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Abstract. We exhibit strong constraints on the geometry and
topology of a uniformly quasiconformally homogeneous hyperbolic
manifold. In particular, if n ≥ 3, a hyperbolic n-manifold is uni-
formly quasiconformally homogeneous if and only if it is a regular
cover of a closed hyperbolic orbifold. Moreover, if n ≥ 3, we show
that there is a constant Kn > 1 such that if M is a hyperbolic
n-manifold, other than Hn, which is K–quasiconformally homoge-
neous, then K ≥ Kn.

1. Introduction

An (orientable) hyperbolic manifold M is K–quasiconformally ho-
mogeneous if, given any two points x, y ∈ M , there exists a K–quasi-
conformal homeomorphism f : M → M such that f(x) = y. If M is
K–quasiconformally homogeneous for some K, we say that it is uni-
formly quasiconformally homogeneous. In this paper we discuss the
geometric and topological constraints on uniformly quasiconformally
homogeneous hyperbolic manifolds. In dimensions n ≥ 3 we will char-
acterize such manifolds. The situation in dimension two is more mys-
terious.

It is easy to check, see Proposition 2.4 below, that any closed hyper-
bolic manifold is uniformly quasiconformally homogeneous. Our first
result shows that their are rather severe restrictions on the geometry
of uniformly quasiconformally homogeneous hyperbolic manifolds. We
define `(M) to be the infimum of the lengths of homotopically non-
trivial curves on M and d(M) to be the supremum of the diameters of
embedded hyperbolic balls in M .
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Theorem 1.1. For each dimension n ≥ 2 and each K ≥ 1, there is a
positive constant m(n,K) with the following property. Let M = H

n/Γ
be a K–quasiconformally homogeneous hyperbolic n-manifold, which is
not Hn. Then

(1) d(M) ≤ K`(M) + 2K log 4.
(2) `(M) ≥ m(n,K), i.e. there is a lower bound on the injectivity

radius of M that only depends on n and K.
(3) Every nontrivial element of Γ is hyperbolic and the limit set

Λ(Γ) of Γ is ∂Hn.

As a corollary we see that a geometrically finite hyperbolic n-mani-
fold is uniformly quasiconformally homogeneous if and only if it is
closed.

Corollary 1.2. A geometrically finite hyperbolic manifold M is uni-
formly quasiconformally homogeneous if and only if M is closed.

However, there are many noncompact uniformly quasiconformally
homogeneous 3-manifolds. For example, consider the cover N associ-
ated to the fiber of a closed hyperbolic 3-manifold M which fibers over
the circle. We will see, in Lemma 2.6, that there exists K such that
given any two points x1 and x2 in M there exists a K–quasiconformal
automorphism of M which is homotopic to the identity and takes x1

to x2. Let y1, y2 ∈ N and let zi be the projection of yi to M . Let
f : M → M be a K–quasiconformal automorphism homotopic to the
identity such that f(z1) = z2. Let f̃ : N → N be a lift of f to N .

Then f̃(y1) = y′2 where y′2 is a pre-image of z2. Since N is a regu-
lar cover there exists an isometry h : N → N such that h(y′2) = y2.

Then h ◦ f̃ is a K–quasiconformal map carrying y1 to y2. Thus, N is
K–quasiconformally homogeneous.

The argument in the paragraph above generalizes to show that any
regular cover of a closed hyperbolic manifold is uniformly quasiconfor-
mally homogeneous. One may further show, using a different argument,
that any regular cover of a closed hyperbolic orbifold is uniformly qua-
siconformally homogeneous, see Proposition 2.7. In dimensions 3 and
above, we will use McMullen’s version of Sullivan’s rigidity theorem
to show that all uniformly quasiconformally homogeneous hyperbolic
manifolds are regular covers of closed hyperbolic orbifolds.

Theorem 1.3. Suppose that n ≥ 3. A hyperbolic n-manifold is uni-
formly quasiconformally homogeneous if and only if it is a regular cover
of a closed hyperbolic orbifold.

We will later see that there exist uniformly quasiconformally homoge-
neous hyperbolic surfaces that are not regular covers of closed orbifolds
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(see Lemma 5.1). In dimension 3, we will observe that any uniformly
quasiconformally homogeneous hyperbolic 3-manifold with finitely gen-
erated fundamental group is the cover associated to the fiber of a closed
3-manifold which fibers over the circle; see Theorem 7.1.

