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Look what we found
in the park
in the dark.
We will take him home,
we will call him Clark.

He will live at our house,
He will grow and grow.
Will our mother like this?
We don’t know.
————Dr. Suess [195]

Preface

These notes grew out of a graduate course I gave on Anosov representations at the University
Michigan in Winter 2020. They became more formal, when our class went on-line, and grew to
their present length due to the enforced free time I had that Spring.

The intention of the course, and these notes, was to give an introduction to the theory of
Anosov representations, which would be approachable for someone with some background in the
study of hyperbolic manifolds, geometric group theory, and/or Teichmüller theory. Basically, I
am attempting to write the notes that I would have wanted to be available when I entered the
field in 2012.

I will not be assuming that you know any Lie theory (since I don’t either), although I may
sometimes use aspects of this theory when convenient. Our semisimple Lie groups will almost
always be SL(n,R), PSL(n,R) or well-known subgroups like SO(n, 1). In this setting, the Lie
theory we use will largely be familiar facts from linear algebra rephrased in (intentionally?)
confusing ways so that they hold more generally.

Chapter 1 is a (hopefully) motivational introduction. Chapter 2 covers much, but not all, of
the basic background theory on hyperbolic groups that we will need later in the notes. If you
have some familiarity with hyperbolic groups and/or a willlingness to believe their properties,
you can skip this chapter. It exists largely because not all the students in my class had seen the
theory of hyperbolic groups before and requested a brief introduction to the theory. Chapter 3
gives a quick review of the theory of convex cocompact hyperbolic manifolds from a viewpoint
which should be suggestive of later definitions in the theory of Anosov representations. It can
be skipped by readers familiar with the basic theory. In Chapter 4, we give our first higher rank
examples, Benoist representations, which are discrete, faithful representations of a hyperbolic
group into PSL(d,R) whose images preserve and act cocompactly on strictly convex subset of
RPd−1. We will see many key phenomena which occur for Anosov representations first in this
more concrete setting.

In Chapter 5, we define and develop the basic properties of Anosov representations of hyper-
bolic groups into SL(d,R). Readers with some background in hyperbolic groups, can begin here
if they want to get to the general theory of Anosov representations immediately. In particular,
the material in Chapters 5 and 6 does not rely on Chapter 4 (except perhaps for the discussion of
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basic linear algebra in SL(d,R) which occurs there). In Chapter 6, we derive several characteri-
zations of Anosov representations. In particular, we see that convex cocompact representations
into rank one Lie groups and Benoist representations are Anosov. We also introduce Hitchin
representations. In chapter 7, we prove some of the foundational results in the emerging study
of convex cocompact actions on projective spaces. In chapter 8, we give brief introductions,
with occasional proof, to some more advanced topics in the theory.

Our approach does have its limitations and here is a (very) partial list of important topics
we will not cover, which might naturally be part of an introduction to the field.

• Maximal representations of surface groups into Lie groups of Hermitian type as devel-
oped by Burger, Iozzi and Wienhard [52].
• The Higgs bundle approach pioneered by Hitchin [114].
• Labourie’s proof [143] that Hitchin representations are Borel Anosov.
• The characterizations of Anosov representations in terms of their actions on the associ-

ated symmetric spaces and their boundaries by Kapovich, Leeb and Porti [132, 133]
• The theory of positive representations developed by Fock and Goncharov [97].
• The symplectic structure on character varieties of surface groups introduced by Gold-

man [103] and the recent work of Sun, Wienhard, and Zhang ([198, 199, 215]) on the
symplectic structure of the Hitchin component.
• The compactification of character varieties due to Parreau [174] and more recent work

on compactifications of Hitchin components and components of maximal representations
by Burger-Iozzi-Parreau-Pozzetti [50].
• Compactifications of the locally symmetric spaces associated to Anosov representations,

see Guéritaud-Guichard-Kassel-Wienhard [108] and Kapovich-Leeb [130].
• The collar lemmas for Hitchin representations, discovered by Lee and Zhang [147], and

maximal representations, by Burger and Pozzetti [54], see also Martone-Zhang [160].

I don’t intend to prepare these notes for publication, but I will try to keep them updated and
corrected when necessary. I am sure there are many errors and typos scattered throughout, so
please send me your comments, corrections, and criticisms.

Acknowledgements: I want to thank the participants in my class who pointed out many
errors and typos along the way. These participants included Caleb Ashley, Karen Butt, Sayantan
Khan, Mitul Islam, Maxie Lahn, Giuseppe Martone, Malakiva Mukundan, Yuping Ruan, Kostas
Tsouvalas, Nick Wawrykow, and Feng Zhu. In particular, Maxie Lahn found numerous typos
and made several suggestions that improved the clarity of the exposition. I also thank Jeff
Danciger for his help understanding his work with François Guéritaud and Fanny Kassel. Yair
Minsky pointed out an errant lemma and Brian Udall pointed out an errant calculation. As
you will see later, this work was heavily influenced by the thesis work of my graduate students
Kostas Tsouvalas and Feng Zhu, who have both taught me a lot about Anosov representations.
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Early Reviews

You got a way of saying something everyone wants to hear
In a way that no one wants to hear it
———–Becky Warren [213]

I never knew a man could tell so many lies
He had a different story for every set of eyes
How can he remember who he’s talking to?
’Cause I know it ain’t me, and I hope it isn’t you
—————–Neil Young [221]

Them that don’t know him won’t like him and them that do,
Sometimes won’t know how to take him.
He ain’t wrong, he’s just different but his pride won’t let him,
Do things to make you think he’s right.
————Ed and Patsy Bruce [123]
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Part 1. Motivation

I’m climbing this ladder
My head in the clouds
I hope that it matters
I’m having my doubts
———–Neil Young [223]

Anosov representations were introduced by François Labourie [143] in his study of Hitchin
representations. They give a flexible generalization of the theory of convex cocompact repre-
sentations of hyperbolic groups into rank one Lie groups into the setting of representations of
hyperbolic groups into semi-simple Lie groups. Their theory was further developed by Guichard-
Wienhard [109], Kapovich-Leeb-Porti [132, 133], Guéritaud-Guichard-Kassel-Wienhard [107],
Bochi-Potrie-Sambarino [32], and others. They now serve as an organizing principle for the
geometric and dynamical approach to the so-called Higher Teichmüller theory.

The most basic example of a convex cocompact representation into a rank one Lie group is
a discrete faithful representation of a surface group into PSL(2,R). Here we view PSL(2,R)
as the group Isom+(H2) of orientation-preserving isometries of the hyperbolic plane H2. So, a
discrete faithful representation of π1(S) into PSL(2,R) gives rise to a hyperbolic structure on
the closed surface S.

Recall that the upper half-plane model for the hyperbolic plane is given by

H2 = {z ∈ C | Im(z) > 0}

with line element

dshyp =
1

y

√
dx2 + dy2

In this metric, the geodesics are lines and semi-circles perpendicular to the real line and
the group of Möbius transformations with real co-efficients acts as the group of orientation-
preserving isometries of H2, i.e.

Isom+(H2) = PSL(2,R).

The classical Teichmüller space T (S) is the space of all discrete, faithful representations of
π1(S) into PSL(2,R) (up to conjugacy in PGL(2,R)). We may also think of Teichmüller space as
the space of all (marked) hyperbolic structures on S (up to isotopy). It is well-known that T (S)
is homeomorphic to R6g−6 and is identified with a component of the space of conjugacy classes of
representations of π1(S) into PSL(2,R). Moreover, the mapping class group of (isotopy classes
of) orientation-preserving homeomorphisms acts properly discontinuously on T (S). Teichmüller
space is rich with structure and can be studied from a multitude of perspectives. Teichmüller
space is the motivating example for Higher Teichmüller theory and Anosov representations.

The first natural generalization of this theory was to the study of higher-dimensional hyper-
bolic manifolds. We recall that SO0(n, 1) ⊂ SL(n+ 1,R) is the group of orientation-preserving
isometries of hyperbolic space Hn. Here SO(n, 1) is the group of matrices in SL(n+1,R) preserv-
ing the indefinite quadratic form with associated diagonal matrix J with entries (1, 1, . . . , 1,−1),
i.e. A ∈ SO(n, 1) if and only if JATJ = A−1, while SO0(n, 1) is the index two subgroup of
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SO(n, 1) preserving the upper sheet of the hyperboloid

Hn = { ~X ∈ Rn+1 | x2
1 + · · ·+ x2

n − x2
n+1 = −1}.

We may then identify Hn with the upper sheet of Hn with the metric induced by the indefinite
quadratic form. (If this is not familiar to you, we will review this theory in Chapter 3).

If ρ : Γ→ SO0(n, 1) is a representation of a finitely presented torsion-free group Γ, then there
is an associated orbit map

τρ : Γ→ Hn

given by γ 7→ ρ(γ)(x0) where x0 is some pre-chosen point in Hn. Recall that, given a fixed finite
presentation of the group, Γ admits a word metric where dΓ(α, β) is the minimal word length
of a representative of α−1β. Then Γ acts by isometries on itself by left multiplication and the
orbit map is equivariant in the sense that τρ(αβ) = ρ(α)(τρ(β)) for all α, β ∈ Γ. We say that ρ
is convex cocompact if this orbit map is a quasi-isometric embedding, i.e. is a K-bilpschitz
embedding on large enough scale. More formally, τρ is a quasi-isometric embedding if there
exist K and C so that

1

K
dΓ(α, β)− C ≤ dHn(τρ(α), τρ(β)) ≤ KdΓ(α, β) + C

for all α, β ∈ Γ. Notice that if τρ is a quasi-isometric embedding then ρ is discrete and faithful.
Moreover, it immediately follows, since Hn is Gromov hyperbolic, that Γ is a Gromov hyperbolic
group.

On the other hand, if ρ is discrete and faithful and ρ(Γ) acts cocompactly on Hn, then the
Milnor-Svarc Lemma implies that τρ is a quasi-isometric embedding, so ρ is convex cocompact.
However, Mostow proved that if n ≥ 3 and ρ(Γ) acts cocompactly, then any other discrete,
faithful representation is conjugate to ρ. So hyperbolic lattices in dimensions above two will
not interest us here.

In general, there exist discrete, faithful representations which are not convex cocompact. For
example, consider the representation ρ of the free group F2 =< a, b > into PSL(2,R) given

by ρ(a) =

[
1 1
0 1

]
while ρ(b) takes the interior of a disk of radius 1

8 based at 1
4 to the exterior

of a disk of radius 1
8 based at 3

4 . One may make an elementary ping-pong argument to see
that ρ is discrete and faithful. However, an has word length n, but d(ρ(a)n(i), i) = O(2 log n).
Therefore, the orbit map cannot be a quasi-isometric embedding. So, in general the space
of convex cocompact representations will not constitute an entire component of the character
variety. In fact, we can easily see that ρ is a limit of convex cocompact representations but also
a limit of indiscrete representations (since ρ(a) can be approximated by irrational rotations).

However, convex cocompact representations are stable, in the sense that if ρ0 ∈ Hom(Γ,SO0(n, 1))
is convex cocompact, then it has an open neighborhood U so that if ρ ∈ U , then ρ is also con-
vex cocompact. On the other hand, it is a consequence of a lemma of Margulis, that a limit of
discrete, faithful representations is itself discrete and faithful, so being discrete and faithful is
a closed condition. Teichmüller space has the special property of being both open and closed,
since discrete, faithful representation of closed surface groups into PSL(2,R) always have images
which act cocompactly on H2.

The key properties we will look for in a generalization of the theory of convex compact
representations into the setting of higher rank Lie groups are:
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(1) Our representations should induce quasi-isometric orbit maps into the quotient sym-
metric spaces.

(2) Our representations should form an open subset of the representation variety.

In order to give a quick definition of Anosov representations, it will be useful to recall the
singular value decomposition. If A ∈ SL(n,R), then we may write A = LDK where
L,K ∈ SO(n) and D is a diagonal matrices with positive entries in descending order along the
diagonal, i.e. d11 ≥ d22 ≥> · · · ≥ dnn > 0 and d11d22 · · · dnn = 1. The matrix D depends
only on A, but L and K need not be unique when some of the diagonal entries agree. We let
σi(A) = dii and call it the ith singular value of A. More geometically, σi(A) is (half) the length
of the ith axis of the ellipsoid A(Sn−1).

In the hyperboloid model for Hn we get a nice simple formula for translation distance in
terms of singular values:

dHn(en+1, A(en+1)) = log σ1(A) = log
σ1(A)

σ2(A)

if A ∈ SO0(n, 1). (The second equality holds, since σ2(A) = 1 if A ∈ O(n, 1).) Therefore, a
representation ρ : Γ→ PSO(n, 1) of finitely generated group is convex cocompact if and only if
there exists K,C > 0 so that

1

K
d(id, g)− C ≤ log

(
σ1(ρ(g))

σ2(ρ(g))

)
≤ K d(id, g) + C

for all g ∈ Γ.
This observation hopefully motivates a particularly simple definition of an Anosov represen-

tation into SL(d,R), due to Kapovich-Leeb-Porti [132] and Bochi-Potrie-Sambarino [32].
If 1 ≤ k ≤ d

2 and k ∈ Z, we say that a representation ρ : Γ→ SL(d,R) of a finitely generated
group into SL(n,R) is Pk-Anosov if there exists K and C so that

1

K
d(id, g)− C ≤ log

(
σk(ρ(g))

σk+1(ρ(g))

)
≤ K d(id, g) + C

for all g ∈ Γ. A representation is called Anosov if it is Pk-Anosov for some k and is called
Borel Anosov if it is Pk-Anosov for all 1 ≤ k ≤ d

2 . Notice that these same definitions apply if

the image Lie group is PSL(d,R), PGL(d,R), SL±(d,R) or even GL(d,R). It is immediate from
this definition that the associated orbit map into the symmetric space Xd = SL(d,R)/SO(d)
is a quasi-isometric embedding. (We will review the structure of Xd in an elementary manner
later.) It also turns out that this definition again implies that Γ is a Gromov hyperbolic group.

We note that this definition is simple to state but when we get down to business we will work
more directly with Labourie’s original more dynamical definition. Labourie’s definition more
directly indicates that Anosov representations are stable as a simple consequence of the usual
stability results for hyperbolic dynamical systems.

One key feature of Anosov representations, which we will establish later, is that they admit
limit maps into Grassmanians. In particular, if ρ : Γ→ SL(d,R) is Pk-Anosov then there exist
continuous, ρ-equivariant maps

ξkρ : ∂Γ→ Grk(Rd) and ξd−kρ : ∂Γ→ Grd−k(Rd)
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where Gri(Rd) is the Grassmanian of i-planes in Rd and ∂Γ is the Gromov boundary of the
group Γ. Moreover, these limit maps are transverse, i.e. if x 6= y ∈ ∂Γ, then

ξkρ (x)⊕ ξd−kρ (y) = Rd,

compatible, i.e. if x ∈ ∂Γ, then

ξkρ (x) ⊂ ξd−kρ (x),

and dynamics-preserving, i.e. if γ+ ∈ ∂Γ is the attracting fixed point of an infinite order
element γ ∈ Γ, then ξiρ(γ

+) is the attracting i-plane of ρ(γ). (We will discuss the Gromov
boundary of a hyperbolic group in the next chapter, but in the case of the surface group the
boundary is just the circle which one can visualize as the boundary of H2 by embedding π1(S)
into H2 via the orbit map of a Fuchsian representation.)

If Γ is finitely presented and ρ : Γ→ SO0(n, 1) is a representation, then ρ is convex cocompact
if and only if ρ is P1-Anosov. Notice that no representation into SO0(n, 1) can be Pk-Anosov
for any 2 ≤ k ≤ n+1

2 , since σ2(A) = · · · = σn(A) = 1 if A ∈ SO0(n, 1). So, the theory of Anosov
representations is indeed a generalization of the theory of convex cocompact representations.

Anosov representations also arise classically as the holonomy maps of strictly convex projec-
tive structures on closed n-manifolds. Concretely, a strictly convex (real) projective n-manifold
M is the quotient of a strictly convex domain Ω in RPn by a discrete group Γ of projective au-
tomorphisms of RPn which preserve Ω. The holonomy map is then a representation of π1(M)
into the group of projective automorphisms of RPn, i.e. PSL(n + 1,R). There is a natural
metric, typically just Finsler, on Ω, called the Hilbert metric, so that the stabilizer of Ω in
PSL(n+ 1,R) acts as a group of isometries of Ω. Therefore, a convex projective manifold inher-
its a natural Finsler metric. This generalizes the theory of Fuchsian groups, since Hn may be
embedded as a round disk ∆ in RPn, so that the Hilbert metric is the classical hyperbolic metric
and the stabilizer of ∆ in PSL(n+ 1,R) is PSO(n, 1) which may be identified with Isom+(Hn).
We will see that if ρ : Γ → PSL(n + 1,R) is the holonomy map of a closed strictly convex
projective manifold, then ρ is P1-Anosov. We will review some of Benoist’s beautiful work on
strictly convex projective manifolds in Chapter 4.

Hitchin representations are one of the most prominent classes of Anosov representations. A
representation ρ : π1(S)→ PSL(d,R) is said to be d-Fuchsian if it can be written in the form
τd ◦ σ where σ : π1(S) → PSL(2,R) is discrete and faithful and τd : PSL(2,R) → PSL(d,R) is
the irreducible representation. A representation ρ : π1(S)→ PSL(d,R) is said to be Hitchin if
it lies in the same component of Hom(π1(S),PSL(d,R)) as a d-Fuchsian representation. Hitchin
[114] showed that the space of (conjugacy classes of) Hitchin representations of a closed surface

of genus g in PSL(n,R) admits a real analytic diffeomorphism to R(n2−1)(2g−2). Labourie [143]
showed that Hitchin representations are Borel Anosov. We will introduce Hitchin representa-
tions, but Labourie’s seminal result will be beyond our purview.

With this definition, it is an easy exercise to check that ρ : Γ→ SL(d,R) is Pk-Anosov if and
only if

Λkρ : Γ→ SL(ΛkRd)

is P1-Anosov (where Λkρ is the kth exterior power representation.) So P1-Anosov representations
are in some sense the general case. On the other hand, there are very few known Borel Anosov
representations, and we now know many restrictions on such representations.
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One might naturally ask why we don’t simply look at representations into SL(n,R) whose or-
bit maps are quasi-isometric embeddings. The basic answer is that quasi-isometric embeddings
into non-positively curved spaces are not stable. A very basic example of this phenomenon is a
sequence of circles through the origin in the plane with larger and larger radius which converge
to a line through the origin. So, there is a sequence of rotations in the plane which converge
to a translation. So, there are a sequence of representations of Z into the isometry group of
Euclidean space whose limit is a quasi-isometric embedding while none of the representations
in the sequence is a quasi-isometric embedding. We will later give examples of quasi-isometric
embeddings of the free group on 2 generators into SL(d,R) which fail to be Anosov.

A representation ρ : Γ → SO0(n, 1) is known to be convex cocompact if and only if there
exists a convex ρ(Γ)-invariant subset C of Hn, so that C/ρ(Γ) is compact. (This definition is
responsible for the name convex cocompact.) One might attempt to generalize this definition,
but Kleiner-Leeb [140] and Quint [181] showed that this does not result in a robust theory,
since the only Zariski dense subgroups of SL(d,R) which are convex cocompact in this sense
are uniform lattices, i.e. act cocompactly on Xd (or on SL(d,R) itself). The basic issue is that
the convex hull construction is “too big” in a non-positively curved space. For example, the
convex hull of the boundary of the positive quadrant in the plane (which is itself a

√
2-bilipschitz

embedding of a line) is the entire positive quadrant, while in the hyperbolic plane the convex
hull of the image of any bilipschitz embedding of a line is always contained in a bounded metric
neighborhood of the image. However, in Chapter 7, we will see that Danciger-Guéritaud-Kassel
[84] and Zimmer [232] have recently pioneered a way to think of Anosov representations as
convex cocompact actions on projective spaces.
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Part 2. Hyperbolic groups

In this chapter, we give a brief introduction to the portions of the theory of hyperbolic
groups which we will use later in the notes. Readers familiar with the basics of hyperbolic
groups can skip this section, while those looking for a more complete treatment can consult
the expository texts by Bridson-Haefliger [49], Coornaert-Delzant-Papadopoulos [72], Drutu-
Kapovich [91], Ghys-de la Harpe [101], or other experts in the field. One can also consult the
on-line lecture notes of Panos Papasoglu [14] (as transcribed by Michael Batty), Alessandro
Sisto [190] or Karen Vogtmann [212]. Our treatment will be largely inspired by the approach
taken by Bridson-Haefliger [49]. I recommend learning this material elsewhere, but if you insist
on learning it here, I will give you my amateur perspective on the field.

When convenient I will restrict to the simpler setting of torsion-free groups and try to indicate
what is known in the general case. Since every finitely generated subgroup of SL(d,R) has a finite
index subgroup which is torsion-free (Selberg [189], see also Alperin [6]) and a representation
is Anosov if and only if its restriction to a finite index subgroup is Anosov (see Corollary 32.3),
this will almost always suffice for our purposes.

Now if 6 turned out to be 9
I don’t mind, I don’t mind
Alright, if all the hippies cut off all their hair
I don’t care, I don’t care
Dig, ’cos I got my own world to live through
And I ain’t gonna copy you
———–Jimi Hendrix [113]

1. Quasi-isometries and the Milnor-Svarc Lemma

Quasi-isometries and quasi-isometric embeddings are natural classes of mappings in the con-
text of geometric group theory. They are generalizations of bilipschitz homeomorphisms and
embeddings which ignore the local structure. However, they need not even be continuous. For
example, an infinite line is quasi-isometric to both an infinite Euclidean cylinder and to Z and
all compact metric spaces are quasi-isometric. One justification for working in this looser con-
text, is that the natural geometric structure on a group, given by a word metric associated to
some (finite) generating set, is only well-defined up to quasi-isometry.

We will always work in the setting of proper length spaces. A metric space is proper if
all closed metric balls are compact. A proper metric space X is a length space if given any
x, y ∈ X, then there exists a rectifiable path joining x to y of length d(x, y). If J is an interval
in R and α : J → X is a path so that d(α(s), α(t)) = |t− s| for all s, t ∈ J , then we say that α
is a geodesic. Notice that in this case α([s, t]) has length t− s if t > s. An action of a group
Γ on X is properly discontinuous if whenever K ⊂ X is compact, {γ ∈ Γ |γ(K) ∩K 6= ∅}
is finite. (I include this definition since some standard texts in general topology include the
non-standard assumption that the group acts freely to the definition of proper discontinuity.)

A map f : Y → Z between metric spaces is a quasi-isometric embedding if there exists
K ≥ 1 and C ≥ 0 such that

1

K
dY (a, b)− C ≤ dZ(f(a), f(b)) ≤ KdY (a, b) + C
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for all a, b ∈ Y . If we want to remember the constants, we say that f is a (K,C)-quasi-isometric
embedding. We say that f : X → Y is a quasi-isometry if there exists K ≥ 1 and C ≥ 0
so that f is a (K,C)-quasi-isometric embedding and if y ∈ Y , then there exists x ∈ X so that
d(f(x), y) ≤ C, i.e. f is a quasi-isometric embedding which is coarsely surjective. One may
think of quasi-isometric embeddings as bilipschitz embeddings “in the large,” where you don’t
care at all what happens on the “scale” of the additive constant C.

If f : X → Y is a quasi-isometry, one may define a quasi-inverse g : Y → X, i.e. a quasi-
isometry so that there exists Ĉ so that dX(x, g(f(x)) ≤ Ĉ and dY (y, f(g(y)) ≤ Ĉ for all x ∈ X
and y ∈ Y . There is only one sensible way to construct g. Given y ∈ Y , there exists some
x ∈ X so that d(f(x), y)) ≤ C, and we set g(y) = x. If you haven’t done so before, I recommend
checking the claim that g is a quasi-inverse for yourself. Notice that the quasi-inverse is far
from canonical.

The Milnor-Svarc lemma assures us that if a group acts properly discontinuously and cocom-
pactly on two spaces, then the spaces are quasi-isometric. This allows one to freely study finitely
presented groups by studying their actions on spaces, since any such space is quasi-isometric to
the Cayley graph of the group. Moreover, any two Cayley graphs for a group (with respect to
different finite generating sets) are quasi-isometric.

Lemma 1.1. (Milnor-Svarc Lemma) If Γ acts properly discontinuously, cocompactly and by
isometries on a proper, length space X, then Γ is finitely generated and the orbit map Γ → X
given by γ 7→ γ(x0), for all γ ∈ Γ and some x0 ∈ X, is a quasi-isometry.

Proof of Milnor-Svarc Lemma: Choose a compact subset D ⊂ X so that

Γ(U) =
⋃
γ∈Γ

γ(U) = X

where U is the interior of D. Let S = {γ ∈ Γ | γ(D) ∩D 6= ∅}. By assumption S is finite.
We first claim that S generates Γ. If not, then let H be the proper subgroup of Γ generated

by S and let V = H(U) and W = (Γ \H)(U). Since X is connected (as it is a length space)
and X = V ∩W , there exists x ∈ V ∩W . Then x = h(p) and x = g(q), where p, q ∈ U , h ∈ H
and g ∈ Γ \H. But then g−1h(p) = q, so g−1h ∈ S ⊂ H, which implies that g ∈ H, so we have
achieved a contradiction.

We now choose x0 and show that the orbit map τ : Γ → X given by τ(γ) = γ(x0) is a
quasi-isometry with respect to the generating set S chosen above.

Let K0 = maxs∈S d(x0, s(x0)). Then d(x0, γ(x0)) ≤ K0dS(1, γ) for all γ ∈ Γ, so, by the
equivariance of τ ,

d(α(x0), β(x0)) ≤ K0dS(α, β)

for all α, β ∈ Γ. (Here, the group is acting by left multiplication.)
Choose r so that D ⊂ B(r, x0) and let T = {γ ∈ Γ | γ(B(3r, x0)) ∩ B(3r, x0) 6= ∅}. Again,

by assumption, T is finite.
Let γ ∈ Γ and let L be a geodesic segment in X joining x0 to γ(x0). Divide L up into

n =

⌊
d(x0, γ(x0))

r

⌋
+ 1

segments of equal length, with endpoints {x0, x1, . . . , xn}. Notice that each segment has
length less than r. Since X = Γ(U) ⊂ Γ(B(r, x0)), there exists, for each i, γi ∈ Γ so that
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d(xi, γi(x0)) < r where we may choose γ0 = id and γn = γ. Then, since d(γi(x0), γi+1(x0)) < 3r
(by the triangle inequality), γ−1

i γi+1 ∈ T . Notice that

γ = γ0(γ−1
0 γ1)(γ−1

1 γ2) · · · (γ−1
n−1γn)

so dT (id, γ) ≤ n. Notice that since T is finite and S generates Γ, there exists K1 such that
dS(1, t) ≤ K1 for all t ∈ T . Therefore,

dS(id, γ) ≤ K1n = K1

(⌊
d(x0, γ(x0)

r

⌋
+ 1

)
≤ K1

r
d(x0, γ(x0)) +K1

so
r

K1
dS(id, γ)− r ≤ d(x0, γ(x0))

and, since τ is Γ-equivariant,

r

K1
dS(α, β)− r ≤ d(α(x0), β(x0))

for all α, β ∈ Γ.
Finally, notice that, by construction, every point in X lies within r of τ(Γ). Therefore, τ is

a
(
max{K0,

K1
r }, r

)
-quasi-isometry. �

2. Gromov hyperbolic spaces

We will say that a proper length space X is (Gromov) δ-hyperbolic if whenever T is a
geodesic triangle in X with sides s1, s2 and s3 and y ∈ s1, then d(y, s2 ∪ s3) ≤ δ. If X
is δ-hyperbolic for some δ, we often simply say that it is Gromov hyperbolic or simply
hyperbolic.

The simplest examples of Gromov hyperbolic spaces are trees, which are 0-hyperbolic. The
name is motivated, in part, by the observation that Hn is hyperbolic.

Lemma 2.1. Hyperbolic space Hn is cosh−1(2)-hyperbolic for any n.

Proof. Let T be a geodesic triangle in Hn with sides s1, s2 and s3. Since any three points in Hn

are contained in a totally geodesic, isometrically embedded copy of H2, we may assume that
n = 2.

By the Gauss-Bonnet Theorem, T has area at most π. If y ∈ s1 and r = d(y, s2 ∪ s3), then
T contains a half-disk D of hyperbolic radius r. Since D has area π cosh r − π, we see that

π cosh r − π ≤ π,

so r ≤ cosh−1(2) ≈ 1.317. �

Remarks: 1) Actually, Hn is δ-hyperbolic for δ = tanh−1
(

1√
2

)
≈ 0.8814.

2) A stronger notion of negative curvature is given by considering CAT(−1)-spaces. One says
that a proper length space is CAT(−k), for some k ≥ 0, if every geodesic triangle is at least as
thin as the triangle with the same lengths in a simply connected, complete Riemannian surface
of curvature −k. The Comparision Theorem in Riemannian geometry implies that any simply
connected Riemannian manifold with sectional curvature ≤ −k is CAT(−k). The above lemma
implies that CAT(−k) spaces are cosh−1(2)/k2-hyperbolic if k > 0.
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The key property of Gromov hyperbolic spaces which we will need is the Fellow Traveller
Property which tells us that quasi-geodesics remain a bounded distance from actual geodesics
in a hyperbolic space. Notice that this is far from true in Euclidean geometry.

Theorem 2.2. (Fellow Traveller Property) Given (K,C) and δ there exists R so that if X
is δ-hyperbolic and f : [a, b] → X is a (K,C)-quasi-isometric embedding and L is a geodesic
joining f(a) to f(b), then the Hausdorff distance between L and f([a, b]) is at most R (i.e. if
x ∈ L, then d(x, f([a, b])) ≤ R and if x ∈ f([a, b]), then d(x, L) ≤ R).

Suppose that C and D are closed subsets of a metric space Y . We say that the Hausdorff
distance between C and D is at most R if both

(1) d(c,D) ≤ R for all c ∈ C, and
(2) d(d,C) ≤ R for all d ∈ D.

Alternatively, one can say that C lies in the (closed) metric neighborhood of radius R of D
and D lies in the (closed) metric neighborhood of radius R of C. The Hausdorff distance is
symmetric, satisfies the triangle inequality, and equals 0 if and only if C = D, but is not truly
a distance, since two closed sets can fail to be a finite Hausdorff distance apart.

We first sketch the proof of the Fellow Traveller Property in the case that X = Hn and f
is a K-bilipschitz embedding (i.e. a (K, 0)-quasi-isometric embedding). This situation contains
all the key ideas of the proof.

The key observation is that it is “exponentially inefficient” for a path to wander far from the
geodesic joining the endpoints. One manifestation of this principle is that if β is a path joining
the endpoints of a geodesic of length 2A in Hn and lies entirely outside the ball of radius A
about the midpoint x0, then β has length at least π sinhA (which is the length of the shortest
such path in the sphere of radius A about x0).

We first bound how far any point on L can lie from f([a, b]). Choose a point x0 ∈ L which
lies furthest from f([a, b]), i.e.

D = d
(
x0, f([a, b])

)
= sup{d

(
x, f([a, b])

)
| x ∈ L}.

Choose a point y on L so that y lies between f(a) and x0 and d(y, x0) = 2D (or y = f(a) if
d(f(a), y) ≤ 2D). Choose s ∈ [a, b] so that d(f(s), y) ≤ D (or s = a if y = f(a)). Choose a point
z on L which lies between x0 and f(b) and and d(z, x0) = 2D (or z = f(b) (if d(f(b), x0) ≤ 2D.)
Choose t ∈ [a, b] so that d(f(t), y) ≤ D (or t = b if z = f(b)). We then concatenate a geodesic
joining y to f(s), f([s, t]) and the geodesic joining f(t) to z to produce a path γ joining y to z.
Since d(f(s), f(t)) ≤ 6D and f is K-bilipschitz, `(f([s, t])) ≤ 6DK2, so

`(γ) ≤ 6DK2 + 2D.

Let ŷ be the point between x0 and y so that d(x0, ŷ) = D and let ẑ between x0 and z so thatpicture needed
here d(x0, ẑ) = D, and form a path joining ŷ to ẑ by appending to γ segments in L joining y to ŷ

and joining z to ẑ. Then
`(γ̂) ≤ 6DK2 + 4D

and γ̂ lies entirely outside of the ball of radius D about x0. Therefore,

`(γ̂) ≥ π sinhD

so

D ≤ sinh−1

(
6DK2 + 4D

π

)
= D0.
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We now bound the distance from any point on f([a, b]) to L. Let f([s, t]) be maximal
subsegment of f([a, b]) which stays outside of an open neighborhood of L of radius D0. Notice
that the subset of L consisting of points within D0 of f([a, s]) is closed and the subset of L
consisting of points within D0 of f([t, b]) is closed. On the other hand their union is all of L,
by the previous paragraph, so, since L is connected, their intersection is non-empty. So, there
exists r ∈ [a, s], u ∈ [t, b] and w ∈ L so that d(w, f(r)) ≤ D0 and d(w, f(u)) ≤ D0. picture needed

hereSince d(f(r), f(u)) ≤ 2D0 and f is a K-bilipschitz embedding, |u− r| ≤ 2KD0, so

`(f([u, r])) ≤ 2K2D0

so if q ∈ [s, t] ⊂ [r, u], then
d(f(q), L) ≤ D0 +K2D0 = R.

Therefore, the Hausdorff distance between f([a, b]) and L is at most R.
Our proof in the general case follows the same outline. We first establish a key lemma

which again shows that it is “exponentially inefficient” to wander far from the straight path in
a hyperbolic space.

Lemma 2.3. Suppose that X is δ-hyperbolic, α : [a, b] → X is a rectifiable path and L is a
geodesic in X joining α(a) to α(b). If x ∈ L, then

d(x, α([a, b])) ≤ δ| log2(`(α))|+ 1

where `(α) is the length of α([a, b]).

Proof. The lemma is obvious if `(α) ≤ 2, so we may assume that `(α) > 2. We may also assume
that [a, b] = [0, 1] and that α is parametrized proportional to arc length. Let N = blog2(α)c.

Let ∆1 be a geodesic triangle with endpoints α(0), α(1/2) and α(1), one of whose sides is
L. Given x ∈ L, we can choose y1 in another side, say L1, of ∆1, so that d(y1, x) ≤ δ. If
L1 joins α(0) to α(1/2), then we choose a triangle ∆2 with vertices α(0), α(1/4) and α(1/2)
one of whose sides is L1. Then we can choose y2 lying in a side of ∆2 other than L1 so that
d(y2, y1) ≤ δ. (If y1 is on the side joining α(1/2) to α(1), then we choose ∆2 to have vertices
α(1/2), α(3/4) and α(1) and one side L1 and proceed similarly.) Picture needed

hereAfter n stages we have a point yn on a geodesic Ln joining α(tn) and α(tn + 1/2n) so that
d(yn, x) ≤ nδ. We then consider a triangle ∆n+1 with endpoints α(tn), α(tn + 1/2n+1) and
α(tn + 1/2n) one of whose sides is Ln. We then find a point yn+1 on one of the other sides of
∆n+1 so that d(yn, yn+1) ≤ δ. After N steps, d(yN , x) ≤ Nδ and `

(
α([tN , tN + 1/2N ])

)
≤ 2, so

d
(
yN , α(tN ) ∪ α(tN + 1/2N )

)
≤ 1.

Therefore,
d(x, α([a, b])) ≤ Nδ + 1 ≤ δ| log2(`(α))|+ 1

as desired. �

We next replace f with a “nearby” piecewise geodesic quasi-isometric embedding.

Lemma 2.4. (Bridson-Haefliger [49, Lemma 11.1]) If X is δ-hyperbolic and f : [a, b] → X

is a (K,C)-quasi-isometric embedding, then there exists a (K, Ĉ)-quasi-isometric embedding
α : [a, b]→ X such that

(1) α(a) = f(a) and α(b) = f(b),

(2) Ĉ = 2(K + C),
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(3) `(α([s, t])) ≤ K1d(α(s), α(t)) +K2 where K1 = K(K+C) and K2 = (KĈ+ 3)(K+C),
and

(4) the Hausdorff distance between α([a, b] and f([a, b]) is at most K + C.

Proof. We choose α so that it agrees with f on {a, b} ∪ ([a, b]∩Z) and so that on each comple-
mentary interval it is a geodesic (parameterized proportional to arc length). It is not difficult
to check that α has the claimed properties, but it is irritating without being instructive, so we
will not include the details. �

Proof of Fellow Traveller Property: We first replace the (K,C)-quasi-isometric embedding f

with the piecewise geodesic (K, Ĉ)-embedding α given by Lemma 2.4.
We first show that L stays a bounded distance from α([a, b]). Let D = supx∈L{d(x, α([a, b])}

and choose x0 so that d
(
x0, α([a, b])

)
= D. Let y be the point on L which lies to the left of x0

and d(y, x0) = min{2D, d(x0, α(b))} and let z be the point on L which lies to the right of x0

and d(y, x0) = min{2D, d(x0, α(b))}. Choose s, t ∈ [a, b] so that d(α(s), y) ≤ D and d(α(t), z).
(If y = α(a), we choose s = a and if z = α(b), we choose t = b.) Then we can concatenate a
geodesic joining y to α(s), α([s, t]) and a geodesic joining α(t) to z to produce a path γ joining
y to z. Lemma 2.4 implies that

`(α[s, t]) ≤ 6DK1 +K2

so
`(γ) ≤ 2D + 6DK1 +K2.

Since d(x0, γ) = D, Lemma 2.3 implies that

D ≤ δ log2(`(γ)) + 1 ≤ δ log2 (2D + 6DK1 +K2) + 1

which implies an upper bound D0 on D which depend only on K1, K2, and δ (and hence only
on K, C and δ). So, if x ∈ L, then

d(x, α([a, b])) ≤ D0.

We now show that α([a, b]) stays a bounded distance from L. Let α([s, t]) be a maximal
subsegment of α which stays outside of an open neighborhood of L of radius D0. Notice that
the subset of L consisting of points within D0 of α([a, s]) is closed and the subset of L consisting
of points within D0 of α([t, b]) is closed. On the other hand their union is all of L, by the previous
paragraph, so, since L is connected, their intersection is non-empty. So, there exists r ∈ [a, s],
u ∈ [t, b] and w ∈ L so that d(w,α(r)) ≤ D0 and d(w,α(u)) ≤ D0.

Since d(α(r), α(u)) ≤ 2D0, Lemma 2.4 implies that

`(α([u, r])) ≤ 2D0K1 +K2

so if q ∈ [s, t] ⊂ [r, u], then

d(α(q), L) ≤ D0 +D0K1 +
K2

2
= R0

where R0 depends only on K, C and δ. Since [s, t] was chosen arbitrarily, we see that if q ∈ [a, b],
then d(α(q), L) ≤ R0. Therefore, the Hausdorff distance between α([a, b]) and L is at most R0.
Since the Hausdorff distance between f([a, b]) and α([a, b]) is at most K + C, by Lemma 2.4,
we see that the Hausdorff distance between f([a, b]) and L is at most R = R0 +K + C (where
R depends only on K, C and δ). �
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As a nearly immediate corollary, we see that any proper length space admitting a quasi-
isometric embedding into a Gromov hyperbolic space is itself Gromov hyperbolic.

Corollary 2.5. Suppose that X and Y are proper length spaces and that there is a quasi-
isometric embedding f : X → Y . If Y is Gromov hyperbolic, then X is also Gromov hyperbolic.

Since any quasi-isometry has a quasi-inverse which is also a quasi-isometry, we see that
Gromov hyperbolicity is invariant with respect to quasi-isometry of proper length spaces.

Proof. Suppose that Y is δ-hyperbolic and that f is a (K,C)-quasi-isometry. Let T be a
geodesic triangle in T with sides s1, s2 and s3. The Fellow Traveller Property implies that
there exists a geodesic triangle T̂ in Y with sides ŝ1, ŝ2 and ŝ3 so that ŝi is a Hausdorff
distance at most R from f(si) and has the same endpoints. (Here R depends only on K, C
and δ.) Therefore, if y ∈ s1, then there exists ŷ ∈ ŝ1 which lies within R of f(y). Since Y is
δ-hyperbolic, there exists ẑ ∈ ŝ2 ∪ ŝ3 so that d(ŷ, ẑ) ≤ δ. So, there exists z ∈ s2 ∪ s3 so that
d(f(z), ẑ) ≤ R. Therefore, d(f(y), f(z)) ≤ 2R + δ. Since f is a (K,C)-quasi-isometry, this

implies that d(y, z) ≤ K(2R+ δ + C) = δ̂, so X is δ̂-hyperbolic. �
picture
needed?

3. The Gromov boundary

The borders of reality had reconfigured in such a way that it seemed necessary to
map out the patchwork topography. What was needed was a bit of geometric
thinking... I taped the tracing paper to the wall attempting to make sense of
an impossible scape, but composed nothing more than a fractured diagram
containing all the improbable logic of a child’s treasure map.
———–Patti Smith [194]

Notice that if we fix a basepoint x0 ∈ Hn, we may identify ∂Hn with the set Rx0 of (infinite)
geodesic rays emanating from x0 and hence with Tx0Hn. One can then abstractly identify
Rx0 with Rx1 by simply identifying a geodesic ray emanating from x0 to the unique geodesic
ray emanating from x1 that it remains a bounded distance from throughout its trajectory.
Alternatively, one could simply consider the set R of all geodesic rays in Hn and identify two
geodesic rays if they remains a bounded distance from each other throughout their trajectories,
i.e. if the Hausdorff distance between the two geodesic rays is finite.

One may generalize this notion to obtain a boundary at infinity for any Gromov hyperbolic
space. One must be more careful, since geodesics need not be unique and two distinct geodesic
rays emanating from the same point may remain a bounded distance from each other throughout
their trajectories. One can see simple examples of this in the Cayley graph of π1(S) or in the
Gromov hyperbolic space obtained by removing balls of small radius which are spaced at regular
intervals along a geodesic in H2. (All this would work much more easily if we worked in the
simper setting of CAT(−1) spaces, where geodesics are unique, and you can start by imagining
this simpler case.)

We will (roughly) follow the treatment in section III.H.3 of Bridson-Haefliger [49]. Another
good reference is the survey paper by Benakli and Kapovich [126].

If X is a δ-hyperbolic space, we let

G = G(X) = {α : [0,∞)→ X | α is an isometric embedding }
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and say that α ∼ β if sup{d(α(t), β(t))} is finite. We then let

∂X = ∂∞X = G(X)/ ∼ .

If α ∈ G, then we define α(∞) = [α] ∈ ∂X.
We encourage the reader to establish the following fact as an exercise in understanding this

definition.

Lemma 3.1. If X is Gromov hyperbolic and α, β ∈ G(X), then [α] = [β] if and only if the
Hausdorff distance between α([0,∞)) to β([0,∞)) is finite.

We now observe that every point in X is joined to every point in the boundary by a geodesic
ray. So if we define Gx0 = {α ∈ G |α(0) = x0}, we could have defined ∂X = Gx0/ ∼.

Lemma 3.2. Suppose that X is a δ-hyperbolic space. If [α] ∈ ∂X and x0 ∈ X, then there exists
β ∈ [α] so that β(0) = x0. Moreover, if α and β are any two geodesic rays with [α] = [β], then
α([0,∞)) and β([0,∞) are a Hausdorff distance at most δ + d(β(0), α(0)) apart and

d(α(t), β(t)) ≤ 3δ + 2d(α(0), β(0))

for all t ∈ [0,∞).

Proof. Suppose that [α] ∈ ∂X. Let βn : [0, tn]→ X be a geodesic joining x0 to α(n). Consider
a triangle with vertices α(0), x0 and α(n) and having a side lying in the image of α and another
side lying in the image of βn. Since X is δ-hyperbolic, every point in βn([0, tn]) lies withinPicture needed

here δ of a point in the other two sides. Since the side joining α(0) to x0 has length d(x0, α(0)),
every point in βn([0, tn]) lies within D = δ + d(α(0), x0) of the image of α([0, n]). Notice that
tn →∞, since d(x0, α(n)) →∞. The Arzela-Ascoli Theorem implies that βn converges, up to
subsequence, to a geodesic ray β : [0,∞)→ X and that β([0,∞)) lies within Hausdorff distance
D of α([0,∞). Therefore, [α] = [β].

Now suppose that α and β are any two geodesic rays so that [α] = [β]. Since [α] = [β], there
exists R so that d(α(t), β(t)) ≤ R for all t ∈ [0,∞). Given t, choose N > δ + R. Let L be

a geodesic joining α(0) to β(N), M be a geodesic joining α(0) to β(0) and M̂ be a geodesic

joining α(N) to β(N) Our choice of N implies that d(α(t), M̂) > δ. First consider the geodesic

triangle with sides α([0, n]], L and M̂ . Since X is δ-hyperbolic there exists x ∈ L ∪ M̂ , so thatanother picture
needed

d(x, α(t)) ≤ δ. Since d(α(t), M̂) > δ, we see that x must lie in L. Now consider the geodesic
triangle with edges L, M and β[0, n]) and notice that there exists y ∈ β([0, N ]) ∪M so that
d(y, x) ≤ δ. But since d(α(t), y) and M has length d(α(0), β(0)) we see that α(t) lies within
δ+ d(α(0), β(0)) of some point β(s) in β([0,∞)). Since this argument is symmetric we see that
the Hausdorff distance between α([0,∞)) and β([0,∞)) is at most δ + d(α(0), β(0)).

The Triangle inequality implies that |s−t| ≤ d(α(0), β(0))+δ, so d(α(t), β(t)) ≤ 2d(α(0), β(0)+
3δ.

�

We can topologize ∂X, by saying that a sequence {[αn]} ⊂ ∂X converges to [α] ∈ ∂X if
there exists x0 ∈ X and (for all n) βn ∈ [αn] so that βn(0) = x0 and (every subsequence of)
βn (contains a subsequence which) converges to a geodesic ray β such that β ∈ [α]. (This
allows one to define closed sets and hence a topology.) We similarly topologize X ∪ ∂X by
saying that {xn} ⊂ X converges to [α] ∈ ∂X if there exists x0 ∈ X and (for all n) a geodesic
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βn : [0, rn]→ X with βn(0) = x0 and βn(rn) = xn so that (every subsequence of) βn (contains
a subsequence which) converges to a geodesic ray β such that β ∈ [α].

We will make routine use of the following elementary observation about convergence to the
boundary. We leave the proof as an exercise for the intrepid reader.

Lemma 3.3. Suppose that X is a Gromov hyperbolic and {xn} is a sequence in X which
converges to z ∈ ∂X. If {yn} is a sequence in X and there exists R so that d(xn, yn) ≤ R for
all n, then {yn} also converges to z.

One crucial property of the boundary is that it gives a compactification of X.

Lemma 3.4. If X is δ-hyperbolic, then ∂X is compact. Moreover, X ∪ ∂X is compact.

Proof. One can check, see the remark below, that the topology on X ∪ ∂X above is first
countable, so it suffices to show that ∂X and X ∪ ∂X are sequentially compact. Let {zn} be
a sequence in ∂X (or in X ∪ ∂X) and fix x0 ∈ X. Lemma 3.2 implies that we may choose,
for all n, a geodesic ray βn : [0,∞) → X so that βn(0) = x0 and [βn] = zn (or a geodesic
βn : [0, rn] → X so that βn(0) = x0 and βn(rn) = zn). The Arzela-Ascoli Theorem implies
that {βn} has a subsequence {βnk}, so that {βnk} converges to a geodesic ray β (or a geodesic
β : [0, r]→∞). It follows that {znk ]} converges to [β] ∈ ∂X (or to β(r) ∈ X). �

Remark: To check that the topology on ∂X is first countable one can use Lemma 3.2 to check
that if we choose r > 3δ and let

V (β, n, r) = {[α] | ∃α ∈ Gβ(0) such that d(α(n), β(n)) < r}
then {V (β, n, r}n∈N is a countable (not necessarily open) neighborhood system for [β] in ∂X.
One similarly constructs a countable neighborhood system for [β] in X ∪ ∂X. See Bridson-
Haefliger [49, Section III.H.3] for details.

It is then easy to see that a quasi-isometric embedding induces a continuous injection at
infinity.

Proposition 3.5. If X and Y are δ-hyperbolic spaces and f : X → Y is a quasi-isometric
embedding, then there exists a continuous injective map ∂f : ∂X → ∂Y such that if {xn} ⊂ X
converges to z ∈ ∂X, then {f(xn)} converge to ∂f(z).

Proof. Suppose that X and Y are δ-hyperbolic and that f : X → Y is a (K,C)-quasi-isometry.
Let R = R(K,C, δ) be the constant provided by the Fellow Traveller Property. Fix x0 ∈ X.

Given [α] ∈ ∂X, choose β ∈ [α] so that β(0) = x0. Let γn : [0, tn] → Y be a geodesic ray
joining f(x0) to f(β(n)). Then tn →∞ and the image of βn lies a Hausdorff distance at most
R from f(β([0, n])). Then, {γn} has a subsequence {γnk} converging to a geodesic ray γ in Y
whose image lies within R of the image of f ◦ β. We call γ a straightening of f ◦ β and define
∂f([α]) = [γ].

We first check that ∂f is well-defined. If α and β are geodesic rays in X so that [α] = [β],
then, by Lemma 3.2, their images in X lie a Hausdorff distance at most δ + d(α(0), β(0))
apart. Therefore, f(α([0,∞)) and f(β([0,∞)) lie a Hausdorff distance at most T = K(δ +
d(α(0), β(0)) + C apart. Therefore, any the image of any straightening γ of f ◦ α lies within
Hausdorff distance at most T + 2R of any straightening γ̂ of f ◦ β. It follows that [γ] = [γ̂], so
∂f is well-defined.
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Now suppose that a sequence {[αj ]} ⊂ ∂X converges to [α] ∈ ∂X. Without loss of generality
αj(0) = x0 for all j, α(0) = x0 and αj converges to α. Suppose that γj is a straightening of
f ◦ αj . Then f([αj ]) = [γj ] and γj([0,∞)) lies within R of f ◦ αj([0,∞)) for all j. If {γjk} is a
subsequence of {γj} converging to a geodesic ray γ, then, since αj converges to α, γ([0,∞)) lies
witin Hausdorff distance R of f ◦α([0,∞)). Therefore, {f([αj ])} converges to [γ] = ∂f([α]), so
∂f is continuous.

Similarly, suppose that {xn} ⊂ X converges to z ∈ ∂X. Let αn : [0, rn] be a geodesic
joining x0 to xn. Since xn → x, we see that rn → ∞ and if a subsequence of αn converges to
α : [0,∞) → X, then [α] = z. For all n, let γn be a geodesic joining f(x0) to f(xn). Then
the image of γn lies within a Hausdorff distance R of the image of f ◦ αn. It follows that if a
subsequence of {γn} converges to a geodesic ray γ, then the image of γ lies within Hausdorff
distance R of the image of f ◦ α where α is a limit of a subsequence of {αn}. Therefore,
f(z) = f([α]) = [γ] = lim f(xn).

Finally, we check injectivity. Suppose ∂f([α]) = ∂f([β]) = [γ]. We may assume that α(0) =
β(0) = x0 and γ(0) = f(x0). Then, the images of f ◦ α and f ◦ β lie within K(2δ) + C + 2δ of
the image of γ. Therefore, the image of α lies within 2K(K − 2δ + C + 2δ) − C of the image
of β, which implies that [α] = [β]. Therefore, ∂f is injective. �

Recall that any quasi-isometry f : X → Y has a quasi-inverse g : Y → X. Moreover, if
h : X → X is a bounded distance from the identity on X, then h is a (1, C)-quasi-isometry for
some C and ∂h is the identity on ∂X. Therefore, ∂f ◦ ∂g = ∂(f ◦ g) = id and

Proposition 3.5 implies that quasi-isometric spaces have homeomorphic boundaries.

Corollary 3.6. If X, Y and Z are hyperbolic spaces, and f : X → Y and g : Y → Z are quasi-
isometric embeddings, then ∂(g ◦ f) = ∂g ◦ ∂f . In particular, if f : X → Y is a quasi-isometry
between hyperbolic spaces, then ∂f : ∂X → ∂Y is a homeomorphism.

Proof. First notice that if [α] ∈ ∂X, then

∂(f ◦ g)([α]) = [f ◦ g ◦ α] = ∂f([g ◦ α]) = ∂f(∂g([α]))

so ∂(f ◦ g) = ∂f ◦ ∂g.
Recall that any quasi-isometry f : X → Y has a quasi-inverse g : Y → X, which is a quasi-

isometry so that both f ◦ g and g ◦ f are a bounded distance from the identity. Moreover,
if h : X → X is a bounded distance from the identity on X, then ∂h is the identity on ∂X.
Therefore, ∂f ◦∂g = ∂(f ◦g) = idY and ∂g◦∂g = ∂(g◦f) = idX , so ∂f is a homeomorphism. �

Remark: In fact, the topology on ∂X is induced by a metric which is well-defined up to Hölder
equivalence and the map ∂f in Proposition 3.5 is Hölder with respect to these metrics on ∂X
and ∂Y . This is a generalization of the fact that if f : H2 → H2 is a quasi-isometry, then
∂f is a bi-Hölder homeomorphism. In fact, ∂f is quasi-symmetric, and the homeomorphism
in Corollary 3.6 can be shown to be a generalized quasi-symmetry. (This is discussed, with
references to more complete treatments, in Kapovich-Benakli [126].)

If α : [0,∞)→ X is a (K,C)-quasi-isometric embedding, then, [0,∞) is Gromov hyperbolic
and its Gromov boundary ∂[0,∞) is a single point, which we denote∞. Proposition 3.5 implies
that we may define α(∞) ∈ ∂X. (More concretely, we could proceed as in the proof to find a
geodesic ray in X which lies a bounded Hausdorff distance from the image of α and define α(∞)



ANOSOV REPRESENTATIONS 21

to be the equivalence class of that geodesic ray. For shorthand, we often call α a quasi-geodesic
ray and say that it ends at α(∞).

If c : R → X is a quasi-isometric embedding c : R → X into a Gromov hyperbolic space X,
we let c(∞) = [c|[0,∞)] and c(−∞) = [ĉ] where ĉ(t) = c(−t) for all t ∈ [0,∞). Alternatively, we
could observe that R is Gromov hyperbolic and its Gromov boundary consists of two points,
labelled ∞ and −∞. Proposition 3.5 then implies that c(∞) 6= c(−∞). We often call c a
quasi-geodesic and say that it joins c(−∞) to c(∞).

We collect together here some useful facts about quasi-geodesics and the Fellow Traveller
Property.

Proposition 3.7. Suppose that X is δ-hyperbolic and [α] and [β] are distinct points in ∂X.

(1) there exists a geodesic γ : R→ X joining [α] to [β], i.e. γ(−∞) = [α] and γ(∞) = [β].
(2) Any two geodesics joining [α] and [β] lie a Hausdorff distance at most 2δ apart.
(3) Given K ≥ 1 and C ≥ 0 there exists S = S(δ,K,C) ≥ 0 so that any two (K,C)-

quasigeodesics joining [α] to [β] lie a Hausdorff distance at most S apart.
(4) Any two (K,C)-quasigeodesic rays c : [0,∞) → X and ĉ : [0,∞) → X ending at the

same point in ∂X lie a Hausdorff distance at most S + 2d(c(0), ĉ(0)) apart.

Proof. We may assume, by Lemma 3.2, that α(0) = β(0) = x0 ∈ X. Notice that since
d(α(t), β(t)) → ∞, there exists N so that if s, t > N , then d(α(t), β([0,∞)) > 2δ and
d(β(s), α([0,∞)) > 2δ. For all n > N , let γn : [an, bn] → X be a geodesic segment joining
α(n) to β(n).

Since every point in the image of γn lies within δ of a point in α([0, n]) ∪ β([0, n]), we see
that there must be some point α(tn) which lies within δ of both α([0, n]) and β([0, n]). We then
re-parameterize so that tn = 0 and notice that then d(γn(0), x0) ≤ N + δ. Moreover, one may
check that if t > N , then γn(t) lies within δ of β([0,∞)) and if t < −N , then γn(t) lies within
δ of β([0,∞)) .

Then, by the Arzela-Ascoli Theorem, {γn} has a subsequence converging to a geodesic γ :
R→ X such that if t > N + δ, then γ(t) lies within δ of β([0,∞)) and if t < −N − δ, then γ(t)
lies within δ of β([0,∞)). Therefore, γ(−∞) = [α] and γ(∞) = [β]. This establishes (1).

Suppose γ1 : R → X and γ2 : R → X are two geodesics joining [α] to [β]. By definition,
there exists D so that d(γ1(t), γ2(t)) ≤ D for all t ∈ R. For all n ∈ N, let Ln be a geodesic
joining γ1(−n) to γ2(n), let T 1

n be a geodesic triangle with vertices γ1(−n), γ1(n) and γ2(n)
and having Ln, γ1([−n, n]) and M1

n as its sides, and let T 1
n be a geodesic,triangle with vertices

γ2(−n), γ2(n) and γ1(−n) and having Ln, γ2([−n, n]) and M2
n as its sides. Notice that each

M i
n has length at most D.
Suppose that t ∈ R and choose N > D+ 2δ+ |t|. Then d(γ1(t),M i

N ) < 2δ for i = 1, 2. Since picture needed

X is δ-hyperbolic, we consider the geodesic triangle T 1
N , and see that there exists x ∈ LN ∪M1

N

so that d(x, α(t)) ≤ δ. But, since d(γ1(t),M1
N ) > 2δ, x must lie in LN . Then, considering

the triangle T 2
N we see that there exists z ∈ M2

N ∪ γ2([−N,N ]) so that d(y, z) ≤ δ, then
d(γ1(t), z) ≤ 2δ, so z ∈ γ2([−N,N ]). Therefore, every point in γ1(R) lies within 2δ of a point
on γ2(R). Since the argument is symmetric, we see that the Hausdorff distance between γ1(R)
and γ2(R) is at most 2δ. This establishes (2).

Let c1 : R → X and c2 : R → X be (K,C)-quasi-geodesics joining [α] to [β]. Let R =
R(K,C, δ) be the constant provided by the Fellow Traveller Property. For all n ∈ N and
i = 1, 2, let Lin be a geodesic joining ci(−n) to ci(n). Then, the Hausdorff distance between Lin
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and ci(−n, n) is at most R. We may pass to a subsequence so that {L1
n} and {L2

n} converge to
bi-infinite geodesics L1 and L2 joining [α] and [β]. Then the Hausdorff distance between c1(R)
and L1 is at most R and the Hausdorff distance between c2(R) and L2 is at most R. Since,
by part (2), the Hausdorff distance between L1 and L2 is at most 2δ, the Hausdorff distance
between c1(R) and c2(R) is at most S = 2R+ 2δ. This establishes (3).

The proofs of (4) follow the same outline as the proof of (3). �

One similarly checks that geodesic triangles with vertices at infinity are 2δ-thin if X is δ-
hyperbolic. If a vextex v of a geodesic triangle lies in ∂X, then the edges abutting it both end
at v and we do not regard v as a point in the triangle itself. We leave the proof as an exercise.

Lemma 3.8. Suppose that X is δ-hyperbolic and T is a geodesic triangle with sides s1, s2 and
s3 with vertices in X ∪ ∂X. If y ∈ s1, then

d(y, s2 ∪ s3) ≤ 2δ.

4. Hyperbolic groups and their subgroups

If Γ is a finitely generated group, we consider its Cayley graph CΓ. The Milnor-Svarc
Lemma implies that the Cayley graphs associated to different finite generating systems are
quasi-isometric, but one may easily check this directly (since each generator in one generating
system can be written as a word in the other generating system.)

We then say that a finitely generated group is hyperbolic or Gromov hyperbolic or
word hyperbolic if its Cayley graph is Gromov hyperbolic. (Notice that since the Cayley
graph depends on the generating system there is no canonical hyperbolicity constant attached
to a group.) We let ∂Γ denote the Gromov boundary of CΓ. Notice that ∂Γ is well-defined
since all Cayley graphs for Γ are quasi-isometric Moreover, Γ acts naturally as a group of
homeomorphisms of Γ, by Corollary 3.6.

The Cayley graph of a finitely generated free group is a tree, so is 0-hyperbolic, so free groups
are Gromov hyperbolic. All finite groups are hyperbolic. The Milnor-Svarc lemma implies that
any group acting properly discontinuously and cocompactly on a Gromov hyperbolic space is
Gromov hyperbolic. So, if M = Hn/Γ is a closed hyperbolic manifold, then Γ is a Gromov
hyperbolic group. More generally, the fundamental group of any closed negatively-curved man-
ifold is Gromov hyperbolic. We will later see that if ρ : Γ → SO0(n, 1) is convex cocompact,
then Γ is Gromov hyperbolic. In fact, these last two examples provide the motivation for much
of the basic theory of hyperbolic groups.

Since the Cayley graph of a group Γ is quasi-isometric to the Cayley graph of any finite
index subgroup Θ, one sees that Γ is Gromov hyperbolic if and only if Θ is Gromov hyperbolic.
(Notice that one may compose a quasi-isometry from CΘ to Θ with the inclusion map of Θ into
CΓ to obtain a quasi-isometry.)

Since Γ is quasi-isometric to its Cayley graph, Proposition 2.5 immediately implies the fol-
lowing criterion for a group to be hyperbolic.

Proposition 4.1. If Γ is a finitely generated group, then Γ is hyperbolic if and only if there
exists a quasi-isometric embedding of Γ into a Gromov hyperbolic space.

We say that a finitely generated subgroup Θ of Γ is quasiconvex if the inclusion map of Θ
into Γ is a quasi-isometic embedding (with respect to some, hence any, finite generating set for
Θ). We obtain the following corollary.
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Corollary 4.2. If Γ is a hyperbolic group and Θ is a quasiconvex subgroup, then Θ is hyperbolic.
Moreover, the inclusion map induces a Θ-equivariant embedding of ∂Θ into ∂Γ.

Proof. Let f : Θ→ Γ and g : Γ→ CΓ and h : Θ→ CΘ be inclusion maps. f is a quasi-isometric
embedding, by assumption, and g and h are (1, 1)-quasi-isometries. Let j be a quasi-inverse for
h. Then φ : g ◦ f ◦ j : CΘ → CΓ is a quasi-isometric embedding, so Proposition 4.1 implies that
CΘ is hyperbolic, and hence that Θ is hyperbolic. Since φ is Θ-equivariant, i.e. θ ◦ φ = φ ◦ θ
for all θ ∈ Θ, ∂φ is a Θ-equivariant embedding. �

It is well-known that hyperbolic isometries of H2 have exactly two fixed points and preserve
the geodesic joining them. We will want an analogue of this result in the setting of hyperbolic
groups. However, in the setting of hyperbolic groups, there need not be a geodesic preserved by
an infinite order element, although there is always a quasi-axis (i.e. a quasi-geodesic preserved
by the element). The fundamental observation about cyclic subgroups of hyperbolic groups is
that they are quasiconvex.

Proposition 4.3. Suppose that Γ is a hyperbolic group and γ is an infinite-order element of
Γ. Then the the map η = ηγ : Z→ CΓ given by n 7→ γn is a quasi-isometric embedding.

We will follow the treatment in Batty-Papasoglu [14, Section 3.7]. We first show that the
number of iterates it takes to first escape the neighborhood of radius R of the identity grows
linearly in R and then do some (somewhat irritating) book-keeping to show that this implies
that η is quasi-geodesic.

Proof. Suppose that CΓ is δ-hyperbolic. Given R ≥ 0, there exists k = k(R) so that d(id, γk) >
8R + 4δ. (Notice that this is possible since any metric ball in CΓ contains only finitely many
vertices.) Let L be a geodesic joining id to γk and let y be a midpoint of L.

Let L̂ be the subsegment of L centered at y and having radius R. We first show that if α
and β are vertices in B(R, id) and m is the midpoint of any geodesic M joining α to β, then

d(m, L̂) ≤ 4δ. First consider the triangle T1 with vertices α, β and γk and having M as an edge.
Then, there exists a point y1 on one of the other edges, say M1, of T1 so that d(m, y1) ≤ δ.
Since d(y, β) > 3R + 2δ and d(β, γk) ≤ R, we see that M1 must join α to γk. Let m1 be the

midpoint of M1. Since d(m,β) = d(α,β)
2 and d(β, γk) ≤ R we see that∣∣∣∣d(m, γk)− d(α, γk)

2

∣∣∣∣ ≤ R

2

and since d(y1,m) ≤ δ and d(m1, γ
k) = d(α,γk)

2 it follows that

d(y1,m1) ≤ R

2
+ δ.

picture needed

Now consider the triangle T2 with vertices α, id and gk and having L and M1 as edges.
There exists a point y2 on an edge of T2 other than M1 so that d(y2, y1) ≤ δ, so d(y2,m) ≤ 2δ.
Since d(y2, id) > R + δ, y2 cannot lie on the edge joining id and α, so must lie on L. Since

d(m1, γ
k) = d(α,γk)

2 and d(id, α) ≤ R we see that∣∣∣∣d(m1, γ
k)− d(id, γk)

2

∣∣∣∣ ≤ R

2
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and since d(y2,m1) ≤ R
2 + 2δ and d(y, γk) = d(id,γk)

2 it follows that

d(y2, y) ≤ R+ 2δ.

Therefore, d(m, L̂) ≤ 4δ.
Let N be the number of vertices (and midpoints of edges) in B(4δ, id). Then, there are at

most (2R+ 1)N ≤ 3RN vertices (and midpoints of edges) in the neighborhood of radius 4δ of
L, so at most 3RN choices for midpoints of geodesics joining vertices in B(4δ, id) to vertices in
B(4δ, γk). Notice that the midpoints of γn(L) are all disjoint, since each γn acts by isometries
and without fixed points on CΓ. Therefore, there exist P (R) such that 1 ≤ P (R) ≤ 3RN and

γP (R) does not lie in B(R, id) (Notice that if γs lies in B(R, id), then γs+k lies in B(R, γk), so
γs(L) joins a point in B(R, id) to a point in B(γk, R).) The crucial improvement here is that
P (R) is linear in R whereas there can be an exponential number of vertices in B(R, 1).)

Now we claim that for all R ∈ N, d(1, γ3NR) ≥ R. If not, there exists R0 ∈ N so that

d(id, γ3NR0) ≤ R0 − ε
for some ε ≥ 1. So, if s > 3NR0 we can write s = 3nNR0 + R1 with 0 ≤ R1 < 3NR0 and
n ∈ N. So,

d(1, γs) ≤ d(1, γnNR0) + d(γnNR0 , γs) ≤ n(R0 − ε) +R1T

where T = d(1, γ). So, if nε > R1T , which always holds if s > 9N2R2
0T , then

d(1, γs) ≤ s

3N
.

Notice that P (R) ≥ R
T , so we may choose R so that P (R) > 9N2R2

0T . Then, by construction,

d(1, γP (R)) > R and P (R) ≤ 3NR, but, by the previous paragraph, d(1, γP (R)) ≤ P (R)
3N ≤ R, so

we have achieved a contradiction and so

d(1, γ3NR) ≥ R
for all R ∈ N. Notice also that

d(1, γs) ≤ sT.
Therefore, the restriction of η to 3NZ is max{T, 3N}-bilipschitz.

It is now fairly clear that the extension to all of Z must be a quasi-isometry, but let’s check
the details. If s > 0, there exists integers n ≥ 0 and m ∈ [0, 3N) so that s = n(3N) +m, so

d(η(0), η(s)) ≥ d(1, γs) ≥ d(1, γn(3N))− d(γn(3N), γs) ≥ n−mT ≥ s

3N
− 3NT − 1

Since η is equivariant (with respect to translation) this shows that η is a (max{T, 3N}, 3NT+1)-
quasi-isometric embedding. �

It follows that the action of an infinite order element on CΓ has North-South dynamics.

Corollary 4.4. If Γ is a δ-hyperbolic group and γ ∈ Γ has infinite order, then there exists a
quasi-isometric embedding cγ : R→ CΓ and R > 0, so that γn(cγ(t)) = cγ(t+ n) for all n ∈ Z
and t ∈ R. Moreover, if x ∈ CΓ, then

lim
n→+∞

γn(x) = γ+ = cγ(∞) and lim
n→+∞

γ−n(x) = γ− = cγ(∞).

and γ fixes both γ+ and γ−.
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We call γ+ the attracting fixed point of γ and γ− is called the repelling fixed point. We
can think of the quasi-geodesic cγ(R) as a quasi-axis for γ.

