 and S2 = α(S1) and
the hyperbolic planes H1 and H2 bounded by S1 and S2 are each perpendicular to the axis
of α. We will show that if γ is represented by a short curve in the conformal boundary and
if the seahorse associated to γ intersects a standard fundamental domain F for 〈α〉, then the
seahorse is contained in the union of F and the two adjacent standard fundamental domains
α(F ) and α−1(F ).

Lemma 12.1 Given d0 > 0 there exists D4 > 0 with the following property. Suppose that Γ
is a Kleinian group, α and γ are primitive hyperbolic elements of Γ and q is a fixed point of
α which is not a fixed point of γ. Suppose that γ is represented by a curve of length at most
L in Ω(Γ)/Γ, where

1. L ≤ D4e
−l(α), and

2. l(α) > d0.

If B(γ, 1√
L
, q) intersects a standard fundamental domain F for 〈α〉, then

B(γ,
1√
L
, q) ⊂ α−1(F ) ∪ F ∪ α(F ).
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Proof of 12.1: We first normalize the situation so that γ has fixed points 0 and 1 and
q =∞. Let t be the other fixed point of α and let λ be the complex translation length of γ.

Let F0 be the standard fundamental domain for 〈α〉 bounded by circles about t of radius
el(α)/2|t| and e−l(α)/2|t|. It is an easy calculation to show that the disk D centered at 0
of radius |t|(1 − e−l(α)/2) is contained in F0. Since l(α) > d0, the radius of D is at least
J3|t| where J3 = 1 − e−d0/2. We will show that we can choose D4 so as to guarantee that
B ⊂ D ⊂ F0.

If we assume that D4 ≤ D1

2e
and that D4 ≤ 1, then then we may apply Proposition 11.2

and the second assumption in the lemma to see that

|λ| ≤ 2Le
L
2 < 2eL ≤ D1e

−l(α) < D1e
−l(α)

2 .

Proposition 10.1 implies that

|t| ≥ d1
|λ|e

−l(α)
2 .

Hence,

radius(D) ≥ J3d1
|λ| e

−l(α)
2 .

On the other hand, Proposition 8.1 gives that

diam(B) ≤ C1

√
L

|λ| .

If, in addition, D4 ≤
(
J3d1

C1

)2
, then

L ≤
(
J3d1
C1

)2

e−l(α),

which implies that

C1

√
L ≤ J3d1e

−l(α)
2 .

So the diameter of B is less than the radius of D, which implies that B ⊂ D ⊂ F0 But
since F and F0 are intersecting standard fundamental domains, F0 ⊂ α−1(F ) ∪ F ∪ α(F )
and B ⊂ α−1(F ) ∪ F ∪ α(F ) as claimed. Hence we have established the theorem if we take

D4 = min




D1

2e
, 1,

(
J3d1
C1

)2


 .

12.1

Proposition 8.1 assures us that the area of B(γ, 1√
L
, q) is comparable to the area of

B(γ, 2√
L
, q). We will also need to know that ‖φ‖B(γ, 1√

L
,q) is comparable to ‖φ‖B(γ, 2√

L
,q),

where φ and γ are as in proposition 11.1.
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Lemma 12.2 There exists a positive constant C5 with the following property. Suppose that
Γ is a Kleinian group, α and γ are non-commuting primitive hyperbolic elements of Γ, φ is
the pull-back of a quadratic differential on T (α) and q is a fixed point of α. Suppose that γ
is represented by a curve of length at most L in Ω(Γ)/Γ, with

L ≤ D2e
−l(α)

2 ,

where D2 is the constant in Proposition 11.1. Then

‖φ‖B(γ, 1√
L
,q) ≤ C5‖φ‖B(γ, 2√

L
,q).