Finally, we will show that for hyperbolic manifolds of dimension at
least 3, the quasiconformal homogeneity constant is uniformly bounded
away from 1. It is unknown whether this results holds in dimension 2.

Theorem 1.4. If n ≥ 3, there is a constant Kn > 1 such that if M
is a K–quasiconformally homogeneous hyperbolic n–manifold which is
not Hn, then K ≥ Kn.

History: Gehring and Palka [6] introduced the related concept of qua-
siconformal homogeneity for domains in space. A set Σ is said to be
quasiconformally homogeneous if and only if the group of quasiconfor-
mal automorphisms of Σ acts transitively on Σ. MacManus, Näkki and
Palka, see [9, 10], have studied quasiconformally homogeneous com-
pacta in the plane.
Acknowledgments: We would like to thank Yair Minsky for helpful
conversations on the subject matter of this paper.

2. Basic Facts

We start by defining the quasiconformal homogeneity constantK(M)
of a hyperbolic manifold. We observe the convention that K(M) =∞
if M is not uniformly quasiconformally homogeneous.

Lemma 2.1. Let M be a uniformly quasiconformally homogeneous hy-
perbolic manifold. Then

K(M) = min{K |M is K–quasiconformally homogeneous}

exists.

Proof of Lemma 2.1. Suppose that M is Kj–quasiconformally ho-
mogeneous for a sequence {Kj} converging to K. We show that M is
K–quasiconformally homogeneous which will complete the proof.

Recall that the family FL of L–quasiconformal automorphisms of Hn

is a normal family for any L (see Theorem 19.2 and 20.5 of [19].) Let
x, y ∈ M . Since M is Kj–quasiconformally homogeneous for each j,
there exists a Kj–quasiconformal mapping fj : M →M with fj(x) = y.

Let x̃ and ỹ be lifts of x and y to Hn. Each fj has a lift f̃j : Hn → H
n,

necessarily Kj–quasiconformal, such that f̃j(x̃) = ỹ. Then the family

{f̃j} is a normal family, and one can choose a subsequence of {f̃j}
that converges to a K–quasiconformal mapping f̃ : Hn → H

n which
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descends to a K–quasiconformal mapping f : M → M taking x to y.
�

Hyperbolic space Hn is 1–quasiconformally homogeneous, since its
isometry group Isom+(Hn) acts transitively. In fact, Hn is the only
1–quasiconformally homogeneous hyperbolic manifold:

Proposition 2.2. Let M be a complete hyperbolic n-manifold, so that
π1(M) 6= {id}. Then M is not 1–quasiconformally homogeneous.

The proof of Proposition 2.2 makes use of the following standard fact
(see, for example, Proposition V.E.10 in [13]).

Lemma 2.3. If M = H
n/Γ is a hyperbolic manifold and Γ is nonele-

mentary (i.e. not virtually abelian), then its isometry group Isom(M)
acts properly discontinuously on M .

Proof of Proposition 2.2. Recall that a 1–quasiconformal automor-
phism of a hyperbolic manifold is an isometry. If Γ is nonelementary,
then Lemma 2.3 implies that the 1–quasiconformal automorphisms of
M do not act transitively on M .

If Γ is elementary it is easy to verify, via the classification of ele-
mentary groups, that Hn/Γ contains two points x and y with distinct
injectivity radii. It follows that the group of isometries cannot act
transitively. �

Next we show that every closed hyperbolic manifold M is uniformly
quasiconformally homogeneous.

Proposition 2.4. Every closed hyperbolic manifold is uniformly qua-
siconformally homogeneous. Moreover, if M is a closed hyperbolic n-
manifold, then

K(M) ≤
(
e
`(M)

4 + 1
)2(n−1)( 4diam(M)

`(M)
+1)

where diam(M) denotes the diameter of M .

Our main tool in the proof of this proposition is a local version of
this result which is essentially due to Gehring and Palka:

Lemma 2.5. Suppose that x, y ∈ Hn and d(x, y) < ε. Let B be the ball
of radius 2ε about x. Then there exists a K–quasiconformal mapping
f : Hn → H

n such that f(x) = y, f agrees with the identity map on an
open neighborhood of Hn \B, and

K ≤ (eε + 1)2(n−1).