Proof. Let d : [0, 1]→ CΓ be a path which is a geodesic parametrized proportional to arc length
joining id to γ. We then < γ >-equivariantly extend d to obtain c = cγ : R → CΓ. Explicitly,
if n = btc and s = t− n ∈ [0, 1), then let c(t) = γn(d(s)). By construction, γn(c(t)) = c(t+ n)
for all n ∈ Z and t ∈ R. In particular, γ(c(∞)) = [γ(c([0,∞))] = [c([1,∞))] = c(∞) so γ fixes
c(∞) = γ+. Similarly, γ fixes c(−∞) = γ−.

Since c|Z is a (K,C)-quasi-isometry (for some K and C), by Proposition 4.3, one may easily
check that c is a (K,C + d(id, γ))-quasi-isometry. Therefore, if t ∈ R, then {γn(c(t))}n∈N
converges to c(∞) and {γ−n(c(t))}n∈N converges to c(−∞). If x ∈ CΓ, then d(γn(x), γn(id)) =
d(x, id) and γn = c(n)→ α+, so, by Lemma 3.3, γn(x)→ α+. Similarly, γ−n(x)→ α−. �

The following lemma places strong restrictions on subgroups of hyperbolic groups.

Lemma 4.5. Suppose that Γ is hyperbolic and γ ∈ Γ has infinite order. If β ∈ Γ and βγnβ−1 =
γm then m = ±n.

Proof. Suppose that βγnβ−1 = γm and m 6= ±n. Without loss of generality |m| > |n|. Then,
for all k ∈ N,

γm
k

= βkγn
k
β−k.

However, since the orbit map ηγ :< γ >→ Γ is a (K,C)-quasi-isometric embedding for some K
and C, this implies that

|m|k

K
− C ≤ d(1, γm

k
) ≤ 2kd(1, β) + d(1, γn

k
) ≤ 2kd(1, β) +K|n|k + C

for all k ∈ N, which is impossible if |m| > |n|. �

Recall that a Baumslag-Solitar group has the form

BS(m,n) =< a, b | bamb−1 = an >

for some m,n ∈ Z − {0}, so BS(m,n) cannot appear as a subgroup of a hyperbolic group if
m 6= ±n. Moreover, if m = ±n, then BS(m.n) contains a subgroup isomorphic to Z ⊕ Z.
Since, every free abelian subgroup of a hyperbolic group is infinite cylic (as we will prove in the
torsion-free setting in the next section), no Baumslag-Solitar group can appear as the subgroup
of a hyperbolic group.

It is conjectured that if Γ admits a finite K(Γ, 1) (i.e. a finite CW-complex with fundamental
group Γ whose universal cover is contractible), then Γ is hyperbolic if and only if it does not
contain a subgroup isomorphic to a Baumslag-Solitar group. Brady [40] exhibited a finitely
presented subgroup of a hyperbolic group which is not hyperbolic, but does not contain a
Baumslag-Solitar subgroup, so the stronger finiteness assumption is necessary.

5. Dynamics on the Gromov boundary

In this section, we further explore the action of a hyperbolic group on its Gromov boundary.
These are the results on hyperbolic groups which we will use most often.

We have already seen that cyclic subgroups of hyperbolic groups have North-South dynam-
ics on the Cayley graph. We now show that their action on the boundary has North-South
dynamics.



26 RICHARD D. CANARY

Proposition 5.1. If Γ is a hyperbolic group and γ ∈ Γ has infinite order, then γ has exactly
two fixed points γ+ = limn→∞ γ

n and γ− = limn→∞ γ
−n in ∂Γ. Moreover, if z ∈ ∂Γ − {γ−}

then limn→∞ γ
n(z) = γ+.

Proof. Let c = cγ : R → CΓ be the (K,C)-quasi-isometric embedding provided by Corollary
4.4. We have already shown that γ fixes γ+ = c(∞) and γ− = c(−∞). There exists δ so that CΓ

is δ-hyperbolic. Let R = R(K,C, δ) be the constant provided by the Fellow Traveller property.
If z ∈ ∂Γ−{γ+, γ−}, let β be a geodesic ray based at id, so that [β] = z. Then γn(z) = [γn◦β].

Since z /∈ {γ+, γ−}, we see that d
(
γ(t), β([0,∞))

)
→ ∞ as either t → ∞ or t → −∞, so there

exists S so that

d(c(s), β([0,∞))) > 8R+ 8δ if |s| ≥ S.
Given n ∈ N. Let βn be a geodesic ray joining id to γn(z) and let αn : [0, rn] → CΓ be a

geodesic joining id to γn. Since γn = c(n), we see that αn([0, rn]) and c([0, n]) are a Hausdorff
distance at most R apart. We consider the geodesic triangle, with one ideal vertex γn(z), which
has edges γn(β([0,∞)), βn([0,∞)) and αn([0, rn]). By Lemma 3.7, every point on βn([0,∞))
lies within 2δ of some point on either βn([0,∞)) and αn([0, rn]). Let

tn = inf{t ∈ [0,∞) | d(βn(t), αn([0, rn])) > 2δ}.

Notice that we must have d(βn(tn), αn([0, rn])) = 2δ and d(βn(tn), γn(β([0,∞)) ≤ 2δ. The
following explicit estimate shows that tn diverges to ∞.

Claim: tn ≥ wn = n− S − CK −R− 2δ.

Proof of Claim: Choose an ∈ [0, rn] and bn ∈ [0,∞)so that that d(βn(tn), αn(an)) ≤ 2δ
and d(βn(tn), γn(an) ≤ 2δ. By the fellow traveller property, there exists sn ∈ [0, n] so that
d(c(sn), αn(an)) ≤ R. By the triangle inequality,

d(c(sn), βn(tn)) = d(γ−n(c(sn)), γ−n(γn(β(bn)) = d(c(sn − n), β(tn)) ≤ R+ 2δ.

So, by our choice of S, |sn−n| ≤ S, so sn > n−S. Since αn and βn are geodesics beginning at
id and d(βn(tn), αn(an)) ≤ 2δ, we see that |an − tn| ≤ 2δ. Similarly, since αn is a geodesic, c is
a (K,C)-quasigeodesic and d(c(sn), αn(an)) ≤ R, we see that bn ≥ sn−C

K − R. By combining,
we have

tn ≥ bn − 2δ ≥ sn − C
K

−R− 2δ ≥ n− S − CK −R− 2δ

which completes the proof of the claim. �
Therefore, it follows that βn([0, tn]) lies within the neighborhood of radius 2δ of αn([0, rn]),

and hence within the neighborhood of radius R+ 2δ of c([0,∞)). We pass to a subsequence so
that βn converges to a geodesic ray β. Since tn →∞, β lies within a neighborhood of radius R
of c([0,∞). Therefore, [β] = c(∞) = γ+. Since, this holds for an arbitrary subsequence of [βn],
we see that γn(z) = [βn] converges to γ+.

�

For the remainder of the section, we will assume that Γ is torsion-free to avoid proving the
simple fact that every infinite hyperbolic group contains an infinite order element (see Bridson-
Haefliger [49, Proposition III.Γ.2.22]). Moreover, there are only finitely many conjugacy classes
of finite subgroups of a hyperbolic group (see Bridson-Haefliger [49, Theorem III.Γ.3.2]).
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As a first application of Proposition 5.1 we see that the stabilizer of any point in ∂Γ is cyclic.
We recall that the stabilizer of z in Γ is the subgroup

Stab(z) = {γ ∈ Γ | γ(z) = z}.

Corollary 5.2. If Γ is a torsion-free δ-hyperbolic group and z ∈ ∂Γ, then StabΓ(z) is cyclic,
i.e. either trivial or isomorphic to Z.

Proof. If StabΓ(z) is non-trivial, we fix a non-trivial element γ ∈ Stab(z) and let c = cγ : R→
CΓ be the quasi-isometric embedding provided by Corollary 4.4. We may assume, perhaps
after replacing γ with γ−1, that γ+ = c(∞) = z. We first show that if β ∈ Stab(z), then
{β+, β−} = {γ+, γ−}. Let ĉ = cβ : R → CΓ be the quasi-isometric embedding provided by
Corollary 4.4. We may assume, after perhaps replacing β by β−1, that ĉ(∞) = z = β+. By
Proposition 3.7 there exists T so that c([0,∞)) and ĉ([0,∞) are Hausdorff distance at most T

apart. Therefore, for all n ∈ N, there exists k(n) ∈ N so that d(γn, βk(n)) ≤ T , so β−k(n)γn

has word length at most T . Since there are only finitely many words of length at most T in Γ,
there exists r 6= s ∈ N so that β−k(s)γs = β−k(r)γr, so γs−r = βk(s)−k(r). Therefore,

γ− = lim γ−|r−s|n = limβ−|k(s)−k(r)|n = β−.

(Notice that since γ+ = β+, (r− s) is positive if and only if (k(r)− k(s)) is positive.) It follows
that every element in Stab(z), fixes both γ+ = z and γ−.

We next show that < γ > has finite index in Stab(z). If β ∈ Stab(γ), then, since β fixes γ+

and γ−, both c and β ◦ c join γ− to γ+. Therefore, by Lemma 3.7, there exists S (depending
only on δ and the quasi-isometry constants of c), so that the Hausdorff distance between c(R)
and β(c(R)) is at most S. Therefore, if T = S+d(id, γ), there exists n ∈ N so that d(β, γn) ≤ T .
It follows that the coset of β in Stab(z)/ < γ > has a representative of length at most T . Since
there are only finitely many elements of Γ with length at most T , we see that Stab(z)/ < γ >
is finite.

Since < γ > has finite index in Stab(z) and Stab(z) is torsion-free, it is a standard exercise
in group theory to show that Stab(z) is infinite cyclic. �

We quickly conclude that nilpotent subgroups of torsion-free hyperbolic groups are cyclic.

Corollary 5.3. If Γ is a torsion-free hyperbolic group, then any nilpotent subgroup is either
trivial or isomorphic to Z.

Proof. Recall that any non-trivial nilpotent group N has non-trivial center. Choose a non-
trivial element γ in the center of N . If β ∈ N , then β ∈ Stab(γ+), since β(γ+) = (βγβ−1)+

and βγβ−1 = γ. Therefore, N ⊂ Stab(γ+) which is cyclic (by Corollary 5.2) and thus N is
cyclic. �

We often want to exclude the case where Γ is cyclic or virtually cyclic. We say that a
hyperbolic group is elementary its Gromov boundary has at most two points.

Corollary 5.4. If Γ is a torsion-free, elementary hyperbolic group, then Γ is cyclic.

Proof. If Γ is non-trivial, it contains a non-trivial element γ. So γ+ ∈ ∂Γ. Since ∂Γ has at
most two points (in fact exactly two points since it also contains γ−),Stab(γ+) has index at
most two. Since Stab(γ+) is infinite index, has finite index in Γ and Γ is torsion-free, Γ is also
cyclic. �



28 RICHARD D. CANARY

We will need the following fact only in the (optional) proof that limits of discrete faithful
representations of torsion-free non-elementary hyperbolic groups into a Lie group are themselves
discrete and faithful.

Lemma 5.5. Let Γ be a torsion-free hyperbolic group. Any two maximal cyclic subgroups of
Γ intersect trivially. In particular, every non-trivial element γ ∈ Γ is contained in a unique
maximal cyclic subgroup Θ = Stab(γ+).

Proof. Suppose that γ ∈ Γ − {id} is contained in a cyclic subgroup A =< α > of Γ. Then
γ = αr and |r| > 1. We argue as in the proof of Corollary 5.2 that α ∈ Stab(γ+). Therefore,
Stab(γ+) = Stab(γ−) is the unique maximal cyclic group containing γ.

If M is another maximal cyclic subgroup of Γ and α ∈M , then M = Stab(α+) and α+ cannot
equal γ− or γ+, so M and Stab(γ+) intersect trivially (since, by Proposition 5.1, non-trivial
elements of Stab(γ+) fix only γ+ and γ−) �

We now use Proposition 5.1 to show that fixed points of infinite order elements are dense in
∂Γ. Moreover, if Γ is non-elementary, the action of Γ on its boundary is minimal. Recall that
the action of Γ on ∂Γ is minimal if ∂Γ contains no proper Γ-invariant closed subset.

Proposition 5.6. If Γ is a torsion-free hyperbolic group, then fixed points of infinite order
elements are dense in ∂Γ. If, in addition, Γ is non-elementary, then Γ acts minimally on ∂Γ.
In particular, if Γ is non-elementary, then ∂Γ is perfect, hence uncountable.

Proof. If Γ is elementary and torsion-free, then it is either trivial or infinite cylic. If Γ is trivial,
its boundary is empty, so that statement is vacuously true. If Γ is infinite cyclic, then its
boundary consists of two points, each of which is fixed by every element of the group.

So we may assume that Γ is non-elementary. Let A be a closed, non-empty Γ-invariant
proper subset of ∂Γ. If A were a single point, then its stabilizer, which is Γ, would be cyclic,
by Corollary 5.2, which is impossible since Γ is non-elementary. Therefore, we may choose
w 6= z ∈ A. Suppose that y ∈ ∂Γ − A. Let {γn} be a sequence in Γ converging to y and let
L be a geodesic in the Cayley graph CΓ joining w to z. Notice that if x is a point on L, then
γn(x) lies on γn(L) and γn(x)→ y. Therefore, up to subsequence, γn(L) either converges to y
or to a geodesic with one endpoint at y. Thus, either {γn(w)} or {γn(z)} converges to y. In
either case, since A is closed and Γ-invariant, we conclude that y ∈ A which is a contradiction.
Therefore, the action of Γ on ∂Γ is minimal.

Notice that, since α(β+) = (αβα−1)+, the set of fixed points of elements of Γ is Γ-invariant,
which implies that its closure is Γ-invariant. Therefore, since the action is minimal, the set
of fixed points is dense. Since, similarly, every point in ∂Γ lies in the closure of the orbit of
any other point in ∂Γ, we see that ∂Γ is perfect and hence uncountable (by a standard fact in
point-set topology). �

Remarks: If we allow Γ to have torsion, then Proposition 5.6 remains true as stated. In
Corollaries 5.2, 5.3 and 5.4 one can only conclude that the group is virtually cyclic. In Lemma
5.5 one sees that any infinite order element is contained in a unique maximal virtually cyclic
subgroup and that any two such subgroups agree or have finite intersection.

We will now discuss the more general fact that a hyperbolic group acts on its boundary as a
convergence group so that every point is a conical limit point. This will only come up sparingly
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in our notes, in Chapter 7, but plays a more important role as one delves further into the theory
of Anosov representations.

Suppose that a group Γ acts as a group of homeomorphisms of a compact, perfect metric
space X. We say Γ acts as a convergence group if any sequence {γn} has a subsequence, {γnk}
which either converges to an element of Γ or there exists a, b ∈ X so that {γnk(x)} converges to
a uniformly on compact subsets of X −{b}. (Notice that a and b need not be distinct.) Notice
that this generalizes the notion of North-South dynamics for a cyclic subgroup of a hyperbolic
group. Gehring and Martin [100] first observed that the action of a Kleinian group on its limit
set is a convergence group action, and more generally that the action of S00(3, 1) on ∂H3 is a
convergence group action.

If Γ acts on X as a convergence group, we say that x ∈ X is a conical limit point if there
exist distinct points a 6= b ∈ X and a sequence {γn} so that {γn(x)} converges to b and {γn(y)}
converges to a uniformly on compact subsets of X − {x}. Notice that the fixed points of an
element of a hyperbolic group are conical limit points for its action on the boundary of the
group. This generalizes a classical notion in Kleinian groups, where Beardon and Maskit [15]
proved that a discrete subgroup of SO(3, 1) is convex cocompact if only if every point in its limit
set is a conical limit point. Tukia [209] proved that the action of a non-elementary hyperbolic
group on its boundary is a convergence group and that all points in the boundary are conical.

Theorem 5.7. (Tukia [209]) If Γ is a non-elementary hyperbolic group, then the action of Γ
on ∂Γ is a convergence group action and every point in ∂Γ is a conical limit point.

Proof. Suppose that {γn} is a sequence of elements of Γ. Since Γ∪∂Γ is compact, we may pass
to a subsequence, still called {γn}, so that either {γn} is constant with value γ̂, in which case
{γn} converges to γ̂ ∈ Γ, or {γn} converges to a point a ∈ ∂Γ.

So suppose that {γn} converges to a ∈ ∂Γ. Let {un} and {vn} be convergent sequences in ∂Γ
so that u = limun 6= lim vn = v. Let Ln be the geodesic in CΓ joining un to vn. We may pass
to a subsequence so that {Ln} converges to a geodesic L joining u to v. There exists R ≥ 0
and, for all n, a point xn ∈ Ln, so that d(xn, id) ≤ R. Thus, d(γn(xn), γn) = d(x, id) ≤ R for
all n. So up to subsequence, either {γn(Ln)} converges to a geodesic with one endpoint at a or
{γn(Ln)} converges to a. Thus, at least one of the sequences {γn(un)} or {γn(vn)} converges
to a. It follows that there is at most one point, say b so that there exists a sequence un so
that un → b but {γn(un)} does not converge to a. (If no such point exists, just choose a = b.)
Therefore, γn(u) converges uniformly to a on compact subsets of ∂Γ− {b}. It follows that the
action of Γ on ∂Γ is a convergence group action.

Now suppose that z ∈ ∂Γ. Let r : [0,∞) → CΓ be a geodesic ray so that r(0) = id and
r(∞) = z. Notice that r(n) = γn ∈ Γ. Then γ−1

n ◦ r is a geodesic ray starting at γ−1
n passing

through id and ending at γ−1
n (z). Pass to a subsequence so that γ−1

n converges to a ∈ ∂Γ and
γ−1
n ◦ r converges to a geodesic L passing through id and joining y to b = lim γ−1

n (z). Then,
it follows from the previous paragraph γ−1

n (x) converges to a uniformly on compact subsets of
∂Γ− {b}. So, z is a conical limit point and our proof is complete. �

The following related fact is also helpful.

Lemma 5.8. If Γ is a Gromov hyperbolic group and {γn} ⊂ Γ is a sequence such that
lim γn = z ∈ ∂Γ, then lim γ+

n = z.
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Proof. If the lemma fails, then there exists a sequence {γn} ⊂ Γ so that lim γn = z ∈ ∂Γ but
lim γ+

n = w 6= z. We pass to a subsequence so that lim γ−n = v.
If v = w, we see, just as in the proof of Theorem 5.7, that {γn(u)} converges to w uniformly

on compact subsets of ∂Γ−{w}. Since id lies on a geodesic joining two points in ∂Γ−{w}, we
see that lim γn = w, which contradicts our assumption that w 6= z.

If v 6= w, then there exists K so that if Ln is a quasi-axis for γn, then d(id, Ln) ≤ K. Let xn
be a point on Ln so that d(xn, id) ≤ K. If yn = γn(xn), then

d(yn, xn) ≥ d(id, γn)− 2K →∞

and yn lies between xn and γ+
n . Therefore, lim yn = w. But, d(yn, γn) ≤ K, so lim γn = w (by

Lemma 3.3), which implies that w = z. This final contradiction completes the proof, �

Bowditch [36] proved that this property characterizes hyperbolic groups in the following
strong sense. In characterizations of Anosov representations which do not require that the
domain group be hyperbolic, Bowditch’s theorem is almost always used to verify that the
domain group is in fact hyperbolic.

Theorem 5.9. (Bowditch [36]) Suppose that Γ acts on a compact, perfect, metric space as a
discrete convergence group action so that every point in X is a conical limit point. Then Γ is
Gromov hyperbolic and there exists a Γ-equivariant homeomorphism h : ∂Γ→ X.

6. Representations of hyperbolic groups

In this section, we show that limits of discrete faithful representations of non-elementary
hyperbolic groups into Lie groups are themselves discrete and faithful. This result will not be
used directly in the remainder of the notes, but it is a crucial piece of the overall picture.

The key tool in the proof is what is often known as the Margulis Lemma, although it first
appears in an early paper by Zassenhaus [227]. Kazhdan and Margulis [138] reproved this result
and established a number of useful consequences.

Theorem 6.1. (Margulis-Zassenhaus Lemma) If G is a Lie group, there exists a neighborhood
U of the identity, so that if Γ ⊂ G is discrete and Γ ∩ U generates Γ, then Γ is nilpotent.

Recall that Γ is nilpotent if the lower central series terminates, i.e. if we define Γ1 = [Γ,Γ]
and Γi+1 = [Γi,Γ] for all i ≥ 2, then Γr is trivial for some r.

The basic idea of the proof is that the commutator map is contracting near the identity.
More concretely, if we regard the commutator as a map from G × G → G, all the first partial
derivatives are 0 at (id, id). Therefore, we can find a neighborhood U of id, so that if a, b ∈ U ,
then

d(id, [a, b]) ≤ 1

2
min{d(id, a), d(id, b)}.

So, there exists C so that any r-fold nested commutator of elements of U lies within C
2r of the

identity. So, if Γ is discrete and generated by Γ ∩ U , there exists r so that any r-fold nested
commutator of generators is trivial. One then observes that any r-fold nested commutator of
elements of Γ can be written as a product of nested commutators of generators (each of which
is nested at least r times). Therefore, Γr is trivial, so Γ is nilpotent. For a careful proof see
Thurston [203, Section 4.1] or Kapovich [127, Section 4.12].
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Corollary 6.2. Suppose that G is a Lie group and Γ is a non-cyclic, torsion-free, hyperbolic
group. If {ρn : Γ→ G} is a sequence of discrete faithful representations converging to ρ, then ρ
is also discrete and faithful.

Proof. Let U be the neighborhood of the identity in G provided by the Margulis-Zassenhaus
Lemma. Recall that if ∆ ⊂ G is discrete and generated by ∆ ∩ U , then ∆ is nilpotent.

Suppose that ρ is not faithful. Then there exists g ∈ Γ−{id} so that ρ(g) = id. Choose h ∈ Γ,
so that h is not contained in the unique maximal cyclic subgroup Stab(g+). Then, Corollary
5.5 implies that Stab(g+) and Stab(h+) intersect trivially. Suppose that J =< g, hgh−1 > is
nilpotent, so J ∼= Z and J =< j > for some j ∈ J . Then, g = jr for some r and hjrh−1 = js

for some s, so, by Lemma 4.5, r = ±s, so hgh−1 = g±1 and h2gh−2 = g, so < g, h2 > is abelian,
and since < g > and < h > intersect trivially, this implies that < g, h2 > is isomorphic to
Z⊕Z, which contradicts Corollary 5.3. However, since lim ρn(g) = id, ρn(g) and ρn(hgh−1) lie
in U for all large enough n, which implies, since ρn(J) is discrete, that ρn(J) is nilpotent. This
contradicts our assumption that ρn is faithful.

Suppose that ρ is not discrete. Then there exists a sequence {gn} in Γ− {id} so that ρn(gn)
converges to the identity. Perhaps after passing to a subsequence, we may assume that there
exists h ∈ Γ so that h is not contained in Z(gn) for any n. Then, as before Jn =< gn, hgnh

−1 >
fails to be nilpotent for all n. Choose N large enough that ρ(gN ) and ρ(hgNh

−1) lie in U . Then,
there exists m large enough that ρm(gN ) and ρm(hgNh

−1) also lie in U , which implies, since
ρm(JN ) is discrete, that ρm(JN ) is nilpotent. This again contradicts our assumption that ρm
is faithful. �

Remark: This corollary holds whenever the domain group does not contain an infinite normal
nilpotent subgroup and the image group is a linear Lie group, see Kapovich [127, Section 8.1].

7. The Tits Alternative

The material in this section will not be used in the rest of the notes, but I couldn’t imagine
discussing hyperbolic groups without showing that they contain lots of free groups if they aren’t
virtually cyclic.

Tits [204] proved that every finitely generated linear group is either virtually solvable (i.e.
contains a finite index solvable subgroup) or contains a copy of the free group on two generators.
This fundamental fact is now know as the Tits Alternative and analogues of it hold in many
more general group theoretic settings.

Theorem 7.1. (Tits Alternative) If Γ is a finitely generated subgroup of GL(F ) for some field
F , then either Γ is virtually solvable or Γ contains a subgroup isomorphic to the free group F2

on two generators.

The standard tool for producing free subgroups is the Ping Pong Lemma below. We leave
its proof as an exercise.

Lemma 7.2. (Ping Pong Lemma) Let a and b be bijections of a set Ω. If there exist disjoint
set A1, A2, B1 and B2 such that a(Ω − A1) ⊂ A2, a−1(Ω − A2) ⊂ A1, b(Ω − B1) ⊂ B2, and
b−1(Ω−B1) ⊂ B2, then < a, b >∼= F2.
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We use the Ping Pong Lemma to show that any two infinite order elements in a hyperbolic
group with distinct fixed points, give rise to many free subgroups. Again, we roughly follow the
treatment in Section III.Γ.3 of Bridson-Haefliger [49].

Theorem 7.3. Suppose that Γ is a hyperbolic group α, β ∈ Γ − {id} have infinite order and
{α+, α−} 6= {β+, β−}, then there exists N so that if n,m > N , then < αn, βm >∼= F2.

Proof. Notice that, by Proposition 5.2, if {α+, α−} 6= {β+, β−}, then {α+, α−} and {β+, β−}
are disjoint. Recall that η̂α : R → CΓ and η̂β : R → CΓ are equivariant (K,C)-quasi-isometric
embeddings, for some K,C > 0, such that η̂α(n) = αn and η̂β(n) = βn for all n ∈ N, α+ =
η̂α(∞), α− = η̂α(−∞), β+ = η̂β(∞) and β− = η̂β(−∞). For each x ∈ CΓ, let pα(x) be chosen so
that d(x, η̂α(pα(x))) = d(x, η̂α(R)) and let pβ(x) be chosen so that d(x, η̂β(pβ(x))) = d(x, η̂β(R)).
Suppose that CΓ is δ-hyperbolic and that R = R(K,C, δ) is the constant from the Fellow
Traveller Property.

We first claim that if T is sufficiently large, then the sets:

A1(T ) = {x ∈ CΓ | pα(x) ∈ η̂(−∞,−T )},
A2(T ) = {x ∈ CΓ | pα(x) ∈ η̂(T,∞)},
B1(T ) = {x ∈ CΓ | pβ(x) ∈ η̂(−∞,−T )}, and

B2(T ) = {x ∈ CΓ | pβ(x) ∈ η̂(T,∞)}
are disjoint. We will use these sets to apply the Ping Pong Lemma. First notice that A1(T )
and A2(T ) are disjoint and that B1(T ) and B2(T ) are disjoint by definition if T ≥ 0. If x lies
in the intersection of any other two of these sets, then |pα(x)| ≥ T and |pβ(x)| ≥ T . Let ∆ be
a geodesic triangle with vertices v1 = id, v2 = xα = η̂α(pα(x)) and v3 = xβ = η̂β(pβ(x)) and
let Li be the edge which does not have vi as a vertex. Since every point in L1 lies within δ of
a point in L2 ∪L3, we see that there must be some point p ∈ L1 which lies within δ of both L2

and L3. The Fellow Traveller property implies that L2 is a Hausdorff distance at most R from
η̂α([0, n]) and that L3 is a Hausdorff distance at most R from η̂β([0, n]). Therefore,

d(p, η̂α(R)) ≤ R+ δ and d(p, η̂β(R)) ≤ R+ δ.

Now consider the geodesic triangle ∆̂ with vertices v̂1 = x, v̂2 = xα, v̂3 = xβ and a side

L̂1 = L1. Then there exists a point q ∈ L̂2 ∪ L̂3 so that d(p, q) ≤ δ. If q ∈ L̂2, then d(q, xα) =
d(q, η̂α(R)). Then, since d(p, η̂α(R)) ≤ R+δ and d(p, q) ≤ δ, we can conclude that d(p, xα) ≤ R+

3δ. Similarly, if q ∈ L̂3, then d(xβ, p) ≤ R+3δ. Now since, {α+, α−} and {β+, β−} are disjoint,
we can choose T0 so that if |t| > T0, then d(η̂α(t), η̂β(R)) > R+3δ and d(η̂β(t), η̂α(R)) > R+3δ.
Therefore, if T ≥ T0, then the sets A1(T ), A2(T ), B1(T ) and B2(T ) are disjoint.

We now observe that pα and pβ are coarsely well-defined. Suppose that

d(η̂α(s)), x) = d(η̂α(t), x) = d(x, η̂α(R))

and consider a triangle with vertices x, η̂α(s) and η̂α(t). Let p be the midpoint of the edge joining
η̂α(s) and η̂α(t). By the Fellow Traveller Property d(p, η̂α(R)) ≤ R = R(K,C, δ). Moreover,
since CΓ is δ-hyperbolic there exists q lying on one of the other edges so that d(p, q) ≤ δ.
Without loss of generality q is on the edge joining x to η̂α(s). Since d(η̂α(s)), q) = d(q, η̂α(R))
and d(q, η̂α(R) ≤ R+ δ, we see that d(p, η̂α(s)) ≤ R+ 2δ, which implies that d(η̂α(s)), η̂α(t)) ≤
2R+ 4δ, so

|s− t| ≤ K(2R+ 4δ + C).
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Similarly, if q lies on the edge joining x to η̂α(t), then |s− t| ≤ K(2R+ 4δ + C).
Notice that the previous paragraph implies that, since η̂α is α-equivariant, pα is coarsely

α-equivariant, i.e.
|pα(αn(x))− (pα(x) + n)| ≤ K(2R+ 4δ + C)

for all x ∈ CΓ and n ∈ Z. Similarly,

|pβ(βn(x))− (pβ(x) + n)| ≤ K(2R+ 4δ + C)

for all x ∈ CΓ and n ∈ Z. Therefore, if n,m > N = 2T0 + K(2R + 4δ + C), then αn
(
CΓ \

A1(T0))
)
⊂ A2(T0), α−n

(
CΓ \ A2(T0))

)
⊂ A1(T0), βm

(
CΓ \ B1(T0))

)
⊂ B2(T0), and β−m

(
CΓ \

B2(T0))
)
⊂ B1(T0). The Ping Pong Lemma then implies that < αn, βm > is isomorphic to

F2. �

By combining Proposition 5.2 and Theorem 7.3 we obtain a strong version of the Tits Alter-
native for hyperbolic groups.

Corollary 7.4. (Tits Alternative for hyperbolic groups) If Γ is a torsion-free hyperbolic group,
then either Γ is cyclic or Γ contains a subgroup isomorphic to F2.

Proof. If Γ is not cyclic, then Proposition 5.2 implies that there exist elements α and β so that
{α+, α−} 6= {β+, β−}. Theorem 7.3 then implies that Γ contains a subgroup isomorphic to
F2. �

If a group Γ contains a free subgroup of rank two, then it is immediate that the number
of words of length at most R grows at least exponentially in R. However, in every finitely
generated group the number of words of length at most R grows at most exponentially in R.
So, we see that torsion-free hyperbolic groups have exponential growth if they are not cyclic.
In general, all non-elementary hyperbolic groups have exponential growth.

Corollary 7.5. If Γ is a torsion-free hyperbolic group which is not cyclic, then the number of
words of length at most R (with respect to any fixed finite generating set) grows exponentially
in R.

8. Further topics

We first recall a few results which, although not central to our lecture notes, will be used on
a handful of occasions later in the notes. All of their proofs build on material we presented and
are not significantly more complicated than what we have already done. We may return at a
later date to sketch or give proofs.

In the next chapter we will give the proof that small deformations of convex cocompact rep-
resentations into Isom(Hn) are convex cocompact. The proof will use a local-to-global principle
which allows one to detect that a infinite path is a quasi-geodesic by observing it only at a scale
of some size. We will only use this fact for bi-infinite quasigeodesics in Hn, where the proof
is easier, but we state the general fact here. See Coornaert-Delzant-Papadopoulos [72, Thm.
3.1.4] for a complete proof.

Theorem 8.1. (Local to Global Principle) Given K ≥ 1, C ≥ 0 and δ ≥ 0, there exists K̂,

Ĉ and A so that if J is an interval in R, X is δ-hyperbolic and h : J → X is a (K,C)-quasi-
isometric embedding restricted to every connected subsegment of J with length ≤ A, then h is a
(K̂, Ĉ)-quasi-isometric embedding.
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We will give a sketch of the proof in the case when X = Hn and J = R which is based on an
argument of Minsky [167]. (The assumption that J = R is simply for convenience, while the
restriction to X = Hn significantly simplifies the proof).

Proof. We will make use of an elementary lemma in hyperbolic geometry which one may prove
either using a compactness argument or (presumably) by computation.

Lemma 8.2. Given R > 0, there exists L > 0 so that if P and Q are totally geodesic hyperplanes
in Hn, p ∈ P , q ∈ Q and x ∈ Hn, and px and qx are geodesic segments perpendicular to P and
Q respectively, so that d(p, q) ≥ L, then d(P,Q) ≥ R.

picture needed

Given K ≥ 1 and C ≥ 0, let R be the constant provided by the Fellow Traveller property
and let L be the constant provided by Lemma 8.2. Choose A large enough so that

2

K2

(
A

2K
− 2C −R

)
− C − 2R > L and

A

2K
− C > 2R.

For all i ∈ Z, let ti = iA and yi = h(ti). Let Gi = yiyi+1 be the geodesic segment with
vertices yi and yi+1 and midpoint mi. Notice that d(yi, yi+1) ≥ A

K −C. By the Fellow Traveller
Property, there exists si ∈ [ti, ti+1] such that d(f(si),mi) ≤ R. Thus

d(f(si), f(ti)) ≥
A

2K
− C −R, so si − ti >

1

K

(
A

2K
− 2C −R

)
.

Similarly,

ti+1 − si >
1

K

(
A

2K
− 2C −R

)
.

So,

d(f(si), f(si+1)) ≥ 2

K2

(
A

2K
− 2C − 2R

)
−C and d(mi,mi+1) ≥ 2

K2

(
A

2K
− 2C − 2R

)
−C−2R > L.

Lemma 8.2 then implies that

d(Pi, Pi+1) ≥ R for all i ∈ Z.
We next claim that Pi−1 and Pi+1 lie on opposite sides of Pi. If not, then yi−1 and yi+1 lie

on the same side of Pi, so the geodesic segment yi−1yi+1 lies on the opposite side of Pi from yi,
but

d(yi, Pi) = d(yi,mi) ≥
A

2K
− C > 2R, so d

(
f(si), yi−1, yi+1

)
> R

which would contradict the Fellow Traveller Property. It follows that Pi−1 lies on the opposite
side of Pi as Pi+1. Therefore, since d(Pi, Pi+1) ≥ R for all i, we see that

d(ym, yn) ≥ (|m− n| − 1)R for all m,n ∈ Z,
so

d(f(a), f(b)) ≥ R
(
|b− a| − 3A

A

)
−2AK−2C ≥ R

A

(
|b−a|

)
−(3+2AK+2C) for all a, b ∈ R

Since, by the triangle inequality,

d(f(a), f(b)) ≤ K|b− a|+
(
|b− a|+A

A

)
C ≤

(
K +

C

A

)
|b− a|+ C
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we conclude that f is a (K̂, Ĉ)-quasi-isometry where K̂ = max
{
A
R ,K + C

A

}
and Ĉ = 3+2AK+

2C. �

Fricke proved that the mapping class group acts properly discontinuously on Teichmüller
space. Once one has developed the theory of Anosov representations, one may readily generalize
a proof of this result to show that the outer automorphism group of a hyperbolic group Γ acts
properly discontinuously on the space of Anosov representations of Γ into SL(d,R). One needs
an easy, but somewhat technical, result about automorphisms of hyperbolic groups in the proof.
Notice that the result is quite intuitive for surface groups, so is often used implicitly in proofs
of Fricke’s original theorem. For a complete proof, see [55, Proposition 2.3].

Proposition 8.3. (Canary [55]) If Γ is a torsion-free hyperbolic group, then there exists a finite
collection B of elements of Γ, so that for any K

{φ ∈ Out(Γ) | ||φ(b)|| ≤ K for all b ∈ B}
is finite.

We will see that if ρ is a Benoist representation, then the ratio of first and last eigenvalues
of image elements ρ(γ) grow uniformly exponentially in the translation length of γ on CΓ (or
equivalently the minimal word length of an element conjugate to γ.) In the proof, we will
use a property of hyperbolic groups which Delzant, Guichard, Labourie, and Mozes call the U
property. Their proof builds on the ping pong techniques used in Section 7.

Proposition 8.4. (Delzant-Guichard-Labourie-Mozes [87, Proposition 2.2]) If Γ is a hyperbolic
group, then there exist α, β ∈ Γ and K > 0 so that

d(1, γ) ≤ 3 max{||γ||, ||γα||, ||γβ||}+K

for all γ ∈ Γ.

We briefly recall a few fundamental facts about hyperbolic groups which will not used in our
lecture notes.

One of the original motivations for the study of hyperbolic groups, especially for Cannon [61],
is that one may use geometric techniques to show that most decision problems are solvable. For
example, the word problem is solvable (i.e. there is an algorithm which can decide whether
or not an element in the group is trivial) and the conjugacy problem is solvable (i.e. there
is an algorithm to decide whether two elements of the group are conjugate). (See, for example,
Bridson-Haefliger [49, Section III.Γ.2]). A much more difficult fact is that the isomorphism
problem is solvable in the class of hyperbolic groups (i.e. there is an algorithm to determine
whether or not two hyperbolic groups are isomorphic). This was established by Sela [188] for
(rigid) torsion-free hyperbolic groups, and, for all hyperbolic groups, by Dahmani and Guirardel
[80].

A group Γ is said to have a linear isoperimetric inequality if it has a finite presenta-
tion Γ =< X | R > so that there exists a linear function f such that if w is a word in X
representing the trivial element, then it can be written as a product of at most f(`(w)) con-
jugates of relations in R where `(w) is the word length of w. A group is hyperbolic if and
only if it has a linear isoperimetric inequality. (See, for example, Bridson-Haefliger [49, Section
III.H.2].) Moreover, Papasoglu [172] showed that a group is hyperbolic if it has a sub-quadratic
isoperimetric inequality (see also Bowditch [35]).
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We will be studying discrete, faithful representations of hyperbolic groups into linear groups.
However, there are examples of hyperbolic groups which do not admit faithful representations
into any linear group, see Kapovich [128, Section 8]. New examples were recently given by
Canary, Stover and Tsouvalas [59].

One can show that all hyperbolic groups are finitely presented (see Bridson-Haefliger [49,
Proposition III.Γ.2.2]). However, not all finitely presented subgroups of a hyperbolic group
are themselves hyperbolic, see Brady [40]. Moreover, a torsion-free hyperbolic group always
has a finite K(π, 1), i.e. is the fundamental group of a finite CW-complex with a contractible
universal cover. In general, a hyperbolic group Γ it is the fundamental group of a CW-complex
whose n-skeleton is finite for all n ∈ N, so Γ is of type F∞. (See, for example, Bridson-Haefliger
[49, Section III.Γ.3].)
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Part 3. Convex cocompact representations in rank one Lie groups

Just us kids hangin’ out today
Watchin’ our long hair turnin’ gray
Not so skinny maybe not so free
Not so many as we used to be
—————James McMurtry [164]

We begin with a quick review of the Teichmüller space of a closed surface. This theory is
the motivation for much of what is now known as Higher Teichmüller theory. In particular,
Fuchsian representations are the prototypical example of an Anosov representation. The first
generalization of the theory of Fuchsian representations is the theory of convex cocompact
representations into rank one Lie groups. They are also another class of classical examples of
Anosov representations. We will survey this theory with an emphasis on the aspects of the
theory which inspire and generalize to the theory of Anosov representations.

We will restrict to the case of O0(n, 1) which is the isometry group of real hyperbolic space
Hn. Everything we do in this section generalizes in some form to the other rank one Lie
groups, which are “essentially” U(n, 1), the isometry group of complex hyperbolic space CHn,
Sp(n, 1), the group of orientation-preserving isometries of quaternionic hyperbolic space, and
the isometry group of the Cayley plane. See, for example, Bridson-Haefliger [49, Section II.10]
or Parker’s lecture notes [173] (which are available on his webpage). Our working definition
of a rank one Lie group is that it is a semi-simple Lie group whose quotient symmetric space
is negatively curved. This turns out to be equivalent to the assumption that the quotient
symmetric space does not contain an isometrically embedded Euclidean plane. More generally,
the rank of a semi-simple Lie group is the maximal dimension of an isometrically embedded
copy of Euclidean space in the quotient symmetric space.

9. Teichmüller space: a refresher

And it’s here I see pictures and my madness is clear
And there’s no longer logic so therefore no fear
————–Ian Hunter [118]

If you are not already somewhat familiar with Teichmüller theory, I recommend you imme-
diately put down these notes and go read a more complete treatment of this beautiful subject.
Farb and Margalit [96] give a nice treatment from a modern geometrical/topological viewpoint.
Bers’ survey paper [27] is a beautiful treatment of the classical complex analytic approach (and
contains an oblique, but poignant, commentary on the tension of working in a subject named
after an ardent Nazi). Thurston [203, Section 4.6] gives a concise treatment of the Fenchel-
Nielson coordinates. Abikoff [2] gives a treatment of the classical theory with an eye towards
the modern viewpoint.

Recall that the upper half-plane model for the hyperbolic plane is given by

H2 = {z ∈ C | Im(z) > 0}
with Riemannian metric

ds2
hyp =

1

y2
dxdy.
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In this metric, the geodesics are lines and semi-circles perpendicular to the real line and
the group of Möbius transformations with real co-efficients acts as the group of orientation-
preserving isometries of H2, i.e.

Isom+(H2) = PSL(2,R).

The hyperbolic plane has constant curvature −1, which is manifested explicitly in the fact that
if P is a n-gon in H2 with internal angles {α1, . . . , αn}, then

Area(P ) = π(n− 2)−
n∑
i=1

αi.

A complete orientable Riemannian surface X is said to be hyperbolic if it is locally isometric
to H2. In this case, the universal cover X̃ is a simply connected complete Riemannian manifold
locally isometric to H2 and hence can be identified with H2. Therefore, X = H2/Γ where Γ
is a discrete subgroup of Isom+(H2) ∼= PSL(2,R). Notice that Γ is only well-defined up to

conjugacy, since the identification of X̃ with H2 is not canonical.
A marked hyperbolic structure on a closed orientable surface S is a pair (X, f) where

f : S → X is a homeomorphism and X is a hyperbolic surface. If X = H2/Γ, then f∗ :
π1(S) → π1(X) ∼= Γ is an isomorphism and hence we obtain a discrete, faithful representation
ρ : π1(S) → PSL(2,R). However, ρ is only well-defined up to conjugation in PGL(2,R) (which
we interpret as the full group of isometries of H2). In classical Teichmüller theory, both S and X
are oriented so one gets a representation which is well-defined up to conjugacy into PSL(2,R).
It will be more convenient for us to ignore orientation. One may view this as a sign of the
depravity I have fallen into since entering Higher Teichmüller theory.

I used to hate the fool in me, but only in the morning
Now I tolerate him all day long
—————Mike Cooley [90]

One may build a hyperbolic surface of genus two, by starting with a regular hyperbolic
octagon, all of whose internal angles are π

4 and then gluing by the standard gluing pattern.
Similarly, one may build a hyperbolic surface of genus g by starting with a regular (4g− 4)-gon
with internal angles π

2g .

In turn, one can build any hyperbolic surface of genus two from a hyperbolic octagon, all of
whose angles add up to 2π. One can see this, by first noticing that the surface is obtained this
way topologically, so one has a bouquet of circles on the hyperbolic surface whose complement
is an open disk. If we fix the vertex of the bouquet of circles at one point on the surface and pull
the edges tight so that they form geodesic arcs, then the complement of the resulting geodesic
bouquet of circles is a hyperbolic octagon.

One might then try to guess how big the Teichmüller space of marked hyperbolic structures
on S is. The space of hyperbolic octagons is 16-dimensional, since an octagon is determined by
its vertices. There are 5 constraints, coming from the fact that the internal angles must add
up to 2π and that lengths of edges that are paired must agree, giving a 11-dimensional space
of allowed octagons, but PSL(2,R) acts as congruences of these octagons, so one really has a
8-dimensional space of octagons. Finally, an octagon gives a hyperbolic surface plus a specified
point on that surface, so the space of hyperbolic surfaces should be 6-dimensional.
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We will choose to formalize Teichmüller space by using representations. Recall that a marked
hyperbolic structure on a closed surface S, gives rise to a (conjugacy class of a) discrete,
faithful representation ρ : π1(S) → PSL(2,R). In turn, a discrete, faithful representation
ρ : π1(S)→ PSL(2,R) gives rise to a hyperbolic surface Xρ = H2/ρ(π1(S)). Since Xρ is homo-
topy equivalent to S, it is homeomorphic to S. Moreover, there is homeomorphism hρ : S → Xρ

so that (hρ)∗ is conjugate to ρ. (Here, we are using a special property of the topology of closed
surfaces. The Nielsen-Baer Theorem, see Farb-Margalit [96, Chapter 8], gives that every ho-
motopy equivalence of a closed orientable surface is homotopic to a homeomorphism.) We then
let

DF(π1(S),PSL(2,R)) = {ρ : π1(S)→ PSL(2,R) | ρ discrete, faithful}
and the Teichmüller space of S is the quotient

T (S) = DF(π1(S),PSL(2,R))/PGL(2,R)

where DF(π1(S),PSL(2,R)) inherits a topology as a subset of Hom(π1(S),PSL(2,R)), PGL(2,R)
acts by conjugation and T (S) inherits the quotient topology.

Notice that the Milnor-Svarc Lemma implies that if ρ ∈ DF(π1(S),PSL(2,R)), then the orbit
map τρ : π1(S)→ H2 is a quasi-isometry and Corollary 3.6 implies that there is a ρ-equivariant
homeomorphism ξρ : ∂π1(S)→ ∂H2 ∼= S1.

Alternatively, one may define T (S) to be the space of marked hyperbolic structure on S up
to the equivalence (X1, f1) ∼ (X2, f2) if and only if f2 ◦ f−1

1 is homotopic to an isometry. One
may think of X as hyperbolic clothing for the naked topological surface S and f as instructions
for how to wear the clothing. The equivalence relation allows one to adjust the clothing, but
not to wear it backwards or to stick your head through the hole designated for the arm.

It is a classical theorem, going back to the 19th century, that T (S) is homeomorphic to
R6g−6 if g ≥ 2 is the genus of S. (Notice that π1(S) has a presentation with 2g relations and
one relation, one would expect that DF(π1(S),PSL(2,R)) has dimension (2g)3 − 3 = 6g − 3,
so one would predict that Teichmüller space has dimension 6g − 6.) The mapping class group
Mod(S) is the group of (isotopy classes of) self-homeomorphisms of S. Fricke showed that the
mapping class group acts properly discontinuously, but not freely, on T (S) and its quotient is
the moduli space of unmarked hyperbolic structures on S. We will soon prove a very general
version of Fricke’s theorem.

There are a variety of metrics on Teichmüller space, all of which have their own advantages
and disadvantages. The most prominent are the Teichmuller metric, which is complete, but
only a Finsler metric and is not non-positively curved, and the Weil-Petersson metric which
is Riemannian and negatively curved, but not complete. Teichmüller showed that Teichmüller
space has a natural complex structure (I.e. one invariant under the action of the mapping class
group) and Ahlfors [5] showed that the Weil-Petersson metric is Kähler. Wolpert (see [219]
for a survey) extensively studied the resulting symplectic structure on Teichmüller space. This
hopefully provides a quick taste of the bounty of structure associated to Teichmüller space.

We now give a quick sketch of the Fenchel-Nielsen coordinates on Teichmüller space. Suppose
that X is a closed orientable hyperbolic surface of genus g ≥ 2. Recall that, since X is negatively
curved, every homotopically non-trivial closed curve is homotopic to a unique closed geodesic.
Morever, if two homotopically non-trivial simple closed curves are disjoint and non-parallel,
then their geodesic representatives are also disjoint. Let α = {α1, . . . , α3g−3} be a maximal
collection of disjoint simple closed curves and let α∗ be their geodesic representatives on X.
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The components of X − α∗ are a collection of 2g − 2 hyperbolic pairs of pants with geodesic
boundary. (A topological pair of pants is a disk with two holes.) Therefore, every closed
hyperbolic surface may be built from hyperbolic pairs of pants.

If P is a hyperbolic pair of pants with geodesic boundary and s1, s2 and s3 are the shortest
paths joining boundary components (called seams), then P − {s1, s2, s3} is a pair of all-right
hyperbolic hexagons (i.e. hexagons all of whose interior angles are π

2 ). An all-right hexagonpictures needed

is determined by the lengths of any 3 non-consecutive sides. Moreover, any 3 lengths can be
achieved. It follows that P is the double of the unique all-right hexagon with alternate sides
having lengths agreeing with the lengths of the seams of P . Moreover, we can build a geodesic
pair of pants with any collection of boundary lengths and this geodesic pair of pants is entirely
determined by its boundary lengths.

So the hyperbolic structure on X is determined, up to isometry, by the lengths of the com-
ponents of α∗ and instructions for gluing the pants together. Since the pants are glued along
closed geodesic curves, there is a one-dimensional space of ways to glue them. This suggests
more forcefully that the space of hyperbolic structures on X has dimension 6g − 6.

More formally, we get a map L : T (S)→ R3g−3
+ where

L(X, f) =
(
`X(f(αi)

∗)
)3g−3

i=1
.

At each element of α we can define a twist coordinate in R which records how the geodesic pairs
of pants are glued along f(αi)

∗, so we obtain Θ : T (S)→ R3g−3. (I will wave my hands about
this in class, but you can read about it carefully elsewhere.) One can then see that

(L,Θ) : T (S)→ R3g−3
+ × R3g−3 ∼= R6g−6

is a homeomorphism. For a careful discussion of twist coordinates see, for example, Thurston
[203, Section 4.6], Farb-Margalit [96, Section 10.6] or Martelli [159, Chapter 7].

One of the crucial properties of Teichmüller space is that it is an entire component of the
representation variety. In some circles, a Higher Teichmüller space is defined to be a compo-
nent of the character variety consisting of Anosov representations, but I would argue that this
definition is too restrictive.

Theorem 9.1. If S is a closed oriented surface of genus g ≥ 2, then T (S) is a component of

X(π1(S),PSL(2,R)) = Hom(π1(S),PSL(2,R))/PGL(2,R)).

We will sketch a simple hands-on proof in our situation.

Proof. It suffices to prove that T (S) is open and closed in X(π1(S),PSL(2,R)), since we have
already sketched a proof that it is connected.

Suppose that a sequence {[ρn]} ⊂ T (S) converges to [ρ] ∈ X(π1(S),PSL(2,R)). Then, one
may find representatives, ρn ∈ Hom(π1(S),PSL(2,R)) which converge to a representative ρ of
[ρ]. Corollary 6.2 implies that ρ is also discrete and faithful, so [ρ] ∈ T (S). Therefore, T (S) is
closed.

In the proof of open-ness we will restrict to the case where S has genus 2, but the proof gener-
alizes. Suppose [ρ] ∈ T (S) and ρ : π1(S)→ PSL(2,R) is a representative. We have seen that Xρ

may be obtained by gluing up a hyperbolic octagon. So there is an octagon D which is a funda-
mental domain for the action of ρ(Γ) on H2. Then we can find a generating set {a1, a2, a3, a4} for
π1(S) so that the edges ofD occur in the orderE1, E2, ρ(a1)(E1), ρ(a2)(E2), E3, E4, ρ(a3)(E3), ρ(a4)(E4).
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Let Li be the bi-infinite geodesic containing Ei. Then, we can choose a neighborhood U of ρ in
Hom(π1(S),PSL(2,R)), so that if σ ∈ U , then L1, L2, σ(a1)(L1), σ(a2)(L2), L3, L4, σ(a3)(L3), σ(a4)(L4)
cut out an octagon Dσ close to (and combinatorially equivalent to) D. One can then show that
Dσ glues up to give a hyperbolic surface of genus two, and so is a fundamental domain for the
action of σ(π1(S)) on H2. It follows that U ⊂ DF (π1(S),PSL(2,R)) and that the projection [U ]
of U is an open neighborhood of ρ in X(π1(S),PSL(2,R)) which is contained in T (S). (Notice
that the pre-image of [U ] is the PGL(2,R) orbit of U which is open in Hom(π1(S),PSL(2,R))
and contained in DF(π1(S),PSL(2,R)).) It follows that T (S) is open in X(π1(S),PSL(2,R))
which completes the proof. �

We will later see several facts which allow one to give a more general and more conceptual
proof that T (S) is open. We will see (Theorem 11.4) that every representation into O0(n, 1)
whose orbit map is a quasi-isometric embedding into Hn has a neighborhood consisting of
representations whose orbit maps are quasi-isometric embeddings. Since a representation of a
torsion-free group whose orbit map is a quasi-isometric embedding is discrete and faithful and
O0(2, 1) ∼= PSL(2,R), this gives a proof of open-ness.

10. Hyperbolic geometry in dimension n > 2

You must not attempt this approach to parallels. I know this way to its very end. I have traversed
this bottomless night, which extinguished all light and joy of my life....I thought I would sacrifice
myself for the sake of the truth. I was ready to become a martyr who would remove the flaw
from geometry and return it purified to mankind..... I turned back when I saw that no man
can reach the bottom of this night. I turned back unconsoled, pitying myself and all mankind.
I admit that I expect little from the deviation of your lines. It seems to me that I have been in
these regions; that I have traveled past all reefs of this infernal Dead Sea and have always come
back with broken mast and torn sail. The ruin of my disposition and my fall date back to this
time.... For God’s sake, I beseech you, give it up. Fear it no less than sensual passions because
it too may take all your time and deprive you of your health, peace of mind and happiness in
life.
—–Farkas Bolyai [165] (advising his son not to work on hyperbolic geometry).1

One may again define (real) hyperbolic space of dimension n as the unique simply connected
manifold of dimension n with constant sectional curvature −1. There is again an upper half
space model for hyperbolic n-space

Hn = {~x ∈ Rn | xn > 0}
with line element

ds =
1

xn

√
dx2

1 + · · ·+ dx2
n.

It is easy to see that the subset Y = {~x ∈ Hn | x2 = · · · = xn−1 = 0} is a totally geodesic copy
of H2 sitting within Hn (since reflection in the x1-xn-plane fixes Y ). One can then check that
inversions in hemispheres orthogonal to {xn = 0} and reflections in hyperplanes orthogonal to
{xn = 0} give isometries of Hn. Since, the group generated by these inversions and reflections

1I found this quote, which I had only seen portions of before, in a delightful blog post by Evelyn Lamb.
https://blogs.scientificamerican.com/roots-of-unity/hyperbolic-quotes-about-hyperbolic-geometry/

https://blogs.scientificamerican.com/roots-of-unity/hyperbolic-quotes-about-hyperbolic-geometry/
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acts transitively on the orthonormal frame bundle of Hn, we see that this group is the full
isometry group of Hn. Therefore, Hn has constant sectional curvature, and since it contains
a totally geodesic copy of H2, the constant is −1. Moreover, one sees that the geodesics are
semi-circles and lines orthogonal to {xn = 0}.

In the case n = 3, we may identify this group with the group of conformal automorphisms

of the Riemann sphere Ĉ = C ∪ {∞} = ∂H3. So, in this case we can identify Isom+(H3) with
PSL(2,C). However, in general, this group doesn’t have a nice presentation as a matrix group
from this viewpoint.

By introducing the hyperboloid model for Hn, we can identify Isom+(Hn) with PSO(n, 1) (or
with SO0(n, 1) if one prefers).

Let

B(~x, ~y) = x1y1 + x2y2 + · · ·+ xnyn − xn+1yn+1

be the bilinear form associated to the quadratic form

Q(~x) = B(~x, ~x) = x2
1 + · · ·+ x2

n − x2
n+1

of signature (n, 1). Consider the hyperboloid Hn with two sheets in Rn+1 given by

Hn = {~x ∈ Rn+1 |Q(~x, ~x) = −1}.

Let O(n, 1) be the set of matrices A ∈ GL(n+ 1,R) preserving the indefinite quadratic form Q.
Explicitly,

O(n, 1) = {A ∈ GL(n+ 1,R) | ATJA = J}
where J is the diagonal matrix with entries (1, 1, . . . , 1,−1). Let’s check that this is the correct
formula. If ~x, ~y ∈ Rn+1 and A ∈ GL(n+ 1,R), then

B(~x, ~y) = ~xTJ~y and B(A~x,A~y) = (A~x)TJA~y = ~xTATJA~y.

Therefore, ATJA = J if and only if B(A~x,A~y) = B(~x, ~y) for all ~x, ~y ∈ Rn+1.
Notice that if U ∈ O(n) ⊂ GL(n,R), then[

U 0
0 1

]
∈ O(n, 1)

so O(n) may be identified with a subgroup of O(n, 1) which acts transitively on the set of
orthonormal frames for Ten+1H

n. One may also check that In−1 ~0 ~0
0 · · · 0 cosh t sinh t
0 · · · 0 sinh t cosh t

 ∈ O(n, 1)

for all t ∈ R, where In−1 is the identity matrix in SL(n − 1,R) and ~0 is the trivial vector in
Rn−1. Therefore, O(n, 1) acts transitively on the intersection of the upper sheet of Hn with the
xn-xn+1-plane. Moreover J ∈ O(n, 1) takes en+1 to −en+1. Combining these observations we
see that O(n, 1) acts transitively on the orthonormal frame bundle of THn.

Notice that Ten+1H
n = {~x ∈ Rn+1 | xn+1 = 0}, so B restricts to a positive definite bilinear

form on Ten+1H
n. Since O(n, 1) preserves B and acts transivitely on Hn, we see that B restricts

to a positive definite bilinear form on T~xH
n for all ~x ∈ Hn. Therefore, B induces a Riemannian

metric on Hn.
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Since O(n, 1) acts as a group of isometries of Hn and acts transitively on the space of
orthonormal frames in THn, Hn has constant sectional curvature and O(n, 1)/O(n) = Hn.

There is a nice distance formula for points on the upper sheet of Hn given by

d(~x, ~y) = arccosh (−B(~x, ~y)) = arccosh(−x1y1 − · · · − xnyn + xn+1yn+1).

Notice that reflection in the xn-xn+1-plane lies in O(n, 1) so is an isometry of Hn. Therefore
the intersection Z of the xn-xn+1-plane with Hn is a geodesic in Hn. One then checks that this
formula works for ~x = 0 and ~y = (0, · · · , 0, sinh t, cosh t) and then observes that the formula is
invariant under O(n, 1) and that any two points may be moved into this position by an element
of O(n, 1).

Notice that since O(n, 1) acts transitively on the orthonormal frame bundle of THn, the
Riemannian metric on Hn has constant sectional curvature. In order to evaluate the curva-
ture we can examine the right-angled triangle with vertices en+1, (0, · · · , 0, sinh t, cosh t) and
(0, · · · , 0, sinh t, 0, cosh t), which has two sides of length |t| and one side of length arccosh(cosh2(t)).
It is immediately clear that this formula is inconsistent with positive or zero curvature, and one
may compare with H2 to check that it is consistent with sectional curvature −1, so in fact Hn

must have constant sectional curvature exactly −1.
We can thus identify Hn with the top sheet of Hn (i.e. the sheet containing en+1). The

isometry group of Hn is the component O0(n, 1) of isometries of Hn which preserve the top
sheet. Equivalently, we can identify Isom(Hn) with PO(n, 1) and identify Isom+(Hn) with
PSO(n, 1).

Notice that there is an isomorphism τ3 : PSL(2,R) → PSO(2, 1) ⊂ PSL(3,R) which is also
known as the irreducible representation. There is also an isomorphism between PSL(2,C) and
PSO(3, 1).

Let K be the copy of O(n) sitting inside of O0(n, 1) and fixing the xn+1-axis. Every element
of K has the form [

U 0
0 1

]
where U ∈ O(n) ⊂ GL(n,R). Then K is the stabilizer of the point en+1 within O0(n, 1). Since
O0(n, 1) acts transitively on Hn, we may identify

Hn = O0(n, 1)/K

where, if B ∈ O0(n, 1), the coset BK is identified with B(en+1) ∈ Hn.
Let A be the subgroup of all elements of O0(n, 1) of the form

At =

 In−1 ~0 ~0
0 · · · 0 cosh t sinh t
0 · · · 0 sinh t cosh t

 ∈ O(n, 1)

for some t ∈ R. Notice that[
cosh t sinh t
sinh t cosh t

]
=

[
1√
2
− 1√

2
1√
2

1√
2

] [
et 0
0 e−t

][ 1√
2

1√
2

− 1√
2

1√
2

]
so the eigenvalues and singular values of At agree and are equal to {et, 1, . . . , 1, e−t} (in that
order if t ≥ 0).
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If T ∈ O0(n, 1), then we may choose L ∈ K so that L−1T (en+1) = (0, · · · , 0, sinh t, cosh t)
where dHn(en+1, T (en+1)) = t ≥ 0. Then A−tL

−1T (en+1) = en+1 so there exists K ∈ K so that
A−tL

−1T = K. So, to conclude, if T ∈ O(n, 1), then there exists K,L ∈ K and t ≥ 0 so that

T = LAtK and dHn(en+1, T (en+1)) = t ≥ 0.

This is the Cartan decomposition of O0(n, 1), also known as the KAKdecomposition. It turns
out that A is a maximal abelian subgroup and K is a maximal compact subgroup of O0(n, 1).

Since the singular values, but not necessarily the eigenvalues, of T agree with those of A.
We see that σ1(T ) = et, σ2(T ) = · · · = σn(T ) = 1 and σn+1(T ) = e−t. It follows that, if
T ∈ O0(n, 1), then

dHn(en+1, T (en+1)) = log σ1(T ) = log
σ1(T )

σ2(T )
=

1

2
log

σ1(T )

σn+1(T )
.

One can read more about the hyperboloid model for Hn in Thurston [203, Chapter 2] or
Martelli [159, Chapter 2].

11. Convex cocompact representations into Isom(Hn)

We’ve been doing this longer than you’ve been alive
Propelled by some mysterious drive
And they still let me do it as weird as that seems
And I do it most nights and then again in my dreams
–Ken Bethea, Murry Hammond, Rhett Miller, and Philip Peoples [171]

Given a representation ρ : Γ → O0(n, 1) of a finitely generated group Γ and x0 ∈ Hn, there
is an orbit map τρ : Γ→ Hn given by

τρ(γ) = ρ(γ)(x0)

for all γ ∈ Γ. We say that ρ is convex cocompact if and only if Γ is finitely generated and
τρ is a quasi-isometric embedding. One may check that this definition does not depend on the
choice of (finite) generating set for Γ or the choice of the basepoint x0 for the orbit map.

It is immediate from this definition that ρ(Γ) is discrete and ρ is almost faithful, i.e. the
kernel of ρ is finite. If Γ is torsion-free, then ρ must be faithful. Since Γ is quasi-isometric to its
Cayley graph, Corollary 2.5 implies that Γ is a Gromov hyperbolic group. Theorem 3.5 implies
that there exists a continuous, injective map ξρ : ∂Γ → ∂Hn so that if {γn} ⊂ Γ converges to
z ∈ ∂Γ, then {τρ(γn))} = {ρ(γn)(x0)} converges to ξρ(z). Since τρ is ρ-equivariant, it follows
that ξρ is also ρ-equivariant. Since ρ(γ) fixes ξρ(γ

+) and ξρ(γ
+) = lim γn(x0), it is easy to check

that ξρ is dynamics-preserving, i.e. that ξρ(γ
+) is the attracting fixed point of ρ(γ). We

will almost always assume that Γ is non-elementary, i.e. that Γ does not contain a finite index
cyclic group.

We collect all these observations in the following result.

Theorem 11.1. Suppose that Γ is a finitely generated group and ρ : Γ→ O0(n, 1) is a convex
cocompact representation.

(1) ρ is discrete and almost faithful.
(2) Γ is Gromov hyperbolic.
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(3) There exists a continuous, dynamics-preserving, injective ρ-equivariant map ξρ : ∂Γ →
∂Hn.

Notice that, by the equivariance of the orbit map, the orbit map τρ (with respect to some
point x0 ∈ Hn) of a representation ρ : Γ → O0(n, 1) is a (K,C)-quasi-isometric embedding if
and only if

1

K
d(1, γ)− C ≤ d(x0, ρ(γ)(x0)) ≤ Kd(1, γ) + C

for all γ ∈ Γ. Therefore, if we choose x0 = en+1 and recall that dHn(en+1, T (en+1)) = log σ1(T )
σ2(T )

for all T ∈ O(n, 1), we obtain the following more Lie-theoretic characterization of convex co-
compact representations into O0(n, 1). (This should remind you of our definition of Anosov
representations in Chapter 1.)

Lemma 11.2. A representation ρ : Γ→ O0(n, 1) is convex cocompact if and only if there exists
K and C so that

1

K
d(1, γ)− C ≤ log

σ1(ρ(γ))

σ2(ρ(γ))
≤ Kd(1, γ) + C

for all γ ∈ Γ.

If ρ is discrete and almost faithful, we define its limit set Λ(ρ) ⊂ ∂Hn to be the set of
accumulation points of an orbit, i.e.

Λ(ρ) = ρ(Γ)(x0)− ρ(Γ)(x0) ⊂ ∂Hn

for some x0 ∈ Hn. One may check that Λ(ρ) does not depend on the choice of x0. In the
upper half-space model, ∂Hn is identified with Rn−1 ∪ {∞} where Rn−1 is identified with the
hyperplane {xn = 0}. In the hyperboloid model we let L be the “light cone,” i.e.

L = {~x | x2
1 + · · ·+ x2

n − x2
n+1 = 0}

and then ∂Hn = P(L) where a sequence {xn} in Hn converges to [z] ∈ ∂Hn if and only if the

sequence of lines {←→0xn} converges to
←→
0z . The limit set may be defined more dynamically as the

minimal Γ-invariant subset of ∂Hn.
The name convex cocompact arises because if ρ is convex cocompact, then it acts cocompactly

on the convex hull CH(Λ(ρ)) of its limit set. The quotient C(Nρ) = CH(Λ(ρ))/ρ(Γ) is called
the convex core of Nρ = Hn/ρ(Γ)).

Proposition 11.3. A discrete faithful representation ρ : Γ → PO(n, 1) is convex cocompact if
and only if there exists a convex subset Ω of Hn so that ρ(Γ) preserves and acts cocompactly on
Ω. Moreover, if ρ is convex cocompact, ξρ(∂Γ) = Λ(ρ) and ρ(Γ) acts cocompactly on CH(Λ(ρ)).

Proof. If ρ(Γ) preserves and acts cocompactly on Ω, then τρ gives a quasi-isometry from Γ to
Ω (by the Milnor-Svarc Lemma). Since Ω is convex, it isometrically embeds in Hn. Therefore,
τρ is a quasi-isometric embedding into Hn, so ρ is convex cocompact.

Now suppose ρ is convex cocompact, so τρ is a quasi-isometric embedding into Hn. We choose
Ω = CH(Λ(ρ)), which may be formed as the union of all ideal polyhedral n-simplices in Hn with
endpoints in the limit set. We may assume that x0 has been chosen to lie in Ω, which implies,
since Ω is Γ-invariant, that τρ(Γ) ⊂ Ω. Notice that ρ(Γ) acts cocompactly on Ω if and only if
τρ(Γ) is coarsely dense in Ω, i.e. there exists A > 0 so that if x ∈ Ω, then there exists γ ∈ Γ so
that d(x, ρ(γ)(x0)) ≤ A.
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Recall that τρ extends to a (K,C)-quasi-isometric embedding τ̂ρ : CΓ → Hn where CΓ is the
Cayley graph of Γ. Notice that the image of every edge of CΓ has uniformly bounded length, so
it suffices to show that τ̂ρ(CΓ) is coarsely dense in Ω. The Fellow Traveller Property implies that
there exists R so that if α : [a, b]→ Hn is a (K,C)-quasi-isometric embedding, then α([a.b]) is

a Hausdorff distance at most R apart from the geodesic α(a)α(b) joining α(a) to α(b).
If z 6= w ∈ Λ(ρ), then there exists {xn} and {yn} in τρ(Γ) so that xn → z and yn → w.