Proof of 12.2: As in the proof of Proposition 11.1, we may normalize so that that the
fixed points of γ are 0 and 1, q =∞ and φ = dz2

(z−t)2 where t is a fixed point of α. In the proof

of Proposition 11.1, we saw that if L ≤ D2e
−l(α)

2 and we choose m = 1√
L
, then |t| ≥ c4

|mλ| and

M(γ) > m > 4π.
In the proof of Proposition 9.2, we saw that this guaranteed that 2|t| ≥ |z − t| ≥ |t|/2

for all z ∈ B(γ, 1√
L
, q). In particular,

‖φ‖B(γ, 1√
L
,q) ≤

4

|t|2area(B(γ,
1√
L
, q))

and

‖φ‖B(γ, 2√
L
,q) ≥

1

4|t|2area(B(γ,
2√
L
, q)).

Since L ≤ D2e
−l(α)

2 guarantees that L < 1, Proposition 11.2 gives that

M(γ) ≥ 2π2

Le
L
2

≥ 4√
L
.

Therefore, we may apply Proposition 8.1 to see that

C2

(
C1

√
L

|λ|

)2

> area(B(γ,
1√
L
, q))

and that

c2

(
c1
√
L

2|λ|

)2

< area(B(γ,
2√
L
, q)).

It follows that

‖φ‖B(γ, 1√
L
,q) ≤ 64

(
C2C

2
1

c2c21

)
‖φ‖B(γ, 2√

L
,q).

Hence, the lemma holds with C5 = 64
(
C2C2

1

c2c21

)
.

12.2
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13 Organizing the seahorses

Let Γ be a discrete torsion-free Kleinian group and let C be a disjoint pinchable collection
of simple closed geodesics in the conformal boundary of H3/Γ. Let G be the Γ-invariant
collection of primitive hyperbolic elements of Γ which are represented by some geodesic in
C. Recall that since C is pinchable, the curves in C are associated to distinct conjugacy
class of primitive hyperbolic elements of Γ.

In the proof of our main local estimate we will consider the collection ∪γ∈GB(γ, 2√
L
, q).

This collection of seahorses will contain the support of the lift µ̃ of the Beltrami differential
µ in that estimate. We will be pairing µ̃ with a quadratic differential φ and we would like
to estimate the contribution to the pairing on each seahorse and then sum to obtain our
estimate. However, these seahorses need not be disjoint, so we will encounter difficulties
when attempting to sum our estimates on the individual seahorses.

In Theorem 4.5 of [Mc 1], McMullen shows how to find a subset G ′ of G and a collection
of disjoint sets {Eγ}γ∈G′ covering ∪γ∈GB(γ, 2√

L
, q), such that, for all γ ∈ G ′, Eγ is γ-invariant,

contains B(γ, 2√
L
, q) and is contained in B(γ, 1√

L
, q). We will then be able to look at the

restriction of the Beltrami differential to Eγ for all γ ∈ G ′, perform estimates in B(γ, 1√
L
, q)

and sum these estimates to obtain the desired bounds.
The following theorem is essentially a version of Theorem 4.5 in [Mc 1].

Theorem 13.1 (McMullen) Given d0 > 0 there exists D5 > 0 with the following property.
Suppose that Γ is a Kleinian group and G is a Γ-invariant collection of primitive hyperbolic
elements of Γ constructed from a pinchable collection C of geodesics as above. Suppose that
q ∈ Ĉ is a fixed point of a primitive hyperbolic element α ∈ Γ which is not a fixed point of
any element in G. If each element of C has length at most L,

1. L ≤ D5e
−l(α), and

2. l(α) ≥ d0,

then there exists a subset G ′ of G and γ-invariant sets {Eγ}γ∈G′ such that

1. Eγ ∩ Eγ′ = ∅ for distinct elements γ, γ ′ ∈ G ′,

2.

B(γ,
2√
L
, q) ⊂ Eγ ⊂ B(γ,

1√
L
, q)

for all γ ∈ G ′, and

3.

