Math 623, F 2005: Homework 2. Solutions.

(1) (a) The payoff ®(S) is as in the picture below.
(b) The payoff is ®(S) = (80 — S)™ + (S — 120)™, i.e. a sum of a put and a call.
(c) When S; = 0, we will have S, =0 for t < u < T. Exercising the option at time u will then
yield 80, which corresponds to 80e~"(%~t) < 80 at time ¢. It is therefore optimal to exercise
the option immediately at time %, so

V(0,t) = 80

Similarly, if S; = 300, then we will most likely have S, > 120 for t < u < T, so that the
payoff if exercising at time u will be S, — 120. At time ¢, this corresponds to 300e? (u—t) _
120e~"(»=%_ A direct computation (using 7 = 0.03, D = 0.01, T = 0.5) shows that the
minimum of this occurs when v =T = 0.5. Thus

V(300,t) = 300e—0-01(0-5-1) _ 19(e—0-03(0.5-1)
(d) The variational problem is

W 4 162528 4 (r — D)SIY —rV <0
V(S,t) > (80— S)t + (S —120)*
equality holds in one of the above.

This holds in the region 0 < § < 300, 0 < ¢ < 0.5. The terminal condition is
V(S,0.5) = (80 — 8) + (S — 120)*
and the boundary conditions are
{V(t, 0) = 80
V(t,300) = 300e~001(0:5-t) _ 190 =0:03(0-5-1)
(e) Use the grid
t=0,At,..., MAt =05 and S=0,AS,...,NAS = 300.

Write V,J* for the approximate value of V(nAS,mAt). The terminal condition translates
into

VM = (80 — nAS)T + (nAS —120)T, 0<n <N,

and the boundary conditions are

Vo' =80 - Ny
Vi = 300e001(0.5-mAL) _ 19(g=0-03(0-5-mA) m=0,1,...,M -1

bl



Finally, the Crank-Nicholson discretization of the variational problem is given by the in-
equality

At ) ) (AS)? (AS)?
1 Vnﬁtl - vt i1 = Vieq
+(r = D)(nAS); 9AS 9AS

1
- Ti[V7’Lrn+1 + Vnm]
<0.
together with
V™ > (80 — nAS)T + (nAS — 120)7.
Both of these hold for 0 < m < M and 0 < n < N and for each such (m,n) we have
equality in one of the inequalities.
On a more detailed level, we solve the following system using SOR:
Vit > pa Vs +ph Vit + ot
Vm > (80 — nAS)tT + (nAS — 120)* (1)
equality in one of these.

where
_— i(0*n*At — (r — D)nAt) ;o H(o?n?At + (r — D)nAt)
Pn = 1+ %O'QTLQAt + %TAt Pn = 1+ %a2n2At + %’I‘At
byt = : Yo™2At—(r—D At) Vit
" T 1 Lottt LAt 40" (r=D)nAt) Valy

1 1

+ (1 — §U2n2At — ETAt) V7:n+1
1
4

(o?n*At + (r — D)nAt) V,ml]

Thus, we can solve (}) iteratively

1. Set V" =vmtl 1 <p<N-1

2. For k > 0 compute V¥ for n = 1,2,..., N — 1 using:
{W"”““ = p, VIR p IR 4 gt

m,k+1 m,k+1 crm,k+1 m,k
n = Vn +w( n —Va )

where we set

ij,”’k — 300e0-01(0-5-mAt) _ 19()—0.03(0.5-mAt)_



3. Stop loop in £ when we have convergence, i.e. when
N
D (Vv <
n=0
The code is given below.
(f) The plot is shown below.
(g) The plot is shown below. The exercise region is the part below the curve (the exercise
boundary). The apparent discontinuity at ¢ = 0.5 is illusory.
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% Code for hw2, problem le
clear;

N=3%2"6;
dS=(Smax-Smin) /N;
S=[Smin:dS:Smax]’;
M=2"6;

dt=T/M;
t=[0:dt:T];

P=zeros (N+1,M+1);
Pold=zeros(1,N+1);
Pnew=zeros (1,N+1);
Ptilde=zeros (1,N+1);

%boundary conditions
P(1,:)=80-Smin;
P(N+1,:)=max (Smax-120, Smax*exp (-D*(T-t) ) -120*exp (-r*(T-t)));