Then xnyn lies in the (closed) neighborhood NR(τ̂ρ(CΓ)) of τ̂ρ(CΓ) of radius R, for all n, and
xnyn → zw, so zw ⊂ NR(τ̂ρ(CΓ)). Notice that there exists Bn so that if T is an ideal polyhedral
n-simplex in Hn, then every point in T lies within Bn of an edge of T . Therefore, every point
in Ω lies with R+Bn of a point in τ̂ρ(Γ), so ρ(Γ) preserves and acts cocompactly on the convex
set Ω.

Finally, we check that ξρ(∂Γ) = Λ(ρ). If z ∈ ∂Γ, then there exists a sequence {γn} ⊂ Γ
which converges to c. Then, ξρ(z) = lim γn(x0) lies in the limit set by definition. On the other
hand, if w ∈ Λ(ρ), then there exists a sequence {ρ(γn)} ⊂ ρ(Γ), so that lim ρ(γn(x0) = w.
If {γnk} is a convergent subsequence of {γn} with lim γnk = z, then ξρ(z) = w. Therefore,
ξρ(∂Γ) = Λ(ρ). �

Let

CC(Γ,O0(n, 1)) ⊂ Hom(Γ,O0(n, 1))

be the set of convex cocompact representations and let ĈC(Γ,O(n, 1)) be its image in the
quotient space

X(Γ,O0(n, 1)) = Hom(Γ,O0(n, 1))/O0(n, 1).

It is a crucial property of convex cocompact representations, known as stability, that CC(Γ,O0(n, 1))
is open in Hom(Γ,O0(n, 1)). Informally, if you wiggle a convex cocompact representation a little
bit it remains convex cocompact.

Theorem 11.4. If Γ is a finitely generated group and ρ : Γ → O0(n, 1) is convex cocompact,
then there exists a neighborhood U of ρ in Hom(Γ,PSL(2,R)) such that if σ ∈ U , then σ is

convex cocompact. Moreover, we may choose U so that there exists K̂ and Ĉ so that if σ ∈ U ,
then τσ is a (K̂, Ĉ)-quasi-isometric embedding (with respect to a fixed generating set for Γ and
some fixed basepoint x0 ∈ Hn).

Theorem 11.4 was establshed by Marden [154, Theorem 10.1] when n = 3 and by Thurston
[202, Proposition 8.3.3] in the general case, see also Bowditch [38, Theorem 1.5] or Canary-
Epstein-Green [56, Section I.2.5].

Proof. Suppose that the orbit map τρ is a (K,C)-quasi-isometric embedding with respect to
a finite generating set S and x0 ∈ Hn. The local-to-global principle, Theorem 8.1, implies
that there exists A, K̂, and Ĉ so that if f : J → Hn (where J is an interval in R) is a

(K + C + 1, C + 1)-quasi-isometry on all segments of length at most A, then f is a (K̂, Ĉ)-
quasi-isometry.

Let U be an open neighborhood of ρ in Hom(Γ,PSL(2,R)) so that if σ ∈ U , γ ∈ Γ and
dS(1, γ) ≤ A + 1, then d(ρ(γ(x0)), σ(γ)(x0)) < 1. (We may do so since there are only finitely
many elements of γ within A+ 1 of id.)
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If σ ∈ U , let τσ be the orbit map of σ. We see that if dS(1, γ) ≤ A+ 1, then

1

K
dS(id, γ)− C − 1 ≤ d(τρ(id), τρ(γ)) ≤ KdS(id, γ) + C + 1

so by the equivariance of τρ

1

K
dS(α, β)− C − 1 ≤ d(τρ(α), τρ(β)) ≤ KdS(α, β) + C + 1

whenever dS(α, β) ≤ A+ 1.
Notice that if we let CΓ be the Cayley graph of Γ with respect to S, then we may extend

τσ to a map with domain CΓ, by simply mapping all edges to geodesic segments in H2. The
resulting map is a (K+C+1, C+1)-quasi-isometry on all geodesic segments in CΓ of length at

most A. Therefore, τσ is a (K̂, Ĉ)-quasi-isometric embedding on all geodesic segments in CΓ,

which implies that τσ is a (K̂, Ĉ)-quasi-isometric embedding. �

Since the set CC(π1(S),O0(n, 1)) is invariant under conjugation, we immediately see that
both CC(π1(S),O0(n, 1)) and its quotient are open.

Corollary 11.5. If Γ is a finitely generated group, then CC(Γ,O0(n, 1)) is open in Hom(Γ,O0(n, 1))

and ĈC(Γ,O0(n, 1)) is open in X(Γ,O0(n, 1)).

Similarly, let
DF(Γ,O0(n, 1)) ⊂ Hom(Γ,O0(n, 1))

be the set of discrete, almost faithful, representations and let AH(Γ,PSL(2,R)) be its im-
age in X(Γ,O0(n, 1)). Corollary 6.2 implies immediately that DF(Γ,O0(n, 1)) is closed in
Hom(Γ,O0(n, 1)).

Corollary 11.6. If Γ is a finitely generated group which is not virtually cyclic, then DF(Γ,O0(n, 1))
is closed in Hom(Γ,O0(n, 1)) and AH(Γ,O0(n, 1)) is closed in X(Γ,O0(n, 1)).

If Γ is the fundamental group of a closed hyperbolic n-manifold N , one may again use the
Milnor-Svarc Lemma to show that ρ : Γ → PO(n, 1) is convex cocompact if and only if ρ

is discrete and faithful. Therefore, as in the case of Teichmüller space, ĈC(Γ,O0(n, 1)) =
AH(Γ,O0(n, 1)) is a component of X(Γ,O0(n, 1)). However, if n ≥ 3, then Mostow’s Rigidity

Theorem (see Mostow [169]) implies that ĈC(Γ,PO(n, 1)) is exactly one point, so we will not
be interested in this situation.

However, in general, CC(Γ,O0(n, 1)) is not closed in Hom(Γ,O0(n, 1)) and AH(Γ,O0(n, 1))
is not open in X(Γ,O0(n, 1)). We will give examples when Γ = F2 is the free group on two
generators and n = 2. It will be more convenient to work in PSL(2,R) = SO(2, 1).

We first describe the classical Schottky construction of convex cocompact representations of
free groups. If {C1, C2, . . . , C2n−1, C2n} is a family of disjoint geodesics in H2 bounding disjoint
(closed) half-spaces {D1, D2, . . . , D2n−1, D2n} (whose closures are disjoint in H2 ∪ ∂H2), then
we may construct a convex cocompact representation ρ : Fn → PSL(2,R) by letting ρ(ai) be a
Möbius transformation taking D2i−1 to H2 − int(D2i) for all i, where Fn =< a1, . . . , an >. If
P = H2 −

⋃
int(Di), then one may form a complete hyperbolic surface from P by identifying

C2i−1 to C2i by ρ(ai) for all i. Covering space theory then allows us to conclude that P is a
fundamental domain for the action of ρ(Fn) and that orbits of P tesselate H2. (One may also
verify these facts, using the Ping Pong Lemma, see Section [204].)
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If we choose x0 ∈ int(P ) and let δ = min{d(Ci, Cj) | i 6= j}, then one may easily check that

d(x0, γ(x0)) ≥ δd(1, γ).

On the other hand, if K = max{d(x0, ρ(ai)(x0))}, then

d(x0, γ(x0)) ≤ Kd(1, γ).

Therefore, τρ is a quasi-isometric embedding, so ρ is convex cocompact. Notice that, in this
case, one may easily see that all representations near to ρ are also convex cocompact, since
wiggling the representation, just amounts to wiggling the Ci.

We now observe that not all discrete, faithful representations of F2 are convex cocompact.
Suppose that C1 is the x-axis, C2 is the line Re(z) = 1, C3 is a semi-circle based at 1/4 with

radius 1/8 and C4 is a semi-circle based at 3/4 with radius 1/8. Let ρ0(a1) =

[
1 1
0 1

]
and let

ρ0(a2) be a Möbius transformation taking the half-space “below” C3 to the half-space “above”
C4 and preserving the height of points on C3. Let P be the (closure of the) region between C1

and C2 and above C3 and C4. Consider the hyperbolic surface X obtained from identifying C1

with C2 by ρ0(a1) and identifying C3 with C4 by ρ0(a2) and the sequence of regions Xn given by
the quotient of {z ∈ P |e−n ≤ Im(z) ≤ en}. Notice that Xn contains the ball of radius n about
the quotient of i+ 1/2 and exhausts X. It follows that X is complete. Covering space theory,
then guarantees that ρ0 : F2 → PSL(2,R) is discrete and faithful and that P is a fundamental
domain for the action of ρ0(F2) on H2. However, τρ is not a quasi-isometric embedding, since
if we choose x0 = 1 + 1/2, then

d(x0, ρ0(an)(x0)) = 2 log
n+
√
n2 + 4

2
∼ 2 log n

so ρ0 is not convex cocompact.picture needed

Notice that it is important to be careful in checking completeness. Suppose that we choose
C1, C2, C3 and C4 as for ρ0 but then let ρ̂0(a1) to be given by z 7→ 1

2z+ 1 and ρ̂0(a2) = ρ0(a2).
The region Xn is not preserved by the gluings ρ̂(ai), the quotient of P is not complete and, in
fact, ρ̂0 is convex cocompact. One may see that the quotient of P is not complete, by considering
the path in the quotient which is the union of horizontal segments in P of height 2n for all n.
This path has finite length but leaves every compact subset of the quotient of P . Notice that
the lines {ρ̂(an1 )(C0)} accumulates at the line Re(z) =

∑n
i=0

1
2n = 2, so the translates of P do

not tesselate H2. A fundamental domain for the action of ρ̂(F2) is given by looking at the region
below the circle of radius 2 about z = 2 and above the circle of radius 1 about z = 2 and above
C3 and C4. One may then use this picture, just as above, to show that ρ̂0 is convex cocompact.

We now observe that ρ is a limit of a sequence {ρn} of representations whose image is not
discrete and faithful. For all n ≥ 2, let ρn(a) be an element of PSL(n,R) which fixes ni + 1

2
and takes i to i+ 1 and let ρn(b) = ρ(b). It is then easy to check that {ρn} converges to ρ and
that ρn(F2) is either indiscrete or not faithful (since either ρn(a) has finite order, or < ρn(a) >
is indiscrete). Similarly, we choose ρ̂n(a) ∈ PSL(2,R) to take the interior of the circle R−n of
radius n about −n to the exterior of the circle Rn of radius n about n+ 1, so that the “height”
(i.e. the imaginary component) of points on R−n is preserved and let ρ̂n(b) = ρ(b). Then ρ̂n is
convex cocompact for all n and lim ρ̂n = ρ.

We summarize in the following proposition:
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Proposition 11.7. If F2 is the free group with 2 generators, then CC(F2,PSL(2,R)) is open,
but not closed, in Hom(F2,PSL(2,R)). Moreover, DF (F2,PSL(2,R)) is closed, but not open, in
Hom(F2,PSL(2,R)).

12. Fricke’s Theorem

Fricke proved that the mapping class group Mod(S) of a closed surface acts properly discon-
tinuously, but not freely, on its Teichmüller space. In this section, we will generalize this by

showing that Out(Γ) acts properly discontinuously on ĈC(Γ,O0(n, 1)).
Recall that Mod(S) of a closed, orientable surface S is the group of (isotopy classes of)

orientation-preserving homeomorphisms of S. It is classical that two homeomorphisms of S
are isotopic if and only if they are homotopic and that every homotopy equivalence of S is
homotopic to a homeomorphism. Therefore, Mod(S) is identified with an index two subgroup
of Out(π1(S)). Recall that if Γ is a group, then Out(Γ) = Aut(Γ)/Inn(Γ) and Inn(Γ) is the
group of inner automorphisms of Γ. (All these facts are covered carefully in Farb and Margalit’s
A primer on mapping class groups.) The mapping class group Mod(S) acts naturally on T (S),
by

φ([ρ]) = [ρ ◦ (φ∗)
−1].

Theorem 12.1. (Fricke’s Theorem) If S is a closed oriented surface of genus g ≥ 2, then
Mod(S) acts properly discontinuously on T (S).

The quotientM(S) = T (S)/Mod(S) is the moduli space of isometry classes of (unmarked)
hyperbolic structures on S. By the Uniformization Theorem, it may be identified with the
space of conformal (or complex) structures on S. In algebraic geometry, it occurs as the space
of smooth algebraic curves of genus g. It admits a natural geometric compactification which
has the structure of a projective algebraic variety. Since Mod(S) does not act freely, moduli
space has the structure of an orbifold rather than of a manifold.

We begin with an elementary observation about translation lengths. Recall that if Γ is a
group, then ||γ|| denotes the minimal translation length of the action of γ on Γ. Equivalently,
||γ|| is the minimal length of a word conjugate to γ. We let `X denote the translation length of
the action of Γ on X, i.e.

`X(γ) = inf
x∈X

dX(x, γ(x)).

The following fact is really part of the discussion surrounding the Milnor-Svarc Lemma.

Lemma 12.2. If Γ acts properly discontinuously, cocompactly and by isometries on proper
length space X, then there exists J,B > 0 so that

1

J
||γ|| −B ≤ `X(γ) ≤ J ||γ||+B

for all γ ∈ Γ.
Moreover, if the orbit map τ : Γ→ X is a (K,C)-quasi-isometric embedding, for some choice

of x0 ∈ X, then we may choose J = K and B = 3C.

One may easily check that if X = Hn and A ∈ O0(n, 1), then

`Hn(A) = 2 log λ1(A) = 2 log
λ1(A)

λ2(A)
= log

λ1(A)

λn+1(A)
.
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Proof. Fix x0 ∈ X. The Milnor-Svarc Lemma guarantees that there exists K and C so that the
orbit map τ : Γ→ X, given by γ 7→ γ(x0) is a (K,C)-quasi-isometry. Let α ∈ Γ be an element
so that

d(α, γα) = d(id, α−1γα) = ||γ||.
Then,

d(x0, α
−1γα(x0)) ≤ K||γ||+ C

so

`X(α−1γα) = `X(γ) ≤ K||γ||+ C.

On the other hand, if x ∈ X, then there exists α ∈ Γ so that

d(α(x0), x) ≤ C.
Moreover,

d(α(x0), γα(x0))) ≥ 1

K
d(α, γα)− C ≥ 1

K
||γ|| − C

and

d(γα(x0), γ(x)) ≤ C
so

d(x, γ(x)) ≥ K||γ|| − 3C.

Therefore,

`X(γ) ≥ K||γ|| − 3C

and we may take J = K and B = 3C �

We will also use the following group-theoretic fact, first discussed in Section 8.

Proposition 8.3. If Γ is a torsion-free hyperbolic group, then there exists a finite collection B
of elements of π1(S), so that for any K

{φ ∈ Out(Γ) | ||φ(b)|| ≤ K for all b ∈ B}
is finite.

If Γ = π1(S), then this is equivalent to the claim that there is a finite collection F of curves
on S, so that any self-homeomorphism of S is determined, up to homotopy, by the homotopy
classes of the images of curves in F . This is not hard to check using surface topology.

We are now ready to establish our generalization of Fricke’s Theorem.

Theorem 12.3. If Γ is a finitely generated torsion-free group and ĈC(Γ,O0(n, 1)) is non-

empty, then Out(Γ) acts properly discontinuously on ĈC(Γ,O0(n, 1)).

Proof. To warm up, we first show that the action of Out(Γ) on ĈC(Γ,O0(n, 1)) has discrete

orbits. If ρ ∈ ĈC(Γ,O0(n, 1)), then Lemma 12.2 implies that there exists J and B so that

1

J
||g|| −B ≤ `(ρ(g)) ≤ J ||g||+B

Let B be the finite collection of elements of Γ provided by Proposition 8.3. If {φn} is a
sequence of distinct elements of Out(Γ), then, up to subsequence, there exists b ∈ B so that
||φ−1

n (b)|| → ∞. Therefore, by the above inequality, `(ρ(φ−1
n (β))→∞, which implies that
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φn(ρ) = ρ ◦ φ−1
n →∞ in X(Γ,O0(n, 1)). Therefore, the action of Out(Γ) on ĈC(Γ,O0(n, 1))

has discrete orbits.
Let R be a compact subset of ĈC(Γ,O0(n, 1)). Theorem 11.4 implies that if ρ ∈ R, then

there exist KU , CU and an open neighborhood U of ρ so that if σ ∈ U , then τσ is a (KU , CU )-
quasi-isometric embeddding (for some choice of x0 ∈ Hn). Since R is compact, it can be covered
by finitely many such neighborhoods. So, there exist K and C so that if ρ ∈ R, then τρ is a
(K,C)-quasi-isometric embedding (for some choice of basepoint). Lemma 12.2 then implies
that if J = K and B = 3C, then

1

J
||γ|| −B ≤ `(ρ(γ)) ≤ J ||γ||+B

for all γ ∈ Γ and all ρ ∈ R.
So if {φn} is a sequence of distinct elements of Out(Γ), then, by Proposition 8.3, there exists

b ∈ B so that, after perhaps passing to a subsequence, ||φ−1
n (b)|| → ∞. So, if ρ ∈ R, then

`(ρ(φ−1
n (β)) ≥ 1

J
||φ−1

n (b)|| −B →∞

so {φn(R)} exits every compact subset of X(π1(F ),PSL(2,R)). Therefore, Out(Γ) acts properly

discontinuously on ĈC(Γ,O0(n, 1)). �

Remarks: 1) The mapping class group Mod(S) does not act properly discontinuously on
AH(π1(S),PO(3, 1)). We say that [φ] ∈ Mod(S) is pseudo-Anosov if whenever α is a homo-
topically non-trivial simple closed curve α on S and n ∈ N, then φn(α) is not (freely) homotopic
to α. Then φ has infinite order in Mod(S) and fixes a point in AH(π1(S),PO(3, 1)).

Thurston proved that the mapping torus Mφ = S × [0, 1]/(x, 0) ∼ (φ(x), 0) admits a hyper-
bolic metric. So there exists a convex cocompact representation ρ̂φ : π1(Mφ) → PO(3, 1). The
fixed point is then given by [ρφ] where ρφ = ρ̂φ|π1(S).

2) Goldman [102] proved that X(π1(S),PSL(2,R)) has 2g − 1 components (indexed by the
absolute value of the Euler number of representations in the component). Goldman [105]
conjectured that if the genus of S is at least 3, then the mapping class group acts ergodically on
all components other than the component which is Teichmüller space. If S has genus 2, Marché
and Wolff [152, 153] proved that the mapping class group acts ergodically on the component of
X(π1(S),PSL(2,R)) consisting of representations whose Euler number has modulus 1 and the
the component consisting of representations of modulus 0 splits into two open sets which are
preserved and acted on ergodically by the mapping class group. In 2014, Souto announced a
proof of Goldman’s conjecture for components consisting of representations with Euler number
0.

3) Goldman also conjectured that the mapping class group acts ergodically on

X0(π1(S),PSL(2,C))− CC(π1(S),PSL(2,C))

whereX0(π1(S),PSL(2,C)) is the component ofX0(π1(S),PSL(2, C)) containing CC(π1(S),PSL(2,C)).
Minsky [167], Canary-Storm [58] and Lee [148] showed that for many 3-manifolds M , the do-
main of discontinuity for the action of Out(π1(M),OSL(2,C)) on X(π1(S),PSL(2, C) is strictly
larger than CC(π1(M),PSL(2,C)), see [55] for a more detailed survey of these results.
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13. Further topics: Hyperbolic 3-manifolds

I left the four lane highway took a blacktop seven miles
Down by the old country school I went to as a child
Two miles down a gravel road I could see the proud old home
A tribute to a way of life that’s almost come and gone.

The roots of my raising run deep
I come back for the strength that I need
And hope comes no matter how far down I sink
The roots of my raising run deep.
—————–Tommy Collins [110]

One may view the theory of Kleinian groups as the lowest of all Higher Teichmüller theories,
or perhaps as “only somewhat higher Teichmüller theory.” However, this theory has progressed
rather dramatically, beginning with Thurston’s groundbreaking work in the 1970s and 1980s.
We will review some of this work in the hopes that it could provide inspiration for future
directions in “truly” higher Teichmüller theory. (This hope was one of the motivations for my
attempts to begin working in the field, although the main motivation was my enjoyment talking
math with the collaborators I found there.)
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Part 4. Convex projective manifolds

From the geometry of his heart he mapped it out
He saw the King rise, fitted with armor
Set upon a white horse
An immaculate cross in his right hand.
He advanced toward the enemy
And the symmetry, the perfection of his mathematics
Caused the scattering of the enemy
Agitated, broken, they fled
———–Patti Smith [193]

Our first examples of Anosov representations into higher rank Lie group will be the Benoist
representations. We say that a discrete, faithful representation ρ : Γ → PGL(n + 1,R) is
a Benoist representation if there exists a strictly convex domain in RPn so that ρ(Γ) acts
cocompactly on Ω. If Γ is torsion-free, then the quotient M = Ω/ρ(Γ) is a strictly convex real
projective manifold. We will first see that in this case Γ is a hyperbolic group and Ω admits a
natural Γ-invariant metric, called the Hilbert metric, which has unique geodesics and is Gromov
hyperbolic. Moreover, ∂Ω is C1 and there exists a ρ-equivariant homeomorphim ξρ : ∂Γ→ ∂Ω.

The most basic examples are provided by projective bending of cocompact representations
into PO(n, 1) ⊂ PGL(n + 1,R). Benoist proved that the set Ben(Γ,PGL(n + 1,R)) of Benoist
representations of Γ is always a collection of components of Hom(Γ,PGL(n + 1,R)). So, this
situation is a natural generalization of the classical Teichmüller theory. You may find it easier
when first encountering this material to always assume that we are working in PSL(n + 1,R)
and that all our groups are torsion-free.

Our main resources for the material in this chapter are the article “Convex divisibles I”
by Yves Benoist [20] and the survey article “Around groups in Hilbert geometry” by Ludovic
Marquis [158].

14. Basic definitions

Despite all the computations
You could just dance to that rock’n’roll station
—————–Lou Reed [210]

Recall that RPn = Rn+1/(R−{0}) and that the action of PGL(n+ 1,R) on RPn is its group
of projective automorphisms. If P is a 2-plane through the origin, L = P(P ) is a projective
line. More generally, if Qd+1 is a (d + 1)-plane which passes through the-origin, then P(Q)
is a projective d-plane. Projective automorphism of RPn naturally take projective d-planes to
projective d-planes and restrict to projective automorphisms.

Any hyperplane A in Rn+1 which does not pass through the origin gives rise to an affine chart
for RPn such that RPn−A is the projective hyperplane of lines through the origin parallel to A.
We say that E ⊂ RPn is a (projective) ellipsoid if it is an ellipsoid in some affine chart. Notice
that if E is an ellipsoid in some affine chart, then it is an ellipsoid in every chart containing it.
All ellipsoids are projectively equivalent to a round disk.
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We say that a domain Ω ⊂ RPn is properly convex, if it is a bounded convex subset of
some affine chart. Notice that this is equivalent to saying that the closure of Ω is disjoint from
some projective hyperplane and every two points in Ω are joined by a projective line segment
contained in Ω. We say that a domain Ω ⊂ RPn is strictly convex if it is properly convex and
there are no projective line segments contained in ∂Ω.

If Ω is properly convex, then we let Aut(Ω) denote the set of projective automorphisms which
preserve Ω. A (properly) convex projective manifold M = Ω/Γ is the quotient of a properly
convex domain Ω by a subgroup Γ of Aut(Ω) acting freely and properly discontinuously on Ω.
If Ω is strictly convex, we say that M = Ω/Γ is a strictly convex projective manifold.

The first examples of strictly convex projective manifolds are provided by hyperbolic mani-
folds. Let Hn ⊂ Rn+1 be the two-sheeted hyperboloid whose upper sheet gives the hyperboloid
model for Hn, i.e. Hn = {~x | x2

1 + · · ·+ x2
n − x2

n+1 = −1}. Then P(Hn) is the unit disc in the
affine chart given by A = {~x | xn+1 = 1} and Aut(P(Hn)) = PO(n, 1). (Notice that P(Hn) is
an ellipsoid in any affine chart containing it.) Then if Γ is any discrete torsion-free subgroup of
PO(n, 1), M = P(Hn)/Γ is a strictly convex projective n-manifold.

If ∆̂ is the positive octant in R3, i.e. ∆̂ = {~x | x1 > 0, x2 > 0, x3 > 0}, then ∆ = P (∆̂)
is a simplex in the affine chart A = {~x | x1 + x2 + x3 = 1}. So ∆ is properly convex, but not
strictly convex. Let Γ ⊂ SL(3,R) = PSL(3,R) be generated by the diagonal matrices

A =

4 0 0
0 1

2 0
0 0 1

2

 and B =

2 0 0
0 1

4 0
0 0 2


Notice that A and B commute, Γ ⊂ Aut(∆) and if m,n ∈ Z, then

AnBm =

4n2m 0 0
0 1

2n4m 0
0 0 2m−n


so Γ ∼= Z⊕ Z, Γ is discrete and Γ acts freely on ∆. (We will see later that this implies that Γ
acts properly discontinuously on ∆). Therefore, M = ∆/Γ is a convex projective manifold and
π1(M) ∼= Γ ∼= Z⊕ Z, so M is homeomorphic to a torus.

We say that a group Γ ⊂ PGL(n+ 1,R) divides a properly convex domain Ω if Γ ⊂ Aut(Ω)
and Γ acts properly discontinuously and cocompactly on Ω. In an abuse of notation, we say
that a discrete faithful representation ρ : Γ→ PGL(n+ 1,R) divides a properly convex domain
Ω if ρ(Γ) divides Ω. We will call a representation which divides a strictly convex domain
a Benoist representation. All Benoist representations into PSL(3,R) are deformations of
Fuchsian representations into PO(2, 1) ⊂ PGL(3,R). The only known Benoist representations
which are not deformations of cocompact representations into PO(n, 1) ⊂ PGL(n + 1,R) are
certain representations of Coxeter groups in PSL(5,R) by Benoist [24] and representations of
fundamental groups of Gromov-Thurston manifolds of dimension n ≥ 4 by Kapovich [129].

We now introduce the Hilbert metric on a properly convex domain. It is a projectively
invariant Finsler metric, so descends to a Finsler metric on any quotient convex projective
manifold. We first need to introduce the cross-ratio.
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Given 4 distinct points x, y, z and w in RPn which lie on a projective line L, we can choose
an affine chart A containing the points and define their cross-ratio to be given by

[w, x, y, z] =
|w − y| · |x− z|
|w − x| · |y − z|

.

Notice that [w, x, y, z] > 1 if the points w, x, y, and z appear in that order on the line L (either
from left to right or right to left, so this statement is independent of the ordering of the line).

Lemma 14.1. The cross-ratio of four collinear points in RPn is well-defined (i.e. independent
of the choice of affine chart A) and invariant under projective automorphisms, i.e. if T ∈
PGL(n+ 1,R) and x, y, z and w lie on a projective line then

[T (w), T (x), T (y), T (z)] = [x, y, z, w].

Proof. Given two affine charts A and B containing x, y, z and w, let LA = L∩A and LB = L∩B.
Then the identity map on L is a projective automorphism from LA ∪ {∞} to LB ∪ {∞}. Now
notice that every projective automorphism may be written as a product of some combination
of the inversion x → 1

x , dilations x → λx and translations x → x + a. It is clear that the
cross-ratio is invariant under dilations and translations and it is an easy calculation to check
that it is invariant under inversion since∣∣∣ 1

w −
1
y

∣∣∣ · ∣∣1z − 1
x

∣∣∣∣ 1
w −

1
x

∣∣ · ∣∣∣1z − 1
y

∣∣∣ =
|w − y| · |x− z|
|w − x| · |y − z|

.

Now suppose that T ∈ PGL(n + 1,R) and A is an affine chart containing w, x, y and z.
Then T (A) is an affine chart containing T (w), T (x), T (y) and T (z). Moreover, T restricts to a
projective automorphism from L to T (L). The result then follows as above. �

Suppose that Ω is a properly convex domain and that A is an affine chart so that Ω is a
bounded convex subset of A. If x, y ∈ Ω, let Lx,y be the line in A containing x and y and let w
and z be the endpoints of the line segment Lx,y ∩ Ω̄, so that w, x, y and z occur in that order
along the line Lx,y. We then define the Hilbert distance between x and y in Ω to be picture would

help

dHΩ (x, y) =
1

2
log ([w, x, y, z])) .

It follows from Lemma 14.1 that dH is well-defined and invariant under Aut(Ω). We further
claim that it is a metric, which we call the Hilbert metric and that projective lines are
geodesics for this metric. We first notice the following obvious monotonicity property of the
Hilbert metric.

Lemma 14.2. If Ω and Ω′ are properly convex domains, Ω ⊂ Ω′, and x, y ∈ Ω, then

dHΩ (x, y) ≥ dHΩ′(x, y).

Moreover, if Lx,y ∩ Ω 6= Lx,y ∩ Ω′, then

dHΩ (x, y) > dHΩ′(x, y).

Proof. Notice that if a ≥ b > 0 and c ≥ 0, then a
b ≥

a+c
b+c . Moreover, if a > b > 0 and c > 0, then

a
b >

a+c
b+c . Let w′ and z′ be the endpoints of Lx,y ∩ Ω′, labelled so that w′, x, y and z′ occur in
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that order on the line Lx,y. Then notice that |w− y| ≥ |w−x| and |w′−x| = |w−x|+ |w−w′|
and |w′ − y| = |w − y|+ |w − w′|, so |w−y||w−x| ≥

|w′−y|
|w′−x| . Similarly, |x−z||y−z| ≥

|x−z′|
|x−z| , so

dHΩ (x, y) =
1

2
log ([w, x, y, z]) ≥ 1

2
log
(
[w′, x, y, z′]

)
= dHΩ′(x, y).

Notice that this inequality is strict if w 6= w′ or z 6= z′ and that this occurs exactly when
Lx,y ∩ Ω 6= Lx,y ∩ Ω′. �

We use this monotonicity property in the proof that the Hilbert metric is indeed a metric.

Lemma 14.3. If Ω is a properly convex domain in RPn, then dHΩ is a complete metric,
Aut(Ω) ⊂ Isom(Ω, dHΩ ) and intersections of projective lines with Ω are geodesics (Ω, dHΩ ).

Moreover, if p, x, y ∈ Ω and

dHΩ (x, y) = dHΩ (x, p) + dHΩ (p, y),

then there exists line segments (possibly degenerate) [a, c] and [b, d] in ∂Ω so that the projective
lines Lp,x (through p and x) and Lp,y (through p and y) each have one endpoints in [a, c] and
the other in [b, d]. In particular, if Ω is strictly convex, then projective line segments are the
only geodesics in (Ω, dHΩ ).

Proof. Choose an affine chart A so that Ω is a bounded convex subset of A. Notice that
dΩ
H(x, y) ≥ 0 (since, by our choice of ordering, [w, x, y, z] ≥ 1) and that dΩ

H(x, y) = 0 if and
only if x = y (since [w, x, y, z] = 1 if and only if x = y) and dHΩ (x, y) = dHΩ (y, x) (since
[w, x, y, z] = [z, y, x, w]). The main difficulty is to check the triangle inequality.

We first check the case that p lies on Lx,y between x and y. It is calculation to verify that

[w, x, p, z] · [w, p, y, z] =
|w − p| · |x− z|
|w − x| · |z − p|

· |w − y| · |z − p|
|w − p| · |z − y|

=
|w − y| · |x− z|
|w − x| · |y − z|

= [w, x, y, z]

so

dHΩ (x, p) + dHΩ (p, y) = dHΩ (x, y)

which verifies the triangle inequality for collinear points. Moreover, once we check that dHΩ is a
metric, it implies that projective line segments are geodesics in (Ω, dHΩ ).

Now suppose that p does not lie on Lx,y. Let a and b be the endpoints of Lx,p ∩ Ω̄ and let c
and d be the endpoints of Lp,y ∩ Ω̄ (with consistent orderings a, x, p, b and c, p, y, d). Let Q be
the quadrilateral spanned by {a, b, c, d} and let e = La,c ∩Lx,y and f = Lx,y ∩Lb,d. Notice that
e lies between w and x on Lx,y and that f lies between y and z.picture very

much needed Let r = La,c ∩Lb,d and let q = Lp,r ∩Lx,y. Notice that q lies between x and y on Lx,y. Since
a and e lie on a line through r, q and p lie on a line through r, and b and f lie on a line through
r, the projective invariance of the cross-ratio implies that [e, x, q, f ] = [a, x, p, b]. Therefore,
dHQ (x, q) = dHQ (x, p). Similarly, dHQ (q, y) = dHQ (p, z), so

dHQ (x, y) = dHQ (x, p) + dHQ (p, y).

However, by construction, dHQ (x, p) = dHΩ (x, p) and dHQ (p, y) = dHΩ (p, y), and Lemma 14.2 implies

that dHΩ (x, y) ≥ dQ(x, y). Therefore,

dHΩ (x, y) ≥ dHΩ (x, p) + dHΩ (p, y)
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which completes the verification of the triangle inequality and hence the proof that dHΩ is a
metric.

Lemma 14.2 also implies that the inequality above is strict if w 6= e or z 6= f . However, if
w = e and z = f , then e and f lie in ∂Ω, so the line segments [a, c] and [b, d] must lie in ∂Ω.
However, if Ω is strictly convex, then ∂Ω contains no line segments, so

dHΩ (x, y) > dHΩ (x, p) + dHΩ (p, y)

unless p lies in the line segment between x and y. It follows that if Ω is strictly convex, then
projective line segments are the only geodesics.

Finally, notice that if x ∈ Ω, {yn} ⊂ Ω, d(yn, ∂Ω) → 0, and wn and zn are the endpoints of
Lx,yn ∩ Ω̄, with the ordering wn, x, yn, zn, then, up to subsequence {yn} converges to a point
y ∈ ∂Ω, {wn} converges to a point w ∈ ∂Ω and {zn} converges to a point z ∈ ∂Ω. Notice that
y = z since otherwise ∂Ω contains the line segment yz, which would imply, by convexity, that
Ly,z is disjoint from Ω which would contradict the fact that x ∈ Ly,z ∩ Ω. Moreover, w 6= y
since x ∈ wz. It follows that |yn− zn| → 0 and |wn− x|, |wn− zn| and |zn− x| are all bounded
away from zero, so [wn, x, yn, zn] → ∞ which implies that dHΩ (x, yn) → ∞. Therefore, dHΩ is
complete. �

Remarks: (1) Notice that the proof also demonstrates that if Q is a quadrilateral, then
geodesics are not unique, since one can easily check that both xy and xp ∪ py are geodesics
joining x to y in the quadrilateral Q that we construct in the proof.

(2) Pierre de la Harpe [111] showed that if Ω is properly convex and has the unique geodesic
property, then Aut(Ω) = Isom(Ω, dHΩ ). In particular, if Ω is strictly convex, then Aut(Ω) = Isom(Ω, dHΩ ).
He further shows that Ω has the unique geodesic property if and only if Ω has at most one sup-
port plane which intersects ∂Ω in more than one point.

We record here the elementary observation that discrete subgroups of Aut(Ω) acts properly
discontinuously on Ω. We will use this observation, usually without comment, for the remainder
of the notes.

Lemma 14.4. If Ω is properly convex and Γ is a discrete subgroup of Aut(Ω), then Γ acts
properly discontinuously on Ω. If Γ is also torsion-free, it acts freely, so Ω/Γ is a convex
projective manifold.

Proof. If Γ does not act properly discontinuously on Ω, there exists a sequence {γn} in Γ and a
compact set K so that γn(K)∩K is non-empty for all n. Since Γ acts as a group of isometries of
Ω in the Hilbert metric, there exists a subsequence of {γn} converging to an isometry of Ω (by the
Arzela-Ascoli Theorem). Therefore there exists a sequence {βi} in Γ (each of the form γnγ

−1
m )

which converges to an isometry which is the identity on Ω. Thus, as a sequence of elements of
PGL(d,R), {βi} converges to the identity in PGL(d,R), which contradicts discreteness.

If Γ is torsion-free, then every non-trivial element Γ of Γ has infinite order, so cannot fix
any point in Ω (since every power of γ would fix the point, violating proper discontinuity).
Therefore, if Γ is discrete and torsion-free, Ω/Γ is a manifold. �

We now observe that the Hilbert metric is Finsler. We will only use the Finsler property in
our discussion of the Hilbert geodesic flow in Section 22. Recall that a Finsler metric on a
manifold M is a continuous family of norms on the tangent bundle of M . From a Finsler metric
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one obtains a distance function (an actual metric) just as in the Riemannian case by using the
norm to define the length of a smooth curve in M and taking the distance between two points
to be the infimum of the length of smooth curves joining the two points.

If x ∈ Ω and ~v ∈ TxΩ, let p+ and p− be the endpoints of the line segment {x+t~v | t ∈ R}∩ Ω̄.
We define the Finsler norm associated to the Hilbert metric by letting

FHΩ (x,~v) =
d

dt

∣∣∣
t=0

dHΩ (x, x+ t~v)

=
1

2

d

dt

∣∣∣
t=0

(
log

(|p− − x|+ t|~v|)(|x− p+|)
|p−x|(|p+ − x| − t|~v|)

)
=
|~v|
2

(
1

|x− p−|
+

1

|x− p+|

)
We observe that if Ω = P(Hn) then PO(n, 1) = Aut(Ω) ⊂ Isom(Ω, dHΩ ), so the isometries

act transitively on the space of orthonormal frames in TΩ. It follows that the Hilbert metric
must be a metric of constant negative sectional curvature. (Notice that the Finsler metric
is Riemannian at the origin and hence everywhere, by transitivity.) It is then a calculation
to show that we have chosen the correct normalization to get the actual hyperbolic metric of
constant sectional curvature −1. The round disk P(Hn) with the Hilbert metric is often called
the Beltrami-Klein model (or Klein or Cayley-Klein model) for hyperbolic geometry.

Remark: Kay [137] proved that a Hilbert metric is Riemannian if and only if it is an ellipsoid
(i.e. projectively equivalent to P(Hn)). For example, you can see that in the case of the
simplex, metric ε-balls are hexagons, so are not asymptotically round. Therefore, the Finsler
metric cannot be Riemannian (since metric ε-balls are always asymptotically elliptical as ε→ 0
in a Riemannian manifold).

15. Geometry of properly convex domains

Since our first explicit example of a Hilbert metric is the hyperbolic metric on the round disk
it is natural to ask when the Hilbert metric is Gromov hyperbolic. Notice that the simplex ∆ is
quasi-isometric to the Euclidean plane, since it has a quotient which is a torus, so the simplex
is not Gromov hyperbolic. We first observe that if the Hilbert metric is Gromov hyperbolic,
then the domain must be strictly convex.

Proposition 15.1. If Ω is properly convex and its Hilbert metric is Gromov hyperbolic, then
Ω is strictly convex.

Proof. Suppose that Ω is Gromov hyperbolic, but not strictly convex. Let [x, y] be a maximal
line segment in ∂Ω. Choose z ∈ Ω and sequences {xn} ⊂ xz and {yn} ⊂ yz so that xn → x,
yn → y and xnyn is parallel to xy for all n. Let un be the midpoint of xnyn, for all n, so {un}
converges to the midpoint u of xy.

If Ω is δ-hyperbolic, then, for all n, there exists zn ∈ xnz∪ynz so that d(un, zn) ≤ δ. Without
loss of generality zn ∈ xz for all n. Since d(un, z)→∞, we must have d(zn, z)→∞, so zn → x.
Suppose that pnqn = Lun,zn ∩ Ω̄. Since unzn → ux, we see that pnqn converges to a line segment
in ∂Ω containing ux. Since xy is a maximal line segment in ∂Ω, we see that pn → x and {qn}
converges up to subsequence to a point in uy.picture needed
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But then |pn − zn| → 0, but |pn − un| and |qn − zn| are bounded away from zero, so
[pn, zn, un, qn]→∞ which implies that d(zn, un)→∞ which is a contradiction. So, Ω must not
be Gromov hyperbolic. �

We next observe that when Ω is Gromov hyperbolic, then its Gromov boundary agrees with
its topological boundary.

Proposition 15.2. If Ω is a strictly convex domain and (Ω, dHΩ ) is hyperbolic, then the Gromov
boundary ∂∞Ω of Ω may be identified with the topological boundary ∂Ω of Ω. More precisely,
there exists a homeomorphism from Ω̄ to Ω ∪ ∂∞Ω which is the identity on Ω.

Proposition 15.2 will be a consequence of the following more general fact which we will use
on several other occasions.

Lemma 15.3. Suppose that Ω is a properly convex domain, x0 ∈ Ω, w 6= z ∈ ∂Ω and
Lw = [x0, w) and Lz = [x0, z) are projective line segments in Ω joining x0 to w and z. Then
Lw and Lz are a finite Hausdorff distance apart (in the Hilbert metric on Ω) if and only z and
w lie in the interior of a projective line segment in ∂Ω.

Proof. First suppose that w and z lie in the interior of a (maximal) projective line segment [x, y]
in ∂Ω and assume that they occur in the order x,w, z, y. If Lw does not lie in a bounded metric
neighborhood of Lz, then there exists a sequence wn ∈ Lw so that d(wn, Lz) → ∞. Choose a
point zn on Lz so that [wn, zn] is parallel to [w, z]. If xn and yn are the points of intersection of
the projective line ←−→wnzn with ∂Ω (in the order xn, wn, zn, yn), then [xn, yn] converges to [x, y],
so [xn, wn, zn, yn] converges to [x, y, z, w] which is finite. Therefore, d(wn, zn) is bounded and
we have achieved a contradiction. Thus, Lw lies in a bounded metric neighborhood of Lz.
Symmetrically, Lz lies in a bounded metric neighborhood of Lw, so Lw and Lz are a finite
Hausdorff distance apart.

On the other hand, suppose that Lw and Lz are a Hausdorff distance at most K apart.
Choose sequences wn in Lw and zn ∈ Lz so that wn → w and d(wn, zn) ≤ K. Let xn and yn be
the points of intersection of the projective line ←−→wnzn with ∂Ω (in the order xn, wn, zn, yn), and
pass to a subsequence so that xn → x ∈ ∂Ω and yn → y ∈ ∂Ω. Notice that if either x = w or
y = z, then [xn, wn, zn, yn]→∞, so d(wn, zn)→∞, which is a contradiction. Therefore, z and
w lie in the interior of the line segment xy contained in ∂Ω. �

Proof of Proposition 15.2. Fix p ∈ Ω. Every geodesic ray emanating from p is a projective
line segment which intersects ∂Ω in a unique point. Moreover, every point in ∂Ω determines
a geodesic ray emanating from p. Since Ω is strictly convex, Lemma 15.3 implies that two
geodesic rays emanating from p lie a bounded Hausdorff distance apart if and only they agree.
So, we may identify ∂∞Ω with ∂Ω. We see that this identification is a homeomorphism by
noting that if {zn} ⊂ Ω̄, then {pzn} converges to pz if and only if {zn} converge to z. �

Every properly convex domain Ω admits a dual domain Ω∗ ⊂ P
(
(Rn+1)∗

)
where Ω∗ denote

the set of (projective classes of) linear functionals φ : Rn+1 → R such that φ(~v) 6= 0 if ~v 6= ~0
and [~v] ∈ Ω̄. Alternatively, we may equivariantly identify P

(
(Rn+1)∗

)
with the Grassmanian

Grn(Rn+1) of hyperplanes in Rn+1, by identifying a projective class of linear functional with its
kernel. Then, Ω∗ may be identified with the set of projective hyperplanes disjoint from Ω̄ and
∂Ω∗ is the set of support planes to Ω.
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Similarly if ρ : Γ→ GL(n+1,R) is a representation, then we may define dual representation
ρ∗ : Γ→ GL

(
(Rn+1)∗

)
. If φ ∈ (Rn+1)∗ and γ ∈ Γ, then ρ∗(γ)(φ) = φ ◦ ρ(γ)−1. Notice that

ker(ρ∗(γ)(φ))) = ρ(γ)(ker(φ)). If one identifies GL
(
(Rn+1)∗

)
with GL(n + 1,R) by choosing

the standard basis {e⊥1 , . . . , e⊥n+1} for (Rn+1)∗, then A acts by (AT )−1 on P
(
(Rn+1)∗

)
. So

with this identification ρ∗(γ) = (ρ(γ)−1)T . Notice that this whole construction commutes with
projection, so if ρ : Γ→ PGL(n+ 1,R) is a representation, then we obtain a dual representation
ρ∗ : Γ→ PGL

(
(Rn+1)∗

)
.

We record a few elementary observations in a lemma for future use. The proof uses the
standard fact that if Ω is properly convex, then ∂Ω is C1 at a point x if and only if there is a
unique support plane to Ω through the point x. (In fact, this is the key property of C1 points
that we will use, so one may simply take this as the definition for our purposes.)

Lemma 15.4. Suppose that Ω ⊂ RPn is a properly convex domain. Then

(1) The dual domain Ω∗ is properly convex.
(2) If ρ : Γ→ PGL(n+1,R) is a representation and ρ(Γ) ⊂ Aut(Ω), then ρ∗(Γ) ⊂ Aut(Ω∗).
(3) The boundary ∂Ω of Ω is C1 if and only if Ω∗ is strictly convex. More precisely, if

x ∈ ∂Ω is not a C1 point, then there exists a line segment in ∂Ω∗ consisting of support
planes to Ω at x.

Proof. Suppose that Ω is properly convex. If x ∈ RPn, let P ∗x ⊂ ((Rn+1)∗) be the projective
hyperplane

P ∗x = P
({
φ ∈ (Rn+1)∗)

∣∣ φ(~u) = 0 if [~u] = x
})

consisting of (projective classes of) linear functional with the line x in their kernel. Notice that
if x ∈ Ω, then, by definition, Ω∗ is disjoint from P ∗x , so Ω∗ is a bounded subset of an affine
chart for P

(
(Rn+1)∗

)
. If [φ], [ψ] ∈ Ω∗, then we may choose a component Ω0 of the pre-image

of Ω in Sn and linear functionals φ0 ∈ [φ] and ψ0 ∈ [ψ] so that if v ∈ Ω0, then φ0(v) > 0
and ψ0(v) > 0. Then (tφ0 + (1 − t)ψ0)(v) > 0 for all t ∈ [0, 1] and v ∈ Ω0. It follows that
{[tφ0 + (1− t)ψ0] | t ∈ [0, 1]} is a projective line segment in Ω∗ joining [ψ] to [φ]. Therefore, Ω∗

is properly convex, so (1) holds.
Consider a representation ρ : Γ→ PGL(n+ 1,R) so that ρ(Γ) preserves Ω. If γ ∈ Γ and H is

a hyperplane disjoint from Ω̄, then ρ(γ)(H) is also disjoint from Ω̄. Therefore, ρ∗(γ) preserves
Ω∗, so (2) holds.

The set of support planes to x is a non-trivial convex subset Cx of the projective hyperplane
P∗x and Cx is contained in ∂Ω∗. Notice that ∂Ω is C1 at x if and only if Cx is a single point,
Therefore, if ∂Ω is not C1, then Ω∗ is not strictly convex. So, if Ω∗ is strictly convex, then Ω
is C1.

Conversely, if Ω∗ is not strictly convex, then there exists a non-trivial line segment [a, b] in
∂Ω∗. Each point y ∈ [a, b] is associated to a support plane Hy to Ω. Suppose that Ha is a
support plane at c ∈ ∂Ω and Hb is a support plane at d ∈ ∂Ω. If c 6= d, then [c, d] ∈ Ω̄ and if
y ∈ (a, b), then Hy intersects [c, d] transversely. Hence, Hy must intersect Ω which contradicts
the fact that it is a support plane to Ω. Therefore, c = d, so c is not a C1 point of ∂Ω (since it
admits two distinct support planes). Thus, if Ω is not strictly convex, then ∂Ω is not C1. So,
if ∂Ω is C1, then Ω∗ is strictly convex, which completes the proof of (3). �
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The following result, concerning endpoints of geodesics in properly convex domains, will only
be used in Section 39, so can be ignored for now if you want to move on immediately to the
study of Benoist representations. Notice that this result is obvious for strictly convex domains,
since geodesics in strictly convex domains are projective line segments.

Proposition 15.5. (Foertsch-Karlsson [98, Theorem 3], see also [83, Lemma 2.6]) Suppose that
Ω ⊂ RPn is a properly convex domain.

(1) If r : [0,∞)→ Ω is a geodesic ray, then limt→∞ r(t) = r(∞) exists and r(∞) ∈ ∂Ω.
(2) If s : R→ Ω is a bi-infinite geodesic, then

s(∞) = lim
t→∞

s(t) 6= lim
t→−∞

s(t) = s(−∞).

Proof. Let r : [0,∞) → Ω be a geodesic ray in a properly convex domain Ω. For all t > 0,

let zt =
−−−−−→
r(0)r(t) ∩ ∂Ω and let Pt be the facet of ∂Ω containing zt (i.e. the intersection of a

supporting hyperplane to ∂Ω through zt with ∂Ω). Lemma 14.3 implies that if 0 < s < t, then
zs ⊂ Pt. Therefore, Pt = Ps, so zt lies in a single facet P for all t > 0.

Let wt =
−−−−−→
r(t)r(0) ∩ ∂Ω and Qt be the facet of ∂Ω containing wt. We argue just as above to

show that Qt = Qs if 0 < s < t, so wt lies in a single facet Q for all t > 0. Moreover, P and Q
are disjoint.

Let C be the set of accumulation points of r([0,∞)) in ∂Ω. Since any accumulation in C is
also an accumulation point of {zt}, we see that C ⊂ P . Suppose that C contains more than one
point. Then, there exist sequence {sn} and {tn} so that lim r(sn) = v 6= w = lim r(tn). Notice
that the line Ln joining r(sn) to r(tn) converges to the line L containing [v, w]. It follows that
L intersects ∂Ω only at P .

Lemma 14.3 implies that if 0 < sn < tn, then ztn and
−−−−−−−→
r(sn)r(tn)∩ ∂Ω span a line segment in

∂Ω and wtn and
−−−−−−−→
r(tn)r(sn) ∩ ∂Ω span a line segment in ∂Ω, so Ln ∩ Ω̄ has endpoints in P and

Q. If 0 < tn < sn, we argue similarly that Ln ∩ Ω̄ has endpoints in P and Q. Since P and Q
are closed and disjoint this implies that L ∩ Ω̄ has endpoints in P and Q. We have achieved a
contradiction, since we previously saw that L intersected ∂Ω only in P . Therefore, C is a single
point {c} and lim limt→∞ r(t) = c.

Now suppose that s : R→ Ω is a geodesic, the previous argument implies that c = limt→∞ s(t)
and d = limt→−∞ s(t) exist. Moreover, we may check, just as above that c lies in the same

facet of ∂Ω as
−−−−−−→
s(−1)s(1)∩ ∂Ω and that d lies in the same facet of ∂Ω as

−−−−−−→
s(1)s(−1)∩ ∂Ω. Since

←−−−−−→
s(−1)s(1) must intersect ∂Ω in distinct facets, c and d must be distinct. �

Karlsson and Noskov proved that that Gromov hyperbolic properly convex domains have C1

boundary. We will not use this fact in these notes, but I feel like it illuminates the general
picture. Feel free to skip it if you prefer.

Proposition 15.6. (Karlsson-Noskov [135]) If Ω ⊂ RPn is strictly convex and Gromov hyper-
bolic, then ∂Ω is a C1-submanifold of RPn.

Remarks: (1) If Ω is properly convex and has at least two line segments in its boundary,
then the Hilbert metric is not even CAT(0) since geodesics are not unique. However, they still
exhibit some of the geometric flavor of non-positively curved manifolds. Ludovic Marquis [158]
refers to them as “damaged non-positively curved manifolds.”
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(2) Benoist [19] showed that a properly convex domain is Gromov hyperbolic in its Hilbert
metric if and only if it is quasisymmetrically convex. Colbois, Vernicos and Verovic [67] showed
that Ω is Gromov hyperbolic if and only if there is an upper bound on the area of all ideal
triangles.

(3) Benzecri [26] proved that if Ω ⊂ RP2 is properly convex and divisible, but not strictly
convex, then Ω is projectively equivalent to the simplex ∆. Benoist [23] produced and studied
more interesting examples of properly convex divisible domains in RP3 which are not strictly
convex (see also Ballas-Danciger-Lee [10])).

16. Benoist’s characterizations of strictly convex divisible domains

Yves Benoist established the following beautiful characterization of strictly convex divisible
domains.

Theorem 16.1. (Benoist [20]) If a discrete group Γ ⊂ PGL(n + 1,R) acts cocompactly on a
properly convex domain Ω ⊂ RPn, then the following are equivalent.

(1) (Ω, dHΩ ) is Gromov hyperbolic.
(2) Γ is Gromov hyperbolic.
(3) Ω is strictly convex.
(4) ∂Ω is a C1 submanifold of RPn.

Proof. Notice that the equivalence of (1) and (2) is an immediate consequence of the Milnor-
Svarc Lemma and Proposition 4.1.

Proposition 15.1 asserts that if Ω is not strictly convex, then Ω is not Gromov hyperbolic, so
(1) implies (3). We next show that (3) implies (2).

Proposition 16.2. (Benoist [20]) If Γ ⊂ PGL(n + 1,R) divides a strictly convex domain Ω,
then (Ω, dHΩ ) is Gromov hyperbolic.

Proof. Recall that if Ω is strictly convex, then all geodesics are projective line segments, see
Lemma 14.3. If Ω is not Gromov hyperbolic, then there exists sequences {xn}, {yn}, {zn} and
{un} of points in Ω such that un ∈ xnyn for all n, and d(un, xnzn ∪ ynzn) ≥ n for all n. (For
the remainder of this chapter d will be the relevant Hilbert metric unless we say otherwise.)

Since Γ acts cocompactly on Ω, there is a compact set K such that Γ(K) = Ω. So,
we can always choose γn ∈ Γn so that γn(un) ∈ K. So, after replacing xn, yn, zn, un with
γ(xn), γ(yn), γ(zn), γ(un), we may assume that un ∈ K for all n. We may then pass to a subse-
quence so that un → u, xn → x, yn → y and zn → z. Since d(un, xnzn ∪ ynzn)→∞, we must
have x, y, z ∈ ∂Ω. Since u ∈ xy, x 6= y. If x = z, then ynzn → yz, so d(un, ynzn)→ 0, which is
a contradiction, so x 6= z. Similarly y 6= z. But then, d(u, xz) < ∞ since Ω is strictly convex.
(This is the only usage of strict convexity in the proof.) But d(un, xnzn)→ d(u, xz), so we have
again achieved a contradiction. Therefore, Ω is Gromov hyperbolic. �

The following result shows that (3) holds if and only if (4) holds and completes the proof of
Theorem 16.1. �

Proposition 16.3. (Benoist [20]) If Γ ⊂ PGL(n + 1,R) divides a properly convex domain
Ω ⊂ RPn, then Ω is strictly convex if and only ∂Ω is a C1 submanifold of RPn.
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Proof. Suppose that Ω is strictly convex. Then, by Proposition 16.2, Ω, and hence Γ, is Gromov
hyperbolic. Let Γ∗ = {(γ−1)T | γ ∈ Γ} (so Γ∗ is the image of the dual to the inclusion map of Γ
into PGL(n+ 1,R)). Lemma 15.4 implies that Ω∗ is properly convex and Γ∗ ⊂ Aut(Ω∗). Since
Γ∗ is discrete, it acts properly discontinuously on Ω∗. Since M = Ω/Γ is a closed manifold and
is homotopy equivalent to the manifold M∗ = Ω∗/Γ∗, M∗ is also closed, so Γ∗ divides Ω∗. Since
Γ∗, and hence Ω∗ is Gromov hyperbolic, Proposition 15.1 implies that Ω∗ is strictly convex.
Lemma 15.4 then implies that Ω is a C1 submanifold of RPn. (If Γ has torsion, we first pass to
a finite index torsion-free subgroup of Γ and then apply the above argument.)

On the other hand, if Γ divides a properly convex domain Ω so that ∂Ω is a C1 submanifold
of RPn, then we argue as above to show that Γ∗ divides the strictly convex domain Ω∗. It
follows, from Proposition 16.2, that Γ∗, and hence Γ and Ω, is Gromov hyperbolic. Proposition
15.1 then implies that Ω is strictly convex. �

Remarks: Benzecri [26] proved that if a group Γ divides a strictly convex domain and ∂Ω is
a C2-submanifold, then Ω is an ellipsoid. Benoist [20] proved that ∂Ω is always C1+α for some
α > 0 if Ω is a strictly convex divisible domain.

17. Linear algebra in GL(d,R)

The country I come from
Is called the Midwest
I was taught and brought up there
The laws to abide
————Bob Dylan [92]

We say that A ∈ GL(d,R) is proximal if it has an attracting fixed point for its action on
RPn, i.e. there exists a point x ∈ RPn such that A(x) = x and an open neighborhood U of
x so that if u ∈ U , then An(u) → x uniformly on compact subsets of U . We say that A is
biproximal if both A and A−1 are proximal.

We will see how the linear algebra reflects this property. Consider the (real) Jordan canonical
form for A ∈ GL(d,R), i.e. A = BJB−1 for some B ∈ GL(n + 1,R) and J is a block diagonal
matrix 

J1 0 · · · 0
0 J2 · · · 0
...

...
...

0 0 · · · Jm


where each Ji is either a single real entry ji or a (real) Jordan block of the form

Ji =


Ci 1 0 · · · 0
0 Ci 1 · · · 0
0 0 Ci · · · 0
...

...
...

0 0 0 · · · Ci


and Ci is either a single (real) entry ji, or Ci =

[
ai −bi
bi ai

]
, in which case ji = ±

√
|det(Ci)|ei arccos(ai).
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We will call ji a generalized eigenvalue, and we call the subspace preserved by Ji its
generalized eigenspace Ei. We may assume that

|j1| ≥ |j2| ≥ · · · ≥ |jm|.

If Ji is a Jordan block, then its generalized eigenspace contains a vector ~vi so that ‖Jn(~vi)‖ =
|ji|n‖~vi‖| for all n. If Ji is upper-triangular, but not a single entry, then Ei contains an eigen-
vector ~wi so that if ~u ∈ Ei, then Jn([~u]) → [wi] in RPn. However, the convergence will not be
uniform. For example, if J = Ji = [ 1 1

0 1 ], then < e1 > is the only eigenline, but if vn = [ n
−1 ],

then {< vn >} converges to < e1 > and Jn(vn) =
[

0
−1

]
for all n. If Ji is Jordan block which is

not upper triangular, then its generalized eigenspace contains no eigenlines.
Notice that J is proximal if and only if |j1| > |j2| and J1 is a single entry j1. In this case, the

eigenspace E1 is called the attracting eigenline, and is an attracting fixed point for the action
of J on RPd−1. Moreover, Jn(v)→ [e1] if and only if v does not lie in < e2, . . . , en, en+1 >, so
we call < e2, . . . , en, en+1 > the repelling hyperplane of J .

If A = BJB−1, then A is proximal if and only if J is proximal. Then, B(< e1 >) is the
attracting eigenline of A and B(< e2, . . . , en+1 >) is the repelling hyperplane of A. If A is
biproximal, the repelling hyperplane of A−1 is sometimes called the attracting hyperplane
of A. In this case, in our notation, Jm is a single real number and the attracting hyperplane
has the form B(< e1, . . . , en >).

We may also rephrase this in terms of the eigenvalues of A. If we let {λi(A)}n+1
i=1 denote the

complex eigenvalues of A, then we may order them so that

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λd(A)|.

Notice that each block Ji gives rise to dim(Ji) eigenvalues of modulus |ji|. Therefore, A is
proximal if and only if |λ1(A)| > |λ2(A)|.

Notice that the notions of proximality, biproximality, attracting eigenline, repelling hyper-
plane all make sense in PGL(n+ 1,R) since they are unaffected by the choice of element in the
projective class. Moreover, the tuple (|λ1(A)|, . . . , |λd(A)|) is well-defined.

We also recall the singular value decomposition, which we discussed briefly in the
introduction. If B ∈ GL(d,R), then we may write B = LAK where L,K ∈ O(d) and
A is a diagonal matrices with positive entries in descending order along the diagonal, i.e.
a11 ≥ a22 ≥ · · · ≥ ann > 0. The matrix A depends only on B, but L and K need not be
unique when some of the diagonal entries agree. We let σi(B) = aii and call it the ith singular
value of B. It is (half) the length of the ith minor of the ellipse B(Sn−1). In the literature,
you will often see references to the Cartan projection which is given by

µ : SL±(d,R)→ a+

where

a+ = {~x ∈ Rd | x1 ≥ x2 ≥ · · · ≥ xd and x1 + · · ·+ xn = 0}

so that

µ(B) = (log σ1(B), . . . , log σd(B)).

We will probably not use this language ourselves.
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It is important to remember that singular values and eigenvalues are rather different animals
(as I have learned to my dismay in the past). For example,

σ1

(
1 n
0 1

)
∼ n

However, one does have the relationship

log |λi(B)| = lim
log σi(B

n)

n
.

Notice that since A and −A have the same singular values it makes sense to talk about
σi(X) when X ∈ PSL±(n,R), which may be identified with PGL(d,R). Moreover, if i 6= j and

A ∈ PGL(d,R), then both σi(A)
σj(A) and |λi(A)|

|λj(A)| are well-defined.

18. Limit maps

Told my little Pollyanna
There’s a place for you and me
We’ll go down to Transverse City
Life is cheap, and death is free
————Warren Zevon [229]

In this section, we produce ρ-equivariant limit maps ξρ : ∂Γ→ ∂Ω and θρ : ∂Γ→ P
(
(Rn+1)∗

)
associated to a Benoist representation ρ : Γ → PGL(n + 1,R). These limit maps generalize
the limit maps we saw in the study of convex cocompact representations into O0(n, 1) and
foreshadow the limit maps which will play a crucial role in the theory of Anosov representations.

Suppose that Γ is a hyperbolic group and ρ : Γ→ PGL(n+ 1,R) is a representation and that

Aρ : ∂Γ→ RPn and Bρ : ∂Γ→ Grn(Rn+1) ∼= P
(
(Rn+1))∗

)
are continuous ρ-equivariant maps. We say that Aρ and Bρ are compatible if Aρ(z) ⊂ Bρ(z)
for all z ∈ ∂Γ. They are said to be transverse if Aρ(w)⊕Bρ(z) = Rn+1 for all z 6= w ∈ ∂Γ.

Proposition 18.1. If a Benoist representation ρ : Γ→ PGL(n+ 1,R) divides a strictly convex
domain Ω, then it admits ρ-equivariant maps ξρ : ∂Γ → RPm and θρ : ∂Γ → Grn(Rn+1) which
are compatible and transverse.

Proof. Theorem 16.1 implies that Γ and Ω are Gromov hyperbolic and that Ω is strictly convex
and has C1 boundary. The Milnor-Svarc Lemma implies that the orbit map τρ : Γ → Ω is
a quasi-isometry. Proposition 15.2 allows us to identify the Gromov boundary ∂∞Ω with the
topological boundary ∂Ω. Proposition 3.5 and Corollary 3.6 then show that τρ extends to
a homeomorphism ξρ : ∂Γ → ∂Ω so that if {γn} ⊂ Γ, lim γn = z ∈ ∂Γ and x ∈ Ω, then
lim ρ(γn)(x) = ξρ(z).

We define θρ : ∂Γ → P
(
(Rn+1)∗

)
by letting θρ(z) be the tangent plane (unique support

plane) to ∂Ω at ξρ(z). By construction, θρ is a ρ-equivariant embedding. Notice that ξρ and
θρ are compatible by definition. Since θρ(γ

+) is invariant under ρ(γ) and does not contain the
repelling eigenline of ρ(γ) it must be the attracting n-plane of ρ(γ).

Since Ω is strictly convex, if z ∈ ∂Γ, then θρ(z) is the tangent plane to ∂Ω at ξρ(z), so it cannot
intersect ∂Ω at any other point. In particular, if w 6= z, then the line ξρ(w) ∈ ∂Ω− {ξρ(z)} is
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not contained in the hyperplane θρ(z). Therefore, ξρ(w) ⊕ θρ(z) = Rn+1 if z 6= w ∈ ∂Γ, so ξρ
and θρ are transverse. �

We next show that if ρ is a Benoist representation, then all images of infinite order elements
are biproximal and the limit maps are dynamics-preserving.

Suppose that Γ is a hyperbolic group, ρ : Γ→ PGL(n+ 1,R) is a representation and

Aρ : ∂Γ→ RPn and Bρ : ∂Γ→ Grn(Rn+1) ∼= P
(
(Rn+1))∗

)
are continuous ρ-equivariant maps. The map Aρ is said to be dynamics preserving if when-
ever γ is an infinite order element of Γ, then ρ(γ) is biproximal and Aρ(γ

+) is the attracting
eigenline of ρ(γ). Similarly, Bρ(γ

+) is said to be dynamics preserving if whenever γ is an infinite
order element of Γ, then ρ(γ) is biproximal and Bρ(γ

+) is the attracting hyperplane of ρ(γ).

Proposition 18.2. If ρ : Γ → PGL(n + 1,R) is a Benoist representation, then ξρ and θρ are
dynamics preserving. In particular, if γ ∈ Γ has infinite order, then ρ(γ) is biproximal.

We derive Proposition 18.2 from a more general statement which will be useful in Section 42.

Lemma 18.3. Suppose that ρ : Γ→ PGL(n+ 1,R) is a discrete, almost faithful representation,
ρ(Γ) preserves a properly convex domain Ω and there exist continuous, transverse ρ-equivariant
maps ξ : ∂Γ → RPn and θ : ∂Γ → Grn(Rn+). If γ ∈ Γ has infinite order and {ρ(γ)n(x)}n∈N
converges to ξ(γ+) if x ∈ Ω, then ρ(γ) is proximal, ξ(γ+) = ρ(γ)+ and θρ(γ

−) is the repelling
hyperplane of ρ(γ).

Proof. We may assume without loss of generality that J = ρ(γ) is in Jordan canonical form.
Notice that ξ(γ+) and θ(γ−) are transverse and invariant under ρ(γ), so every generalized
eigenspace of a Jordan block of J is contained in either ξ(γ+) or θ(γ−). Therefore, the Jordan
block J+ whose generalized eigenspace contains the line ξ(γ+) must be one-dimensional. Let
j+ be the eigenvalue of J+ and let j− be the largest generalized eigenvalue of a Jordan block
contained in θ(γ−). Let ~v1 be a vector in J+ and let ~v2 be a vector in θ(γ−) so that ||Jn(~v2)|| =
(j−)n||~v2||. Let p+ : Rn+1 → J+, p− : Rn+1 and p2 : Rn+1 →< ~v2 > be projection maps. Since

Ω is open, there exists x = [~v] ∈ Ω, so that p2(~v) 6= 0. If |j−| ≥ |j+|, then
{
||p−(Jn(~v))||
||p+(Jn(~v))||

}
n∈N

does not converge to 0, so ρ(γ)n(x) does not converge to ξ(γ+). This violates our assumption,
so |j+| > |j−| which implies that ρ(γ) is proximal and ξ(γ+) = ρ(γ)+. �

Proof of Proposition 18.2. Proposition 18.1 implies that ξρ and θρ are continuous, transverse
ρ-equivariant maps, such that if γ has infinite order then {ρ(γ)n(x)}n∈N converges to ξ(γ+).
Lemma 18.3 then implies that if γ has infinite order, then ρ(γ) is proximal and ξ(γ+) = ρ(γ+).
Similarly, ρ(γ−1) is proximal, so ρ(γ) is biproximal and θρ((γ

−1)−) is the repelling hyperplane
of ρ(γ−1). Since (γ−1)− = γ+, this implies that θρ(γ

+) is the attracting hyperplane of ρ(γ).
This completes the proof that ξρ and θρ are dynamics-preserving. �

We may use the analysis above to check that Benoist representations are strongly irreducible,
which is a special case of a result of Vey [211]. Recall that a representation ρ : Γ→ PGL(d,R)
is said to be irreducible if every subspace of Rd invariant under every element of ρ(Γ) is either
trivial or all of Rd. It is called strongly irreducible if the restriction of ρ to any finite index
subgroup is still irreducible.
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Proposition 18.4. (Vey [211]) If ρ : Γ→ PGL(n+ 1,R) is a Benoist representation, then ρ is
strongly irreducible.

