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Abstract

If N is a hyperbolic 3-manifold with finitely generated fundamental group,
then the nearest point retraction is a proper homotopy equivalence from the
conformal boundary of N to the boundary of the convex core of N . We show
that the nearest point retraction is Lipschitz and has a Lipschitz homotopy
inverse and that one may bound the Lipschitz constants in terms of the length
of the shortest compressible curve on the conformal boundary.

1 Introduction

If N is an orientable hyperbolic 3-manifold with finitely generated fundamental group,
then the boundary ∂C(N) of its convex core and its conformal boundary ∂cN are
homeomorphic finite area hyperbolic surfaces. Sullivan showed that there exists some
uniform constant K such that if ∂C(N) is incompressible in the convex core C(N),
then there is a K-biLipschitz homeomorphism between ∂cN and ∂C(N), see Epstein-
Marden [7]. In this paper, we investigate the relationship between the conformal
boundary and the boundary of the convex core in the more general situation where
one only assumes that N has finitely generated fundamental group.

If N = H3/Γ, then we may identify the sphere at infinity for H3 with the Riemann
sphere Ĉ and Γ acts as a group of conformal automorphisms of Ĉ. If we let Ω(Γ) be
the domain of discontinuity for this action, i.e. the largest open subset of Ĉ on which Γ
acts properly discontinuously, then the conformal boundary ∂cN of N is the quotient
Ω(Γ)/Γ. If Γ is non-abelian, then Ω(Γ) inherits a conformally invariant hyperbolic
metric, called the Poincaré metric, and ∂cN is naturally a hyperbolic surface. The
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convex core C(N) is the smallest convex submanifold of N . If the convex core is
not 2-dimensional, then C(N) is homeomorphic to N̂ = ∂cN ∪ N and ∂C(N) is a
hyperbolic surface (in its intrinsic metric), see Epstein-Marden [7].

One may produce sequences of examples of hyperbolic 3-manifolds where the
minimal biLipschitz constant of a homeomorphism between the conformal boundary
and the boundary of the convex core becomes arbitrarily large, see [7] or [6]. In these
sequences, the length of the shortest compressible curve in the conformal boundary
becomes arbitrarily small. It is thus natural to conjecture that there should be a
biLipschitz homeomorphism between the conformal boundary and the boundary of
the convex core, such that the biLipschitz constant is bounded above by a constant
depending only on the length of the shortest compressible curve in the conformal
boundary.

In this paper, we give a partial generalization of Sullivan’s theorem to the setting
of hyperbolic 3-manifolds with compressible conformal boundary. It is not difficult to
combine the estimates in [6] and the techniques used in Epstein-Marden [7] to show
that the nearest point retraction is a Lipschitz map from the conformal boundary to
the boundary of the convex core and that there is a bound on the Lipschitz constant
depending only on a lower bound for the injectivity radius of the domain of disconti-
nuity. We adapt techniques from Bridgeman [4] to produce a homotopy inverse which
is a Lipschitz map where again there is a bound on the Lipschitz constant depending
only on a lower bound for the injectivity radius of the domain of discontinuity.

Theorem 1: There exist functions J, L : (0,∞) → (0,∞) such that if N = H3/Γ
is a hyperbolic 3-manifold with finitely generated, non-abelian fundamental group and
ρ0 is a lower bound on the injectivity radius (in the Poincaré metric) of the domain
of discontinuity Ω(Γ), then the nearest point retraction r : ∂cN → ∂C(N) is J(ρ0)-
Lipschitz and has a L(ρ0)-Lipschitz homotopy inverse.

We will give explicit expressions for J and L later. For the moment, we simply

note that as ρ0 tends to 0, J(ρ0) = O( 1
ρ0

) and L(ρ0) = O(e
C
ρ0 ) for some constant

C > 0. Although these expressions may seem to grow quite fast we will also see that
their basic forms cannot be substantially improved.

A lower bound on the injectivity radius of the domain of discontinuity (in the
Poincaré metric) is equivalent to a lower bound on the length of the shortest com-
pressible curve in the conformal boundary. If Γ is finitely generated, then Ahlfors’
Finiteness theorem [1] implies that there is a lower bound on the injectivity radius of
the domain of discontinuity.

In the case that the conformal boundary is incompressible, our techniques improve
on the bounds obtained in Bridgeman [4]. We note that the conformal boundary is
incompressible if and only if each component of the domain of discontinuity is simply
connected.
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Theorem 2: If N = H3/Γ is a hyperbolic 3-manifold with finitely generated, non-
abelian fundamental group and each component of Ω(Γ) is simply connected, then the
nearest point retraction r : ∂cN → ∂C(N) is 4-Lipschitz and has a (1 + π

sinh−1(1)
)-

Lipschitz homotopy inverse, where 1 + π
sinh−1(1)

≈ 4.56443.

The fact that r is 4-Lipschitz if the conformal boundary is incompressible is due
to Epstein and Marden [7]. In a recent preprint, Epstein, Marden and Markovic [8]
establish that r is 2-Lipschitz in the same situation. Furthermore, they give a coun-
terexample to Thurston’s K = 2 Conjecture by exhibiting a hyperbolic 3-manifold
with incompressible conformal boundary such that the nearest point retraction is not
homotopic to a 2-quasiconformal map (see also Epstein-Markovic [10] and Epstein-
Marden-Markovic [9].)

One expects that the conclusions of Theorem 1 ought to guarantee the existence
of a biLipschitz homeomorphism between the conformal boundary and the boundary
of the convex core and uniform bounds on the biLipschitz constant. A realization of
this expectation would produce a full generalization of Sullivan’s theorem. In most
cases, one uses Sullivan’s theorem to assure that there is a biLipschitz equivalence of
lengths of corresponding closed geodesics. Theorem 1 does produce this biLipschitz
equivalence of lengths.

Corollary 1: Let N = H3/Γ be a hyperbolic 3-manifold with finitely generated,
non-abelian fundamental group and let ρ0 be a lower bound for the injectivity radius
of Ω(Γ). If α is a closed geodesic in ∂cN and r(α)∗ denotes the closed geodesic in
∂C(N) which is homotopic to r(α), then

l∂C(N)(r(α)∗)

J(ρ0)
≤ l∂c(N)(α) ≤ L(ρ0)l∂C(N)(r(α)∗)

where l∂C(N)(r(α)∗) denotes the length of r(α)∗ in ∂C(N) and l∂cN(α) denotes the
length of α in ∂cN .

We note that there is also a version of Theorem 1, where the bounds depend on
the injectivity radius of the boundary of the convex hull CH(LΓ) of the limit set
LΓ of Γ, see section 9. In fact, the bounds on the Lipschitz constant produced by
generalizing the techniques of Bridgeman naturally give bounds which depend on
the injectivity radius bounds on the boundary of the convex hull and it is necessary
to prove that injectivity radius bounds on the boundary of the convex hull imply
injectivity radius bounds on the domain of discontinuity (and vice versa.) We will
also see that Theorem 1 holds more generally for analytically finite hyperbolic 3-
manifolds and that Corollary 1 may be generalized to allow α to be any geodesic
current on ∂cN .
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The key tool underlying the proofs of theorems 1 and 2 is an estimate on the
average bending of a curve in the boundary of the convex core. Suppose that N is
a hyperbolic 3-manifold and α is a closed geodesic in ∂C(N). We define the average
bending B(α) of α to be

B(α) =
i(α, βN)

l∂C(N)(α)

where i(α, βN) is the total bending along α and l∂C(N)(α) is the hyperbolic length of
α on ∂C(N).

Theorem 3: There exists a function K : (0,∞)→ (0,∞) such that if N = H3/Γ is
a hyperbolic 3-manifold with finitely generated, non-abelian fundamental group and α
is a closed geodesic on ∂C(N), then

1. If ρ̂α is a lower bound for the injectivity radius of ∂CH(LΓ) at any point in the
support of a lift α̃ of α, then B(α) ≤ K(ρ̂α)

2. If α is contained in an incompressible component of ∂C(N), then B(α) ≤ K∞,
where K∞ = π

sinh−1(1)
≈ 3.56443.

2 Background

An orientable hyperbolic 3-manifold H3/Γ is the quotient of hyperbolic 3-space H3

by a discrete torsion-free subgroup of the group Isom+(H3) of orientation preserving
isometries of H3. We may identify Isom+(H3) with the group PSL2(C) of Möbius
transformations of Ĉ. The domain of discontinuity Ω(Γ) is the largest open set in Ĉ
on which Γ acts properly discontinuously, and the limit set LΓ is its complement. The
conformal boundary ∂cN of N is simply the quotient Ω(Γ)/Γ. If Γ is non-abelian,
then LΓ is infinite and Ω(Γ) admits a canonical hyperbolic metric p(z)|dz| called the
Poincaré metric. We will assume throughout the paper that Γ is nonabelian. The
Kleinian group Γ acts as a group of isometries of the Poincaré metric, so ∂cN is a
hyperbolic surface. The hyperbolic 3-manifold N is said to be analytically finite if
∂cN has finite area in this metric. Ahlfors’ Finiteness Theorem [1] asserts that N is
analytically finite if Γ is finitely generated. We note that if N is analytically finite
then there is always a positive lower bound for the injectivity radius on Ω(Γ).

The convex hull CH(LΓ) of LΓ is the smallest convex subset of H3 so that all
geodesics with both endpoints in LΓ are contained in CH(LΓ). The convex core C(N)
of N = H3/Γ is the quotient of CH(LΓ) by Γ. The boundary ∂C(N) of the convex
core is a pleated surface, i.e. there is a path-wise isometry f : S → ∂C(N) from a
hyperbolic surface S onto N which is totally geodesic in the complement of a disjoint
collection βN of geodesics which is called the bending lamination. The nearest point
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retraction r̃ : H3 → CH(LΓ) is the map which takes a point to the (unique) nearest
point in CH(LΓ). It extends continuously to a map r̃ : Ω(Γ) ∪ H3 → ∂CH(LΓ),
called the nearest point retraction, such that if z ∈ Ω(Γ), then r̃(z) is the (unique)
first point of contact of an expanding family of horospheres based at z with ∂CH(LΓ).
This map descends to a map r : N̂ → ∂C(N). We will often consider the restriction
of r to ∂cN (which we will simply call r) which gives a homotopy equivalence from
∂cN to ∂C(N). For a complete description of the geometry of the convex hull see
Epstein-Marden [7].

We have to modify the above description in the special case that LΓ lies in a round
circle. In this case, CH(LΓ) is a convex subset of a hyperbolic plane and C(N) is a
totally geodesic surface with boundary. In this case, we will consider ∂C(N) to be
the double of C(N) (along its boundary considered as a hyperbolic surface) where we
regard the 2 copies of C(N) as having opposite normal vectors. One may still define
r : ∂cN → ∂C(N) in this setting and it remains a homotopy equivalence.