Proof of Lemma 2.5. We will work in the ball model Bn and nor-
malize so that x = 0. Choose δ such that d(0, y) < δ < ε and let B′ be
the ball or radius 2δ about 0. Lemma 3.2 in Gehring-Palka [6] implies
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that there exists a K–quasiconformal mapping f : Rn → R
n so that

f
Rn\B′ = id, f(0) = y and

logK ≤ 2(n− 1)kB′(0, y),

where kB′ is the quasihyperbolic metric on B′. Note that, because
f
Rn\B′ = id and B′ ⊂ Bn we have that f preserves Bn.

We now estimate kB′(0, y). As the hyperbolic distance between 0
and y is less than or equal to δ, the Euclidean distance between 0 and

y is less than or equal to eδ−1
eδ+1

. Furthermore, the Euclidean radius of

B′ is e2δ−1
e2δ+1

. Thus

kB′(0, y) ≤
∫ eδ−1

eδ+1

0

1
e2δ−1
e2δ+1

− t
dt

= log(eδ + 1) + log

(
e2δ − 1

2(e2δ − eδ)

)
≤ log(eδ + 1)

≤ log(eε + 1).

Therefore, K ≤ (eε + 1)2(n−1) as claimed. �

Proof of Proposition 2.4. Let M be a hyperbolic n-manifold and

let ε = `(M)/4 and L = (eε + 1)2(n−1).
We first verify the proposition for points which are less than ε apart.

Let x and y be two points in M such that d(x, y) < ε. Choose a
covering map π : Hn → M and let B be the ball of radius 2ε about
x. By the definition of ε, there exists a local section s : B → H

n.
Let x̃ = s(x) and ỹ = s(y). Lemma 2.5 implies that there exists a
L–quasiconformal map g : Hn → H

n such that g(x̃) = ỹ and g agrees
with the identity map on an open neighborhood of Hn \ B. We may
then define a L–quasiconformal map f : M → M such that f(x) = y
by setting f = π ◦ g ◦ s on B and f = id elsewhere.

If x, y ∈M are two arbitrary points then there exists a chain of points
{z0, z1, . . . , zm} in M such that d(zi−1, zi) < ε for all i, z0 = x, zm = y,

and m < diam(M)
ε

+1. For each i, we construct a L–quasiconformal map
fi : M → M such that fi(zi−1) = zi. If we set h = fm ◦ · · · ◦ f1, then
h(x) = y and h is Lm–quasiconformal. It follows that

K(M) ≤ L
diam(M)

ε
+1.

Notice that each fi, and hence h, is homotopic to the identity. �
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The argument in the last paragraph of the proof of Proposition 2.4
gives the following lemma:

Lemma 2.6. Let M be a hyperbolic n-manifold and let x, y ∈ M . If
there exists a path α in M of length R joining x to y such that every
point on α has injectivity radius at least 2ε, then there exists a K–
quasiconformal map f : M → M which is homotopic to the identity
such that f(x) = y and

K ≤ (eε + 1)2(n−1)(R
ε

+1).

We now show that regular covers of closed hyperbolic orbifolds are
uniformly quasiconformally homogeneous. We recall that an orientable
closed hyperbolic n-orbifold is a compact quotient Q = H

n/Γ where
Γ is a discrete group of orientation-preserving isometries of Hn. A
hyperbolic manifold M is a regular cover of Q, if M = H

n/Γ0 where
Γ0 is a normal, torsion-free subgroup of Γ.

Proposition 2.7. Any regular cover of a closed hyperbolic orbifold is
uniformly quasiconformally homogeneous. Moreover, if M is a regular
cover of a closed hyperbolic n-orbifold Q = Hn/Γ, then

K(M) ≤
(
e
`′(Q)

4 + 1
)2(n−1)

(
4diam(Q)

`′(Q)
+1
)

where `′(Q) is the minimal translation length of a hyperbolic element
of Γ and diam(Q) is the diameter of Q.

Notice that the bound on K(M) depends only on the geometry of
Q.
Proof of Proposition 2.7. Since M = Hn/Γ0 is a regular cover of Q,
there exists a group G of isometries of M such that Q = M/G. Recall
that every element of G is a conformal map of M .

Since Q is closed, `′(Q) > 0 and we let ε = `′(Q)/4. Every nontrivial
element of Γ0 is hyperbolic and has translation length at least 4ε. It
follows that every point in M has injectivity radius at least 2ε.