Proof. Suppose that a proper linear subspace V is invariant under ρ(Γ). If γ is any infinite order
element of Γ, then the translates Γ(γ+) of γ+ are dense in ∂Γ, by Proposition 5.6. Therefore,
the attracting eigenlines of conjugates of ρ(γ) are dense in ∂Ω and hence span Rn+1. It follows
that there exists an infinite order element γ ∈ Γ so that V does not contain the attracting
eigenline ξρ(γ

+) of ρ(γ). Thus, V must be contained in the repelling hyperplane of ρ(γ), since
otherwise there exists v ∈ V , so that ρ(γ)n(v) → ξρ(γ

+). So V is contained in the hyperplane
P tangent to ∂Ω at ξρ(γ

−). If α ∈ Γ, then α(P ) is the tangent plane to ∂Ω. If α ∈ Γ, then α(P )
is the tangent plane to ∂Ω at α(ξρ(γ

−)), and since V is Γ-invariant, we see that V ⊂ α(P ).
Since translates of γ− are dense in ∂Γ, again by Proposition 5.6, we see that V is contained in
the tangent plane to every point of ∂Ω.

Now notice that every hyperplane in the affine chart is parallel to exactly two distinct tangent
planes to Ω, since Ω is strictly convex and ∂Ω is C1. Therefore, the intersection of all the pro-
jective hyperplanes tangent to ∂Ω is trivial, so V must be trivial, which is again a contradiction.
Therefore, ρ must be irreducible.

Since the restriction of every Benoist representation to a finite index subgroup is a Benoist
representation, we see immediately that Benoist representations are strongly irreducible. �

Remarks: 1) Vey [211] further proved that if a discrete subgroup Γ of PGL(n + 1,R) divides
a properly convex, irreducible domain in RPn, then Γ is strongly irreducible.

2) Benoist [18] proved that the Zariski closure of the image of a Benoist representation into
PSL(n+ 1,R) is either PSO(n, 1) or PSL(n+ 1,R). Benoist [21] proved, more generally, that if
a discrete group Γ ⊂ PGL(n+1,R) divides a properly convex domain Ω, then Γ is Zariski dense
unless Ω is a product or symmetric cone. (The symmetric cones have been completely classified
and are all associated to semi-simple Lie groups, and PO(n, 1) is the only rank one Lie group
which arises. We will later see the symmetric domain associated to PO(n, n) in Section 41.)

3) If ρ : Γ→ PGL(n+1,R) is a Benoist representation and ρ(Γ) preserves Ω, then, by Lemma
15.4, ρ∗(Γ) preserves Ω∗. We saw, in the proof of Proposition 16.3, that ρ∗(Γ) acts cocompactly
on Ω∗ and that Ω∗ is strictly convex, so ρ∗ is also a Benoist representation. If z ∈ ∂Γ, then
θρ(z) is the unique support plane to Ω at ξρ(z), so θρ(z) lies in ∂Ω∗. So, θρ is a ρ∗-equivariant
homeomorphism from ∂Γ to ∂Ω∗ which suggest that θρ = ξρ∗ . If γ ∈ Γ has infinite order, then
θρ(γ

+) is the attracting n-plane of ρ(γ), so it is the attracting eigenline of ρ∗(γ). Therefore,
ξρ∗(γ

+) = θρ(γ
+) and since both θρ and ξρ∗ are continuous, we see that θρ = ξρ∗ . We will

later establish a generalization of this observation in the context of Anosov representations, see
Corollary 32.4.

19. Translation length, eigenvalues and singular values

If ρ : Γ → PGL(n + 1,R) is a Benoist representation dividing a domain Ω, we define the
translation length of an element ρ(γ) by

`ρ(γ) = inf
{
dHΩ (x, ρ(γ)(x)) | x ∈ Ω

}
.

Since Ω/ρ(Γ) is compact, the translation length is always achieved.
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Lemma 19.1. If ρ : Γ → PGL(n + 1,R) is a Benoist representation dividing a strictly convex
domain Ω and γ is an infinite order element of Γ, then

`ρ(γ) =
1

2
log

(
|λ1(ρ(γ))|
|λn+1(ρ(γ))|

)
and the translation distance is achieved exactly on the geodesic Aγ in Ω joining ξρ(γ

+) to ξρ(γ
−).

Proof. Notice that Aγ is preserved by ρ(γ), since ρ(γ) fixes its endpoints and all geodesics in

Ω are projective line segments. If p does not lie on Aγ , then pρ(γ)(p) ∪ ρ(γ)(p)ρ(γ)2(p) is not
a geodesic, since geodesics are projective line segments in a strictly convex domain. If q is the
midpoint of pρ(γ)(p), then

d(q, ρ(γ)(q)) < d(p, ρ(γ)(p)) = d(q, γ(p)) + d(γ(p), γ(q))

so translation distance is not minimized at p. Therefore, the translation distance is minimized
on Aγ . Since ρ(γ) acts as an isometry of Aγ the translation distance is constant on Aγ .

It only remains to compute the translation distance on Aγ . We may assume that ρ(γ) is in
Jordan canonical form, so Aγ joins [e1] = ξρ(γ

+) to [en+1] = ξρ(γ
−). We may conjugate so

that Aγ = {[t, 0, . . . , 0, 1 − t] | t ∈ (0, 1)} ⊂ Ω (since either {[t, 0, . . . , 0, 1 − t] | t ∈ (0, 1)} or
{[−t, 0, . . . , 0, 1− t] | t ∈ (0, 1)} is contained in Ω.) Notice that λ1(ρ(γ)) and λn+1(ρ(γ)) must
have the same sign, since otherwise ρ(γ) does not preserve Aγ ,

If x0 = [1
2 , 0, · · · , 0,

1
2 ], then

ρ(γ)(x0) =

[
1

2
λ1(ρ(γ)), 0, · · · , 0, 1

2
λn+1(ρ(γ))

]
=

[
λ1(ρ(γ))

λ1(ρ(γ)) + λn+1(ρ(γ))
, 0, · · · , 0, λn+1(ρ(γ))

λ1(ρ(γ)) + λn+1(ρ(γ))

]
so

dHΩ (x, ρ(γ)(x)) =
1

2
log
([

[en+1], x0, ρ(γ)(x0), [e1]
])

=
1

2
log

([
en+1,

(1

2
, 0, · · · , 1

2

)
,
( λ1(ρ(γ))

λ1(ρ(γ)) + λn+1(ρ(γ))
, 0, · · · , λn+1(ρ(γ))

λ1(ρ(γ)) + λn+1(ρ(γ))

)
, e1

])

=
1

2
log

 1√
2
·

√
2λ1(ρ(γ))

λ1(ρ(γ))+λn+1(ρ(γ))
√

2λn+1(ρ(γ))
λ1(ρ(γ))+λn+1(ρ(γ)) ·

1√
2


=

1

2
log

(
|λ1(ρ(γ))|
|λn+1(ρ(γ))|

)
�

Let ||γ|| denote the translation length of γ on the Cayley graph CΓ. (Recall that ||γ|| is
the minimal word length of an element conjugate to γ.) Then since the orbit map from CΓ to

Ω is a quasi-isometry, we immediately see that log
(
|λ1(ρ(γ))|
|λn+1(ρ(γ))|

)
grows linearly in ||γ||. Thus,

Benoist representations are well displacing, in the language of Delzant-Guichard-Labourie-
Mozes [87]).
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Corollary 19.2. If ρ : Γ→ PGL(n+ 1,R) is a Benoist representation, then there exists J and
B so that

J ||γ||+B ≥ log

(
|λ1(ρ(γ))|
|λn+1(ρ(γ))|

)
≥ 1

J
||γ|| −B

for all γ ∈ Γ.

Proof. The Milnor-Svarc Lemma implies that the orbit map τρ : Γ → Ω (which is given by
τρ(γ) = ρ(γ)(x0) for some fixed x0 ∈ Ω) is a (K,C)-quasi-isometry for some K and C.

Suppose that γ ∈ Γ. Then there exists α ∈ Γ so that d(γα, α) = ||γ||. Therefore,

K||γ||+ C ≥ d(τρ(γα), τρ(α)) = d(ρ(γ)(τρ(α)), τρ(α)) ≥ `ρ(γ)) =
1

2
log

(
|λ1(ρ(γ))|
|λn+1(ρ(γ))|

)
On the other hand, there exists β ∈ Γ and a point x on the axisAγ of γ so that d(τρ(β), y) ≤ C.

Since τρ is a (K,C)-quasi-isometry,

d(ρ(γ)(τρ(β)), τρ(β)) = d(τρ(γβ), τρ(β)) ≥ 1

K
||γ|| − C.

Applying the triangle inequality, we see that

1

2
log

(
|λ1(ρ(γ))|
|λn+1(ρ(γ))|

)
= `ρ(γ) = d(ρ(γ)(x)), x ≥ 1

K
||γ|| − 3C.

Therefore, the desired inequality holds with J = 2K and B = 6C. �

We would also like to show, in analogy with Lemma 11.2, that log
(
|σ1(ρ(γ))|
|σn+1(ρ(γ))|

)
grows linearly

in the word length of γ. In order to do so, we use the U property of hyperbolic groups.

Corollary 19.3. If ρ : Γ→ PGL(n+ 1,R) is a Benoist representation, then there exists L and
D so that

Ld(1, γ) ≥ log

(
σ1(ρ(γ))

σn+1(ρ(γ))

)
≥ 1

L
d(1, γ)−D

for all γ ∈ Γ.

Proof. Let S be the finite generating set for Γ, which we assume is symmetric, i.e. s ∈ S if and
only if s−1 ∈ S, which we have been using in the background. Let

M = max{log σ1(ρ(s)) | s ∈ S}.

Since Γ has the U property, see Proposition 8.4, there exists α, β ∈ Γ and K ≥ 0, so that if
γ ∈ Γ, then there exists η ∈ {1, α, β} such that d(1, γ) ≤ 3||γη||+K.

If γ ∈ Γ, then, since σ1(AB) ≤ σ1(A)σ1(B) and σn+1(A) = σ1(A−1)−1, we see that

log

(
σ1(ρ(γ))

σn+1(ρ(γ))

)
≤M2d(1, γ).

Now choose η ∈ {1, α, β} so that d(1, γ) ≤ 3||γη|| + K. If J and B are the constants from
Corollary 19.2,then

log

(
|λ1(ρ(γη))|
|λn+1(ρ(γη))|

)
≥ 1

J
||γη|| −B ≥ 1

3J
d(1, γ)− K

J
−B.
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But, since σ1(A) ≥ |λ1(A)|, σ1(AB) ≤ σ1(A)σ1(B) and σn+1(A) = σ1(A−1)−1,

log

(
σ1(ρ(γ))

σn+1(ρ(γ))

)
≥ 1

max{1, 2M2d(1, η)}
log

(
σ1(ρ(γη))

σn+1(ρ(γη))

)
≥ 1

max{1, 2M2d(1, η)}
log

(
|λ1(ρ(γη))|
|λn+1(ρ(γη))|

)
so, if we set G = max{d(1, α), d(1, β)}, we may combine the last two inequalities to see that

log

(
σ1(ρ(γ))

σn+1(ρ(γ))

)
≥ 1

2M2GJ
d(1, γ)− K

2JM2G
−B

so our result holds with L = M2JG and D = K
JM2G

+B.
�

A more honest way to prove Corollary 19.3 would be to first relate the singular values to
the translation length of the point. Once one has done this, Corollary 19.3 follows immediately
from the Milnor-Svarc Lemma. The key result here is due to Danciger, Guéritaud and Kassel:

Proposition 19.4. (Danciger-Guéritaud-Kassel [84, Proposition 10.1]) If Ω is a properly convex
domain and x0 ∈ Ω, then there exists κ > 0 so that if A ∈ Aut(Ω), then

log

(
σ1(A)

σn+1(A)

)
≥ 2d(x0, γ(x0))− κ.

Remarks: (1) The converses to Corollaries 19.2 and 19.3 fail, since if ρ is a Benoist represen-
tation and H ⊂ Γ is a quasiconvex subgroup, then the conclusions are satisfied by ρ|H , but ρ|H
is Benoist if and only if H has finite index in Γ. However, the converses hold if n ≥ 3 and we
assume that Γ is hyperbolic and has (virtual) cohomological dimension n, see Corollary 23.3.

(2) If Xn+1 = PGL(n+ 1,R)/PO(n+ 1) is the symmetric space associated to PGL(n+ 1,R),
then Corollary 19.3 implies that the orbit map τρ : Γ → Xn+1 is a quasi-isometric embedding
if ρ is a Benoist representation. One need only recall that if x0 = [PO(n+ 1)], then

d(x0, A(x0)) = ||(log σ1(A), . . . , log σn+1(A))||.
See Section 26 for a discussion of Xn+1 and a proof of the distance formula above.

(3) See Cooper-Long-Tillman [70, Section 2] for a more general treatment of projective isome-
tries of properly convex domains.

20. Benoist components

If Γ is a hyperbolic group, we consider the set

Ben(Γ, n) ⊂ Hom(Γ,PGL(n+ 1,R))

of Benoist representations of Γ into PGL(n+ 1,R).
Koszul used the technology of (G,X)-structures to show that Ben(Γ, n) is open. We will

later be able to give a simple proof that uses the stability of Anosov representations and a little
convex geometry, see Theorem 33.6.

Theorem 20.1. (Koszul [141]) If Γ is a hyperbolic group, then Ben(Γ, n) is an open subset of
Hom(Γ,PGL(n+ 1,R)).

Choi and Goldman [66] showed that Ben(Γ, 2) is closed, and Benoist [22] proved Ben(Γ, n) is
closed for all n.
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Theorem 20.2. (Choi-Goldman [66], Benoist [22]) If Γ is a hyperbolic group, then Ben(Γ, n)
is a closed subset of Hom(Γ,PGL(n+ 1,R)).

As a corollary of Theorems 20.1 and 20.2 we see that Ben(Γ, n) is a collection of components
of Hom(Γ,PGL(n+ 1,R)).

Corollary 20.3. If Γ is a hyperbolic group, then Ben(Γ, n) is a collection of components of
Hom(Γ,PGL(n+ 1,R)).

We will give a somewhat sketchy proof of the following weaker fact which gives some indication
why Corollary 20.3 is true. This is essentially the argument given by Choi and Goldman [66],
see also Marquis [158, Lemma 7.4].

Lemma 20.4. If {ρk : Γ → PGL(n + 1,R)} is a sequence in Ben(Γ, n) which converges to
ρ ∈ Hom(Γ, SL(n+ 1,R)) and ρ is strongly irreducible, then ρ ∈ Ben(Γ, n).

Proof. Let Ωk be the strictly convex domain divided by ρk(Γ). We may pass to a subsequence so
that {Ω̄k} converges to a closed subset K of RPn in the Hausdorff topology on the set of closed
subsets of RPn. (We say that {Ωk} converges to K in the Hausdorff topology if the Hausdorff
distance between Ωk and K converges to 0. One may easily check that the Hausdorff topology
is compact.) Notice that K must be convex, since any two points in K are approximated by
points in Ω̄k and hence by a projective line segment in Ω̄k.

If K is properly convex and has non-empty interior Ω, then ρ(Γ) ⊂ Aut(Ω). Corollary 6.2
implies that ρ is discrete and faithful. Since ρ(Γ) is discrete and faithful, the quotient M = Ω/Γ
is a manifold (or orbifold if Γ has torsion) homotopy equivalent to Mk = Ωk/ρk(Γ). Since Mn

is compact, it follows that M is compact. Since Γ is hyperbolic, Ω is strictly convex. Therefore,
we would see that ρ is a Benoist representation.

If K has empty interior, then since it is convex, it lies in a proper projective sub-plane.
Since ρ(Γ) preserves the proper subspace spanned by K, ρ is reducible, which contradicts our
assumptions.

Now suppose that K is not properly convex. The pre-image of each Ωk in Sn is a pair of
copies Ω±k of Ωk. Since each Ωk is properly convex, the closure of the two is separated by a
disjoint hyperplane Pk. We may pass to a subsequence of {Pk} which converges to a hyperplane
P separating Sn into two hemispheres H+ and H−. Then {Ω±k } converges to K±. where each
K± is a copy of K. If we label consistently throughout, K+ ⊂ H̄+ and K− ⊂ H̄−. Notice
that, by construction, K+ ∩ P is the set of points which are antipodal to points in K− ∩ P . If
K+ and K− are disjoint, we may find v ∈ Sn − (K+ ∪K−) ∩ P and a plane P̂ through v ∪−v
which is disjoint from K+ and K−, so K would be properly convex. Therefore, K+ ∩K− must
be non-empty.

Let pn : GL(n + 1,R) → PGL(n + 1,R) be the obvious projection map and let Θk be the
intersection of all index two subgroups of p−1

n (ρk(Γ))∩SL(n+1,R). Then Θk has finite index in
p−1
n (ρk(Γ)) and preserves Ω+

k and Ω−k . Therefore, the intersection Θ of all index two subgroups
of p−1

n (ρ(Γ)) preserves both K+ and K−, and hence preserves K+ ∩ K−. Therefore, Θ is
reducible, which contradicts the strong irreducibility of ρ.

�

Choi and Goldman complete the argument in dimension n = 2, by using special properties
of low-dimensional representations to show that any limit of Benoist representation is strongly
irreducible. This portion of the proof does not generalize, so we will not go into details here.
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Remarks: Koszul [141] and Benoist [22] further showed that if Γ does not contain an infinite
normal nilpotent sugbroup, then the space of representations of Γ which divide a properly
convex set is a collection of components of Hom(Γ,PGL(n+ 1,R)).

21. Projective bending

The most general known way of constructing deformations of Benoist representations is the
procedure known as projective bending. We begin with an algebraic description of projective
bending, our “proof” that the projective bending of a lattice in PSO(n, 1) remains a Benoist
representation will hopefully give some intuition for the geometry of this construction.

Suppose that ρ0 : Γ→ PSO(n, 1) is a discrete, faithful representation, so that Γ is torsion-free
and M = Hn/ρ(Γ) is a closed manifold which contains a separating, connected, totally geodesic
submanifold X. If we let M1 and M2 be the result of cutting the manifold M along X, then

Γ = π1(M) = π1(M1) ∗π1(X) π1(M2) = Γ1 ∗ΓX Γ2

and we may assume that

ρ0(ΓX) ⊂ PSO(n− 1, 1) ⊂ PSO(n, 1)

where PSO(n− 1, 1) is identified with a subgroup of PSO(n, 1) by identifying A with

[
1 ~0 T

~0 A

]
(i.e. by sticking A in the lower righthand corner). Notice that if Bt ∈ PSL(n + 1,R) is the
diagonal matrix with diagonal entries (ent, e−t, . . . , e−t), then each Bt centralizes PSO(n− 1, 1)
within PSO(n, 1). We then define, for all t ∈ R, the projective bending ρt : Γ→ PSL(n,R) of ρ0

along X, by letting ρt(γ1) = ρ0(γ1) for all γ1 ∈ Γ1 and letting ρt(γ2) = Bt ◦ ρ0(γ2) ◦B−t for all
γ2 ∈ Γ2. There is a similar construction, involving the associated HNN decomposition, when X
is a totally geodesic, connected non-separating codimension one submanifold of M . Corollary
20.3 implies that the result of projective bending is always a Benoist representation, but we
will later sketch a geometric proof.

The motivation for projective bending was provided by the bending construction in hyperbolic
geometry. We will describe the geometry of the hyperbolic construction first, since it is easier
to visualize and hopefully will provide some intuition for the projective setting. We will restrict
to the setting of surface groups (although the construction generalizes to higher dimensions).
Let S be a closed surface and let ρ : π1(S)→ PSL(2,R) be a Fuchsian representation. Suppose
that a simple closed curve C separates S into two components, S1 and S2, and consider the
associated group-theoretic decomposition

Γ = π1(S) = π1(S1) ∗π1(C) π1(S2) = Γ1 ∗ΓC Γ2.

Let β be a generator of ΓC . We may assume that

ρ(β) =

[
λ 0
0 λ−1

]
(where λ > 1). Notice that ρ(β) commutes with

Bθ =

[
eiθ 0
0 e−iθ

]
∈ PSL(2,C)

and define ρθ : Γ → PSL(2,C) by letting ρθ(γ1) = ρ(γ1) for all γ1 ∈ Γ1 and letting ρθ(γ2) =
Bθ ◦ ρ(γ2) ◦ B−θ for all γ2 ∈ Γ2. Theorem 11.4 implies that ρθ is convex cocompact for small
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values of θ, but it will not be convex cocompact for all θ. (One may see this by noticing that
ρπ(π1(S)) ⊂ PSL(2,R), but is clearly not Fuchsian.)

There are pretty pictures of the result of bending a Fuchsian representation available on the
web. See, for example, the bottom two pictures here:

https://gauss.math.yale.edu/~yhm3/research/limset/pictures.html

or here:
https://www.dumas.io/poster/

We now give a geometric description of bending in the hyperbolic setting. (Here I really need
a GIF of me waving my hands appropriately.) First notice that if Sρ = H2/ρ(Γ) and β∗ is the
geodesic representative of C on Sρ, then the pre-image of β∗ is an infinite collection of geodesics
(each of which is the axis of an element of ρ(α) where α is conjugate to β) which divides H2 into
infinite-sided polygons. Let C1 and C2 be components of the complement stabilized by ρ(Γ1)
and ρ(Γ2). We will describe a ρθ-equivariant map hθ : H2 → H3. Recall that H2 sits inside H3,
call this copy of H2 by the name P1. We first map C1 into P1 by the identity map. If C1 and
C2 intersect along the geodesic g, then let P2 be a totally geodesic copy of H2 which intersects
P1 along g and makes an angle θ with P1, and let hθ map C2 isometrically into P2. The rest
of the construction is forced by the fact that we require that hθ be ρθ-equivariant. Every time
we extend hθ over a new copy CN of C1 or C2, we assume that hθ has already been defined
on an adjacent copy CA of C2 or C1 which lies in a hyperbolic plane PA. One then finds a
hyperbolic plane PN meeting PA along the geodesic hθ(CA ∩ CN ) at an angle θ. We then map
CN isometrically into PN . Continuing this process indefinitely produces hθ. Notice that since
we have taken care to alway bend in the same direction, that hθ(H2) bounds a convex region
in H3, if hθ is an embedding.

Let L be the minimum distance between two copies of the pre-image of β∗. One may use
hyperbolic geometry to show that there exists θL so that any piecewise geodesic in H3 so that
each segment has length at least L and two adjacent segments make an angle at most θ, then the
piecewise geodesic is a quasi-isometric embedding. It then immediately follows that if |θ| < θL,
then hθ is a quasi-isometric embedding, so ρθ is convex cocompact. (With a little more work
one can show that hθ is an embedding).

Armed with this intuition, we attempt to sketch a proof of the fact that the result of pro-
jective bending is always a Benoist representation. Our sketch should probably be viewed as
an invitation to work out the proof for yourself and draw the pictures necessary to convince
yourself.

Proposition 21.1. If ρt : Γ → PSL(n + 1,R) is obtained as a result of projective bending
of a discrete, faithful, cocompact representation ρ0 : Γ → PSO(n, 1), then ρt is a Benoist
representation.

We loosely follow the treatment in Goldman [104]. Goldman works in the case n = 2 and I
encourage you to focus on this case first as well. (Our discussion will be somewhat awkward
since we have not developed the natural language of developing maps.) We regard Hn as the
unit disk Dn in an affine chart. Then, if π : Hn →M is the covering map, π−1(X) is a discrete
collection of totally geodesic hyperplanes in Hn, which appear in our model as a collection of
disks in projective hyperplanes which accumulate only at ∂Hn. Each component of Hn−π−1(X)
is (the interior of) a component of either π−1(M1) or π−1(M2), each component has infinitely

https://gauss.math.yale.edu/~yhm3/research/limset/pictures.html
https://www.dumas.io/poster/
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many boundary components, each of which is a component of π−1(X), and no two components
of π−1(Mi) intersect along a component of π−1(X).

We now describe the domain Ωt so that ρt(Γ) divides Ωt. Let C1 and C2 be the components
of π−1(M1) and π−1(M2) which intersect along the component P0 of π−1(X) stabilized by
ΓX . Notice that Bt(C2) is entirely contained in the crescent R0 = Bt(R0) bounded by the
tangent planes to Dn at ∂P0 which contains Dn. If we work in the traditional affine chart
A = {~x | xn+1} = 1, then P0 is the unit disk in the x2-x3 · · ·xn−1-xn-plane and the crescent

R0 = {(x1, x2, . . . , xn) | (0, x2, . . . , xn) ∈ P0}.
It follows that C1 ∪ Bt(C2) is properly convex since C1 and Bt(C2) are convex and any line
segment joining a point in C1 to a point in Bt(C2) must pass through P0. Moreover, C1 is
preserved by Γ1 and C2 is preserved by BtΓ2B−t.Pictures would

help a lot here The rest of the construction is determined equivariantly. We must show that the procedure
generates a properly convex domain tesselated by copies of C1 and C2. Each component P of
∂C2 has the form γ2(P0) for some γ2 ∈ Γ. The equivariance of our construction forces us to
attach Btγ2B

−1
t (C1) to C1 ∪ Bt(C2) along Bt(γ2(P0)). Notice that Btγ2B

−1
t (C1) is contained

in the crescent RtP spanned by the tangent lines to Bt(D
n) at Bt(∂P ) since C1 ⊂ R0

P and

Btγ2B
−1
t (R0

P ) = RtP . Let

X1 = C1 ∪Bt(C2)
⋃

γ2∈Γ2

Btγ2B
−1
t (C1)

be the result of attaching copies of C1 along all components of Bt(∂C2). Notice that if
P = γ2(P0) is a component of ∂C2, then Bt(γ2(C1)) is a properly convex subset of RtP , X1

is contained in RTP and P separates Btγ2B
−1
t (C2) from the remainder of X1. Therefore, any

line segment joining a point in Btγ2B
−1
t (C2) to a point in the remainder of X1 must pass

through P . So, the line segment joining any two points in X1 may be divided up into segments
joining copies of P which lie on the boundary of some translate of C1 and C2, and hence lies in
X1. So, X1 is convex. Notice that if QPt denote the portion of RtP which lies on the same side of

P as Bt(C2), then QPt ⊂ R0. Moreover, if we choose some γ̂2 ∈ Γ2 − {id} and let P̂2 = γ̂2(P0),
then X1 −C1 is contained in the portion of Rt

P̂2
which lies on the same side of P0 as C2, which

is bounded. Therefore, X1 is a bounded subset of A and hence properly convex.
Similarly, each component P of ∂C1 has the form γ1(P0) for some γ1 ∈ Γ. The equivariance

of our construction forces us to attach γ1(Bt(C1)) to C1 ∪ Bt(C2) along γ1(P0). Notice that
each γ1(Bt(C1)) is contained in the crescent RtP = R0

P spanned by the tangent lines to Dn at
∂P . Let

X2 = C1 ∪Bt(C2)
⋃

γ2∈Γ2

Btγ2B
−1
t (C1))

⋃
γ1∈Γ1

γ1(Bt(C1))

be the result of attaching copies of C2 along all components of ∂C1. We check, just as before,
that X2 is convex and if we choose γ̂1 ∈ Γ1−{id} and let P̂1 = γ̂1(P0), then X2 is contained in
Rt
P̂1
∩Rt

P̂2
, which is a bounded subset of A. Therefore X2 is properly convex.

Notice that Ωt is constructed by successively adding translates of C1 and C2. Each time
we attach a new copy of Ci along α(P0), for some α ∈ ρt(Γ), then there is a crescent Rtα(P0),

bounded by tangent planes to α(∂Ω) passing through α(∂P0), which contains the previous
copies of C1 and C2 and is separated in Rtα(P0) from the previous copies by α(P0). Therefore,



ANOSOV REPRESENTATIONS 75

the domain remains convex after adding the new copy of Ci. One also checks, via the nesting
of the crescents, that Ωt is contained in Rt

P̂1
∪ Rt

P̂2
, which is a bounded subset of A. Thus, Ωt

is properly convex. Since Ωt is divided by the hyperbolic group ρt(Γ) it is strictly convex, so ρt
is a Benoist representation.

Remarks: (1) Johnson and Millson [124] introduced projective bending, which generalizes the
bending construction of Thurston [202] in the hyperbolic setting (see also Apanasov [9] and
Kouroniotis [142]). Goldman [104], in dimension n = 2, and Benoist [22] were the first to notice
that projective bending always produces Benoist representations.

(2) Goldman used a more general version of Proposition 21.1, when n = 2, in his construction
of a parametrization of the space of Benoist representations of π1(S) into PSL(3,R). This space
is homeomorphic to R16g−16 and his coordinates are natural generalizations of the Fenchel-
Nielsen coordinates. In this setting, Goldman refers to projective bending as bulging. Kapovich
[129] and Marquis [157] produced much more general versions which work in all dimensions.

(3) Johnson and Millson [124] used projective bending to show that if Γ is a cocompact lattice
in PSO(n, 1), then Hom(Γ,PSL(n+ 1,R) can have singularites at the identity when n ≥ 3. The
singularities they discover arise when H3/Γ contains intersecting totally geodesic codimension
one submanifolds.

(4) One may use a similar construction to define the twist flow on Teichmüller space. Suppose
that C is a separating curve on a closed surface S determining the decomposition π1(S) =

Γ1 ∗ΓC Γ2 and that β generates ΓC . If ρ ∈ T (S), we may assume that ρ(β) =

[
λρ 0
0 λρ

]
where

λρ > 1. We then define the time t twist of ρ about C as ρt where ρt|C1 = ρ and ρt = BtρB−t
where

Bt =

[
e

t
log λρ 0

0 e
−t

log λρ

]
.

22. The Hilbert geodesic flow

We recall, from section 14, that the Hilbert metric on a properly convex domain is induced
by a Finsler norm FHΩ . If ~v ∈ TxΩ. let p+ = p+(x, ,~v) and p− = p−(x,~v) are the endpoints of
the line segment {x+ t~v | t ∈ R} ∩ Ω̄, oriented so that ~v points toward p+. Then

FHΩ (x,~v) =
|~v|
2

(
1

|x− p−|
+

1

|x− p+|

)
If Ω is strictly convex, then ∂Ω is C1, so FHΩ is also C1.

We can then consider the unit tangent bundle T 1Ω associated to the Hilbert metric on Ω
and define a geodesic flow {φt}t∈R on T 1Ω. Explicitly, if cx,~v : R → Ω is a unit speed geodesic
so that cx,~v(0) = x and c′x,~v(0) = ~v, then

φt(x,~v) = (cx,~v(t), c
′
x,~v(t)).

Following Benoist [20, Sec. 3.2.2], one may calculate that

φt(x,~v) =

x+

(
et/2 − 1

σ+(x,~v)et/2 + σ−(x,~v)

)
~v,

 et/2(
σ+(x,~v)et/2 + σ−(x,~v)

)2

~v

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where
~v = σ+(x,~v)

(
p+(x,~v)− x

)
= σ−(x,~v)

(
x− p−(x,~v)

)
.

In fact, if you would like a more complete and better written account of the Hilbert geodesic
flow, I recommend you put down these lecture notes and read Benoist’s beautiful paper [20].

We will assume for the remainder of the section that Ω is strictly convex and ∂Ω is C1. We
define the stable leaf through (x,~v) by

Fs(x,~v) =
{

(y, ~w) ∈ T 1Ω | p+(y, ~w) = p+(x,~v) and ←→xy ∩
←−−−−−−−−−−→
p−(x,~v)p−(y, ~w) ⊂ Tp+(x,~v)Ω

}
∪{(x,~v)}.

The key observation is then:

Lemma 22.1. (Benoist [20, Lemma 3.4]) If Ω is strictly convex and ∂Ω is C1, then

Fs(x,~v) = {(y, ~w) ∈ T 1Ω | lim
t→∞

dHΩ (π(φt(y, ~w), π(φt(x,~v)) = 0}

where π : T 1Ω→ Ω is the projection onto the first factor.

Proof. We first notice that limt→∞ π(φt(x,~v)) = p+(x,~v) and limt→∞ π(φt(y, ~w)) = p+(y, ~w),
so if p+(y, ~w) 6= p+(x,~v), then limt→∞ d

H
Ω (π(φt(y, ~w), π(φt(x,~v)) =∞.

If p+(y, ~w) = p+(x,~v), then let q = ←→xy ∩
←−−−−−−−−−−→
p−(x,~v)p−(y, ~w). Notice that q exists, since

both ←→xy and
←−−−−−−−−−−→
p−(x,~v)p−(y, ~w) lie in the projective plane spanned by x, y and p+(x,~v). Let

xt = π(φt(x,~v)) and yt = π(φt(y, ~w)) Then, since

[p−(x,~v), x, xt, p
+(x,~v)] = [p−(y,~v), y, yt, p

+(x,~v)] = e2t,

we see, by considering 4 lines through q as in the figure, that

yt =←→qxt ∩
←−−−−→
yp+(x,~v).

(See Figure ??.) Suppose that
wtzt =←→xtyt ∩ Ω̄

and assume that the points occur in the order wt, xt, yt, zt.
Our result is then equivalent to the claim that

lim
t→∞

dHΩ (π(φt(y, ~w), π(φt(x,~v)) = 0 if and only if ifq ∈ Tp+(x,v)∂Ω.

We first check that if q does not lie in Tp+(x,v)∂Ω, then

lim
t→∞

|wt − yt|
|wt − xt|

> 1,

which implies that [wt, xt, yt, zt] does not converge to 1, so dHΩ (π(φt(y, ~w), π(φt(x,~v)) does not
converge to 0 as t → ∞ (and in fact is bounded below as t → ∞.) We normalize so that in

our affine chart p+(x,~v) = ~0, x = (1, 0, . . . , 0) and y lies in the x1-x2 plane, so we may assume
that n = 2. We may also assume that Tp+(x,~v)∂Ω is the x1-axis. Let θ be the angle between the

line joining p+(x, v) to q and the line Tp+(x,~v)∂Ω and let η be the angle between p+(x,~v)x and

p+(x,~v)y. (See Figure 22.) We will assume that q and y lie on the same side of the x2-axis. If
δ + t = |xt − p+(x,~v)| and θt is the angle between ←→xtq and Tp+(x,v)∂Ω,

|wt − xt| ∼
δt

sin θt
and |xt − yt| = δt

sin η

cos(θt + η)
,
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Figure 1.

so, since limt→∞ θt = θ and limt→∞ δt,

lim
t→∞

|wt − xt|
|wt − yt|

= 1 +
sin η sin θ

cos(θ + η)
> 1.

On the other hand, if q ∈ Tp+(x,v)∂Ω, we may similarly check that limt→∞ d
H
Ω (π(φt(y, ~w), π(φt(x,~v)) = 0,

which completes the proof. �

We call Fs(x,~v) the stable leaf, since it is easy to check that the collection of stable leaves
gives a foliation of T 1Ω by leaves of dimension n− 1 which is invariant under the geodesic flow,
called the stable foliation.

Consider the involution ι : T 1Ω → T 1Ω given by ι(x, v) = (x,−v). Then ι ◦ φt = φ−t ◦ ι
for all t. We may then define the unstable leaf Fu(x,~v) through (x,~v) by setting Fu(x,~v) =
ι(Fsι(x,~v)). Then, by definition and Lemma 22.1, we see that (y, ~w) ∈ Fu(x,~v) if and only if

limt→−∞ d
H
Ω (π(φt(y, ~w), π(φt(x,~v)) = 0.

If Γ is torsion-free and ρ : Γ → PGL(n+ 1,R) is a Benoist representation dividing a strictly

convex domain Ω, then the geodesic flow on Ω descends to the geodesic flow {φ̂t} on T 1Mρ

where Mρ = Ω/ρ(Γ). Let π̂ : T 1Mρ → Mρ be the obvious projection map. The stable and

unstable foliations descend to foliations F̂s and F̂s of T 1(Mρ), so that x and y lie in the same

leaf of F̂s if and only if limt→∞ d(π̂(φ̂t(x)), π̂(φ̂(y))) = 0 and x and y lie in the same leaf of F̂u if
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Figure 2.

and only if limt→−∞ d(π̂(φ̂t(x)), π̂(φ̂t(y))) = 0. Moreover, these foliations determine a splitting

T (T 1Mρ) = Esρ ⊕ Fρ ⊕ Euρ

where Esρ|z is the tangent plane to the leaf of F̂s containing z, Fρ|z is the tangent line to the

flow line through z, and Esρ|z is the tangent plane to the leaf of F̂s containing z. This splitting
lifts to a splitting

T (T 1Ω) = Ẽsρ ⊕ F̃ρ ⊕ Ẽuρ .
We say that a flow {φt} on a closed manifold N is Anosov if there exists a flow-invariant

splitting

TN = E+ ⊕ F ⊕ E−

such that F is tangent to the flow line at each point and there exists constants C and a so that
if v+ ∈ E+ or v− ∈ E− and t > 0, then

||Dφ−t(v+)|| ≤ Ce−at and ||Dφt(v−)|| ≤ Ce−at.

(Notice that if a flow is Anosov with respect to one continuous family of norms on TN , then it
is Anosov with respect to any other, since N is compact.)

We place an equivariant continuous Finsler metric on T 1Ω. If w ∈ T(x,~v)Ω, we decompose

w = wu + wf + ws where wu ∈ Ẽuρ , wf ∈ F̃ρ, and wu ∈ Ẽsρ
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and let

||w|| =
(
||Dπ(ws)||2 + ||Dπ(wf )||2 + ||Dπ(wu)||2

) 1
2
.

(Notice that this norm is ρ(Γ)-equivariant by construction.)
We now check that if us ∈ Esρ, then limt→−∞ ||Dφt(us)|| = 0. (The moral of the story is

that the map φt takes the horoball π(Fs(x,~v)) to the horoball π(Fs(φt(x,~v))) and contracts

uniformly.) Let us = (x, ~u). We first normalize so that in our affine chart p+(x,~v) = ~0,
x = (1, 0, . . . , 0), p−(x,~v) = (2, 0, . . . , 0), and Tp+(x,~v)∂Ω and Tp−(x,~v)∂Ω are both parallel to the
x2-x3 · · · -xn plane, ~u also lies in the x2-x3 · · · -xn plane, and we may normalize so that ~u = ce2

for some c 6= 0. One may then calculate that Dφt(u
s) = |xt|us where π(φt(x,~v)) = xt and so

||Dφt(us)|| = FHΩ (xt, |xt|~u) =
c|xt|

2

(
1

|xt − wt|
+

1

|xt − zt|

)
where wtzt is the intersection of the line through xt in the direction ~u = ce2 with Ω̄. One then
easily checks that limt→−∞ ||Dφt(us)|| = 0. (See Benoist [20, Section 3.2.6] or Crampon [75,
Corollary 4.5] for details.) Similarly, if wu ∈ Euρ , then limt→∞ ||Dφt(wu)|| = 0.

Since T 1Mρ is closed, there exists t0 > 0 such that for all z ∈ T 1Mρ, there exists tz ∈ [0, t0]
such that if vu ∈ Euρ , then ||Dφt(vu)|| ≤ 1

2 ||v
u|| and if vs ∈ Esρ, then ||Dφt(vs)|| ≤ 1

2 ||v
s||.

Therefore, we may choose a = log 2
t0

and C = sup{ ||Dφt(v)||
||v|| | v ∈ T (T 1Mρ), |t| ≤ t0, ||v|| 6= 0}

and check that the splitting T (T 1Mρ) = Esρ ⊕ F ⊕Euρ is an Anosov splitting with constants C
and a.

Theorem 22.2. (Benoist [20]) If Γ is torsion-free and ρ : Γ → PL(n + 1,R) is a Benoist
representation, then its geodesic flow is Anosov.

This generalizes the classical fact that the geodesic flow of a closed hyperbolic manifold is
Anosov.

Another natural part of the picture here, which we will not elaborate on, is the Busemann
function of Ω (see Crampon [75, Section 4.1]). Suppose that Ω is strictly convex and ∂Ω is C1.
If z ∈ ∂Ω and x, y ∈ Ω, let w = −→xy ∩ ∂Ω and q be the point of intersection of Tw∂Ω and Tz∂Ω.
Then Bz(x, y) is the (signed) distance between y and r = −→yz ∩−→qx where the sign is positive if y
lies between r and z and negative otherwise. If (x, v) ∈ T 1(Ω), then we define the generalized
horoball

H(x,~v) = {y ∈ Ω | Bp+(x,~v)(x, y) = 0}
and notice that

Fu(x,~v) = {(y, ~w) | y ∈ H(x,~v) and p+(x,~v) = p+(y, ~w)}
and

Fs(x,~v) = {(y, ~w) | y ∈ H(x,−~v) and p−(x,~v) = p−(y, ~w)}.
Moreover, one may check that

Bz(x, y) = lim
zn→z

d(x, zn)− d(y, zn)

where {zn} is any sequence in Ω converging to z.

Remark: Benoist [20] further proves that if Γ divides a properly convex domain Ω, then Ω is
strictly convex if and only if the geodesic flow on Ω/Γ is Anosov.
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23. Further topics: Convex projective manifolds

I went walking in the wasted city
Started thinking about entropy
Smelled the wind from the ruined river
Went home to watch TV
—————Warren Zevon [228]

The geodesic flow and entropy. Benoist [20] further proves that if Ω is strictly convex and
divisible, then ∂Ω is C1+α for some α > 0. Recall that a function f : U → R is C1+α on an
open subset U of Rd if it is C1 and there exists C > 0 so that

|f(y)− f(x)−Dfx(y − x)| ≤ C|x− y|1+α

for all x, y ∈ U . We say that ∂Ω is C1+α if it is locally the graph of a C1+α function. It follows
that if ρ is a Benoist representation, then the geodesic flow on T 1Mρ is C1+α for some α > 0.

Since {(γ+, γ−) |γ ∈ Γ infinite order} is dense in ∂Γ × ∂Γ whenever Γ is a hyperbolic
group (see Benakli-Kapovich [126]), {(ξρ(γ+), ξρ(γ

−))} is dense in ∂Ω × ∂Ω if ρ is a Benoist
representation dividing Ω. It follows that closed geodesics are dense in T 1Mρ. Anosov [8]
showed, as a consequence of the Anosov Closing Lemma, that an Anosov flow is topologically
transitive if periodic orbits are dense. Recall that a flow is topologically transitive, if U and V
are two open subsets of T 1Ω, then φt(U)∩V is non-empty for some t. Benoist [20] further shows
that the geodesic flow is topologically mixing, i.e. if U and V are open subsets of T 1Mρ, then
there exists T so that if t ≥ T , then φt(U) ∩ V is non-empty. (Benoist uses his classification of
the Zariski closures of Benoist representations and the main result of Benoist [17] to show that
the subgroup of R>0 generated by lengths of closed geodesics is dense. The fact that T 1Mρ

is topologically mixing then follows from standard results, see for example Hasselblatt-Katok
[112, Exercise 18.3.4].)

Once we know that the geodesic flow is C1+α and topologically transitive, we may start
applying the powerful methods of the Thermodynamic formalism. In particular, one may define
the topological entropy of a Benoist representation to be the exponential growth rate of the
number of closed orbits of the geodesic flow on T 1Mρ with period at most T , i.e.

h(ρ) = lim
T→∞

log #{[γ] ∈ [Γ] |`ρ(γ) ≤ T}
T

where [Γ] is the collection of conjugacy classes of elements of Γ. Moreover, Benoist [20] shows
that

lim
T→∞

h(ρ)T (#{[γ] ∈ [Γ] |`ρ(γ) ≤ T})
eh(ρ)T

= 1.

(See Sambarino [185, 186] for generalizations of Benoist’s result.)
Crampon [74] proved the following remarkable rigidity result.

Theorem 23.1. (Crampon [74]) If ρ : Γ→ PGL(n+ 1,R) is a Benoist representation, then

h(ρ) ≤ n− 1

with equality if and only if ρ(Γ) is conjugate into PO(n, 1).
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Crampon [74] also proves that h(ρ) is the exponential growth rate of the volume of balls of
radius T on the universal cover of Mρ, so the same result holds for volume growth entropy.
Potrie and Sambarino [179] give a very different proof of Theorem 23.1.

Crampon [75] notes that entropy varies continuously on Ben(Γ, n). Pollicott and Sharp
[177] show that entropy varies analytically on Ben(Γ, 2). Bridgeman, Canary, Labourie and
Sambarino [45] show that entropy varies analytically over the smooth points of Ben(Γ, n) for all
n. (The key new tool here is a proof that the limit map varies analytically over smooth points
of Ben(Γ, n).) If n = 2, Nie [170] and Zhang [230] show that the entropy achieves every value
between 0 and 1 on Ben(Γ, 2).

Kim [139] and Cooper-Delp [68] showed that if ρ, σ ∈ Ben(Γ, n), then ρ is conjugate to either
σ or σ∗ if and only if `σ(γ) = `ρ(γ) for all γ ∈ Γ. Bridgeman, Canary, Labourie and Sambarino
[45] show that ρ is conjugate to σ if and only if |λ1(σ(γ))| = |λ1(ρ(γ))| for all γ ∈ Γ. Bridgeman,
Canary and Labourie [47] show that if n = 2 and Γ is a closed surface group of genus at least
3, then it suffices to consider elements representing simple closed curves in both of the previous
results. We will discuss rigidity properties of Benoist and Anosov representations more fully in
Section 47.

A characterization of Benoist representations. Canary and Tsouvalas [60] give a charac-
terization of Benoist representations when n ≥ 3. Recall that Γ has cohomological dimension
m, if m is the minimal dimension so that if R is any ZΓ-module, then Hr(Γ, R) = 0 if r > m.
For example, if X is a closed n-manifold with contractible universal cover, then π1(M) has
cohomological dimension n.

Theorem 23.2. (Canary-Tsouvalas [60]) Suppose that n ≥ 3, Γ is a torsion-free hyperbolic
group of cohomological dimension n, and ρ : Γ → PSL(n + 1,R) is a representation. If there
exists a continuous, non-constant ρ-equivariant map ξ : ∂Γ → RPn, then ρ is a Benoist repre-
sentation.

The direct product of a Fuchsian representation into SL(2,R) and a trivial one-dimensional
representation, provides a counterexample to this characterization when n = 2.

We may combine Theorem 23.2 with Theorems 35.1 and 36.1 to obtain the following partial
converses to Corollaries 19.2 and 19.3.

Corollary 23.3. Suppose that Γ is a torsion-free hyperbolic group of cohomological dimension
n and ρ : Γ→ SL(n+ 1,R) is a representation. If either

(1) There exists J and B so that

J ||γ||+B ≥ log

(
|λ1(ρ(γ))|
|λn+1(ρ(γ))|

)
≥ 1

J
||γ|| −B

for all γ ∈ Γ, or
(2) There exists L and D so that

Ld(1, γ) ≥ log

(
σ1(ρ(γ))

σn+1(ρ(γ))

)
≥ 1

L
d(1, γ)−D

for all γ ∈ Γ,

then ρ is a Benoist representation.
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Dynamics on Benoist components. Fricke’s Theorem generalizes to the setting of Benoist
components.

Theorem 23.4. If Ben(Γ, n) is non-empty, then Out(Γ) acts properly discontinuously on
Ben(Γ, n)/PGL(n+ 1,R).

Theorem 23.4 is a special case of a result of Guichard and Wienhard [109, Theorem 5.4]
(see also [55, Theorem 6.2]) concerning actions of outer automorphism groups on deformation
spaces of Anosov representations. We will discuss Guichard and Wienhard’s result more fully
in Section 5, see Theorem 28.3.

If n ≥ 3, then Out(Γ) will be finite, so this result is only relevant when n = 2, where it was
first proved by Goldman [104], see also Labourie [145, Theorem 1.0.2].

Finite volume strictly convex projective manifolds. Cooper-Long -Tillmann [70] made
an extensive study of finite volume convex projective manifolds. In particular, they extend
Benoist’s characterization of strictly convex closed projective manifolds, see Theorem 16.1, to
this setting.

Theorem 23.5. (Cooper-Long-Tillmann [70, Theorem 0.15]) Suppose that Ω ⊂ RPn is prop-
erly convex, Γ ⊂ Aut(Γ) is discrete and torsion-free, and N = Ω/Γ has finite volume and is
homeomorphic to the interior of a compact manifold M Then the following are equivalent:

(1) Ω is strictly convex.
(2) ∂Ω is C1

(3) Γ is hyperbolic relative to the subgroups associated to boundary components of M .

Among the structural tools they develop in this setting are an analogue of the Margulis
Lemma ([70, Theorem 0.1], see also Crampon-Marquis [76]), a thick-thin decomposition ([70,
Theorem 0.2]), see Choi [65] for the surface case) and a proof that cusps of finite volume strictly
convex manifolds are projectively equivalent to cusps of finite volume hyperbolic manifolds ([70,
Theorem 0.5]). In a sequel paper [71], they prove an analogue of Koszul’s open-ness theorem
for strictly convex projective manifolds of finite volume. Marquis [155, 156] had earlier studied
deformation spaces of finite area properly convex surfaces.

Barthelmé, Marquis and Zimmer proved a generalization of Crampon’s rigidity theorem
for finite volume properly convex projective manifolds. We recall that the volume growth
entropy of a properly convex manifold N = Ω/Γ is given by

hvol(N) = lim
T→∞

log
(
vol(B(x0, T ))

)
T

where vol(B(x0, T )) is the (Hilbert) volume of the (metric) ball of radius T about a fixed point
x0 ∈ Ω.

Theorem 23.6. (Barthelmé-Marquis-Zimmer [13]) Suppose that Ω ⊂ RPn is properly convex,
Γ ⊂ Aut(Γ) is discrete and torsion-free, and N = Ω/Γ has finite volume. Then

hvol(N) ≤ n− 1

with equality if and only if Γ is conjugate into O0(n, 1).



ANOSOV REPRESENTATIONS 83

Manning [151] showed that ifN is a compact Riemannian manifold with non-positive sectional
curvature, then the topological entropy of its geodesic flow and its volume growth entropy
coincide. Crampon [74] established the same result in the setting of closed strictly convex
projective manifolds and Crampon-Marquis [78] extended it to the setting of finitely volume
strictly convex projective manifolds. It is unknown whether it extends to finite volume properly
convex projective manifolds.

Adeboye, Bray and Constantine [4, 43] have also studied the relationship between volume
and entropy for finite volume striclty convex projective manifolds.

Closed properly convex projective manifolds. Benoist actually develops much of his the-
ory in the setting of discrete cocompact actions of groups of projective automorphisms of a
properly convex domain Ω. A key role in this enlarged theory are properly embedded trian-
gles, i.e. Euclidean triangles whose edges are in ∂Ω and whose interior lies in Ω. In dimension
3, Benoist [23] showed that the JSJ decomposition of a properly convex projective manifold is
realized by a disjoint collection of properly embedded triangles. Benoist also exhibited examples
but it is a subject of current interest to ascertain which irreducible closed 3-manifolds admit
properly convex projective structures, see, for example, Ballas-Danciger-Lee [10]. Bobb [30]
and Islam-Zimmer [120, 121] have successfully generalized portions of Benoist’s 3-dimensional
results to higher dimensions. Bray [41, 42] has studied dynamics on closed properly convex pro-
jective 3-manifolds, proving that their geodesic flows are topologically mixing and are ergodic
with respect to their Bowen-Margulis measures.
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Part 5. Anosov representations: Basic properties

You can have your buildings and your heavy ‘rithmetic
I don’t need no crowded streets or city slicker tricks
I just need to be someplace where I can move around
Look down at my toes and I can still see the ground
————Rick Hirsch [214]

In this chapter we develop the basic theory of Anosov representations into SL(d,R), which
we will view as a common generalization of convex cocompact representations into rank one
Lie groups and Benoist representations. Anosov representations are discrete, faithful represen-
tations and their orbit maps into the associated symmetric spaces

Xd = SL(d,R)/SO(d)

are quasi-isometric embeddings. Moreover, they are stable in the sense that any small deforma-
tion of an Anosov representation remains an Anosov representation. They arose in Labourie’s
study [143] of Hitchin representations, but are now an organizing principle for the field of Higher
Teichmüller theory.

Anosov representations have many flavors. Let 1 ≤ k ≤ d
2 be an integer. One simple

definition, which follows work of Kapovich-Leeb-Porti [133] and Bochi-Potrie-Sambarino [32] is
that ρ : Γ→ SL(d,R) is Pk-Anosov if there exists K and C so that if γ ∈ Γ, then

Kd(1, γ) ≥ log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ 1

K
d(1, γ)− C.

This definition immediately implies that ρ is discrete and faithful, and its associated orbit map
is a quasi-isometric embedding. Moreover, one can show that it implies that Γ is a hyperbolic
group. However, in our discussion we will begin with Labourie’s dynamical definition which
allows us more quickly to establish stability. Notice that ρ is Pk-Anosov if and only if the k-fold
exterior product Λkρ : Γ → SL(ΛkRd) is P1-Anosov, so the P1-Anosov representations are
the most general class of Anosov representations. More generally, associated to any parabolic
subgroup P of a semi-simple Lie group G, there is a notion of a P -Anosov representation
ρ : Γ → G and there is an irreducible representation τ : G → SL(d,R) (for some d) so that
ρ : Γ→ G is P -Anosov if and only if τ ◦ ρ is P1-Anosov.

One might naturally ask why one doesn’t simply generalize one of the definitions of a convex
cococompact representation in rank one Lie groups into the higher rank setting. Notice that
quasi-isometric embedding into non-positively curved spaces are not stable, e.g. a line in the
plane is a limit of circles of larger and larger radius. More convincingly, Guichard [107, Appendix
A] exhibits a representation of a free group F2 of rank two into SL(4,R) whose orbit map is a
quasi-isometric embedding, but is approximated by representations which aren’t even discrete.
(We will discuss a variation of Guichard’s example at the end of Section 27.) So, the class
of representations of a hyperbolic group into SL(d,R) whose orbit maps are quasi-isometric
embeddings is not stable.

One might instead consider faithful representations whose images act properly discontinu-
ously and cocompactly on convex subsets of Xd. However, Kleiner-Leeb [140] and Quint [181]
show that any Zariski dense subgroup of SL(d,R) which acts properly discontinuously and co-
compactly on a convex subset of Xd is a lattice, so there will not be many examples. For
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example, no Benoist representation, which does not have image conjugate into PO(d − 1, 1),
acts properly discontinuously and cocompactly on a convex subset of Xd. Moreover, any
Benoist representation with image in PO(d − 1, 1) does act properly discontinuously and co-
compactly on a convex subset of Xd (which is the totally geodesic copy of Hd−1 in Xd given by
SO(d − 1, 1)/(SO(d) ∩ SO(d − 1, 1))), so the phenomenon of projective bending demonstrates
that this notion of convex cocompactness would also fail to be stable. In Chapter 7, we will
discuss a notion of convex cocompactness for actions on projective spaces and its relationship
with Anosov representations.

24. Geodesic flows and flat bundles

We have already studied the geodesic flow on T 1Hn, since we may regard Hn as a divisible
strictly convex domain in RPn with its associated Hilbert metric. In particular, the geodesic
flow on T 1Hn is Anosov and the (quotient) geodesic flow on the unit tangent bundle of any
closed hyperbolic manifold is Anosov and topologically transitive.

We may identify T 1Hn with (∂Hn × ∂Hn − ∆) × R where ∆ = {(z, z) | z ∈ ∂Hn} is the
diagonal in Hn×Hn. First notice that a point (x,~v) ∈ T 1Hn determines a point on an oriented
geodesic, by considering the oriented geodesic through x in the direction ~v. The space of
oriented geodesics is identified with ∂Hn × ∂Hn −∆ by identifying a geodesic with its forward
and backward endpoints. We then identify each oriented geodesic with R by an orientation-
preserving isometry which takes 0 to the point on the geodesic closest to ~0 (in the ball model).
The resulting parametrization is known as the Hopf parametrization. Notice that in these
coordinates the geodesic flow has the simple form

φt(x, y, s) = (x, y, s+ t)

for all t. We will choose the convention that x is the forward endpoint and that y is the backward
endpoint. Notice that if M = Hn/Γ is a closed hyperbolic n-manifold, Γ acts on T 1Hn and
T 1M = T 1Hn/Γ.

If M is a closed negatively curved manifold with universal cover M̃ , then M̃ is Gromov

hyperbolic and one obtains a Hopf parameterization T 1M̃ as (∂M̃ × ∂M̃ −∆)×R. Anosov [8]
showed that the geodesic flow on T 1M is topologically transitive and Anosov.

If Γ is a torsion-free convex cocompact subgroup of PO(n, 1) then we can consider the flow-
invariant subset

U(Γ) = {(z, w, s) ∈ T 1Hn | z 6= w ∈ Λ(Γ) s ∈ R} ∼= (∂Γ× ∂Γ−∆)× R

of T 1Hn. Then the geodesic flow {φ̂t} on T 1Hn/Γ descends to a flow on the compact space

Û(Γ) = U(Γ)/Γ

and we may regard Û(Γ) as the geodesic flow of the group Γ.
More generally, Gromov [106] showed that every hyperbolic group Γ has an associated ge-

odesic flow Û(Γ). We first consider the space G(Γ) of isometric embeddings c : R → CΓ of
R into the Cayley graph CΓ. (Notice that the space of isometric embeddings of R into Hn

is simply T 1Hn, so this is a natural generalization to consider). If there is a unique geodesic
in CΓ joining any two points in ∂Γ, for example if Γ is a free group, then G(Γ) is identified

with (∂Γ × ∂Γ − ∆) × R) and we can define Û(Γ) = G(Γ)/Γ. However, in general this will
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not be the case, so one must “collapse” G(Γ) by identifying geodesics with the same endpoints
to (somehow) obtain a flow space U(Γ) which admits an action by Γ, which commutes with

the flow, and then define Û(Γ) = U(Γ)/Γ. The details of this construction are worked out by
Champetier [64] and Mineyev [166].

Theorem 24.1. (Gromov, Champetier, Mineyev) If Γ is a hyperbolic group, then there exists
a complete metric on U(Γ) = (∂Γ×∂Γ−∆)×R, a flow {φt : U(Γ)→ U(Γ)}t∈R, and a properly
discontinuous cocompact action of Γ on U(Γ) by isometries such that

(1) There exists K and C so that, for all z 6= w ∈ ∂Γ, the map t → (z, w, t) is a
(K,C)-quasi-isometric embedding.

(2) The flow φt(z, w, s) = (z, w, s+ t) for all z 6= w ∈ ∂Γ and s, t ∈ R.
(3) Each φt is biLipschitz.
(4) The action of Γ commutes with φt for all t and {φt} descends to a topologically transitive

flow {φ̂t} on Û(Γ) = U(Γ)/Γ.
(5) For all γ ∈ Γ, there exists a function cγ : ∂Γ × ∂Γ − ∆ → R so that γ(x, y, t) =

(γ(x), γ(y), cγ(x, y) + t).

For our purposes, it is easiest to assume that Γ is just the fundamental group of a closed

negatively curved manifold M and Û(Γ) = T 1M . This will not impact most of our proofs. The
one crucial difference is that it is not known whether geodesic flows of general hyperbolic groups
are metric Anosov. However, it is known that geodesic flows of groups which admit Anosov
representations are metric Anosov (see [45, Section 5] and [69]).

We assume throughout the next several sections that Γ is a hyperbolic group. I encourage
you to also assume that Γ is torsion-free.

There are various bundles over Û(Γ) which are naturally associated with linear representa-

tions. The most classical is the flat vector bundle Êρ over Û(Γ) with fiber Rd determined by a
representation ρ : Γ→ SL(d,R). We first consider the flat vector bundle E(Γ) over U(Γ) given
by

E(Γ) = U(Γ)× Rd.
Notice that the flow {φt} lifts to an “obvious” flow on E(Γ), given by

ψt((z, w, s), v) = ((z, w, s+ t), v) or ψt(Z, v) = (φt(Z), v)

for all z 6= w ∈ ∂Γ and s, t ∈ R or Z ∈ U(Γ). This flow is (confusingly) called the flow parallel
to the flat connection.

Suppose that ρ : Γ→ SL(d,R) is a representation. Let Γ act on E(Γ) as the group of covering
transformations of U(Γ) in the first factor and as ρ(Γ) in the second factor, i.e. if γ ∈ Γ, then
γ(Z, v) = (γ(Z), ρ(γ)(v)) for all (Z, v) ∈ E(Γ). Then

Êρ = E(Γ)/Γ

is the flat vector bundle associated to ρ. Notice that the action of Γ on E(Γ) commutes with

the flow {ψt}, so {ψt} descends to a flow {ψ̂t} on Êρ.

Suppose that 1 ≤ k ≤ d
2 is a positive integer and ρ : Γ → SL(d,R) is a representation. We

say that a pair

ξρ : ∂Γ→ Grk(Rd) and θρ : ∂Γ→ Grd−k(Rd)
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of continuous, ρ-equivariant maps are Pk-transverse limit maps for ρ if

ξρ(x)⊕ θρ(y) = Rd

whenever x 6= y ∈ ∂Γ. (Notice that the limit maps of a Benoist representation are a pair of
P1-transverse limit maps.)

A pair of transverse Pk-limit maps gives rise to an Γ-equivariant, flow-invariant splitting

E(Γ) = Ξ⊕Θ

where Ξ|(x,y,s) = ξρ(x) and Θρ|(x,y,s) = θρ(y). Hence, the splitting descends to a flow-invariant
splitting

Êρ = Ξ̂⊕ Θ̂.

If 1 ≤ k ≤ d
2 is a positive integer, we may perform this entire construction replacing Rd with

Grk(Rd)×Grd−k(Rd). Let

Ek(Γ) = U(Γ)×Grk(Rd)×Grd−k(Rd)

and notice that the geodesic flow again lifts to an obvious flow ψkt on Ek(Γ). If ρ : Γ→ SL(d,R)
is a representation, we let Γ act on the first factor by the group of covering transformations

of U(Γ) over Û(Γ) and let it act on the second and third factors by the action of ρ(Γ) on the
Grassmanian. We then form the k-Grassmannian bundle associated to ρ by letting

Êkρ = Ek(Γ)/Γ.

Notice that the action of Γ commutes with the flow {ψkt }, so {ψkt } descends to a flow {ψ̂kt } on

Êkρ .

We can then define the vector bundle V k(Γ) over Ek(Γ) so that V k(Γ)|(Z,P,Q) = TPGrk(Rd)
and the vector bundle V d−k(Γ) over Ek(Γ) with fiber V d−k(Γ)|(Z,P,Q) = TQGrd−k(Rd). The

flow ψkt lifts to flows ηkt and ηd−kt on V k(Γ) and V d−k(Γ). The action of Γ extends to actions
on V k(Γ) and V d−k(Γ) which commute with the flows, so we get flows on the quotient vector
bundles

V̂ k
ρ = V k(Γ)/Γ and V̂ d−k

ρ = V d−k(Γ)/Γ

over Êkρ .
A pair of (ξρ, θρ) of transverse Pk-limit maps for a representation ρ : Γ→ SL(d,R) gives rise

to a Γ-equivariant flow-equivariant section σ : U(Γ)→ Ek(Γ) given by

σ(x, y, s) = ((x, y, s), ξρ(x), θρ(y))

which descends to a flow-equivariant section σ̂ : Û(Γ)→ Êkρ . We can then consider the natural

pull-back vector bundles σ̂∗(V̂ k
ρ ) and σ̂∗(V̂ d−k

ρ ) over Û(Γ), each of which admits a flow which

“lifts” the flow on Û(Γ).
Notice that if P ∈ Grk(Rd) and Q ∈ Grd−k(Rd) are transverse, i.e. P ⊕ Q = Rd, then

we may identify TPGrk(Rd) with Hom(P,Q). Basically, φ ∈ Hom(P,Q) is identified with the
tangent vector c′(0) to the path c(t) = graph(tφ) for all t ∈ R, where graph(tφ) is the k-plane
{v + tφ(v) | v ∈ P}. Similarly, TQGrd−k(Rd) may be identified with Hom(Q,P ). Therefore,
if (ξρ, θρ) is a pair of transverse k-limit maps for a representation ρ : Γ → SL(d,R), then we
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may identify σ̂∗(V k
ρ ) with the bundle Hom(Ξ̂, Θ̂) and the bundle σ∗(V d−k

ρ ) with the bundle

Hom(Θ̂, Ξ̂).

Remark: If we let P+
k be the stabilizer of the standard k-plane < e1, . . . , ek > and let P−k be

the stabilizer of the standard complementary (d− k)-plane < ek+1, . . . , ed >, then P+
k and P−k

are opposite parabolic subgroups of SL(d,R). Notice that

Grk(Rd) = SL(d,R)/P+
k and Grd−k(Rd) = SL(d,R)/P−k .

If we let
(
Grk(Rd)×Grd−k(Rd)

)T
denote the collection of transverse pairs of k-planes and

(d− k)-planes, then
(
Grk(Rd)×Grd−k(Rd)

)T
may be identified with an open subset of SL(d,R)/P+

k ∩ P
−
k .

So, if we let Ek(Γ)T be the bundle over U(Γ) with fiber
(
Grk(Rd)×Grd−k(Rd)

)T
, then Ek(Γ)T

is contained in the bundle over U(Γ) with fiber SL(d,R)/P+
k ∩ P

−
k . We can then pass to a

quotient (Êkρ )T which is contained in a bundle over Û(Γ) with fibre SL(d,R)/P+
k ∩ P

−
k . The

theory of Anosov representations is sometimes formalized with this convention in place.

25. Definitions and first principles

We say that a representation ρ : Γ→ SL(d,R) is Pk-Anosov if there exists a pair

ξρ : ∂Γ→ Grk(Rd) and θρ : ∂Γ→ Grd−k(Rd)

of transverse Pk-limit maps which determine a section σ̂ : Û(Γ) → Ekρ so that the flow on

σ̂∗(V̂ k
ρ ) is expanding and the flow on σ̂∗(V̂ d−k

ρ ) is contracting, i.e. given continuously varying

family of norms on σ̂∗(V̂ k
ρ ) and σ̂∗(V̂ d−k

ρ ) (both denoted by || · ||), there exists C > 0 and a > 0

so that if v̂ ∈ σ̂∗(V̂ k
ρ ) and ŵ ∈ σ̂∗(V̂ d−k

ρ ), then

||η̂k−t(v̂)|| ≤ Ce−at||v̂|| and ||η̂d−kt (ŵ)|| ≤ Ce−at||ŵ||

for all t > 0. We will sometimes refer to a P1-Anosov representation as projective Anosov
(just to make the whole thing seem less like jargon).

Equivalently, we may require that the flow on Hom(Ξ̂, Θ̂) = Θ̂⊗ Ξ̂∗ (where Ξ̂∗ = Hom(Ξ̂,R))

is expanding and that the flow on Hom(Θ̂, Ξ̂) = Ξ⊗Θ∗ is contracting. Notice that since Ξ̂⊗ Θ̂∗

is dual to Θ̂ ⊗ Ξ̂∗, then the flow on Ξ̂ ⊗ Θ̂∗ is contracting if and only if the flow on Θ̂ ⊗ Ξ̂∗ is

expanding, so it suffices to assume that the flow on Hom(Θ̂, Ξ̂) is contracting.

Notice that the fact that Ξ̂ ⊗ Θ̂∗ is contracting means “roughly” that all vectors in Ξ̂ are

“contracted uniformly more” than vectors in Θ̂. Suppose that γ ∈ Γ has infinite order. Since
ξρ(γ

+) and θρ(γ
−) are both preserved by ρ(γ), this suggests that each is a product of eigenspaces

and that the moduli of the eigenvalues of the generalized eigenspaces making up ξρ(γ
+) should

be strictly greater than the moduli of the eigenvalues of the generalized eigenspaces making up
θρ(γ

−). Moreover, the logarithm of the ratio of the eigenvalues should be roughly comparable

to the length of the periodic orbit of Û(Γ) associated to γ, which is itself roughly comparable
to ||γ|| (by the Milnor-Svarc Lemma). The following lemma begins to make this intuition more
precise.
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Lemma 25.1. ([45, Proposition 2.3]) If ρ : Γ → SL(d,R) is a representation with transverse

Pk-limit maps ξρ and θρ, then Hom(Θ̂, Ξ̂) is contracting if and only if given any continuous

norm on Êρ, there exists a,C > 0 such that if Ẑ ∈ Û(Γ), v̂ ∈ Ξ̂|Ẑ , ŵ ∈ Θ̂|Ẑ , and t > 0 then

||ψ̂t(v̂)||
||ψ̂t(ŵ)||

≤ Ce−at ||v̂||
||ŵ||

.