The bending lamination βN inherits a measure on arcs transverse to βN which
records the total amount of bending along any transverse arc, so βN is a measured
lamination. A measured lamination on a finite area hyperbolic surface S consists of a
closed subset λ of S which is the disjoint union of geodesics, together with countably
additive invariant (with respect to projection along λ) measures on arcs transverse
to λ. The simplest example of a measured lamination is a (real) multiple of a simple
closed geodesic, where the measure on each transverse arc has an atom of fixed mass
at each intersection point with the geodesic. Multiples of simple closed geodesics are
dense in the space ML(S) of all measured laminations on S (see [13]).

If we lift a measured lamination to the universal cover H2 of S, we obtain a π1(S)-
invariant subset of the space G(H2) of geodesics on H2. The transverse measure on λ
gives rise to a π1(S)-invariant measure on G(H2). More generally, a geodesic current
is a π1(S)-invariant measure on G(H2). Bonahon [2, 3] has extensively studied the
space C(S) of geodesic currents on S. The support of a geodesic current projects to
a closed union of geodesics and multiples of closed geodesics are dense in C(S) (see
also Sigmund [12].) The function given by the length of a closed geodesic extends in
a natural way to continuous functions on ML(S) and C(S). Similarly, the geometric
intersection number of two closed geodesics extends to a continuous functions on
C(S)×C(S). Moreover, if f : S → T is a Lipschitz map between finite area hyperbolic
surfaces it induces a homeomorphism f∗ : C(S)→ C(T ).

3 Some basic facts from hyperbolic geometry

We begin by observing that among the triangles with a side of fixed length and
opposite angle of fixed value, the isosceles triangle maximizes perimeter. We will
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omit the proof which is an elementary calculation involving hyperbolic trigonometry.

Lemma 3.1 Consider the set of all hyperbolic triangles with one side of fixed length
C and the opposite angle of fixed value θ, where 0 < θ < π. Then the unique triangle
in this set with maximal length perimeter is the isosceles triangle having the fixed side
as base. The other sides have length

sinh−1

(
sinh(C/2)

sin(θ/2)

)
.

We will also need an elementary observation about configurations of planes in H3.
We will later use such configurations to enclose the convex hull.

Let H0, H1, and H2 be three closed half-spaces in H3. Let Pi denote the plane in
H3 which bounds Hi and let Di be the closed disk in S2

∞ which is the intersection of
the closure of Hi with S2

∞. Suppose that D0 ∩D1 = {a} and D1 ∩D2 = {b}. Let C
be the closure of the complement of H1 ∪H2 ∪H3.

Suppose that α is a parametrized curve α : [0, 2] → C such that α(i) ∈ Pi, for
i = 0, 1, 2. We denote the length of α by l. Then α is a curve with one endpoint on
P0, the other on P2, and an interior point on P1. We show that if l is short enough,
then D0 and D2 must intersect and that l determines an upper bound for their angle
of intersection. Recall that the angle of intersection of two half-spaces equals the
angle of intersection of the associated disks on the sphere at infinity.

Lemma 3.2 If l ≤ 2 sinh−1(1), then D0 and D2 intersect and their angle of inter-
section θ satisfies

θ ≥ 2 cos−1(sinh(l/2))

Proof of 3.2: Let α be the shortest curve in C with one endpoint on P0, the other
on P2, and an interior point on P1. Let H be the unique plane orthogonal to the
three planes P0, P1 and P2. We note that the circle on S2

∞ which bounds H must
pass through the two ideal points a and b described above. Thus, letting Li = Pi∩H,
the line L1 meets each of L0 and L2 in an ideal point. Furthermore, the disks D0 and
D2 intersect if and only if the lines L0 and L2 intersect, and the angle of intersection
of the lines is equal to the angle of intersection of the disks.

As orthogonal projection onto H decreases distance, α must be contained in the
plane H. Using planar hyperbolic geometry, one sees that the curve α consists of
two equal length geodesic segments with a common endpoint v on L1 which are
perpendicular to L0 and L2 respectively. If l(α) denotes the length of α, then l ≥ l(α).

If L0 and L2 intersect in an angle θ, then we let T be the triangle given by the three
lines L0, L1 and L2. Applying elementary formulae from hyperbolic trigonometry one
sees that

sinh(l(α)/2) = cos(θ/2)
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Thus,
l(α) = 2 sinh−1(cos(θ/2))

Since l ≥ l(α),
l ≥ 2 sinh−1(cos(θ/2)).

The function f(x) = sinh−1(cos(x/2)) is decreasing on [0, π], so

θ ≥ 2 cos−1(sinh(l/2)). (1)

If T is ideal then θ = 0 and l(α) = 2 sinh−1(1).
If the closures of L0 and L2 do not intersect, then there is an ideal triangle T ′

with two ideal vertices equal to the ideal endpoints of L1, whose other ideal vertex
lies between the ideal endpoints of L0 and L2 which are not endpoints of L1. Since
T ′ is ideal, the intersection of α with T ′ has length at least 2 sinh−1(1), so

l ≥ l(α) > 2 sinh−1(1).

Therefore, if l ≤ 2 sinh−1(1) the (closures of) L0 and L2 must intersect and in-
equality (1) must hold.

3.2

4 Local intersection number estimates

In this section we show that if a geodesic arc in the boundary of the convex hull is
short enough then its “total bending” is at most 2π. How short it is necessary to
make the arc will be an explicit function of the injectivity radius of the convex hull
at the starting point of the arc. This estimate, Lemma 4.3, underlies all the results
in the paper.

We first need to recall some background material on convex hulls. For a full
description of convex hulls see [7]. We will assume throughout this section that Γ is
analytically finite.

If Γ is a Kleinian group with convex hull CH(LΓ) then a support plane to CH(LΓ)
is a hyperbolic plane P in H3 which bounds a closed half-space HP whose intersection
HP ∩CH(LΓ) with the convex hull is non-empty and contained in P . We will consider
P to be an oriented plane, with orientation chosen so that HP lies above P . If P is
a support plane and P ∩ ∂CH(LΓ) is a single geodesic, then this geodesic is called a
bending line, otherwise, the interior of P ∩∂CH(LΓ) is called a flat and the geodesics
in the frontier of the flat are also called bending lines. If P1 and P2 are distinct
intersecting support planes, then r = P1 ∩ P2 is called a ridge line.
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If x ∈ ∂CH(LΓ) then either x lies in a flat or x is on some bending line. If x lies
in flat then there is a unique support plane P containing x. If x ∈ b, where b is a
bending line, let Σ(b) be the set of support planes to b. The set of oriented planes
S(b) containing b is a circle and Σ(b) ⊆ S(b). As Σ(b) is connected, it is either a
closed arc or a point. If Σ(b) is an arc, the endpoints are called extreme support
planes and the bending angle β(x) is defined to be the angle between the extreme
support planes. Otherwise, we define β(x) = 0.

The union of the bending lines in ∂CH(LΓ) is denoted βΓ and is called the bending
lamination. Thurston defined a transverse measure on βΓ called the bending measure
which assigns to every arc α transverse to βΓ a value i(α, βΓ) corresponding to the
amount of bending along α (see [7] or [13]). If the closed arc α is transverse to βΓ

and has endpoints x and y, then

i(α, βΓ) = β(x) + i(αo, βΓ) + β(y).

where α0 denotes the interior of α. The bending lamination βΓ on ∂CH(LΓ) projects
to the bending lamination βN of ∂C(N).

We now refine the analysis further to allow for arbitrary support planes at the
endpoints. Since Γ is analytically finite, each bending line with positive angle covers
one of finitely many closed geodesics in βN . Therefore, any path α : [0, 1]→ ∂CH(LΓ)
which is transverse to βΓ contains at most finitely many points where there is not a
unique support plane to the image of α. If there is a unique support plane at α(s),
let Qs be the unique support plane. We define the initial support plane at α(s̄) to be
Q−s̄ = lims 7→s̄− Qs and the terminal support plane at α(s̄) to be Q+

s̄ = lims 7→s̄+ Qs. The
initial support plane at α(0) is defined to be Q0 if there is a unique support plane, and
otherwise is the extreme support plane which is not terminal. The terminal support
plane at α(1) is defined similarly. If β(α(s̄)) > 0, then the initial and terminal support
planes are the two extreme support planes.

Suppose that α : [0, 1]→ ∂CH(LΓ) is a path transverse to βΓ and that P and Q
are support planes at α(0) and α(1). We define θP to be the exterior dihedral angle
between P and the terminal support plane Q+

0 and θQ to be the exterior dihedral
angle between Q and the initial support plane Q−1 . Then we define

i(α, βΓ)QP = θP + i(αo, βΓ) + θQ.

Notice that if P̄ is the initial support plane at α(0) and Q̄ is the terminal support

plane at α(1), then i(α, βΓ)Q̄
P̄

= i(α, βΓ).
If {0 = s0 < s1 < . . . < sn = 1} is a subdivision of [0, 1], then let αi be the closed

subarc obtained by restricting α to the interval [si−1, si]. Let Qi be a support plane at
α(si) with Q0 = P and Qn = Q. Then it follows from the additivity of the standard
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intersection number that

i(α, βΓ)QP =
n∑
i=1

i(αi, βΓ)QiQi−1

We now obtain an explicit description of a continuous path of support planes to
α joining P to Q. Let {0 ≤ s1 < . . . < sn−1 ≤ 1} be the points at which α(s) does
not have a unique support plane. If si is not either 0 or 1, then let θi = β(α(si)) > 0
and let {Qi

θ|θ ∈ [0, θi]} denote the one parameter family of all support planes to α(si)
parameterized by the exterior angle the support plane makes with the initial support
plane Q−si . If s1 = 0, then we let θ1 be the angle between P and the terminal support
plane Q+

0 at α(0) and we begin the parameterization {Qi
θ|θ ∈ [0, θ1]} at P . Similarly,

if tn−1 = 1, then we let θn−1 be the angle between Q and the initial support plane
Q−1 at α(1) and we end the parameterization {Qi

θ|θ ∈ [0, θn−1]} at Q.
We obtain our continuous 1-parameter family of support planes along α by in-

serting the families {Qi
θ|θ ∈ [0, θi]} between the intervals where the support planes

are uniquely defined. Let Ij = (sj−1, sj) for all j = 1, . . . , n, where we define s0 = 0
and sn = 1. Let Θi =

∑i
j=1 θj and let k = 1 + Θn−1. We let Xi = [si + Θi−1, si + Θi]

and Yi = (si−1 + Θi−1, si + Θi−1). We let Y1 = [0, s1) and Yn = (sn−1 + Θn−1, k]. The
intervals Xi and Yi give a partition of [0, k] and we define a piecewise linear continuous
function s : [0, k]→ [0, 1] by

s(t) =

{
ti t ∈ Xi

t−Θi−1 t ∈ Yi

The function s is a continuous monotonic function. We define the support planes
Pt by letting P0 = P , Pk = Q and if t ∈ (0, k) setting

Pt =

{
Qi
t−si−Θi−1

t ∈ Xi

Qs(t) t ∈ Yi

The family {Pt|t ∈ [0, k]} is called the continuous 1-parameter family of support
planes along α from P to Q. Notice that Pt is a support plane to α(s(t)) and that if
Pt1 = Pt2 and s(t1) = s(t2), then t1 = t2.

