
CHAPTER I - NUMERICAL METHODS FOR THE

SOLUTION OF DIFFERENTIAL EQUATIONS

JOSEPH G. CONLON

1. Ordinary Differential Equations (ODE)

A differential equation in n variables y = [y1, .., yn] ∈ Rn is of the form

(1.1)
dy(t)

dt
= f(y(t), t) ,

where f(y, t) = [f1(y, t), .., fn(y, t)] ∈ Rn is a vector valued function commonly
referred to as a vector field. Thus for every y ∈ Rn it yields a time dependent
vector f(y, t) in Rn. The fundamental theorem of ODE tells us that the equation
(1.1) has a unique solution both forward and backward in time when the value
of y(t) is specified at a certain time say t0, so that y(t0) = y0 is given. In most
applications in applied mathematics we wish to solve (1.1) forward in time i.e. for
t ≥ t0. In that case we say the condition y(t0) = y0 is the initial condition for
the differential equation (1.1). An example of this occurs in fluid flow. When we
place a light particle such as a leaf in a stream it will be carried along by the fluid.
In that case f(y, t) is the fluid velocity at the position y at time t, and y0 is the
position we put the leaf at the initial time t0. We shall also be interested in solving
differential equations backward in time i.e. for t ≤ t0. In that case the condition
y(t0) = y0 is called the terminal condition for the equation (1.1). Such problems
come up in control theory, a subject of which mathematical finance is a part. A
familiar example of such a problem for an infinite dimensional ODE is the problem
of finding the value of an option such as a call option. The value of the option
as a function of the stock price S is known at the expiration date T > 0 of the
option, and the bank wishes to compute the value of the option today which is time
t = 0 < T say. In the Black-Scholes (BS) theory one finds the value of the option
by solving an infinite dimensional linear ODE like (1.1) backward in time until time
t = 0 with the terminal condition given by the option price at the expiration date
T .

It is sometimes possible to solve the differential equation (1.1) explicitly. The
most common situation where that occurs is when the vector field f(y, t) is linear
so that

(1.2) f(y, t) = A(t)y +B(t) , A(t), B(t) time dependent n× n matrices.

Example 1. Consider the 2 dimensional system

(1.3)
dy1

dt
= y2,

dy2

dt
= 3y2 − 2y1 .

We wish to find the unique solution of (1.3) with the given initial condition at time
t = 0,

(1.4) y1(0) = 1, y2(0) = 0.
1

2 JOSEPH G. CONLON

We can find an explicit solution by rewriting the system (1.3) as the scalar ODE

(1.5)
d2y1

dt2
= 3

dy1

dt
− 2y1 .

To find a basis of solutions for (1.5) we substitute y1(t) = ert into (1.5). This
function is a solution to (1.5) provided r is a solution to the quadratic equation

(1.6) r2 − 3r + 2 = 0 which implies r = 1 or r = 2.

The general solution to (1.5) is therefore

(1.7) y1(t) = c1e
t + c2e

2t where c1, c2 are arbitrary constants.

The initial condition (1.4) determines c1, c2 uniquely by the simultaneous equations

(1.8) c1 + c2 = 1, c1 + 2c2 = 0 implies c1 = 2, c2 = −1.

We conclude that the unique solution to the initial value problem (1.3), (1.4) is
given by

(1.9) y1(t) = 2et − e2t , y2(t) = 2et − 2e2t .

In general one cannot produce explicit formulas for the solutions to (1.1). Hence
we need to resort to numerical methods. Thus we discretize the time variable into
multiples of some small basic time increment ∆t, whence time now takes the discrete
values 0,∆t, 2∆t, 3∆t, We replace the derivative in (1.1) by a finite difference
which approximates the derivative for small ∆t. There are several ways to carry
this out:

(1.10) Forward difference :
dy(t)

dt
' y(t+ ∆t)− y(t)

∆t
,

(1.11) Backward difference :
dy(t)

dt
' y(t)− y(t−∆t)

∆t
,

(1.12) Central difference :
dy(t)

dt
' y(t+ ∆t)− y(t−∆t)

2∆t
.

Note that the central difference is the average of the forward and backward differ-
ence. The error made in these approximations goes to 0 as ∆t→ 0. It goes faster
however to 0 in the central difference approximation (1.12) than in the forward or
backward difference. We can see this by doing a Taylor expansion

(1.13) y(t+ ∆t) = y(t) + y′(t)[∆t] + y′′(t)[∆t]2/2 + y′′′(t)[∆t]3/6 + · · ·
It follows that if we denote the error by ε(∆t) so that

(1.14) ε(∆t) = difference approximation− dy(t)/dt ,

then ε(∆t) = O(∆t) for the forward and backward differences, but ε(∆t) = O([∆t]2)
for the central difference approximation. Thus we say that the forward and back-
ward differences are first order accurate approximations to the derivative, whereas
the central difference is a second order accurate approximation.

We can use the difference approximations (1.10), (1.11) to obtain a numerical
scheme for solving the ODE (1.1). Suppose first we wish to solve (1.1) forward in
time t > 0 with initial condition y(0) = y0 given. If we use the forward difference
(1.10) to approximate the derivative, then we obtain the explicit Euler scheme

(1.15) y(t+ ∆t) = y(t) + ∆tf(y(t), t) .

MATH 623-2012 3

On setting ym ∼ y(m∆t), then (1.15) yields the recurrence relation

(1.16) ym+1 = ym + ∆tf(ym,m∆t) , m = 0, 1, 2, ...

The numerical algorithm is explicit in the sense that once we have computed ym

then ym+1 is easily computed by evaluating the RHS of (1.16). Alternatively we may
wish to solve (1.1) backward in time for t < T with terminal condition y(T) = yM

specified at t = T , where M is an integer satisfying M∆t = T . In this case we use
the backward difference (1.11) to implement the explicit Euler method, whence we
have

(1.17) y(t−∆t) = y(t)−∆tf(y(t), t) .

Again on setting ym ∼ y(m∆t), then (1.17) yields the recurrence relation

(1.18) ym−1 = ym −∆tf(ym,m∆t) , m = M,M − 1,M − 2,

Example 2. We consider the linear system

(1.19) y′(t) = ry(t) , y(0) = 1,

which we wish to solve numerically for t > 0. Evidently the exact value of the
solution at time T > 0 is y(T) = erT . Implementing the explicit Euler method
(1.16) we see that

(1.20) ym+1 = [1 + r∆t]ym m = 0, 1, 2, .., y0 = 1.

On iterating this recurrence M times where M∆t = T , we obtain the approximate
value for y(T),

(1.21) y(T) ∼ yM = [1 + r∆t]M = [1 + r∆t]T/∆t .

Since we know from calculus that

(1.22) lim
∆t→0

[1 + r∆t]T/∆t = erT ,

we conclude that the numerical solution of the Euler scheme converges as ∆t → 0
to the exact solution of the ODE.

A numerical scheme for the solution of the differential equation (1.1) which
converges as the time discretization ∆t → 0 to the solution of the ODE is called
a convergent numerical scheme. Evidently we should always want to use only
convergent schemes. Another related notion is also important but is considerably
more subtle. In numerical analysis we are not only interested in coming up with
convergent schemes, but also in the issue of how accurate these schemes are for
a given number of computations. Thus we introduce the notion of stability of a
numerical scheme. We say the scheme has an interval of stability ∆t < δ if for
∆t in this interval the numerical solution and the exact solution of the ODE are
“reasonably close”. The larger we can choose δ the more stable the scheme is. We
have not of course defined what “reasonably close” is, but in our applications it
will mean that the numerical solution diverges outside the region of stability.

We consider again the problem of solving the ODE (1.1) for t > 0 with initial
data y(0) = y0. If instead of the forward difference as in (1.15), (1.16) we use the
backward difference to approximate the derivative we now get (1.17), (1.18) but we
wish to solve this forward in time, and so the scheme is implicit. To compute ym

4 JOSEPH G. CONLON

from the already computed value for ym−1 we need to solve the equation (1.18) for
ym. In Example 2 it is easy to do this since the equation is

(1.23) ym−1 = [1− r∆t]ym ,m = 0, 1, ...