Recall that {ψ̂t} is the flow on the flat bundle Êρ associated to ρ.

Proof. Let || · || be a continuous family of norms on Êρ, which induces a continuous family of

norms on Hom(Θ̂, Ξ̂). Notice that, by construction, the flow {η̂d−kt } on Hom(Θ̂, Ξ̂) is consistent

with the flow {ψ̂t} on Êρ.

Suppose that Hom(Θ̂, Ξ̂) is contracting, so there exists a,C > 0 so that if Â ∈ Hom(Θ̂, Ξ̂)
and t > 0, then

||ηd−kt (Â)|| ≤ Ce−at||Â||.
Given Ẑ ∈ Û(Γ), v̂ ∈ Ξ̂Z , and ŵ ∈ Θ̂Z , choose Â ∈ Hom(Θ̂, Ξ̂)Ẑ such that

Â(ŵ) = v̂ and ||Â|| = ||v̂||
||ŵ||

.

(One may do so, by composing orthogonal projection of Θ|Ẑ onto < w >, with respect to || · ||Ẑ ,
with a linear map taking w to v.) We may lift this whole picture, including the norms ||·||, up to
the bundle Hom(Θ,Ξ) over U(Γ), to obtain Z ∈ U(Γ), v ∈ Ξ|Z , w ∈ Θ|Z and A ∈ Hom(Θ,Ξ)|Z .

Then, since ψt(v) = ψt(A(w)) = ηd−kt (A)(ψt(w)), we see that

||ψ̂t(v̂)||
||ψ̂t(ŵ)||

=
||ψt(v)||
||ψt(w)||

=
||ηd−kt (A)(ψt(w)))||

||ψt(w)||
≤ max

u∈Θ|φt(Z)

{
||ηd−kt (A)(u)||

||u||

}
= ||ηd−kt (A)|| = ||η̂d−kt (Â)||

so
||ψ̂t(v̂)||
||ψ̂t(ŵ)||

≤ ||η̂t(Â)|| ≤ Ce−at||Â|| = Ce−at
||v||
||w||

.

This establishes the forward direction of our claim.
On the other hand, suppose that there exists C, a > 0 so that if Ẑ ∈ Û(Γ), v̂ ∈ Ξ̂|Ẑ , ŵ ∈ Θ̂|Ẑ ,

and t > 0 then
||ψ̂t(v̂)||
||ψ̂t(ŵ)||

≤ Ce−at ||v̂||
||ŵ||

.

Let Â ∈ Hom(Θ̂, Ξ̂) and suppose that t > 0, then there exists ŵ ∈ Θ̂|ψt(Z) so that

||η̂d−kt (Â)|| = ||η̂
d−k
t (Â)(ŵ)||
||ŵ||

.

Since η̂d−kt (Â)(ŵ) = ψt(Â(ψ̂−t(ŵ)), we see that

||η̂d−kt (Â)(ŵ)||
||ŵ||

≤ Ceat Â(ψ̂−t(ŵ))||
||ψ̂−t(w)||

≤ Ce−at||Â||.

which establishes the reverse direction.
�



90 RICHARD D. CANARY

Remark: In Labourie’s definition [143], see also Guichard-Wienhard [109], a representation
ρ : Γ→ SL(d,R) is Pk-Anosov, if there exists a continuous ρ-equivariant map

α : ∂Γ× ∂Γ−∆→
(

Grk(Rd)×Grd−k(Rd)
)T

which gives rise to a flow-invariant section δ̂ : Û(Γ) → Êkρ so that so that the flow on δ̂∗(V̂ k
ρ )

is expanding and the flow on δ̂∗(V̂ d−k
ρ ) is contracting. He then observes that if this is the case,

then α must have the form α = ξρ × θρ where ξρ and θρ are a pair of transverse Pk-limit maps
for ρ. So, his definition is equivalent to the one we gave above.

We can generalize the discussion in Section 17 to the setting of Pk-proximal matrices. We
say that A ∈ GL(d,R) is Pk-proximal if |λk(A)| > |λk+1(A)|. In this case, there is well-defined
attracting k-plane and repelling (d − k)-plane, such that v does not lie in the repelling
(d − k)-plane, then An(v) converges to the attracting k-plane (i.e. all accumulation points of
{An(v)}n∈N lie in the attracting k-plane). Moreover, the attracting k-plane is an attracting fixed
point for the action of A on Grk(Rd) and any k-plane disjoint from the repelling (d− k)-plane
will be attracted to the attracting k-plane. Similarly, the repelling (d−k)-plane is an attracting
fixed point for the action of A−1 on Grd−k(Rd). We say that A is Pk-biproximal if both A and
A−1 are Pk-proximal. In this language, proximal elements are exactly the P1-proximal elements.

Suppose that Γ is a hyperbolic group, ρ : Γ → SL(d,R) is a representation, 1 ≤ k ≤ d
2 , and

ξρ : ∂Γ→ Grk(Rd) and θρ : ∂Γ→ Grd−k(Rd) are continuous ρ-equivariant maps. We say

(1) ξρ and θρ are Pk-compatible if

ξρ(x) ⊂ θρ(x)

for all x ∈ ∂Γ, and
(2) ξρ and θρ are Pk-dynamics preserving if whenever γ ∈ Γ has infinite order, then

a) ρ(γ) is Pk-biproximal,

b) ξρ(γ
+) is the attracting k-plane of ρ(γ), and

c) θρ(γ
−) is the repelling (d− k)-plane of ρ(γ).

Although such an approach involves more familiar methods,
the author brutally chose to develop extra structure.
————William Thurston [203]

We can now use Lemma 25.1 to show that the limit maps of an Anosov representation are
well-behaved. We have chosen a brutally concrete argument, which I hope will allow you to get
a hands on sense of what the Anosov condition actually means. Slicker, but less direct, proofs
are available.

Proposition 25.2. If ρ : Γ→ SL(d,R) is a Pk-Anosov representation with transverse Pk-limit
maps ξρ : ∂Γ → Grk(Rd) and θρ : ∂Γ → Grd−k(Rd), then ξρ and θρ are Pk-compatible and
Pk-dynamics preserving.

Moreover, there exists J,B > 0, so that

J ||γ|| ≥ log

(
|λk(ρ(γ))|
|λk+1(ρ(γ))|

)
≥ 1

J
||γ|| −B
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for any element γ ∈ Γ. In particular, ρ has finite kernel.

Since fixed points of infinite order elements are dense in ∂Γ, by Proposition 5.6, Proposition
25.2 implies that limit maps for Pk-Anosov representations are unique.

Proof. Suppose that γ ∈ Γ has infinite order. The flow line (γ−, γ+)× R of U(Γ) projects to a

periodic orbit Qγ of Û(Γ). Let tγ be the length of Qγ . Consider a continuous family of norms

|| · || on Êρ which induces a continuous family of norms on Hom(Θ̂, Ξ̂). These norms lift to

equivariant norms on E(Γ) and Hom(Θ,Ξ). Therefore, if ~v ∈ Rd and Z0 = (γ−, γ+, 0) ∈ U(Γ),
then

||ψntγ (Z0, ~v)|| = ||
(
Z0, ρ(γ)−n(~v)

)
||

for all n ∈ Z. In particular, if ~v is an eigenvector of ρ(γ) with eigenvalue µ, then

||ψntγ (Z0, ~v)|| = |µ|−n||(Z0, ~v)||.

We begin with the simplest case when k = 1. In this case, ξρ(γ
+) is an eigenline, so there

exists µ so that if ~v ∈ ξρ(γ+), then A(~v) = µ~v, so ||ψntγ (Z0, ~v)|| = |µ|−n||(Z0, ~v)||. We claim
that

|µ| = |λ1(ρ(γ))| > |λ2(ρ(γ))|.
First notice that the Jordan block J of ρ(γ) whose generalized eigenspace E contains ~v must be
one-dimensional. Notice that J has an eigenline, so it must be upper triangular and if [~v] ∈ P(E),
then lim ρ(γ)n([~v]) = ξρ(γ

+). However, if E is not one-dimensional then E ∩ θρ(γ−) is non-
empty, which would contradict our assumptions that θρ(γ

−) is ρ(γ)-invariant and transverse to
ξρ(γ

+).
Now suppose that the generalized eigenspace E2 of another Jordan block has eigenvalue µ2

and |µ2| ≥ |µ|. If E2 contains an eigenline < ~w >, then U =< ~v, ~w > must intersect θρ(γ
−) in

a non-trivial vector ~u = a~v + b~w (with b 6= 0). Then,

||ψntγ (Z0, ~u)|| = ||
(
Z0,

a

µn
~v +

b

µn2
~w

)
||.

So, if |µ| < |µ2|, then ||ψntγ (Z0, ~u)|| ∼ b
|µ2|n ||(Z0, ~w)||, while if |µ| = |µ2|, then ||ψntγ (Z0, ~u)|| =

1
|µ|n ||(Z0, ~u)||. So, in either case

lim inf
||ψntγ (Z0, ~v)||
||ψntγ (Z0, ~u)||

≥ ||(Z0, ~v)||
||(Z0, ~u)||

which contradicts Lemma 25.1, since (Z0, ~v) ∈ Ξ and (Z0, ~u) ∈ Θ.
If E2 does not contain an eigenline, then either there exists s > 0 so that E2 contains an

eigenline for ρ(γ)s (in which case, the argument above, shows that |µ|s > |µ2|s and hence

that |µ| > |µ2|) or E2 contains a plane W so that ρ(γ)(W ) = W and if w ∈ W − {~0}, then
{ρ(γ)n(< w >)} is dense in P(W ). Notice that W ∩ θρ(γ+) must be non-empty, so, since
θρ(γ

+) is invariant under ρ(γ), W ⊂ θρ(γ
+). We can then choose a sequence nr → ∞ so that

ρ(γ)nr(< ~w >) converges to < ~w > in P(V ). Therefore,

lim
||(Z0, ρ(γ)nr(~u))||
|µ2|nr ||(Z0, ~u)||

= 1

which again contradicts Lemma 25.1 if |µ2| ≥ |µ|.
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We have established that |µ| = |λ1(ρ(γ))| > |λ2(ρ(γ))|, so ρ(γ) is P1-proximal and ξρ(γ)+

is the attracting eigenline. Notice that θρ(γ
−) is a (d − 1)-plane invariant under ρ(γ) and

transverse to the attracting eigenline of ρ(γ), so it must be the repelling hyperplane of ρ(γ).
Notice that ξρ(γ

+) ⊂ θρ(γ+), since ξρ(γ
+) is the repelling eigenline of ρ(γ−1 and θρ(γ

+) is the
repelling hyperplane of ρ(γ1). Since ξρ and θρ are continuous and attracting fixed points of
infinite order elements are dense in ∂Γ, it follows that ξρ(x) ⊂ θρ(x) for all x ∈ ∂Γ. Therefore,
ξρ and θρ are P1-dynamics preserving and P1-compatible.

Let C and a be the constants provided by Lemma 25.1. If θρ(γ
−) contains an eigenline < ~w >

with eigenvalue λ2(ρ(γ)), then,

||ψtγ (Z0, ~v)||
||ψtγ (Z0, ~w)||

=
|λ2(ρ(γ))|
|λ1(ρ(γ))|

||(Z0, ~v)||
||(Z0, ~w)||

≤ Ce−atγ ||(Z0, ~v)||
||(Z0, ~w)||

so

log

(
|λ1(ρ(γ))|
|λ2(ρ(γ))|

)
≥ atγ − log(C).

If not, there exists ~u ∈ θρ(γ−)− {0} and nr →∞ so that

lim

(
||(Z0, ρ(γ)nr(~u))||
|λ2(ρ(γ)|)nr ||(Z0, ~u)||

)
= 1

which allows us to obtain the same estimate. Notice that this lower bound implies that every
element in the kernel of ρ has finite order (since if γ has infinite order, tγn = ntγ → ∞), so ρ
has finite kernel, since every subgroup of a hyperbolic group consisting of finite order elements
is finite, see [49, Prop. 2.22].

We now observe that tγ is comparable to ||γ||. The Milnor-Svarc Lemma shows that the
orbit map τρ : CΓ → U(Γ) is a (K,C ′)-quasi-isometry, so, just as in the proof of Corollary 19.2,
we see that, if Z ∈ U(Γ), then

d(Z, γ(Z)) ≥ 1

K
||γ|| − 3C ′

so

tγ ≥ d(Z0, γ(Z0)) ≥ 1

K
||γ|| − 3C ′

and

log

(
|λ1(ρ(γ))|
|λ2(ρ(γ))|

)
≥ a||γ||

K
− 3C ′

which gives the lower bound we want. (It suffices to establish the lower bound for infinite order
elements, since every hyperbolic group contains only finitely many conjugacy classes of finite
order elements, see Bridson-Haefliger [49, Thm. 3.Γ.3.2], so we may assume that B is greater

than a||α||
K for any finite order element α ∈ Γ.)

To get the upper bound, let M = sup{log σ1(ρ(s)) | s ∈ S} and notice that there exists γ̂
which is conjugate to γ so that d(1, γ̂) = ||γ||. Then,

2M ||γ|| = 2Md(1, γ̂) ≥ 2 log

(
σ1(ρ(γ̂))

σd(ρ(γ̂))

)
≥ 2 log

(
|λ1(ρ(γ̂))|
|λd(ρ(γ̂))|

)
= 2 log

(
|λ1(ρ(γ))|
|λd(ρ(γ))|

)
≥ 2 log

(
|λ1(ρ(γ))|
|λ2(ρ(γ))|

)
.
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(Notice that the exact same argument shows that

2M ||γ|| ≥ 2 log

(
|λk(ρ(γ))|
|λk+1(ρ(γ))|

)
for all k.) This upper bound completes the proof when k = 1.

We now discuss the alterations needed for the case of general k. (It would probably be fine to
skip this portion of the argument when reading through the notes for the first time.) We could
also handle the general case by first proving that ρ is Pk-Anosov if and only if Λkρ is P1-Anosov
and applying the above argument to Λkρ and translating the results back to the setting of ρ.

Let A be the subspace of Rd, spanned by all the generalized eigenspaces with eigenvalue of
modulus at least |λk(ρ(γ))| and let B be the subspace of Rd, spanned by all the generalized
eigenspaces with eigenvalue of modulus at most |λk+1(ρ(γ))|.

If ρ(γ) is not Pk-proximal, then |λk(ρ(γ))| = |λk+1(ρ(γ))|, so A has dimension at least
k + 1 and B has dimension at least d − k + 1. Therefore, there exist non-trivial vectors in

~a ∈ A∩ θρ(γ−) and ~b ∈ B ∩ ξρ(γ+). Let < ~u > be an accumulation point of {< ρ(γ)n(~a) >}n∈N
in P(A ∩ θρ(γ−)), then, by considering the Jordan normal form, one can see that there exists
j ≥ k + 1 and nk →∞ so that

lim

(
||(Z0, ρ(γ)nr(~u))||
|λj(ρ(γ))|nr ||(Z0, ~u)||

)
= 1.

Similarly, if < ~v > be an accumulation point of {< ρ(γ)nr(~b) >} in P(B ∩ ξρ(γ+)) then there
exists m ≤ k and a subsequence {n`} of {nk} such that

lim

(
||(Z0, ρ(γ)n`(~u))||
|λm(ρ(γ))|n` ||(Z0, ~u)||

)
= 1.

Then, Lemma 25.1, implies that

lim
||φn`tγ (Z0, ~u)||
||φn`tγ (Z0, ~v)||

=

(
λm(ρ(γ))n`

λj(ρ(γ))n`

)
||(Z0, ~u)||
||(Z0, ~v)||

= 0

which contradicts the face that m > k. Therefore, ρ(γ) is Pk-proximal, A is the attracting
k-plane and B is the repelling (d− k)-plane.

The same argument gives, more generally, that at least one of A ∩ θρ(γ−) or B ∩ ξρ(γ+)
is trivial. First suppose that A ∩ θρ(γ−) is trivial, then we see that if ~v ∈ ξρ(γ+) − A, then
{ρ(γ)−n(~v)}n∈N accumulates at θρ(γ

−). Since A and θρ(γ
−) are ρ(γ)-invariant and transverse,

this is impossible. Thus, ξρ(γ
+) = A is the attracting k-plane for ρ(γ). If ~w ∈ θρ(γ−) − B,

then {ρn(w)} accumulates on A = ξρ(γ
+) which is again impossible, since ξρ(γ

+) and θρ(γ
−)

are transverse, so θρ(γ
−) = B is the repelling (d− k)-plane.

We argue similarly in the case that B∩ξρ(γ+) is trivial. If ~v ∈ θρ(γ−)−B, then {ρ(γ)n(~v)} ac-
cumulates at ξρ(γ

+), which is impossible, so θρ(γ
−) = B. On the other hand, if ~w ∈ ξρ(γ+)−A,

then {ρ(γ)−n(~w)} accumulates at B = θρ(γ
−) which is impossible, so ξρ(γ

+) = A as required.
We complete the remainder of the argument, just as in the case where k = 1.

�



94 RICHARD D. CANARY

26. The symmetric space of SL(d,R)
Ink mathematics, grey mass ecstatics
Noggin elastics, cerebral tactics
Cranium classics, brainium domics
Denizen omics, grey massmatistics

Quantum puree, it’s plain to feel, hard to see
Fission antics, abombastics
Death antiques, wrong deductions
Poor instructions, mass destructions
—————–Don Van Vliet [63]

In analogy with the action of PO(n, 1) on Hn = PO(n, 1)/O(n), the Lie group SL(d,R)
naturally acts on its associated symmetric space

Xd = SL(d,R)/SO(d).

We will recall the basic theory of this symmetric space and observe that the orbit map of
a Pk-Anosov representation is a quasi-isometric embedding. (We will base our discussion on
lecture notes by Rich Schwartz [187]. One can also look at the treatment of Bridson and
Haefliger [49, Section II.10] which begins with GL(d,R)/O(d) which turns out to be a metric
product Xd × R.)

It is convenient to regard Xd as the space of symmetric, positive definite, matrices in SL(d,R).
(Recall that A ∈ SL(d,R) is positive definite if A(~v) · ~v > 0 for every non-trivial vector in Rd.)
It is then obvious that Xd is a submanifold of Rd2 .

The Lie group SL±(d,R) (of linear transformations of Rd with determinant ±1) acts on Xd

by letting A(M) = AMAT for all A ∈ SL±(d,R) and M ∈ Xd. One may check that AMAT is
positive definite, by noticing that if ~v is non-trivial

AMAT (~v) · ~v = MAT~v ·AT~v = M(AT~v) · (AT~v) > 0

where the last inequality follows from the fact M is positive definite. Since it is obvious that
AMAT is symmetric and has determinant 1, AMAT ∈ Xd. One may also check that this a
group action by noticing that if A,B ∈ SL±(d,R) and M ∈ Xd, then

AB(M) = (AB)M(AB)T = ABMBTAT = A(BMBT ) = A(B(M)).

We notice that A ∈ SL±(d,R) fixes I ∈ Xd if and only if AAT = I which occurs if and only
if A ∈ O(d). Every positive-definite symmetric matrix M can be written as M = gDg−1 where

g ∈ SO(d) and D is a diagonal matrix with positive entries and determinant 1. If we let
√
D be

the diagonal matrix whose entries are the square roots of the corresponding entries of D, then
A = g

√
Dg−1 ∈ SL(d,R) and A(I) = AAT = M . Therefore, SL(d,R) acts transitively on Xd.

So, we see that,

Xd = SL(d,R)/SO(d) = SL±(d,R)/O(d).

The tangent space TI(Xd) is naturally identified with the space xd of symmetric matrices
with trace zero. One can see this concretely by noting that if c : (−ε, ε)→ Xd is a smooth path
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and c(0) = I, then we may write c(s) = gsDsg
−1
s where gs ∈ SO(d) and the diagonal matrices

Ds both vary smoothly, then

c′(o) = g0

(
d

ds

∣∣∣
0
Ds

)
gT0 +

(
d

ds

∣∣∣
0
gs

)
gT0 + g0

(
d

ds

∣∣∣
0
gTs

)
.

We then notice that the last two terms cancel since

0 =
d

ds

∣∣∣
0
I =

d

ds

∣∣∣
0

(
gsg

T
s

)
=

(
d

ds

∣∣∣
0
gs

)
gT0 + g0

(
d

ds

∣∣∣
0
gTs

)
and that E = d

ds

∣∣
0
Ds is a diagonal matrix with trace zero, so c′(0) = g0Eg

T
0 ∈ xd. (We will use,

mostly without saying so, the fact that if g ∈ SO(d), then g−1 = gT .)
So we define a symmetric blinear from on xd,

< V,W >=
1

4
trace(AB)

which is called the Killing form. Notice that the Killing form is positive definite, since if
V = gEg−1 ∈ xd is non-zero, then 4 < V, V >= trace(E2) > 0 since trace is conjugacy invariant
and E is a non-zero diagonal matrix. Moreover, the Killing form is invariant under the action
of O(d), since if g ∈ O(d) and V,W ∈ xd, then

4 < g(V ), g(W ) >= 4 < gV gT , gWgT >= trace(gV gT gWgT ) = trace(gV Wg−1) = trace(VW ) = 4 < V,W > .

(Notice that since g is a linear transformation dg = g.)
If M ∈ Xd, then TMXd = dM(xd) = Mxd, so it is natural to transport the Killing form on

xd to TMXd by letting

< V,W >M=< M−1V,M−1W >=
1

2
trace(M−1VM−1W )

for all V,W ∈Mxd. So we now have a Riemannian metric on Xd. Notice that SL±(d,R) acts by
isometries of this metric, since if M,N ∈ Xd, A ∈ SL±(d,R) and A(M) = N , then AMAT = N
and

< A(V ), A(W ) >N = < AV AT , AWAT >N=
1

2
trace(N−1AV ATN−1AWAT )

=
1

4
trace((AT )−1M−1A−1AV AT (AT )−1M−1A−1AWAT )

=
1

4
trace((AT )−1M−1VM−1WAT )

=
1

4
trace(M−1VM−1W ) =< V,W >M

for all V,W ∈ TMXd.
The following is our key estimate for the distance function on Xd.

Proposition 26.1. If M ∈ Xd, then

dXd(I,M) =
1

2

√
(log σ1(M))2 + · · ·+ (log σd(M))2.

Notice that if A ∈ SL(d,R), then A(I) = AAT and σi(AA
T ) = σi(A)2 for all i. Therefore,

we see that the singular values of A record the translation distance of A at the origin.
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Corollary 26.2. If A ∈ SL(d,R), then

dXd(I, A(I)) =
√

(log σ1(A))2 + · · ·+ (log σd(A))2.

Let’s warm-up by showing that the “obvious shortest path” from I to M has the expected
length. If you feel comfortable with the machinery here, you can skip this and move on to the
proof. If F ∈ Xd is a diagonal matrix, let c : [0, 1] → Xd be the smooth path joining I to F
given by

c(t) =


et log f11 0 0 · · · 0 0

0 et log f22 0 · · · 0 0
...

...
0 0 0 · · · 0 et log fdd


for all t ∈ [0, 1]. Then

c′(t) =


log f11e

t log f11 0 0 · · · 0 0
0 log f22e

t log f22 0 · · · 0 0
...

...
0 0 0 · · · 0 log fdde

t log fdd


so

4 < c′(t), c′(t) >c(t)= (log f11)2 + · · ·+ (log fdd)
2 = (log σ1(F ))2 + · · ·+ (log σd(F ))2

for all t, so c([0, 1]) has length∫ 1

0

√
〈c′(t), c′(t)〉 dt =

1

2

√
(log σ1(F ))2 + · · ·+ (log σd(F ))2.

In general, since M is symmetric and positive definite, we can write M = KDKT where
K ∈ SO(d) and F ∈ Xd is diagonal. Then, since K act on Xd as an isometry and stabilizes I,
the path ĉ(t) = Kc(t)KT joins I to M and has length

1

2

√
(log σ1(F ))2 + · · ·+ (log σd(F ))2

2
=

1

2

√
(log σ1(M))2 + · · ·+ (log σd(M))2.

However, this is not really a proof, since we don’t yet know that these paths are length-
minimizing.

Proof of Proposition 26.1: Let Fd ⊂ Xd be the set of diagonal matrices with positive diagonal
entries and determinant 1. Then TIFd = fd is the set of diagonal matrices with trace 0. The
restriction of the Killing form to TIFd is then just

4 < A,B >I= a11b11 + · · ·+ addbdd.

and the restriction of the Killing form to TFFd is simply

4 < A,B >F= trace
(
F−1AF−1B

)
=
a11b11

f2
11

+ · · ·+ addbdd
f2
dd

.

(Notice that TFFd is also identified with the space of trace-free diagonal matrices so the F−1

term just introduces a scaling factor.) So the map τ : Fd → Ed given by

τ(F ) = 2(log f11, . . . , log fdd)
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is an isometry from Fd, with its intrinsic metric, to the hyperplane {~x ∈ Rd | x1 + · · ·+xd = 0}
with its usual Euclidean metric.

We claim that Fd is totally geodesic, so its intrinsic and extrinsic metrics agree. Since Fd
asks transitively on itself, it suffices to check that if α : [0, 1] → Xd is a path joining I to F
in Xd, then there is a path β : [0, 1] → Fd joining I to F which is no longer than α. We may
assume that α(s) = g(s)D(s)g(s)T where g(s) ∈ SO(d) and D(s) ∈ Fd both vary smoothly and
g(0) = g(1) = I. So, we simply take β(s) = D(s) and check that

||α′(s)|| ≥ ||β′(s)||

for all s. Notice that

α′(s) = g(s)D′(s)g(s)T + g′(s)D(s)g(s)T + g(s)D(s)g′(s)T and β′(s) = D′(s).

Since

4 < g(s)D′(s)g(s)T , g(s)D′(s)g(s)T ) >α(s) = trace
(
g(s)D(s)−1g(s)T g(s)D′(s)g(s)T g(s)D(s)−1g(s)T g(s)D′(s)g(s)T

)
= trace

(
(g(s)D(s)−1D′(s)D(s)−1D′(s)g(s)T

)
= trace

(
D(s)−1D′(s)D(s)−1D′(s)

)
= 4 < D′(s), D′(s) >β(s)= 4||β′(s)||2

it suffices to check that

C(s) =< g(s)D′(s)g(s)T , g′(s)D(s)g(s)T + g(s)D(s)g′(s)T >α(s)= 0.

This is an unpleasant calculation which we include for completeness (but you should feel free
to skip it). First notice that

α(s)−1g(s)D′(s)g(s)T = g(s)D(s)−1g(s)T g(s)D′(s)g(s)T = g(s)Ω(s)g(s)T

where Ω(s) = D(s)−1D′(s) is diagonal, and

α(s)−1(g′(s)D(s)g(s)T + g(s)D(s)g′(s)T ) = g(s)D(s)−1g(s)T g′(s)D(s)g(s)T + g(s)D(s)−1g(s)T g(s)D(s)g′(s)T

= g(s)D(s)−1g(s)T g′(s)D(s)g(s)T + g(s)g′(s)T

So

4C(s) = trace
(
g(s)Ω(s)g(s)T g(s)D(s)−1g(s)T g′(s)D(s)g(s)T + g(s)Ω(s)g(s)T g(s)g′(s)T

)
= trace

(
g(s)Ω(s)D(s)−1g(s)T g′(s)D(s)g(s)T + g(s)Ω(s)g′(s)T

)
= trace

(
D(s)g(s)T g(s)Ω(s)D(s)−1g(s)T g′(s) + Ω(s)g′(s)T g(s)

)
= trace

(
D(s)Ω(s)D(s)−1g(s)T g′(s) + Ω(s)g′(s)T g(s)

)
= trace

(
Ω(s)g(s)T g′(s)− Ω(s)g(s)T g′(s)

)
= 0

(In the transition from the second line to the third line we used the fact that trace(AB+CD) =
trace(BA + DC) and in the transition from the fourth line to the fifth line we used the facts
that diagonal matrices commute and that g′(s)T g(s) + g(s)T g′(s) = 0, which one obtains by
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differentiating the equation g(s)T g(s) = I.) This completes our proof that Fd is totally geodesic,
so if F ∈ Fd, then

d(I, F ) =
1

2

√
(log σ1(F ))2 + · · ·+ (log σd(F ))2.

In general, we can write M ∈ Xd as M = KFKT where K ∈ SO(d) and F ∈ Fd. Then, since
K acts on Xd as an isometry and stabilize I,

2d(I, A) = 2d(I, F ) =
√

(log σ1(F ))2 + · · ·+ (log σd(F ))2 =
√

(log σ1(A))2 + · · ·+ (log σd(A))2.

�

We have proven that Fd is a totally geodesic (d−1)-submanifold of Xd isometric to Euclidean
space. It is called a maximal flat, since it is known that every isometrically embedded, totally
geodesic copy of Euclidean space has dimension at most d−1. The symmetric space Xd contains
many maximal flats, since every translate of Fd by an element of SL(d,R) is a maximal flat.
(In fact, all maximal flats are of this form, see [49, Proposition 10.45].) For example, any two
points in Xd are contained in a single maximal flat.

The quotient SO0(d− 1, 1)/SO(d− 1) is a totally geodesic copy of Hd−1 in Xd. If we embed
SL(2,R) in the upper left-hand corner, then SL(2,R)/SO(2) gives a totally geodesic copy of 1

2H
2

within Xd. (Here 1
2H

d−1 is a simply connected Riemannian manifold with constant sectional
curvature −4.) One can compute the intrinsic metric on these submanifolds directly and see
that it has the claimed form. One can then use Proposition 26.1 to see that this agrees with the
extrinsic metric, and hence that the submanifolds are totally geodesic (see also [49, Theorem
10.58]). One may further show that Xd has non-positive sectional curvature, see [49, Theorem
10.39].

Given an Pk-Anosov representation ρ : Γ→ SL(d,R) we can define an orbit map τρ : Γ→ Xd

by letting τρ(γ) = ρ(γ)(I). We can reprise the proof of Corollary 19.3 to show that τρ is a quasi-
isometric embedding.

Corollary 26.3. If ρ : Γ → SL(d,R) is a Pk-Anosov representation, then the orbit map
τρ : Γ→ Xd is a quasi-isometric embedding. In particular, ρ(Γ) is discrete.

Proof. Let S be a finite symmetric generating set for Γ and let M = max{log σ1(ρ(s)) | s ∈ S}.
Recall that if A,B ∈ SL(d,R), then

σ1(A)σd(B)σ1(AB) ≤ σ1(A)σ1(B) and σd(A
−1) =

1

σd(A)
.

Therefore, if γ ∈ Γ, then

σ1(A) ≤Md(1, γ)

where d(1, γ) is the minimal word length of γ in the generating set S. Thus,

2Md(1, γ) ≥ log

(
σ1(ρ(γ))

σd(ρ(γ))

)
≥ 1

d
dXd(I, ρ(γ)(I)) =

1

d
dXd(τρ(id), τρ(γ)).

By Proposition 8.4, there exists η ∈ {1, α, β} so that d(1, γ) ≤ 3||γη|| + K. If J and B are
the constants from Proposition 25.2, then

log

(
|λ1(ρ(γη))|
|λd(ρ(γη))|

)
≥ log

(
|λk(ρ(γη))|
|λk+1(ρ(γη))|

)
≥ 1

J
||γη|| −B ≥ 1

3J
d(1, γ)− K

J
−B.
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So,

log

(
σ1(ρ(γ))

σd(ρ(γ))

)
≥ log

(
σ1(ρ(γη))

σd(ρ(γη))

)
− 2Md(1, η) ≥ log

(
|λ1(ρ(γη))|
|λd(ρ(γη))|

)
− 2Md(1, η)

so, if we set G = max{d(1, α), d(1, β)}, we may combine the last two inequalities to see that

dXd(τρ(id), τρ(γ)) ≥ 1

2
log

(
σ1(ρ(γ))

σd(ρ(γ))

)
≥ 1

2

(
1

3J
d(1, γ)− K

J
−B − 2MG

)
.

Since τρ is ρ-equivariant, this suffices to show that τρ is a (K,C)-quasi-isometric embedding

where K = max{3J, 2dM} and C = K
J +B + 2MG.

Notice that this implies that ρ is discrete, since if {γn} is a sequence of distinct elements in
Γ, then d(id, γn)→∞, so d(I, ρ(γn)(I))→∞. �

27. Singular values and Anosov representations

In this section we show that if ρ is a Pk-Anosov representation, the ratio of the kth and
(k + 1)st singular values grows uniformly exponentially in the word length. One may view this
as a strengthening of the fact that the orbit map is a quasi-isometric embedding. Kapovich-Leeb-
Porti [133] and Bochi-Potrie-Sambarino [32] showed that this property characterizes Pk-Anosov
representations.

Proposition 27.1. (Guichard-Wienhard [109]) If ρ : Γ→ SL(d,R) is a Pk-Anosov representa-
tion, then there exists D ≥ 1 and L ≥ 0 so that

Dd(1, γ) ≥ log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ 1

D
d(1, γ)− L

for all γ ∈ Γ.

Notice that one can use Proposition 27.1 to give a more direct proof of Corollary 26.3, which
asserts that orbit maps of Anosov representations are quasi-isometric embeddings into Xd.

Proof. Let Êρ = Ξ̂⊕ Θ̂ be the splitting of the flat bundle associated to ρ over Û(Γ) and let || · ||
be a continuous family of norms on Êρ (which we may assume all come from bilinear forms on
the fibers). We can then lift the norms || · || and the splitting E(Γ) = Ξ⊕Θ equivariantly to the
cover, which is a vector bundle over U(Γ). We will assume, for simplicity, that Γ is torsion-free.

By Lemma 25.1, there exist a,C > 0 so that if t > 0, Z ∈ U(Γ), (Z,~v) ∈ Ξ|Z and
(Z, ~w) ∈ Θ|Z , then

||ψt(Z,~v)||
||ψt(Z, ~w)||

≤ Ce−at ||(Z,~v)||
||(Z, ~w)||

.

Recall that ||(Z,~v)|| is just the norm of the vector ~v in the norm on E(Γ)|Z , so we could
also re-write ||(Z,~v)|| = ||~v||Z , in which case we would write ||ψt(Z,~v)|| = ||~v||φt(Z), since
ψt(Z,~v) = (φt(Z), ~v). The above inequality can thus be rewritten as

||~v||φt(Z)

||~w||φt(Z)
≤ Ce−at ||~v||Z

||~w||Z
which I hope will offer more intuition.

We now observe that there exists a compact subset R of U(Γ) so that Γ(R) = U(Γ) and if

γ ∈ Γ, then there exists Z ∈ R and sγ > 0 so that φsγ (Z) ∈ γ(R). If Γ = π1(M) and M = M̃/Γ
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is a closed negatively curved manifold, then we can simply let S ⊂ M̃ be a compact submanifold

(with boundary) so that Γ(S) = M̃ and then let R ⊂ T 1M̃ = U(Γ) be the set of all unit tangent
vectors at points in S. The same argument works whenever Γ acts properly discontinuously
and cocompactly on a CAT(−1)-space X, for example, if Γ is a convex cocompact subgroup of
a rank one Lie group, where X is the convex core of the limit set of Γ. One may establish this
fact more generally for the Gromov geodesic flow, but we will omit details here.

Let γ be a non-trivial element of Γ and suppose that Z ∈ R, sγ > 0 and φsγ (Z) ∈ γ(R). Let

W = γ−1(φsγ (Z)), so, by the equivariance of the norms,

||ρ(γ)−1(~u)||W = ||~u||φsγ (Z)

for all ~u ∈ Rd. So, in this case, the inequality above becomes

||ρ(γ)−1(~v)||W
||ρ(γ)−1(~w)||W

=
||~v||φsγ (Z)

||~w||φsγ (Z)
≤ Ce−asγ ||~v||Z

||~w||Z
if ~v ∈ Ξ|Z and ~w ∈ Θ|Z . However, since R is compact, there exists B > 0 so that if || · ||0 is the
standard norm on Rd, then the identity map

id : (Rd, || · ||0)→ (Rd, || · ||Z)

is B-bilipschitz for all Z ∈ R. Therefore,

||ρ(γ)−1(~v)||0
||ρ(γ)−1(~w)||0

≤ B4Ce−asγ
||~v||0
||~w||0

if ~v ∈ Ξ|Z and ~w ∈ Θ|Z . Notice that, by equivariance, ρ(γ−1)(ΞZ) = ΞW and ρ(γ)−1(Θ|Z) = ΘW

So we may rewrite the inequality above to say that if ~x ∈ ρ(γ)−1(Ξ|Z) = ΞW and ~y ∈ ρ(γ)−1(Θ|Z) = ΘW ,
then

||~x||0
||~y||0

≤ B4Ce−asγ
||ρ(γ)(~x)||0
||ρ(γ)(~y)||0

so
||ρ(γ)(~x)||0
||ρ(γ)(~y)||0

≥ 1

B4C
easγ
||~x||0
||~y||0

.

Now consider the following alternative formulation of the definition of singular values

σk(A) = sup

{
inf

v∈P−{0}

(
||A(v)||0
||v||0

) ∣∣∣ P ∈ Grk(Rd)
}
.

It follows immediately from this definition, since Ξ|W ∈ Grk(Rd), that

σk(ρ(γ)) ≥ σk(ρ(γ)|Ξ|W )

On the other hand, if P ∈ Grk+1(Rd), then P ∩Θ|W is non-trivial, so

σk+1(ρ(γ)) ≤ σ1(ρ(γ)|Θ|W ).

By combining we see that

σk(ρ(γ))

σk+1(ρ(γ))
≥
σk(ρ(γ)|Ξ|W )

σ1(ρ(γ)|Θ|W )
≥ 1

BC4
easγ .

We now see that the Milnor-Svarc lemma implies that sγ is coarsely comparable to d(id, γ)
(although we will only keep track of the lower bound we need). Choose Z0 ∈ R and r > 0 so
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that R ⊂ B(r, Z0). The Milnor-Svarc Lemma implies that there exists (K,C) so that the orbit
map τ : Γ→ U(Γ) given by τ(γ) = γ(Z0) is a quasi-isometric embedding, so

d(Z0, γ(Z0)) ≥ 1

K
d(1, γ)− C

which implies that

d(Z, φsγ (Z)) ≥ 1

K
d(1, γ)− C − 2r.

On the other hand, by Theorem 24.1, there exists (K̂, Ĉ) so that all flow-lines are (K̂, Ĉ)-quasi-
isometric embeddings, so

sγ ≥
1

K̂
d(Z, φsγ (Z))− Ĉ ≥ 1

KK̂
d(id, γ)−

(
C + 2r

K̂
+ Ĉ

)
which implies our desired lower bound

σk(ρ(γ))

σk+1(ρ(γ))
≥
(

1

BC4
e−
(
C+2r

K̂
+Ĉ
))

e
a
KK̂

d(id,γ).

The proof of the upper bound is standard at this point. Let M = sup{σ1(ρ(s)) | s ∈ S}.
Then

M2d(1,γ) ≥ σ1(ρ(γ))

σd(ρ(γ))
≥ σk(ρ(γ))

σk+1(ρ(γ))
.

�

Kapovich, Leeb and Porti [133, Theorem 1.5] proved that uniform growth of the kth singular
value gap implies that a representation is Pk-Anosov. Moreover, they show that one doesn’t
need to assume that the domain group is Gromov hyperbolic. Bochi, Potrie and Sambarino
[32] reproved this result using the theory of dominated splittings. Guéritaud, Guichard, Kassel
and Wienhard [107] obtained closely related results.

Theorem 27.2. If Γ is a finitely generated group, ρ : Γ → SL(d,R) is a representation, and
there exists L > 1 and D ≥ 0 so that

Dd(1, γ) ≥ log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ 1

D
d(1, γ)− L

for all γ ∈ Γ, then Γ is Gromov hyperbolic and ρ is a Pk-Anosov representation.

The key point of the approach of Bochi, Potrie and Sambarino [32] is that if ρ : Γ→ SL(d,R)

is Pk-Anosov, then the resulting splitting Êρ = Ξ̂⊕ Θ̂ is a dominated splitting of the flat bundle
(which can be viewed as a strong form of the contraction property in Lemma 25.1). They use
the singular value gap property to show that Γ is hyperbolic and to produce limit maps which
give rise to a splitting. They then use work of Bochi and Gourmelon [31] to show that the
resulting splitting is dominated and to recover that ρ is Pk-Anosov. Kapovich, Leeb and Porti
[133] work more directly with the action of the group on the symmetric space and its boundary.

Remarks: One can derive the estimate on the eigenvalue gap in Theorem 25.2 from Proposition

27.1, by noticing that if A ∈ SL(d,R), then log λi(A) = lim log σi(A
n)

n and that ||γ|| is uniformly

comparable to lim d(1,γn)
n (see [72, Proposition 10.6.4]).
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On the other hand if ρ is irreducible (or, more generally, a direct sum of irreducible represen-
tations), then one may use a result of Benoist [16], which is stated (and reproven) in the form
needed here in [107, Theorem 4.12], to derive Proposition 27.1 from the estimate in Theorem
25.2.

Examples: Proposition 27.1 allows us to give a simple example of a discrete faithful represen-
tataion ρ : F2 → SL(4,R) whose orbit map is a quasi-isometric embedding, but which is not
P1-Anosov or P2-Anosov. Since these are the two flavors of Anosov available for SL(4,R), we
say that ρ is not Anosov. Our example is based on an example of Guichard [107, Appendix A].

Let F2 =< a, b > be the free group on two generators. Let ρ1 : F2 → SL(2,R) be a represen-
tation which projects to a convex cocompact representation of F2 into PSL(2,R). Therefore,
log σ1(µ(ρ1(γ)) grows linearly in the word length of γ, i.e. there exist J > 0 and B so that

Jd(1, γ) ≥ log σ1(µ(ρ1(γ)) ≥ 1

J
d(1, γ)−B

for all γ ∈ Γ. Then let ρ2 : F2 → SL(2,R) be defined so that ρ2(a) = ρ1(a) and ρ2(b) = I.
Let ρ : F2 → SL(4,R) be defined by ρ = ρ1 ⊕ ρ2 (where we consider the natural embedding
of SL(2,R)⊕ SL(2,R) into SL(4,R) obtained by putting the first factor in the upper left hand
corner and the second factor in the lower right hand corner.) Then, since

√
2 log σ1(ρ1(γ)) ≥ σ1(ρ(γ) ≥ σ1(ρ1(γ))

for all γ ∈ F2. Proposition 26.1 then implies that the orbit map τρ is a quasi-isometric embed-
ding.

On the other hand,

σ1(ρ(an)) = σ1(ρ1(an)) = σ2(ρ(an))

for all n, so ρ is not P1-Anosov. Moreover,

σ2(ρ(bn)) = 1 = σ3(ρ(bn))

for all n, so ρ is not P2-Anosov. Therefore, ρ is not an Anosov representation into SL(4,R).
However, if we view ρ as a representation into SL(2,R)×SL(2,R) then it is Anosov with respect
to the parabolic subgroup {I} × SL(2,R). (See Section 49 for a discussion of what it means to
be an Anosov representation into a semi-simple Lie group other than SL(d,R).)

In Guichard’s example [107, Appendix A], he chooses ρ1 to be a geometrically finite repre-
sentation where a is taken to a parabolic (and every parabolic in ρ1(Γ) is conjugate, in ρ1(Γ),
to a power of ρ(a)). One can then take ρ2 = ρ1 ◦ ι where ι : F2 → F2 is the involution
taking a to b, and let ρ = ρ1 ⊕ ρ2. The orbit map of ρ is a quasi-isometric embedding, yet
fails to be Anosov. Moreover, ρ is a limit of P2-Anosov representations, but also a limit of
indiscrete representations. Guichard’s example also fails to be an Anosov representation into
SL(2,R)× SL(2,R).

Quite recently, Tsouvalas [207] has produced representations into SL(d,R), for d ≥ 4, whose
orbit maps are quasi-isometric embeddings into SL(d,R), but which are not Pk-Anosov for any
k and are not limits of Pk-Anosov representations for any k.
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28. Stability

The proof of stability makes use of Labourie’s original (equivalent) definition of Pk-Anosov

purely in terms of sections of Êkρ . If ρ : Γ→ SL(d,R) is a representation, let

Gj(Γ) = U(Γ)×Grj(Rd) and Ĝjρ = Gj(Γ)/Γ

where, as usual, Γ acts on the first factor by Γ and on the second factor by ρ(Γ). The flow φ̃t
extends to the trivial flow ψ̃jt on Gj(Γ) and descends to a flow ψjt on Ĝjρ extending the flow on

Û(Γ).

We may endow Ĝjρ with a continuously varying family of Riemannian metrics on the fibers.

Then the flow is differentiable on the fibers in the sense that if Z ∈ Û(Γ), (Ĝjρ)Z is the fiber

over Z and and X ∈ (Ĝjρ)Z , then

DXψ
j
t : TZ(Ĝjρ)X → Tψt(Z)(Ĝ

j
ρ)φt(Z)

is well-defined. If r : Û(Γ) → Ĝjρ is a flow-invariant section, we say ψt is contracting along r if

there exists a,A > so that if t > 0 and Z ∈ Û(Γ), then

||Dr(Z)ψt|| ≤ Ae−at.

Notice that a section σ : Û(Γ)→ Êkρ gives rise to sections σk : Û(Γ)→ Ĝkρ and σd−k : Û(Γ)→
Ĝd−kρ (and vice versa). We say that σ is transverse if σk(Z) is transverse to σd−k(Z) for all

Z ∈ Û(Γ). Notice that σ lifts to a ρ-equivariant section σ : Û(Γ) → Êkρ , as do σk and σd−k.

In this case, we obtain a splitting Eρ = Ξσ ⊕ Σσ so that Ξσ|Z = σ̃k(Z) and Θσ|Z = σ̃d−k(Z)

which descends to a splitting Êρ = Ξ̂σ ⊕ Σ̂σ. At the beginning of the chapter we saw that

σ∗(V̂ k
ρ ) may be identified with Hom(Ξ̂σ, Θ̂σ). Notice that the fiber of σ∗(V̂ k

ρ ) above Z is exactly

Tσk(Z)(Ĝ
k
ρ)Z . So, if σ is flow-invariant, then the flow is contracting along σk if and only if the

associated flow on Hom(Ξ̂σ, Θ̂σ) is contracting.
We will make use of the following equivalence.

Lemma 28.1. ([45, Prop. 2.11]) A representation ρ : Γ→ SL(d,R) is Pk-Anosov if and only if

there exists a transverse flow invariant section σ : Û(Γ) → Êkρ so that ψkt is contracting along

σk and ψd−k−t is contracting along σd−k.

Proof. Recall that if ρ is Pk-Anosov with Pk-limit maps ξρ and θρ, then one obtains a transverse

flow-invariant section σ : Û(Γ) → Êkρ so that the flow is contracting along σ∗(V̂ k
ρ ) and the

inverse flow is contracting along σ∗(V̂ d−k
ρ ). Therefore, ψkt is contracting along σk and ψd−k−t is

contracting along σd−k. This completes the forward direction of the proof.

Now suppose that there exists a transverse flow invariant section σ : Û(Γ) → Êkρ so that

ψkt is contracting along σk and ψd−k−t is contracting along σd−k. We may lift σk to a section

σ̃k : U(Γ)→ U(Γ)×Grk(Rd). Since σ is flow-invariant, there exists ξ : ∂Γ×∂Γ−∆→ Grk(Rd)
so that σ̃k(x, y, s) = ((x, y, s), ξ(x, y)). Given x ∈ ∂Γ, consider y, z ∈ ∂Γ \ {x}. There exists
a ∈ R so that (x, y, 0) and (x, z, a) lie in the same leaf of the stable foliation of U(Γ), so

lim
t→∞

d
(

(x, y, t), (x, y, a+ t)
)

= 0
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where d is some Γ-invariant metric on U(Γ). (We established the existence of an stable foliation
for closed hyperbolic manifolds, and more generally closed strictly convex projective manifolds
in Section 22. Mineyev [166, Theorem 60(h)] establishes the existence for all geodesic flows of

hyperbolic groups.) But, since σ is continuous and Dψ̃kt is contracting along σk, one see that

lim
t→0

d
(
σ̃k(x, y, t), σ̃k(x, z, t+ a)

)
= 0

Therefore, d
(
ξ(x, y), ξ(x, z)

)
= 0, so ξ(x, y) = ξ(x, z). So, ξ descends to a continuous, ρ-

equivariant map ξρ : ∂Γ→ Grk(Rd) so that σ̃k(x, y, s) = ((x, y, s), ξρ(x)). Similarly, there exists

a continuous, ρ-equivariant map θρ : ∂Γ→ Grd−k(Rd) so that σ̃d−k(x, y, s) = ((x, y, s), θρ(y)).

Since σ is transverse, ξρ and θρ are transverse. Since the flow is contracting along σ∗(V̂ k
ρ ),

we conclude that ρ is Anosov with limit maps ξρ and θρ.
�

We are now ready to establish the stability of Pk-Anosov representations. Labourie [143,

Proposition 2.1] first established stability by showing that σkρ(U(Γ)) and σd−kρ (Û(Γ)) are isolated

hyperbolic sets for ψkt and ψd−k−t and applying standard results from hyperbolic dynamics. We
will give a more self-contained proof which follows the treatment of Guichard and Wienhard
[109, Theorem 5.13]. This type of argument is fairly standard in hyperbolic dynamics, going
back at least to the 1960’s. However, it may be best to skip this argument if it feels alien to
you, since we will not be using similar arguments elsewhere.

Theorem 28.2. If ρ0 : Γ→ SL(d,R) is a Pk-Anosov representation, then there exists a neigh-
borhood U of ρ0 in Hom(Γ, SL(d,R)) so that if ρ ∈ U , then ρ is Pk-Anosov.

Moreover, the maps Xk : U → C0(∂Γ,Grk(Rd)) and Xd−k : U → C0(∂Γ,Grd−k(Rd)) given
by Xk(ρ) = ξρ and Xd−k(ρ) = θρ are continuous.

Proof. Suppose that W is a neighborhood of ρ0 in Hom(Γ,SL(d,R)). We can form the associated

flat Grassmanian bundles ĜkW and Ĝd−kW over W × Û(Γ) by first considering

GjW = W × U(Γ)×Grj(Rd)

for all j = 1, . . . , d− 1, and the projection map πj : GjW → W × U(Γ), which is a fibre bundle

map. Let the flow {ψjt }t∈R on GjW be given by ψjt (ρ, Z, P ) = (ρ, φt(Z), P ) for all t. We let the

group Γ act on GjW by
γ(ρ, Z, P ) = (ρ, γ(Z), ρ(γ)(P ))

and set
ĜjW = GjW /Γ.

Then πj descends to give a fiber bundle π̂j : ĜkW →W × Û(Γ) with fiber Grj(Rd). Since all the

ψWt commute with the action of Γ, they descend to a flow {ψ̂jt }t∈R on ĜjW . (Notice that we are

really just collecting all the Ĝjρ for all ρ ∈W .)
Let ξ0 : ∂Γ→ Grk(Rd) and θ0 : ∂Γ→ Grd−k(Rd) be the limit maps for ρ0. Let

σk0 : {ρ0} × Û(Γ)→ ĜkW |{ρ0}×Û(Γ)

be the associated section. Let || · || be a continuous family of Riemannian metrics on the fibers

of GkW . Recall that the flow ψjt is contracting on σk0 (Û(Γ)).
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We can choose a closed neighborhood W1 of σ0, contained in W , a section

σk : W1 × Û(Γ)→ ĜkW

t0 > 0 and a closed neighborhood B of σ0({ρ0} × Û(Γ) in GkW1
so that

(1) σk|{ρ0}×Û(Γ))
= σk0 ,

(2) σk(W1 × Û(Γ)) ⊂ B,

(3) ||Dψkt (~v)|| ≤ 1
2 ||~v|| for all ~v ∈ Tb(ĜkW )|πk(b)) where b ∈ B and t ≥ t0, and

(4) ψkt (B) ⊂ B for all t ≥ t0.

However, we cannot yet assume that σk is flow invariant.

Let S(W1, B) be the set of continuous sections s : W1×Û(Γ)→ Ĝd−kW so that s(W1 × Û(Γ)) ⊂ B.
For any r ≥ t0, we can define a uniform contraction F r on S(W1, B), given by saying that F r(s)
is the section so that

F r(s)(ρ, Z) = ψkr (s(ρ, φ−r(Z))).

The contraction mapping theorem, then assures that F r has a unique fixed point

νkr = lim(F r)n(σk).

(Here, the norm on the tangent spaces to the fibers gives rise to a continuous family of metrics
on the fibers. We then get a metric on S(W1, B) by considering

d(s1, s2) = max{d(s1(ρ, Ẑ), s2(ρ, Ẑ)) | (ρ, Ẑ) ∈W1 × Û(Γ)}

where s1, s2 ∈ S(W1, B) and the distance is measured in the fibers. Our assumptions imply
that d(F r(s1), F r(s2)) ≤ 1

2d(s1, s2) if r ≥ t0 and s1, s2 ∈ S(W1, B).)

Notice that since σ0 is fixed by ψk, νkr |{ρ0}×Û(Γ)
= σk0 . Since F r1 and F r2 commute for all

r1, r2 ≥ t0 and the fixed points are unique, νkr1 = νkr2 . So we can simply define νk = νr for some

(any) r ≥ t0 and νk is fixed by all ψkt with t ≥ t0 and hence for all t ∈ R. Moreover, ψkt is

contracting along νk(W1 × Û(Γ)).

Similarly, there exists a section σd−k0 : Û(Γ) → Ĝd−kρ0 so that the inverse flow {ψd−k−t } is

contracting along σd−k0 . We can then run the whole argument above to obtain a neighborhood

W2 of ρ0 and a flow-invariant section νd−k : W2 × Û(Γ) → Ĝd−kW so that the inverse flow is

contracting along νd−k.
Since transversality is an open condition, and ξ0 and ρ0 are transverse, we can find an open

neighborhood U ⊂ W1 ∩W2 of ρ0, so that if ρ ∈ U , then νkρ and νd−kρ are transverse. One

may then combine νk and νd−k to obtain a transverse flow invariant section ν : U × Êkρ so

that if ρ ∈ U , then then ψkt is contracting along νk({ρ} × Û(γ)) and ψd−k−t is contracting along

σd−k({ρ} × Û(Γ)). Therefore, if ρ ∈ U , then ρ is Pk-Anosov. Since ν is continuous, Xk and
Xd−k are both continuous on U . �

Hirsch, Pugh and Shub [115, Theorem 3.8] proved that any section obtained in this manner
is actually Hölder, which implies that our limit maps are Hölder.

Guichard and Wienhard [109, Theorem 5.14] note that since one can choose the contraction
constants to be uniform over the neighborhood U in the proof above, one may also choose
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uniform constants D and L so that if ρ ∈ U and γ ∈ Γ, then

D||γ|| ≥ log

(
λk(ρ(γ))

λk+1(ρ(γ))

)
≥ 1

D
||γ|| − L.

Along with Proposition 8.3 this is all one needs to generalize Fricke’s Theorem into the setting
of Pk-Anosov representations.

Let
Anosovk(Γ,SL(d,R)) ⊂ X(Γ, SL(d,R) = Hom(Γ, SL(d,R))/SL(d,R)

be the set of conjugacy classes of Pk-Anosov representations.

Theorem 28.3. (Guichard-Wienhard [109, Corollary 5.4], see also [55, Theorem 6.2]) If Γ is a
torsion-free hyperbolic group, d ≥ 2 and 1 ≤ k ≤ d

2 , then Out(Γ) acts properly discontinuously
on Anosovk(Γ,SL(d,R)).

Remarks: (1) Bridgeman, Canary, Labourie and Sambarino [45, Theorem 6.1] show that if ρ0

is a smooth point of the (real algebraic) variety Hom(Γ,SL(d,R)), then one can choose U so that
Xk and Xd−k are real analytic on U . The proof is really just a more technically complicated
version of the argument above.

(2) Kapovich, Leeb and Porti [133, Theorem 1.5] develop a notion of Pk-Morse quasigeodesic
and show that a representation is Pk-Anosov if and only if the orbit map takes geodesic in
CΓ to (uniform) Pk-Morse-quasigeodesics. They also establish a local-to-global principle [134,
Theorem 7.18] which allows them to establish stability of Pk-Anosov representations with a
proof which is reminiscent of the proof in rank one, see [134, Theorem 7.33].
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Part 6. Anosov representations: Characterizations and Examples

Where the eagle glides ascending
There’s an ancient river bending
Down the timeless gorge of changes
Where sleeplessness awaits
I searched out my companions
Who were lost in crystal canyons
When the aimless blade of science
Slashed the pearly gates
———————Neil Young [225]

In this chapter, we establish characterizations of Anosov representations due to Guéritaud-
Guchard-Kassel-Wienhard [107], Guichard-Wienhard [109], Kapovich-Leeb-Porti [132, 134],
Kassel-Potrie [136] and Tsouvalas [208]. Kapovich, Leeb and Porti develop other powerful
and beautiful characterizations, but these will be out of the purview of these notes, as they
involve a more sophisticated study of symmetric spaces.

The major early examples of Anosov representations were convex cocompact representations
into rank one Lie groups, Benoist representations, Hitchin representations of surface groups
into split real Lie groups (e.g. SL(d,R)), and maximal representations of surface groups into
Lie groups of Hermitian type (e.g. SP(2n,R). Our characterizations will allow us to show
that convex cocompact representations in rank one Lie groups and Benoist representations are
P1-Anosov. We will show that d-Fuchsian representations into SL(d,R) are Borel Anosov (i.e.
Pk-Anosov for all k), and hence that their small deformations are Borel Anosov. Labourie
[143] showed that all deformations of d-Fuchsian representations into SL(d,R), i.e. all Hitchin
representations, are Borel Anosov, but this will not be covered in these notes. The theory of
maximal representations was pioneered by Burger-Iozzi-Wienhard [52] and we refer the reader
to their original paper or to their survey article [53] for a discussion of maximal representations.

We again encourage the less experienced reader to focus exclusively on the P1-Anosov case
when first reading these notes. We will see that a representation is Pk-Anosov if and only if its
kth exterior power is P1-Anosov, see Theorem 34.3, so this restriction in viewpoint is not too
limiting.

29. More linear algebra in SL(d,R)
Mathematics and politics
Three sixes and deadly tricks
——————–Lucinda Williams [216]

In this section, we derive some algebraic consequences of the singular value decomposition
which we will need later.

We recall that if A ∈ SL(d,R) then we may write A = LDK where K,L ∈ SO(d) and D is
the diagonal matrix with entries dii = σi(A) for all i. In general, L and K can not be chosen
canonically when some of the singular values agree. However, if σk(A) > σk+1(A), we can define
the subspaces Uk(A) = L(< e1, . . . , ek >) and Vd−k(A) = L

(
< ek+1, . . . , ed >

)
. Geometrically,
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A(Sd−1) is an ellipsoid and Uk(A) is the k-plane spanned by the k longest axes of this ellipsoid
and Vd−k(A) is the subspace spanned by the d− k shortest axes.

We begin with an elementary lemma about singular values of products.

Lemma 29.1. If A,B ∈ GL(d,R), then

σi(A)σ1(B) ≥ σi(AB) ≥ σi(A)σd(B)

for all i = 1, . . . , d.

Proof. Recall that if T ∈ GL(d,R) we can define σi(T ) iteratively, by letting

σ1(T ) = max

{
||T (~u)||
||~u||

∣∣∣ ~u ∈ Rd − {~0}
}

and choosing ~v1(T ) so that ||~v1(T )|| = 1 and σ1(T ) = ||T (~v1(T ))|| and then defining

σj+1(T ) = max

{
||T (~u)||
||~u||

∣∣∣~u ∈ Rd − {~0}, ~u ⊥ ~vj(T ) if i ≤ j
}

and vj+1(T ) so that vj+1(T ) ⊥ ~vi(T ) for all i ≤ j, ||~vj+1(T )|| = 1 and σj+1(T ) = |||T (~vj+1)||.
Let ~u1 be a unit vector in < B−1(v1(A)) >, then

σ1(AB) ≥ ||AB(~u1)|| = σ1(A)|| ~B(~u1)|| ≥ σ1(A)σd(B).

For general i, choose a unit vector

~ui ∈
(
< v1(AB), . . . , vi−1(AB) >⊥ ∩ < B−1(v1(A)), . . . , B−1(vi(A)) >

)
.

Then, B(~ui) ∈< v1(A), . . . , vi(A) >, so

σi(AB) ≥ ||A(B~ui)|| ≥ σi(A)||B(~ui)|| ≥ σi(A)σd(B)

which completes the proof of the lower bound.
On the other hand, using the lower bound, we see that

σi(A) = σi((AB)B−1) ≥ σi(AB)σd(B
−1) =

σi(AB)

σ1(B)

which establishes the upper bound. �

Recall that d(< ~v >,< ~w >) = sin θ(~v, ~w) (where θ(~v, ~w) is the angle between ~v and ~w) gives
a metric on RPd−1. We will need the following well-known linear algebra lemma. The following
proof is taken directly from Tsouvalas [208] (see also Bochi-Potrie-Sambarino [32, Lemma A.4]).

Lemma 29.2. If A,B ∈ SL(d,R), σ1(A) > σ2(A) and σ1(AB) > σ2(AB), then

d(U1(AB), U1(A)) ≤
√
d− 1

σ1(B)

σd(B)

σ2(A)

σ1(A)
.

Proof. If A = LADAKA is the singular value decomposition of A and AB = LABDABKAB

is the singular values decomposition of AB, then AB = LABDABKAB = LADAKAB. Thus,
L−1
A LABDAB = DAKABK

−1
AB, so

〈L−1
A LABDABe1, ei〉 = 〈DAKABK

−1
ABe1, ei〉

which implies that
σ1(AB)〈L−1

A LABe1, ei〉 = σi(A)〈KABK
−1
ABe1, ei〉
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for all i. We further note that

σ1(AB) ≥ σ1(A)σd(B) and
∣∣〈KABK

−1
ABe1, ei〉

∣∣ ≤ σ1(B)

for all i, so ∣∣〈L−1
A LABe1, ei〉

∣∣ ≤ σi(A)

σ1(A)

σ1(B)

σd(B)
≤ σ2(A)

σ1(A)

σ1(B)

σd(B)

for all i ≥ 2. Now notice that

d(U1(AB), U1(A))2 = d(LABe1, LAe1)2 = sin2 θ(LABe1, LAe1)

= 1− |〈LABe1, LAe1〉|2 = 1− |〈L−1
A LABe1, e1〉|2,

so, since
∑d

i=1

∣∣〈L−1
A LABe1, ei〉

∣∣2 = 1,

d(U1(AB), U1(A))2 =
d∑
i=2

∣∣〈L−1
A LABe1, ei〉

∣∣2 ≤ (d− 1)

(
σ2(A)

σ1(A)

σ1(B)

σd(B)

)2

.

�

We now explain how to get the corresponding result for general k. If this is your first time
learning about Anosov representation and/or you’re not very familiar with the algebra involved
here, you can just ignore this and focus on the P1 case.

If 2 ≤ k ≤ d−1, we recall the exterior power representation Edk : SL(d,R)→ SL(Λk(Rd))
where Λk(Rd) is the kth exterior power of Rd. Then if A = LDK ∈ SL(d,R) with K,L ∈ SO(d)
and D diagonal, then Edk(A) = Edk(L)Edk(D)Edk(K) where Edk(L), Edk(K) ∈ SO(ΛkRd) and

Edk(D) is diagonal, is the singular value decomposition of Edk(A). In particular, σ1(Edk(A)) =

σ1(A)σ2(A) · · ·σk(A) and σ2(Edk(A)) = σ1(A) · · ·σk+1(A). So,

σ1(Edk(A))

σ2(Edk(A))
=

σk(A)

σk+1(A))
.

Moreover, there exists an embedding Gdk : Grk(Rd) → P(ΛkRd), called the Plücker embed-

ding, which takes < ~v1, . . . , ~vk > to < ~v1 ∧ · · · ∧ ~vk >. We can then place a metric on Grk(Rd)
by letting d(P,Q) = d(Gdk(P ), GdK(Q)) for all P,Q ∈ Grk(Rd). Finally, we notice that if

σk(A) < σk+1(A), then U1(Edk(A)) = Gdk(Uk(A)). If we put this all together with Lemma 29.2
we get the following corollary:

Corollary 29.3. If A,B ∈ SL(d,R), σk(A) > σk+1(A) and σk(AB) > σk+1(AB), then

d(Uk(AB), Uk(A)) ≤
√
d− 1

(
σ1(B) · · ·σk(B)

σd−k+1(B) · · ·σd(B))

)
σk+1(A)

σk(A)
.

If A is proximal, we can bound the difference between U1(A) and the attracting eigenline A+

of A. Our proof is again taken from Tsouvalas [208].

Lemma 29.4. If A ∈ SL(d,R) and A is proximal, then

d(U1(A), A+) ≤ σ2(A)

|λ1(A)|
.
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Proof. Let A = LDK be the singular value decomposition, so K,L ∈ SOd), D is diagonal,
d11 = σ1(A) and U1(A) =< L(e1) >. Choose M ∈ SO(d) so that < M(e1) >= A+. Then

< M(e1), L(ei) > = < L−1M(e1), ei >=< D−1K−1A−1M(e1), ei >=< K−1(λ1(A)M(e1)), Dei >

=
σi(A)

λ1(A)
< K−1M(e1), ei >

for all i. Since d(U1(A), A+) = sin∠(U1(A), A+) = sin∠(M(e1), L(e1)), we see that

d(U1(A), A+)2 = 1− | < M(e1), L(e1) > |2 =

d∑
i=2

∣∣ < M(e1), L(ei) >
∣∣2

=
d∑
i=2

σi(A)2

λ1(A)2

∣∣ < K−1M(e1), ei >
∣∣2

≤ σ2(A)2

λ1(A)2

�

We get the following consequence in the Pk setting.

Corollary 29.5. If A ∈ SL(d,R), A is Pk-proximal, and A+
k is the attracting k-plane of A,

then

d(Uk(A), A+
k ) ≤ σ1(A) · · ·σk−1(A)σk+1(A)

|λ1(A) · · ·λk(A)|

Proof. Notice that if A is Pk-proximal, then EdkA is proximal,

σ2(Edk(A)) = σ1(A) · · ·σk−1(A)σk+1(A) and ‘λ1(Edk(A)) = λ1(A) · · ·λk(A).

Lemma 29.4 then immediately implies that

d(Uk(A), A+
k ) ≤

σ2(Edk(A))

|λ1(Edk(A))|
=
σ1(A) · · ·σk−1(A)σk+1(A)

|λ1(A) · · ·λk(A)|
.

�

30. The Cartan property

Out in California
They’re better than we are
They get no questions from their parents
They got no ceilings on their cars
And just as soon as they inspect their tan lines
They got a billion other things to do
——————Pat McCurdy [220]
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We say that a representation ρ : Γ→ SL(d,R) is Pk-divergent if whenever {γn} is a sequence
of distinct elements of Γ, then

lim log

(
σk(ρ(γn))

σk+1(ρ(γn))

)
= +∞.

Proposition 27.1 implies that Pk-Anosov representations are Pk-divergent.
Suppose that Γ is Gromov hyperbolic, ρ : Γ→ SL(d,R) is Pk-divergent and ξ : ∂Γ→ Grk(Rd)

is a continuous, ρ-equivariant map. We say that ξ has the Cartan property if whenever {γn}
is a sequence of distinct elements of Γ converging to z ∈ ∂Γ, then ξ(z) = limUk(ρ(γn)). (Notice
that since ρ is Pk-divergent, Uk(ρ(γn)) is defined for all sufficiently large n.)

We first observe that if a Pk-limit map has the Cartan property, then it is dynamics preserving
at fixed points of Pk-proximal elements.