∪γ∈GB(γ,
2√
L
, q) ⊂ ∪γ∈G′Eγ.
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Remark. In this remark, we simply indicate the mild changes needed to establish our
version of McMullen’s result. McMullen’s proof goes through exactly as written to show
that there exists a uniform constant J4 such that if 2√

L
> J4, then there exists a collection

of γ-invariant sets {Eγ}γ∈G such that

B(γ,
2√
L
, q) ⊂ Eγ ⊂ B(γ,

1√
L
, q)

for all γ ∈ G and such that if two of the sets Eγ1 and Eγ2 intersect, then one is a subset of the
other. Moreover, he shows that there exists some constant C6 > 1 such that if Eγ1 ⊂ Eγ2 ,
then diam(Eγ2) ≥ C6diam(Eγ1). In his setting, McMullen uses the fact that the union of the
seahorses is bounded to see that one can choose a collection of maximal elements of {Eγ}γ∈G
(with respect to inclusion). This collection of maximal elements forms the desired {Eγ}γ∈G′.

In our situation, ∪γ∈GB(γ, 2√
L
, q) is not bounded. However, given d0 > 0, Lemma 12.1

provides D4 > 0 such that if L ≤ D4e
−l(α), γ0 ∈ G and B(γ0,

2√
L
, q) intersects a standard

fundamental domain F for 〈α〉, then B(γ0,
1√
L
, q), and hence Eγ0 , is contained in α(F ) ∪

F ∪ α−1(F ). It follows that any nested ascending sequence in {Eγ}γ∈G, which contains
B(γ0,

2√
L
, q) is contained in α(F )∪F ∪α−1(F ) and is thus bounded. So we can again choose

a collection of maximal elements of {Eγ}γ∈G. Hence, our version of McMullen’s theorem
holds if we choose

D5 = min

{
D4,

(
2

J4

)2
}
.

14 The main local estimate

In this section we give the proof of the main local estimate, Theorem 14.1. We have already
indicated, in sections 5 and 6, how this estimate is used to establish our main result.

We recall that if M is a compact oriented 3-manifold and a is a primitive element of
π1(M), then we define Υa : CC0(M) → CC0(S

1 × D2) by letting Υa([ρ]) be the conjugacy
class of the restriction ρa of ρ to 〈a〉. The map Υa essentially records the complex length
of ρ(a). In the following estimate we think of the unit norm Beltrami differential µ as a
representative of a tangent vector to CC0(M) at a point [ρ]. Our estimate asserts that if µ
is supported on the 2L-thin part of ∂cNρ, l(ρ(a)) is not small and L is small enough, then
DΥa(DΦ̄(µ)) has length at most O(L). We interpret this as saying that if one deforms [ρ]
in the direction determined by µ, then the complex length of the image of a changes very
little.

Theorem 14.1 Given d0 > 0, there exists D6 > 0 and K0 > 0 with the following properties.
Suppose that M is a compact, oriented 3-manifold, a is a primitive element in π1(M), [ρ] ∈
CC0(M) and l(ρ(a)) > d0. Suppose that C is a pinchable collection of disjoint simple closed
geodesics in ∂cNρ, none of which represents ρ(a), such that each element of C has length at
most L where

L ≤ D6e
−l(ρ(a)).
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If µ is a unit-norm Beltrami differential on ∂cNρ which is supported on the union of the
2L-thin parts associated to elements of C, then

||DΥa(DΦ̄(µ))|| ≤ K0L.

Proof of 14.1: Let G denote the collection of primitive hyperbolic elements of Γ =
ρ(π1(M)) which are represented by elements of C. Let q be a fixed point of α = ρ(a). If we
assume that D6 ≤ D5 , then Theorem 13.1 provides a subset G ′ of G and a disjoint collection
of γ-invariant subsets {Eγ}γ∈G′ such that

B(γ,
2√
L
, q) ⊂ Eγ ⊂ B(γ,

1√
L
, q)

for all γ ∈ G ′, and
∪γ∈GB(γ,

2√
L
, q) ⊂ ∪γ∈G′Eγ.