The following lemma allows us to estimate the intersection number along a geodesic
on ∂CH(LΓ) by using support planes. Its proof is given in the appendix.

Let {gt} be a continuous family of geodesics in a hyperbolic plane which is indexed
by an interval J . We say that the family is monotonic on J if given a, b ∈ J such that
a < b and ga ∩ gb 6= ∅ then gt = ga for all t ∈ [a, b]. Notice that if {gt} is monotonic
over [a, b) and continuous on [a, b], then it is monotonic on [a, b].

We say that (P,Q) is a roof over a path α if for all t ∈ [0, k], P ∩ Pt 6= ∅ and the
interiors of the half spaces HP and HPt also intersect.
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Lemma 4.1 Let N = H3/Γ be an analytically finite hyperbolic 3-manifold such that
LΓ is not contained in a round circle. Let α : [0, 1]→ ∂CH(LΓ) be a geodesic path, in
the intrinsic metric on ∂CH(LΓ), which is transverse to βΓ. If (P,Q) is a roof over
α and {Pt| t ∈ [0, k]} is the continuous one-parameter family of support planes over
α joining P to Q, then

1.
i(α, βΓ)QP ≤ θ < π.

where θ is the exterior dihedral angle between P and Q, and

2. there is a t ∈ [0, k] such that Pt = P if t ∈ [0, t] and the ridge lines
{rt = P ∩ Pt|t > t} exist and form a monotonic family of geodesics on P .

We say (P,Q) is a π-roof if (P, Pt) is a roof over α([0, s(t)]) for all 0 ≤ t < k but
(P,Q) is not a roof over α. Notice that this implies that either P = Q, in which
case the limit set LΓ is contained in a round circle, or that the closures of P and
Q intersect in a single point at infinity. The following corollary follows immediately
from Lemma 4.1.

Corollary 4.2 If (P,Q) is a π-roof over α then the interiors of the half spaces HP

and HQ are disjoint and i(α, βΓ)QP ≤ π.

The following functions arise naturally when we attempt to quantify how short
we must make a geodesic in ∂CH(LΓ) in order to guarantee that its intersection with
the bending measure is at most 2π. We define the functions F,G,K by

F (x) =
x

2
+ sinh−1

 sinh(x
2
)√

1− sinh2(x
2
)

 G(x) = F−1(x) K(x) =
2π

G(x)

From the equation it is easy to see that F is monotonically increasing with domain
[0, 2 sinh−1(1)). The function G(x) has asymptotic behavior G(x) � x as x tends
to 0, and G(x) approaches 2 sinh−1(1) as x tends to ∞. We further define G∞ =
2 sinh−1(1) ≈ 1.76275 and K∞ = π

sinh−1(1)
≈ 3.56443.

The following lemma shows that if a short arc bends a lot, then it must begin at a
point with small injectivity radius. In the next section, we will apply this local bound
to obtain the global bound on average bending given in Theorem 3. If x ∈ ∂CH(LΓ),
let ρ̂(x) denote the injectivity radius of ∂CH(LΓ) (in the intrinsic metric) at the point
x.

Lemma 4.3 Let N = H3/Γ be an analytically finite hyperbolic 3-manifold and let
α : [0, 1] → ∂CH(LΓ) be a geodesic path of length l(α) which is transverse to βΓ. If
P is a support plane at α(0) and either
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1. α([0, 1]) is contained in a simply connected component of ∂CH(LΓ) and
l(α) ≤ G∞, or

2. l(α) ≤ G(ρ̂(α(0))),

then there is a support plane Q at α(1) such that

i(α, βΓ)QP ≤ 2π.

Proof of 4.3: Let α : [0, 1] → ∂CH(LΓ) be a geodesic. We first deal with the
special case that LΓ is contained in a round circle. In this case, if α intersects more
than one bending line, then the double of a subarc of α joining two bending lines is
a homotopically non-trivial curve on ∂CH(LΓ), so l(α) ≥ ρ̂(α(0)). However, we have
assumed that l(α) < G(ρ̂(α(0))) < ρ̂(α(0)). Therefore, α can intersect at most one
bending line, so i(α, βΓ)QP ≤ π. From now on we may assume that LΓ is not contained
in a round circle.

Let Q be the initial support plane at α(1) and let {Pt|t ∈ [0, k]} be the continuous
one parameter family of support planes to α joining P to Q. If (P,Q) is a roof over
α, then, by Lemma 4.1, the exterior angle of intersection θ of P and Q is an upper
bound for i(α, βΓ)QP . Therefore, in this case, i(α, βΓ)QP ≤ θ < π.

If (P,Q) is not a roof over α, let t1 be the smallest value of t > 0 such that (P, Pt)
is not a roof over α([0, s(t)]). We let s(t1) = s1 and α1 = α|[0,s1]. Then, (P0, Pt1) is a

π-roof over α1 and so, by Corollary 4.2, i(α1, βΓ)
Pt1
P ≤ π.

If (Pt1 , Q) is a roof over α([s1, 1]), we let α2 = α|[s1,1]. Then, the exterior angle of

intersection θ1 of Pt1 and Q is an upper bound for i(α2, βΓ)QPt1 . Thus we have

i(α, βΓ)QP = i(α1, βΓ)
Pt1
P + i(α2, βΓ)QPt1 ≤ π + θ1 < 2π.

In the final case we let t2 be the smallest value of t ∈ [t1, k] such that (Pt1 , Pt) is not
a roof over α([s1, s(t)]), and we let s(t2) = s2. If s2 = 1, then (Pt1 , Q) is a π-roof over
α2 = α([s1, 1]). Therefore i(α, βΓ)QP ≤ 2π as above. Otherwise, let l̃ = l(α([0, s2])).
Then l̃ < l(α). As G(ρ̂(α(0))) < G∞ = 2 sinh−1(1), we have l̃ < 2 sinh−1(1).

Since (P, Pt1) and (Pt1 , Pt2) are π-roofs and LΓ is not a round circle, the support
planes P , Pt1 , and Pt2 have the configuration described in Lemma 3.2. Also the curve
α : [0, s2]→ ∂CH(LΓ) has one endpoint on P , the other on Pt2 , an interior point on
Pt1 and length l̃ < 2 sinh−1(1). Lemma 3.2 implies that P and Pt2 intersect and have
angle of intersection θ satisfying

θ ≥ 2 cos−1(sinh(l̃/2)) > 0.

We join the endpoints α(0) and α(s2) by the shortest curve ν on P ∪Pt2 . This curve
consists of two geodesic segments, ν1 and ν2. The segment ν1 lies on P and joins α(0)
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to a point V ∈ P ∩ Pt2 , while ν2 lies on on Pt2 and joins V to α(s2). We consider
the triangle T in H3 with vertices α(0), α(s2), and V . The angle θV at V satisfies
θV ≥ θ. Also, the opposite side joining α(0) to α(s2) has length lV ≤ l̃. Therefore, T
has an angle bounded below by θ and opposite side bounded above by l̃. Lemma 3.1
implies that

l(ν) ≤ 2 sinh−1

(
sinh(l̃/2)

sin(θ/2)

)
.

Applying the bound for θ we obtain

l(ν) ≤ 2 sinh−1

 sinh(l̃/2)√
1− sinh2(l̃/2)


We obtain a closed curve η by concatenating α([0, s2]) and ν. Then,

l(η) ≤ l̃ + 2 sinh−1

 sinh(l̃/2)√
1− sinh2(l̃/2)

 = 2F (l̃)

Let γ = r̃(η) where r̃ is the nearest point retraction. Therefore γ is the union of
α([0, s2]) and g = r̃(ν). In particular, l(γ) ≤ l(η) ≤ 2F (l̃).

If α is in a simply connected component of ∂CH(LΓ), then γ is in a simply
connected component, so γ must be homotopically trivial.

If α is in a non-simply connected component, then l̃ < l(α) ≤ G(ρ̂(α(0))). There-
fore, by monotonicity of F , F (l̃) < ρ̂(α(0)) and l(γ) ≤ 2F (l̃) < 2ρ̂(α(0)). As γ
contains the point α(0) and l(γ) < 2ρ̂(α(0)), γ is homotopically trivial in ∂CH(LΓ).

We now obtain a contradiction by showing that γ is not homotopically trivial in
∂CH(LΓ). Let b1 be the first bending line on Pt1 that the curve α([0, s2]) intersects
and let α(s) be this first point of intersection. We first show that α([0, s2]) intersects
b1 exactly once. We then show that g intersects b1 in at most one point and that, if
they do intersect, g does not cross b1 at this point, i.e. near the point of intersection
both component of g − b1 lie on the same side of b1. Since α([0, s2]) intersects b1

transversely, it follows that γ may be perturbed slightly so that it is transverse to
b1 and intersects it exactly once. However, it is impossible for a properly embedded
infinite geodesic on a hyperbolic surface to intersect a homotopically trivial transverse
closed curve exactly once, so we will have achieved our contradiction.

Suppose that α([0, s2]) has a second intersection point with b1 at a point x. Since
Pt1 ∩ Pt2 = ∅, x = α(s̃) where s < s̃ < s2. Let t̃ be such that s(t̃) = s̃. Then, by
definition, t < t̃ < t2 and x ∈ Pt̃, so (Pt1 , Pt̃) is a roof over α([s, s̃]). If Pt1 = Pt̃
then, by Lemma 4.1, Pt = Pt1 for all t ∈ [t1, t̃]. Therefore, α([s, s̃]) is a geodesic arc



§4. Local intersection number estimates 13

contained in Pt1 with two endpoints on the geodesic b1. Thus, α([s, s̃]) ⊆ b1 which
contradicts the fact that α([0, s2]) intersects b1 transversely.