Lemma 30.1. Suppose that Γ is a hyperbolic group, ρ : Γ → SL(d,R) is a representation,
and ξ : ∂Γ → Grk(Rd) is a continuous ρ-equivariant map with the Cartan property. If ρ(γ) is
Pk-proximal, then ξ(γ+) is the attracting k-plane of ρ(γ).

Proof. Recall that if γ has infinite order, then log |λi(ρ(γ))| = lim log σi(ρ(γ)n)
n for all i.

Suppose k = 1 and ρ(γ) is proximal, then

lim
1

n
log

(
λ1(ρ(γn))

σ2(ρ(γn)

)
= log

(
λ1(ρ(γ))

λ2(ρ(γ))

)
> 0, so lim

(
σ2(ρ(γn))

λ1(ρ(γn))

)
= 0.

Lemma 29.4 then implies that ξ(γ+) = limU1(ρ(γ)n) is the attracting eigenline of ρ(γ).
If k 6= 1, we use Corollary 29.5 in place of Lemma 29.4. �

As a consequence, we obtain a uniqueness property for limit maps with the Cartan property,
when ρ(Γ) contains a Pk-proximal element.

Corollary 30.2. Suppose that Γ is a hyperbolic group, ρ : Γ → SL(d,R) is a representation,

and ρ(Γ) contains a Pk-proximal element. If ξ : ∂Γ → Grk(Rd) and ξ̂ : ∂Γ → Grk(Rd) are a

continuous ρ-equivariant maps with the Cartan property, then ξ = ξ̂.

Proof. Suppose that α ∈ Γ and ρ(α) is Pk-proximal. Then, by Lemma 30.1, ξ(α+) = ξ̂(α+) is

the attracting k-plane of ρ(α). By equivariance, ξ and ξ̂ agree on the orbit Γ(α+) of α+. Since

Γ(α+) is dense in ∂Γ, by Proposition 5.6, and ξ and ξ̂ are both continuous, this implies that

ξ = ξ̂. �

We next show that if the ratio of singular values grow faster than linearly, then there is a
limit map with the Cartan property.

Proposition 30.3. (Guéritaud-Guichard-Kassel-Wienhard [107, Theorem 1.1(1)]) If Γ is a
hyperbolic group, ρ : Γ→ SL(d,R) is a representation and there exist c > 1 and C so that

log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ c log(d(id, γ))− C

then there exists a continuous ρ-equivariant map ξ : ∂Γ → Grk(Rd) which has the Cartan
property.
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One may calculate that if A =

[
1 1
0 1

]
, then log σ1(A)

σ2(An) ∼ 2 log n, so if c ∈ (1, 2], then the

growth condition in Proposition 30.3 does not imply that every element is proximal. However, if
c > 2, one can further prove that ρ(γ) is proximal if γ has infinite order, see Guéritaud-Guichard-
Kassel-Wienhard [107, Lemma 2.27], and so ξ is also dynamics-preserving, by Lemma 30.1, see
[107, Theorem 1.1(2)]. If ρ : Fn → SL(2,R) is a geometrically finite, but not convex cocompact,
representation, then ρ satisfies the growth condition with c = 2, but not with respect to any
c > 2.

Proof. We first give the proof when k = 1. Notice that, in this case, our assumption immediately
implies that ρ is P1-divergent.

Suppose z ∈ ∂Γ. Let γ : [0,∞) → CΓ be a geodesic in the Cayley graph CΓ of Γ so that
γ(0) = id and γ(∞) = z. Then γn = γ(n) ∈ Γ for all n and Lemma 29.2 implies that

d(U1(ρ(γn)), U1(ρ(γn+1)) ≤
√
d− 1

σ1(γ−1
n γn+1)

σd(γ
−1
n γn+1)

σ2(γn)

σ1(γn)
≤
√
d− 1M2eCn−c

where M = sup{σ1(s) | s ∈ S} and S is the symmetric generating set for Γ used to construct
CΓ (since γ−1

n γn+1 ∈ S). Since c > 1, it follows that {U1(ρ(γn))} is a Cauchy sequence and we
define

ξ(z) = limU1(ρ(γn)).

Now suppose that {αn} is an arbitrary sequence converging to z. Given any R ∈ N, there
exists NR ≥ R so that if n > NR, then a geodesic {β0 = αn, β1, . . . , βs = γn} in Γ joining αn to
γn does not pass within R of the origin. The above calculation, then implies that

d(U1(αn), U1(γn)) ≤
s∑
i=1

d(U1(βi−1), U1(βi)) ≤
s∑
i=1

√
d− 1

σ1(β−1
i βi+1)

σd(β
−1
i βn+1)

σ2(βi)

σ1(βi)

≤
√
d− 1M2Cec

s∑
i=1

d(id, βi)
−c

Let αm be the point on the geodesic closest to the identity. Choose s = b2δc + 1. Then, by
considering a triangle with vertice αm, αr and id, we see that αm+s must lies a distance at
most δ from a point x on a geodesic joining id to αr and d(x, id) ≥ R − δ. It follows that
d(αm+k, id) ≥ R− 3δ + (k − s) for all k between 1 and r − s. One argues symmetrically to get
d(αm−k, id) ≥ R− 3δ + (k − s) for all k between 0 and m. Therefore,

d(U1(αn), U1(γn)) ≤
√
d− 1M2Cec

s∑
i=1

d(id, βi)
−c

≤ 2
√
d− 1M2Cec

∞∑
k=0

(
R− 3δ + (k − s)

)−c
Since limj→∞

∑∞
i=0 j

−c = 0, we see that limn→∞ d(U1(αn), U1(γn)) = 0, so limU1(αn) =
limU1(γn). Therefore, ξ is well-defined and continuous.

In order to verify the result for general k, we simply use Corollary 29.3 in place of Lemma
29.2. �
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Corollary 30.4. If ρ : Γ → SL(d,R) is a Pk-Anosov representation, then its limit maps have
the Cartan property.

Proof. Since, by Proposition 27.1, there exist K > 0 and C so that

log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ Kd(id, γ)− C

for all γ ∈ Γ, Proposition 30.3 gives rise to a continuous, ρ-equivariant map ξ : ∂Γ→ Grk(Rd)
with the Cartan property. Moreover, by Proposition 25.2, ξρ is Pk-dynamics-preserving. Lemma
30.2 then implies that ξ = ξρ, so ξρ has the Cartan property.

Similarly, since

log

(
σd−k(ρ(γ))

σd−k+1(ρ(γ))

)
= log

(
σk(ρ(γ−1))

σk+1(ρ(γ−1))

)
≥ c log(d(id, γ))− C,

Proposition 30.3 produces a continuous, ρ-equivariant map θ : ∂Γ→ Grd−k(Rd) with the Cartan
property. We again check that θρ = θ, so θρ has the Cartan property. �

Remark: The Cartan property naturally arises in the background of the work of Guichard-
Wienhard [109], Guéritaud-Guichard-Kassel-Wienhard [107] and Kapovich-Leeb-Porti [132],
but Tsouvalas [208] identifies it as a central player in the theory of Anosov representations.

31. Characterization of Pk-Anosov representations

All the people we used to know
They’re an illusion to me now
Some are mathematicians
Some are carpenters’ wives
Don’t know how it all got started
I don’t know what they’re doin’ with their lives
But me, I’m still on the road
Headin’ for another joint
We always did feel the same
We just saw it from a different point of view
Tangled up in blue
—————————Bob Dylan [93]

The following characterization of Anosov representations will allow us to construct our first
examples of Anosov representation. In particular, it will easily follow that convex cocompact
representations into SO0(d− 1, 1) ⊂ SL(d,R) are projective Anosov.

Theorem 31.1. (Tsouvalas [208, Theorem 1.1]) Suppose that Γ is word hyperbolic and ρ : Γ→
SL(d,R) is a representation. Then ρ is Pk-Anosov if and only if

(1) ρ is Pk-divergent,
(2) there exist continuous transverse ρ-equivariant maps ξ : ∂Γ→ Grk(Rd) and

θ : ∂Γ→ Grd−k(Rd), and
(3) ξ has the Cartan property.
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Proof. We have already proven that Pk-Anosov representations satisfy (1), (2) and (3) (see
Proposition 27.1, Proposition 25.2 and Corollary 30.4).

So suppose ρ satisfies (1), (2) and (3). Let Êρ = Ξ̂ ⊕ Θ̂ be the splitting of the flat bundle

given by ξ and θ. Let || · || be a continuous family of norms on Êρ. Our main claim is:

Claim: If Ẑ ∈ Û(Γ) and ~v ∈ Ξ̂|Ẑ and ~w ∈ Θ̂|Ẑ are non-zero, then

lim
t→∞

||ψ̂t(~v)||
||ψ̂t(~w)||

= 0.

We will then use the fact that Û(Γ) is compact, to show that Hom(Θ̂, Ξ̂) is contracting and
hence that ρ is Pk-Anosov.

Proof of Claim: Suppose that Ẑ ∈ Û(Γ) and that ~v ∈ Ξ̂|Ẑ and ~w ∈ Θ̂|Ẑ are non-zero. Choose

a compact subset R of U(Γ) so that Γ(R) = U(Γ) and then choose Z ∈ R which covers Ẑ and
let (Z, ~x) ∈ Ξ|Z and (Z, ~y) ∈ Θ|Z cover ~v and ~w respectively. Recall that, in the notation of
Proposition 27.1,

||ψ̂t(~v)||
||ψ̂t(~w)||

=
||~x||φt(Z)

||~y||φt(Z)
.

Suppose that {tn}n∈N ⊂ R and lim tn = +∞. For each n, choose γn so that

γn(φtn(Z)) = Wn ∈ R.

Recall that if Z = (z+, z−, s), then φt(Z) = (z+, z−, s+ t), so limφtn(Z) = z+, since orbits are
quasi-isometrically embedded. Therefore, γ−1

n (Wn)→ z+, so γ−1
n → z+.

By the equivariance of the norms,

||ρ(γn)(~u)||Wn = ||~u||φtn (Z)

for all ~u ∈ Rd. So,

||ρ(γn)(~x)||Wn

||ρ(γn)(~y)||Wn

=
||~x||φt(Z)

||~y||φt(Z)
.

Since R is compact, there exists K so that || · ||W is K-bilipschitz to || · ||0 for all W ∈ R.
Therefore, it suffices to show, that if ~x ∈ ΞZ and ~y ∈ ΘZ , then

||ρ(γn)(~x)||0
||ρ(γn)(~y)||0

→ 0.

We may normalize so that Ξ|Z = ξ(z+) =< e1, . . . , ek > and θ|Z = θ(z−) =< ek+1, . . . , ed >.
Since ξ has the Cartan property, Uk(ρ(γn)−1) → ξ(z+) =< e1, . . . , ek >. Therefore, if ~x ∈ Ξ|Z
is non-zero, then

lim sup

(
||ρ(γn)(~x)||

σd−k+1(ρ(γn))||~x||

)
≤ 1

Since Uk(ρ(γn)−1) ⊥ ρ(γn)−1
(
Ud−k(ρ(γ))

)
for all n, we see that

ρ(γn)−1
(
Ud−k(ρ(γn))

)
→< ek+1, . . . , ed >,
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so if ~y ∈ Θ|Z =< ek+1, . . . , ed >, then

lim inf

(
||ρ(γn)(~y)||

σd−k(ρ(γn))||~y||

)
≥ 1.

So, if ~x ∈ ΞZ and ~y ∈ ΘZ are non-zero, then

lim sup

(
||ρ(γn)(~x)||0
||ρ(γn)(~y)||0

)
≤ lim sup

(
σd−k+1(ρ(γn))||~x||
σd−k(ρ(γn))||~y||

)
= lim sup

(
σk+1(ρ(γ−1

n ))

σk(ρ(γ−1
n ))

)
||~x||
||~y||

so, since ρ is Pk-divergent,

||ρ(γn)(~x)||0
||ρ(γn)(~y)||0

→ 0

as desired. This completes the proof of the claim. �
Since Û(Γ) is compact, there exists t0 > 0 so that if Ẑ ∈ Û(Γ), ~v ∈ Ξ̂|Ẑ and ~w ∈ Θ̂|Ẑ are

non-zero, and t ≥ t0, then

||ψ̂t(~v)||
||ψ̂t(~w)||

=≤ 1

2

||~v||
||~w||

.

We choose a = log 2
t0

and

C = sup

{
||ψt(~v)||
||ψt(|~w)|||

∣∣∣ Ẑ ∈ Û(Γ), ~v ∈ Ξ̂|Ẑ , ~w ∈ Θ̂Ẑ , ||~v|| = ||~w|| = 1, t ∈ [0, t0]

}
.

Therefore, if ~v ∈ Ξ̂|Ẑ and ~w ∈ Θ̂|Ẑ are non-zero, and t ≥ 0, then

||ψ̂t(~v)||
||ψ̂t(~w)||

≤ Ce−at ||~v||
||~w||

.

Lemma 25.1 then implies that the flow {ψ̂t} is contracting on Hom(Θ̂, Ξ̂). In Section 25, we
observed that this implies that ρ is Pk-Anosov. �

Remarks: 1) If ρ is irreducible (when k = 1) or Zariski dense (for general k), and you assume
that that ξρ and θρ are compatible, then this result follows from work of Guichard and Wienhard
[109, Proposition 4.10, Theorem 4.11]), see Theorem 33.1. We will see that if ρ is irreducible
(when k = 1) or Zariski dense (for general k), then ξ must have the Cartan property, so condition
(3) is un-necessary in these situations.

2) If you assume that both ξ and θ have the Cartan property, then Tsouvalas [208] observes
that Theorem 31.1 follows from work of Kapovich-Leeb-Porti [132, Theorem 1.1]. Moreover,
Theorem 31.1 implies the equivalence of conditions (i) and (iii) in [132, Theorem 1.1]. Theorem
31.1 also implies the equivalence of conditions (1), (2) and (3) in Guéritaud-Guichard-Kassel-
Wienhard [107, Theorem 1.3]

3) The proof of Theorem 31.1 given in Tsouvalas [208] works more directly with the dynamical
definition but our proof is simply a translation of his to the language used in this course.
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32. Examples

In this section, we use Theorem 31.1 to exhibit examples of Anosov representations. Our
first examples are convex cocompact representations into SO0(d − 1, 1). (Similar results hold
for convex cocompact representations into all rank one Lie groups, e.g. convex cocompact
representations into SU(n, 1) are P2-Anosov.)

Corollary 32.1. Suppose that d ≥ 3, Γ is hyperbolic and ρ : Γ→ SO0(d− 1, 1) ⊂ SL(d,R) is a
representation. Then ρ is convex cocompact if and only if ρ is P1-Anosov.

Proof. If ρ is P1-Anosov, then the ratio of the first and second singular values of ρ(γ) grows
uniformly exponentially in d(1, γ), by Proposition 27.1. Therefore, the ratio of the first and last
singular values of ρ(γ) also grows uniformly exponentially in d(1, γ), so, by Lemma 11.2, ρ is
convex cocompact.

Now suppose that ρ is convex cocompact. It follows from Lemma 11.2 that there exists K
and C so

log

(
σ1(ρ(γ))

σd(ρ(γ))

)
≥ Kd(id, γ)− C.

Since

log

(
σ1(ρ(γ))

σ2(ρ(γ))

)
=

1

2
log

(
σ1(ρ(γ))

σd(ρ(γ))

)
if ρ(γ) ∈ SO(d − 1), ρ is P1-divergent and Proposition 30.3 and Lemma 30.1 imply that there
exists a ρ-equivariant continuous map ξ : ∂Γ → RPd−1 with the Cartan property, such that if
ρ(γ) is proximal, then ξ(γ+) is the attracting eigenline. In particular, ξ(∂Γ) ⊂ ∂Hd−1 ⊂ RPd−1

We then define, θρ(z) to be the tangent plane to ∂Hn at ξρ(z) and notice that θρ is continuous
and ρ-equivariant and that ξρ and θρ are transverse. Theorem 31.1 then implies that ρ is
P1-Anosov. �

It is also immediate from Theorem 31.1 that if you restrict an Anosov representation to a
quasiconvex subgroup then it remains Anosov. However, the restriction to a non-quasiconvex
subgroup need not be Anosov. For example, if M = H3/Γ is a closed hyperbolic 3-manifold
which fibers over the circle, then the inclusion map of Γ into SO0(3, 1) is convex cocompact,
hence P1-Anosov. However, it is well-known that the restriction to the fibre subgroup is not
convex cocompact, see, for example, Cannon-Thurston [62].

Corollary 32.2. (Canary-Lee-Stover [57, Lemma 2.3]) If ρ : Γ → SL(d,R) is Pk-Anosov and
Θ is a quasiconvex subgroup of Γ, then ρ|Θ : Θ→ SL(d,R) is Pk-Anosov.

Proof. Since ρ is Pk-Anosov, ρ is Pk-divergent and there exist transverse ρ-equivariant limit
maps ξρ : ∂Γ → Grk(Rd) and θρ : ∂Γ → Grd−k(Rd) with the Cartan property. Since Θ
is quasiconvex, Θ is hyperbolic and there exists a Θ-equivariant embedding η : ∂Θ → ∂Γ (by
Corollary 4.2). Therefore, ρ|Θ is Pk-divergent and ξρ◦η and θρ◦η are transverse ρ|Θ-equivariant
limit maps with the Cartan property. Theorem 31.1 then implies that ρ|Θ is Pk-Anosov. �

We can also see that ρ is Pk-Anosov if and only if its restriction to a finite index subgroup is
Pk-Anosov. This clearly fails for infinite index subgroups.

Corollary 32.3. (Guichard-Wienhard [109, Corollary 1.3]) If ∆ is a finite index subgroup of
a hyperbolic group Γ and ρ : Γ→ SL(d,R) is a representation, then ρ is Pk-Anosov if and only
if ρ|∆ : ∆→ SL(d,R) is Pk-Anosov.
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Proof. Since finite index subgroups are quasiconvex, Corollary 32.2 implies that ρ|∆ is Pk-Anosov,
if ρ is Pk-Anosov.

Suppose that ρ|∆ is Pk-Anosov, then there exist transverse ρ|∆-equivariant continuous maps
ξ : ∂∆→ Grk(Rd) and θ : ∂∆→ Grd−k(Rd) with the Cartan property with respect to ρ|∆. We
may assume that ∆ is normal in Γ (by replacing ∆ with the intersection of all its conjugates if
necessary).

Since ∆ has finite index, ∂∆ = ∂Γ. We first check that ξ and θ are also ρ-equivariant. If
δ ∈ ∆ has infinite order and γ ∈ Γ, then

ξ(γ(δ+)) = ξ
(
(γδγ−1)+

)
= ρ(γδγ−1)+ = ρ(γ)(ρ(δ)+) = ρ(γ)(ξ(δ+)).

Since fixed points of infinite order elements of ∆ are dense in ∂∆ = ∂Γ, this implies that ξ is
ρ-equivariant. The proof that θ is ρ-equivariant is similar.

We next check that ρ is Pk-divergent. Since ∆ has finite index in Γ, there exists a finite set

B ⊂ Γ so that if γ ∈ Γ then there exists β ∈ B so that γβ ∈ ∆. Let M = max
{
σ1(ρ(β))
σd(ρ(β)) | β ∈ B

}
.

Let {γn} be a sequence exiting every finite subset of Γ and, for all n, choose βn so that γnβn ∈ ∆.

Then {γnβn} leaves every finite subset of ∆, so, since ρ|∆ is Pk-divergent, log σk(ρ(γnβn))
σk+1(ρ(γnβn)) →∞.

Therefore, by Lemma 29.1,

log
σk(ρ(γn))

σk+1(ρ(γn)
≥ 1

M2
log

σk(ρ(γnβn))

σk+1(ρ(γnβn))
→∞,

so ρ is also Pk-divergent.
Finally, we check that ξ has the Cartan property with respect to ρ. Let {γn} be a sequence

in Γ converging to z ∈ ∂Γ. For each n choose βn ∈ B so that γnβn ∈ Θ. Notice that {γnβn}
also converges to z. Since ξ has the Cartan property for ρ|Θ, {U1(ρ(γnβn))} converges to ξ(z).
But, Corollary 29.3 implies that

d(U1(ρ(γnβn)), U1(ρ(γn)) ≤
√
d− 1Mk

(
σk(ρ(γn)

σk+1(ρ(γn))

)
.

Since ρ is Pk-divergent, this implies that U1(ρ(γn))→ ξ(z), so ξ has the Cartan property with
respect to ρ.

Therefore, ρ is Pk-divergent and there exist continuous transverse ρ-equivariant maps ξ : ∂Γ→ Grk(Rd)
and θ : ∂Γ → Grd−k(Rd) and ξ has the Cartan property. Theorem 31.1 then implies that ρ is
Pk-Anosov. �

We may use Corollary ?? to show that a representation is Pk-Anosov if and only its dual is
Pk-Anosov .

Corollary 32.4. Let Γ be a Gromov hyperbolic group and 1 ≤ k ≤ d
2 . If ρ : Γ → SL(d,R) is

a representation, then ρ is Pk-Anosov if and only if ρ∗ is Pk-Anosov. Moreover, ξρ∗ = θρ and
θ∗ρ = ξρ.

Proof. Suppose that ρ is Pk-Anosov. Consider the map ξ : ∂Γ → Grk
(
(Rd)∗

)
given by ξ(z) =

θρ(z) for all z ∈ ∂Γ. Here, we may either think of ξ(z) as the k-plane of linear functionals having

θρ(z) in their kernel, or, more prosaically, identify it with the orthogonal subspace θρ(z)
⊥ of θρ(z)

in the standard identification of (Rd)∗ with Rd. Similarly, we define θ : ∂Γ → Grd−k
(
(Rd)∗

)
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by θ(z) = ξρ(z) (with similar identifications). Since ξρ are θρ are continuous, ρ-equivariant and
transverse, ξ and θ are continuous, ρ∗-equivariant and transverse.

Recall that, by Lemma 27.1, there exist D > 0 and L ≥ 0 so that

log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ D d(1, γ−1)− L

for all γ ∈ Γ. So, for all γ ∈ Γ,

σk(ρ
∗(γ)) = σk(ρ(γ−1)T ) = σk(ρ(γ−1)) and σk+1(ρ∗(γ)) = σk+1(ρ(γ−1))

so

log

(
σk(ρ

∗(γ))

σk+1(ρ∗(γ))

)
≥ D d(1, γ−1)− L = D d(1, γ)− L.

Therefore, ρ∗ is Pk-divergent.
Finally, we show that ξ is dynamics-preserving. Suppose that γ ∈ Γ has infinite order, then,

since ρ(γ−1) is Pk-biproximal, ρ∗(γ) = ρ(γ−1)T is also Pk-biproximal. Since θρ is dynamics-
preserving, θρ(γ

+) is the attracting (d − k)-plane of ρ(γ), which is identified by duality with
the attracting k-plane of ρ∗(γ). (To be more precise, if ρ(γ) = KAL is the singular value
decomposition of ρ(γ), then θρ(γ) = L(< e1, . . . , ed−k >), so ξ(γ+) is identified with its dual
L(< ed−k+1, . . . , ed >). Since ρ∗(γ) = KA−1L is the singular value decomposition of ρ∗(γ),
L(< ed−k+1, . . . , ed >) is the attracting k-plane of ρ∗(γ).) Therefore, ξ is dynamics-preserving.
Theorem ?? then implies that ρ∗ is Pk-Anosov. Since, ξ and ξρ∗ are both continuous and
dynamics-preserving, Lemma 30.2 implies that ξ = ξρ∗ . We similarly show that θ = θρ∗ .

After identifying
(
(Rd)∗

)∗
with Rd, one sees that (ρ∗)∗ = ρ, so ρ is Pk-Anosov if and only if

ρ∗ is Anosov. �

Another way to make new Anosov representations from existing Anosov representations,
which was first used by Barbot [12], is to simply take the direct sum with the identity represen-
tation. Perhaps surprisingly, such representations and their deformations can exhibit interesting
phenomena.

Corollary 32.5. If ρ : Γ → SL(d,R) is a P1-Anosov representation and T : Γ → SL(m,R) is
the trivial representation, then ρ⊕ T : Γ→ SL(d+m,R) is P1-Anosov.

Proof. By definition, σ1(ρ⊕ T (γ)) = σ1(ρ(γ)) and σ2(ρ⊕ T (γ)) = max{1, σ2(ρ)}. So

σ1(ρ⊕ T (γ))

σ2(ρ⊕ T (γ))
= min

{
σ1(ρ(γ))

σ2(ρ(γ))
, σ1(ρ(γ))

}
≥

√
σ1(ρ)(γ))

σ2(ρ(γ))

since σ2(ρ(γ)) ≥ 1
σ1(ρ(γ)) . Therefore, since ρ is P1-divergent, ρ⊕ T is also P1-divergent.

Let ξ = ∂Γ → RPd+m−1 be defined so that ξ(x) = ξρ(z) ⊕ {~0}. Notice that since U1((ρ ⊕
T )(γ)) = U1(ρ(γ))⊕ {~0} and ξρ has the Cartan property, ξ is a continuous (ρ⊕ T )-equivariant

map with the Cartan property. Similarly, define θ = ∂Γ→ Grd+m−1(Rd+m) by θ(z) = θρ(z)⊕
Rm and notice that θ is a continuous (ρ ⊕ T )-equivariant map transverse to ξ. Theorem 31.1
then implies that ρ⊕ T is P1-Anosov. �

A favorite technique to obtain new Anosov representations is to take a convex cocompact
representation into a rank one Lie group and then compose with a well-chosen representation of
the rank one Lie group into another Lie group. If chosen correctly, the composition is Anosov
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and hence, by stability, all small deformations of the composition are also Anosov. The most
prominent example of this type are Hitchin representations, which are the most intensely studied
class of Anosov representations.

We recall that for all d there exists an irreducible representation

τd : SL(2,R)→ SL(d,R)

given by regarding Rd as the vector space of degree d−1 homogeneous polynomials in 2 variables,

i.e. Rd = {a1x
d−1 + a2x

d−2y + · · · + ady
d−1}. If A =

[
a b
c d

]
, then τd(A) acts on Rd by taking

x to ax+ by and taking y to cx+ dy. For example, if A =

[
λ 0
0 λ−1

]
, then

τd(A)
(
a1x

d−1 + a2x
d−2y + · · ·+ ady

d−1
)

= a1λ
d−1xn−1 + a2λ

d−3xn−2y + · · ·+ adλ
1−dyn−1.

In other words,

τd

([
λ 0
0 λ−1

])
=


λd−1 0 · · · 0

0 λd−3 · · · 0
...

. . .
...

0 0 · · · λ1−d


In particular, τd

([
λ 0
0 λ−1

])
is diagonalizable with distinct eigenvalues.

Since any hyperbolic element B of SL(2,R) is conjugate to one of the form A =

[
λ 0
0 λ−1

]
,

we see that τd(B) is conjugate to τd(A), so λi(τd(B)) = λ1(B)d+1−2i for all i. Similarly, if
B = LDK is the singular value decomposition of B, we see that τd(B) = τd(L)τd(D)τd(K) is
the singular value decomposition of τd(B), so σi(τd(B)) = σ1(B)d+1−2i.

Recall that a (complete) flag F in Rd is a nested collection of vector subspaces

F1 ⊂ F2 · · · ⊂ Fd−1

so that Fi has dimension i. The (complete) flag variety Fd is the space of all flags in Rd.
Notice that Fd = SL(d,R)/B where B is the subgroup of upper triangular matrices. There
is then an embedding Vd : RP1 = F2 → Fd, called the Veronese embedding, such that if
L ∈ SO(2), then

Vd(< Le1 >) =
(
τd(L)(< e1 >), τd(L)(< e1, e2 >), . . . , τd(L)(< e1, . . . , ed−1 >)

)
.

One may check that if B ∈ SL(2,R) has attracting eigenline B+, then Vd(B
+) is the attracting

flag for τd(B).
If S is a closed orientable surface, the irreducible representation induces an embedding of

Hom(π1(S), SL(2,R)) into Hom(π1(S),SL(d,R)) given by taking ρ to τd ◦ ρ. The Hitchin
component Hd(S) is the component of

X(π1(S),SL(d,R)) = Hom(π1(S), SL(d,R))/GL(d,R)

which contains the image of a Fuchsian representation. In particular, Hd(S) contains an image
of Teichmüller space T (S) called the Fuchsian locus. All representations in the Fuchsian locus
are d-Fuchsian, i.e. are of the form τd ◦ ρ0 where ρ0 is a discrete, faithful representation into
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SL(2,R). Hitchin [114] showed thatHd(S) is an analytic manifold diffeomorphic to R(d2−1)(2g−2)

and called it the Teichmüller component. Representations in the Hitchin component are called
Hitchin representations. If d = 3, the Hitchin component agrees with the space of (conjugacy
classes of lifts of) Benoist representations of π1(S).

We say that a representation ρ : Γ → SL(d,R) is Borel Anosov if it is Pk-Anosov for
all 1 ≤ k ≤ d

2 . (This name arises because in more Lie-theoretic language this means that ρ is
Anosov with respect to the Borel subgroup of SL(d,R) which is simply the set of upper triangular
matrices.) In a seminal paper in the field, Labourie [143] showed that Hitchin representations
into SL(d,R) are all Borel Anosov. The proof is very demanding, so we will only show that
d-Fuchsian representations, and hence small deformations of d-Fuchsian representations, are
Borel Anosov. One can think of this as Step 0 of the actual proof.

Corollary 32.6. If S is a closed orientable surface and ρ : π1(S) → SL(d,R) is a d-Fuchsian
representation, then ρ is Borel Anosov.

Proof. Let ρ = τd ◦ ρ0. Recall that ρ0 is convex cocompact (or, really, that its image under the
projection to PSL(2,R) is convex cocompact). Therefore, ρ0 is P1-divergent and there exists a
continuous ρ0-equivariant map ξρ0 : ∂Γ→ RP1 which has the Cartan property.

Notice that if γ ∈ π1(S) and the singular value decomposition of ρ0(γ) is given by

ρ0(γ) = K

[
σ1(ρ0(γ)) 0

0 σ1(ρ0(γ))−1

]
L

where K,L ∈ S)(d), then

τd(ρ0(γ)) = τd(K)


σ1(ρ0(γ))d−1 0 · · · 0

0 σ1(ρ0(γ))d−3 · · · 0
...

...
0 0 · · · σ1(ρ0(γ))1−d

 τd(L).

Let C = sup{σ1(τd(K)) | K ∈ SO(2)}, which is finite since τd(SO(2)) is compact. Then, Lemma
29.1, implies that

1

C2
≥ σi(ρ(γ))

σi(ρ0(γ))d+1−2i
≤ C2,

so

log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ 2 log σ1(ρ0(γ))− 4C = log

(
σ1(ρ0(γ))

σ2(ρ0(γ))

)
− 4C

for any k. Therefore, since ρ0 is P1-divergent, ρ is Pk-divergent for all k.
We then consider ξρ : ∂π1(S)→ Fd given by ξρ = Vd ◦ ξρ0 which is a continuous ρ-invariant

map. We may decompose ξρ = (ξkρ )d−1
k=1 where ξkd : ∂π1(S)→ Grk(Rd). We now claim that each

ξkρ has the Cartan property. Since Vd takes the attracting fixed point of ρ0(γ) to the attracting

eigenline of ρ(γ), we see that ξkρ (γ+) is the attracting k-plane ρ(γ)+
k of ρ(γ). On the other hand,

Proposition 30.3 produces a continuous ρ-invariant map ξk : ∂Γ → Grk(Rd) with the Cartan
property so that ξk(γ+) = ρ(γ)+

k = ξkρ . So, ξkρ = ξk has the Cartan property for all k.

Finally, notice that ξkρ (z) is always transverse to ξd−k(w) if z 6= w, since if we choose a
hyperbolic element A ∈ SL(d,R) with attracting eigenline ξρ0(z) and repelling eigenline ξρ0(w),
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then ξkρ (z) is the attracting k-plane of τd(A) and ξd−k(w) is the repelling (d−k)-plane of τd(A).
Therefore, we may apply Theorem 31.1 to conclude that ρ is Pk-Anosov for all k. �

33. Irreducible representations and Benoist representations

In the case that ρ is irreducible and k = 1, Guichard and Wienhard gave a simpler charac-
terization.

Theorem 33.1. (Guichard-Wienhard [109, Proposition 4.10]) Suppose that Γ is word hyperbolic
and ρ : Γ → SL(d,R) is irreducible. Then ρ is P1-Anosov if and only if there exist continuous
ρ-equivariant transverse maps ξ : ∂Γ→ RPd−1 and θ : ∂Γ→ Grd−1(Rd).

We will derive a proof from Theorem 31.1. In their original statement, Guichard and Wien-
hard also require that ξρ and θρ are compatible, but our proof, taken from Tsouvalas [208], will
not need this property.

We first observe that if a representation has limit map into projective space which spans Rd,
then it is P1-divergent.

Lemma 33.2. (Canary-Tsouvalas [60, Lemma 9.2], Tsouvalas [208]) If Γ is a hyperbolic group,
ρ : Γ → SL(d,R) is a representation, and ξ : ∂Γ→ RPd−1 is a continuous ρ-equivariant map
such that < ξ(∂Γ) >= Rd, then ρ is P1-divergent.

In particular, if ρ is irreducible and ξ : ∂Γ→ RPd−1 is a continuous ρ-equivariant map, then
ρ is P1-divergent.

Proof. If ρ is not P1-divergent, then there exists a sequence of distinct elements {γn} ⊂ Γ so
that

lim

(
σ2(ρ(γn))

σ1(ρ(γn))

)
= R > 0.

Since Γ is a hyperbolic group there exists, perhaps up to passing to a subsequence z and ẑ
in ∂Γ so that if x ∈ ∂Γ − {ẑ}, then γn(x) → z , see Theorem 5.7. Let ρ(γn) = LnDnKn be
the singular value decomposition of ρ(γn). We may assume, perhaps after again passing to a
subsequence, that Ln → L ∈ SO(d) and Kn → K ∈ SO(d).

Given x ∈ ∂Γ − {ẑ}, there exists Mx ∈ SO(d) such that ξ(x) =< Mxe1 >. Since {γn(x)}
converges to z, we see that {ρ(γn)([Mx(e1)])} converges to ξ(z) and we choose Mz ∈ SO(d)
so that ξ(z) =< Mz(e1) >. In other words, < LnDnKnMx(e1) > converges to < Mz(e1) >,
so < DnKnMx(e1) > converges to < L−1Mz(e1) >. So, after perhaps again passing to a
subsequence,

lim
DnKnMx(e1)

||DnKnMx(e1)||
= ±L−1Mz(e1).

Thus, since

< DnKnMx(e1), e1 >= σ1(ρ(γn)) < KnMx(e1), e1 > and < DnKnMx(e1), e2 >= σ2(ρ(γn)) < KnMx(e1), e2 >

we see that
< KMx(e1), e2 >

< KMx(e1), e1 >
= R

(
< L−1Mz(e1), e2 >

< L−1Mz(e1), e1 >

)
(33.1)

whenever< KMx(e1), e1 >6= 0. Moreover, < KMx(e1), e1 >6= 0 if and only if< L−1Mz(e1), e1 >6= 0.
Notice that since ξ(∂Γ) spans Rd and ∂Γ is a perfect set, ξ(∂Γ− {ẑ}) spans Rd. Therefore,

we may choose x0 ∈ ∂Γ − {ẑ}, so that < KMx0(e1), e1 >6= 0. Thus, < L−1Mz(e1), e1 >6= 0,
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so, < KMx(e1), e1 >6= 0 for all x ∈ ∂Γ − {ẑ}. It follows that, for all x ∈ ∂Γ − {ẑ}, Mx(e1)
lies in the hyperplane determined by equation (33.1). However, this contradicts the fact that
ξ(∂Γ− {ẑ}) spans Rd, so ρ must be P1-divergent.

If ρ is irreducible and there is a continuous ρ-equivariant limit map ξ : ∂Γ → Rd, then
ξ(∂Γ) must span Rd, since otherwise it spans a proper ρ(Γ)-invariant subspace of Rd (which is
impossible). It follows from the above argument that ρ is P1-divergent. �

The key step in our proof of Theorem 33.1 will be Tsouvalas’ observation that limit maps of
irreducible representations have the Cartan property.

Proposition 33.3. (Tsouvalas [208]) If Γ is a hyperbolic group, ρ : Γ→ SL(d,R) is irreducible
and there exists a continuous ρ-equivariant map ξ : ∂Γ → RPd−1, then ξ has the Cartan
property.

Our proof will make use of a deep result of Benoist [16] which is based on work of Abels,
Margulis and Soifer [1], see [107, Theorem 4.12] for a statement (and proof) in the form given
here. We recall that a representation into SL(d,R) is semi-simple if it is a direct sum of
irreducible representations.

Theorem 33.4. (Benoist [16]) If Γ is a finitely generated group and ρ : Γ → SL(d,R) is a
semi-simple representation, then there exists a finite subset B of Γ and K such that if γ ∈ Γ,
then there exists β ∈ B so that∣∣∣ log σi(ρ(γ))− log (|λi(ρ(γβ))|)

∣∣∣ ≤ K
for all i = 1, . . . , d.

Proof of Proposition 33.3: Lemma 33.2 implies that ρ is P1-divergent. Recall also that ξ(∂Γ)
spans Rd if ρ is irreducible.

Fix z ∈ ∂Γ and let {γn} ⊂ Γ be a sequence converging to z. By Theorem 33.4, there exists
K such that, for all n, there exists βn ∈ B such that∣∣ log σi(ρ(γn))− log |λi(ρ(γnβn))|

∣∣ ≤ K
for all i. Let C = sup

{
log
(
σ1(ρ(β))
σd(ρ(β))

)
| β ∈ B

}
, so, by Lemma 29.1,

| log σi(ρ(γnβn))− log σi(ρ(γn))| ≤ C,

hence ∣∣ log σi(ρ(γnβn))− log (|λi(ρ(γnβn))|)
∣∣ ≤ K + C

for all n.
Since ρ is P1-divergent, log

(
σ1(ρ(γnβn))
σ2(ρ(γnβn))

)
→∞, so

log

(
λ1(ρ(γnβn))

λ2(ρ(γnβn))

)
→∞.

In particular, ρ(γnβn) is proximal for all large enough n. Since ∂Γ is perfect and ξ(∂Γ) spans
Rd, we can find xn ∈ ∂Γ − {(γnβn)−}, so that ξ(xn) does not lie in the repelling hyperplane
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of ρ(γnβn), so lim ρ(γnβn)s(ξρ(xn)) = ρ(γβn)+. Then, since ξ is continuous and ρ-equivariant,
and lims→∞(γnβn)s(xn)→ (γnβn)+, we see that

ξ((γnβn)+) = lim
s→∞

ξ((γnβn)s(xn)) = lim ρ(γnβn)s(ξ(xn)) = ρ(γnβn)+.

Now notice that z = lim γn = lim(γnβn) = lim(γnβn)+ in Γ ∪ ∂Γ, see Lemma 5.8, so

ξ(z) = lim ξ((γnβn)+) = lim ρ(γnβn))+.

We then apply Lemma 29.4 to see that

d(U1(ρ(γβn)), ρ(γnβn)+) ≤ σ2(ρ(γnβn))

|λ1(ρ(γnβn))|
≤ eK+C σ2(ρ(γnβn))

σ1(ρ(γnβn))

and, by Lemma 29.2,

d(U1(ρ(γnβn)), U1(ρ(γn))) ≤
√
d− 1

(
σ1(ρ(βn))

σd(ρ(βn))

)
σ2(ρ(γn))

σ1(ρ(γn))
≤ C
√
d− 1

(
σ2(ρ(γn))

σ1(ρ(γn))

)
.

Since ρ is P1-divergent, we conclude that lim d(U1(ρ(γn)), ρ(γnβn)+) = 0. Then, since lim ρ(γnβn)+ = ξ(z),
we see that limU1(ρ(γn)) = ξ(z), so ρ has the Cartan property. �

It is now easy to derive Theorem 33.1 from Theorem 31.1.

Proof of Theorem 33.1: Suppose that Γ is a hyperbolic group, ρ : Γ → SL(d,R) is irreducible
and ξ : ∂Γ → RPd−1 and θ : ∂Γ → Grd−1(Rd) are continuous, transverse ρ-equivariant maps.
Lemma 33.2 implies that ρ is P1-divergent and Proposition 33.3 implies that ξ has the Cartan
property. Theorem 31.1 then implies that ρ is P1-Anosov.

On the other hand, by definition, a P1-Anosov representation ρ : Γ → SL(d,R) admits
continuous, transverse ρ-equivariant maps ξρ : ∂Γ→ RPd−1 and θρ : ∂Γ→ Grd−1(Rd).

�
Since Benoist representations into PGL(d,R) have transverse limit maps into RPd−1 and

Grd−1(Rd), see Proposition 18.1, and are irreducible, see Proposition 18.4, Theorem 33.1 implies
that they are projective Anosov.

Corollary 33.5. If ρ : Γ→ PGL(d,R) is a Benoist representation, then ρ is P1-Anosov.

Remarks: (1) Corollary 33.5 was first established by Guichard and Wienhard [109, Proposition
6.1] as a consequence of Theorem 33.1. One can also prove that Benoist representations are
P1-Anosov by verifying directly that they are P1-divergent (using either Proposition 33.3 or
Lemma 42.1) and applying Corollary ??.

(2) It may worry you that the image of a Benoist representation is in PGL(d,R), rather than
SL(d,R), but you can notice that all the definitions, statements and theorems work equally
well if our image group is PSL(d,R), PGL(d,R), or even GL(d,R). Alternatively one can note
that a Benoist represention into PSL(d,R) lifts to a representation into SL(d,R) (see Culler [79,
Proposition 2.1]) and happily work there (passing to an index two subgroup if the image lies in
PGL(d,R), but not PSL(d,R)).

We can now use the stability property of Anosov representations to give a quick proof of
Koszul’s stability theorem for Benoist representations, which we earlier stated as Theorem
20.1.
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Theorem 33.6. (Koszul [141]) If Γ is a torsion-free hyperbolic group, then Ben(Γ, d− 1) is an
open subset of Hom(Γ,PGL(d,R)).

Proof. Suppose that ρ0 ∈ Ben(Γ, n). Since ρ0 is projective Anosov, Theorem 28.2 provides a
neighborhood U of ρ0 in Hom(Γ,PGL(d,R)) so that if ρ ∈ U , then ρ is projective Anosov.
The limit map ξρ0 has image ξρ0(∂Γ) which is the boundary of a strictly convex domain Ω in
an affine chart A. Since the limit maps vary continuously, we can pass to a subneighborhood
V ⊂ U of ρ0 so that if ρ ∈ V , then ξρ(∂Γ) is a compact subset of the affine chart A and spans

Rd. Let Cρ be the convex hull of ξρ(∂Γ) in A. Then ρ(Γ) preserves Cρ and hence it preserves its
interior Ωρ. By definition, Ωρ is a properly convex domain, and since ρ(Γ) is discrete, it acts
properly discontinuously on Ωρ. Therefore, Ωρ/ρ(Γ) is a manifold which is homotopy equivalent
to Ω/ρ0(Γ). Since both manifolds are (d − 1)-dimensional and one of them is closed, so is the
other one. Since Γ is hyperbolic, Theorem 16.1 implies that Ωρ is strictly convex, so ρ is a
Benoist representation. �

34. The relationship between Pk-Anosov and P1-Anosov representations

In this section, we prove a characterization of Pk-Anosov Zariski dense representations into
SL(d,R) which is a generalization of Theorem 33.1. We further show that ρ : Γ → SL(d,R) is
Pk-Anosov if and only if Ekd ◦ ρ is P1-Anosov where Ekd : SL(d,R) → SL(ΛkRd) is the exterior
power representation. This often allows one to reduce general questions about Pk-Anosov
representations to the study of projective Anosov representations. I will assume basic facts
about Zariski closures here. There is a nice treatment of the Zariski topology in our setting in
Benoist-Quint [25, Chapter 6].

Recall from Section 29 that if Ekd : SL(d,R)→ SL(ΛkRd) is the exterior power representation,
then

σ1(Ekd (A))

σ2(Ekd (A))
=

σk(A)

σk+1(A)

if A ∈ SL(d,R). Moreover,

U1(Ekd (A))) = Gkd(Uk(A))

whenever both are defined, i.e. whenever σk(A) > σk+1(A). One may also check that Ekd is

irreducible and that the Plücker embedding Gkd : Grk(Rd)→ P(ΛkRd) is Ekd -equivariant.
We first observe the following consequence of Proposition 33.2:

Corollary 34.1. If Γ is a hyperbolic group, ρ : Γ→ SL(d,R) is Zariski dense and there exists
a continuous ρ-equivariant map ξ : ∂Γ→ Grk(Rd), then ρ is Pk-divergent.

Proof. Since Ekd is irreducible and ρ is Zariski dense, we see that Ekd ◦ ρ is irreducible. (The

key point here is that the Zariski closure of Ekd (ρ(Γ)) is simply the image under Ekd of the

Zariski closure of ρ(Γ), which is all of SL(d,R). Then we observe that a subgroup of SL(ΛkRd)
is irreducible if and only if its Zariski closure is irreducible.)

The map Gkd ◦ ξ : ∂Γ→ P(ΛkRd) is continuous and Ekd ◦ ρ-equivariant. Therefore, by Lemma

33.2, Ekd ◦ ρ is P1-divergent. But since,

σ1(Ekd (ρ(γ)))

σ2(Ekd (ρ(γ)))
=

σk(ρ(γ))

σk+1(ρ(γ))

for all γ ∈ Γ, this implies that ρ is Pk-divergent. �
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We are now ready to prove the analogue of Theorem 33.1.

Theorem 34.2. (Guichard-Wienhard [109, Theorem 4.11]) Suppose that Γ is word hyperbolic
and ρ : Γ→ SL(d,R) is Zariski dense. Then ρ is Pk-Anosov if and only if there exist continuous
ρ-equivariant transverse maps ξ : ∂Γ→ Grk(Rd) and θ : ∂Γ→ Grd−k(Rd).

Proof. If ρ is Pk-Anosov, then, by definition, it admits continuous transverse ρ-equivariant maps
ξρ : ∂Γ→ Grk(Rd) and θρ : ∂Γ→ Grd−k(Rd). So the forward direction is obvious.

Now suppose that ρ is Zariski dense and there exist continuous ρ-equivariant transverse maps
ξ : ∂Γ→ Grk(Rd) and θ : ∂Γ→ Grd−k(Rd). Corollary 34.1 implies that ρ is Pk-divergent. Since
Edk is irreducible and ρ is Zariski dense, Edk ◦ ρ is also irreducible.

Then ξ = Gkd ◦ ξρ is a continuous Ekd ◦ ρ-equivariant map. Therefore, by Proposition 33.3, ξ
has the Cartan property. However, since

U1(Ekd (ρ(γ))) = Gkd(Uk(ρ(γ))

for all γ ∈ Γ where σk(ρ(γ)) > σk+1(ρ(γ)), this implies that ξρ has the Cartan property.
Theorem 31.1 then implies that ρ is Pk-Anosov. �

One may also define a map F kd : Grd−k(Rd)→ Gr(dk)−1
(Λk(Rd)) with the property that

V(dk)−1
(Ekd (A)) = F kd (Vd−k(A))

whenever both are defined. (Recall that ΛkRd has dimension
(
d
k

)
.) Geometrically, if Q is a

(d− k)-plane, let {~u1, . . . , ~ud} be an orthonormal basis for Rd, so that {~uk+1, . . . , ~ud} is a basis
for Q. Then F kd (Q) is spanned by all elements of the form ~un1⊗· · · ~unk where n1 > n2 > · · · > nk
and nk > k. Notice that F kd is Ekd -equivariant and that if P ∈ Grk(Rd) and Q ∈ Grd−k(Rd),
then P and Q are transverse in Rd if and only if Gkd(P ) and F kd (Q) are transverse in Λk(Rd).

We are now ready to show that ρ is Pk-Anosov if and only if Edk ◦ ρ is P1-Anosov.

Proposition 34.3. (Guichard-Wienhard [109, Theorem 4.11]) Suppose that Γ is a hyperbolic
group, 1 ≤ k ≤ d

2 and ρ : Γ → SL(d,R) is a representation. Then, ρ is Pk-Anosov if and only

if Ekd ◦ ρ is P1-Anosov.

One can derive this directly from the definitions, which is what Guichard and Wienhard do,
but I feel like the following proof gives one a more visceral feeling for why the fact is true. You
may disagree. Also, notice that one may derive Theorem 34.2 immediately from Theorem 33.1
and Proposition 34.3 (which is what Guichard and Wienhard do).

Proof. First suppose that ρ is Pk-Anosov. Since ρ is Pk-divergent and

σ1(Ekd (ρ(γ)))

σ2(Ekd (ρ(γ)))
=

σk(ρ(γ))

σk+1(ρ(γ))
(34.1)

for all γ ∈ Γ, Ekd ◦ ρ is P1-divergent. If ξρ : ∂Γ → Grk(Rd) is the limit map of ρ, then

ξ = Gkd ◦ ξρ is continuous and Ekd ◦ ρ-equivariant. Since ξρ has the Cartan property and

U1(Ekd (ρ(γ))) = Gkd(Uk(ρ(γ)) for all γ ∈ Γ where σk(ρ(γ)) > σk+1(ρ(γ), ξ has the Cartan

property. We then define θ = F kd ◦ θρ and notice that ξ and θ are transverse, since ξρ and θρ
are transverse. Theorem 31.1 then implies that Ekd ◦ ρ is P1-Anosov.
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Now suppose that Ekd ◦ρ is P1-Anosov, with limit maps ξ and θ. Since Edk ◦ρ is P1-divergent,

Equation (34.1) implies that ρ is Pk-divergent. Moreover, by Proposition 27.1 applied to Ekd ◦ρ,
there exists K and C so that

σk(ρ(γ))

σk+1(ρ(γ))
=
σ1(Ekd (ρ(γ)))

σ2(Ekd (ρ(γ)))
≥ Kd(1, γ)− C

for all γ ∈ Γ.
By examining the impact of Ekd on the Jordan normal form, we conclude that

λ1(Ekd (ρ(γ)))

λ2(Ekd (ρ(γ)))
=

λk(ρ(γ))

λk+1(ρ(γ))
.

If γ ∈ Γ has infinite order, then Ekd (ρ(γ)) is proximal, so ρ(γ) is Pk-proximal. Moreover, the

attracting eigenline of Ekd (ρ(γ)) is Gkd(ρ(γ)+
k ) where ρ(γ)+

k is the attracting k-plane of ρ(γ). It
follows that

ξ(γ+) = Ekd (ρ(γ))+ ∈ Gkd(Grk(Rd))

for every attracting fixed point in ∂Γ, so ξ(∂Γ) ⊂ Gkd(Grk(Rd)) and we may define a continuous

ρ-equivariant map ξρ = (Gkd)
−1 ◦ ξ. Notice that ξρ has the Cartan property, since ξ does. (Or

we could apply Proposition 30.3 and Corollary 30.2). We may similarly define θρ = (F kd )−1 ◦ θ
and notice that ξρ and θρ are transverse, since ξ and ρ are. Theorem 31.1 then implies that ρ
is Pk-Anosov.

�

Remark: Proposition 34.3 is a special case of a much more general principle established by
Guichard-Wienhard [109, Proposition 4.3]. Given a semi-simple Lie group G and a parabolic
subgroup Pθ of G, there is a notion of a Pθ-Anosov representation ρ : Γ → G. Guichard
and Wienhard show that, at this level of generality, there is an irreducible representation
τ : G→ SL(d,R) (for some d), so that ρ is Pθ-Anosov if and only if τ ◦ ρ is P1-Anosov. See
Section 49 for more details.

35. A characterization in terms of singular values

We now show that uniform exponential growth of the kth singular value gap implies that ρ
is Pk-Anosov. This characterization was first established by Kapovich-Leeb-Porti [133, The-
orem 1.5], using their Morse Lemma for uniformly regular quasi-geodesics in the symmetric
space. Bochi-Potrie-Sambarino [32] then gave a proof using the dynamical theory of dominated
splittings. (Gueritaud-Guichard-Kassel-Wienhard [107, Theorem 1.3(iv)] prove a version of this
theorem with somewhat stronger assumptions.)

We give a proof in the spirit of Feng Zhu’s generalization [231] of the work on Bochi-Potrie-
Sambarino [32] to the setting of relatively dominated representations (which are designed to be
a higher rank analogue of geometrically finite representations into higher rank Lie groups, see
also the earlier related work of Kapovich-Leeb [131]). The main difference is the use a concrete
theorem from linear algebra, based on work of Quas-Thieullen-Zarrabi [180], in place of a result
of Bochi-Gourmelon [31] on dominated splittings.
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Theorem 35.1. (Kapovich-Leeb-Porti [133], Bochi-Potrie-Sambarino [32]) If Γ is a hyperbolic
group, ρ : Γ → SL(d,R) is a representation and 1 ≤ k ≤ d

2 , then ρ is Pk-Anosov if and only if
there exists D > 0 and L ≥ 0 so that

log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ D d(1, γ)− L

for all γ ∈ Γ.

Proof. Theorem 27.1 implies that if ρ is Pk-Anosov, then the kth singular value gap grows
exponentially, so we have already established the forward direction.

Now suppose that there exists L ≥ 0 and D > 0 so that

log

(
σk(ρ(γ))

σk+1(ρ(γ))

)
≥ D d(1, γ)− L

for all γ ∈ Γ. Proposition 30.3 implies that there exist limit maps ξ : ∂Γ → Grk(Rd) and
θ : ∂Γ→ Grd−k(Rd). Since ρ is Pk-divergent, Theorem 31.1 implies that it suffices to show that
ξ and θ are transverse. Notice that by Theorem 34.3 it suffices to prove the result in the case
where k = 1.

The work of Quas, Thieullen and Zarrabi is done in the context of linear transformations of
Banach spaces. We make use of a generalization of their main result due to Zhu [231]. (If you
would like to see the proof, I recommend looking at the Appendix to Zhu’s paper [231] where
he works in the simpler finite-dimensional setting.) We omit the explicit constants they obtain,
since they will play no role in our work.

Theorem 35.2. (Quas-Thieullen-Zarrabi [180], Zhu [231, Theorem B.1]) Suppose that {Ak}k∈Z
is a sequence in GL(d,R) and there exist constants C ≥ e1/3 and µ, µ′ ≥ 1 so that

(1) For all r ∈ Z and n ≥ 0,

σ2(Ar+n−1 · · ·Ar)
σ1(Ar+n−1 · · ·Ar)

≤ Ce−nµ

(2) For all r ≤ 0 and n ≥ 0,

d
(
U1

(
Ar−1 · · ·Ar−n

)
, U1

(
Ar−1 · · ·Ar−(n+1)

))
≤ Ce−nµ

and

d
(
Ud−1

(
A−1
r · · ·A−1

r+n−1

)
, Ud−1

(
A−1
r · · ·A−1

r+n

))
≤ Ce−nµ.

(3) For all r ∈ Z and n,m ≥ 0,

σ1

(
Ar+n−1 · · ·Ar−m

)
σ1

(
Ar+n−1 · · ·Ar

)
σ1

(
Ar−1 · · ·Ar−m

) ≥ e−mµ
′

C

Then, for each r ∈ Z,

Eu(r) = limn→∞U1(Ar−1 · · ·Ar−n) and Es(r) = limn→∞Ud−1

(
A−1
r · · ·A−1

r+n)

exist and are transverse.
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Let x and y be distinct points in ∂Γ. It remains to show that ξ(x) is transverse to θ(y). Let
(γk)k∈Z be a geodesic joining x to y. Since, both ξ and θ are ρ-equivariant, we may assume
that γ0 = id. Since ξ and θ have the Cartan property,

ξ(x) = lim
k→−∞

U1

(
ρ(γk)

)
and θ(y) = lim

k→+∞
Ud−1

(
ρ(γk)

)
.

For all k ∈ Z, let

Ak = ρ(γ−1
k γk−1),

so

ρ(γ−1
k ) = AkAk−1 · · ·A1 if k > 0

and

ρ(γk) = A0A−1 · · ·Ak+1 if k < 0.

Therefore,

ξ(x) = lim
k→−∞

U1

(
A0A−1 · · ·Ak+1

)
and θ(y) = lim

k→+∞
Ud−1

(
A−1

1 · · ·A
−1
k

)
.

If we consider the sequence {Ak}, then ξ(x) = Eu(1) and θ(y) = Es(1). Theorem 35.2 will
guarantee that ξ(x) and θ(y) are transverse if we can verify conditions (1), (2) and (3).

First notice that

σ2(Ar+n−1 · · ·Ar)
σ1(Ar+n−1 · · ·Ar)

=
σ2(ρ(γ−1

r+n−1γr−1)

σ1(ρ(γ−1
r+n−1γr−1)

≤ (eL)e−Dn

since d(γ−1
r+n−1γr−1, id) = n. Now we check that

d
(
U1

(
Ar−1 · · ·Ar−n

)
, U1

(
Ar−1 · · ·Ar−(n+1)

))
= d

(
U1

(
ρ(γr−1γ

−1
r−n−1)

)
, U1

(
ρ(γr−1γ

−1
r−n−2)

))
≤
√
d− 1

σ1(ρ(γr−n−1γ
−1
r−n−2))σ2(ρ(γr−1γ

−1
r−n−1))

σd(ρ(γr−n−1γ
−1
r−n−2))σ1(ρ(γr−1γ

−1
r−n−1))

≤
√
d− 1eLM2e−Dn

where M = max{σ1(ρ(s)) | s ∈ S}. In the second line we applied Lemma 29.2 and in the third
line we used our main assumption and the fact that d(γr−1γr−n−1, id) = n. Similarly,

d
(
Ud−1

(
A−1
r · · ·A−1

r+n−1

)
, Ud−1

(
A−1
r · · ·A−1

r+n

))
≤
√
d− 1eLM2e−Dn.

.
Finally, applying Lemma 29.1, we see that

σ1

(
Ar+n−1 · · ·Ar−m

)
σ1

(
Ar+n−1 · · ·Ar

)
σ1

(
Ar−1 · · ·Ar−m

) ≥
σ1

(
Ar+n−1 · · ·Ar

)
σd
(
Ar−1 · · ·Ar−m

)
σ1

(
Ar+n−1 · · ·Ar

)
σ1

(
Ar−1 · · ·Ar−m

)
≥ M−2m = e−(2 logM)m

So, (1), (2) and (3) hold with C =
√
d− 1eLM2, µ = 1

4D and µ′ = 2 logM . We then apply
Theorem 35.2 to see that ξ(x) and θ(y) are transverse, which completes our proof. �
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Remark: Both Kapovich-Leeb-Porti [133] and Bochi-Potrie-Sambarino [32] also show that if
ρ : Γ → SL(d,R) is a representation of a finitely generated group and the kth singular value
gap grows uniformly exponentially in word length, then the group is hyperbolic. In both cases,
the main idea is to show that the action of ρ(Γ) on its Benoist limit set is a convergence group
action so that every point is conical. It then follows from a deep result of Bowditch [36], see
Theorem 5.9, that ρ(Γ), and hence Γ, is hyperbolic.

36. A characterization in terms of eigenvalues

Kassel and Potrie [136] used Theorem 35.1 to prove a characterization of Pk-Anosov repre-
sentations in terms of eigenvalues:

Theorem 36.1. (Kassel-Potrie [136, Corollary 4.6]) If Γ is a hyperbolic group, ρ : Γ→ SL(d,R)
is a representation and 1 ≤ k ≤ d

2 , then ρ is Pk-Anosov if and only if there exists J,B > 0, so
that

log

(
|λk(ρ(γ))|
|λk+1(ρ(γ))|

)
≥ J ||γ|| −B

for any element γ ∈ Γ.

We will give the proof under the additional assumption that ρ is semi-simple, i.e. a direct
sum of irreducible representation. This will allow us to use an important result of Abels,
Margulis and Soifer on semi-simple representations. (Semi-simple representations are sometimes
called completely reducible representations, which results in the absurdist fact that irreducible
representations are completely reducible.). In general, one completes the proof by consider
the semi-simplification ρss of ρ. This suffices since Guichard-Gueritaud-Kassel-Wienhard [107,
Lemma 2.40 and Proposition 1.8] show that λi(ρ

ss(γ)) = λi(ρ(γ)) for all i and all γ ∈ Γ and
that ρ is Pk-Anosov if and only if ρss is Pk-Anosov.

Proof. We use the following (special case of a) lemma of Delzant-Guichard-Labourie-Mozes.

Lemma 36.2. (Delzant-Guichard-Labourie-Mozes [87, Lemma 2.0.1]) If Γ is a hyperbolic group,
ρ : Γ→ SL(d,R) is a representation and there exists J and B so that

log |λ1(ρ(γ))| ≥ J ||γ|| −B
for all γ ∈ Γ, then there exists R and D so that

log σ1(ρ(γ)) ≥ Rd(1, γ)−D
for all γ ∈ Γ. In particular, the orbit map τρ : Γ→ Xd is a quasi-isometric embedding.

Proof. Recall that since Γ is hyperbolic, see Proposition 8.4, there exists α, β ∈ Γ and K > 0
so that

d(1, γ) ≤ 3 max{||γ||, ||γα||, ||γβ||}+K

for all γ ∈ Γ. Let C = {id, α, β}, x0 = [SO(d)] ∈ Xd = SL(d,R)/SO(d) and C = maxβ∈C{d(x0, β(x0))}.
So, given γ ∈ Γ, we can choose η ∈ C so that

d(id, γ) ≤ 3||γη||+K.

Therefore, since d(x0, ρ(γη)(x0)) ≥ log σ1(ρ(γη)) and σ1(ρ(γη) ≥ |λ1(ρ(γη))|, we see that

d(x0, γ(x0)) ≥ d(x0, γη(x0))−2C ≥ log σ1(ρ(γη))−2C ≥ J ||γη||−B−2C ≥ J

3
d(1, γ)−(K+B+2C).
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But notice that
d log σ1(ρ(γ)) > d(x0, γ(x0)) ≥ log σ1(ρ(γ))

so this implies that

log σ1(ρ(γ)) ≥ J

3d
d(1, γ)− (K +B + 2C)

which establishes our main claim. Moreover, if M = max{log σ1(ρ(s)) | s ∈ S}, then

log σ1(ρ(γ)) ≤M2d(1, γ), so dM2d(1, γ) ≥ d(x0, γ(x0))

which implies that τρ is a quasi-isometric embedding. �

Notice that since

|λ1(ρ(γ))| ≥

(
|λk(ρ(γ))|
|λk+1(ρ(γ))|

) 1
d−1

,

ρ satisfies the assumptions of Lemma 36.2, so there exists R and D so that

log σ1(ρ(γ)) ≥ Rd(1, γ)−D
for all γ ∈ Γ.

Then, since we are assuming that ρ is semi-simple Theorem 33.4 implies that there exists a
finite subset B of Γ and A ≥ 0 such that if γ ∈ Γ, then there exists β ∈ B so that∣∣∣ log σi(ρ(γ))− log (|λi(ρ(γβ))|)

∣∣∣ ≤ A
for all i = 1, . . . , d. In particular,

log |λ1(ρ(γβ))| ≥ log σ1(ρ(γ))−A ≥ Rd(1, γ)− (A+B),

but if M = max{log σ1(ρ(s)) | s ∈ S}, then

M ||γβ|| ≥ log |λ1(ρ(γβ))|
so

||γβ|| ≥ R

M
d(1, γ)− A+B

M
.

Finally,

log σk(ρ(γ))− log σk+1(ρ(γ) ≥ log |λk(ρ(γ))| − log |λk+1(ρ(γ))| − 2A

≥ J ||γβ|| −B − 2A

≥ JR

M
d(1, γ)− (B + 2A)− AB

M

Theorem 35.1 then implies that ρ is Pk-Anosov.
�
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Part 7. Convex cocompactness revisited

It was then I knew I’d had enough
Burned my credit card for fuel
Headed out to where the pavement
Turns to sand
With a one-way ticket
To the land of truth
And my suitcase in my hand
—————–Neil Young [225]

Although Kleiner-Leeb [140] and Quint [181] have shown that one cannot construct a robust
theory by studying convex cocompact actions on symmetric spaces, Danciger-Guéritaud-Kassel
[84] and Andrew Zimmer [232] have recently shown that many Anosov representations can
profitably be viewed as convex cocompact actions on properly convex domains in projective
space. The ideas in these papers are very beautiful and seem likely to have many future
applications.

Their work was preceded, and partially inspired by, by Benoist’s work on Benoist represen-
tations. Crampon-Marquis [77, 78], Cooper-Long-Tillman [70, 71], Ballas-Danciger-Lee [10],
and others, have also worked on more general actions of discrete groups on properly convex
domains, although their work does not focus on the relationship with Anosov representations.

37. Definitions and goals

We begin with some basic definitions. If Ω is a properly convex subset of RPd−1, we recall
that Aut(Ω) ⊂ SL(d,R) is the group of projective automorphisms preserving Ω. If Γ is a discrete
subgroup of Aut(Ω), then its full orbital limit set Λorb(Γ) ⊂ ∂Ω is the set of accumulation
points of any Γ-orbit Γ(x) where x ∈ Ω, i.e.

Λorb(Γ) = {z ∈ ∂Ω | there exists x ∈ Ω and {γn} ⊂ Γ so that lim γn(x) = z}.

Let C(Λorb(Γ)) be the convex hull of the full orbital limit set and let C0(Λorb(Γ)) = C(Λorb(Γ))∩Ω.
The quotient

ĈΓ = C0(Λorb(Γ)/Γ

is called the convex core of Ω/Γ. (In the study of hyperbolic manifolds, it is common to refer
to the convex hull of the limit set as its intersection with Hn and a similar convention is often
used in this theory. However, we will try to be careful in our treatment, since we will have
occasion to use both the full convex hull and its intersection with Ω.)

Suppose that Γ is a discrete subgroup of Aut(Ω), where Ω ⊂ RPd−1 is a properly convex
domain. We say that the action of Γ on Ω is naively convex cocompact if Γ acts cocompactly
on some non-empty convex subset of Ω. We say that the action of Γ on Ω is convex cocompact
if its convex core is compact, i.e. if Γ acts cocompactly on C0(Λorb(Γ)). We say that Γ acts
regularly convex cocompactly if it acts convex cocompactly on a convex subset of C of Ω,
and every point in C ∩∂Ω is a C1 extreme point of ∂Ω. (Recall that z ∈ ∂Ω is an extreme point
if it is not contained in the interior of any line segment in ∂Ω.) We say that Γ acts strongly
convex cocompactly on Ω if it acts convex cocompactly and Ω is strictly convex and has
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a C1 boundary. These definitions give increasingly restrictive generalizations of the classical
definition in the setting of discrete subgroups of SO0(d− 1, 1) ⊂ SL(d,R).

We will see that there is an intimate connection between convex cocompact groups and
Anosov representations. We first show that the inclusion map of any regular convex cocompact
subgroup of SL(d,R) is projective Anosov. Conversely, we will see that if a projective Anosov
representations preserves a properly convex domain, then its image is regularly convex cocom-
pact. We will also see that if the domain group of a projective Anosov representation is freely
indecomposable, but not a surface group, then its image is strongly convex cocompact. All
these results are due to Danciger-Guérituad-Kassel [84] and/or Zimmer [232].

Danciger, Guéritaud and Kassel [84, Theorem 1.15] show that if a group acts regularly convex
cocompactly on some properly convex domain, then it acts strongly convex cocompactly on
some, perhaps different, strictly convex domain. Zimmer [232, Corollary 1.30] also showed that
there exists a finite-dimensional vector space W and a representation τ : SL(d,R) → SL(W )
so that if ρ : Γ → SL(d,R) is projective Anosov, then τ ◦ ρ is regularly convex cocompact. So
one can always find a regularly convex cocompact group naturally associated to a projective
Anosov representation.

However, not all images of projective Anosov representations are convex cocompact. We will
soon see (Lemma 38.1) that if ρ : Γ → SL(d,R) is projective Anosov and ρ(Γ) preserves Ω,
then ξ(∂Γ) ⊂ ∂Ω. So, if ρ(Γ) is convex cocompact, then ξρ(Γ) must be contained in an affine
chart. For example, if ρ : π1(S) → SL(3,R) is the direct sum of a Fuchsian representation
into SL(2,R) and the trivial representation, then ξρ(∂Γ) is a projective line, so cannot be
contained in any affine chart. More interesting examples are provided by even-dimensional
Hitchin representations. It is not hard to check that if ρ : π1(S) → SL(2n,R) is 2n-Fuchsian,
then ξρ(∂π1(S)) = V2n(RP1) does not lie in any affine chart, so ρ is not convex cocompact.
In general, Danciger-Gueritaud-Kassel [84, Proposition 1.7] show that a Hitchin representation
ρ : π1(S)→ SL(d,R) is convex cocompact if and only if d is odd and d ≥ 3.