Thus for this implicit Euler method we obtain instead of (1.21) the formula

(1.24) y(T) ∼ yM = [1− r∆t]−M = [1− r∆t]−T/∆t .
It is clear from (1.22), (1.24) that the implicit Euler method is also convergent. Its
stability properties however can be much better than the explicit Euler method in
the case when r << 0.

To see why this is the case we consider a system of N equations

(1.25)
dy1(t)

dt
= −λ1y1(t), · · · dyN (t)

dt
= −λNyN (t) ,

which we wish to solve forward in time t > 0 with initial data

(1.26) y1(0) = y0
1 , · · · yN (0) = y0

N .

We assume that N is large and that 0 < λ1 < λ2 < · · · < λN , where λN is an
increasing function of N . Since the system (1.25) is decoupled we readily see as
in Example 2 that the explicit Euler method yields the numerical value for the
solution y(T) = [y1(T), ..., yN (T)] of (1.25), (1.26) at time T > 0 to be given by

(1.27) yj(T) ∼ [1− λj∆t]My0
j , j = 1, .., N, M = T/∆t .

The exact solution to (1.25), (1.26) is of course

(1.28) yj(T) = e−λjT y0
j , j = 1, .., N.

Note that if λN∆t > 2 then the numerical value (1.27) for yN (T) is growing ex-
ponentially in M since in that case 1 − λN∆t < −1. It also oscillates between
large positive and large negative values. In contrast the exact solution yN (T) is
exponentially smaller in T than the initial data y0

N . We conclude that if λN∆t > 2
the numerical solution of (1.27), (1.28) bears no resemblance to the exact solution.
Hence the stability interval for the explicit Euler method is ∆t < 2/λN . If we
implement the implicit Euler method for the problem the numerical value for the
solution of (1.25), (1.26) is given as in (1.24) by

(1.29) yj(T) ∼ [1 + λj∆t]
−My0

j , j = 1, .., N, M = T/∆t .

One immediately sees that (1.29) always gives a reasonable approximation to the
exact solution (1.28) no matter how large ∆t. The interval of stability for the
implicit scheme is therefore ∆t < ∞. Implicit schemes can be much more stable
than explicit schemes if there are many time scales in the problem. Here we think
of 1/λj as a time scale since yj(t) decreases in size by 50% in the time interval
0 < t < 1/λj .

In our numerical scheme for solving the Black-Scholes equation we shall need to
numerically solve a large number N of coupled ODE’s. These come about because
the BS equation is a partial differential equation (PDE) similar to the heat equation

(1.30)
∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
.

A typical problem is to solve (1.30) for t > 0 in the interval 0 < x < 1 with specified
initial condition at t = 0 and boundary conditions at x = 0, 1. If we think in terms
of heat flow then the interval 0 < x < 1 represents a bar of length 1 with initial

MATH 623-2012 5

temperature distribution given by some known function u(x, 0), 0 < x < 1. The
temperature at the ends of the bar x = 0, 1 are kept fixed in time at temperatures
u0, u1 respectively, so that u(0, t) = u0, u(1, t) = u1 for t > 0. We can find the
temperature distribution u(x, t), 0 < x < 1, within the bar at a later time t by
solving (1.30) with the given initial and boundary conditions. To numerically solve
this problem we introduce a space discretization ∆x such that N∆x = 1 for some
large integer N . In that case we can approximate the PDE (1.30) by a system of
N − 1 ODEs in un(t) ∼ u(n∆x, t), n = 1, ..N − 1. This ODE system is like (1.25)
with λn = π2n2, n = 1, .., N − 1, whence the stability condition ∆t < 2/λN is
essentially ∆t < 2/π2N2. Since N∆x = 1 we conclude that the stability condition
can be written as ∆t/(∆x)2 < 2/π2 . Hence a stable explicit Euler method for
solving the heat equation requires that the time discretization is proportional to the
square of the space discretization. We shall see this condition come up many times
during the course.

The explicit and implicit Euler methods for solving ODEs are first order accurate
in time. We introduce now a method which is second order accurate. It is called
the trapezoid rule for it is a generalization of the trapezoid rule for numerically
estimating integrals. Suppose we wish to solve (1.1) forward in time with given
initial condition y(0) = y0. Setting ym ∼ y(m∆t), the numerical algorithm for the
generalized trapezoid rule is

(1.31) ym+1 = ym +
∆t

2

[
f(ym,m∆t) + f(ym+1, (m+ 1)∆t)

]
.

Consider now applying the explicit Euler method (1.16) and the trapezoid rule
(1.31) when the function f(y, t) in (1.1) depends only on t so f(y, t) = f(t). If
M∆t = T for some integer M then we have that

(1.32) yM ∼ y0 +

∫ T

0

f(t) dt ,

so the numerical algorithm for solving the ODE (1.1) yields a numerical algorithm
for integrating the function f(·). Evidently the explicit Euler method (1.16) gives
the rectangle rule for integration which is first order accurate, and (1.31) the trape-
zoid rule which is second order accurate. The algorithm (1.31) continues to be
second order accurate in the general case when f(y, t) depends explicitly on y as
well as t. The algorithm is also implicit, and because of that it has better stability
properties than the explicit Euler method for the system (1.25). Thus we have from
(1.31) that

(1.33) ym+1
j = ymj −

∆t

2

[
λjy

m
j + λjy

m+1
j

]
, j = 1, .., N,

whence we conclude that

(1.34) ymj =

(
1− λj∆t/2
1 + λj∆t/2

)m
y0
j , j = 1, .., N.

Since λj > 0 it follows that |ymj | ≤ |y0
j | and so the trapezoid algorithm is sta-

ble for ∆t < ∞. Just as we can apply the explicit Euler algorithm to solve an
initial-boundary value problem for the heat equation (1.30), we can also apply the
trapezoid algorithm to this problem. When applied to numerically solving para-
bolic PDE such as (1.30) the trapezoid algorithm is known as the Crank-Nicolson
method. In the PDE case the problem of solving the implicit equation (1.31) for

6 JOSEPH G. CONLON

the N dimensional vector ym+1 is now by no means trivial as it was for (1.33). We
need to solve a linear coupled system of N equations where N is large. Standard
methods like Gauss elimination are much too inefficient to be used for this so one
needs to make use of other better methods.

We conclude our discussion of numerical methods for solving ODEs by consid-
ering how to estimate the order of accuracy of a given method. Let us consider the
forward in time explicit Euler method (1.16). If y(t), t ≥ 0, is the exact solution to
(1.1) then y(m∆t), m = 0, 1, 2, .., is an approximate solution to (1.16) in the sense
that

(1.35) y((m+1)∆t) = y(m∆t)+∆tf(y(m∆t),m∆t)+O[(∆t)2] , m = 0, 1, 2, ...,

by using the Taylor expansion

(1.36) y(t+ ∆t) = y(t) + y′(t)∆t+O[(∆t)2] .

For any T > 0 we let εT (∆t) = yM − y(T) where ym, m = 0, 1, 2, .., is the solution
to (1.16) and M∆t = T . Thus εT (∆t) is the error at time T between the numerical
solution computed by explicit Euler and the exact solution of the ODE (1.1) with
the same initial data at t = 0. Comparing (1.16) and (1.35) we see that the error
between the numerical and exact solutions grows by O[(∆t)2] at each time step.
Hence the error at time T should be

(1.37) εT (∆t) ∼ MO[(∆t)2] = O[∆t] since M = T/∆t ,

whence we conclude that the Euler method is first order accurate. We refer to the
error in (1.35) where we regard the exact solution of the ODE (1.1) as an approx-
imate solution of the Euler scheme (1.15) as the truncation error for the scheme.
The error εT (∆t) between the numerically computed solution and exact solution at
time T is referred to as the cumulative error. Then (1.37) is a consequence of the
general fact that
(1.38)

cumulative error = one order of magnitude less than the truncation error.