Let y1, y2 ∈ M . As M is a regular cover of Q there exists g ∈ G
such that d(g(y1), y2) ≤ diam(Q). Lemma 2.6 then implies that there
exists a K–quasiconformal map f : M → M such that f(g(y1)) =
y2 and K = (eε + 1)2(n−1)(diam(Q)/ε+1). Then h = f ◦ g is a K–
quasiconformal homeomorphism such that h(y1) = y2. It follows that
M is K–quasiconformally homogeneous. �
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3. Geometric Constraints

The purpose of this section is to develop the geometric consequences
of uniform quasiconformal homogeneity. We first recall a well-known
result which is a consequence of the Margulis lemma, see [22, 12].

Lemma 3.1. For each n ≥ 2 there exists dn > 0 such that if M is a
hyperbolic n–manifold, then

d(M) ≥ dn,

i.e. every hyperbolic n–manifold contains an embedded hyperbolic ball
of diameter at least dn.

Remark 3.2. In the classical case n = 2 the precise value of dn was
found by Yamada [23], while in dimension 3 an explicit estimate is
given in [5].

We next recall that quasiconformal maps are (K,K log 4)–quasi-
isometries (in the hyperbolic metric), see, for example Thm. 11.2 in
[20]. However, quasiconformal maps need not be bilipschitz.

Lemma 3.3. Let f : Hn → H
n be a K–quasiconformal homeomor-

phism. Then

1

K
d(x, y)− log 4 ≤ d(f(x), f(y)) ≤ Kd(x, y) +K log 4

for all x, y ∈ Hn.

Since quasiconformal maps of hyperbolic manifolds lift to quasicon-
formal maps of Hn, the same result holds for any hyperbolic manifold.

Lemma 3.4. Let M be a hyperbolic n-manifold and let f : M → M
be a K–quasiconformal homeomorphism. Then

1

K
d(x, y)− log 4 ≤ d(f(x), f(y)) ≤ Kd(x, y) +K log 4

for all x, y ∈M .

The additive constants log 4 and K log 4 in Lemma 3.3 make this
inequality less useful for points separated by a small distance. The
estimate below provides uniform estimates on the distortion of points
which are close together, see Theorem 11.2 in [20].

Lemma 3.5. Let f : Hn → H
n be a K–quasiconformal homeomor-

phism. Then

tanh

(
d(f(x), f(y))

2

)
≤ λ(1−J)

n

(
tanh

(
d(x, y)

2

))J
for all x, y ∈ Hn where J = K1/(1−n) and λn ∈ [4, 2en−1) is the Grötzsch
constant.
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We are now prepared for the proof of Theorem 1.1 which we restate
for the reader’s convenience.

Theorem 1.1. For each dimension n ≥ 2 and each K ≥ 1, there is a
positive constant m(n,K) with the following property. Let M = H

n/Γ
be a K–quasiconformally homogeneous hyperbolic n-manifold, which is
not Hn. Then

(1) d(M) ≤ K`(M) + 2K log 4.
(2) `(M) ≥ m(n,K), i.e. there is a lower bound on the injectivity

radius of M that only depends on n and K.
(3) Every nontrivial element of Γ is hyperbolic and the limit set

Λ(Γ) of Γ is ∂Hn.

Proof of Theorem 1.1. Let x lie on a homotopically nontrivial closed
curve α in M of length l and let y be the center of an embedded hy-
perbolic ball of radius r in M . Since M is K–quasiconformally homo-
geneous, there exists a K–quasiconformal map f : M → M such that
f(x) = y. As f(α) is homotopically nontrivial, there exists f(z) ∈ f(α)
such that d(y, f(z)) ≥ r. Lemma 3.4 implies that

r ≤ d(f(x), f(z)) ≤ Kd(x, z) +K log 4 ≤ Kl/2 +K log 4.

Since l may be chosen to be arbitrarily close to `(M) and r may be
chosen arbitrarily close to d(M)/2 inequality (1) follows.

If we use Lemma 3.5 instead of Lemma 3.4, we see that

tanh

(
d(M)

2

)
≤ λ(1−J)

n

(
tanh

(
`(M)

2

))J
where J = K1/(1−n). Since d(M) ≥ dn, this implies that

`(M) ≥ m(n,K) = 2 tanh−1
(
λJ−1
n (tanh(dn/2))1/J

)
which establishes (2).

