Math 623, F 2013: Homework 3.

For full credit, your solutions must be clearly presented and all code included.

(1) In the Black-Scholes method for pricing of options it is assumed that the stock price evolves according to geometric Brownian motion:

$$\frac{dS_t}{S_t} = r \ dt + \sigma \ dW_t,\tag{1}$$

where W(t) is Brownian motion, r is the risk free rate of interest and σ is the volatility.

- (a) Suppose t = 0 is today and the current stock price is S_0 . The Black-Scholes price of the option is the expectation value of a function of S(T), where T > 0 is the expiration date of the option. The random variable log S(T) is known to be Gaussian. Write down formulas for its mean and variance.
- (b) Suppose $S_0 = 20$, r = 0.045, $\sigma = 0.28$, T = 0.5. Draw histograms for the distribution of S(T) with numbers of simulations given by the values $N = 10^4$, 10^5 , 10^6 . You can use the MATLAB function *hist* to do this.
- (c) With the numerical values given in (b) use the Monte-Carlo method to compute the value of a European call option with strike price K = 21. If V_N is the value of the option based on N simulations and ϵ_N is the standard error for the N simulations, plot the graphs of N against V_N (convergence diagram), and N against ϵ_N for $1 \le N \le 10^4$. Report the values of V_N and ϵ_N/V_N for $N = 10^6$. What is the significance of the reported value of ϵ_N/V_N ?
- (d) With K = 21, r = 0.045, $\sigma = 0.28$, T = 0.5, plot the Monte-Carlo price of the European call option against stock price for $15 < S_0 < 25$ corresponding to $N = 10^4$ simulations. Plot also the Black-Scholes price (using the MATLAB function *blsprice* for example) of the option against stock price and compare it with the graph obtained from the Monte Carlo simulation.
- (e) With $S_0 = 20$, K = 21, r = 0.045, T = 0.5, plot the Monte-Carlo price of the European call option against volatility for $0 < \sigma < 3$, corresponding to $N = 10^4$ simulations. Plot also the Black-Scholes price (using the MATLAB function *blsprice* for example) of the option against volatility and compare it with the graph obtained from the Monte Carlo simulation.
- (2) We shall find the value of a European call option with a knock-out using the Monte-Carlo method and also the finite difference method. S is the stock price (in dollars) and t is time (in years). The expiration date of the contract is T, σ is stock volatility per annum, and r the annual continuous rate of interest. The strike price of the call option is K and the knockout barrier is X < K. For the option held at time t < T the payoff is $\max(S(T) K, 0)$ provided $S(t') \geq X, t \leq t' \leq T$. Otherwise the payoff is zero. Suppose t = 0 is today and the current stock price is S_0 .
 - (a) The Monte-Carlo method may be used to find the value of the option by numerically solving the stochastic differential equation (1). Suppose $S_0 = 20$, K = 20, X = 18, $\sigma =$

0.31, r = 0.048, T = 0.8. With $\Delta t = T/100$ and number of simulations $N = 10^4$, find the corresponding value V_N of the barrier option. Report also the value of ϵ_N/V_N .

- (b) With the other parameters fixed as in (a), plot the graph of the value of the option against the barrier value X for 10 < X < 20. Explain the shape of the graph.
- (c) The option can also be valued by solving the transformed Black-Scholes PDE, equation (2) of Homework I. Write down the terminal and boundary conditions for the PDE problem.
- (d) Write down the explicit Euler method for solving the PDE problem (c), and use it to find the corresponding value of the option for the values of $S_0, ..., T$ given in part (a). Take $\Delta x = (b-a)/2^6$ and report the value of α you use.
- (e) Write down the Crank-Nicholson algorithm for solving the PDE problem (c), and use it to find the corresponding value of the option for the values of $S_0, ..., T$ given in part (a). Again take $\Delta x = (b-a)/2^6$ but now take $\alpha = 100$ and use the Gauss-Seidel algorithm to solve the numerical linear algebra problem. Give your answers when the number of Gauss-Seidel iterations used is: 5,10,20, 30.
- (f) Investigate improving the Monte-Carlo estimate of part (a) for the value of the option by making Δt smaller and N larger. What conclusions can you come to about the relevant importance of Δt and N?
- (3) In this problem we consider the (Heston) stochastic volatility model for the price S_t of a stock

$$\begin{cases} dY_t = [\theta - \kappa Y_t] dt + \beta \sqrt{Y_t} \, dW_t \\ \frac{dS_t}{S_t} = r \, dt + \sqrt{Y_t} \left(\rho \, dW_t + \sqrt{1 - \rho^2} \, dZ_t \right) \,. \end{cases}$$
(2)

Here W_t and Z_t are independent (uncorrelated) Brownian motions under the risk neutral measure Q.

- (a) The values of the parameters θ , β must satisfy $\theta > \beta^2/2$ in order that the volatility process Y(t) remain positive. Taking $\theta = .02$, $\beta = 0.4$, $\kappa = 2$ with $Y(0) = \theta/\kappa$, use Monte Carlo simulations to estimate the probability that Y(t) = 0 for some t, 0 < t < T, where T = 0.5. Plot the graph of the exit probability against θ for $0 < \theta < 0.25$.
- (b) The values of the parameters in the stochastic equation are taken to be $\theta = 0.25$, $\kappa = 2$, $\beta = 0.4$ and r = 0.04, $\rho = -0.7$. With T = 0.5 use the Monte Carlo method to estimate the mean and standard deviation of S(T). Estimate also the mean and standard deviation of the stock volatility $\sqrt{Y(T)}$ at time T. The initial stock price is 25 and $Y(0) = \theta/\kappa$.
- (c) With the parameter values given in part (b), estimate the value of a put option with expiration date T = 0.5 if the strike price is K = 23.
- (d) Take the parameter values except for ρ and K as in part (c). Now for two fixed values of ρ , plot the graph of implied volatility against K with K varying in the interval 24 < K < 26. The two values of ρ are $\rho = -0.5$ and $\rho = 0.5$. Explain the different shapes of the graphs. Finally find a value of ρ for which the graph of implied volatility against K in the region 24 < K < 26 has a minimum and plot its graph.