Let µ̃ be the lift of µ to Ω(Γ) and let Bγ = B(γ, 1√
L
, q) and Aγ = A(γ, 1√

L
, q). We first

prove that µ̃ is supported on ∪γ∈GB(γ, 2√
L
, q).

Lemma 14.2 There exists a constant J6 such that if L < J6, then the Beltrami differential
µ̃ is supported on ∪γ∈GB(γ, 2√

L
, q).

Proof of 14.2: Let ε2 denote the 2-dimensional Margulis constant. We will assume that
2L < ε2.

Suppose that z is contained in the support of µ̃. Since µ is supported on the 2L-thin
part associated to the pinchable collection of geodesics C, there exists an annular component
Q′ of the 2L-thin part of ∂cNρ containing p(z), where p : H3 ∪ Ω(Γ) → N̄ρ is the obvious
covering map. Let η be the geodesic contained in Q′ and let S denote the component of the
pre-image of Q′ which contains z. There exists an element γ ∈ G, which is represented by η,
such that S is γ-invariant. We will show that z ∈ B(γ, 2√

L
, q).

Let Q be the component of the ε2-thin part of ∂cNρ containing η. One may compute,

as in Maskit [Mas 2], that the modulus of each component of Q − Q′ is 2π(θ1−θ2)
l(η)

where

cos θ1 = sinh(l(η)/2)
sinh(ε2)

and cos θ2 = sinh(l(η)/2)
sinh(2L)

. One may use basic trigonometric formulas to

show that there exists positive constants J7 and C7 such that if L ≤ J7 then θ1− θ2 ≥ C7l(η)
L

.
Therefore, in this case, the modulus of each component of Q−Q′ is at least 2πC7

L
.

The annuli Q and Q′ lift to annuli Q̃ and Q̃′ in Tγ and p−1γ (Q̃′) = S where pγ : Ωγ → Tγ
is the obvious covering map. Since q does not lie in Ω(Γ), pγ(q) does not lie in Q̃. Lemma
5.1 of [Mc 1] guarantees that there exists a constant J8 such that, if 2πC7

L
> J8, then each

component of Q̃ − Q̃′ contains a right cylinder of modulus at least 2πC7

L
− J8. If L < πC7

J8
,

then each component of Q̃ − Q̃′ contains a right cylinder of modulus πC7

L
. Let R1 and R2

denote these right cylinders.
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The annulus Ac(γ, 2√
L
, q) = Tγ − A(γ, 2√

L
, q) is a right cylinder of modulus 2√

L
. It is

easy to check that no Euclidean torus contains two right cylinders of modulus more than 4π
which are not homotopic, so if L < min{C7

4
, 1
4π2 }, then Ac(γ, 2√

L
, q), R1 and R2 must all be

homotopic right cylinders. If Q̃′ intersects Ac(γ, 2√
L
, q), then, since pγ(q) does not lie in Q̃,

either R1 or R2 is contained entirely in Ac(γ, 2√
L
, q), which implies that 2√

L
≥ πC7

L
. However,

this is impossible if we assume that L <
π2C2

7

4
. Thus if we take

J6 = min{ε2
2
, J7,

πC7

J8
,
C7

4
,

1

4π2
,
π2C7

5
}

and assume L < J6, then Q̃
′ ⊂ A(γ, 2√

L
, q) which in turn implies that

z ∈ S = p−1γ (Q̃′) ⊂ p−1γ (A(γ,
2√
L
, q)) = B(γ,

2√
L
, q)

as desired.

14.2

It follows that if D6 ≤ J6, then the support of µ̃ is contained in ∪γ∈G′Eγ .
We recall that

||DΥa(DΦ̄(µ))|| = sup
{〈
φ̄, dΥ̂a(µ)

〉
| φ̄ ∈ Q(T (ρ(a))), ||φ̄|| = 1

}

So let φ̄ be a unit norm quadratic differential on T (ρ(a)) and let φ denote its pull-back to
Ω(〈ρ(a)〉). If F is a standard fundamental domain for 〈ρ(a)〉, then since µ̃ is a lift of DΥ̂a(µ)
(see the end of section 2.3),

〈
φ̄, DΥ̂a(µ)

〉
= Re

(∫

F
φµ̃
)
≤
∣∣∣∣
∫

F
φµ̃
∣∣∣∣ .