If Γ contains a parabolic element, then `(M) = 0 which contradicts
(2), so every nontrivial element of Γ is hyperbolic. If the limit set of Γ
is not all of ∂Hn, then M contains an embedded hyperbolic half-space.
So d(M) =∞ which contradicts (1). This establishes (3). �.

Since noncompact geometrically finite hyperbolic 3-manifolds either
contains cusps (where the injectivity radius gets arbitrarily close to 0)
or hyperbolic half-spaces (whether the injectivity radius gets arbitrarily
large), we obtain the following corollary:

Corollary 1.2. A geometrically finite hyperbolic manifold M is uni-
formly quasiconformally homogeneous if and only if M is closed.
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Proof of Corollary 1.2. Proposition 2.4 gives that closed hyperbolic
manifolds are uniformly quasiconformally homogeneous. Suppose that
M = Hn/Γ is uniformly quasiconformally homogeneous. Theorem 1.1,
part (2), implies that Γ contains no parabolic elements. If Γ is geomet-
rically finite and has no parabolic elements, then its limit set consists
entirely of conical limit points (see Beardon-Maskit [2] or Apanasov
[1]). Since a Dirichlet fundamental polyhedron cannot accumulate at
a conical limit point (Proposition B.5 in [13]) and Λ(Γ) = ∂Hn, the
Dirichlet fundamental polyhedron of Γ must be compact, so M must
be closed. �.

4. Distortion estimates for quasiconformal maps

We recall (see, for example, Theorem 17.18 in [19]) that every quasi-
conformal homeomorphism of Hn extends continuously to a homeomor-
phism ofHn∪∂Hn. We first see that if the extension of a quasiconformal
map is the identity on ∂Hn then it is uniformly close to the identity
map on Hn.

Lemma 4.1. For all n ≥ 2, there is an increasing function
ψn : (1,∞) → (0,∞) with the following property. If f : Hn → H

n is
K–quasiconformal, the extension of f to ∂Hn is the identity map, and
x ∈ Hn, then d(x, f(x)) ≤ ψn(K). Moreover, limK→1+ ψn(K) = 0.

Proof of Lemma 4.1. Though this result is known (e.g. see [4]), we
sketch a proof for the reader’s convenience. Fix n ≥ 2. Working in the
unit ball model Bn we recall that the family FK of allK–quasiconformal
mappings f : Bn → B

n with f |∂Bn = id is compact, and set

ψn(K) = max{d(0, f(0))| : f ∈ FK}.

For each K > 1, let fK : Bn → B
n be a K–quasiconformal map

such that d(fK(0), 0) = ψn(K) and fK |∂Bn = id. Notice that if f1

is the limit of a sequence {fKj} where Kj converges to 1, then f1 is
1-quasiconformal and f1|∂Bn = id, so f1 is equal to the identity. It
follows that limK→1+ ψn(K) = 0.

Notice that if x ∈ Hn, f : Hn → H
n is K-quasiconformal and the

extension of f to ∂Hn is the identity map, then we may identify Hn

with Bn so that x is identified with 0. Therefore, d(x, f(x)) ≤ ψn(K).
�

We now apply Lemma 4.1, Theorem 1.1 and McMullen’s version of
Sullivan’s rigidity theorem to show that any quasiconformal map of a
uniformly quasiconformally homogeneous manifold is uniformly near
an isometry.
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Proposition 4.2. Suppose that M is a uniformly quasiconformally
homogeneous hyperbolic n-manifold (with n ≥ 3). If f : M → M is
a K–quasiconformal homeomorphism and x ∈M , then there exists an
orientation-preserving isometry g of M such that

d(g(x), f(x)) ≤ ψn(K).

Proof of Proposition 4.2. Let M = H
n/Γ be a uniformly quasi-

conformally homogeneous hyperbolic n-manifold with n ≥ 3. Theo-
rem 1.1 implies that d(M) < ∞ and Λ(Γ) = ∂Hn. Let x ∈ M and let
f : M →M be a K–quasiconformal homeomorphism. Theorem 2.10 in
McMullen [14] implies that f is homotopic to an orientation-preserving
isometry g : M →M .