%terminal condition
P(:,M+1)=max(80-S,0)+max(S-120,0) ;

%for the SOR step
loops=zeros(1,M);
eps=le-6;
omega=1.05;

for m=M:-1:1

Pnew(2:N)=P(2:N,m+1);

Pnew(1)=P(1,m);

Pnew (N+1)=P(N+1,m) ;

Pmisc=(Pnew(1:N-1).*%(1/4*sig"2*[1:N-1]. 2*dt-1/4*(r-D)*[1:N-1]*dt)+...
Pnew(2:N) .*(1-1/2%sig"2*[1:N-1] . 2*dt-1/2*r*dt)+...
Pnew(3:N+1) .*(1/4%sig~2%[1:N-1] . 2*dt+1/4*(r-D)*[1:N-1]*dt))./...
(1+1/2%sig”2%[1:N-1] . "2*dt+1/2*r*dt) ;

error=Inf;



loops(m)=0;
while (error>eps)
loops(m)=loops(m)+1;
Pold=Pnew;
for n=2:N
Ptilde(n)=Pmisc(n-1)+...

(Pnew(n-1) .*x(1/4*sig"2*(n-1) . " 2*dt-1/4*(r-D)*(n-1)*dt)+. ..
Pold(n+1) .*(1/4*sig”~2*(n-1) "2*dt+1/4*(r-D)*(n-1)*dt)) /...

(1+1/2*sig™2*(n-1) "2*dt+1/2%r*dt) ;
Pnew(n)=max(max(80-S(n),0)+max(S(n)-120,0),...
Pold(n)+omega* (Ptilde(n)-Pold(n)));

end
error=norm(Pnew-Pold) ;
end
P(:,m)=Pnew’;

end

%interpolate a little
tvec=0:0.02:0.5;
Svec=50:1:150;
PO=interp2(t,S,P,tvec,Svec’);

%3D plot of option value

mesh (tvec,Svec,P0);

title(’American straddle put price P(S,t)’);
xlabel(’°t?);

ylabel(’S’);

%exercise region

Sgrid=repmat(S,1,M+1);

exval=max (80-Sgrid,0)+max (Sgrid-120,0);
contour(t,S,P>exval,1,’b’);

title(’American straddle put exercise region’);
xlabel(’t’);

ylabel(’S’);



(2) (a)

The terminal condition is V(S,I,T) = (S — I/T)* (where T = 0.5).

(b) We get
oV _ qdW
g_sw oW (_ I W
PV W (_ Ty LOW W T1)_ L2 W
957 — e\ 57) T 57 3¢ ez \ T 52) = 55 a¢2
oV _ gdw 1 _ oW
oI 9T T B

After some computations, this leads to the PDE

W 1 4, ,0°W oW 3
W'Fiaf 662 +(1—(T—D)f)— DW—O

23
in the domain 0 < ¢ < 0.5 and 0 < ¢ < oo.
From (a) we get

V(S,I,T)=SW(I/S,T)=(S—1/T)* =S(T -1/9)%/T,
which leads to

W (¢, 0.5) = 2(0.5 — )7,

since T' = 0.5.
At the terminal time ¢ = 0.5, the value of W is zero for £ > 0.5. So we could expect that
the value is very close to zero for zi = {nax = 2 for any ¢t < 0.5. Alternatively, ¢ = 2
translates into I = 2§, and if I; = 25, at some ¢, then, with very high probability we will
have It > 0.5S7 so that the option ends up out of the money. Thus, W (2,t) = 0 is a good
approximation.
Just plug in £ = 0 into the PDE:
ow oW
En + 7€ DW = 0.

Use the grid
t=0,At,2At,... MAt=T =0.5

{5 =0,A&2A&, ..., MAE = Enax = 2.
Write W, for the approximate value of W (nA¢&, mAt). The terminal condition translates
into

WM =2(0.5 —nA&)T, for0<n#N. (1)
The boundary condition at £ = 2 becomes

Wi =0 for0<m< M.

The implicit boundary condition at € = 0 can be discretized as

WEh —Wgt 3w — AW + W
At 2A¢

—DWi" =0 forl<m< M.