In Sections 38 through 41, we restrict to representations or discrete groups which are irre-
ducible and discuss regular convex cocompactness. When first encountering this material it is
probably best to focus on this simpler setting. (In fact, Zimmer [232] works almost entirely in
this setting). In Section 42 we extend these results to the general setting, while in Section 43
we prove that regularly convex cocompact representations are strongly convex cocompact. In
Section 44 we discuss, largely without proof, some further topics in the subject.

38. First principles

We now make some relatively simple observations about actions on properly convex domains.
We first see that if ρ is projective Anosov and its image preserves a properly convex domain Ω,
then the image of its limit map ξρ is the full orbital limit set and ξρ is a continuous extension
of the orbit map (for any choice of basepoint).

Lemma 38.1. Suppose that ρ : Γ → SL(d,R) is projective Anosov, Ω ⊂ RPd−1 is properly
convex and ρ(Γ) ⊂ Aut(Γ). Then

(1) ξρ(∂Γ) ⊂ ∂Ω.
(2) If z ∈ ∂Γ, then θρ(z) is a support plane for ∂Ω.
(3) If x ∈ Ω and a sequence {γn} converges to z ∈ ∂Γ, then {ρ(γn)(x)} converges to ξρ(z).

(4) The full orbital limit set Λorb(ρ(Γ)) = ξρ(∂Γ).



ANOSOV REPRESENTATIONS 133

Proof. We first observe that if γ has infinite order then there exists some point x ∈ Ω which does
not lie in the repelling hyperplane for ρ(γ), so {ρ(γn)(x)} converges to the attracting eigenline
ξρ(γ

+) for ρ(γ). But ρ(Γ) acts properly discontinuously on Ω, so ξρ(γ
+) ∈ ∂Ω. Since ξρ is

continuous and attracting fixed points of infinite order elements are dense in ∂Γ (Proposition
5.6), ξρ(∂Γ) ⊂ ∂Ω. So (1) holds.

Corollary 32.4 implies that ρ∗ : Γ → SL((Rd)∗) is also projective Anosov and that ξρ∗ = θρ.
Lemma 15.4 then implies that Ω∗ is properly convex and that ρ∗(Γ) preserves Ω∗. Part (1)
implies that ξρ∗(∂Γ) lies in ∂Ω∗. Therefore, if z ∈ ∂Γ, then θρ(z) = ξρ∗(z) is a support plane to
Ω. Since ξρ(z) ∈ θρ(z), θρ(z) is a support plane to Ω at ξρ(z), so (2) holds.

Since the closure of Ω is compact, to establish (3) it suffices to prove that every conver-
gent subsequence of {ρ(γn)(x)} converges to ξρ(w). Since every convergent subsequence of
{Ud−1(ρ(γn)−1)} converges to a hyperplane in θρ(∂Ω) (since θρ has the Cartan property), there
exists δ > 0 so that

dRPd−1

(
x, Ud−1(ρ(γn)−1)

)
= sin∠(x, Ud−1(ρ(γn)−1) ≥ δ

for all large enough n. But then, by Lemma 38.2 below,

dRPd−1(ρ(γn)(x), U1(ρ(γn)) = sin∠(ρ(γn(x)), U1(ρ(γn)) ≤ σ2(ρ(γn))

δσ1(ρ(γn))

for all large enough n. So, since ρ is P1-divergent,

dRPd−1(ρ(γn)(x), U1(ρ(γn))→ 0.

Since ξρ has the Cartan property, d(U1(ρ(γn)), ξρ(z))→ 0, so

lim ρ(γn)(x) = ξρ(z)

as required, so (3) holds.
Then, (3) implies that the full orbital limit set Λorb(ρ(Γ)) is exactly ξρ(∂Γ), so (4) holds.

�

In the proof of (3) we made use of the following elementary lemma from linear algebra (see,
for example, Bochi-Potrie-Sambarino [32, Lemma A.6].)

Lemma 38.2. If A ∈ SL(d,R) is biproximal, and x ∈ RPd−1, then

dRPd−1(ρ(γn)(x), U1(ρ(γn)) ≤ σ2(ρ(γn))(
sin∠(x, Ud−1(ρ(γn)−1)

)
σ1(ρ(γn))

.

It will sometimes be useful to work in the unit sphere rather than projective space. If V is
a vector space, usually Rd or (Rd)∗, let S(V ) be the unit sphere in the vector space V and let
p : S(V )→ P(V ) be the quotient map. Often Grd−1(Rd) will be identified with P((Rd)∗).

If ρ is projective Anosov, it will be useful to be able to lift the limit maps to maps having
image in the unit spheres. We see that we can do so whenever ρ(Γ) preserves a properly convex
domain.
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Lemma 38.3. (Danciger-Guéritaud-Kassel [84, Proposition 4.5], Zimmer [232, Theorem 3.1])
Suppose that ρ : Γ → SL(d,R) is a projective Anosov representation and ρ(Γ) preserves a
properly convex domain Ω0. Then, there exist ρ-equivariant lifts

ξ̄ρ : ∂Γ→ S(Rd) and θ̄ρ : ∂Γ→ S((Rd)∗)

of the Anosov limit maps ξρ : ∂Γ→ P(Rd) and θρ : ∂Γ→ P((Rd)∗) so that

θ̄ρ(z)(ξ̄ρ(w)) > 0

if w 6= z ∈ ∂Γ.

Proof. Notice that since Ω0 is properly convex, p−1(Ω0) has two disjoint components Ω+
0 and Ω−0

which are separated by a hyperplane H0. Since ρ(γ) is discrete, it acts properly discontinuously
on Ω0. We have seen that ξρ(∂Γ) ⊂ ∂Ω0.

So, for all z ∈ ∂Γ choose ξ̄ρ(z) ∈ p−1(ξρ(z)) ∩ Ω+
0 and choose θ̄ρ(z) ∈ p−1(θρ(z)) so that

θ̄ρ(ξ̄ρ(x)) > 0 for all x ∈ ∂Γ− {z}. �

We now show that one can use the lifted limit maps from Lemma 38.3 to find a “maximal”
convex domain preserved by ρ(Γ). (It is maximal in the sense that every properly convex
ρ(Γ)-invariant domain containing Ω is contained in Ωmax, see Danciger-Gueritaud-Kassel [84,
Proposition 4.5].)

Lemma 38.4. (Danciger-Guéritaud-Kassel [84, Proposition 4.5], Zimmer [232, Lemma 3.3])
Suppose that ρ : Γ→ SL(d,R) is a projective Anosov representation and there exist ρ-equivariant
lifts

ξ̃ρ : ∂Γ→ S(Rd) and θ̃ρ : ∂Γ→ S((Rd)∗)
of the Anosov limit maps ξρ : ∂Γ→ P(Rd) and θρ : ∂Γ→ P((Rd)∗), and

θ̄ρ(z)(ξ̄ρ(w)) > 0

for all w 6= z ∈ ∂Γ. Let

Ωmax = P
({
~v | θ̄ρ(z)(~v) > 0 if z ∈ ∂Γ

})
.

Then

(1) ρ(Γ) ⊂ Aut(Ωmax).
(2) C0(ξρ(∂Γ)) ⊂ Ωmax.
(3) If z ∈ ∂Γ, then ker(θρ(z)) is a support plane to ∂Ωmax at ξρ(z).

(4) If θρ(∂Γ) spans (Rd)∗, then Ωmax is properly convex.

(5) The closure of the dual Ω∗max of Ωmax is the convex hull of θρ(∂Γ) in (RPd−1)∗. More
precisely,

Ω∗max = P

({
d∑
i=1

aiθ̄ρ(zi) | ai ≥ 0 and zi ∈ ∂Γ for all i

})
.

Proof. Let

Ω̃max =
{
~v ∈ S(Rd)

∣∣ θ̄ρ(z)(~v) > 0 if z ∈ ∂Γ
}

so Ωmax = p(Ω̃max). Since θ̄ρ is ρ-equivariant, Ω̃max, and thus Ωmax, is invariant under ρ(Γ),
which establishes (1).
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The convex hull C(ξ̄ρ(∂Γ)) of ξ̄ρ(∂Γ) may be written as:

C(ξ̄ρ(∂Γ)) =

{
d∑
i=1

aiξ̄ρ(zi)
∣∣∣ d∑
i=1

ai = 1, a1, . . . , ad ≥ 0, z1, . . . , zd ∈ ∂Γ

}
.

If x =
∑d

i=1 aiξρ(zi) ∈ C0(ξ̄ρ(∂Γ)), then we may assume that z1 6= z2 and a1, a2 > 0. Thus,

if z ∈ ∂Γ, then θ̄ρ(z)(x) > 0. Therefore, C0(ξ̄ρ(∂Γ)) ⊂ Ω̃max, so C0(ξρ(∂Γ)) ⊂ Ωmax. Notice
that, by construction, if z ∈ ∂Γ, then ker(θρ(z)) is a support plane to Ωmax at ξρ(z) since it is
disjoint from Ωmax and intersects ∂Ωmax at ξρ(z). So, we have established (2) and (3).

If θ̄ρ(∂Γ) spans (Rd)∗, there exists z1, . . . , zd so that {θ̄ρ(z1), . . . , θ̄ρ(zd)} span (Rd)∗. Then

Ω̃max =
{
~v | θ̄ρ(z)(~v) > 0 if z ∈ ∂Γ

}
⊂
{
~v | θ̄ρ(zi)(~v) > 0, for all i = 1, . . . , d

}
which is a simplex in an affine chart for RPd−1. Since Ω̃max is convex by construction, it is thus

properly convex. Therefore, Ωmax = p(Ω̃max) is properly convex, so (4) holds.
Finally, we show that Ω∗max is the convex hull of θρ(∂Γ). Let

Ĉ =

{
d∑
i=1

aiθ̄ρ(zi) |
d∑
i=1

ai = 1, ai ≥ 0 and zi ∈ ∂Γ, for all i

}
.

First notice that if φ =
∑d

i=1 aiηi(zi) ∈ Ĉ, then φ(~v) ≥ 0 for all ~v ∈ Ω̃max, so φ lies in Ω∗max. If
[φ] does not lie in the convex hull of θρ(∂Γ), then it is contained in a plane through the origin

in (Rd)∗ which intersects the cone on Ĉ only at the origin. Therefore, there exists ~w ∈ Rd so

that φ(~w) = 0, but η(~w) 6= 0 for any η ∈ Ĉ. Since Ĉ is connected, either η(~w) > 0 for all η ∈ C
or η(~w) < 0 for all η ∈ C. So, perhaps after replacing ~w with −~w, we see that θ̄ρ(z)(~w) > 0 for
all z ∈ ∂Γ. Therefore, ~w ∈ Ωmax, which implies that p(φ) does not lie in Ω∗max. This completes
the proof of (5). �

39. Convex cocompact groups which are Anosov

It is clear that not every convex cocompact subgroup of SL(d,R) is projective Anosov. For
example, Benoist [23] exhibited many groups acting cocompactly on properly convex domains
which are not strictly convex. These groups will be convex cocompact, but not even Gromov
hyperbolic (by Theorem 16.1). However, if we require that the action is regularly convex
cocompact, then the inclusion map will be projective Anosov.

Theorem 39.1. (Danciger-Guéritaud-Kassel [84, Theorem 1.15], Zimmer [232, Theorem 5.1])
If Ω ⊂ RPd−1 is properly convex and Γ ⊂ Aut(Ω) acts regularly convex cocompactly on Ω, then
the inclusion map of Γ into SL(d,R) is projective Anosov.

In this section we will restrict to the setting of irreducible subgroups of SL(d,R) in the final
portion of the proof, but in Section 42 we will give a complete proof.

Proof. (When Γ is irreducible.) We first show, assuming only that there are no line segments
in ΛorbΓ , that Γ is hyperbolic.

Proposition 39.2. (Danciger-Guéritaud-Kassel [84, Lemma 6.3], Zimmer [232, Lemma 5.4])
Suppose that Ω ⊂ RPd−1 is properly convex and Γ ⊂ Aut(Γ) acts convex cocompactly on Ω. If
Λorb(Γ) contains no line segments, then C0(ΛorbΓ ) and Γ are Gromov hyperbolic.
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This result and its proof are a natural generalization of Proposition 16.2 from the convex
divisible situation.

Proof. We first show that there exists R so that any geodesic in C0(ΛorbΓ ) lies in a neighborhood
of radius at most R from a projective line segment. If not, there exist a sequence αn of geodesic
line segments in C0 joining points an, bn ∈ C0 and a point yn ∈ αn so that d(yn, [an, bn]) ≥ n for
all n, where [an, bn] is the projective line segment in C0 joining an to bn. Since the action of Γ
on C0 is cocompact, there exists a compact set K and sequence {γn} ⊂ Γ so that γn(yn) ∈ K.
After replacing, αn with γn(αn), we may pass to a subsequence so that {yn} converges to y ∈ K,
{[an, bn]} converges to a line segment [a, b] in C0, and αn converges to a geodesic joining a to
b. Since d(y, [an, bn] → ∞, we see that [a, b] is contained in ΛorbΓ . Since ΛorbΓ contains no line
segments, a = b. But Proposition 15.5 implies that no geodesic in a properly convex domain Ω
can join a point in ∂Ω to itself. We have achieved a contradiction, so there does exist R so any
geodesic in C0(ΛorbΓ ) lies in a neighborhood of radius at most R from a projective line segment.

We next show that there exists δ so that any geodesic triangle in C0 whose edges are projective
line segments is δ-thin, i.e. if [x, z] and [y, z] are projective line segments in C0 and u ∈ [x, y],
then d(u, [x, z]∪ [y, z]) ≤ δ. If not, there exist sequences {xn}, {yn}, {zn} and {un} of points in
C0 such that un ∈ xnyn and d(un, xnzn ∪ ynzn) ≥ n for all n ∈ N. Since Γ acts cocompactly on
C0, there is a compact set K in C0 such that we can always choose γn ∈ Γn so that γn(un) ∈ K.
So, after replacing xn, yn, zn, un with γ(xn), γ(yn), γ(zn), γ(un), we may assume that un ∈ K
for all n. We may then pass to a subsequence so that un → u, xn → x, yn → y and zn → z.
Since d(un, xnzn ∪ ynzn)→∞, we must have x, y, z ∈ ∂Λorb(Γ). Since u ∈ xy, x 6= y. If x = z,
then ynzn → yz, so d(un, ynzn) → 0, which is a contradiction, so x 6= z. Similarly y 6= z. But
then, since Λorb(Γ) contains no line segments, the open line segment (xz) is contained in Ω, so
d(u, xz) < ∞. We have achieved a contradiction, so there must exist δ so that any geodesic
triangle in C0 whose edges are projective line segments is δ-thin.

Combining these two observations, we see that any geodesic triangle is C0 is (2R + δ)-thin,
so C0 is Gromov hyperbolic. Therefore, Γ is also Gromov hyperbolic (by Proposition 4.1). �

We now establish a more general lemma that guarantees that there exists a well-defined limit
map from ∂Γ to ΛorbΓ . The proof is a generalization of the proof of Proposition 18.1.

Lemma 39.3. If Ω ⊂ RPd−1 is properly convex, Γ ⊂ Aut(Ω) is hyperbolic and acts convex co-
compactly on Ω and ΛorbΓ contains no line segments, then one may identify the Gromov boundary

of C0(ΛorbΓ ) with ΛorbΓ . Moreover, there exists a Γ-equivariant homeomorphism

ξ : ∂Γ→ ΛorbΓ ⊂ ∂Ω ⊂ RPd−1.

Proof. We observe that one may identify the Gromov boundary ∂∞C0 of C0 with Λorb(Γ). Pick
x0 ∈ C0. Let r : [0,∞) → C0 be a geodesic ray. For all n let Ln be the projective line segment
joining x0 to r(n) in C0. Since C0 is Gromov hyperbolic, the Fellow Traveller Property implies
that there exists K so that the Hausdorff distance between r([0, n]) and Ln is at most K, for all
n. We may pass to a subsequence so that {Ln} converges to a projective line segment L joining
x0 to a point z ∈ Λorb(Γ). Therefore, r([0,∞)) lies a Hausdorff distance at most K from L. It
follows that every geodesic ray in C0 lies a bounded Hausdorff distance from a projective line
segment ending in ΛorbΓ . On the other hand, two projective line segments in a properly convex
domain Ω lie a bounded Hausdorff distance apart if and only if their endpoints lie in the interior
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of a line segment in ∂Ω, see Lemma 15.3. Therefore, since every point of ΛorbΓ is an extreme

point, no two geodesic rays with distinct endpoints in ΛorbΓ lie a finite Hausdorff distance apart.

Finally, we conclude that ∂∞C0 may be identified with ΛorbΓ .
The Milnor-Svarc Lemma implies that the orbit map τ : Γ → C0 given by γ → γ(x0) is

a quasi-isometry, if x0 ∈ C0, so Proposition 3.5 and Corollary 3.6 imply that there exists a
homeomorphism ξ : ∂Γ→ ΛorbΓ so that if {γn} ⊂ Γ is a sequence so that lim γn = z ∈ ∂Γ, then
lim γn(x0) = ξ(z). �

Since every point in ΛorbΓ is a C1 point of ∂Ω, we can define θ : ∂Γ → Grd−1(Rd) by letting
θ(z) be the tangent space to ∂Ω at the point ξ(z). Since ∂Ω is properly convex, ξ and θ are
transverse.

If Γ is irreducible, then Theorem 33.1 immediately implies that the inclusion map of Γ into
SL(d,R) is projective Anosov. In the reducible case, we will have to prove that the inclusion
map is P1-divergent and that ξ is dynamics preserving, so that we can apply Corollary ??, see
Section 42. �

Danciger, Guéritaud and Kassel further show that you can weaken the assumptions of The-
orem 39.1.

Theorem 39.4. (Danciger-Guéritaud-Kassel [84, Theorem 1.15]) If Ω ⊂ RPd−1 is a properly
convex domain, Γ ⊂ Aut(Ω) acts convex cocompactly on Ω and either

(1) the full orbital limit set Λorb(Γ) contains no line segments, or
(2) Γ is Gromov hyperbolic,

then the inclusion map of Γ into SL(d,R) is projective Anosov.

Tsouvalas [208] weakens the assumptions, by requiring that there is a convex Gromov hy-
perbolic subset of Ω preserved by Γ, not necessarily the convex hull of the full orbital limit set,
and only requiring that the orbit map into this set is a quasi-isometric embedding (and not
requiring that the action is cocompact).

Theorem 39.5. (Tsouvalas [208]) If Ω ⊂ RPd−1 is strictly convex, ∂Ω is C1, Γ ⊂ Aut(Ω), and

(1) the inclusion of Γ into SL(d,R) is a semisimple, quasi-isometric embedding, and
(2) Ω contains a Γ-invariant convex subset C so that C is Gromov hyperbolic with respect to

the Hilbert metric on Ω,

then the inclusion of Γ into SL(d,R) is projective Anosov.

40. Anosov groups which are convex cocompact

We are now ready to show that if the image of a projective Anosov representation preserves
a properly convex domain, then it is regularly convex cocompact.

Theorem 40.1. (Danciger-Guéritaud-Kassel [84, Theorem 1.4], Zimmer [232, Theorem 1.27])
If ρ : Γ→ SL(d,R) is a projective Anosov representation and ρ(Γ) preserves a properly convex
domain in RPd−1, then ρ(Γ) is regularly convex cocompact. If ρ is irreducible, then ρ(Γ) acts
regularly convex cocompactly on Ωmax.

For the moment, we will only fully establish Theorem 40.1 in the case when θρ(∂Γ) spans

(Rd)∗. Notice that if ρ is irreducible, then θρ(∂Γ) spans (Rd)∗. (Its dual ρ∗ is also irreducible,
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so if θρ(∂Γ) = ξρ∗(∂Γ) does not span (Rd)∗ then ρ∗(Γ) would preserve the subspace spanned
by ξρ∗(∂Γ) which would contradict irreducibility.) Our proof only uses the extra assumption

that θρ(∂Γ) spans (Rd)∗ to show that ρ(Γ) preserves a properly convex domain which contains
C0(ξρ(Γ)) and to show that every point of ξρ(∂Γ) is a C1 point of ∂Ω. The argument in the
general case, which we will give in Section 42, is more complicated and is due to Danciger-
Guéritaud-Kassel [84].

Proof. (When θρ(∂Γ) spans (Rd)∗) Recall that, by Lemmas 38.1, 38.3 and 38.4, ρ(Γ) ⊂ Aut(Ωmax),

Λorb(ρ(Γ)) = ξρ(∂Γ), ξρ(∂Γ) ⊂ ∂Ωmax, C0(ξρ(∂Γ)) ⊂ Ωmax, Ωmax is properly convex, and if
z ∈ ∂Γ, then θρ(z) is a support plane for Ωmax at the point ξρ(z).

The following more general lemma guarantees that ρ(Γ) acts convex cocompactly on Ωmax.

Lemma 40.2. (Danciger-Guéritaud-Kassel [84, Proposition 8.1], Zimmer [232, Lemma 3.7]) If
ρ : Γ→ SL(d,R) is projective Anosov, Ω is properly convex, ρ(Γ) ⊂ Aut(Ω) and C0(ξρ(∂Γ)) ⊂ Ω,
then ρ(Γ) acts convex cocompactly on Ω.

Proof. If the convex core ĈΓ is not compact, then there exists a sequence {xn} in C0 and x0 ∈ C0

so that

d(xn, x0) = d(xn,Γ(x0))→∞
where distance is measured in the Hilbert metric on Ω. We may pass to a subsequence, still
called {xn}, so that {xn} converges to some point z ∈ ∂Ω. Since xn ∈ C0 for all n, z ∈ Λorb(Γ),
so z = ξρ(w) for some w ∈ ∂Γ. Let Bn = B(xn, d(x0, xn)) and notice that Γ(x0) ∩Bn is empty
for all n and Bn converges to

H(x0, z) =
⋃

x∈−−→x0z

B(x, d(x, x0))

since x0xn converges to −→x0z. So H(x0, z) is disjoint from Γ(x0).
Since every point of ∂Γ is a conical limit point for the action of Γ on ∂Γ, see Theorem

5.7, there exist distinct points b 6= c ∈ ∂Γ and a sequence {γn} ⊂ Γ, so that γn(w) → b
and γn(v) converges to c uniformly on compact subsets of ∂Γ − {b}. Therefore, since ξρ is
ρ-equivariant, ρ(γn)(z) → ξρ(b) and ρ(γn)(x0) → ξρ(c). We may assume that we have chosen
x0 so that there exists u 6= v ∈ ξρ(Γ)−{z}, so that x0 lies on the open line segment (uv). Since
{ρ(γn)(u)} and {ρ(γn)(v)} both converge to z, we see that {ρ(γn)(x0)} converges to z. Since

{d(
−−−−−−−−→
γn(x0)γn(z), x0))} converges to d(

←−−−→
ξ(b)ξ(c), x0) <∞ and d(x0, γn(x0))→∞, we see that for

all large values of n,

x0 ∈ H(γn(x0), γn(z)) = γn(H(x0, z))

which contradicts the fact that H(x0, z) is disjoint from Γ(x0). Therefore, Γ is convex cocom-
pact. �

We next establish that every point of ξρ(∂Γ) is an extreme point.

Lemma 40.3. (Danciger-Guéritaud-Kassel [84, Theorem 1.15], Zimmer [232, Lemma 3.9]) If
ρ : Γ→ SL(d,R) is projective Anosov and ρ(Γ) acts convex cocompactly on a properly convex
domain Ω ⊂ RPd−1, then every point of ξρ(∂Γ) is an extreme point of ∂Ω. In particular, ξρ(∂Γ)
contains no line segments.
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Proof. Suppose that z = ξρ(w) lies in the interior of a line segment [a, b] contained in ∂Ω.
Let y be another point in the interior of [a, b] and choose x0 ∈ C0. Lemma 15.3 implies that
the geodesic rays −→x0y and −→x0z lie a bounded Hausdorff distance apart. So choose sequences
{pn} in −→x0z and {qn} in −→x0y, so that pn → z, qn → y and d(pn, qn) ≤ R for some R. Since
−→x0z ⊂ C0(ξρ(Γ)) and Γ acts cocompactly on C0(ξρ(Γ)), there exists a sequence {γn} in Γ and
S > 0 so that d(ρ(γ−1

n )(pn), x0) ≤ S for all n. Therefore, d(ρ(γ−1
n )(qn), x0) ≤ R + S for all n.

We pass to a subsequence so that {γn} converges to v ∈ ∂Γ, {ρ(γ−1
n (pn))} converges to p0 ∈ Ω,

and {ρ(γ−1
n (qn)} converges to q0 ∈ Ω. Then ρn(γn)(p0)→ z and ρ(γn)(q0)→ y, so, by Lemma

38.1, ξρ(v) = z and ξρ(v) = y. However, this impossible, so every point in ξρ(∂Γ) is an extreme
point of ∂Ω. �

It only remains to prove that every point in ξρ(∂Γ) is a C1 point of ∂Ω. Suppose that

x ∈ ξρ(∂Γ) = Λorb(ρ(Γ)) and x = ξρ(w). Then Hx = θρ(w) is a support plane to ∂Ωmax at z.
In order to show that ∂Ωmax is C1 at θρ(w) it suffices to show that Hx is the unique support
plane to ∂Ωmax at z.

We observed in Lemma 38.4 that the closure of Ω∗max is the convex hull C(θρ(∂Γ))) of θρ(∂Γ)

in P((Rd)∗). Recall that any support plane H for Ωmax is the kernel of a linear functional in

∂Ω∗max, so H = kerφ where φ =
∑d

i=1 aiφi, ai ≥ 0 for all i and φi = θ̄ρ(zi) for some zi ∈ ∂Γ.
However, θ̄ρ(zi)(ξ̄ρ(w̃)) > 0 if zi 6= w, where w̃ lies in p−1(w)∩∂Ω+, so we must have φ = θ̄ρ(w)
and H = Hx. We conclude that every point in ξρ(∂Γ) is a C1 point of ∂Ωmax. Therefore, ρ(Γ)
acts regularly convex cocompactly on Ωmax. �

Combining Theorems 40.1 and 39.2 we obtain a characterization of which discrete groups
preserving a properly convex domain are projective Anosov. (Of course, the proof we have
given is incomplete in the setting of reducible subgroups.)

Corollary 40.4. (Danciger-Guéritaud-Kassel [84, Theorem 1.4], Zimmer [232, Theorems 1.22/1.27])
Suppose that Γ ⊂ SL(d,R) is discrete and preserves a properly convex domain Ω. Then Γ is
regularly convex cocompact if and only if the inclusion map of Γ into SL(d,R) is projective
Anosov.

41. Zimmer’s criterion

It can be difficult to verify that the image of a projective Anosov representation preserves a
properly convex domain, but Andrew Zimmer [232] provided a simple group-theoretic criterion.
He shows that the image of an irreducible projective Anosov representation is regularly convex
cocompact if the domain group is freely indecomposable, but not a surface group.

Zimmer’s proof makes use of fundamental results of Bowditch [37] who analyzed the topology
of the boundaries of hyperbolic groups. The theorem below records what we will need in the
proof of Zimmer’s result. For convenience, we state his results in the torsion-free setting. Recall
that z ∈ ∂Γ is a cut point if ∂Γ− {z}.

Theorem 41.1. (Bowditch [37, Theorem 0.1 and Proposition 5.29]) Suppose that Γ is a torsion-
free hyperbolic group, then

(1) ∂Γ is connected if and only if Γ is freely indecomposable.
(2) If ∂Γ is connected, then ∂Γ has no cut points.
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(3) If ∂Γ is connected and Γ is not a surface group, then there exists u, v ∈ ∂Γ so that
∂Γ− {u, v} is connected.

We are now ready to give the simple and elegant proof of Zimmer’s result.

Theorem 41.2. (Zimmer [232, Theorem 1.25]) Suppose Γ is a torsion-free hyperbolic group
which is not a surface group or a cyclic group and does not split non-trivially as a free product. If
ρ : Γ→ SL(d,R) is a projective Anosov representation, then ρ(Γ) is regularly convex cocompact.

Notice that Zimmer’s result applies to many of our favorite groups. For example, if Γ is freely
indecomposable, but not a surface group, and ρ0 : Γ→ SO(d, 1) is convex cocompact, then any
small deformation of ρ0 within SL(d + 1,R) is regularly convex cocompact. For the moment,
we will only give the proof when θρ(∂Γ) spans (Rd)∗, but we will later return to the proof and
remove this assumption.

Proof. (When θρ(∂Γ) spans (Rd)∗) Choose u, v ∈ ∂Γ, so that ∂Γ − {u, v} is connected (see

Theorem 41.1). We may normalize so that ξρ(u) = [e1], ξρ(v) = [e2], ker(θρ(u)) = e⊥2 and

ker(θρ)(v) = e⊥1 . Then RPd−1 − (θρ(u) ∪ θρ(v)) has two components. Since ξρ(∂Γ) − {u, v} is
connected and disjoint from θρ(u)∪ θρ(v), it must be in one of these two components. Without
loss of generality, we may assume that

ξρ(∂Γ− {u, v}) ⊂ B = {[x1, . . . , xd] | x1 > 0, x2 > 0}
so ξρ(∂Γ) is a compact subset of the affine chart A determined by the hyperplane x1 + x2 = 1.

Let [φ̄] ∈ S((Rd)∗) be given by φ̄(~x) = x1 +x2. Then for all z ∈ ∂Γ, choose ξ̄ρ(z) ∈ p−1(ξρ(z))
so that φ̄(ξ̄ρ(~x)) > 0.

Similarly, choose θ̃ρ(z) ∈ p−1(θρ(z)) so that θ̃ρ(z)(ξ̃ρ(x)) > 0 if x ∈ ∂Γ−{z} (which is possible
since ξ̄ρ(∂Γ− {z}) is connected and disjoint from ker(θρ(z)), by transversality.)

Since θρ(∂Γ) spans (Rd)∗, Lemma 38.4 implies that ρ(Γ) preserves a properly convex domain.
Theorem 40.1 then implies that ρ(Γ) is regularly convex cocompact. �

Zimmer also gives a simple way to regard any projective Anosov representation as regularly
convex cocompact, perhaps after postcomposing with another representation.

Let Sym(d,R) be the vector space of real symmetric d× d matrices. We can define

Sd : SL(d,R)→ SL(Sym(d,R)) by Sd(A)(X) = AXAT .

Notice that Sd(SL(d,R)) preserves the properly convex domain

Pd = P
(
{X ∈ Sym(d,R) |X > 0}

)
of (projective classes of) positive matrices in Sym(d,R).

Theorem 41.3. (Zimmer [232, Corollary 1.30]) If ρ : Γ→ SL(d,R) is projective Anosov, then
Sd(ρ(Γ)) is regularly convex cocompact.

Proof. We first notice that σ1(Sd(A)) = σ1(A)2 and σ2(Sd(A)) = σ1(A)σ2(A). Since ρ is
projective Anosov, Proposition 27.1 implies that there exists K and C so that if γ ∈ Γ, then

log
σ1(Sd(ρ(γ)))

σ2(Sd(ρ(γ)))
= log

σ1(ρ(γ))

σ2(ρ(γ))
≥ Kd(1, γ)− C.
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So, Sd ◦ ρ is projective Anosov and preserves the properly convex domain Pd in P(Sym(d,R)).
Theorem 40.2 then implies that Sd(ρ(Γ)) is regularly convex cocompact. �

Remarks: (1) Zimmer actually restricts to irreducible representations in both of these results,
but this is un-necessary when we apply Danciger, Guéritaud and Kassel’s version of Theorem
40.1 (which we will prove in the next section.)

(2) One may remove the assumption that Γ is torsion-free in Theorem 41.2, at the cost of
requiring that no finite index subgroup of Γ splits as a non-trivial free product or is a surface
group.

42. Reducible convex cocompact representations

In this section we explain how to extend the proofs of the main theorems above to the case
where the representation (or discrete group) is reducible. The majority of the new arguments
in this section are due to Danciger-Guéritaud-Kassel [84], since Zimmer [232] worked almost
entirely in the irreducible setting.

We first complete the proof of Theorem 39.1, which we restate below.

Theorem 39.1. (Danciger-Guéritaud-Kassel [84, Theorem 1.15], Zimmer [232, Theorem 5.1])
If Ω ⊂ RPd−1 is properly convex and Γ ⊂ Aut(Ω) acts regularly convex cocompactly on Ω, then
the inclusion map of Γ into SL(d,R) is projective Anosov.

Proof of Theorem 39.1. Proposition 39.2 implies that Γ is hyperbolic. Lemma 39.3 implies
that the Gromov boundary of C0(ΛorbΓ ) may be identified with ΛorbΓ and that there exists a
continuous, transverse Γ-equivariant homeomorphism

ξ : ∂Γ→ ΛorbΓ ⊂ RPd−1.

One may again define θ : ∂Γ → Grd−1(Rd) by defining for all z ∈ ∂Γ, θ(z) to be the tangent
plane (unique support plane) to ∂Ω at ξρ(z). One again checks that ξ and θ are compatible, by

definition, and transverse, since there are no line segments in ΛorbΓ .
Theorem 39.1 will follow from Corollary ?? once we establish that the inclusion map is

P1-divergent and that ξ is dynamics preserving.

Lemma 42.1. (Danciger-Guéritaud-Kassel [84, Lemma 7.5]) If Ω ⊂ RPd−1 is properly convex,
Γ ⊂ Aut(Ω) and ΛorbΓ contains no line segments, then the inclusion map of Γ into SL(d,R) is
P1-divergent.

Proof. If the inclusion map of Γ into SL(d,R) is not P1-divergent, then there exists a sequence

{γn} of distinct elements in Γ so that lim σ2(γn)
σ1(γn) = C2 > 0.

We may pass to a subsequence so that lim γn = w ∈ ∂Γ and lim σk(γn)
σk+1(γn) = Ck+1 exists for all

k = 2, . . . , d − 1. We write γn = KnAnLn where Kn, Ln ∈ SO(d) and An is a diagonal matrix
with diagonal entries (σ1(γn), . . . , σd(γn)). We pass to a subsequence so that Kn → K and

Ln → L. Since Ω is open, there exist non-trivial vectors ~u,~v ∈ Rd so that [~u], [̂~v] ∈ Ω, where
L(~u) = (a1, a2, . . . , ad), L(~v) = (b1, b2, . . . , bd), and a1 = b1 but a2 6= b2.

Then

lim γn([~u]) =
[
K
(
a1e1 +C2a2e2 +

d∑
i=3

Ciaiei
)]
6=
[
K
(
b1e1 +C2b2e2 +

d∑
i=3

Cibiei
)]

= lim γn([̂~v]).
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However, since d(γn([~u]), γn([~v])) = d([~u], [~v]) for all n, this would imply that lim γn([~u]) and
lim γn([~v] span a line segment in ΛorbΓ , see Lemma 15.3, which contradicts our assumption that

there are no line segments in ΛorbΓ . Therefore, the inclusion map is P1-divergent. �

Since the action of the hyperbolic group Γ on C0(ΛorbΓ ) is cocompact, Proposition 3.5 implies
that if γ is an infinite order element of Γ, then if x ∈ C0, then lim γn(x) = ξρ(γ

+). Since Γ is
P1-divergent, and ξ and θ are continuous, transverse, and Γ-equivariant Lemma 18.3 implies
that ξ is P1-dynamics preserving.

Since Γ is P1-divergent and there exist continuous, transverse, Γ-equivariant limit maps ξ
and θ so that ξ is dynamics preserving, Corollary ?? implies that the inclusion map is projective
Anosov. �

We now prepare to complete the proof of Theorem 40.1 which asserts that the image of
a projective Anosov representation which preserves a properly convex domain, acts regularly
convex cocompactly on some (probably different) properly convex domain.

The first obstacle in extending the proof is that we can’t invoke Lemma 38.4 to guarantee the
existence of a properly convex domain which is preserved by ρ(Γ) and contains C0 = C0(ξρ(∂Γ)).
The following result fills that gap.

Lemma 42.2. (Danciger-Guéritaud-Kassel [84, Lemma 8.5]) Suppose that ρ : Γ→ SL(d,R) is
a projective Anosov and ρ(Γ) preserves a properly convex domain in Rd. Then there exists a
properly convex domain Ω so that ρ(Γ) ⊂ Aut(Ω), C0(ξρ(∂Γ)) ⊂ Ω. and if z ∈ ∂Γ, then θρ(∂Γ)

is a support plane for Ω at ξρ(z). Moreover, if θρ(∂Γ) spans (Rd)∗, then we can take Ω = Ωmax.

Proof. First notice that since ρ(Γ) preserves a properly convex domain Ω0, the limit maps ξρ
and θρ lift to maps ξ̄ρ and θ̄ρ, so Lemma 38.4 gives rise to a convex region Ωmax containing

C0(ξρ(∂Γ)) and Ω0. If θρ(∂Γ) spans (Rd)∗, then Lemma 38.4 tells us that Ωmax is properly
convex and so we may take Ω = Ωmax.

If not, let H = {H0, H1, . . . ,Hd} be a collection of projective hyperplanes which determine
an open simplex ∆ containing C(ξρ(∂Γ)). Consider

Ω =
⋂
γ∈Γ

γ(∆ ∩ Ωmax).

Then, by definition, Ω is ρ(Γ)-invariant, convex, bounded in the affine chart containing the
closure of ∆ and contains C0(ξρ(∂Γ)).

It only remains to check that Ω is open. If not, there exists x ∈ Ω, so that Ω contains
no open neighborhood of z. Therefore, there exists H ∈ H and a sequence {γn} ⊂ Ω so
that γn(H) converges to a hyperplane H∞ containing x. We may pass to a subsequence so
that γn → z ∈ ∂Γ. We then consider the dual representation ρ∗ : Γ → SL((Rd)∗) and recall
that ρ∗(Γ) preserves Ω∗ (Lemma 15.4), ρ∗ is projective Anosov (Corollary 32.4) and ξ∗ρ = θρ
(Corollary 32.4). Lemma 38.1 then implies that {Hn = γn(H)} converges to ξρ∗(z) = θρ(z).
But since x ∈ Ωmax, x cannot lie in θρ(z) for any z ∈ ∂Γ. Therefore, Ω is open and the proof
is complete. �

We will also need the following improvement of Lemma 40.3.

Proposition 42.3. (Danciger-Guéritaud-Kassel [84, Lemma 4.1]) If ρ : Γ→ SL(d,R) is projec-
tive Anosov and ρ(Γ) acts convex cocompactly on a properly convex domain Ω, then Ω contains
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a properly convex domain Ω0 so that ρ(Γ) acts convex cocompactly on Ω0 and no point in ξρ(∂Γ)
lies on a non-trivial line segment in ∂Ω0.

Proof. Let C0 = C0(ξρ(∂Γ)) ⊂ Ω. We claim that we may choose

Ω0 = {x ∈ Ω | dΩ(x, C0) < 1}.

The following lemma implies that Ω0 is properly convex.

Lemma 42.4. Suppose that Ω is properly convex, X ⊂ Ω is convex, and d > 0, then

Nd(X) = {x ∈ Ω | dΩ(x,X) < d}

is properly convex.

Proof. If x, y ∈ Nd(X), let [x, y] be the line segment joining x to y in Ω, let x0 and y0 be
points in X so that d(x, x0) < d and d(y, y0) < d. Let u, v, w, z ∈ ∂Ω so that x, x0 ⊂ [u, v] and
y, y0 ⊂ [w, z]. Let Q be the quadrilateral with vertices u, v, w and z. Then if p ∈ [x, y], one
may check that

dΩ(p, [x0, y0]) ≤ dQ(p, [x0, y0]) ≤ max{dQ(x, x0), dQ(y, y0]} = max{dΩ(x, x0), dΩ(y, y1)} < 1,

so, since [x0, y0] ⊂ X, dΩ(p,X) < d.. Therefore, [x, y] ⊂ N )d(X), so Nd(X) is properly
convex. �

say more about
calculation?We next check that ρ(Γ) acts convex cocompactly on Ω0. By construction, ρ(Γ) ⊂ Aut(Ω0)

and C0 ⊂ Ω0. Lemma 40.2 then implies that ρ(Γ) acts convex cocompactly on Ω.
It only remains to check that no point in ξρ(∂Γ) lies on a line segment in ∂Ω0. Since every

point in ξρ(∂Γ) is an extreme point for ∂Ω0, by Lemma 40.3, it suffices to rule out line segments

in ∂Ω0 ending at points in ξρ(∂Γ). Since, ξρ(∂Γ) = Λorbρ(Γ) (by Lemma 38.1), the following more

general lemma, which we record for future use, completes the proof of Proposition 42.3.

Lemma 42.5. Suppose that a discrete subgroup Γ of SL(d,R) acts convex cocompactly on a
properly convex domain Ω. If Ω0 is properly convex and Γ-invariant, and there exist a > b > 0
so that

Nb(C0(ΛorbΓ )) ⊂ Ω0 ⊂ Na(C0(ΛorbΓ )),

then there does not exist a line segment [z, y] ∈ ∂Ω0 so that z ∈ ΛorbΓ and (z, y] ⊂ ∂Ω0 − ΛorbΓ .

Proof. Suppose that there is a line segment [z, y] ∈ ∂Ω0 such that z ∈ ΛorbΓ and (z, y] ⊂ ∂Ω0 − ΛorbΓ .

Fix x0 ∈ C0 = C0(ΛorbΓ ) and let {wn} be a sequence in (z, y] converging to z. Since ρ(Γ) acts
cocompactly on C0 and b ≤ dΩ(wn, C0) ≤ a for all n, there exists a compact subset K of C0 and
a sequences {γn} ⊂ Γ and {xn} ⊂ K so that

b ≤ d(γn(wn), xn) ≤ a.

We may pass to a subsequence so that {γn(wn)} converges to w∞ ∈ Ω0 ∩Ω, {xn} converges to
x∞ ∈ K, {γn(y)} converges to y∞ and {γn(z)} converges to z∞ ∈ ΛorbΓ . Lemma 38.1 implies

that y∞ ∈ ΛorbΓ . So, w∞ ⊂ [z∞, y∞] ⊂ C0 and d(w∞, C0) ≥ b > 0, and we have achieved a
contradiction. Therefore, there no such line segment exists, which completes the proof. �

�
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We are now ready to complete the proof of Theorem 40.1, which we recall below.

Theorem 40.1. (Danciger-Guéritaud-Kassel [84, Theorem 1.4], Zimmer [232, Theorem 1.27])
If ρ : Γ→ SL(d,R) is a projective Anosov representation and ρ(Γ) preserves a properly convex
domain in RPd−1, then ρ(Γ) is regularly convex cocompact. If ρ is irreducible, then ρ(Γ) acts
regularly convex cocompactly on Ωmax.

Proof of Theorem 40.1. Suppose that ρ : Γ → SL(d,R) is a projective Anosov representation
and ρ(Γ) preserves a properly convex domain in RPd−1. We have already seen that if θρ(∂Γ)

does not span (Rd)∗, then ρ(Γ) acts regularly convex cocompactly on Ωmax.
Lemma 42.2 implies that there exists a properly convex domain Ω which is preserved by

ρ(Γ) and contains C0 = C0(ξρ(∂Γ). Lemma 15.4, that the dual Ω∗ of Ω is properly convex and
that ρ∗(Γ) preserves Ω∗ and that ξρ∗ = θρ. Corollary 32.4 implies that ρ∗ is projective Anosov.
Lemmas 40.2 and 42.3 together imply that there exists a properly convex domain ∆ ⊂ Ω∗ so
that ρ(γ) acts convex cocompactly on ∆ and that no point in ξρ∗(∂Γ) lies in a line segment in
∂∆. Lemma 15.4, that the dual ∆∗ of ∆ is properly convex and that (ρ∗)∗(Γ) = ρ(Γ) preserves
∆∗. If z ∈ ξρ(Γ), then, since C0(θρ(∂Γ) ⊂ ∆, ∆∗ ⊂ Ωmax. Then, since θρ(z) is a support
plane to Ωmax at ξρ(z), it is also a support plane to ∆∗ at ξρ(z). Since θρ(z) does not lie on a
non-trivial line segment in ∆. Lemma 15.4 then implies that ξρ(z) is a C1 point of ∂Ω. Since
C0 ⊂ Ω and Ω ⊂ ∆∗, one has that C0 ⊂ ∆∗. Lemmas 40.2 and 40.3 imply that ρ(γ) acts convex
cocompactly ∆∗ and that every point in ξρ(∂Γ) is an extreme point of ∆∗. Therefore, ρ(Γ) acts
regularly convex cocompactly on ∆∗. �

Finally, we establish Zimmer’s Theorem 41.2 in the general case.

Theorem 41.2. (Zimmer [232, Theorem 1.25]) Suppose Γ is a torsion-free hyperbolic group
which is not a surface group or a cyclic group and does not split non-trivially as a free product.
If ρ : Γ → PGL(d,R) is a projective Anosov representation, then ρ(Γ) is regularly convex
cocompact.

Proof of Theorem 41.2. Just as in the original proof, choose u, v ∈ ∂Γ, so that ∂Γ − {u, v} is
connected and normalize so that ξρ(u) = [e1], ξρ(v) = [e2], ker(θρ(u)) = e⊥2 and ker(θρ)(v) = e⊥1 .

Then RPd−1 − (θρ(u)∪ θρ(v)) has two components. Since ξρ(∂Γ)− {u, v} is connected, it must
be in one of these two components.Without loss of generality, we may assume that

ξρ(∂Γ− {u, v}) ⊂ B = {[x1, . . . , xd] | x1 > 0, x2 > 0}
so ξρ(∂Γ) is a compact subset of the affine chart A determined by the hyperplane x1 + x2 = 1.

Let [φ̄] ∈ S((Rd)∗) be given by φ̄(~x) = x1 +x2. Then for all z ∈ ∂Γ, choose ξ̄ρ(z) ∈ p−1(ξρ(z)) so

that φ̄(ξ̄ρ(~x)) > 0. Similarly, choose θ̃ρ(z) ∈ p−1(θρ(z)) so that θ̃ρ(z)(ξ̃ρ(x)) > 0 if x ∈ ∂Γ−{z}.
We now notice that the proof of Lemma 42.2 also establishes establishes the following state-

ment.

Lemma 42.6. Suppose that ρ : Γ → SL(d,R) is projective Anosov, ξρ(∂Γ) is contained in an
affine chart A and there exist ρ-equivariant lifts

ξ̃ρ : ∂Γ→ S(Rd) and θ̃ρ : ∂Γ→ S((Rd)∗)

of the Anosov limit maps ξρ : ∂Γ→ P(Rd) and θρ : ∂Γ→ P((Rd)∗), and

θ̄ρ(z)(ξ̄ρ(w)) > 0
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for all w 6= z ∈ ∂Γ. Then, there exists a properly convex domain Ω containing C0(ξρ(Γ)) so that
ρ(Γ) ⊂ Aut(Ω).

Therefore, ρ(Γ) preserves a properly convex domain containing C0(ξρ(Γ)), so Theorem 40.1
implies that ρ(Γ) is regularly convex cocompact. �

43. Strongly convex cocompact actions

Horses wept jewels the size of fists
swept by scholars with a mind
to twist and level facets
of each plane to be raffled
when the bombing ceased
————Patti Smith [191]

In this section, we will see that if Γ acts regularly convex cocompactly on a properly convex
domain, then one can construct a strictly convex C1 domain which Γ acts on convex cocom-
pactly.

Theorem 43.1. (Danciger-Guéritaud-Kassel [84, Theorem 1.15]) If a discrete, torsion-free
subgroup Γ of SL(d,R) is regularly convex cocompact, then Γ is strongly convex cocompact.

We may combine Theorem 40.1 and 43.1 to obtain the following immediate corollary:

Corollary 43.2. (Danciger-Guéritaud-Kassel [84, Theorem 1.4]) If Γ is torsion-free, ρ : Γ →
SL(d,R) is a projective Anosov representation and ρ(Γ) preserves a properly convex domain in
RPd−1, then ρ(Γ) is strongly convex cocompact.

Theorem 43.1 and Corollary 43.2 remain true without the assumption that Γ is torsion-free,
but the proof is simplified somewhat by this assumption. The crucial ingredient in the proof is
the following lemma:

Lemma 43.3. (Danciger-Guéritaud-Kassel [84, Lemma 9.2]) Suppose that a torsion-free dis-
crete subgroup Γ of SL(d,R) acts convex cocompactly on a properly convex domain Ω. If b > 0,
there exists a properly convex domain Ω0 and a > 0 so that

Na(C0(ΛorbΓ )) ⊂ Ω0 ⊂ Nb(C0(ΛorbΓ )),

and every point in ∂Ω0 − ΛorbΓ is a C1 extreme point.

In hyperbolic geometry, one knows that the metric neighborhood of convex set is strictly
convex and C1. However, in Hilbert geometry in general, metric neighborhoods of convex sets
will only be convex and need not be C1. All techniques, that we are aware of, for proving results
of this form in Hilbert geometry use somewhat ad hoc methods. We note that the method of
Cooper-Long-Tillman [71, Corollary 8.2] prove an analogous result by constructing a smooth
convex function to use in place of the the distance function.

Proof. In the first step of the proof we produce a Γ-invariant convex domain which is C1 off
the full orbital limit set, while in the second, more complicated, step we make it both C1 and
strictly convex away from the limit set.



146 RICHARD D. CANARY

Choose c = b
2 . Since Γ acts cocompactly on C0 = C0(Λorb(Γ)) and distance to C0 is Γ-invariant,

we see that Γ acts cocompactly on Nc(∂C0). Let K be a compact subset of Nc(∂C0) so that

Γ(K) = Nc(∂C0). Let D be a closed neighborhood of K with smooth boundary which lies
inside inside of Nb(C0) and let Ω1 be the convex hull of Γ(D). Notice that Γ(D) ⊂ Nb(C0) since
Nb(C0) is convex, by Lemma 42.4, and that Nc(C0) ⊂ Ω1 by construction.

Notice that Ω1 is properly convex by definition. We now claim that ∂0Ω1 = ∂Ω1 − ΛorbΓ is
C1. Suppose that y ∈ ∂0Ω1. If Hy is a supporting plane of Ω1 at y, then Hy cannot intersect

ΛorbΓ , by Lemma 42.5. It follows that there exists a neighborhood U of y in ∂Ω1 and V of ΛorbΓ

in RPd−1 so that if x ∈ U , then any support plane to Ω through x is disjoint from V . On the
other hand, if γn → ∞ and H is a support plane to H(D), then γn(H) intersects V for all
large enough n. Therefore, there exists a finite subset {γ1, . . . , γm} of Γ so that U lies in the
boundary of the convex hull of

⋃m
i=1 γi(D). However, the dual of the convex hull of {γ1, . . . , γm}

is exactly
⋂m
i=1(γi(D))∗. Now, since γi(D) is smooth and properly convex, its dual (γi(D))∗ is

strictly convex, by Lemma 15.4. Therefore,
⋂m
i=1(γi(D))∗ is strictly convex, so the boundary of

its dual is C1, again by Lemma 15.4. Therefore, U is C1, and since y was arbitrary, ∂0Ω1 is C1.
We now explain how to alter Ω1 to obtain a new properly convex domain Ω0 so that C0 ⊂ Ω0

and ∂0Ω0 = ∂Ω− ΛorbΓ is strictly convex and C1.
Given y ∈ ∂0Ω1, let Fy be the stratum of ∂Ω1 containing y (i.e. the intersection of ∂Ω1 with

the unique supporting hyperplane Hy to ∂Ω1 through y). Notice that Fy is compact and cannot

intersect ΛorbΓ , by Lemma 42.5. We claim that if γ ∈ Γ is non-trivial, then Fy is disjoint from
γ(Fy) = Fγ(y). If not, there exist ŷ ∈ Fy ∩ Fγ(y), which would imply, since support planes at
points in ∂0Ω1 are unique, that

Hy = Hŷ = Hγ(y) = γ(Hy).

But then,

Hγn(y) = γn(Hy) = Hy

for all n, so γn(y) ∈ Fy for all y. Since there is a subsequence of {γn(y)}n∈N which converges

to z ∈ ΛorbΓ and Fy is compact, z ∈ Fy, which contradicts the fact that Fy is disjoint from ΛorbΓ .
Therefore, γ(Fy) and Fγ(y) are disjoint if γ ∈ Γ is non-trivial.

We first explain the proof in the simple case that there exists y ∈ ∂0Ω1 so that any line seg-
ment in ∂0Ω1 is contained in Γ(Fy), which is a disjoint union of copies of Fy. This case contains
all the crucial ideas of the construction. Here it will suffice to alter Ω1 on a neighborhood of
Fy and then extend this alteration equivariantly. In general, since the action of Γ on ∂0Ω1 is
properly discontinuous and cocompact, the line segments all lie in the iterates of “nice” open
neighborhoods of finitely many strata and we will work iteratively.

Suppose that any line segment in ∂0Ω1 is contained in Γ(Fy) for some stratum y ∈ ∂0Ω1. We
will assume that Ω1 is contained in an affine chart A and make use of its associated Euclidean
metric. Choose d− 1 hyperplanes H1, . . . ,Hd−1 which are in general position in A so that

(1) Each Hi separates Fy from ΛorbΓ .
(2) If Ri is the component of Ω1 −Hi containing y, then Ri is disjoint from γ(Ri) if γ ∈ Γ

is non-trivial.
(3) If pi is Euclidean orthogonal projection onto Hi, then pi(Ri) = Ω1 ∩Hi

Let R =
⋃
Ri, and if Qi = ∂Ri ∩ ∂Ω1, let Q =

⋃
Qi. Our assumptions imply that Fy ⊂ Q, Q

is disjoint from γ(Q) and R is disjoint from γ(R) if γ ∈ Γ is non-trivial.
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We further assume that in the affine chart A ∼= Rd−1, each Qi is the hyperplane {xi = 0}
and y lies in the positive orthant. Then R is the intersection of Ω with the complement of the
negative orthant, Q is the intersection of ∂Ω1 with the complement of the negative orthant and
C0 is contained in the negative orthant. Consider a C1 function h : R → R which is strictly
concave on (0,∞), h(x) = x if x ≤ 0 h′(0) = 1 and 0 < h(x) < x if x > 0. One example is
provided by letting h(x) = tanhx if x ≥ 0. We then define

φ : A→ A by φ(x1, . . . , xd−1) = (h(x1), . . . , h(xd−1)).

By construction φ(∂0Ω0) is strictly convex and φ(Q) is C1. Let R̂ be the portion of the comple-

ment of the negative orthant bounded by Q̂ = φ(Q), so φ(Ω1) = (Ω1−R)∪ R̂. Since h′(0) = 1,

φ(Ω1) remains strictly convex and C1 on ∂Q = ∂Q̂. Since Γ(R ∪ Q) is a disjoint union of
translates of R ∪Q, we can define

Ω0 =
(

Ω1 − Γ(R)
)
∪ Γ(R̂) =

⋂
γ∈Γ

(γ(φ(Ω1)), so ∂Ω0 =
(
∂Ω1 − Γ(Q)

)
∪ Γ(Q̂).

Since ∂0Ω1 − Γ(Q) is C1 and strictly convex, we easily see that ∂0Ω0 = ∂Ω0 − ΛorbΓ is C1 and

strictly convex. Since Γ(R) is disjoint from C0 and Γ(R̂) ⊂ Ω1, we see that

C0 ⊂ Ω0 ⊂ Ω1 ⊂ Na(C0)

as required.
The extension to the general case uses the same ideas but requires careful book-keeping. If

y ∈ ∂Ω1−ΛorbΓ , then one may choose, just as above, d− 1 hyperplanes Hy
1 , . . . ,H

y
d−1 which are

in general position in A so that

(1) Each Hy
i separates Fy from ΛorbΓ .

(2) If Ryi is the component of Ω1−Hi containing y, then Ryi is disjoint from γ(Ryi ) if γ ∈ Γ
is non-trivial.

(3) If pyi is Euclidean orthogonal projection onto Hy
i , then pi(R

y
i ) = Ω1 ∩Hy

i

Let Ry =
⋃
Ryi , and if Qyi = ∂Ryi ∩ ∂Ω1, let Qy =

⋃
Qyi . Then Fy ⊂ Qy and Qy is disjoint from

γ(Qy) and Ry is disjoint from γ(Ry) if γ ∈ Γ is non-trivial.

Since the action of Γ on ∂Ω1 − ΛorbΓ is cocompact, there exist a finite number of points
y1, . . . , ym, so that

Γ(Qy1 ∪ · · ·Qyn) = ∂0Ω1.

We first construct a properly convex domain Ω2 which has the form

Ω2 =
(

Ω1 − Γ(Ry1)
)
∪ Γ(R̂y1)

(for some R̂y1 to be defined later), is C1 on ∂0Ω2 = ∂Ω2 − ΛorbΓ and is strictly convex at any

point in Γ(Q̂y) and at any point in ∂0Ω2 ∩ ∂0Ω1 which is strictly convex in ∂Ω1.
There exists T1 ∈ SL(A,R) so that T1(y1) is in the positive orthant and, for all i, T (Hy1

i ) is the
hyperplane {yi = 0} in the affine chart A. Notice that φ(T1(∂Ω1)) ⊂ Ω1 is C1 on φ(T1(∂0Ω1))
(since ∂0Ω1 is C1), and is C1 on φ(Qy1) and at any point φ(z) where z ∈ ∂0Ω1 is C1. Let

R̂y1 = T−1
1 (φ(T1(Ry1)) ⊂ Ry1 and Q̂y1 = T−1

1 (φ(T1(Qy1))). Then Ω̂2 = (Ω−Ry1)∪ R̂y1 contain
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C0, is C1 on ∂0Ω2, and strictly convex on Q̂y1 and at any point in ∂Ω1 − Q̂y1 where ∂Ω1 is
strictly convex. Then let

Ω2 = (Ω1 − Γ(Ry1)) ∪ Γ(R̂y1) =
⋂
γ∈Γ

γ(Ω̂2)

so if ∂0Ω2 = ∂Ω2 − ΛorbΓ , then

∂0Ω2 =
(
∂0Ω1)− Γ(Qy1)

)⋃
Γ(Q̂y1).

One easily checks that Ω2 has all the claimed properties.
One then iteratively defines Ωi+1 =

(
Ω1 − Γ(Qyi)) ∪ Γ(Q̂yi) for all i = 1, . . . , n so that

∂0Ωi+1 = ∂Ωi+1 − ΛorbΓ is C1, is strictly convex on ∂Ωi+1 −
⋃n
j=i+2Qyj and

C0 ⊂ Ωi+1 ⊂ Ωi ⊂ Nb(C0).

If we set Ω0 = Ωn+1, then ∂0Ω0 is C1 and strictly convex.
Finally, we claim that there exists a > 0, so that Na(C0) ⊂ Ω0. Let K be a compact subset

of C0 so that Γ(K) = C0. Since Ω0 is an open neighborhood of K, there exists a > 0 so that
Na(K) ⊂ Ω0. Since Ω0 is Γ-invariant, we see that Na(C0) ⊂ Ω0, and we have completed the
proof. �

Armed with Lemma 43.3 we are ready to complete the proof of Theorem 43.1.

Proof of Theorem 43.1. Suppose that Γ is a discrete, torsion-free subgroup of SL(d,R) which
acts regularly convex cocompactly on a properly convex domain Ω ⊂ RPd−1. Lemma 43.3
provides a properly convex domain Ω0 ⊂ Ω so that, if C0 = C0(Λorb(Γ)), then there exists a > 0
so that

Na(C0) ⊂ Ω0 ⊂ N1(C0)

and ∂0Ω0 = ∂Ω−ΛorbΓ is C1 and strictly convex. Since Γ acts regularly convex cocompactly on

∂Ω, there are no line segments in ΛorbΓ . Since there are no line segments in ∂0Ω0, Ω0 is strictly
convex.

It remains to show that ∂Ω0 is C1. We already know that ∂0Ω0 is C1, so consider a point
z ∈ ΛorbΓ . Since Γ acts regularly convex cocompactly on Ω, z is a C1 point of ∂Ω. Let Hz be
the unique support plane to Ω at z. Notice that Hz is also a support plane to Ω0 at z, since
Ω0 ⊂ Ω. If z is not a C1 point of ∂Ω0, then there is a support plane H to ∂Ω0 which does not
agree with Hz. Therefore, H intersects Ω, and that intersection contains an open line segment
(w, z) joining w ∈ ∂Ω0 to z.

Let (v, z) be a line segment in C0 joining some point v ∈ C0 to z. Let {vn} be a sequence
of points in (v, z) converging to z and choose {wn} ⊂ (w, z), so that [vn, wn] is parallel to H
for all n. We claim that lim dΩ(vn, wn) = 0. Suppose that [wn, zn] ⊂ [un, yn] and un, yn ∈ ∂Ω,
so dΩ(vn, wn) = 1

2 log[un, vn, wn, yn] (where we assume that the points appear in the order
un, vn, wn, yn on the line segment [un, yn]). Let Un be the line through z and un and Yn be the
line through yn and z. Since Ω is C1 at z, Un and Yn converge to the same line in Hz. This
implies that lim[un, vn, wn, yn] = 1, so lim dΩ(vn, wn) = 0. Since Na(C0) ⊂ Ω0 and vn ∈ C0 for
all n, we see that vn ∈ Ω0 for all large enough n, which contradicts the fact that H is a support
plane to ∂Ω0 (since vn ∈ H for all n). Therefore, ∂Ω0 is C1 at z. Since z was an arbitrary point
in ΛorbΓ , this completes the proof that ∂Ω0 is C1. �
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44. Convex cocompactness: Further topics

I see nothing to be gained by any explanation
There’s no words that need to be said
——————Bob Dylan [94]

New examples. One of the first applications of Danciger, Guéritaud and Kassel’s work was a
proof that any hyperbolic right-angled Coxeter group admits a projective Anosov representation
(in fact, a P p,q1 -Anosov representation into O(p, q) for some p and q). Many such Coxeter groups
are not isomorphic to lattices in rank one Lie groups.

Theorem 44.1. (Danciger-Guéritaud-Kassel [83, Theorem 1.20]) If Γ is an infinite, Gromov
hyperbolic, right-angled Coxeter group, then there exists d ≥ 2 and a projective Anosov repre-
sentation ρ : Γ→ SL(d,R) so that ρ(Γ) is strongly convex cocompact.

Lee and Marquis [146] subsequently exhibited Coxeter groups which are not isomorphic to
lattices in rank one Lie groups, but are isomorphic to AdSd,1 strictly GHC-regular groups with
d equal to 4, 5, 6, 7 and 8. In particular, such groups admit projective Anosov representations
into SL(d+ 2,R) with image in O(d, 2). Danciger, Guéritaud, Kassel, Lee and Marquis are now
preparing a manuscript which will handle all hyperbolic Coxeter groups.

This work addresses the relative paucity of examples of “new” Anosov representations. The
majority of currently known examples are either representations of surface groups or free groups
or arise by considering a convex cocompact subgroup Γ of a rank one Lie group G and a “well-
behaved representation τ : G→ SL(d,R) and then deforming τ |Γ : Γ→ SL(d,R).

Benoist’s criterion and Hitchin representations. Benoist [18] provides a characterization
of strongly irreducible subgroups of SL(d,R) which preserve a properly convex domain. We
recall that a subgroup Γ of SL(d,R) is said to be positively proximal if and only if Γ contains a
proximal element and if A ∈ Γ is proximal, then its first eigenvalue is positive, i.e. λ1(A) > 1.

Theorem 44.2. (Benoist [18, Proposition 1.1]) If Γ is a strongly irreducible subgroup of
SL(d,R), then Γ preserves a properly convex domain Ω ⊂ RPd−1 if and only if it contains
a finite index subgroup which is positively proximal.

One consequence of Benoist’s criterion is that the image of a Hitchin representation into
SL(d,R) preserves a properly convex domain if and only if d is odd. In particular, its image is
strongly convex cocompact if and only if d is odd.

Corollary 44.3. (Danciger-Guéritaud-Kassel [84, Proposition 1.7], Zimmer [232, Corollary
1.33]) If S is a closed, orientable surface and ρ : π1(S)→ SL(d,R) is a Hitchin representation,
then ρ(Γ) is strongly convex cocompact if and only if d is odd. Moreover, if d is even, then
ρ(π1(S)) does not preserve a properly convex domain.

We provide a brief sketch of the proof of Corollary 44.3. Let τd : SL(2,R)→ SL(d,R) be an
irreducible representation (which is well-defined up to conjugacy). If η : π1(S)→ SL(2,R) is a
Fuchsian representation and g ∈ π1(S), then λ1(τd(η(g)) = λ1(τ(g))d−1.

First suppose that d is odd. Then, λ1(τd(η)) > 1 if g ∈ π1(S) is non-trivial, so the d-Fuchsian
representation τd ◦ η is positively proximal. If g ∈ π1(S), then λ1(ρ(g)) varies continuously
as ρ varies over the Hitchin component Hd(π1(S)). Labourie [143] showed that any Hitchin
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representation ρ is Borel Anosov, so if g ∈ π1(S) is non-trivial, then |λ1(ρ(g))| > 1. Therefore,
since every Hitchin component contains a d-Fuchsian representation, by definition, it follows
that λ1(ρ(g)) > 1 for all ρ ∈ Hd(S), so every ρ ∈ Hd(S) is positvely proximal. Since all Hitchin
representations are strongly irreducible, see Labourie [143, Lemma 10.1], Theorem 44.2 then
implies that every ρ ∈ Hd(S) preserves a properly convex domain. Corollary 43.2 then implies
that ρ(Γ) is strongly convex cocompact.

Now suppose that d is even. Recall that there exists a non-trivial element g ∈ π1(S) so that
λ1(η(g)) < 0 (see Choi-Goldman [66, Lemma 2]). Therefore, λ1(τd(η(g)) < 0, so the d-Fuchsian
representation τd ◦ η is not positively proximal. Since λ1(ρ(g)) varies continuously over Hd(S)
and always has modulus greater than 1, we see that λ1(ρ(g)) < −1 for all ρ ∈ Hd(S). Since
ρ(g) is proximal, since ρ is Borel Anosov, it follows that if ρ ∈ Hd(S), then ρ is not positively
proximal. Theorem 44.2 then implies that ρ(Γ) does not preserve a properly convex domain.
In particular, ρ(Γ) is not strongly convex cocompact.

Entropy rigidity for convex cocompact groups. Zimmer [232] obtains a generalization of
Crampon’s [74] rigidity result, see Theorem 23.1, in the setting of strongly convex cocompact
subgroups of SL(d,R). We recall that the Hilbert entropy of strongly convex cocompact
subgroup Γ of SL(d,R) is defined to be

hH(ρ) = lim
T→∞

#
{

[γ] ∈ [Γ] | log
(

log |λ1(ρ(γ))|
log |λd(ρ(γ))|

)
≤ T

}
T

.

Theorem 44.4. (Zimmer [232, Theorem 1.35]) If d ≥ 3 and Γ is a strongly convex cocompact
subgroup of SL(d,R), then

hH(ρ) ≤ d− 2,

and hH(ρ) = d− 2 if and only if Γ is conjugate to a lattice in SO(d− 1, 1).

Tholozan [201, Theorem 2] earlier proved the closely related fact that the volume growth
entropy of the Hilbert metric on a properly convex domain in RPd−1 is at most d− 2.

Convex cocompact groups which are not strongly convex cocompact. Although we
have focussed almost exclusively on the case of Anosov convex cocompact groups the analysis
of Danciger-Guéritaud-Kassel [84] extends to give signification information about groups which
are only convex cocompact.

They establish the following general properties of convex cocompact groups, all of which are
reminiscent of standard properties of Anosov groups.

Theorem 44.5. (Danciger-Guéritaud-Kassel [84, Theorem 1.17]) If Γ ⊂ SL(d,R) acts convex
cocompactly on the properly convex domain Ω, then

(1) The group Γ is finitely generated and any orbit map τ : Γ → Ω is a quasi-isometric
embedding.

