Math 623, F 2005: Homework 1.

For full credit, your solutions must be clearly presented and all code included.

(1) Consider the following initial value problem for the function u = u(x) defined for $0 \le x \le 1$.

$$u_{xx} + xu_x + u = 0$$
 and $u(0) = 1, u_x(0) = 0.$

- (a) What is the exact solution u(x)? Hint: it is of the form $u(x) = e^{\phi(x)}$ for a polynomial $\phi(x)$.
- (b) Write down the finite difference scheme for the ODE above, using a forward difference for u_x and a symmetric difference for u_{xx} .
- (c) Same question as in (b) but use a backward difference for u_x .
- (d) Same question as in (b) but use a central difference for u_x .
- (e) Let ϵ_n be the error at grid point n, i.e. $\epsilon_n = u_n u(n\Delta x)$. Using your answers to (a)-(d), compute the values of ϵ_N ($N = 1/\Delta x$) for $\Delta x = 2^{-1}, 2^{-2}, 2^{-3}, \ldots$ (until the computations become too slow for your computer). Do this for all three schemes in (b)-(d). Plot $-\log |\epsilon_N|$ as a function of $-\log \Delta x$. What do you observe?
- (2) Consider the following PDE:

$$\begin{cases}
 u_t = (1+x^2)u_{xx}, & -1 < x < 1, 0 < t < 1 \\
 u(x,0) = x^4, & -1 \le x \le 1 \\
 u(-1,t) = u(1,t) = 1, & 0 \le t \le 1
\end{cases}$$
(1)

- (a) Write down (carefully) the explicit finite difference scheme for this PDE.
- (b) Implement the scheme for $\alpha=2^{-1}$, $\alpha=2^{-2}$ and $\alpha=2^{-3}$ where $\alpha=\Delta t/(\Delta x)^2$. For each value of α use $\Delta x=2^{-1},2^{-2},2^{-3},\ldots$ (until the computations become too slow for your computer). Report the values

$$u(-1,1), u(-0.9,1), \dots, u(0.9,1), u(1,1)$$

for each such choice of α and Δt . Use at least 6 significant digits (format long in MATLAB). (You may have to use linear interpolation. The function interp1 in MATLAB can help here).

(3) Prove that the scheme in (2) is convergent as $\Delta t \to 0$ if $0 < \alpha \le 0.25$.

(4) Consider the following PDE:

$$\begin{cases}
 u_t = 3y^2 u_{yy} - 3y u_y, & 1 < y < e, 0 < t < 1 \\
 u(y,0) = 0, & 1 \le y \le e \\
 u(1,t) = t, & 0 \le t \le 1 \\
 u(e,t) = t^2 & 0 \le t \le 1
\end{cases}$$
(2)

- (a) Transform the PDE to a constant coefficient PDE for a function v(x,t), 0 < x < 1, using the transformation $y = e^x$. State the new initial and boundary conditions carefully.
- (b) Write down (carefully) the fully implicit finite difference scheme for this transformed PDE.
- (c) Implement the scheme in (b) for $\alpha = 0.1$, $\alpha = 0.25$ and $\alpha = 2$, where $\alpha = \Delta t/(\Delta x)^2$. For each value of α use $\Delta x = 2^{-1}, 2^{-2}, 2^{-3}, \ldots$ (until the computations become too slow for your computer). In going from time step m to time step m+1 use the SOR algorithm with $\omega = 1, 1.1, 1.2$ and 1.5.

Report the values v(0,1), v(.1,1), ... v(.9,1), v(1,1) as in Problem (2).