2. Numerical Algorithms for solving the Black-Scholes Equation

We recall the BS theory for the pricing of options. Consider a simple option on
a stock with expiration date T > 0, where t = 0 represents today. In the case of
a call option with strike price K the payoff on the option at the expiration date is
max[S −K, 0], where S is the stock price. To find the value of the option we solve
the terminal value problem for the partial differential equation (PDE)

(2.1)
∂V (S, t)

∂t
+
σ2

2
S2 ∂

2V (S, t)

∂S2
+ rS

∂V (S, t)

∂S
− rV (S, t) = 0 for S > 0, t < T,

(2.2) V (S, T) = max[S −K, 0] for S > 0.

In (2.1) the stock volatility is σ > 0 and r > 0 is the risk-free rate of interest. If
the price of the stock today is S0 then the value of the option today is V (S0, 0),
and the dynamic hedging strategy which achieves this price without risk is given
by the hedging portfolio:
(2.3)

Hedging Portfolio when stockprice = S, time = t : one option− ∂V (S, t)

∂S
of stock.

MATH 623-2012 7

Observe that the Black Scholes PDE (2.1) has coefficients which depend on S. We
can transform the equation into a constant coefficient PDE by making the change
of variable S = ex. Hence if we write V (S, t) = u(x, t) then the problem (2.1), (2.2)
becomes the terminal value problem
(2.4)
∂u(x, t)

∂t
+
σ2

2

∂2u(x, t)

∂x2
+

{
r − σ2

2

}
∂u(x, t)

∂x
−ru(x, t) = 0 for −∞ < x <∞, t < T,

(2.5) u(x, T) = max[ex −K, 0] for −∞ < x <∞.
The BS equation (2.1) is a consequence of the assumption that the random

evolution of the stock price S(t) in the risk neutral measure is governed by the
stochastic differential equation (SDE)

(2.6) dS(t) = S(t)[rdt+ σdB(t)],

where B(·) is Brownian motion (BM). If we set S(t) = exp[X(t)] then it follows
from (2.6) via the Ito calculus that

(2.7) dX(t) = (r − σ2/2)dt+ σdB(t) .

We can easily solve (2.7) to obtain

(2.8) X(t) = X(0) + (r − σ2/2)t+ σB(t) ,

so the process X(·) is a translation of Brownian motion. Since S(·) is the exponen-
tial of X(·) we refer to S(·) as geometric Brownian motion (GBM). The connection
between GBM and solutions to (2.1), (2.2) is that the solution of the terminal value
problem can be written as an expectation value

(2.9) V (S, 0) = e−rTE [V (S(T), T) | S(0) = S] .

In the case of the call option we have from (2.2) that

(2.10) V (S(T), T) = max[S(T)−K, 0] .

Similarly the solution to (2.4), (2.5) can be written as

(2.11) u(x, 0) = e−rTE [u(X(T), T) | X(0) = x] ,

where (2.5) implies that

(2.12) u(X(T), T) = max[eX(T) −K, 0] .

To numerically solve the BS terminal value problem (2.1), (2.2) it will be suf-
ficient for us to numerically solve the constant coefficient problem (2.4), (2.5). In
order to do this we need to introduce a “space” discretization ∆x for the logarithm
x of the stock price as well as a time discretization ∆t, which we have already
done for numerically solving ODEs. We also need to reduce the infinite interval
−∞ < x < ∞ to a finite interval a < x < b. First note that the finite interval
should certainly include at the money options so we need to have a < logK < b.
Next we choose a sufficiently small so that the option with initial stock price S0 = ea

is so far out of the money that we can set V (ea, t) = u(a, t) = 0 for 0 ≤ t ≤ T . To
decide on a good value for a we consider the representation (2.11). From (2.8) we
see that the random variable X(T) conditioned on X(0) = x is Gaussian with

(2.13) mean = x+ (r − σ2/2)T, variance = σ2T .

The probability of the Gaussian variable X(T) being larger than 3 standard de-
viations above its mean is 0.0014 so about 1/10 of 1 percent. Thus if we take

8 JOSEPH G. CONLON

a = logK − 3σ
√
T then the probability that the option is in the money at expira-

tion is very small, and hence we are justified in setting u(a, t) = 0 for 0 ≤ t ≤ T .
Note here than we have ignored the term (r−σ2/2)T in (2.13) since it will normally

be insignificant compared to 3σ
√
T .

To find an appropriate value for b and the value we should set for u(b, t) we use
put-call parity. Put-call parity can be seen as a consequence of the fact that the
function

(2.14) V (S, t) = S −Ke−r(T−t), S > 0, t < T

is a solution of the BS PDE (2.1). It is clear that (2.14) is the value of a portfolio
consisting of one stock minus K in cash at time T . Since we have that

(2.15) 1 stock −K cash at time T = 1 call option − 1 put option ,

the call-put parity equation is obtained by setting the value of the LHS of (2.15)

to be the RHS of (2.14). Observe now that if we set b = logK + 3σ
√
T then the

put option with strike K and stock price S = eb is far out of the money so we can
take its value to be 0. We conclude then from (2.14), (2.15) that for the call option
terminal data (2.10), (2.12) we should set

(2.16) u(b, t) = eb −Ke−r(T−t) for 0 ≤ t ≤ T if b = logK + 3σ
√
T .

We can now estimate the value of the call option by solving (2.4) for a < x <
b, t < T, with terminal data (2.5) and Dirichlet boundary conditions u(a, t) =
0, t < T, and u(b, t), t < T, given by (2.16). To construct a numerical scheme
we need to approximate the first two derivatives of u(x, t) with respect to x by
finite differences as well as ∂u(x, t)/∂t. We shall use the central difference (1.12)
to approximate the first derivative with respect to x so we set

(2.17)
∂u(x, t)

∂x
∼ u(x+ ∆x, t)− u(x−∆x, t)

2∆x
.

We have already observed that the central difference approximation is second order
accurate, so the error in (2.17) is O[(∆x)2]. We can also easily obtain a second
order accurate approximation to the second derivative, which is

(2.18)
∂2u(x, t)

∂x2
∼ u(x+ ∆x, t) + u(x−∆x, t)− 2u(x, t)

(∆x)2
.

We can see why (2.18) is second order accurate by doing a Taylor expansion as in
(1.13) but with more terms,
(2.19)
u(x+∆x) = u(x)+u′(x)[∆x]+u′′(x)[∆x]2/2+u′′′(x)[∆x]3/6+u′′′′(x)[∆x]4/24+O[(∆x)5].

Hence we have that
(2.20)
u(x+ ∆x) + u(x−∆x)− 2u(x) = (∆x)2{u′′(x) + u′′′′(x)(∆x)2/12 +O[(∆x)3]} ,

and so the difference between the LHS and RHS of (2.18) is O[(∆x)2]. The fi-
nite difference approximation for the PDE (2.4) is completed now by taking the
backward difference (1.11) as an approximation to the time derivative

(2.21)
∂u(x, t)

∂t
∼ u(x, t)− u(x, t−∆t)

∆t
.

MATH 623-2012 9

The explicit backwards in time Euler method for the terminal value problem
(2.4), (2.5) is then

(2.22) u(x, t−∆t) = (p− r∆t)u(x, t) + p+u(x+ ∆x, t) + p−u(x−∆x, t) ,

where p, p+, p− are given by the formulas

(2.23) p = 1− σ2∆t/(∆x)2, p+ = σ2∆t/2(∆x)2 + (r − σ2/2)∆t/2∆x ,

p− = σ2∆t/2(∆x)2 − (r − σ2/2)∆t/2∆x .

To implement the explicit Euler method we choose ∆x and ∆t so that M∆t = T for
some integerM andN∆x = b−a for some integerN . We set umn ' u(a+n∆x,m∆t)
for n = 0, .., N, and m = 0, ..,M . The terminal condition (2.5) then yields

(2.24) uMn = max[ea+n∆x −K, 0] for n = 0, ..N.

The boundary conditions u(a, t) = 0, 0 ≤ t ≤ T, and (2.16) yield

(2.25) um0 = 0, umN = eb −Ke−r(M−m)∆t for m = 0, ..,M.