If Pt1 6= Pt̃, let rt̃ be the ridge line Pt1∩Pt̃. By Lemma 1.9.2 in Epstein-Marden [7]
(stated in the appendix as Lemma 10.2) if a ridge line intersects a bending line then
they are equal. Since x ∈ rt̃ ∩ b1, we have rt̃ = b1. By the monotonicity of the ridge
lines, for each t ∈ [t1, t̃], either Pt = Pt1 or rt = Pt ∩ Pt1 = b1. Thus for all t ∈ [t1, t̃],
Pt is a support plane to b1. If b1 has a unique support plane, then Pt = Pt1 for all
t ∈ [t1, t̃] and this reduces to the above case. If b1 has more than one support plane
then we let X and Y be the extreme support planes at b1. If Z is another support
plane for b1, then Z ∩ ∂CH(LΓ) = b1. As the only points of α([s, s̃]) in b1 are the
endpoints, the only possible support plane for any point in the open arc α((s, s̃)) is
either X or Y . Since α((s, s̃)) is connected and X ∩ Y = b1, either α((s, s̃)) ⊆ X or
α((s, s̃)) ⊆ Y . We can assume α((s, s̃)) ⊆ X. As the endpoints of α((s, s̃)) are in
b1, the geodesic arc α([s, s̃]) is in X and intersects the geodesic b1 at its endpoints.
Therefore, α([s, s̃]) ⊆ b1 which again contradicts the fact that α([0, s2]) intersects b1

transversely. Thus, we have established that α([0, s2]) intersects b1 exactly once.
We now consider g = r̃(ν). First suppose that b1 has a unique support plane Pt1 .

If g intersects b1, then there is a point x ∈ r̃−1(b1) ∩ ν which lies in the interior of
HPt1

and in either P or Pt2 . But, since P and Pt2 are support planes disjoint from
Pt1 , this is impossible. Therefore, if b1 has a unique support plane, then g does not
intersect b1.

Now suppose that b1 does not have a unique support plane and let X and Y be
the extreme support planes at b1. Each support plane Q to b1 determines a normal
half-plane, i.e. the portion of the normal plane to Q which lies in HQ. Then, r̃−1(b1)
is a wedge bounded by the normal half-planes to X and Y and is made up of the
disjoint normal half-planes to all the support planes to b1. Notice that the endpoints
of ν lie outside of r̃−1(b1) and that ν does not intersect b1. If r̃(ν1) intersects b1 at an
interior point, then the endpoints of ν1 lie outside this wedge and the geodesic segment
ν1 must intersect every normal half-plane to a support plane for b1. In particular,
ν1 must intersect the normal half-plane to Pt1 . Therefore, there must exist a point
x ∈ r̃−1(b1) ∩ ν1 which lies in the interior of HPt1

and in P , which is impossible.
So, r̃(ν1) cannot intersect b1 at an interior point. Similarly, r̃(ν2) cannot intersect
b1 at an interior point. Therefore, if g intersects b1 it must do so at r̃(V ), in which
case V ∈ r̃−1(b). If g crosses b1 at r̃(V ), then ν1 and ν2 must intersect the normal
half-planes to X and Y . By continuity, ν must then intersect the normal half-plane
to Pt1 . Again, we have found a point which lies both in the interior of HPt1

and in
either P or Pt2 , which is a contradiction. Therefore, as claimed, g can intersect b1 at
only one point, and it cannot cross b1 at this point. This completes the proof.

4.3
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5 Global intersection number estimates

The proofs of Theorems 1 and 2 rely heavily on the following global estimate on
intersection numbers. Moreover, Theorem 3 is an immediate corollary.

Proposition 5.1 Suppose that N = H3/Γ is an analytically finite hyperbolic 3-
manifold and α is a closed geodesic on ∂C(N).

1. If ρ̂α is a lower bound for the injectivity radius of ∂CH(LΓ) at any point in the
support of a lift α̃ of α, then

i(α, βN) ≤ K(ρ̂α)l∂C(N)(α)

where l∂C(N) is the hyperbolic length of α on ∂C(N).

2. If α is contained in an incompressible component of ∂C(N), then

i(α, βN) ≤ K∞l∂C(N)(α).

We recall that K∞ = π
sinh−1(1)

≈ 3.56443 and that K(x) � 2π
x

as x tends to 0.

Proof of 5.1: Let α : S1 → ∂C(N) be a closed geodesic on ∂C(N). Either α lies
in βN or is transverse to βN . If α lies in βN , then i(α, βN) = 0, so we may assume
that α is transverse to βN . We identify S1 with R/Z and let α̃ : R → ∂CH(LΓ) be
a lift of α to ∂CH(LΓ). We may assume, without loss of generality, that α(0) lies in
a flat.

If we let α̃n be the restriction of α̃ to the interval [0, n] then i(α̃n, βΓ) = n i(α, βN)
and l∂CH(LΓ)(α̃n) = n l∂C(N)(α). Let α̃ be in the connected component C of ∂CH(LΓ).
If C is simply connected we let G = G∞. Otherwise we let G = G(ρ̂α). We subdivide
α̃n into m subarcs of length less than or equal to G where m is given by

m =

[
l∂CH(LΓ)(α̃n)

G

]+

≤
l∂CH(LΓ)(α̃n)

G
+ 1

and [x]+ is the least integer greater than or equal to x.
We let α̃jn be the subarcs, where α̃jn is restriction of α̃n to the interval [sj−1, sj]

and 0 = s0 < s1 < · · · < sm = n. We define support planes Pj at α̃n(sj) inductively.
First, we let P0 = P where P is the unique support plane to α̃n(0). If Pj−1 is defined,
then it is a support plane to α̃jn(sj−1) = α̃n(sj−1). As the length of α̃jn is less than or
equal to G, by Lemma 4.3, there is a support plane Pj at α̃jn(sj) = α̃n(sj) such that
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i(α̃jn, βΓ)
Pj
Pj−1
≤ 2π. As α̃n(n) is in a flat, Pm must be the unique support plane at

α̃n(n). Therefore, by additivity, we have

i(α̃n, βΓ) = i(α̃n, βΓ)PmP0
=

m∑
j=1

i(α̃jn, βΓ)
Pj
Pj−1
≤ 2πm

Substituting the upper bound for m we get

i(α̃n, βΓ) ≤ 2π

(
l∂CH(LΓ)(α̃n)

G
+ 1

)
Rewriting in terms of α we get

n i(α, βN) ≤
2πnl∂C(N)(α)

G
+ 2π

Dividing through by n we get

i(α, βN) ≤
2πl∂C(N)(α)

G
+

2π

n

As this holds for all n,

i(α, βN) ≤
2πl∂C(N)(α)

G
= K l∂C(N)(α)

where K equals either K∞ or K(ρ̂α) depending on whether α is contained in an
incompressible component of ∂C(N) or not.

5.1

The version of Theorem 3 stated in the introduction follows immediately from
Proposition 5.1. We now give a version of Theorem 3 which applies to geodesic
currents. If α is a geodesic current on ∂C(N), then we may define its average bending
to be

B(α) =
i(α, βN)

l∂C(N)(α)
.

Since multiples of closed geodesics are dense in C(∂C(N)) and the length and inter-
section functions are continuous, the following version of Theorem 3 also follows from
Proposition 5.1.

Theorem 3′: Let N = H3/Γ be an analytically finite hyperbolic 3-manifold and let
α ∈ C(∂C(N)) be a geodesic current in the boundary of the convex core of N .

1. If ∂C(N) is incompressible, then B(α) ≤ K∞.

2. If ∂C(N) is compressible and ρ̂0 is a lower bound for the injectivity radius of
the boundary of the convex hull of the limit set, then B(α) ≤ K(ρ̂0).
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6 A homotopy inverse for the nearest point retraction

We now combine Proposition 5.1 with work of Thurston [14] to obtain a Lipschitz
homotopy inverse to the nearest point retraction. One should note that the bounds on
the Lipschitz constant of the homotopy inverse depend on the injectivity radius of the
boundary of the convex hull of the limit set. We will see later how to obtain a lower
bound on the injectivity radius of ∂CH(LΓ) from a lower bound on the injectivity
radius of Ω(Γ).

Proposition 6.1 Let N be an analytically finite hyperbolic 3-manifold. If ∂C(N) is
compressible and ρ̂0 is a lower bound for the injectivity radius of ∂CH(LΓ), then the
nearest point retraction r has a homotopy inverse that is (1 + K(ρ̂0)) Lipschitz. If
∂C(N) is incompressible, then the homotopy inverse is (1 +K∞)-Lipschitz.

Proof of 6.1: Let s : ∂C(N)→ ∂c(N) be a homotopy inverse to the nearest point
retraction r. Let K denote K∞ if ∂C(N) is incompressible and K(ρ̂0) otherwise.

Let α be a simple closed geodesic in ∂C(N) with length l∂C(N)(α) and let l∂cN(s(α)∗)
be the length of the geodesic representative of s(α) in ∂cN . McMullen (Theorem 3.1
in [11]) showed that

l∂cN(s(α)∗) ≤ l∂C(N)(α) + i(α, βN)

Using Proposition 5.1 we get that

l∂cN(s(α)∗) ≤ (1 +K)l∂C(N)(α)

Thurston [14] proved that if f : X → Y is a homotopy equivalence between two
finite area hyperbolic surfaces and

lY (f(β)∗)

lX(β)
≤M

for any simple closed geodesic β on X, then f is homotopic to a M -Lipschitz map.
Thus, we may conclude in our case that s is homotopic to a (1 + K)-Lipschitz map
from ∂C(N) to ∂cN as claimed.

6.1

The following proposition indicates that one cannot improve much on the bounds
obtained in Proposition 6.1. Recall that K(ρ̂0) � 2π

ρ̂0
as ρ̂0 tends to 0. Notice that in

Proposition 6.2 we do not need to assume that N is analytically finite.
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Proposition 6.2 There exists L > 0 such that if N is a hyperbolic 3-manifold, there
is a compressible closed geodesic γ on ∂C(N) with length l0 < L and s : ∂C(N)→ ∂cN
is a K-Lipschitz homotopy inverse to the nearest point retraction, then

K ≥ 1

l0 log
(

1
l0

) .
Proof of 6.2: Let l denote the length of s(γ)∗ in ∂cN . Theorem 5.1 in [6] implies

that if l < 1 then

l ≥ π2

√
e log(4πe(.502)π

l0
)
.

If log(l0) ≤ −2 log(4πe(.502)π) and l < 1, then

l ≥ 1

log
(

1
l0

) .
Notice that the above inequality also holds if l ≥ 1. Thus, if we choose L = 1

(4πe(.502)π)2

and l0 ≤ L, then

K ≥ l

l0
≥ 1

l0 log
(

1
l0

) .
6.2

In particular, this shows that if ∂C(N) contains arbitrarily short compressible
curves, then there is no Lipschitz map from the convex core to the conformal bound-
ary. This situation can occur when N has infinitely generated fundamental group.