LetH be the homotopy between f and g. ThenH lifts to a homotopy
between lifts f̃ : Hn → H

n and g̃ : Hn → H
n of f and g. Given any

hyperbolic element γ ∈ Γ, the lifted homotopy moves any point on the
axis of γ a uniformly bounded amount, so the extensions of f̃ and g̃
to ∂Hn agree on the fixed points of γ. Since fixed points of hyperbolic
elements are dense in Λ(Γ) = ∂Hn, the extensions of f̃ and g̃ to ∂Hn

agree on ∂Hn. It follows that g̃−1 ◦ f̃ is K–quasiconformal and the
extension of g̃−1 ◦ f̃ to ∂Hn agrees with the identity map. Lemma 4.1
implies that

d(g̃−1(f̃(y)), y) ≤ ψn(K)

for all y ∈ Hn, so

d(g−1(f(x)), x) = d(f(x), g(x)) ≤ ψn(K).

�

5. A geometric characterization

We will use Proposition 4.2 to characterize uniformly quasiconfor-
mally homogeneous hyperbolic manifolds in dimensions three and above.

Theorem 1.3. Suppose that n ≥ 3. A hyperbolic n-manifold is uni-
formly quasiconformally homogeneous if and only if it is a regular cover
of a closed hyperbolic orbifold.

Proof of Theorem 1.3. Proposition 2.7 gives that every regular cover
of a closed hyperbolic orbifold is uniformly quasiconformally homoge-
neous.

Suppose that M = Hn/Γ is a K–quasiconformally homogeneous hy-
perbolic n-manifold with n ≥ 3. Let G = Isom+(M). Theorem 1.1
gives that Λ(Γ) = Hn, so Γ is non-elementary. Lemma 2.3 then implies
that G acts properly discontinuously on M . Fix x0 ∈ M . If y ∈ M ,
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then there exists a K–quasiconformal map f : M → M such that
f(x0) = y. Proposition 4.2 implies that there exists g ∈ Isom+(M)
such that d(g(x0), y) ≤ ψn(K). It follows that diam(M/G) ≤ ψn(K),
so Q = M/G is a closed hyperbolic orbifold and M is a regular cover
of Q. �

The following lemma provides a plethora of counterexamples to The-
orem 1.3 in dimension 2. Notice that any hyperbolic surface which is
quasiconformally homeomorphic to a regular cover of a closed hyper-
bolic orbifold is also uniformly quasiconformally homogeneous. The
basic idea is that any noncompact regular cover of a closed hyper-
bolic 2-orbifold has an infinite-dimensional quasiconformal deformation
space and that not all of these surfaces can be regular covers of closed
orbifolds.

Lemma 5.1. Let F be a noncompact surface, other than H2, which is
a regular cover of a closed hyperbolic 2-orbifold Q. Then there exists
a hyperbolic surface F ′ which is quasiconformally homeomorphic to F ,
which is not isometric to a regular cover of a closed hyperbolic orbifold.

Proof of Lemma 5.1. We first notice that since F is noncompact and
covers a closed hyperbolic orbifold, its isometry group G = Isom(F ) is
infinite. Let α1 be a simple closed geodesic on F , and let L denote its
length. Let A1 be an annular domain in F with α1 as its central curve.
We may choose A1 so that it is conformal to an Euclidean annulus
of modulus M the central circle of which is identified with α1. Since
G is infinite and acts properly discontinuously on F , there exists an
infinite collection {g1 = id, g2, g3, . . . , gm, . . .} of elements ofG such that
Aj = gj(A1) is disjoint from Ak for all j 6= k. Let αj = gj(α1). We form
F ′ by cutting along αj for each j and inserting an Euclidean annulus
of modulus M/j. One may clearly construct a 2–quasiconformal map
f : F → F ′ which is conformal off of

⋃
Aj and is 1+1/j–quasiconformal

on Aj.
Corollary 3.2 in McMullen [15] guarantees that the geodesic repre-

sentative of each f(αj) has length less than L. Let α̃j be a lift of αj to

H
2 and let f̃ : H2 → H

2 be a lift of f . Let γj : H2 → H
2 be an isom-

etry which moves a point on α̃j to a fixed basepoint x0 of H2 and let

βj : H2 → H
2 be an isometry which moves f̃(γ−1

j (x0)) to x0. Consider

hj = βj ◦ f̃ ◦ γ−1
j . Given any ε > 0 and T > 0, for all large enough

j, the map hj is 2-quasiconformal on H2 and (1 + ε)–quasiconformal
on a neighborhood of radius T of x0. It follows that {hj} converges
to an isometry, so the length of the geodesic representative of f(αj)
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converges to L. It follows that the geodesic length spectrum of F ′ has
an accumulation point at L.