Let νγ be the restriction of µ̃ to Eγ. Then, νγ is a γ-invariant Beltrami differential of
norm at most 1. We will estimate the integral above by estimating the integral over each
Eγ and summing. For each γ ∈ G ′, let Θγ = ΘBγ/Aγ . The duality expressed in Equation (4),
see section 9, gives that ∣∣∣∣∣

∫

Eγ

φµ̃

∣∣∣∣∣ =
∣∣∣∣∣

∫

Bγ

νγφ

∣∣∣∣∣ ≤ ||Θγ(φ)||Aγ

If we assume that D6 ≤ D2, then Proposition 11.1 implies that

||Θγ(φ)||Aγ
≤ D3L ‖φ‖Bγ

Let G ′′ be the set of elements γ ∈ G ′ with the property that Eγ ∩ F is non-empty. Then

∣∣∣∣
∫

F
φµ̃
∣∣∣∣ ≤

∑

γ∈G′′

∣∣∣∣∣

∫

Eγ

φµ̃

∣∣∣∣∣ ≤ D3L
∑

γ∈G′′
||φ||Bγ
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Lemma 12.2 implies that if D6 ≤ D2, then

‖φ‖Bγ
≤ C5 ‖φ‖B(γ, 2√

L
,q) .

Since B(γ, 2√
L
, q) ⊂ Eγ ⊂ Bγ , this implies that

||φ||Bγ
≤ C5 ||φ||Eγ

.

Lemma 12.1 implies that if D6 ≤ D4 and γ ∈ G ′′, then

Eγ ⊂ B(γ,
1√
L
, q) ⊂ α−1(F ) ∪ F ∪ α(F ).

Since the {Eγ} are pairwise disjoint and ∪γ∈G′′Eγ ⊂ α−1(F ) ∪ F ∪ α(F ),

∑

γ∈G′′
||φ||Eγ

≤ 3.

Therefore, 〈
φ̄, DΥ̂a(µ)

〉
≤
∣∣∣∣
∫

F
φµ̃
∣∣∣∣ ≤ 3D3C5L

Since this holds for an arbitrary unit norm quadratic differential on T (α), the theorem holds
if we choose D6 = min {D2, D4, D5, J6} and K0 = 3D3C5.

14.1

15 Corollaries

If Hg is a handlebody of genus g ≥ 2, then Marden (see section 7.4 of [Mar 2]) observed that
there is a dense set of conjugacy classes in ∂CC(Hg) whose associated representations have
empty domain of discontinuity. The following corollary is then immediate from our main
result.

Corollary 15.1 If Hg is a handlebody of genus g ≥ 2, then maximal cusps are dense in the
boundary of Schottky space CC(Hg).

If ∂M is connected, then we may similarly observe that there is a dense set D of conjugacy
classes in ∂CC(M) such that if [ρ] ∈ D, then Ω(ρ) = ∅.

Lemma 15.2 Let M be a compact, oriented, irreducible, atoroidal 3-manifold whose (non-
empty) boundary is a connected surface which is not a torus. If D is the set of conjugacy
classes of purely hyperbolic representations in ∂CC0(M), then D is dense in ∂CC0(M).
Furthermore, if [ρ] ∈ D, then Ω(ρ) = ∅.
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Proof of 15.2: It will be convenient to work in the pre-image ĈC0(M) of CC0(M) in
the full representation variety R̂ = Hom(π1(M),PSL2(C)). Since ĈC0(M) is a PSL2(C)-
bundle over CC0(M) it suffices to prove that the set D̂ of purely hyperbolic representations
in ∂ĈC0(M) is dense and that if ρ ∈ D̂, then Ω(ρ) = ∅.