7 The nearest point retraction is Lipschitz

In this section we show how to combine the techniques in section 2.3 of Epstein-
Marden [7] and the results of [6] to show that the nearest point retraction is itself
Lipschitz (and to produce bounds on the Lipschitz constant.) We remark that Ep-
stein and Marden showed that the nearest point retraction is 4-Lipschitz if ∂C(N) is
incompressible.

Proposition 7.1 If N = H3/Γ is an analytically finite hyperbolic 3-manifold and ρ0

is a lower bound for the injectivity radius of Ω(Γ), then the nearest point retraction
r : ∂cN → ∂C(N) is J(ρ0)-Lipschitz where

J(ρ0) = 2
√

2

(
k +

π2

2ρ0

)
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and k = 4 + log(3 + 2
√

2) ≈ 5.763.

Proof of 7.1: Let K =
√

2
(
k + π2

2ρ0

)
. We will show that given any point z ∈ Ω(Γ)

and any δ ∈ (0, 1) there exists a neighborhood of z on which r̃ is 2K
(

1+δ
1−δ2

)
-Lipschitz.

It follows that r̃ is itself 2K
(

1+δ
1−δ2

)
-Lipschitz. Since δ can be chosen to be arbitrarily

close to 0, it follows that r̃ (and hence r) is 2K-Lipschitz as claimed.
Let z ∈ Ω(Γ) and let P be the support plane to r̃(z) which is orthogonal to zr̃(z).

We can always find a neighborhood U of z such that if w ∈ U and Q is the support
plane to r̃(w) which is orthogonal to wr̃(w), then P intersects Q. Given δ ∈ (0, 1),
we may further restrict U so that it is is contained in the ball of radius δ

4K
about z

in the Poincaré metric and that any point w ∈ U may be joined to z by a unique
geodesic in U of length dΩ(z, w).

Let w ∈ U , let Q be the support plane to r̃(w) which is orthogonal to wr̃(w),
and let g be the geodesic in U joining z to w. We normalize, in the upper half-space
model for H3, so that z = 0, the unit circle is the boundary of the support plane
P and ∞ ∈ LΓ. It is shown, in the proof of Proposition 4.1 of [6], that if pΩ(z)|dz|
denotes the Poincaré metric on Ω(Γ) then

pΩ(z) ≥ 1

Kd(z, LΓ)
(2)

for all z ∈ Ω(Γ) where d(z, LΓ) denotes the Euclidean distance from z to the limit set
LΓ.

Let D be the unit disk and let DQ be the disk bounded by ∂Q. If we let pD(z)|dz|
denote the Poincaré metric on D, then

pD(z)

pΩ(z)
≤ 2Kd(z, LΓ)

1− |z|2
(3)

for all z ∈ D.
Since g has length at most δ

4K
, inequality (2) implies that g is contained in the

ball of Euclidean radius δ about 0. In particular, if z ∈ g, then pD(z)
pΩ(z)

≤ 2K
(

1+δ
1−δ2

)
.

We divide g up into 3 segments: g1 = g ∩ (D − DQ), g2 = g ∩ (D ∩ DQ) and

g3 = g ∩ (DQ −D). Inequality (3) then implies that lD(g1) ≤ 2K
(

1+δ
1−δ2

)
lΩ(g1) where

lD(g1) denotes the length of g1 in the Poincaré metric on D and lΩ(g1) denotes the

length of g1 in the Poincaré metric on Ω(Γ). Similarly, lD(g2) ≤ 2K
(

1+δ
1−δ2

)
lΩ(g2) and

lDQ(g3) ≤ 2K
(

1+δ
1−δ2

)
lΩ(g3).

Let Ω′ = D ∪ DQ and let r′ : Ω′ → CH(∂Ω′) be the nearest point retraction.
Notice that r′(0) = r(0) and r′(w) = r(w). Let rD : D → P , rQ : DQ → Q



§8. The proof of Theorem 1 19

and rL : D ∩ DQ → L be the nearest point retractions, where L = P ∩ Q. Then
r′|D−DQ = rD, r′|DQ−D = rQ and r′|D∩DQ = rL. Notice that rD and rQ are isometries
with respect to the Poincaré metrics on P and Q and that rL is 1-Lipschitz with
respect to the Poincaré metric on either P or Q. It follows that

lH3(r′(g)) ≤ lD(g1) + lD(g2) + lDQ(g3) ≤ 2K

(
1 + δ

1− δ2

)
lΩ(g).

We recall that r̃ : Ω(Γ) → ∂CH(LΓ) extends to r̃ : H3 ∪ Ω(Γ) → CH(LΓ). Then

r̃(r′(g)) is a path joining r(0) to r(w) of length at most 2K
(

1+δ
1−δ2

)
lΩ(g) (since r̃ is

1-Lipschitz on H3). It follows that

d∂CH(LΓ)(r̃(w), r̃(z)) ≤ 2K

(
1 + δ

1− δ2

)
dΩ(z, w).

Hence, r̃ is 2K
(

1+δ
1−δ2

)
-Lipschitz on U as required and we have completed the proof.

7.1

Remarks: (1) Epstein and Marden [7] showed that the nearest point retraction r is
4-Lipschitz if ∂C(N) is incompressible. In [6] it is shown that r is homotopic to a
2
√

2-Lipschitz map if ∂C(N) is incompressible and to a
√

2K-Lipschitz map if not.
(2) In section 6 of [6], Canary constructs an infinite sequence of hyperbolic mani-

folds {Nn} such that, for all large enough n, the shortest geodesic in ∂cN has length
1
n

and the shortest geodesic in ∂C(N) has length at most 4π
eπ(2n−1) and the nearest

point retraction is not even homotopic to a map which is 5n
2 log(5n)

-Lipschitz. Hence,
we cannot improve substantively on the form of the estimate obtained above.

8 The proof of Theorem 1

The only issue remaining in the proof of Theorem 1 is that the bound on the Lipschitz
constant in Proposition 6.1 depends on an injectivity radius bound in the boundary
of the convex hull, while the assumptions of Theorem 1 only give us an injectivity
radius bound on the domain of discontinuity. The following lemma guarantees that
injectivity radius bounds on the domain of discontinuity give us injectivity radius
bound in the boundary of the convex hull.

Lemma 8.1 Let N = H3/Γ be a hyperbolic 3-manifold and let α be a geodesic on
∂CH(LΓ) with length l(α) < e−m ≈ .06798, where m = cosh−1(e2) ≈ 2.68854, then

l∂cN(s̃(α)∗) ≤ π2

log
(

1
l(α)

)
−m
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where s̃ : ∂CH(LΓ)→ ∂cN is a lift of a homotopy inverse to r : ∂cN → ∂C(N).

Proof of 8.1: There is a collar neighborhood C of α on ∂CH(LΓ) which is isometric
to [−w,w]× S1 with the metric

ds2 = dr2 +

(
l(α)

2π

)2

cosh2 rdt2

where α is identified with {0} × S1 and w = sinh−1
(

1
sinh(l(α)/2)

)
(see Theorem 4.1.1

in [5].) Let α1 and α2 denote the boundary components of C. Then

l(α1) = l(α2) = l(α) cosh

(
sinh−1

(
1

sinh(l(α)/2)

))
= l(α) coth

(
l(α)

2

)
≤ 4.

(The last inequality follows since l(α) coth
(
l(α)

2

)
is an increasing function and l(α) <

1.) Recall that every closed geodesic in ∂CH(LΓ) must intersect βΓ, since otherwise
there would be a closed geodesic contained entirely within a flat. We normalize the
situation so that α passes through the origin, the origin lies on a bending line L for
∂CH(Lγ) and that L is the z-axis in the Poincaré ball model for H3.

Let β1 = r̃−1(α1) and β2 = r̃−1(α2) be the set-theoretic pre-images of the curves
α1 and α2 under r̃. Then, β1 and β2 are homotopic simple closed curves in Ω(Γ). Our
goal is to prove that β1 and β2 bound a “large” modulus annulus in Ω(Γ) and hence
that the core curve of this annulus is “short.” Since r is a homotopy inverse to s the
core curve of the annulus is homotopic to s(α).

Notice that L must pass through C and intersects both α1 and α2 transversely at
points, x1 and x2, and that

d(xi, 0) ≥ sinh−1

(
1

sinh(l(α)/2))

)
≥ sinh−1

(
1

l(α)

)
≥ log

(
1

l(α)

)
.

(The middle inequality follows from the facts that sinh−1 is an increasing function
and that sinh(x) ≤ 2x if x ≤ 1.)

Let rL : Ω(Γ)→ L denote the nearest point projection onto L. One may calculate
that if x ∈ L, y ∈ H3, d(x, y) ≤ 2 and the family of horoballs about a point z ∈ Ω(Γ)
hits y before it hits L, then d(x, rL(z)) ≤ cosh−1(e2). Let m = cosh−1(e2). Let L0

be the portion of L joining x1 to x2 and let Lm denote the portion of L0 which is a
distance more than m from both x1 and x2. Let Am = π−1

L (Lm). (Notice that since
l(α) < e−m, Lm and Am are non-empty.) Since βi = r̃−1(αi) and d(y, xi) ≤ 2 for all
y ∈ αi, β1 and β2 lie in opposite components of Ĉ− Am. Therefore, since β1 and β2

are homotopic in Ω(Γ), Am ⊂ Ω(Γ).
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One may readily check that

mod(Am) ≥
log

(
1
l(α)

)
−m

π

where mod(Am) is the conformal modulus of Am. If α′ is the core curve of Am, then,
see for example Theorem 2.6 in [7], α′ has length at most π2

log(1/l(α))−m in the Poincaré

metric on Am and hence in the Poincaré metric on Ω(Γ). Since α′ is homotopic to
s(α), we see that

l∂cN(s(α)∗) ≤ π2

log
(

1
l(α)

)
−m

.

8.1

In particular, Lemma 9.1 guarantees that if ρ0 is a lower bound for the injectivity
radius of Ω(Γ), then g(ρ0) is a lower bound for the injectivity radius of ∂CH(LΓ)
where

g(ρ0) =
e−me

−π2

2ρ0

2
.

If we define L(ρ0) = 1+K(g(ρ0)), then we may combine Corollary 6.1 and Propo-
sition 7.1 to obtain the following, slightly more general, version of Theorem 1:

Theorem 1: If N = H3/Γ is an analytically finite hyperbolic 3-manifold and ρ0

is a lower bound for the injectivity radius of Ω(Γ), then the nearest point retraction
r : ∂cN → ∂C(N) is J(ρ0)-Lipschitz and has a L(ρ0)-Lipschitz homotopy inverse.