The recurrence (2.22) is then given by

(2.26)
for m = M : −1 : 1
for n = 1 : N − 1
um−1
n = (p− r∆t)umn + p+umn+1 + p−umn−1.

We already discussed in §1 the issue of stability when using the explicit Euler
method to numerically solve parabolic PDE such as (1.30), (2.4). There we observed
that it is necessary to take ∆t/(∆x)2 = O(1) to ensure stability. We can see more
clearly here why this is the case since the parameters p, p+, p− of (2.23) satisfy
p + p+ + p− = 1. If all three parameters are positive then it follows from (2.22)
that

(2.27) sup
a<x<b

|u(x, t−∆t)| ≤ [1− r∆t] sup
a≤x≤b

|u(x, t)|,

and since M∆t = T we conclude that

(2.28) sup
a<x<b

|u(x, 0)| ≤ [1− r∆t]M sup
a≤x≤b

|u(x, T)| ≤ e−rT sup
a≤x≤b

|u(x, T)| ,

where we are ignoring the effect of the boundary conditions. If one of the parameters
p, p+, p− is negative then |p|+ |p+|+ |p−| = 1 + δ for some δ > 0. In that case we
could have

(2.29) sup
a<x<b

|u(x, 0)| ' [1 + δ]M = [1 + δ]T/∆t ,

which diverges as ∆t → 0. In fact this instability typically occurs if |p| + |p+| +
|p−| = 1 + δ with δ > 0. The solution not only grows exponentially in T/∆t but
also oscillates. We cannot really go into an adequate explanation here except to
note that the terminal data (2.5) contains high frequency oscillations. Although
these oscillations are small the numerical algorithm amplifies them exponentially
by [1+δ]T/∆t in computing u(x, 0), a < x < b. Evidently a necessary and sufficient
condition for p > 0 is that

(2.30) ∆t/(∆x)2 < 1/σ2 .

10 JOSEPH G. CONLON

Now the Euler method (2.22) is first order accurate in ∆t and second order accurate
in ∆x. Hence the cumulative error is given by

(2.31) u(a+ n∆x, 0)− u0
n = O[∆t] +O[(∆x)2] for 0 ≤ n ≤ N.

It follows from (2.31) that for given ∆x we should take ∆t as large as possible con-
sistent with (2.30) to minimize the number of computations without substantially
increasing the cumulative error. In that case we see from (2.23) that p+, p− are
also positive. Thus to implement explicit Euler in an optimal way we should choose
∆x so that O[(∆x)]2] is an acceptable error. Then we choose ∆t such that there is
almost equality in (2.30).

If S0 is today’s stock price then the BS value of the call option is u(x0, 0) where
S0 = ex0 . It may happen that x0 is not a grid point for the numerical method, so
for example there is a non-negative integer n0 < N such that a + n0∆x = x−0 <
x0 < a + (n0 + 1)∆x = x+

0 . In that case we approximate the value of u(x0, 0)
by interpolation from the numerically computed values of the function on the grid
points. If we use linear interpolation then we set

(2.32) u(x0, 0) ' {[x+
0 − x0]u(x−0 , 0) + [x0 − x−0]u(x+

0 , 0)}/∆x .

Linear interpolation has the advantage that it is completely local in the sense that
the value taken for u(x0, 0) is just a weighted average of the values of the function
u(·, 0) on the two grid points closest to x0. There is also a disadvantage in that it
is only a first order accurate interpolation. This means that if u(x, 0), a < x < b,
is a differentiable function then the difference between the LHS and RHS of (2.32)
is O(∆x). In our situation u(x, 0) is computed at grid points x correct to second
order, so the error at a grid point between the numerically computed solution and
the solution to the continuous problem is O[(∆x)2]. Evidently we wish to use an
interpolation scheme which preserves the second order accuracy away from grid
points. Linear interpolation cannot achieve this but spline interpolation will. It
does this by approximating the function between grid points by a polynomial -say
of degree 3 as in the case of cubic splines. Because approximation by polynomials
give some extra degrees of freedom we can make the approximating function dif-
ferentiable across grid points. Note that in the case of linear interpolation there
are no extra degrees of freedom and so in general the approximating function has
a jump in its derivative across a grid point. There is a cost to this extra accuracy
of spline interpolation in that spline interpolation is non-local in the sense that the
interpolated value for u(x0, 0) depends now on the values of u(·, 0) at all the grid
points, not just at the two neighboring grid points of x0. The spline interpolation
is however almost local in the sense that the dependence of u(x0, 0) on a grid point
far from x0 is very small.

3. American Options

Options can have early exercise features, which means that one can exercise the
option at any time up to the expiration date. We shall consider here the simple
American put option with strike price K and expiration date T . Letting V (S, t) be
the value of the option at time t ≤ T when the stock price is S, then as in (2.2) we
have that

(3.1) V (S, T) = max[K − S, 0] for S > 0.

MATH 623-2012 11

Since the value of the option cannot drop below the early exercise price we also
have that

(3.2) V (S, t) ≥ max[K − S, 0] for S > 0, t ≤ T.

Complementary to (3.2) is the equation

(3.3) The BS equation (2.1) for V (S, t) holds when V (S, t) > max[K − S, 0] .

Evidently the value of the American option is at least the value of the corresponding
European option, but it generally has only slightly greater value. In fact by a simple
no arbitrage argument one can see that if the rate of interest r = 0 then the value
of the American option equals the value of the European. For r > 0 it follows from
(3.2), (3.3) that there is a curve t → Sexer(t), 0 ≤ t ≤ T, with the property that
0 < Sexer(t) ≤ K for 0 ≤ t ≤ T, such that

(3.4) V (S, t) satisfies (2.1) for S > Sexer(t); V (S, t) = K − S for S < Sexer(t).

The graph {(t, S) : S = Sexer(t), 0 ≤ t ≤ T} is known as the early exercise
boundary since it divides the half infinite region {(t, S) : 0 ≤ t ≤ T, S > 0} into two
subregions. In the lower subregion it is optimal always to immediately exercise the
option and in the upper subregion to wait until either the expiration date of the
option or until the stock price hits the early exercise boundary. Note from Figure
1 that Sexer(t) is an increasing and convex function of t with limt→T Sexer(t) = K.
It is intuitively clear that Sexer(t) is increasing and limt→T Sexer(t) = K, but the
convexity of the graph is a subtle property. In fact even the increasing property
cannot be proved in a straightforward way although the intuition behind it is simple
i.e. that for a given stock price S < K the longer the time to expiration, the more
it makes sense to wait rather than immediately exercise the option.

We consider some properties of the value V (S, t) of the option on the early
exercise boundary. In particular we have that

(3.5) V (S, t) = K − S, ∂V (S, t)

∂S
= −1, for S = Sexer(t) .

The first identity of (3.5) states that the value of the option is continuous across the
early exercise boundary, while the second identity states that the hedging portfolio
is continuous across the boundary. The first identity is then just a consequence of
the fact that the value of the option is a continuous function of (S, t). We can give
an intuitive argument for the second identity based on the no arbitrage assumption
underlying the BS theory. To show the second identity we first assume that

(3.6) lim
S→Sexer(t)+

∂V (S, t)

∂S
< −1 .

Hence for S > Sexer(t) with S−Sexer(t) small then V (S, t) < K −S, which contra-
dicts the inequality (3.2). Alternatively let us suppose that

(3.7) lim
S→Sexer(t)+

∂V (S, t)

∂S
> −1 .

Now above the early exercise boundary the BS theory applies so for S > Sexer(t)
we have that

(3.8) one put option − ∂V (S, t)

∂S
of stock = risk free portfolio.

12 JOSEPH G. CONLON

Time

E
xe

rc
is

e
pr

ic
e

K

T

Option Price=K−S

Option Price>K−S

Figure 1. Graph of Early Exercise Boundary

Consider now what happens when S decreases to Sexer(t) and (3.7) holds. Then
the portfolio consists of

(3.9) one put option + α(stock) with α < 1.