The proof relies on two foundational results about the topology of ĈC0(M). Sulli-
van [Sull 2] proved that ĈC0(M) is the interior of its closure in the representation variety.
Kapovich [Ka] proved that every point in the closure of ĈC0(M) is a smooth point of R̂.

We first show that D̂ is dense in ∂ĈC0(M). If ρ0 ∈ ∂ĈC0(M) does not lie in the closure of
D̂, then ρ0 has a smooth, connected open neighborhood U in R̂ such that U∩∂ĈC0(M) ⊂ X,
where X ⊂ R̂ is the set of all representations ρ : π1(M) → PSL2(C) such that ρ(γ) is
parabolic or the identity for some nontrivial γ ∈ π1(M). Note that X is a countable union
of complex algebraic subsets of R̂, and that X ∩ ĈC0(M) = ∅, so that U 6⊂ X. Hence if R̂0

denotes the irreducible component of R̂ containing U , the set X0 = X ∩ R̂0 is a countable
union of proper complex algebraic subvarieties of R̂0. Since U ⊂ R̂0 is smooth and connected,
W = U − (U ∩X) is a connected, dense subset of U . As W meets ĈC0(M) but is disjoint
from ∂ĈC0(M), connectedness guarantees that W ⊂ ĈC0(M). Hence U is contained in the
closure of ĈC0(M) in R̂. But, since ĈC0(M) is the interior of its closure, this implies that
ρ lies in the interior of ĈC0(M), which is a contradiction.

Now suppose that ρ ∈ D̂ and Ω(ρ) is non-empty. There exists a sequence {ρi} in CC(M)
converging to ρ. Since ρ is purely hyperbolic and Ω(ρ) is non-empty, Theorem E of Anderson-
Canary [AC 1] implies that {ρi} converges strongly to ρ (i.e. that {ρi(π1(M))} converges
geometrically to ρ(π1(M).) The main theorem of Canary-Minsky [CaMi] then implies that
there is a homeomorphism from the interior of M to Nρ. In particular, Nρ has only one end.
Since Ω(ρ) is non-empty, the one end of Nρ must be geometrically finite, so Nρ is convex

cocompact. Thus, ρ is a convex cocompact uniformization of M and hence lies in ĈC0(M)
which is again a contradiction. Therefore, if ρ ∈ D̂, then Ω(ρ) = ∅ as desired.

15.2

Combining this observation with our main result we obtain the desired generalization of
Corollary 15.1.

Corollary 15.3 LetM be a compact, oriented, irreducible, atoroidal 3-manifold whose (non-
empty) boundary is a connected surface which is not a torus. Then maximal cusps are dense
in the boundary of CC(M).

As another corollary of our results we see that hyperbolic 3-manifolds with arbitrarily
short geodesics are dense in ∂CC0(M).

Corollary 15.4 LetM be a compact, oriented, irreducible, atoroidal 3-manifold whose (non-
empty) boundary is a connected surface which is not a torus. The set S in ∂CC0(M) con-
sisting of all [ρ] ∈ S such that Nρ contains arbitrarily short geodesics, is a dense Gδ in
∂CC0(M).
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Proof of 15.4: If g is an element of π1(M) which represents a simple closed curve in
∂M , then l[ρ](g), the real translation length of ρ(g), is a non-constant real analytic function
on AH(π1(M)). Therefore, the set Un of conjugacy classes in ∂CC0(M) whose associated
manifolds contained a closed geodesic of length at most 1

n
is open in ∂CC0(M). Since, by

corollary 15.3, maximal cusps are dense in ∂CC0(M), Un is also dense in ∂CC0(M). The
Baire category theorem then applies to show that S is a dense Gδ in ∂CC0(M).

15.4

16 Pared manifolds

In this section, we will explain how to extend our main result to the setting of deformation
spaces of general geometrically finite Kleinian groups. In particular, we extend our results
to the setting where our manifold M is allowed to have a toroidal boundary component. In
order to do so, we introduce the formalism of pared manifolds.