The following slightly more general version of Corollary 1 is an almost immediate
corollary of Theorem 1.

Corollary 1: Let N = H3/Γ be an analytically finite hyperbolic 3-manifold and let
ρ0 be a lower bound for the injectivity radius of Ω(Γ). If α is a geodesic current in
∂cN and r(α)∗ denotes the geodesic current in ∂C(N) which is homotopic to r(α),
then

l∂C(N)(r(α)∗)

J(ρ0)
≤ l∂cN(α) ≤ L(ρ0)l∂C(N)(r(α)∗)

where l∂C(N)(r(α)∗) denotes the length of r(α)∗ in ∂C(N) and l∂c(N)(α) denotes the
length of α in ∂c(N).
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Proof of Corollary 1: We note that the bounds follow immediately from Theorem
1 when α is a closed geodesic. Recall that multiples of closed geodesics are dense in
the space of geodesic currents, length is a continuous function on the space of geodesic
currents on a surface, and r∗ : C(∂cN)→ C(∂C(N)) is continuous. The general result
then follows.

Corollary 1

Theorem 2 follows immediately from Proposition 6.1 and Epstein and Marden’s
result that the nearest point retraction is 4-Lipschitz when each component of Ω(Γ)
is incompressible. It has the following immediate corollary in the spirit of Corollary
1.

Corollary 2: Let N = H3/Γ be an analytically finite hyperbolic 3-manifold such that
∂cN is incompressible in N̂ = N ∪ ∂cN . If α is a geodesic current in ∂cN and r(α)∗

denotes the geodesic current in ∂C(N) which is homotopic to r(α), then

l∂C(N)(r(α)∗)

4
≤ l∂c(N)(α) ≤

(
1 +

π

sinh−1(1)

)
l∂C(N)(r(α)∗).

Remark: Notice that J(ρ0) �
√

2π2

ρ0
and L(ρ0) � 4πeme

π2

2ρ0 as ρ0 tends to 0. We

observed in remark (2) in section 7 that the form of J(ρ0) can not be substantially
improved. It is an immediate consequence of Theorem 5.1 in [6] that if ρ0 < .5 and s
is a L-Lipschitz homotopy inverse to r, then

L ≥ ρ0e
π2

2
√
eρ0

2πe(.502)π

so again the form of L(ρ0) cannot be substantially improved.

9 An alternative version of Theorem 1

The following lemma allows us to translate injectivity radius bounds on the boundary
of the convex core to injectivity radius bounds on the conformal boundary.

Lemma 9.1 Let N be a hyperbolic 3-manifold and let ρ̂0 be a lower bound for the
injectivity radius of ∂CH(LΓ). Then f(ρ̂0) is a lower bound for the injectivity radius
of Ω(Γ) where

f(ρ̂0) = min

1

2
,

π2

2
√
e log

(
4πe(.502)π

2ρ̂0

)
 .

Notice that f(ρ̂0) � π2

2
√
e log(1/ρ̂0)

as ρ̂0 tends to 0.
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Proof of 9.1: If not, there exists a compressible curve α on ∂cN with length L
such that L < 2f(ρ̂0). Theorem 5.1 in [6] then implies that r(α)∗ is a compressible
geodesic on ∂C(N) with length less that 2ρ̂0 which contradicts our assumptions.

9.1

Therefore, if we set J ′(ρ̂0) = J(f(ρ̂0)) and let L′(ρ̂0) = 1 +K(ρ̂0), then we obtain
the following alternative formulation of Theorem 1:

Theorem 1′: Let N = H3/Γ be an analytically finite hyperbolic 3-manifold and let
ρ̂0 be a lower bound for the injectivity radius of ∂CH(LΓ). Then the nearest point-
retraction is a J ′(ρ̂0)-Lipschitz map and has a homotopy inverse which is L′(ρ̂0)-
Lipschitz map.

We also get the following alternative formulation of Corollary 1.

Corollary 1′: Let N = H3/Γ be an analytically finite hyperbolic 3-manifold and let
s : ∂C(N) → ∂cN be a homotopy inverse to the nearest point retraction. If ρ̂0 is
a lower bound for the injectivity radius of ∂CH(LΓ) and α is a geodesic current on
∂C(N), then

l∂cN(s(α)∗)

L′(ρ̂0)
≤ l∂C(N)(α) ≤ J ′(ρ̂0)l∂cN(s(α)∗).

Remark: Notice that J ′(ρ̂0) = O(log( 1
ρ̂0

)) and L′(ρ̂0) = O( 1
ρ̂0

) as ρ̂0 tends to 0. These

asymptotics are much better than those in Theorem 1, since when Ω(Γ) has small
injectivity radius, ∂CH(LΓ) has much smaller injectivity radius. Proposition 6.2
indicates that the form of L′ can not be substantially improved, while the examples
in section 6 of [6] can be used to show that J ′(ρ̂0) must grow at least as fast as
D log( 1

ρ̂0

)

log

(
log( 1

ρ̂0

)

) as ρ̂0 tends to 0 (for some constant D > 0.)

10 Appendix: The proof of Lemma 4.1

In this section we review some of the theory of convex hulls of limit sets, as developed
by Epstein and Marden [7]. We then give a proof of Lemma 4.1 which asserts that
ridge lines are monotonic for the support planes under a roof and that one can use
the exterior dihedral angle of the roof to provide a bound on the bending measure.
We will assume throughout the appendix that N = H3/Γ is analytically finite and
that LΓ is not contained in a round circle.

We will say that a neighborhood U of x in ∂CH(LΓ) is adapted to x if it has the
following two properties:
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1. U is a spherical shell adapted to x, see Definition 1.5.3 in [7]. In particular, U
is simply connected and the intersection of any bending line or flat with U is
connected and convex.

2. If two bending lines b1 and b2 meet U , then any support plane to b1 meets any
support plane to b2.

Lemma 1.8.3 in Epstein-Marden [7] guarantees that one can choose a set U having
property (2) above and also guarantees that ridge lines to support planes in a small
enough neighborhood must lie close to one another.

Lemma 10.1 (Epstein-Marden [7]) If x ∈ ∂CH(LΓ) then there is an open neighbor-
hood U ⊆ ∂CH(LΓ) of x such that if two bending lines b1 and b2 meet U then any
support plane to b1 intersects any support plane to b2. Furthermore, if b is a bending
line containing x and N is a neighborhood of b in the space of geodesics, then, by
taking U small enough, we may assume that any ridge line, which is formed by the
intersection of two distinct support planes at points of U lies in N .

Suppose that x ∈ ∂CH(LΓ) and U is a neighborhood adapted to x. If b1 and b2

are distinct bending lines which intersect U and lie in support planes P1 and P2, then
l1 and l2 bound a strip in U . If r = P1 ∩ P2, then we may define the corresponding
local roof which is the union of the portion of P1 between b1 and r and the portion
of P2 between b2 and r. We say the open strip between b1 and b2 in U is under this
local roof.

We next recall the definition of the bending measure on βΓ. Let α : [0, 1] →
∂CH(LΓ) be a path which is transverse to βΓ. We say that a partition

0 = s0 < s1 < . . . < sn−1 < sn = 1

of [0, 1] is allowable if each sub-arc α([si−1, si]) lies under a local roof. Let P0 be the
initial support plane at α(0) and let Pn be the terminal support plane at α(1). If
0 < i < n, let Pi be a support plane at α(si). Let θi be the exterior dihedral angle
between Pi−1 and Pi. We define

iP(α, βΓ) =
n∑
i=1

θi

and let
i(α, βΓ) = inf

P
iP(α, βΓ)

where we take the infimum over all allowable partitions.
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Notice that, by the definition of i(α, βΓ), if α is under a local roof then we have
that

i(α, βΓ) ≤ θ

where θ is the exterior dihedral angle between the support planes P and Q at the
points α(0) and α(1).

We begin by showing that Lemma 4.1 is valid if the path remains under a local
roof. We must first recall some basic facts about ridge lines and bending lines.

Lemma 10.2 (Lemma 1.9.2 in Epstein-Marden [7]) If any ridge line meets a bending
line, then they are equal. If a bending line b lies under the local roof formed by the
support planes P1 and P2 and the bending lines b1 and b2, then b is either equal to or
disjoint from the ridge line r = P1 ∩ P2. If P is a support plane to b then P is either
disjoint from the ridge line or else contains it.

Lemma 10.3 If three distinct support planes P1, P2, and P3 intersect in a common
line l, then l is a bending line with positive bending angle.

Proof of 10.3: As support planes are oriented, consider the three normals n1, n2,
and n3 to the planes P1, P2, and P3 at a common point p ∈ l. The normals divide the
circle of planes S(l) containing l into three non-empty segments. At most one can be
greater than or equal to π in length. Choose the normal n with segments of length
less than π on either side of it. Then the corresponding support plane P is contained
in the union of the half spaces of the other two. Therefore P ∩ ∂CH(LΓ) ⊆ l. As P
is a support plane, l must be a bending line with positive bending angle.

10.3

We now prove the local version of Lemma 4.1.

Lemma 10.4 Let α : [0, 1]→ ∂CH(LΓ) be a geodesic path which is transverse to βΓ

and such that α([0, 1]) is contained in a neighborhood U adapted to α(0). Let P be a
support plane at α(0), and let {Pt| t ∈ [0, k]} be the continuous one parameter family
of support planes along α with P0 = P . Then

1. If t1 < t2 and Pt1 = Pt2, then Pt = Pt1 for all t ∈ [t1, t2].

2. There is a t ∈ [0, k] such that Pt = P if t ∈ [0, t] and the ridge lines
{rt = P ∩ Pt|t > t} exist and form a monotonic family of geodesics on P .
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Proof of 10.4: Suppose that t1 < t2 and Pt1 = Pt2 and let s1 = s(t1) and
s2 = s(t2). Let F = Pt1 ∩ ∂CH(LΓ). Since U is simply connected and F ∩ U is
convex, α([s1, s2]) is a geodesic arc in F . If α([s1, s2]) is contained in a bending line
b, then α intersects b at a single point, so s1 = s2. Since α intersects b transversely,
the family {Pt| s(t) = s1} sweeps out an arc in Σ(b). In this case, Pt1 = Pt2 implies
that t1 = t2. If α([s1, s2]) is not contained in a bending line, then α(s) is contained
in the interior of F for all s ∈ (s1, s2). Thus, if s(t) ∈ (s1, s2), then Pt = Pt1 . If α(s1)
lies in boundary component b of the flat, then again {Pt| s(t) = s1} sweeps out an
arc in Σ(b). This arc ends at Pt1 , since Pt1 is the terminal support plane at α(s1). So,
if t > t1, then s(t) > s1. Similarly, if t < t2, then s(t) < s2. Therefore, if t ∈ (t1, t2),
then s(t) ∈ (s1, s2), so Pt = Pt1 . This establishes claim (1).