If S continues to decrease below Sexer(t) then it is clear that the portfolio (3.9)
yields a profit. If S instead increases above Sexer(t) then we are in the BS regime

MATH 623-2012 13

where the value of the portfolio increases at the risk free rate. We conclude that
if (3.7) holds then the portfolio (3.8) is an arbitrage since it can make a profit but
cannot make a loss. This is again a contradiction to the no arbitrage assumption.
We have therefore shown that neither of (3.6), (3.7) can hold, which implies the
second identity of (3.5).

The mathematical analysis of (3.2), (3.3) is complicated since the early exercise
boundary is a so called free boundary. This means it is not known a priori but
comes as part of the solution to the problem. It is then somewhat surprising that
the numerical algorithm for solving the American option problem is virtually the
same as the algorithm for solving the European option problem. In fact all we do is
to modify the European algorithm to insure that (3.2) holds. Thus we have instead
of (2.22),
(3.10)
u(x, t−∆t) = max{K − ex, (p− r∆t)u(x, t) + p+u(x+ ∆x, t) + p−u(x−∆x, t)} ,
where again V (S, t) = u(x, t) with S = ex. The terminal and boundary conditions
are given by

(3.11) u(x, T) = K − ex, a < x < b,

(3.12) u(a, t) = K − ea, u(b, t) = 0, 0 ≤ t < T,

where a, b are as for the European option. The boundary condition (3.12) at a
comes from the fact that a lies below the early exercise boundary for all 0 ≤ t ≤ T .
Note that cash K is not discounted in the boundary condition (3.12), whereas in
the European case (2.16) it is discounted.

Finally we note how to compute the early exercise boundary once we have ob-
tained the function V (S, t), S > 0, 0 ≤ t ≤ T . If umn ' u(a + n∆x,m∆t) then
for each fixed m we find the minimum n = N (m) such that umn > K − ea+n∆x.
We obtain the early exercise boundary as in Figure 1 by graphing the function
(m∆t, ea+N (m)∆x), m = 0 · · ·M .

4. Path Dependent Options

A path dependent option is one in which the payoff depends not only on the
stock price at the expiration date of the option, but also on the values of the stock
price during the lifetime of the option. For a lookback option the payoff depends
on the maximum or minimum of the stock price over the life of the option. In the
case of an Asian option the payoff depends on an average of the stock price during
the lifetime of the option. We shall consider here just the Asian option. For the
continuously sampled Asian option the payoff at expiration is given by the formula

(4.1) payoff =

[
S(T)− 1

T

∫ T

0

S(t) dt

]+

.

We can price this using the BS formalism by introducing a new variable I in addition
to S, t by the formula

(4.2) I(t) =

∫ t

0

S(t′) dt′ ,

and consider the value of the option as being a function V (S, I, t) of 3 variables
S, I, t now. The value of the option today t = 0 when the stock price is S0 is

14 JOSEPH G. CONLON

then V (S0, 0, 0). We can derive a PDE for V (S, I, t) since (2.6), (4.2) imply that
[S(t), I(t)] are a solution to the system of SDEs

(4.3) dS(t) = S(t)[rdt+ σdB(t)], dI(t) = S(t) dt .

To price the option we construct a portfolio as in (2.3), but observe now that the
partial derivative ∂V (S, I, t)/∂S implies that we compute the delta of the option
with both t and I fixed. From (4.3) if π(t) is the value of the portfolio at time t
then the Ito calculus implies that

(4.4) dπ(t) =

[
∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ S

∂V

∂I

]
dt .

Following the standard BS argument we see that (4.4) implies the portfolio is risk
free, whence from the no arbitrage assumption we conclude that dπ(t) = rπ(t) dt.
Hence the function V (S, I, t) satisfies the PDE
(4.5)
∂V (S, I, t)

∂t
+
σ2

2
S2 ∂

2V (S, I, t)

∂S2
+ S

∂V (S, I, t)

∂I
+ rS

∂V (S, I, t)

∂S
− rV (S, I, t) = 0 .

The equation (4.5) holds for S, I > 0 and t < T . From (4.1) we see that the
terminal condition for the problem is

(4.6) V (S, I, T) = max[S − I/T, 0] for S, I > 0.

Just as for (2.1), (2.2) we also need boundary conditions to uniquely determine the
solution. One boundary condition is obvious, namely that

(4.7) lim
S→0

V (S, I, t) = 0,

since this merely states that if the price of the stock is small then not much can be
gained by betting on the difference between average stock price and the terminal
stock price. We also need to impose three other boundary conditions corresponding
to S → ∞ and also I → 0, I → ∞. It is not so easy to see what these boundary
conditions should be.

We can reduce the number of variables (S, I, t) to 2 variables by observing that
the function V (S, I, t) is homogeneous. To see this let λ > 0 and consider the
function Vλ(S, I, t) = λ−1V (λS, λI, t). It is easy to see that Vλ(S, I, t) satisfies
(4.5),(4.6) and so we conclude from general uniqueness considerations for the ter-
minal value problem (4.5),(4.6) that Vλ is independent of λ > 0. Choosing λ = S−1

we conclude that

(4.8) V (S, I, t) = Sw(ξ, t), ξ = I/S , for I, S > 0, t < T,

where w(ξ, t) is a function of two variables and

(4.9) w(ξ, T) = max[1− ξ/T, 0] ξ > 0.

We can obtain from (4.5) a PDE which the function w(ξ, t) satisfies. Using the
chain rule we have that

(4.10)
∂V (S, I, t)

∂t
= S

∂w(ξ, t)

∂t
,

∂V (S, I, t)

∂S
= w(ξ, t)− ξ ∂w(ξ, t)

∂ξ
,

∂V (S, I, t)

∂I
=

∂w(ξ, t)

∂ξ
, S

∂2V (S, I, t)

∂S2
= ξ2 ∂

2w(ξ, t)

∂ξ2
.

MATH 623-2012 15

Hence (4.5) implies that w(ξ, t) is a solution to the PDE

(4.11)
∂w(ξ, t)

∂t
+

1

2
σ2ξ2 ∂

2w(ξ, t)

∂ξ2
+ (1− rξ)∂w(ξ, t)

∂ξ
= 0 .

The boundary condition (4.7) turns into the boundary condition

(4.12) lim
ξ→∞

w(ξ, t) = 0, for t < T.

Now (4.7) and (4.12) are not equivalent since (4.7) actually only implies that
limξ→∞ w(ξ, t)/ξ = 0, so (4.12) is a stronger assumption than (4.7). The assump-
tion (4.12) however makes sense if we think of w(ξ, t) as being the value of a type of
put option. Comparing (4.11), (4.9) to (2.1), (3.1) respectively, we see that w(ξ, t)
is like the value of a put option with strike price T . With that analogy then (4.12)
states that the value of the option is roughly zero if it is far out of the money.

In order to have a unique solution we need to specify a boundary condition for
w(ξ, t) as ξ → 0. Note that the value of the Asian option today is V (S0, 0, 0) =
S0w(0, 0) so the boundary condition at ξ = 0 cannot be explicit as in the case of
the standard European put option. We can obtain an implicit boundary condition
by setting ξ = 0 in the PDE (4.11). Thus we have that

(4.13)
∂w(ξ, t)

∂t
+
∂w(ξ, t)

∂ξ
= 0 for ξ = 0, t < T.

We can understand the condition (4.13) better if we write the function w(ξ, t) as
an expectation value similar to (2.9). Thus letting ξ(t), t > 0, be the solution to
the SDE

(4.14) dξ(t) = [1− rξ(t)] dt+ σξ(t)dB(t) ,

then we have that

(4.15) w(ξ, t) = E
[
w(ξ(T), T)

∣∣ ξ(t) = ξ
]

for t < T.