Definition 16.1 ([Mo]) A pared manifold is a pair (M,P ), where

• M is a compact, irreducible 3-manifold and

• P ⊂ ∂M is a union of incompressible annuli and tori,

such that

1. If A is an abelian subgroup of π1(M) which is not cyclic, then A is conjugate into the
fundamental group of a component of P , and

2. every map φ : (S1× I, S1× ∂I)→ (M,P ) that is injective on the fundamental groups,
is homotopic, as a map of pairs, into P .

Let (M,P ) be a pared manifold. A representation ρ : π1(M) → PSL2(C) is a geometri-
cally finite uniformization of (M,P ) if there exists a homeomorphism h : M −P → N̄ρ such
that [h∗] = [ρ]. Let GF0(M,P ) denote the space of (conjugacy classes of) geometrically finite
uniformizations of (M,P ). The space GF0(M,P ) may be identified with an open subset of
the space of conjugacy classes of representations of π1(M) in which each element of π1(P )
is taken to a parabolic element or the identity. If we let Mod0(M,P ) denote the group of
isotopy classes of pared homeomorphisms of (M,P ) which are homotopic to the identity,
then GF0(M,P ) may be identified with the quotient of T (∂M − P ) by Mod0(M,P ).

A conjugacy class [ρ] ∈ AH(π1(M)) is said to be a maximal cusp if there exists a home-
omorphism h : M ′ − P ′ → N̄ρ such that (M ′, P ′) is a pared 3-manifold and each component
of ∂M ′ − P ′ is an open pair of pants. Our main results generalizes to the setting of pared
3-manifolds as follows:
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Theorem 16.2 Let (M,P ) be any pared 3-manifold. If [ρ] ∈ ∂GF0(M,P ) and Ω(ρ) = ∅,
then [ρ] may be approximated by maximal cusps in ∂GF0(M,P ).

The proof of Theorem 16.2 is largely an immediate generalization of the proof of our
main theorem. The main technical difference comes in the definition of a pinchable pants
decomposition and in the proof of Proposition 3.1.

Suppose that [ρ] ∈ GF0(M,P ) and h : M − P → N̄ρ is an orientation-preserving homeo-
morphism. If A is a collection of disjoint simple closed geodesics in ∂cNρ, then let N (h−1(A))
be a closed regular neighborhood of h−1(A). We say that A is pinchable if (M,P∪N (h−1(A)))
is a pared 3-manifold. One may readily check that this is equivalent to our original definition
when P = ∅.

In the generalization of Proposition 3.1 one assumes that (ρn) is a sequence of geometri-
cally finite uniformizations of a pared 3-manifold (M,P ), such that (ρn) converges to ρ and
Ω(ρ) = ∅. One proves that if Cn is a collection of disjoint simple closed geodesics in ∂cNρn

and l(Cn) < K for all n, then Cn is pinchable for all sufficiently large n. Let δ and S be
chosen as in the original proof and, for each n, let hn : M − P → N̄ρn be an orientation-
preserving homeomorphism. The original proof of Proposition 3.1 must only be modified
to rule out essential annuli in M with one boundary component in h−1n (Cn) and the other
boundary component in P . To do so, one considers the εn-thick part C(Nρn)thick(εn) of the
convex core, where εn is chosen to be much less than δ and less than the length of the shortest
closed geodesic in Nρn . Any essential annulus with one boundary component in h−1n (Cn) and
the other boundary component in P gives rise to an essential annulus B ′n in C(Nρn)thick(εn)
with one boundary component which is a curve in ∂C(Nn), of length at most K ′ = 45Ke

K
2 ,

which is homotopic to a component of rn(Cn) and the other boundary component lies in
the portion of ∂C(Nρn)thick(εn) which abuts the εn-thin part of Nρn . One again constructs
an annulus Yn which is homotopic rel boundary to B ′n and shows that the distance from the
basepoint to ∂Yn ∩ ∂C(Nρn) is uniformly bounded by a constant which depends only on δ
and S. More details on the generalization of Proposition 3.1 and our main theorem can be
found in [CaHe]