Let t = sup{t ∈ [0, k]| Pt = P0}. By continuity, Pt̄ = P0 and, by claim (1), Pt = P0

for all t ∈ [0, t]. By definition, if t > t, then Pt 6= P0 and the ridge line rt = Pt ∩ P0

exists.
In order to complete the proof of claim (2), it suffices to show that if t̄ < t1 < t2

and rt1 ∩ rt2 6= ∅, then rt = rt1 for all t ∈ [t1, t2]. As P0 and Pt2 form a local roof,
Lemma 10.2 implies that Pt1 either contains rt2 or is disjoint from it. If Pt1 is disjoint
from rt2 then rt1 ∩rt2 = ∅. If Pt1 contains rt2 , then rt1 = rt2 , so the support planes P0,
Pt1 , and Pt2 all contain rt2 . If Pt1 = Pt2 , then Pt = Pt1 for all t ∈ [t1, t2], which implies
that rt = rt1 for all t ∈ [t1, t2]. If Pt1 6= Pt2 , then the three planes P0, Pt1 , and Pt2
are distinct and Lemma 10.3 implies that rt1 is a bending line with positive bending
angle. If rt1 is a bending line with positive bending angle, then, since U is simply
connected and α(s(t1)) and α(s(t2)) lie in the closure of the two flats containing rt1 in
their boundary, α([s(t1), s(t2)] lies in the closure of the two flats. Moreover, since Pt1
contains rt1 , either α(s(t1)) ∈ rt1 or Pt1 is the the terminal support plane at α(s(t1)).
Similarly, either α(s(t2)) ∈ rt1 or Pt2 is the initial support plane at α(s(t2)). It follows
that, for all t1 < t < t2, α(s(t)) is either contained in rt1 or is contained in a flat
with rt1 in its boundary. Thus, for all t1 < t < t2, Pt contains rt1 and, since rt1 ⊂ P0,
rt = rt1 for all t ∈ [t1, t2]. We have completed the proof of claim (2).

10.4

We next show that if the ridge lines are monotonic, then the exterior dihedral
angle is monotonically increasing. We first recall some basic facts about angles of
triples of planes in H3.

Suppose that P1, P2, and P3 are three distinct planes bounding half spaces H1,
H2, and H3. We also suppose that, for all i and j, Pi and Pj intersect transversely
with exterior dihedral angle θij, and that there is no common point of intersection
of the three planes. In this case, there is a plane or horoball P perpendicular to all
three and the intersection of the planes P1, P2, and P3 with P gives lines l1, l2, and
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l3 that intersect to form a triangle T with vertices vij = li ∩ lj. The angle of T at vij
is the (exterior or interior) dihedral angle between the planes Pi and Pj.

The following general fact is established in section 1.10 of [7].

Lemma 10.5 Let P1, P2, and P3 be support planes to a convex set in H3. If the
interior of the triangle T is contained in the half space H2 and is in the complement
HC

1 of H1, then T is also in the complement HC
3 of H3 and

θ12 + θ23 ≤ θ13.

threeplanes-eps-converted-to.pdf

Configuration of planes in Lemma 10.5

We notice that if P1 and P3 form a local roof with P2 under it, then the hypotheses
of Lemma 10.5 are satisfied.

Lemma 10.6 Let P1, P2, and P3 be support planes to ∂CH(LΓ) with b a bending
line on P1 and ridge lines r1 = P1 ∩ P2, r2 = P1 ∩ P3. If r1 ∩ r2 = ∅ and r1 separates
b and r2 on P1, then P1, P2, and P3 satisfy the assumptions of Lemma 10.5.

Proof of 10.6: For i = 1, 2, 3, let Hi be the half-space bounded by Pi whose
interior does not intersect CH(LΓ). Since r1 separates b and r2, r2 is in the interior of
H2. Since b and r1 are on the same side of P3, r1 is in the interior of HC

3 . If P2∩P3 = ∅,
then, since r2 is in the interior of H2, P3 is in the interior of H2, which contradicts
the fact that P3 is a support plane. Therefore, the ridge line r3 = P2 ∩ P3 exists and
the planes P1, P2, and P3 describe a triangle T as above. As r2 is in the interior of
H2, T is contained in H2. Also, since r1 is in the interior of HC

3 , T is contained in
the complement of H3. Therefore, P1, P2, and P3 satisfy the assumptions of Lemma
10.5.
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10.6

We are now ready to analyze the situation when the ridge lines are monotonic.

Lemma 10.7 Let α : [0, 1] → ∂CH(LΓ) be a geodesic path which is transverse to
βΓ and let {Pt| t ∈ [0, k]} be a continuous one-parameter family of support planes
to α. Suppose that the ridge lines rt = P0 ∩ Pt exist for all t ∈ (0, k] and form a
monotonic family of geodesics. Let limt→0rt = b where b is a bending line on P0. Let
t1, t2 ∈ (0, k] with t1 < t2.

1. If rt1 is a bending line, then rt = b for t ∈ (0, t1].

2. If rt1 = rt2, then either

Pt = Pt1 for all t ∈ [t1, t2] or rt = b for all t ∈ (0, t2].

3. If Pt1 = Pt2, then Pt = Pt1 for all t ∈ [t1, t2].

4. The exterior dihedral angle θt between P0 and Pt is monotonically increasing.

Proof of 10.7: If rt1 is a bending line b0 and b0 = b, then, by monotonicity, rt = b
for all t ∈ (0, t1]. If b0 6= b then there must be a t3 ∈ (0, t1) such that rt3 separates b
and b0. Thus either b or b0 is in the interior of Ht3 , the half space corresponding to
Pt3 . This contradicts the fact that both b and b0 are bending lines. Thus b0 = b and
we have established claim (1).

Suppose that rt1 = rt2 . Then, by monotonicity, rt = rt1 for all t ∈ [t1, t2]. Either
Pt = Pt1 for all t ∈ [t1, t2] or there is some t3 ∈ (t1, t2] such that the support plane
Pt3 is not equal to Pt1 or Pt2 . In this case, rt1 is contained in the three distinct
support planes P0, Pt1 , and Pt3 . Therefore, by Lemma 10.3, rt1 is a bending line b0

on P0. Thus, by claim (1), b0 = b and by monotonicity, rt = b for all t ∈ (0, t2]. This
establishes claim (2).

If Pt1 = Pt2 , then rt1 = rt2 . Therefore, by claim (2), either Pt = Pt1 for all
t ∈ [t1, t2] or rt = b for all t ∈ (0, t2]. If rt = b for all t ∈ (0, t2], then let X and Y
be the extreme planes at b and let s2 = s(t2). Since α([0, s2]) ⊂ X ∪ Y , it intersects
b only once. So, {Pt|t ∈ [t1, t2]} sweeps out an arc in Σ(b) joining Pt1 to Pt2 . Since
Pt1 = Pt2 , Pt must equal Pt1 for all t ∈ [t1, t2]. Thus, in either case, Pt = Pt1 for all
t ∈ [t1, t2], which is claim (3).

We now show monotonicity of θt. Let t1 ∈ (0, k], and let s1 = s(t1). It suffices to
show that there exists δ > 0 such that θt ≥ θt1 for all t ∈ [t1, t1 + δ).

If α(s1) is in a flat then there is some δ > 0 so that Pt = Pt1 for all t ∈ [t1, t1 + δ)
and therefore θt = θt1 for all t ∈ [t1, t1 + δ) which completes the proof in this case.
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Now suppose that α(s1) is contained in a bending line b1 and t2 > t1. If Pt1 = Pt2
then θt2 = θt1 . If Pt1 6= Pt2 and rt1 = rt2 then, by claim (2), rt = b for all t ∈ (0, t2].
Thus the support planes {Pt| t ∈ [0, t2]} sweep out an arc in Σ(b) which begins at P0,
and again θt1 ≤ θt2 . Therefore, θt1 ≤ θt2 if Pt1 = Pt2 or rt1 = rt2 .

If Pt1 6= Pt2 and rt1 6= rt2 , then, by monotonicity, either rt1 separates b and rt2 , or
rt1 = b. If rt1 separates b and rt2 , then we apply Lemma 10.6 to the support planes
P0, Pt1 , and Pt2 to see that θt1 ≤ θt2 . By combining the above, we see that if rt1 6= b,
then θt1 ≤ θt2 for all t2 ∈ [t1, k].

If rt1 = b, then, by monotonicity, rt = b for all t ∈ [0, t1]. As Pt1 6= P0, b has
positive bending angle. If b is the bending line b1 which contains α(s1), then we may
choose δ > 0 such that if t ∈ [t1, t1 + δ), then Pt is a support plane to b. This implies
that if t2 ∈ [t1, t1 + δ), then rt1 = rt2 = b. We saw above that this implies that
θt1 ≤ θt2 .

If b 6= b1, we choose a neighborhood N of b1 in the space of geodesics so that no
geodesic in N intersects P0. Lemma 10.1 assures us that we can choose δ > 0 such
that if t2 ∈ [t1, t1 + δ) and Pt2 6= Pt1 , then rt1,t2 = Pt1 ∩ Pt2 ⊂ N . If Pt1 = Pt2 or
rt1 = rt2 , then we have previously shown that θt2 ≥ θt1 . If Pt1 6= Pt2 and rt1 6= rt2 ,
then rt1,t2 ⊆ N , so rt1,t2 is in the interior of HC

0 . Furthermore, b does not lie in Pt2 ,
so b is in the interior of Hc

t2
. In order to apply Lemma 10.5 to the half-spaces H0,

Ht1 and Ht2 , we need to show that rt2 is in the interior of Ht1 . To do this we apply
a simple continuity argument. Since rt2 6= rt1 = b, there is a t3 ∈ [t1, t2] such that rt3
separates b and rt2 . Thus rt2 is in the interior of Ht3 . Moreover, if t ∈ [t1, t3], then
rt ∩ rt2 = ∅. So, for all t ∈ [t1, t3], Pt ∩ rt2 = ∅. We consider the half spaces Ht for
all t ∈ [t1, t3]. As rt2 is in the interior of Ht3 and Pt ∩ rt2 = ∅ for all t ∈ [t1, t3], then,
by continuity, rt2 is in the interior of Ht for all t ∈ [t1, t3]. In particular, rt2 is in the
interior of Ht1 . Lemma 10.5 then gives that θt1 ≤ θt2 . So, if rt1 = b, we have seen
that there exists δ > 0 such that θt1 ≤ θt2 for all t2 ∈ [t1, t1 + δ). This completes the
proof that θt is monotonic.