The length spectrum of a regular cover of a closed hyperbolic orbifold
is discrete, so F ′ must not be a regular cover of a closed orbifold. �

6. Uniform bounds on quasiconformal homogeneity

In this section we show, again for dimensions n ≥ 3, that there exists
a uniform lower bound on the quasiconformal homogeneity constant. It
is not known whether such a uniform bound exists in dimension n = 2.

Theorem 1.4. If n ≥ 3, there is a constant Kn > 1 such that if M
is a K–quasiconformally homogeneous hyperbolic n–manifold which is
not Hn, then K ≥ Kn.

We will first need a uniform lower bound on the diameter of a hy-
perbolic n-orbifold.

Lemma 6.1. For each n ≥ 2 there exists rn > 0 such that if Q is a
hyperbolic n-orbifold, then diam(Q) ≥ rn.

Proof of Lemma 6.1. It is a consequence of the Margulis Lemma,
see Corollary 4.1.17 in [18], that, given n, there exists εn > 0 such
that if x0 ∈ Hn, then any discrete subgroup of Isom+(Hn) generated
by elements which move x0 at most εn is elementary. It follows that
if Q = H

n/Γ and Γ is nonelementary, then the diameter of Q is at
least εn/2. On the other hand, if Γ is elementary then Q has infinite
diameter. �

Proof of Theorem 1.4. Suppose that M is a K–quasiconformally
homogeneous hyperbolic n-manifold. Let G = Isom+(M) and let Q =
M/G. By Lemma 6.1 there exist x1, x2 ∈ Q such that d(x1, x2) ≥
rn. Choose Kn > 1 so that ψn(Kn) < rn. Choose lifts y1 and y2 of
x1 and x2 to M . There exists a K–quasiconformal homeomorphism
f : M → M such that f(y1) = y2. Proposition 4.2 implies that there
exists g ∈ G such that d(f(y1), g(y1)) ≤ ψn(K). This implies that
d(x1, x2) ≤ ψn(K). Therefore, ψn(K) ≥ rn. Since ψn is increasing, this
implies that K > Kn. �

We remark that one might attempt to prove Theorem 1.4 by bound-
ing d(M)/l(M) uniformly away from 1 for all hyperbolic n-manifolds
(for fixed n.) One could then apply Lemmas 3.4 and 3.5, much as in
the proof of Theorem 1.1, to establish Theorem 1.4. The next lemma
demonstrates that this approach fails. In particular, we produce many
sequences {Mn} of uniformly quasiconformally homogeneous hyper-

bolic manifolds where {d(Mn)
`(Mn)

} converges to 1.
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Lemma 6.2. If M = Hn/Γ is a closed hyperbolic manifold, then there
exists a sequence {Mn} of finite degree, regular covers of M such that

{d(Mn)
`(Mn)

} converges to 1.

Proof of Lemma 6.2. For each L > 0 there are only finitely many
conjugacy classes of hyperbolic elements of Γ with translation length at
most L. Let {a1, . . . , an} be representatives of these conjugacy classes.
As Γ is residually finite (see Malcev [11]) there exists a finite index
subgroup Γ0 so that ai /∈ Γ0 for i ∈ {1, . . . , n}. Let ΓL be the finite
index, normal subgroup of Γ formed by intersecting all conjugates of Γ0

in Γ. In particular, ΓL does not contain any element with translation
length less than L. If ML = Hn/ΓL, then d(ML) > L. Let x be a point
in ML such that injML

(x) = d(ML)/2 and let D be the diameter of
M . If y ∈ ML, then since ML is a regular cover of M , there exists an
isometry γ of ML such that d(y, γ(x)) ≤ D. Since

injML
(γ(x)) =

d(ML)

2
,

we see that

injML
(y) ≥ d(ML)

2
−D.

Therefore,

d(ML) ≥ `(ML) ≥ d(ML)− 2D.

If we take L arbitrarily large, we obtain finite degree, regular covers

ML of M with d(ML)
`(ML)

arbitrarily close to 1. The result follows. �.