More generally we have that

(4.16) w(ξ, t) = E
[
w(ξ(t+ ∆t), t+ ∆t)

∣∣ ξ(t) = ξ
]

for ∆t > 0,

so the representation (4.15) follows upon setting ∆t = T−t. Now if ξ is small and ∆t
is also small the SDE (4.14) becomes approximately dξ(s) = ds for t < s < t+ ∆t,
whence ξ(t+ ∆t) ' ξ+ ∆t. Note that ξ(t+ ∆t) > ξ, which is a consequence of the
fact that the drift term 1− rξ in (4.14) pulls a path ξ(t) away from 0, so a solution
to (4.14) never actually hits 0. Now from (4.16) we have approximately

(4.17) w(ξ, t) ' w(ξ + ∆t, t+ ∆t) if ξ,∆t are small,

so we conclude that

(4.18) lim
∆t→0

w(∆t, t+ ∆t)− w(0, t)

∆t
= 0 ,

and this yields (4.13).
To numerically solve the terminal value problem (4.9), (4.11) with the boundary

conditions (4.12), (4.13) we need to first replace the infinite interval {0 < ξ <∞} by
a finite interval {0 < ξ < ξmax}. We choose ξmax depending on volatility similarly to
the way we did for pricing the European option. We already mentioned that w(ξ, t)
is like the price of a put option with strike price T . Thus we wish to choose ξmax

sufficiently large so that the option is far out of the money at expiration, whence
we may set w(ξmax, t) = 0 for 0 ≤ t < T . Evidently we need to have ξmax > T and

16 JOSEPH G. CONLON

how much larger depends on σ. Comparing the SDEs (2.6) and (4.14) we see that
if ξ(0) = ξmax then log ξ(T) is approximately Gaussian with

(4.19) E[log ξ(T)] = log ξmax, Var[log ξ(T)] = σ2T .

Thus we want ξmax to satisfy the inequality

(4.20) ξmaxe
−3σ
√
T ≥ T, so we take ξmax = Te3σ

√
T .

In the above argument we have ignored the drift term 1 − rξ in (4.14), but this
term actually helps since it is positive (assuming r small) and so pushes the path
ξ(t) away from the threshold T for the option to be in the money.

We use the explicit Euler method to numerically solve the problem. Thus we
have similarly to (2.22) the recurrence equation

(4.21) w(ξ, t−∆t) = p(ξ)w(ξ, t) + p+(ξ)w(ξ + ∆ξ, t) + p−(ξ)w(ξ −∆ξ, t) ,

where p(ξ), p+(ξ), p−(ξ) are given by the formulas

(4.22) p(ξ) = 1− σ2ξ2∆t/(∆ξ)2, p+(ξ) = σ2ξ2∆t/2(∆ξ)2 + (1− rξ)∆t/2∆ξ ,

p−(ξ) = σ2ξ2∆t/2(∆ξ)2 − (1− rξ)∆t/2∆ξ .

Note that p(ξ) + p+(ξ) + p−(ξ) = 1 for 0 < ξ < ξmax. To implement the boundary
condition (4.13) we approximate the derivative ∂w(ξ, t)/∂ξ at ξ = 0 by a forward
difference so (4.13) becomes

(4.23)
w(0, t)− w(0, t−∆t)

∆t
+
w(∆ξ, t)− w(0, t)

∆ξ
= 0,

which implies that

(4.24) w(0, t−∆t) = [1−∆t/∆ξ]w(0, t) + (∆t/∆ξ)w(∆ξ, t) .

Similarly to (2.30) we need to impose the stability condition p(ξ) > 0 for 0 < ξ <
ξmax, which implies

(4.25) ∆t/(∆ξ)2 < 1/σ2ξ2
max .

Recall that in (2.17) we used the symmetric difference to approximate the first
space derivative of the value function. The reason for doing this was to preserve the
second order accuracy of the numerical scheme in the space difference. In (4.21),
(4.22) we have used the symmetric difference so the error should be O[(∆ξ)2].
In contrast to this we are forced to use the forward difference to implement the
boundary condition (4.13) as in (4.24). Since forward difference is just first order
accurate, this will tend to make the scheme only first order accurate in the space
difference, so the error would be O(∆ξ) and not O[(∆ξ)2]. In addition the scheme
(4.21), (4.22) is not stable for all ξ in the interval [0, ξmax] even assuming (4.25).
We can see that p−(ξ) < 0 if ξ <

√
∆ξ/σ, and so we have in fact a boundary layer

at ξ = 0 of width
√

∆ξ/σ. This is analogous to boundary layers in fluid flows where
the flow can change radically over a small length scale, such as in the case of air
close to the wing of an aircraft.

We can have a numerical scheme which is stable for all ξ in the interval [0, ξmax]
by simply approximating the derivative ∂w(ξ, t)/∂ξ in (4.11) by a forward difference

(4.26)
∂w(ξ, t)

∂ξ
∼ w(ξ + ∆ξ, t)− w(ξ, t)

∆ξ
.

MATH 623-2012 17

In that case the numerical scheme becomes (4.21) with p(ξ), p+(ξ), p−(ξ) given by
the formulas

(4.27)

p(ξ) = 1−σ2ξ2∆t/(∆ξ)2−(1−rξ)∆t/∆ξ, p+(ξ) = σ2ξ2∆t/2(∆ξ)2+(1−rξ)∆t/∆ξ ,
p−(ξ) = σ2ξ2∆t/2(∆ξ)2 .

We still have p(ξ) + p+(ξ) + p−(ξ) = 1 but now all of p(ξ), p+(ξ), p−(ξ) remain
positive for 0 < ξ < ξmax provided we are away from the threshold in (4.25). The
error in the scheme (4.21), (4.27) is now O(∆t) + O(∆ξ) = O[(∆ξ)2] + O(∆ξ) =
O(∆ξ), so we have lost second order accuracy in order to maintain stability. As a
compromise in order to try to retain second order accuracy, we can use the scheme
(4.21), (4.22) for

√
∆ξ/σ < ξ < ξmax, and (4.21), (4.27) for 0 ≤ ξ ≤

√
∆ξ/σ. This

scheme is also stable and preserves the second order accurate property outside the
boundary layer. Note however that the value of the option today is S0w(0, 0) so
the boundary layer really does have an effect on the option price.

In the discretely averaged Asian option the payoff depends on the average of the
option over a discrete set of times t0, .., tL, where 0 ≤ t0 < t1 < · · · tL ≤ T so that

(4.28) payoff =

[
S(T)− 1

L+ 1

L∑
i=0

S(ti)

]+

.

To price this option we again introduce a new variable I where

(4.29) I(t) =
∑
tj≤t

S(tj) , 0 ≤ t ≤ T .

The value V (S, I, t) of the option now has terminal condition

(4.30) V (S, I, T) = max[S − I/(L+ 1), 0] for S, I > 0.

The function V (S, I, t) is also a solution to the Black-Scholes PDE (2.1) provided
t is not equal to one of the tj , 0 ≤ j ≤ L. At the times tj , 0 ≤ j ≤ L, there is a
continuity condition

(4.31) lim
t→t−j

V (S, I, t) = lim
t→t+j

V (S, I + S, t) .

The identity (4.31) is a consequence of the fact that if the stock price is S at time
tj then I increases to I + S at time tj , which we can see from (4.29). For t in
the time interval tj < t < tj+1 then I remains constant and so the no arbitrage
assumption implies that V (S, I, t) satisfies the PDE (2.1). Note that in the discrete
case [S(t), I(t)] also satisfy a system of SDEs similar to (4.3),

(4.32) dS(t) = S(t)[rdt+ σdB(t)], dI(t) = b(S(t), t) dt ,

where the function b(S, t) is defined by

(4.33) b(S, t) = S

L∑
j=0

δ(t− tj) , δ(·) = Dirac delta function.

We now of course still have the problem of specifying the boundary conditions for
V (S, I, t) other than the obvious one (4.7), and it is not at all clear how to do
this. In the next chapter we shall show how to find the value of the discrete Asian
option using the Monte-Carlo method, which obviates the need to find boundary
conditions.

18 JOSEPH G. CONLON

5. Numerical Linear Algebra

To implement implicit methods for solving PDE such as the trapezoid rule one
needs to be able to efficiently solve large sparse systems of linear equations. In this
section we shall give a brief survey of how to go about this. The basic problem we
are interested in is solving the linear system

(5.1) Au = b, where u, b are n dimensional vectors and A is a n× n matrix.