10.7

We are now ready to establish Lemma 4.1, which we restate here for reference.

Lemma 4.1: Let N = H3/Γ be an analytically finite hyperbolic 3-manifold such that
LΓ is not contained in a round circle. Let α : [0, 1]→ ∂CH(LΓ) be a geodesic arc, in
the intrinsic metric on ∂CH(LΓ), which is transverse to βΓ. If (P,Q) is a roof over
α, and {Pt| t ∈ [0, k]} is the continuous one-parameter family of support planes over
α joining P to Q, then

1.
i(α, βΓ)QP ≤ θ < π.
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where θ is the exterior dihedral angle between P and Q, and

2. there is a t ∈ [0, k] such that Pt = P if t ∈ [0, t] and the ridge lines
{rt = P ∩ Pt|t > t} exist and form a monotonic family of geodesics on P .

Proof of 4.1: We first prove claim (2), that the ridge lines are monotonic. Let
{Pt| ∈ [0, k]} be the continuous one-parameter family of support planes along α from
P to Q. We let Ht be the half-space bounded by Pt and let Dt be the closed disk in
Ĉ associated to Pt.

Since (P,Q) is a roof over α, P0 ∩ Pt 6= ∅ for all t ∈ [0, k]. Let t be the maximum
value such that Pt = P0 for all t ∈ [0, t]. If t = k, then claim (2) is trivially true.

Consider the case when t < k. Let s = s(t), then α([0, s]) ⊆ P0. If α(s) is in a
flat, we obtain a contradiction to the maximality of t. So, α(s) is on a bending line b.
Let U be adapted for α(s) and choose k1 > t so that α([t, k1]) ⊂ U . By lemma 10.4,
the ridge lines {rt} for t ∈ (t, k1] are well-defined and monotonic. Also by continuity
lim

t→t+ rt = b. Thus, if we define rt = b, we obtain a monotonic family of geodesics
{rt} for t ∈ [t, k1].

Since (P,Q) is a roof over α, if P0 ∩ Pt is not a ridge line then Pt = P0. Let T be
the maximum value such that the ridge lines rt exist and give a monotonic family of
geodesics for t ∈ (t, T ). Since PT ∩ P0 6= ∅, either PT = P0 or rT = PT ∩ P0 is a ridge
line.

By lemma 10.7, the angle θt is an increasing function on (t, T ). Since θt ∈ (0, π)
for all t ∈ (t̄, T ), we see that if PT = P0 then θT = π and HT has disjoint interior
from H0. This contradicts our assumption that (P,Q) is a roof for α.

Thus we can assume that the ridge line rT exists. Then, by continuity, the family
of geodesics {rt| t ∈ (t, T ]} is monotonic. If T = k, claim (2) holds. So assume that
T < k.

Let T be the minimum value in [t, T ] such that PT = PT . Thus, since rt is
monotonic on (t, T ), Lemma 10.7 implies that Pt = PT for all t ∈ [T , T ].

We now consider the ridge lines rTt = Pt ∩ PT . By the choice of T there is some
δ1 > 0 such that rTt is a ridge line for t ∈ (T − δ1, T ). We define b−T = lim

t→T−r
T
t .

Similarly, by our choice of T , there is some δ2 > 0 such that rTt is a ridge line for
t ∈ (T, T + δ2). We define b+

T = limt→T+rTt . Then b+
T and b−T are both bending lines

(possibly equal) on the support plane PT . By definition of T , α(s(T )) ∈ b+
T .

As bending lines do not intersect, either b+
T = b−T or they are disjoint geodesics on

PT . By Lemma 10.2, if a bending line intersects a ridge line they must be equal, so
neither b+

T nor b−T transversely intersect rT .
We will establish a contradiction by finding a δ > 0 such that rt is monotonic on

[t, T +δ). We first show that there is a δ > 0 so that rt is monotonic on (T −δ, T +δ).
If b+

T intersects P0 then, since ridge lines are equal or disjoint, by Lemma 10.2,
rT = b+

T . Therefore, by Lemma 10.7, rt = b for all t ∈ [t, T ]. As PT 6= P0, b has a
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positive bending angle. Therefore, there exists δ > 0 such that Pt is a support plane
to b+

T = b for all t ∈ (T − δ, T + δ). Therefore, rt = b for all t ∈ (T − δ, T + δ) and is
thus trivially monotonic on this region.

monotonic1-eps-converted-to.pdf

Planes P0 and PT

If b+
T does not intersect P0, choose a neighborhood N of b+

T so that every geodesic
in N does not intersect P0. Let U be adapted for α(s(T )) so that the ridge line
associated to any two support planes to U lies in N . Finally, we choose δ > 0 so that
α([s(T − δ), s(T + δ)]) ⊂ U . If t1, t2 ∈ (T − δ, T + δ) and rt1 ∩ rt2 6= ∅, then Pt1 must
equal Pt2 , since otherwise rt1,t2 ∈ N contains a point of P0. In this case, by Lemma
10.4, we have that Pt = Pt1 for all t ∈ [t1, t2], so rt = rt1 for all t ∈ [t1, t2]. Since
rt = rt1 for all t ∈ [t1, t2] whenever rt1 ∩ rt2 6= ∅ and t1, t2 ∈ (T − δ, T + δ), {rt} is
monotonic on (T − δ, T + δ).

We now know that there exists δ > 0 such that {rt} is monotonic on (t, T ] and
on (T − δ, T + δ). If {rt} is non-constant on (T − δ, T ], then {rt} is monotonic on
[t, T + δ) and we have completed the proof of claim (2). Otherwise, by Lemma 10.7,
either rt = b for all t ∈ [t, T ] or Pt = PT for all t ∈ (T −δ, T ]. If rt = b for all t ∈ [t, T ],
then {rt} is clearly monotonic on [t, T + δ) and we are again done.

If Pt = PT for all t ∈ (T − δ, T ], then T 6= T̄ and b+
T and b−T must be disjoint. We

may then choose neighborhoods N+ and N− of b+
T and b−T , such that no geodesic in

N+ intersects any geodesic in N− and no geodesic in N+ or N− intersects P0. We
choose δ1 > 0 so that if t1, t2 ∈ (T − δ1, T ] then Pt1 and Pt2 are either equal or their
intersection is in N−. Also we choose δ2 > 0 so that if t1, t2 ∈ [T, T + δ2), then Pt1
and Pt2 are either equal or their intersection is in N+. Let δ0 = min(δ1, δ2, δ).
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We first show that b−T separates rT from b+
T . By the definition of T , rt 6= rT for

any t ∈ (T − δ0, T ). Thus, rt separates b and rT in P0. So rT is in the interior of Ht

for any t ∈ (T − δ0, T ). Since b+
T and b−T are bending lines they are on the same side

of rTt in PT . Thus b+
T is in the interior of HC

t . Therefore rTt separates rT and b+
T in

PT . Since rTt tends to b−T as t→ T
−

, b−T separates rT and b+
T .

If rt1 = rT for some t1 ∈ (T, T + δ0), then, by the monotonicity of {rt} on
(T − δ0, T + δ0), rt = rT for all t ∈ [T, t1) which would imply that rt is monotonic
on [t, t1), which would contradict the maximality of T . Suppose that t ∈ (T, T + δ0).
Since b−T separates rT and b+

T in PT and rTt lies in N+, b−T separates rT and rTt in
PT . Thus, rT is in the interior of HC

t . If rt separates b from rT on P0, then b is in
the interior of Ht. This contradicts the fact that b is a bending line. Thus, for all
t ∈ (T, T+δ0), rT separates b and rt on P0. Therefore, {rt} is monotonic on (t, T+δ0).
This completes the proof of claim (2).

We now prove claim (1) by induction on the number of local roofs. If (P,Q) is
a local roof over α then i(α, βΓ)QP ≤ θ < π by the definition of intersection number.
Assume now that we have established claim (1) for any arc which is covered by n− 1
local roofs and that α is covered by n local roofs with the ith having boundary support
planes Pti−1

and Pti , so that Pt0 = P0 and Ptn = Pk. Let θi,j be the exterior dihedral
angle between Pti and Ptj and let rti = P0 ∩ Pti . It follows from the definition of the
bending measure and our inductive assumption, that

i(α, βΓ)QP ≤ θ0,n−1 + θn−1,n.

If Ptn = Ptn−1 , then θn−1,n = 0 and so

i(α, βΓ)QP = i(α, βΓ)
Pn−1

P ≤ θ0,n−1 = θ

If Ptn 6= Ptn−1 , then we consider the ridge lines rtn−1 and rtn . If rtn−1 = rtn then, as
Ptn 6= Ptn−1 , Lemma 10.7 implies that rt = b for all t ∈ (t, k]. Thus, {Pt| t ∈ [0, k]}
sweeps out an arc in Σ(b) with total angle θ and

i(α, βΓ)QP = θ.

If rtn−1 6= rtn then either rtn−1 separates b and rtn or rtn−1 = b. If rtn−1 separates
b and rtn then, by Lemma 10.6, the half-spaces H0, Htn−1 , and Htn satisfy Lemma
10.5, so θ0,n−1 + θn−1,n ≤ θ0,n and therefore

i(α, βΓ)QP ≤ θ0,n = θ

Now consider the case with rtn−1 6= rtn and rtn−1 = b. Let r = Ptn−1 ∩ Ptn . To
apply lemma 10.5, we need to show that b is in the interior of HC

tn and that rtn is in
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the interior of Htn−1 . Since b is a bending line which does not meet Htn , b lies in the
interior of HC

tn . Since rtn−1 6= rtn , Lemma 10.7 implies that rtn is not a bending line.
Choose ta ∈ [tn−1, tn], such that rta separates b and rtn . Thus, rtn is in the interior
of Hta and for all t ∈ [tn−1, ta], rt = Pt ∩ P0 is between b and rta , so Pt ∩ rtn = ∅.
Considering the half-spaces Ht for t ∈ [tn−1, ta], we note that rtn is in the interior of
Hta and Pt∩rtn = ∅ for all t ∈ [tn−1, ta]. Therefore, by continuity, rtn is in the interior
of Ht for all t ∈ [tn−1, ta]. In particular, rtn is in the interior of Htn−1 . Applying
lemma 10.5 we have that θ0,n−1 + θn−1,n ≤ θ0,n and therefore, again,

i(α, βΓ)QP ≤ θ0,n = θ.
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