The following lemma is the natural generalization of Lemma 15.2 to this setting. We will
say that representation ρ ∈ ∂GF0(M,P ) is minimally parabolic if, for all g ∈ π1(M), ρ(g) is
parabolic if and only if g is conjugate to an element of π1(P )

Lemma 16.3 Let (M,P ) be a pared 3-manifold such that ∂M −P is connected. If D is the
set of minimally parabolic representations in ∂GF0(M,P ), then D is dense in ∂GF0(M,P ).
Furthermore, if ρ ∈ D, then Ω(ρ) = ∅.

Proof of 16.3: In this situation one lets R̂ be the subset of Hom(π1(M),PSL2(C))
consisting of homomorphisms such that the image of any element of π1(P ) is either parabolic
or the identity. Then, ĜF 0(M,P ) is the pre-image of GF0(M,P ) in R̂ and D̂ is the pre-image
of D in R̂. The proof that the set D̂ of minimally parabolic representations in ∂ĜF 0(M,P )
is dense in ∂ĜF 0(M,P ) is virtually the same as the proof that D̂ is dense in ∂ĈC0(M) given
in Lemma 15.2.
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In order to prove that Ω(ρ) = ∅ if ρ ∈ D̂ we follow the same outline as in the proof of
Lemma 15.2. Suppose that ρ ∈ D̂ and Ω(ρ) 6= ∅. The main theorem of Anderson-Canary
[AC 2] implies that any sequence {ρi} in ĜF 0(M,P ) which converges algebraically to ρ also
converges strongly. Let ε be a positive constant which is less than the Margulis constant and
let N0

ρ be obtained from Nρ be removing all the non-compact(cuspidal) components of its
ε-thin part. A recent result of Evans [Ev] implies that there exists a relative compact core
(M ′, P ′) for N0

ρ and an orientation-preserving homeomorphism h′ : (M,P )→ (M ′, P ′) such
that (h′)∗ = ρ. (A relative compact core (M ′, P ′) for N0

ρ is a compact core M ′ for N0
ρ whose

intersection P ′ with ∂Nρ
0 is a collection of compact cores for the components of ∂N 0

ρ , one for
each component.) In particular, N 0

ρ has only one end. Since, Ω(ρ) is non-empty, that end
must be geometrically finite. It follows that ρ is geometrically finite.

Marden’s Stability theorem [Mar 1] implies that, since ρ is geometrically finite and min-
imally parabolic, there is a neighborhood of ρ in R̂ consisting of representations quasicon-
formally conjugate to ρ. Since ρ is a limit of representations in ĜF 0(M,P ), it follows that
ρ ∈ ĜF 0(M,P ), which is a contradiction.

16.3

We thus obtain the following natural generalization of Corollary 15.3:

Corollary 16.4 Let (M,P ) be a pared 3-manifold such that ∂M − P is connected. Then
maximal cusps are dense in the boundary of GF0(M,P ).

We recall that any torsion-free geometrically finite Kleinian group may be thought of
as the image of a geometrically finite uniformization of some pared 3-manifold (M,P ) (see
Corollary 10.6 in Morgan [Mo].) Its quasiconformal deformation space may then be identified
with GF0(M,P ). So, one may summarize Corollary 16.4 by saying that if the conformal
boundary of any torsion-free geometrically finite Kleinian group is connected, then maximal
cusps are dense in the boundary of its quasiconformal deformation space.

We also get an analogue of Corollary 15.4:

Corollary 16.5 Let (M,P ) be a pared 3-manifold such that ∂M −P is connected. Then the
set of conjugacy classes [ρ] ∈ ∂GF0(M,P ) such that Nρ contains arbitrarily short geodesics
is a dense Gδ subset of ∂GF0(M,P ).
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