(2) Γ contains no unipotent elements.
(3) The dual Γ∗ of Γ acts convex cocompactly on Ω∗.
(4) There exists a neighborhood U of the inclusion map in Hom(Γ,SL(d,R), so that if ρ ∈ U ,

then ρ(Γ) is convex cocompact.
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They also demonstrate that there are interesting examples of convex cocompact groups which
are not Anosov, by exhibiting convex cocompact groups that are isomorphic to non-hyperbolic
Coxeter groups, hence not Anosov, see [83].

Geometrically finite actions on projective spaces. Crampon and Marquis [77, 78] studied
geometrically finite actions of projective automorphism groups on strictly convex C1 domains
in RPd−1. This theory is designed to extend the well-developed theory of geometrically finite
subgroups of SO(n, 1).

The simplest definition is to say that a finitely generatated, discrete subgroup Γ of SL(d,R)
is geometrically finite it it preserves a strictly convex C1 domain Ω, C0(ΛorbΓ ) is contained in

Ω and its convex core C0(ΛorbΓ )/Γ has finite volume. They prove [77, Theorem 8.1] that many of
the standard alternative definitions from Kleinian groups generalized to this setting and remain
equivalent. They show [77, Theorem 9.1] that Γ is relatively hyperbolic with respect to its
maximal parabolic subgroups.

In a second paper [78] they study the geodesic flow of geometrically finite actions on projective
space. As a cautionary tale, they point out [78, Proposition 8.1] that the geodesic flow need not
be uniformly hyperbolic, unlike in the Kleinian setting. However, they do show that the non-
wandering portion of the geodesic flow is uniformly hyperbolic if the cusps are “asymptotically
hyperbolic,” see [78, Theorem 5.2]. As a consequence [78, Corollary 7.3] they see that ∂Ω is
C1+α at all points in ΛorbΓ in this case (which places one more firmly in the setting of classical
dynamics).
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Part 8. Anosov representations: Extra for Experts

But Lather still finds it a nice thing to do,
To lie about nude in the sand,
Drawing pictures of mountains that look like bumps,
And thrashing the air with his hands
————Grace Slick [122]

In this chapter, we will briefly discuss a handful of topics. Each of these sections should be
regarded as a brief introduction to a research area and we will not make any attempt to make
the discussion complete. The choice of topics reflects our own idiosyncratic tastes. I intended
to include more topics here and I may come back and do so someday.......

45. Sambarino’s geodesic flow

Andres Sambarino [185] originated the idea of constructing a flow associated to a projective
Anosov representation whose periods record the spectral radii of elements of ρ(Γ). This idea
was further developed by Sambarino and his co-authors in [45]. His flow turns out to be a

reparametrization of the geodesic flow Û(Γ), so allows one to bring to bear the powerful tools
of the Thermodynamic Formalism.

Suppose that ρ : Γ→ SL(d,R) is projective Anosov and let

Fρ =
{

((x, y), ~v) | (x, y) ∈ ∂Γ× ∂Γ−∆, ~v ∈ ξρ(x)− {~0}
}
/~v ∼ −~v.

If π : Fρ → ∂Γ×∂Γ−∆ is the projection map, then π is a fibre bundle with fibre homeomorphic
to R. The only reasonable flow {ηt} on Fρ is given by

ηt(x, y, ~u) = (x, y, et~u)

for all t ∈ R.
The group Γ acts on Fρ by

γ((x, y), ~v) =
(
(γ(x)γ(y)), ρ(γ)(~v)

)
for all γ ∈ Γ. We will show that the action of Γ on Fρ is properly discontinuous, so, since the
action commutes with the action of {ηt}t∈R, {ηt}t∈R descends to a flow {η̂t}t∈R on the quotient

Ûρ(Γ) = Fρ/Γ.

We call the resulting flow the spectral radius geodesic flow of the representation ρ, since as
we will see, the periods of this flow are exactly the spectral radii of elements of ρ(Γ). (Recall
that the spectral radius of an element A ∈ SL(d,R) is simply |λ1(A)|.)
Proposition 45.1. ([45, Propositions 4.1 and 4.2]) If ρ : Γ → SL(d,R) is a projective Anosov
representation, there exists a Γ-equivariant orbit equivalence gρ : U(Γ) → Fρ. In particular, Γ

acts properly discontinuously on Fρ and gρ descends to an orbit equivalence ĝρ : Û(Γ)→ Ûρ(Γ).

We recall that a homeomorphism g : (X, at) → (Y, bt) between flow spaces is an orbit
equivalence if it takes flow lines to flow lines, i.e. g({at(x) | t ∈ R}) = {bt(g(x)) | t ∈ R} for
all x ∈ X. A map f : (X, at) → (Y, bt) between flow spaces is said to conjugate (X, at) to
(Y, bt) if it is an orbit equivalence which preserves time, i.e. f(at(x)) = bt(f(x)) for all t ∈ R
and x ∈ X.
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Proof. We first show that Ξ̂ is a contracting line bundle. There is a simple proof using tensor
analysis (see [45, Lemma 2.4]), but we will give a more complicated proof based on the techniques
developed in our earlier work (since tensor analysis always confuses me).

Lemma 45.2. ([45, Lemma 2.4]) If ρ : Γ → SL(d,R) is a projective Anosov representation,

then Ξ̂ is a contracting line bundle.

Proof. Since Û(Γ) is compact,it suffices to prove that if (Ẑ, ~v) ∈ Ξ̂, then limt→∞ ||ψ̂t(Ẑ, ~v)|| = 0
As usual, we choose a compact subset R of U(Γ) so that Γ(R) = U(Γ) and then choose

(Z, ~x) ∈ Ξ|Z so that Z ∈ R and (Z, ~x) covers (Ẑ, ~v). Suppose that {tn}n∈N ⊂ R and
lim tn = +∞. For each n, choose γn so that

γn(φtn(Z)) = Wn ∈ R.

As we have previously seen, in the proof of Theorem 31.1,

||ψ̂tn(ẑ, ~v)|| = ||(φtn(Z), ~x)|| = ||~x||φtn (Z) = ||ρ(γn(~x))||Wn

and if Z = (z−, z+, s), then γ−1
n → z+. We also note that || · ||Wn is uniformly bilipschitz to

|| · ||0, so it suffices to prove that ||ρ(γn)(~x)||0 → 0.
Since ξρ has the Cartan property, by Corollary 30.4,

U1(ρ(γn)−1)→ ξρ(z
+) = Ξ|Z = ρ(z)+.

Therefore, since ~x ∈ ξρ(z+),

lim

(
||ρ(γn)(~x)||0
σd(ρ(γn))||~x||0

)
= 1.

Since

σd(ρ(γn)) =
1

σ1(ρ(γ−1
n ))

≤

√
σ2(ρ(γ−1

n ))

σ1(ρ(γ−1
n ))

,

and ρ is P1-divergent, we see that

lim ||ρ(γn)(~x)||0 = 0.

which completes the proof. (In the displayed equation above the final inequality follows from

the fact that σ2(A) ≥
(

1
σ1(A))

)1/(d−1)
for any A ∈ SL(d,R).) �

It will also be convenient to choose a particularly well-behaved norm on Ξ̂. We do so by
averaging the norms over a sufficiently large time frame. (I recommend skipping the proof,
since it is just a technical calculation which is here for completeness.)

Lemma 45.3. ([45, Lemma 4.3]) If ρ : Γ → SL(d,R) is a projective Anosov representation,

there exists a norm || · || on Ξ̂ and β > 0, such that

||ψ̂t(~v)|| ≤ e−βt||~v||

for all ~v ∈ Ξ̂ and t ≥ 0.



154 RICHARD D. CANARY

Proof. We start with a continuous family || · ||E of norms on Ξ̂. Since the flow ψ̂t is contracting

on Ξ̂, there exists t0 > 0 such that

||ψ̂t0(~v)||E ≤ 1

4
||~v||E

for all ~v ∈ Ξ̂. Choose β > 0 so that 2 < eβt0 < 4 and, for all s, let

||~v||E,s = ||ψ̂s(~v)||E ,

so, by definition,

eβt0 ||~v||E,s+t0 < 4||~v||E,s+t0 ≤ ||~v||E,s (45.1)

for all s ≥ 0 and ~v ∈ Ξ̂. Then let

||~v|| =
∫ t0

0
eβs||~v||E,s ds

for all ~v ∈ Ξ̂. If t > 0 and ~v ∈ Ξ̂, then

||ψ̂t(~v)|| =

∫ t0

0
eβs||ψ̂t(~v)||E,s ds

= e−βt
∫ t+t0

t
eβu||~v||E,u du

= e−βt
(
||~v||+

∫ t+t0

t0

eβu||~v||E,u du−
∫ t

0
eβu||~v||E,u du

)
= e−βt

(
||~v||+

∫ t

0
eβu

(
eβt0 ||~v||E,u+t0 − ||~v||E,u

)
du

)
< e−βt||~v||

where the last inequality follows from equation (45.1). Therefore our new metric has the desired
property. �

We lift the norm || · || from Lemma 45.3 to an equivariant norm, still denoted || · ||, on Ξ and
we define gρ : U(Γ)→ Fρ so that

gρ(x, y, s) = (x, y, ~u(x, y, s)) where ||~u(x, y, s)||(x,y,s) = 1.

By our chosen contraction property, ||~u(x, y, s)||(x,y,s+t) < 1 if t > 0, so gρ is injective. Moreover,
lims→∞ ||~u(x, y, s)||(x,y,0) = +∞ and lims→∞ ||~u(x, y, s)||(x,y,0) = 0, so gρ is proper on each
fibre, and hence a homeomorphism. By definition, gρ is equivariant and takes flow lines to flow
lines. �

Proposition 45.1 implies that the closed orbits of Ûρ(Γ) are in one-to-one correspondence

with the closed orbits of Û(Γ) and hence with the conjugacy classes of infinite order elements
of Γ.

We now check that the period of the orbit associated to the conjugacy class [γ] in Γ is the
spectral radius of ρ(γ).
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Lemma 45.4. ([45, Proposition 4.1]) If ρ : Γ→ SL(d,R) is a projective Anosov representation,
then the closed orbit associated to the conjugacy class [γ] in Γ has period |λ1(ρ(γ))|.

Proof. The orbit of Ûρ(Γ) associated to [γ] is the quotient of the fiber of Fρ over (γ+, γ−) ∈ ∂Γ× ∂Γ−∆.
If ~v ∈ ξρ(γ+), then

γ(γ+, γ−, ~v) = (γ+, γ−, ρ(γ)(~v)) = (γ+, γ−, λ1(ρ(γ))~v) = φlog |λ1(ρ(γ))|(γ
+, γ−, ~v)

since ξρ(γ
+) is the attracting eigenline of ρ(γ). Therefore, the orbit has period log |λ1(ρ(γ))|. �

Remarks: If ρ : π1(S) → SL(d,R) is a Hitchin representation and 1 ≤ k ≤ d
2 , then one may

construct a geodesic flow which is a Hölder reparametrization of T 1S so that the orbit associated

to [γ] in π1(S) has period log
(
|λk(ρ(γ))|
|λk+1(ρ(γ))|

)
, see Martone-Zhang [160] and [46].

46. Thermodynamic Formalism and the entropy of the geodesic flow

Where the vulture glides descending
On an ancient highway bending
Through libraries and museums
Galaxies and stars
Down the windy halls of friendship
To the rose clipped by the bullwhip
The motel of lost companions
Waits with heated pool and bar
———————Neil Young [225]

It turns out that the natural regularity class for our constructions is Hölder regularity. The

geodesic flow Û(Γ) is only well-defined up to Hölder orbit equivalence (even in the case of a
closed surface group π1(S)). If one examines the proof of stability more closely one can conclude
that the limit map is Hölder. Then, one may observe that the orbit equivalence constructed

above is Hölder, and hence that Ûρ(Γ) is a Hölder conjugate to a Hölder reparameterization

of Û(Γ). Roughly, this means that there exists a Hölder function fρ : Û(Γ) → (0,∞), so that

Ûρ(Γ) is Hölder conjugate to the unit speed flow associated to the new element of arc length

fρds along the flow lines of Û(Γ), where ds is the element of arc length for the flow lines in Û(Γ).

We call the resulting flow Û(Γ)fρ and notice that the identity map is a Hölder orbit equivalence

between Û(Γ) and Û(Γ)fρ . (See [45, Sections 3 and 6] for more details and references.)

Recall that Û(Γ) is Anosov if Γ = π1(M) where M is a closed manifold and is a compact flow-
invariant subset of an Anosov flow if Γ admits a convex cocompact representation into a rank
one Lie group. In all cases it is topologically transitive. In either case, we are immediately in the
setting of the Thermodynamic Formalism in which there are powerful tools and invariants. This
theory was developed by Bowen [39], Ruelle [183] and Parry-Pollicott [175]. In general, one can

prove that Ûρ(Γ) is always “metric Anosov” (see [45, Proposition 5.1] and [69, Theorem C]), so
by work of Pollicott [176] one can still apply many of the tools of the Thermodynamic Formalism
in this setting. In this section we will discuss, without proof, some of these applications.



156 RICHARD D. CANARY

One of the most studied invariants is the topological entropy. If T > 0 and ρ : Γ→ SL(d,R)
is projective Anosov, let

Rρ(T ) = {[γ] ∈ [Γ] | log (|λ1(ρ(γ))|) ≤ T}.

The topological entropy of Ûρ(Γ) is then defined to be

h(ρ) = lim
T→∞

log(#(Rρ(T ))

T
.

(In general, the topological entropy of a topologically transitive Anosov flow may be defined to
be the exponential growth rate of the number of close orbits with period at most T .) The Ther-
modynamic Formalism guarantees that this limit always exists for a Hölder reparamterization
of an Anosov flow.

Let {ρu : Γ→ SL(d,R)}u∈M be a family of projective Anosov representations parameterized
by an real analytic manifold M . We say that {ρu}u∈M is an analytic family of projective
Anosov representations if ρu(γ) varies analytically for all γ ∈ Γ. For example, every Hitchin
component is an analytic family of projective Anosov representations (see [114]). Johnson and
Millson [124] observed that Benoist components can have singularities. However, they contain
many analytic submanifolds.

The choice of reparameterization function fρ is not canonical (although any two choices are
Livsic gologous). However, Bridgeman, Canary, Labourie and Sambarino [45, Theorem 6.1]
show that the limit map ξρ does vary analytically. They further show that:

Proposition 46.1. ([45, Proposition 6.2]) If {ρu}u∈M is an analytic family of projective Anosov
representations, then one may choose {fρu} to vary locally analytically over M . More explicitly,
at every point u0 ∈M there exists α > 0, a neighborhood U of u0, and an analytic map F from

U into the space of α-Hölder maps of Û(Γ) into (0,∞) so that if u ∈ U , then Ûρu(Γ) is Hölder

conjugate to Û(Γ)F (u).

The Thermodynamic Formalism then gives that entropy varies analytically.

Corollary 46.2. ([45, Theorem 1.3]) If {ρu}u∈M is an analytic family of projective Anosov
representations, then

u→ h(ρu)

is an analytic function on M .

If ρ ∈ CC(Γ,SO0(n, 1)), then Sullivan [196] showed that h(ρ) is (a scalar multiple of) the
Hausdorff dimension of the limit set Λ(ρ) of ρ(Γ). If n is 2 or 3, then CC(Γ, SO0(n, 1)) is an
analytic manifold, see Bers [28]. In this special case we obtain:

Corollary 46.3. ([45, Corollary 1.8]) The Hausdorff dimension of the limit set varies analyt-
ically over analytic submanifolds of CC(Γ,SO0(n, 1)). In particular, it varies analytically over
CC(Γ,SO0(2, 1)) and CC(Γ,SO0(3, 1)).

We encourage the interested reader to consult the work of Sambarino [46, 185, 186], Potrie-
Sambarino [179] and the very recent work of Edwards, Lee, and Oh [95, 149] for further results
on the dynamical properties of Anosov representations.

Remarks: (1) Corollary 46.3 was established when Γ is a surface group or free group by Ruelle
[184] and for certain other groups by Anderson and Rocha [7].
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(2) If G is any rank one Lie group, Corlette-Iozzi [73] and Yue [226] showed that the Hausdorff
dimension is a scalar multiple of the topological entropy and one may similarly show that
the Hausdorff dimension of the limit set varies analytically over analytic families of convex
cocompact representations into G.

(3) Pollicott and Sharp [177] earlier showed that entropy varies analytically over the Hitchin
component. Tapie [200] previously established that the Hausdorff dimension varies continuously
differentiably over (smooth points of) CC(Γ,SO0(n, 1)).

Pressure metrics.

I got a couple of opinions that I hold dear
Got a whole lot of debt and a whole lot of fear
I got an itch that needs scratching but it feels alright
I got the need to blow it out on Saturday night
I got a grill in the backyard and a case of beers
Got a boat that ain’t seen the water in years
More bills than money, I can do the math
I’m trying to keep focused on the righteous path
——————-Patterson Hood [89]

If {ρu}u∈M is an analytic family of projective Anosov representations, one can use Proposition
46.1 to construct a locally analytic map of M into the space of (Livsic cohomology classes) of

positive Hölder functions on Û(Γ). If all the representations are irreducible and ρu is not
conjugate to ρv, in GL(d,R), if u 6= v, this map will be injective, see [45, Theorem 1.2].

Notice that if {ρu}u∈M is an analytic family of Pk-Anosov representations, then {Ekd ◦ρu}u∈M
is an analytic family of projective Anosov representations, by Theorem 34.3. Thus, one can

map M into the the space of (Livsic cohomology classes) of positive Hölder functions on Û(Γ)
by taking u to fEkd◦ρ

.

McMullen [163] used the Thermodynamical Formalism to construct a pressure form on the
space of positive Hölder functions which is non-negative. One may pull this form back to obtain
an analytic form on M , which we again call the pressure form. If this form is positive definite,
it gives rise to an analytic Riemannian metric on M . McMullen implemented this strategy in
the case of the classical Teichmüller space of a closed orientable surface S and in this case it
gives rise to Thurston’s reformulation of the Weil-Petersson metric as “the Hessian of the length
of a random geodesic,” see also Bonahon [33] and Wolpert [218]. Bridgeman [44] showed that

on the space QF (S) = ĈC(π1(S),SO(2, 1)) the pressure form is only non-degenerate at the
Fuchsian locus and only in pure bending directions, so one gets a pressure metric which is
a path metric that is Riemannian off the submanifold of Fuchsian representations. Moreover,
Bridgeman’s pressure metric restricts to (a scalar multiple of) the Weil-Petersson metric on the
Fuchsian locus (which is naturally a copy of T (S)).

These are both examples of a much more general phenomenon. We recall that a representation
into SL(d,R) is generic if some element of the image is diagonalizable with distinct eigenvalues

Theorem 46.4. ([45, Theorem 1.4]) If {ρu}u∈M is an analytic family of generic irreducible
P1-Anosov representations, then the pressure metric on M is an analytic Riemannian metric.
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More generally, if {ρu}u∈M is an analytic family of Zariski dense Pk-Anosov representations,
then the pressure metric on M is an analytic Riemannian metric.

Notice that Fuchsian representation are not Zariski dense in SO(3, 1) so Bridgeman’s work
tells us that the Zariski density assumption is essential in this case. (We note that all convex
cocompact representations of a group Γ into SO(d, 1) are generic, viewed as representations into
SO(d, 1), rather than SL(d+ 1,R).)

We cite two examples of special interest (to me).

Corollary 46.5. ([45, Corollary 1.7]) If Γ does not have a finite index subgroup which is
either free or a surface group, then the pressure metric is an analytic Riemannian metric on

ĈC(Γ, SO(3, 1)) which is invariant under the action of Out(Γ).

Corollary 46.6. ([45, Corollary 1.6]) If S is a closed orientable surface and d ≥ 3, then the
pressure metric is an analytic Riemannian metric on the Hitchin component Hd(S) which is
invariant under the action of the mapping class group Mod(S). Moreover, the restriction of the
pressure metric to the Fuchsian locus is a scalar multiple of the Weil-Petersson metric.

We give a brief definition of the pressure metric here, but we refer the reader to the survey pa-
per [48] for a more complete expository treatment. Given two projective Anosov representation
ρ : Γ→ SL(d,R) and η : Γ→ SL(d,R) we define there pressure intersection

I(ρ, η) = lim
T→∞

1

|RT (ρ)|
∑

[γ]∈RT (ρ)

log(|λ1(η(γ))|
log |λ1(ρ(γ))|

which one may think of as the (spectral radius) length (in η) of a random geodesic (with respect
to length in ρ). One then considers the renormalized pressure intersection given by

J(ρ, η) =
h(η)

h(ρ)
lim
T→∞

1

|RT (ρ)|
∑

[γ]∈RT (ρ)

log(|λ1(η(γ))|
log |λ1(ρ(γ))|

.

(Thurston and McMullen did not need to renormalize the pressure intersection since entropy
is constant on the Teichmüller space of a closed surface.) If {ρu}u∈M is an analytic family of
generic irreducible P1-Anosov representations and u0 ∈M , we consider J(ρu0 , ·) as a map from
M to R. The Thermodynamic formalism gives that J has a minimum at u0, so we define the
pressure metric by

P|Tu0M = HessJ(ρu0 , ·)
and see immediately that P is non-negative at every point. The most difficult part of the proof
of Theorem 46.4 involves showing that P is actually positive definite at every point.

Remarks: (1) Li [150] produced another mapping class group invariant Riemannian metric on
H3(S), which she calls the Loftin metric. The Loftin metric also restricts to a scalar multiple
of the Weil-Petersson metric on the Fuchsian locus.

(2) Marc Burger [51] was the first one to consider the pressure intersection, in the context of
convex cocompact rank one representations.

(2) Bridgeman, Canary, Labourie and Sambarino [46] construct another pressure metric
on the Hitchin component, called the simple root pressure metric, by replacing the spectral
radius geodesic flow with the (first) simple root geodesic flow whose periods have the form

log
(
|λ1(ρ(γ))|
|λ2(ρ(γ))|

)
for [γ] in π1(S).
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47. Marked length rigidity

It’s a pure perfect world that tells no lies
Burn you down you try to improvise
If kerosene works why not gasoline....
————Brian Henneman [34]

We begin with Dal’bo and Kim’s simple and elegant proof that any two faithful Zariski dense
representations into PSL(d,R) with the same marked length spectrum differ by precomposition
by an automorphism of PSL(d,R).

In the statement

`(ρi(γ)) =

√(
log λ1(ρi(γ))

)2
+ · · ·+

(
log λ1(ρi(γ))

)2
is the translation length of ρi(γ) on the symmetric space Xd associated to PSL(d,R).

Theorem 47.1. (Dal’bo-Kim[81]) If Γ is a group and ρ1 : Γ → PSL(d,R) and ρ2 : Γ →
PSL(d,R) are faithful, Zariski dense representations and `(ρ1(γ)) = `(ρ2(γ)) for all γ ∈ Γ, then
there exists an automorphism τ of SL(d,R) so that ρ2 = τ ◦ ρ1.

We note that the subgroup of automorphisms given by conjugation by an element of PGL(d,R)
has index two in the group of automorphisms of PSL(d,R) and that the contragredient involution
given by A → (A−1)T is a representative of the non-trivial coset. So, one may strengthen the
conclusion by saying that ρ1 is conjugate to either ρ2 or ρ∗2.

Proof. Consider the Jordan projection

λ : PSL(d,R)→ a+

where
a+ = {~x ∈ Rd | x1 ≥ x2 ≥ · · · ≥ xd, x1 + · · ·xd = 0}

given by
λ(g) =

(
log(|λ1(g)|), . . . , log(|λd(g|)

)
.

If ∆ is a subgroup of PSL(d,R)×PSL(d,R), then its Benoist limit cone Λ(∆) is the closure
in a+ × a+ of the cone on (λ× λ)(∆).

The crucial tool in the proof is a powerful result of Benoist, which we state in our setting,
although it is a special case of a result for limit cones of Zariski dense subgroups of connected,
algebraic, semisimple Lie groups.

Theorem 47.2. (Benoist [16]) If ∆ is a Zariski dense subgroup of PSL(d,R)×PSL(d,R), then
its limit cone Λ(∆) is convex and has non-empty interior.

We consider the representation ρ1 × ρ2 : Γ → PSL(d,R) × PSL(d,R). If `(ρ1(γ)) = `(ρ2(γ))
for all γ ∈ Γ, then ||λ(ρ1(γ))|| = ||λ(ρ2(γ))|| for all γ ∈ Γ, so {(λ(ρ(γ)), λ(σ(γ)))} lies in the
codimension one submanifold E = {(~x, ~y) | ||~x|| = ||~y||} of a+ × a+. Moreover, its limit cone
Λ((ρ1 × ρ2(Γ)) lies in E. Theorem 47.2 then implies that (ρ1 × ρ2)(Γ) is not Zariski dense in
PSL(d,R)× PSL(d,R).

Let Z be the Zariski closure of (ρ1 × ρ2)(Γ) in PSL(d,R)× PSL(d,R). Let pi : Z → SL(d,R)
be the projection of Z onto the ith factor. Since ρi(Γ) is Zariski dense, pi is surjective. Consider
the kernel Ki of p1. Then K1 ⊂ {I} × SL(2,R), so may be identified with a normal subgroup
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of PSL(d,R). Since PSL(d,R) is simple, K1 is either trivial or all of PSL(d,R). Since Z is
not all of PSL(d,R) × PSL(d,R), K1 must be trivial. Similarly, K2 is trivial. Thus, p1 and
p2 are isomorphisms. Therefore, the isomorphism ρ2 ◦ ρ−1

1 : ρ1(Γ) → ρ2(Γ) extends to an
automorphism τ = p2|Z ◦ (p1|Z)−1 of PSL(d,R). �

Using the fact, due to Benoist [18], that the Zariski closure of the image of a Benoist repre-
sentation into PSL(d,R) is either PSO(d− 1, 1) or PSL(d,R) one may use essentially the same
argument to prove the following theorem.

Theorem 47.3. (Cooper-Delp [68], Kim [139]) If Γ is a hyperbolic group and ρ1 : Γ→ PSL(d,R)
and ρ2 : Γ→ PSL(d,R) are faithful, Benoist representations so that

`H(ρ1(γ)) =
1

2
log

(
λ1(ρ1(γ))

λd(ρ1(γ))

)
=

1

2
log

(
λ1(ρ2(γ))

λd(ρ2(γ))

)
= `H(ρ2(γ))

for all γ ∈ Γ, then either ρ1 is conjugate, in PGL(d,R), to either ρ2 or ρ∗2.

One can show that the eigenvalues of maximal modulus determine an irreducible projective
Anosov representations.

Theorem 47.4. (Bridgeman-Canary-Labourie-Sambarino [45, Theorem 1.2]) Suppose that
ρ : Γ→ SL(d,R) and η : Γ→ SL(d,R) are projective Anosov representations and

λ1(ρ(γ)) = λ1(η(γ))

for all γ ∈ Γ then

(1) If ρ and η are irreducible, then ρ and η are conjugate in GL(d,R).
(2) If < ξρ(∂Γ) > and < ξρ(∂Γ) > have the same dimension, then there exists g ∈ GL(d,R)

so that g ◦ ξρ = ξη.

We will sketch a proof of part (1) of this result. A key tool in the proof is a cross ratio
introduced and studied by Labourie [144, 145]. Let

Td = {(ϕ,ψ, u, v) ∈ P(Rd))∗2 × P(Rd)2 : (ϕ, v) and (ψ, u)are transverse pairs}.

We then define the cross ratio b : Td → R by

b(ϕ,ψ, u, v) =
~ϕ(~u)~ψ(v)

~ϕ(~v)~ψ(~u)

where we choose non-zero representatitves ~u ∈ u, ~v ∈ v, ~ϕ ∈ ϕ and ~ψ ∈ ψ and notice that our
choice of representatives doesn’t matter.

Let ∂Γ(4) ⊂ ∂Γ4 denote the space of ordered 4-tuples of distinct points in ∂Γ. If ρ : Γ→ SL(d,R)

is projective Anosov, Labourie defines an associated cross-ratio bρ : ∂Γ(4) → R given by

bρ(x, y, z, w) = b(θ(x), θ(y), ξ(z), ξ(w)).

We first observe that the cross-ratio determines an irreducible projective Anosov representa-
tion into PSL(d,R) up to conjugacy in PGL(d,R). Let π : SL(d,R)→ PSL(d,R) be the obvious
projection map.
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Proposition 47.5. Suppose that ρ : Γ→ SL(d,R) and η : Γ→ SL(d,R) are irreducible, projec-
tive Anosov representations, and bρ = bη, then there exists g ∈ PGL(d,R) such that

g ◦ (π ◦ ρ) ◦ g−1 = π ◦ η.

Recall that a collection of (d + 1) lines in Rd is said to be a projective frame if every d
lines in the collection span Rd.

Proof. Choose {x0, . . . , xd} ⊂ Λ(Γ) so that

{ξρ(x0), . . . , ξρ(xd)} and {ξη(x0), . . . , ξη(xd)}

are projective frames for Rd and

{θρ(x0), . . . , θρ(xd)} and {θη(x0), . . . , θη(xd)}

are projective frames for (Rd)∗. (One can do since ρ is irreducible, so ξρ must span Rd and ρ∗

is irreducible, so θρ = ξρ∗ must span (Rd)∗.)
Choose ~u0 ∈ ξρ(x0) and {ϕ1, . . . , ϕd} ⊂ (Rd)∗ such that ϕi ∈ θρ(xi) and ϕi(~u0) = 1. For

y ∈ Λ(Γ) − {x0, . . . , xd}, the projective coordinates of ξρ(y) with respect to the basis for Rd
dual to {ϕ1, . . . , ϕd} are given by

[. . . : ϕi(~y) : . . .] = [. . . :
ϕi(~y)

ϕ1(~y)

ϕ1(~u0

ϕi(~u0)
: . . .]

(where ~y is a non-zero vector in ξρ(y)) which reduces to

[bρ(x1, x1, y, x0), . . . ,bρ(xd, x1, y, x0), ].

Now choose ~v0 ∈ ξη(x0) and {ψ1, . . . , ψd} such that ψi ∈ θη(xi) and ψi(~v0) = 1. Again

{ψ1, . . . , ψd} is a basis for (Rd)∗ and in the dual basis, ξη(y) has projective coordinates

[bη(x1, x1, y, x0), . . . ,bη(xp, x1, y, x0), 0, . . . , 0].

We now choose g ∈ GL(d,R) so that gϕi = ψi for all i. Since bρ(xi, x1, y, x0) = bη(xi, x1, y, x0)
for all i, we see that g ◦ ξρ = ξη. Since an element A ∈ PGL(d,R) is determined entirely
by its action on a projective frame and ξρ and ξθ are both ρ-equivariant, this implies that
g ◦ (π ◦ ρ) ◦ g−1 = π ◦ η. �

One can compute the cross-ratio on pairs of fixed points of co-prime infinite order elements
in Γ. We say that α and β are co-prime if the group they generate < α, β > is not virtually
cyclic. If A is proximal with attracting eigenline A+ and repelling hyperplane A−, we define
p(A) to be the projection onto A+ parallel to A−. Let r(A) = A− λ1(A)p(A).

Proposition 47.6. If ρ : Γ → SL(d,R) is projective Anosov and α, β ∈ Γ are infinite order
and co-prime, then

bρ(α
−, β−, β+, α+). = Tr

(
p(ρ(α))p(ρ(β))

)
= lim

n→∞

λ1(ρ(αnβ))

λ1(ρ(α))n
6= 0

Proof. Choose ~a ∈ ξ(α+), ~A ∈ θ(α−), ~b ∈ ξ(β+) and ~B ∈ θ(β−). We may write

p(ρ(α))(~u) =

(
~A(~u)

~A(~a)

)
~a and p(ρ(β))(~u) =

(
~B(~u)

~B(~b)

)
~b
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for all ~u ∈ Rd, so

p(ρ(α))p(ρ(β))(~u) =
~B(~u) ~A(~b)

~A(~a) ~B(~u)
~a.

Therefore,

Tr
(
p(ρ(α))p(ρ(β)

)
=

~B(~a) ~A(~b)

~A(~a) ~B(~b)
= bρ(α

−, β−, β+, α+).

We now prove the second equality. First notice that

Tr
(
ρ(αn)ρ(βn)

)
= λ1(αnβn)(1 + gn)

where

gn =
Tr
(
r(ρ(αnβn))

)
λ1(ρ(αnβn))

.

Since ρ is P1-Anosov, limn→∞ gn = 0.
On the other hand,

ρ(αn)ρ(βn) = λ1ρ(α))nλ1(ρ(β))np(ρ(α))p(ρ(β))+λ1(ρ(α))np(ρ(α))r(ρ(β)n)+λ1(ρ(β))nr(ρ(αn))p(ρ(β))+r(ρ(αn)r(ρ(βn)),

so

Tr
(
ρ(αnβn)

)
= λ1(ρ(α))nλ1(ρ(β))nTr

(
p(ρ(α))p(ρ(β))

)
(1 + ĝn)

where

ĝn =
λ1(ρ(α))nTr

(
p(ρ(α))r(ρ(βn))

)
+ λ1(ρ(β)n)Tr

(
r(ρ(αn))p(ρ((β))

)
+ Tr

(
r(ρ(αn))r(ρ(βn))

)
Tr
(
p(ρ(α))p(ρ(β)))λ1(ρ(α))nλ1(ρ(β))n

.

Since ρ is P1-Anosov, lim ĝn(ρ) = 0.
Combining, we see that

Tr
(
p(ρ(α))p(ρ(β))

)
=

λ1(ρ(αnβn))(1 + gn)

λ1(ρ(α)n)λ1(ρ(β))n(1 + ĝn)
,

which implies, since lim gn = 0 and lim ĝn = 0, that

Tr
(
p(ρ(α))p(ρ(β))

)
= lim

n→∞

λ1(ρ(αnβn))

λ1(ρ(α))nλ1(ρ(β))n

which completes the proof. �

Proof of Theorem 47.4(1): Suppose that λ1(ρ(γ)) = λ1(η(γ)) for all γ ∈ Γ. Proposition 47.6
implies that if α and β are co-prime infinite order elements, then

bρ(α
−, β−, β+, α+) = bη(α

−, β−, β+, α+).

Since pairs of the form (α+, α−) (for some α ∈ Γ) are dense in ∂Γ × ∂Γ and the cross-ratio is
continuous, this implies that βρ = βη.

Proposition 47.5 then implies that there exists g ∈ PGL(d,R) so that g ◦ (π ◦ ρ) ◦ g−1 = π ◦ η.
Let h be a representative of g in GL(d,R). Then h◦ρ◦h−1(γ) = ±η(γ) for any γ ∈ Γ. However,
since λ1(ρ(γ)) = λ1(η(γ)), we must have h ◦ ρ ◦ h−1(γ) = η(γ) for all γ ∈ Γ. Therefore, ρ and
η are conjugate in GL(d,R). �

For Hitchin representations, it suffices to consider the spectral radii of simple closed curves
on the surface S if the genus of S is at least 3.
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Theorem 47.7. (Bridgeman-Canary-Labourie [47, Theorem 1.1]) If S is a closed orientable
surface of genus g ≥ 3, ρ1 : π1(S) → PSL(d,R) and ρ2 : π1(S) → PSL(d,R) are Hitchin
representations, and |λ1(ρ1(γ))| = |λ1(ρ2(γ))| for every γ ∈ Γ which is represented by a simple
closed curve in S, then ρ1 and ρ2 are conjugate in PGL(d,R).

In the special case of Hitchin representations into PSL(3,R), which are also Benoist repre-
sentations, we see that it suffices to consider Hilbert lengths of simple closed curves.

Theorem 47.8. (Bridgeman-Canary-Labourie [47, Theorem 9.1]) If S is a closed orientable
surface of genus g ≥ 3, ρ1 : π1(S) → PSL(3,R) and ρ2 : π1(S) → PSL(3,R) are Benoist
representations, and

`H(ρ1(γ)) =
1

2
log

(
λ1(ρ1(γ))

λd(ρ1(γ))

)
=

1

2
log

(
λ1(ρ2(γ))

λd(ρ2(γ))

)
= `H(ρ2(γ))

for any γ ∈ Γ which is represented by a simple closed curve on S, then either ρ1 is conjugate
to ρ2 or ρ1 is conjugate to ρ∗2.

Remarks: Dal’bo and Kim actually establish Theorem 47.1 in the more general the setting of
semi-simple Lie groups (see [82] for the relevant definitions).

Theorem 47.9. (Dal’bo-Kim [82]) Suppose that G1 and G2 are connected, semi-simple Lie
groups with trivial center and without compact factors. If ρ1 : Γ → G1 and ρ2 : Γ → G2 are
faithful representations so that ρi(Γ) is Zariski dense in Gi for i = 1, 2 and `(ρ1(γ)) = `(ρ2(γ))
for all γ ∈ Γ, then there exists an isomorphism τ : G1 → G2 so that τ ◦ ρ1 = ρ2.

(2) Notice that the assumption that < ξρ1(∂Γ) > and < ξρ2(∂Γ) > have the same dimension
in part (2) of Theorem 47.4 is not given in [45, Theorem 11.1], but is used implicitly in the
proof, so the statement there is incorrect in this case.

48. Topological restrictions

It is natural to wonder which groups admit Anosov representations into SL(d,R) for some d.
The only obvious restriction is that the groups must be linear hyperbolic groups, or perhaps
almost linear if the group is allowed to have torsion. Another potential obstruction is that
their geodesic flows must be “metric Anosov.” However, it is unknown whether there are linear
hyperbolic groups whose geodesic flows fail to be metric Anosov. In fact, we know of no example
of a linear hyperbolic group which does not admit an Anosov representation.

On the other hand, if you restrict your Lie group one can sometimes characterize, or at
least place restrictions, on which groups admit Anosov representations. For example, every
Anosov representation into SL(2,R) is Fuchsian, so the only (torsion-free) groups admitting
Anosov representations into SL(2,R) are free groups and surface groups. Similarly, every Anosov
representation with image in SO0(3, 1) ⊂ SL(4,R) is convex cocompact, so the Geometrization
Theorem gives a topological classification of which torsion-free groups arise.

The only examples we have seen of Anosov representations into SL(3,R) = PSL(3,R) are
Benoist representations of surface groups. One can show that surface groups and free groups
are the only (torsion-free) groups which arise. Notice that not all representations of surface
groups are Benoist groups, since one also has the representations constructed by Barbot [12]
by considering the direct sum of a Fuchsian representation into SL(2,R) and the trivial repre-
sentation, and its deformations, see Corollary 32.5.
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Theorem 48.1. (Canary-Tsouvalas [60, Theorem 1.1]) If ρ : Γ → SL(3,R) is P1-Anosov and
Γ is torsion-free, then Γ is either a free group or a surface group.

We will bring in a few outside results in the proof, but we may try to fill these in later.

Proof. Let Γ = Γ1 ∗ · · · ∗ Γr ∗ Fs be the maximal free product decomposition of Γ where each
Γi is freely indecomposable (i.e. does not split as a non-trivial free product) and not cyclic. If
Γ is not a free group, then r ≥ 1. It is known that Γ1 is quasiconvex in Γ (see [37, Prop. 1.2]),
so ρ|Γ1 is projective Anosov (see [57, Lemma 2.3]).

First suppose that ρ|Γ1 is irreducible. If Γ1 is not a surface group, then a result of Zimmer
[232], see Theorem 41.2, implies that ρ(Γ1) acts convex cocompactly on a properly convex
domain Ω ⊂ P(R3). Then Γ1 is isomorphic to the fundamental group of the surface Ω/ρ(Γ1), so
Γ1 is either a surface group or a free group. Since Γ1 is freely indecomposable and not cyclic, it
must be a surface group, so ρ(Γ1) acts cocompactly on Ω and ρ|Γ1 is a Benoist representation.

Now suppose that Γ1 has infinite index in Γ (i.e. suppose that there is more than one factor
in the free decomposition above). Then ∂Γ1 is a proper subset of ∂Γ. Let z ∈ ∂Γ − ∂Γ1.
Notice that if ξρ(z) ∈ Ω, then θρ(z) must intersect ∂Ω = ξρ(∂Γ1), which would contradict the
transversality of ξρ and θρ. On the other hand, ∂Ω is C1 and Ω is strictly convex, so every

point in RP2 − Ω lies in some tangent line to ∂Ω. Therefore,

RP2 − Ω =
⋃

x∈∂Γ1

θρ(x)

so, again by transversality, ξρ(z) cannot lie in RP2 − Ω. Therefore, Γ = Γ1 is a surface group.
If ρ|Γ1 is reducible, then one may check that there exists a projective Anosov representation

of Γ1 into SL±(W ) where W is a proper subspace of R3, see [60, Corollary 2.5]. However, every
torsion-free discrete subgroup of SL±(W ) is either a free group or a surface group if W is one or
two dimensional. Since Γ1 is freely indecomposable, it is a surface group. If Γ 6= Γ1, we again
choose z ∈ ∂Γ− ∂Γ1. Then ξρ(∂Γ) lies in the affine chart A = RP2 − θρ(z) and ρ(Γ1) preserves
the convex hull of ξρ(∂Γ1) in A, so is a Benoist representation. Since Benoist representations
are irreducible, see Proposition 18.4, we must actually be in the previous case. This completes
the proof. �

One may also characterize groups which admit projective Anosov representations into SL(4,R).
All these groups also admit P2-Anosov representations into SL(4,R), and it is conjectured that
these are the only such groups. However, only surface groups and free groups admit repre-
sentations into SL(4,R) which are Borel Anosov, i.e. both P1-Anosov and P2-Anosov, see [60,
Theoremv1.6].

Theorem 48.2. (Canary-Tsouvalas [60]) If Γ is torsion-free and ρ : Γ→ SL(4,R) is projective
Anosov, then Γ is isomorphic to a convex cocompact subgroup of SO0(3, 1). In particular, Γ is
the fundamental group of a compact hyperbolizable 3-manifold.

Moreover, only surface groups and free groups admit representations into SL(4,R) which are
Borel Anosov, i.e. both P1-Anosov and P2-Anosov.

Theorem 48.3. (Canary-Tsouvalas [60]) If Γ is torsion-free and ρ : Γ → SL(4,R) is Borel
Anosov, then Γ is either a free group or a surface group.
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In general, we can place restrictions on groups admitting Pk-Anosov representations into
SL(d,R) which depend on k and d, in terms of the cohomological dimension of the group.

Recall that Γ has cohomological dimension m, if m is the minimal dimension so that if R
is any ZΓ-module, then Hr(Γ, R) = 0 if r > m. For example, if X is a closed n-manifold with
contractible universal cover, then π1(M) has cohomological dimension n. More generally, if X
is a finite CW -complex of dimension n, with contractible universal cover so that Hn(X,R) 6= 0
for some R (usually Z or Z2), then π1(X) has cohomological dimension n. Notice that if Γ
is torsion-free and ρ : Γ → SL(d,R) is Benoist, then Γ has cohomological dimension d − 1.
(A group with non-trivial torsion has infinite cohomological dimension, so in this case one
considers virtual cohomological dimension which registers the cohomological dimension of finite
index torsion-free subgroups, if they exist.)

We will use Bestvina and Mess’ characterization of the cohomological dimension of a hy-
perbolic group, in terms of the topological dimension of its Gromov boundary. Their result
generalizes the fact that the Gromov boundary of the fundamental group of a closed negatively
curved n-manifold is Sn−1.

Theorem 48.4. (Bestvina-Mess [29]) If a torsion-free hyperbolic group Γ has cohomological
dimension n, then its Gromov boundary ∂Γ has topological dimension n− 1.

Canary and Tsouvalas obtain the following restrictions:

Theorem 48.5. (Canary-Tsouvalas [60]) Suppose that Γ is a torsion-free hyperbolic group and
ρ : Γ→ SL(d,R) is Pk-Anosov.

(1) If (d, k) is not (2, 1), (4, 2), (8, 4) or (16, 8), then Γ has cohomological dimension at
most d− k.

(2) If (d, k) is (2, 1), (4, 2), (8, 4) or (16, 8), then Γ has cohomological dimension at most
k + 1 = d − k + 1. Moreover, if Γ has cohomological dimension k + 1, then ∂Γ is
homeomorphic to Sk and, if (d, k) 6= (2, 1), ρ is not projective Anosov.

Remarks: The exceptional values of (d, k) are associated to the four Hopf fibrations and one
may produce examples from lattices in SL(2,R), SL(2,C) ⊂ SL(4,R), SL(2,Q) ⊂ SL(8,R). and
SL(2,O) ⊂ SL(16,R) where H is the quaternions and O is the octonions (see [60, Section 10]).

Proof. We may assume that d ≥ 4, since we have already classified Anosov representations into
SL(2,R) and SL(3,R).

Suppose that ρ is Pk-Anosov and has limit maps ξρ : ∂Γ→ Grk(Rd) and θρ : ∂Γ→ Grd−k(Rd).
Let m be the topological dimension of ∂Γ. Fix x0 ∈ ∂Γ and a (d− k + 1)-plane V in Rd which
contains θρ(x0). We define a map

F : ∂Γ− {x0} → P(V − ξk(x0))

by letting F (y) be the line which is the intersection of ξρ(y) with V , i.e.

F (y) = ξρ(y) ∩ V.
(Transversality implies that the intersection of ξρ(y) and θρ(x0) is trivial if y 6= x0, so the
intersection of ξρ(y) with V must be a line.)

If x 6= y ∈ ∂Γ, then ξρ(x) and ξρ(y) ⊂ θρ(y) have trivial intersection (by transversality).
Therefore, F is injective. Moreover, F is proper, since if {yn} is a sequence in ∂Γ − {x0}
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converging to x0, then, by continuity of limit maps, {ξkρ (yn)} is converging to ξkρ (x0), so {F (yn)}
leaves every compact subset of P(V − ξk(x0)). Therefore, F is an embedding. Since ∂Γ− {x0}
embeds in a (d − k)-manifold, ∂Γ has topological dimension at most d − k. (See Hurewicz-
Wallman [119, Theorem III.1] for details on topological dimension, but I think it is reasonable
just to take this plausible fact on faith.)

Now suppose that ∂Γ has topological dimension exactly d − k. Then, F (∂Γ) contains an
open subset of P(V ) (see [119, Thm. IV.3/Cor. 1]), so ∂Γ has a manifold point. Thus, by a
result of Benakli and Kapovich [126, Theorem 4.4], ∂Γ is homeomorphic to Sd−k. Let

E =
⋃
x∈∂Γ

S(ξkρ (x)) ⊂ S(Rd)

where S(V ) is the unit sphere in V . One obtains a fibre bundle p : E → ∂Γ ∼= Sd−k by letting
p(S(ξkρ (x)) = x and E is a closed manifold of dimension (d − k) + k − 1 = d − 1. (Notice
that, since ξρ(x) and ξρ(y) intersect trivially, S(ξρ(x)) and S(ξρ(y)) are disjoint if x 6= y.)

Hence, E is a closed submanifold of S(Rd) ∼= Sd−1 of dimension d − 1, which implies that
E = S(Rd) = Sd−1. However, by the classification of sphere fibrations (Adams [3]), this is only
possible if (d−1, k−1) is (3, 1), (7, 3) or (15, 7). Moreover, in these cases, ρ cannot be projective
Anosov, since if ρ is projective Anosov, then it admits a P1-limit map ξ1

ρ : ∂Γ → P(Rd) which
lifts to a section s : ∂Γ → E of p, which is impossible (since p∗ ◦ s∗ is the identity map on
Hd−k(S

d−k) ∼= Z, while, p∗ is the zero map on Hd−k(E).)
If ∂Γ has topological dimension at most d−k−1, then, by Bestvina-Mess Γ has cohomological

dimension at most d − k. If ∂Γ has topological dimension d − k, then Γ has cohomological
dimension d − k + 1 and, by the previous paragraph, (d, k) is (2, 1), (4, 2), (8, 4) or (16, 8),
∂Γ ∼= Sd−k and ρ is not projective Anosov if (d, k) is (4, 2), (8, 4) or (16, 8). �

One nearly immediate consequence is that Benoist representations are only P1-Anosov.

Corollary 48.6. ([60, Corollary 1.4]) If Γ is torsion-free, ρ : Γ → SL(d + 1,R) is a Benoist
representation, and 2 ≤ k ≤ d

2 , then ρ is not Pk-Anosov.

Proof. Notice that Γ has cohomological dimension d. If ρ is Pk-Anosov for k ≥ 2, then Theorem
48.5 implies that Γ has cohomological dimension at most d+1−k < d, which is a contradiction.

�

49. Other Lie groups

I will sit here until dawn tripping the spine
of the stars, a Pythagorean traveller marveling
another numerical scheme, adding to his shoulder
a music not heard but attained
—————Patti Smith [192]

If G is a semi-simple Lie group (with no compact factors and finite center) and P is a
parabolic subgroup of G then there is a notion of a P -Anosov representation ρ : Γ → G.
In the case that G is SL±(d,R), PSL(d,R), or PGL(d,R), and P = Pk, we may use exactly the
same definitions as we did for SL(d,R), and all the characterizations we earlier established go
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through nearly word for word. (One can even extend the definition trivially for the reductive
Lie group GL(d,R), but we will limit our discussion to semi-simple Lie groups.)

We will briefly recall some basic definitions from Lie theory which will allow us to define
P -Anosov representations, but it would be a mistake to learn Lie theory from me and I encourage
you to consult the standard references for a more complete treatment if you haven’t seen this
material before. I will be pretending that the reader (and the author) are familiar with basic
Lie theory and that I am just reminding us of the definitions.

If G is a (real) Lie group, its Lie algebra g is its tangent space at the identity TidG. Recall
that a (real) Lie algebra h is a real vector space with an bilinear, anti-commutative Lie
bracket [·, ·] : h × h → h satisfying the Jacobi identity [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for
all x, y, z ∈ h. The Adjoint representation Ad : G → GL(g) is given by Ad(g) = DidΨg

where Ψg : G → G is the inner automorphism Ψg(h) = ghg−1. The derivative of the Adjoint
representation is the adjoint representation ad : g→ gl(g) where gl(g) is the Lie Algebra of
GL(g). One may compute that adx(y) = [x, y] if x, y ∈ g. One then considers the Killing form
B : g× g→ R given by B(x, y) = Tr(ad(x)ad(y)) where Tr denotes the trace. We say that G is
semi-simple if its Killing form is non-degenerate. (If G ⊂ SL(d,R), then Ad(g)(X) = gXg−1,
[X,Y ] = XY − Y X = adX(Y ) and B(X,Y ) = 2dTr(XY ).)

Any semisimple Lie algebra g decomposes as a direct product of simple Lie algebras

g = g1 ⊕ · · · ⊕ gm.

We recall that a Lie algebra is simple if it is non-abelian and contains no non-zero proper ideals.
(In fact, the existence of a decomposition into simple Lie algebras is equivalent to being semi-
simple.) We say that gi is a compact factor if the Killing form restricts to a negative definite
form on gi. (These simple Lie algebras are called compact factors, since they are lie algebras of
compact semisimple Lie groups.) We say that G has no compact factors if g has no compact
factors. If G has finite center and no compact factors, we may consider a maximal compact
subgroup K and the Killing form descends to a metric of non-positive sectional curvature on
the symmetric space Z = G/K. In section 26, we saw how this theory worked out explicitly
when G = SL(d,R) and K = SO(n).

If gp ∈ G and Ad(gp) is diagonalizable (over R), then we let p be the sum of the eigenspaces
of Ad(gp) with eigenvalues of modulus at least 1 and let popp be the sum of the eigenspaces of
Ad(gp) with eigenvalues of modulus at most 1. If n is the sum of the eigenspaces of Ad(gp) with
eigenvalue of modulus strictly greater than 1 and m is the sum of the eigenspaces of Ad(gp)
with eigenvalue of modulus exactly 1, then p = n ⊕ m. Then the normalizers P and P opp of p
and popp are a pair of opposite parabolic subgroups. The quotients G/P and G/P opp are
(generalized) flag varieties. Notice that G acts naturally on G/P and G/P opp by g([h]) = [gh].
If [g] ∈ G/P and [h] ∈ G/P opp we say that [g] and [h] are transverse if gPg−1 ∩ hP opph−1 is
conjugate to P ∩P opp. (In SL(d,R), the stabilizer Pk of a k-plane is a parabolic subgroup, and
P oppk is the stabilizer of a complementary (d− k)-plane.)

Given a representation ρ : Γ → G of a hyperbolic group and a pair (P, P opp) of opposite
parabolic subgroups, we let EPρ = U(Γ)× G/P × G/P opp and form the bundle

ÊPρ = EPρ /Γ→ Û(Γ) = U(Γ)/Γ

where γ(Z, [g], [h]) = (γ(Z), [ρ(γ)g], [ρ(γ)h]) for all γ ∈ Γ. The flow

ψ̃t(z, w, s, [g], [h]) = (z, w, s+ t, [g], [h])
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on EPρ descends to a flow ψt on EPρ which lifts the geodesic flow φt on Û(Γ).

We define vector bundles V and V opp over EPρ whose fibers over the point (Z, [g], [h]) are

T[g]G/P and T[h]G/P
opp. The flow ψ̃t on EPρ lifts to flows η̃t and η̃oppt on V and V opp. The flows

η̃t and η̃oppt then descend to flows ηt and ηoppt on the quotient vector bundles V̂ = V/Γ and

V̂ opp = V opp/Γ over ÊPρ .
Two continuous ρ-equivariant maps ξ : ∂Γ → G/P and θ : Γ → G/P opp are trans-

verse limit maps for a representation ρ : Γ → G if ξ(z) and θ(w) are transverse when-
ever z 6= w ∈ ∂Γ. A pair of transverse limit maps induce a section σ : U(Γ) → EPρ given by

σ(z, w, s) = (z, w, s, ξ(z), θ(w)). Then σ descends to a flow-invariant section σ̂ : Û(Γ) → ÊPρ .

The bundles σ̂∗(V̂ ) and σ̂∗(V̂ opp) over Û(Γ) admit flows which lift the geodesic flow on Û(Γ).
We say that a representation ρ : Γ → G of a hyperbolic group Γ is P -Anosov if it admits

transverse limit maps giving rise to a section σ̂ so that the flow on σ̂∗(V̂ ) is expanding and the

flow on σ̂∗(V̂ opp) is contracting.
Many of our favorite properties of Anosov representations have direct analogues in the setting

of P -Anosov representations, see Labourie [143] and Guichard-Wienhard [109] for details.

Theorem 49.1. Suppose that G is a semi-simple Lie group with finite center and no compact
factors, P is a parabolic subgroup and ρ : Γ→ G is P -Anosov. Then,

(1) ρ has finite kernel.
(2) ρ(Γ) is a discrete subgroup of G.
(3) Any orbit map τρ : Γ→ G/K is a quasi-isometric embedding.
(4) If γ ∈ Γ has infinite order, then ρ(γ) is P -proximal, i.e. ρ(γ) has an attracting fixed

point on G/P .
(5) There exists an open neighborhood U of ρ in Hom(Γ,G), so that if σ ∈ U , then σ is

P -Anosov.

We will now develop the background needed to clearly state Guichard and Wienhard’s result
that given G and P there exists an irreducible representation τ : G → SL(d,R) (for some d),
so that ρ : Γ → G is P -Anosov if and only if τ ◦ ρ is projective Anosov. We have already
established this when G = SL(d,R) and P = Pk, see Theorem 34.3, where τ is the kth exterior
power representation. In practice, this allows one to reduce many questions about general
Anosov representations to questions about projective Anosov representations.

We first construct the representation τ that we will need.

Lemma 49.2. (Guichard-Wienhard [109, Remark 4.12]) Suppose that G is a a semi-simple Lie
group with finite center and no compact factors, and (P, P opp) is a pair of opposite parabolic
subgroups. There exists an irreducible representation τ : G → SL(d,R) (for some d) so that
τ(P ) is the stabilizer, in τ(G), of a line in Rd and τ(P opp) is the stabilizer, in τ(G) of a
complementary hyperplane in Rd.
Proof. Let k be the dimension of p and consider the composition of the Adjoint representation
with the kth exterior power representation, i.e.

α : G→ sl(Λkg) where α = Λk ◦Ad.
Since G is semi-simple, the representation α splits into a product α = ⊕αi of irreducible
representations αi : G → hi and ⊕hi = Λkg. Since p is the attracting k-plane of Ad(gp),
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ΛkAd(gp) is proximal and has attracting eigenline Λkp. Therefore, Λkp must lie in one of the
factors, say h1, of our decomposition. We then take τ = α1. It is immediate that τ is irreducible
and that P is the stabilizer, within τ(G) of the line Λkp in V = h1.

Let {e1, . . . , er} be a basis for g so that {e1, . . . , ek} is a basis for p, {eq+1, . . . , er} is a basis

for popp. Let Z be the subspace of Λkg spanned by all k-fold wedge products of the form
ei1 ∧ · · · ∧ eik which do not lie in Λkp. If we consider the dual representation α∗, then Z is the
kernel of any non-trivial linear functional in the attracting eigenline of α∗(gp) and τ(P opp) is
its stabilizer. If we let W = Z ∩ V , then W is a hyperplane in V , is complementary to the line
Λkp, and τ(P opp) is the stabilizer, in τ(G), of W . �

We say that a representation ρ : G → SL(d,R) is a Plücker representation for (P, P opp)
if it satisfies the conclusions of Lemma 49.2. Notice that given a Plücker representation τ one
obtains τ -equivariant maps βτ : G/P → RPd−1 and βoppτ : G/P opp → Grd−1(Rd).

We are now ready to formally state Guichard and Wienhard’s result.

Theorem 49.3. (Guichard-Wienhard [109, Proposition 4.3], see also [107, Proposition 3.5])
Suppose that G is a a semi-simple Lie group with finite center and no compact factors, (P, P opp)
is a pair of opposite parabolic subgroups, and τ : G → SL(d,R) is a Plücker representation for
(P, P opp). Then a representation ρ : Γ→ G is P -Anosov if and only if τ ◦ρ is projective Anosov.

Furthermore, if ξ : ∂Γ→ G/P and θ : ∂Γ→ G/P opp are the limit maps of ρ, then βτ ◦ ξ and
βoppτ ◦ θ are the limit maps of τ ◦ ρ.

Once one has made this observation, all the characterizations of Pk-Anosov representations
into SL(d,R) we obtained in Chapter 6 have analogees for more general P -Anosov representa-
tions. The easiest one to state is the analogue of Theorem 33.1. One may view this as a vast
generalization of Proposition 34.3.

Theorem 49.4. (Guichard-Wienhard [109, Theorem 4.11]) Suppose that G is a a semi-simple
Lie group with finite center and no compact factors and (P, P opp) is a pair of opposite parabolic
subgroup. Then a Zariski dense representation ρ : Γ→ G is P -Anosov if and only if there exist
continuous ρ-equivariant transverse maps ξ : ∂Γ→ G/P and θ : ∂Γ→ G/P opp.

The proof of Theorem 49.4 is simple given Theorem 49.3. We consider a Plücker representa-
tion τ : G→ SL(d,R) for (P, P opp) and check that βτ ◦ ξ and βoppτ ◦ θ are continuous, transverse,
τ ◦ρ-equivariant maps. Theorem 33.1 then implies that τ ◦ρ is projective Anosov and Theorem
49.3 then implies that ρ is P -Anosov.

All the other characterizations have similarly immediate analogues, but we would need to
develop more Lie theory to state them. We encourage the energetic reader to consult the original
sources for the statements.

50. Open problems

Though my problems are meaningless,
That don’t make them go away
————Neil Young [222]

I hope to eventually produce a slightly fuller list of open problems, but for the moment, here
is a sampling of problems that occurred to me while writing this section. So, they reflect mostly
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things that I have thought about myself over the last few years. Please suggest other problems
which belong here.

Which hyperbolic groups are Anosov. We currently know very little about the class of
linear hyperbolic groups which admit Anosov representations. We begin with elementary exis-
tential questions.

Problem 50.1. Exhibit explicit examples of linear hyperbolic groups which do not admit Anosov
representations.

Question 50.2. Are there hyperbolic groups which admit discrete faithful linear representations,
but do not admit Anosov representations?

Problem 50.3. Exhibit explicit examples of linear hyperbolic groups which admit Anosov rep-
resentations, but do not admit convex cocompact representations into any rank one Lie groups.

Kapovich [128] asked whether or not there are Gromov hyperbolic right-angled Coxeter
groups which do not admit convex cocompact representations into PO(n, 1) for any n. Since
Danciger, Guéritaud and Kassel [83] showed that every Gromov hyperbolic right-angled Cox-
eter representation admits an Anosov representation, so Kapovich’s question suggest that right-
angled Coxeter group could provide examples for Problem 50.3.

Question 50.4. Are there Gromov hyperbolic right-angled Coxeter groups which do not admit
convex cocompact representations into any rank one Lie groups?

Which groups are Borel Anosov. Sambarino asked whether all Borel Anosov groups are
(virtually) either free groups or surface groups.

Question 50.5. (Sambarino) If Γ is torsion-free and ρ : Γ → SL(d,R) is Borel Anosov, must
Γ be either free or a surface group?

I was initially very skeptical, but there is now ample evidence for Sambarino’s question. In
particular, Canary and Tsouvalas [60] answered this question in the affirmative when d = 3, 4,
and Tsouvalas [206] answered it in the affirmative when d has the form 4n+ 2 for some n ∈ N.

One might more ambitiously ask whether Borel Anosov representations in even dimensions
are Hitchin. (In odd dimensions one may use Barbot’s construction [12] to construct counterex-
amples.)

Question 50.6. Is every Borel Anosov representation of a surface group into SL(4,R) Hitchin?
What about in SL(2n,R) for n ≥ 2?

Canary-Tsouvalas [60] proved that every Borel Anosov representation of a surface group into
SL(4,R) is irreducible. As an example of how little we know, I have asked several experts on
maximal representations the following innocent question, but still don’t know the answer.

Question 50.7. Is it true that a maximal representation ρ : π1(S)→ Sp(4,R) is Borel Anosov
if and only if it is Hitchin?
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Pressure metrics. Very little is known about the geometry of pressure metrics, beyond their
existence. We propose a number of natural questions one might start with.

One would like to know that that there are points arbitrarily far away from the Fuchsian
locus, so that the Hitchin component isn’t just a thin neighborhood of the Fuchsian locus in the
pressure metric. One may interpret this question as an indication of how little we know about
the Hitchin component, since the answer is not known for even a single example of a Hitchin
component. This is the question I find most personally embarassing not to be able to answer.

Question 50.8. Do there exist points arbitrarily far away the Fuchsian locus in the pressure
metric on a Hitchin component?

Explicit lower bounds for the translation distance of pseudo-Anosov mapping on Teichmüller
space, with either the Teichmüller or Weil-Petersson metric, are a subject of intense current
interest. In the case of the Weil-Petersson metric on Teichmüller space, Daskalopoulos and
Wentworth [86] showed that the translation length of a pseudo-Anosov mapping class is realized
exactly along a geodesic axis. For the pressure metric on the Hitchin component it is not even
known whether or not there is a lower bound.

Question 50.9. Is there a lower bound for the translation distance, in the pressure metric, for
the action of a pseudo-Anosov mapping class on the Hitchin component? If there is a lower
bound, is it achieved? Is there anything resembling an axis for the action of a pseudo-Anosov
mapping class?

It is known that the isometry of Teichmüller space with the Teichmüller (see Royden [182])
or Weil-Petersson metric (see Masur-Wolf [162]) is the extended mapping class group (i.e.
Out(π(S))).

Problem 50.10. Is the isometry group of a Hitchin component Hd(S) generated by the (ex-
tended) mapping class group of S and the contragredient involution? More generally, explore
whether the relevant outer automorphism group is a finite index subgroup of the isometry group
of a higher Teichmüller space with the pressure metric.

Bridgeman, Canary, and Labourie [47] have showed that any diffeomorphism of H3(S) which
preserves the presure intersection is an element of the extended mapping class group or the com-
position of an element in the extended mapping class group with the contragredient involution.
A solution of the following problem would thus solve Problem 50.10 when d = 3.

Problem 50.11. Prove that if g : Hd(S)→ Hd(S) is an isometry with respect to the pressure
metric then g preserves the pressure intersection, i.e. I(g(ρ), g(σ)) = I(ρ, σ) for all ρ, σ ∈
H3(S).

If S is a closed surface, the Hitchin component H3(S) may be interpreted as the space of
(marked) projective structures on S. In analogy, with the classical augmented Teichmüller

space, one may form an augmented Hitchin component Ĥ3(S) by appending noded projective
structures on S. The augmented Teichmüller space is the metric completion of Teichmüller
space with the Weil-Petersson metric (see Masur [161]). By analogy, one might make the
following conjecture.

Conjecture 50.12. The augmented Hitchin component Ĥ3(S) is homeomorphic to the metric
completion of the Hitchin component H3(S), with respect to the pressure metric.
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The Weil-Petersson metric is known to be negatively curved (see Tromba [205] or Wolpert
[217]), but not bounded away from 0 or −∞ (see Huang [116, 117]). Virtually nothing else is
known about curvature properties of pressure metrics on Hitchin components.

Problem 50.13. Investigate the curvature of pressure metrics on Hitchin components.

One warning sign here is the work of Pollicott-Sharp [178] (see also Kao [125]) showing that
an analogously defined pressure metric on spaces of metric graphs has both positive and negative
curvature.

Simple root length. Potrie and Sambarino’s proof [179] that the entropy of a Hitchin rep-
resentation with respect to simple root length is constant, suggest that the simple root length
may have properties more reminiscent of classical Teichmüller theory than either the translation
length on the symmetric space or the length given by considering the logarithm of the spectral
radius (as studied in [45]). Here is one question which makes this suggestion precise.

Question 50.14. Given a closed surface S and d, does there exist L > 0 so that if ρ ∈ Hd(S),
there exists α ∈ π1(S) so that

log

(
σ1(ρ(α))

σ2(ρ(α))

)
≤ L?

Bridgeman and Canary have answered this question in the affirmative for Hitchin components
of representations of (certain) triangle groups into SL(3,R). (These deformation spaces are one-
dimensional so it is easy to check this computationally.)

Bridgeman, Canary, Labourie and Sambarino [45] constructed a pressure metric on the
Hitchin component associated to the first simple root length. Deroin and Tholozan [88] showed
that one can embed any Hitchin component Hd(S) into the Teichmüller space of foliated com-
plex structures on the unit tangent bundle T 1S of S. Sullivan [197] develops the theory of this
Teichmüller space and there is a natural associated Weil-Petersson metric. Deroin and Tholozan
show that the pull-back of this Weil-Petersson metric is a scalar multiple of the simple root
pressure metric constructed in [46].

Problem 50.15. Use the Teichmüller theory developed by Sullivan [197] to study the simple
root pressure metric on a Hitchin component.

Leftover questions. Here are some leftover questions which don’t fit one of the themes above.
I wonder whether there are “exotic” Benoist representations of lattices in SO0(n, 1), i.e.

Question 50.16. Does there exists a cocompact lattice Γ→ SO(n, 1) and a Benoist representa-
tion ρ : Γ→ SL(n+1,R) which cannot be continuously deformed to the identity representation?

Note: Sam Ballas, Jeff Danciger, Gye-Seon Lee and Ludo Marquis [11] have recently produced
examples when n = 3.

In Canary-Tsouvalas [60] we prove that if a torsion-free group admits a projective Anosov
representation into SL(4,R), then it is isomorphic to a convex cocompact subgroup of PO(3, 1).
One expects that a similar result holds for P2-Anosov representations.

Question 50.17. If Γ is a torsion-free hyperbolic group and ρ : Γ → SL(4,R) is P2-Anosov,
must Γ be isomorphic to a convex cocompact subgroup of PO(3, 1)?
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We men pour out our problems
Like we think that they’re unique
They cheer when a baby starts to speak
Ought to give ’em a prize for stopping
——————Robbie Fulks [99]
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I’m singing this borrowed tune
I took from the Rolling Stones
————–Neil Young [223]
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representation theory of Lie groups, Math. Soc. Japan, 2000, 33—48.
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[107] F. Guéritaud, O. Guichard, F. Kassel and A. Wienhard, “Anosov representations and proper actions,”

Geom. Top. 21(2017), 485–584.
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