Thus the matrix A and vector b are known, and we wish to find the solution u
to (5.1). The standard way to solve this problem is by Gauss elimination, which
requires O(n3) computations for large n. In the cases we will be interested in, where
A is derived from the discretization of a PDE, the matrix A is sparse. That means
it has O(n) non-zero entries. Evidently a diagonal matrix has at most n non-zero
entries and a tri-diagonal matrix has at most 3n non-zero entries. Matrices such
as these are therefore sparse. If we consider implementing the Gauss elimination
method for solving (5.1) when A is sparse, we observe that most of the computations
involved are trivial since we are simply adding zeros. Hence these computations-
which we could have predicted the result of before any actual computing- yield
no new information. A basic principle in determining whether a given numerical
method is efficient is that each new computation gives more information about the
quantity which we wish to estimate.

The starting point for efficient methods of solving (5.1) when A is sparse is to
use iterative techniques. Thus we rewrite (5.1) as a fixed point equation

(5.2) u = Bu+ c where the matrix B and vector c are determined by A, b.

The matrix B is assumed to be sparse if A is sparse. We make an initial guess u0

for the solution to (5.2) and then define a recurrence uk, k = 1, 2, ..., by uk+1 =
Buk + c. If the sequence uk, k = 1, 2, ..., converges limk→∞ uk = u∞, then u = u∞

is the solution to (5.1). Note that the evaluation of each uk requires just O(n)
computations since B is sparse. There are two aspects to the implementation of
this method:

(a) Convergence: We need to show that the matrix B has properties which imply
that sequences uk, k = 1, 2, ..., converge.
(b) Rate of Convergence: We need to know how large k needs to be so that the
error u∞ − uk is small.

The number of computations required for the evaluation of uk is ' kn, so (b) is
very important in understanding how efficient the method really is. Obviously if
we need to take k = n2 to get a good approximation to the solution of (5.2), we
might as well have used the straightforward Gauss elimination method instead.

We give three examples of matrices B for which (5.1), (5.2) are equivalent. The
first example is known as the Jacobi method. We write A = D − E − F , where D
is a diagonal matrix consisting of just the diagonal entries of the matrix A. The
matrix −E consists of the lower triangular matrix with entries equal to the entries
of A below the diagonal. The matrix −F consists of the upper triangular matrix
with entries equal to the entries of A above the diagonal. Hence (5.1) is equivalent
to the equation Du = (E + F)u + b. Assuming D is invertible we see that (5.2)
holds with B = D−1(E + F) and c = D−1b, whence the matrix B is the Jacobi
iteration matrix. The corresponding iteration sequence uk, k = 1, 2, ..., therefore

MATH 623-2012 19

satisfies the recurrence

(5.3) Duk+1 = Euk + Fuk + b, k = 1, 2, ...,

In the Gauss-Seidel (GS) method we partially update the RHS of (5.3) by making
the recurrence equation

(5.4) Duk+1 = Euk+1 + Fuk + b, k = 1, 2,

Intuitively the iterates of (5.4) should converge faster than the iterates of (5.3)
because of the updating. Actually in practice there is not much difference between
the rates of convergence of (5.3) and (5.4). The iteration matrix B for (5.4) is
evidently B = (D−E)−1F and c = (D−E)−1b. Since D−E is a lower triangular
sparse matrix the evaluation of uk+1 in (5.4) from uk requires O(n) computations.
The final method is the so called SOR (successive over-relaxation) method. In this
method we modify the GS method by introducing a parameter ω. Observe that
(5.1) is equivalent to the equation

(5.5) (D − ωE)u = [(1− ω)D + ωF]u+ ωb ,

where ω = 1 corresponds to the fixed point equation for the GS method. The SOR
recurrence equation is then given by

(5.6) (D − ωE)uk+1 = [(1− ω)D + ωF]uk + ωb, k = 1, 2,

Again since D − ωE is lower triangular and sparse, the evaluation of uk+1 in (5.6)
from uk requires O(n) computations. The term “over-relaxation” refers to the
fact that one takes ω in (5.6) to satisfy 1 < ω < 2. It turns out that for some
problems associated with solving differential equations, by choosing ω < 2 but
close to 2 (depending on the discretization of the differential equation) then one
gets significant acceleration in the convergence of the iterates for (5.6) over (5.4) or
(5.3).

We consider the boundary value problem

(5.7) −αd
2u(x)

dx2
+ u(x) = f(x), 0 < x < 1, u(0) = a, u(1) = b.

where f : [0, 1]→ R is a given function. If α > 0 then the problem (5.7) has a unique
solution. We can find the solution numerically by introducing a space discretization
∆x satisfying N∆x = 1 for some integer N , and writing un ∼ u(n∆x), n = 0, .., N .
Evidently u0 = a, uN = b, and then u1, .., uN−1 are determined by a linear system
of N − 1 equations obtained from the differential equation (5.7). Approximating
the second derivative by the difference (2.18) we have from (5.7) that

(5.8) α
2un − un−1 − un+1

(∆x)2
+ un = f(n∆x) = fn, for n = 1, .., N.

We have already observed the difference approximation is a second order accu-
rate approximation to the second derivative, whence we conclude that the solu-
tion un, n = 1, .., N − 1 of the linear N − 1 dimensional system (5.8) satisfies
u(n∆x) = un +O[(∆x)2].

The Jacobi iteration (5.3) for (5.8) is given by the formula

(5.9) uk+1
n =

1

2α+ (∆x)2
{α(ukn−1 + ukn+1) + (∆x)2fn } n = 1, .., N − 1.

20 JOSEPH G. CONLON

The GS iteration is given by

(5.10) uk+1
n =

1

2α+ (∆x)2
{α(uk+1

n−1 + ukn+1) + (∆x)2fn } n = 1, .., N − 1.

Finally the SOR iteration can be given by a two step formula

(5.11) yk+1
n =

1

2α+ (∆x)2
{α(uk+1

n−1 + ukn+1) + (∆x)2fn } ,

uk+1
n = ukn + ω[yk+1

n − ukn] for n = 1, .., N − 1.

Note that in the first step of (5.11) where we compute yk+1
n , we are using the fact

that we have already computed uk+1
n−1.

We compare the implementation of the Jacobi iteration versus the GS iteration.
For the Jacobi iteration we need two N + 1 dimensional vectors u, ũ where we set
u0 = ũ0 = a, uN = ũN = b. We set u initially by a suitable “guess”. Then to get
the 2mth Jacobi iteration we write

(5.12)

for j = 1 : m
for n = 1 : N − 1
ũn = 1

2α+(∆x)2 {α(un−1 + un+1) + (∆x)2fn }
end

for n = 1 : N − 1
un = 1

2α+(∆x)2 {α(ũn−1 + ũn+1) + (∆x)2fn }
end
end

The 2mth iteration is given by the vector u. The GS algorithm is in fact simpler
since we only need one N +1 dimensional vector u in which we set u0 = a, uN = b.
Again we set u initially by a suitable guess and obtain the mth GS iteration by:

(5.13)

for j = 1 : m
for n = 1 : N − 1
un = 1

2α+(∆x)2 {α(un−1 + un+1) + (∆x)2fn }
end
end

Note that if we are computing the j = (k+ 1)st iteration in (5.13) then un = uk+1
n

on the LHS of the equation and on the RHS un+1 = ukn+1. However because the

algorithm continually overwrites the vector u we have that un−1 = uk+1
n−1 on the

RHS of (5.13) since we have already computed uk+1
n−1 in the loop. Hence (5.13)

yields the GS iteration (5.10).
Finally we wish to find properties of the matrix B in (5.2) which guarantees

convergence of the sequence uk, k = 1, 2, .., to the solution of (5.2). Let u = u∞

be the solution to (5.2) and εk = uk − u∞ be the error of the kth iteration. Since
u∞ = Bu∞ + c and uk+1 = Buk + c it follows that

(5.14) εk+1 = Bεk, which implies εk = Bkε0 .