Finally, the discretization of the PDE using an explicit scheme, a symmetric difference for
2
%g}zv and a central difference for 2 3—5 becomes

Wy — Wi 1-|—102(nA£)2 np — 2Wet + Wit

At 2 (A€)?
41— (= Dynag) et = Wals
2A¢ n
for0O<n<Nand 0<m< M.
The algorithm thus becomes
1. Compute VM for 0 < n < N using (1)
2. Suppose we have computed VM ... V™. Compute V™! as follows:

vt =0,
3 At At 1At
e ——— — DAt 2— —
and, for 1 <n< N -1:
Vit = pr Vil + o0V + o Vil
where the coefficients p; are given by
pn s0?n2At — 1(1— (r — D)nA{)ﬁ—é
pd =1—(0?n? + D)At
Py = 302n2At+ (1 — (r — D)nA&)ﬁ—é
With this scheme, it is not really possible to guarantee that all three of p;", p2 and p,, are
always positive. But at least we should make sure that p2 > 0 for all n. This can be done
by picking
1 A¢)?
At < o
0?N?+ D  40? + D(A¢)?
since N = 2/A¢. To be safe, we may pick

_ (g’
A=+ Dy

since A€ < Emax = 2.
Note: by using a forward difference for 2 —5 it would be possible to have all three “proba-
bilities” positive above.

(g) The code and plot are given below.

(h) The code gives the numerical value W (0,0) = 0.034322 so that

V(20,0,0) = 20W(0,0) = 0.686.
This also gives the Delta

ow

9V 20,0,0) = W(0,0) — 05

A(20,0,0) =

0,0) = 0.0343.



To get the Vega we run the code with several values of ¢ ~ 0.2. We get
V(20,0,0;0.190) = 0.65281
V(20,0,0;0.195) = 0.66966
V(20,0,0;0.199) = 0.68309
V(20,0,0;0.201) = 0.68979
V(20,0,0;0.205) = 0.70317
V(20,0,0;0.210) = 0.71984

AN AN AN AN A/~ A/~

This leads to the three approximations
0.71984 — 0.65281

2 ~ = 3.
V(20,0,0) 502 3.35
0.70317 — 0.66966
2 ~ = 3.
V(20,0,0) o1 3.35
0.68979 — 0.68309
V(20,0,0) ~ 0002 = 3.35

so the options vega is V(20,0,0) = 3.35.
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% Code for hw2, problem 2f

clear;

sig=input (’sigma= ’);
%sig=0.2;

r=0.03;

D=0.01;

T=0.5;

ximin=0;

ximax=2;

N=2"9;
dxi=(ximax-ximin)/N;
dt=1/(sig"2*N"2+D) ;
M=ceil (T/dt);
dt=T/M;

W=zeros (N+1 ,M+1) ;
xi=[0:dxi:ximax]’;
t=[0:dt:T];
nvec=[0:N]’;

% terminal condition

% to ensure convergence/stability

W(:,M+1)=2%max (0.5-x1,0) ;

% first boundary condition

W(N+1,:)=0;

% coefficients

pm=0.5*sig"2*nvec. 2*dt-0.5*dt/dxi+0.5% (r-D) *dt*nvec;
pO0=1-dt*(sig~2*nvec."2+D);
pp=0.5*sig~2*nvec. " 2*dt+0.5*dt/dxi-0.5% (r-D) *dt*nvec;

hcoefficients for implicit boundary condition

q0=1-1.5%dt/dxi-D*dt;
ql=2*dt/dxi;
q2=-0.5%dt/dxi;

% go backwards in time

for m=M:-1:1

% implicit boundary condition
W(1,m)=q0*W(1,m+1)+ql*W(2,m+1)+q2*W(3,m+1) ;

% main part



W(2:N,m)=pm(2:N) .*W(1:N-1,m+1)+...

pO(2:N) .*xW(2:N,m+1)+...
pp(2:N) .*W(3:N+1,m+1);
end

%interpolate a little
tvec=0:0.02:0.5;
xivec=0:0.02:2;
WO=interp2(t,xi,W,tvec,xivec’);

%3D plot of option value
mesh (tvec,xivec,W0);
title (PW(xi,t)’);
xlabel(’t’);
ylabel(’xi’);