7. The 3-dimensional case

The following theorem offers a characterization of noncompact uni-
formly quasiconformally homogeneous hyperbolic 3-manifolds with finitely
generated fundamental group.

Theorem 7.1. Let M be a noncompact uniformly quasiconformally
homogeneous hyperbolic 3-manifold with finitely generated fundamental
group. Then there exists a closed hyperbolic 3-manifold N which fibers
over the circle such that M is the cover associated to the fiber.

Proof of Theorem 7.1. Theorem 1.3 implies that there exists a closed
hyperbolic orbifold Q such that M is a regular cover of Q. Selberg’s
Lemma [17] implies that there is a finite manifold cover Q′ of Q. Then,
M has a finite cover M ′ which is a regular cover of Q′. Since M ′ also
has finitely generated fundamental group, Theorem 3 of Hempel-Jaco
[8] implies that there is a closed 3-manifold Q′′ which fibers over the
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circle, such that M ′ is the cover associated to the fiber subgroup. In
particular, π1(M ′) is a closed surface group.

Let C be a compact core for M , i.e. a compact submanifold of M
such that the inclusion of C into M is a homotopy equivalence. (The
existence of a compact core is guaranteed by Scott [16].) Since π1(M ′)
has finite index in π1(M), Theorem 10.6 in [7] implies that π1(M) is a
closed surface group (either orientable or nonorientable) and that C is
an I-bundle. Bonahon’s theorem [3] then implies that M is homeomor-
phic to the interior of C and M −C is homeomorphic to ∂C × (0,∞).
We also know that the isometry group G = Isom(M) is infinite.

We first suppose that C is a twisted I-bundle. In this case ∂C is
connected and there cannot be a compact core for M contained in
M − C. Since G is infinite and acts properly discontinuously on M ,
there exists g ∈ G such that g(∂C) does not intersect C. Then g(∂C)
bounds a compact core D = g(C) for M . Since ∂C ∩ ∂D = ∅ and D
cannot be contained in M −C, the core C is a compact submanifold of
D whose boundary is contained in the interior of D. However, since g is
an isometry, C and D must have the same volume, which is impossible.
It follows that C is not a twisted I-bundle.

Now suppose that C is an untwisted I-bundle, i.e. homeomorphic to
F × [−1, 1] for some closed surface F . Then M is homeomorphic to
F×R. Let S be the surface in M which is identified with F×{0}. If T is
any closed incompressible surface in M , then T is isotopic to F × {0}
(see Corollary 3.2 in Waldhausen [21]). In particular, every closed
incompressible surface separates M into two unbounded components
(M − T )+ and (M − T )−, so that (M − T )+ contains F × [r,∞) for
some r and (M − T )− contains F × (−∞, s] for some s. We say that a
subset X of M−T lies above T if it is contained in (M−T )+. Similarly,
we say that a normal vector ~v to T is upward pointing if it points into
(M − T )+.

Let G0 be the finite index subgroup of G consisting of those g ∈
G which are orientation-preserving and take upward-pointing normal
vectors to S to upward-pointing normal vectors to g(S). Since G0 is
infinite and acts properly discontinuously, there exists g ∈ G0 such that
g(S) does not intersect S and lies above S. The surfaces S and g(S)
bound a submanifold D homeomorphic to S × [0, 1](see Corollary 5.5
in Waldhausen [21]). Let int(D) denote the interior of D. If n > 0,
then gn(int(D)) lies above g(S), so it is disjoint from D, while if n < 0,
then gn(int(D)) lies below S, so is disjoint from D. Thus, D is a
fundamental domain for the action of the cyclic group 〈g〉 generated
by g on M . It follows that N = M/〈g〉 is a closed 3-manifold which



QUASICONFORMAL HOMOGENEITY OF HYPERBOLIC MANIFOLDS 15

fibers over the circle and M is the cover of N associated to the fiber
p(S) where p : M → N is the covering map. �
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discrete groups, J. Reine Angew. Math., 418(1991), 31–76.

[6] F.W. Gehring and B. Palka, Quasiconformally homogeneous domains, J. Anal-
yse Math., 30(1976), 172–199.

[7] J. Hempel, 3-manifolds, Princeton University Press, 1976.
[8] J. Hempel and W. Jaco, Fundamental groups of 3-manifolds which are exten-

sions, Ann. of Math. 95(1972), 86–98.
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