We measure the size of εk by introducing a norm ‖ · ‖ on the space Rn of n
dimensional vectors. A norm must have three properties:

MATH 623-2012 21

(a) Positivity: ‖v‖ ≥ 0 for all v ∈ Rn and ‖v‖ = 0 only if v = 0.
(b) Scalar multiplication: ‖λv‖ = |λ|‖v‖ for all v ∈ Rn and λ ∈ R.
(c) Triangle inequality: ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ Rn.

The most familiar norm is the Euclidean distance norm ‖ · ‖2 defined by

(5.15) ‖v‖2 =


n∑
j=1

v2
j


1/2

v = [v1, .., vn] ∈ Rn .

The Euclidean distance is sometimes called the 2−norm to distinguish it from the
more general p−norm where 1 ≤ p ≤ ∞. The norm we shall be interested in is the
∞−norm defined by

(5.16) ‖v‖∞ = max
1≤j≤n

|vj | , v = [v1, .., vn] ∈ Rn .

Observe that the set of n× n matrices is an n2 dimensional linear space so can be

identified with Rn2

, and hence we can define norms of matrices as well as norms
of vectors. A norm ‖ · ‖ on Rn induces a special norm on the linear space of n× n
matrices as follows:

(5.17) ‖B‖ = max
‖v‖=1

‖Bv‖ .

It follows from the definition (5.17) that ‖Bv‖ ≤ ‖B‖‖v‖ for all v ∈ Rn. Hence if
B1, B2 are two n× n matrices then

(5.18) ‖B1B2v‖ ≤ ‖B1‖‖B2v‖ ≤ ‖B1‖‖B2‖||v‖ for v ∈ Rn.

In particular we have that ‖Bk‖ ≤ ‖B‖k, k = 1, 2, .., whence it follows that if
‖B‖ < 1 then limk→∞ ‖Bk‖ = 0. Comparing with (5.14), we have therefore shown
that if ‖B‖ < 1 for some induced matrix norm then the sequence uk, k = 1, 2, ..,
converges to the solution of (5.2).

A convenient way of measuring the rate of convergence is to ask how many
iterations k0 are required to guarantee that the initial error is reduced by 50%.
The reason for this is that once we know the number k0 then the error decreases
exponentially in m upon doing mk0 iterations. From the previous paragraph we see
that it is possible to to take k0 such that ‖B‖k0 = 1/2. Consider now the Jacobi
iteration matrix B associated with the boundary value problem (5.7), (5.8). From
(5.9) we see that B is a tri-diagonal matrix with non-negative entries and the sum
of the entries in a row is 2α/[2α+ (∆x)2] = 1− (∆x)2/[2α+ (∆x)2 = 1−O[(∆x)2].
Letting ‖B‖∞ be the matrix norm on n× n matrices B = {bi,j} induced from the
∞ norm on Rn, it is clear that

(5.19) ‖B‖∞ = max
1≤i≤n

n∑
j=1

|bi,j | .

We conclude that the matrix B in (5.9) satisfies 0 < 1− ‖B‖∞ = O[(∆x)2]. Thus
‖B‖k0∞ = 1/2 implies that {1 − O[(∆x)2]}k0 = 1/2, whence k0 ' 1/(∆x)2. The
number of iterations necessary to reduce error by 50% therefore grows as the dis-
cretization size decreases. Furthermore since each iteration requires ' 1/(∆x)
computations, the total number of computations required to reduce initial error by
50% is ' 1/(∆x)3. Since this number is O(n3) with n = N − 1 ' 1/(∆x), it ap-
pears that our iteration method is rather worse than the simple Gauss elimination

22 JOSEPH G. CONLON

method. It is true that the pure Jacobi or GS method does not do better than Gauss
elimination, but SOR will do better if we choose ω in (5.11) close to 2, depending
on ∆x. There exist now quite sophisticated iteration algorithms (multi-grid algo-
rithms) based on the simple ones we have been considering, which reduce error by
50% in ' log(1/∆x) iterations. These algorithms are closely linked to fast Fourier
transform algorithms which enable one to compute the discrete Fourier transform
of an n dimensional vector in ' n log n computations.

6. The Crank-Nicolson Algorithm

We already introduced the trapezoid rule (1.31) in §1, which is an implicit second
order accurate method for solving ODEs and mentioned that its extension to solving
linear parabolic PDE is known as the Crank-Nicolson (CN) method. We shall use
the CN method here to obtain an algorithm for pricing a barrier call option. In the
barrier option the value of the option becomes zero if the price of the underlying
stock falls below the barrier price before expiration. Assuming ea is the barrier
stock price then the value of the barrier option is given by solving (2.1), (2.2) in
the region S > ea, t < T, with terminal condition (2.2) and boundary condition
V (ea, t) = 0, t < T . Defining u(x, t) as in §2 we see that we need to solve the PDE
(2.4) with the terminal condition (2.5) and boundary conditions u(a, t) = 0, t < T,
and (2.16). From (1.31),(2.17),(2.18),(2.21) we see that the CN algorithm for (2.4)
is given by the equation

(6.1)
u(x, t)− u(x, t−∆t)

∆t
+
σ2

4

u(x+ ∆x, t) + u(x−∆x, t)− 2u(x, t)

(∆x)2
+

σ2

4

u(x+ ∆x, t−∆t) + u(x−∆x, t−∆t)− 2u(x, t−∆t)

(∆x)2
+

1

2

{
r − σ2

4

}[
u(x+ ∆x, t)− u(x−∆x, t)

2∆x
+
u(x+ ∆x, t−∆t)− u(x−∆x, t−∆t)

2∆x

]
− r

2
[u(x, t) + u(x, t−∆t)] = 0.

We write (6.1) as

(6.2) (p+r∆t/2)u(x, t−∆t)−p+u(x+∆x, t−∆t)−p−u(x−∆x, t−∆t) = f(x, t) ,

where p, p+, p− are given by the formulas

(6.3) p = 1 + σ2∆t/2(∆x)2, p+ = σ2∆t/4(∆x)2 + (r − σ2/2)∆t/4∆x ,

p− = σ2∆t/4(∆x)2 − (r − σ2/2)∆t/4∆x .

The RHS f(x, t), a < x < b, of (6.2) is given in terms of the already computed
function u(x, t), a < x < b. We shall solve (6.2) by using the GS algorithm
with initial guess u(x, t), a < x < b, since we expect that this function is a good
approximation to the function u(x, t−∆t), a < x < b. Observe that the algorithm
converges since p+ + p− < p.

Assuming we are able to solve the linear system of equations (6.2) exactly, then
the error in the CN method is O[(∆t)2] + O[(∆x)2]. Thus in the implementation
of CN we take ∆t ' ∆x. In the one dimensional case we are considering here we
can actually solve (6.2) by using LU factorization in ' 1/∆x computations. Thus
the total number of computations required to get a solution with error O[(∆x)2]

MATH 623-2012 23

is ' 1/(∆x)2 since there are ' 1/∆t time steps and ∆t ' ∆x. In the explicit
Euler method since ∆t ' (∆x)2 the total number of computations required to
get a solution with error O[(∆x)2] is ' 1/(∆x)3. Hence for a given accuracy the
CN method is significantly more efficient than explicit Euler provided we have an
efficient linear equation solver. We have already pointed out in the previous section
that the simple iteration methods we introduced there are not efficient. We can
estimate as we did in §5 how many computations using the Jacobi iteration are
required to yield a solution which is O[(∆x)2] accurate. From (6.3) we see that
0 < 1 − (p+ + p−)/p ' (∆x)2/∆t ' ∆x. Thus we need to do ' 1/∆x iterations
to reduce the initial error in the solution to the linear system (6.2) by 50%. Thus
the number of computations at each time step is ' 1/(∆x)2. Since there are
' 1/∆t ' 1/∆x time steps we conclude the total number of computations to
obtain an O[(∆x)2] accurate solution is ' 1/(∆x)3, which is the same as in the
explicit Euler method. This result is perhaps not so surprising given the remarks
at the end of §5.

University of Michigan, Department of Mathematics, Ann Arbor, MI 48109-1109

E-mail address: conlon@umich.edu

