
CHAPTER II - MONTE CARLO METHODS

JOSEPH G. CONLON

1. The Basic Method

The Monte-Carlo (MC) method for numerically estimating certain quantities is
based on the law of averages for independent identically distributed (i.i.d.) random
variables. To take the simplest example, consider the situation where a fair coin is
tossed many times. Then we expect that in a large number of tosses approximately
50% of the tosses will come up heads. This is a particular case of the strong law of
large numbers.

Let X be a random variable with finite mean and variance. We have that

(1.1) Var[X] = E[ (X − E[X])2 ] = E[X2]− (E[X])2 .

Since variance is non-negative it follows from (1.1) that (E[X])2 ≤ E[X2], with
equality only if X is deterministic i.e. X takes a single value with probability 1.
Let X1, X2, .., be i.i.d. random variables with the same distribution as X in (1.1).
The strong law of large numbers then tells us that

(1.2) lim
N→∞

X1 + · · ·+XN

N
= E[X] with probability 1.

If we know how to generate large numbers of independent copies of the variable X
by say using a random number generator on a computer, then (1.2) enables us to
numerically estimate E[X]. Thus there are two ingredients to the MC method:
(a) Express the quantity we wish to estimate as the expectation E[X] of some
random variable X.
(b) Create a random number generator which efficiently generates large numbers
of approximately independent variables with distribution the same as X.

Now (b) is the “black box” which is essential to any MC method. In prac-
tice one creates random number generators for the variable X, which is uniformly
distributed on the interval 0 < X < 1. These generally work by an algorithm of
the form Xn+1 = F (Xn), where F : [0, 1] → [0, 1] is an arithmetic function which
can be accurately computed in a short number of steps. Evidently the sequence
X1, X2, .., is deterministic, but in good random number generators the variable
j → Xj , j = 1, 2, ..., is almost independent of the variable j → Xj+1, j = 1, 2, ..,
in the sample probability space. That is suppose we sample N values of X from
the random number generator for some large N . Our probability space is now
ΩN = {1, 2, .., N} and the probability distribution we put on ΩN is the uniform
distribution. Then the variable j → Xj , j = 1, 2, ..., is almost independent of the
variable j → Xj+1, j = 1, 2, .., on ΩN . One can never get complete independence
even theoretically in the limit N →∞, because the functions F : [0, 1]→ [0, 1] are
always periodic. That is there exists N0 such that XN0 = X0 for all X0. However
for good random number generators we shall have N0 >> N . For example we
typically have N ' 107 whereas N0 ' 1020, and that gives very good approximate

1



2 JOSEPH G. CONLON

independence. In MATLAB the command rand(m,n) generates an m × n matrix
with entries which are independently generated values of the uniform variable. The
command randn(m,n) generates an m × n matrix with entries which are inde-
pendently generated values of the standard normal variable. The operation randn
works by first implementing rand to generate values of i.i.d. uniform variables,
and then using a deterministic algorithm to turn these values into values of i.i.d.
standard normal variables. Because of our limitation on possible random number
generators, we shall be restricted to estimating E[X] in (a) using MC only for
variables X of the form X = g(Y 1, ..., Y k), where Y 1, .., Y k are either i.i.d. uniform
or normal variables.

An important issue in numerical analysis is always to get an idea of how many
computations are required to estimate a desired quantity to a given degree of ac-
curacy. The answer to this question for the MC method is provided by the central
limit theorem:

Theorem 1.1. Suppose a random variable X has finite mean µ and variance σ2.
Let X1, X2, .., be i.i.d. copies of X. Then
(1.3)

ZN =

√
N

σ

[
X1 + · · ·+XN

N
− µ

]
converges in distribution as N →∞ to Z,

where Z is the standard normal variable with probability density function (pdf) ρ(·)
given by

(1.4) ρ(z) =
1√
2π
e−z

2/2, −∞ < z <∞.

Now convergence in distribution means that for any a ∈ R then limN→∞ P (|ZN | >
a) = P (|Z| > a). We have already observed in Chapter I that P (|Z| > 3) < .003.
Hence Theorem 1.1 implies that for large N then

(1.5) P

(∣∣∣∣X1 + · · ·+XN

N
− µ

∣∣∣∣ > 3σ√
N

)
< .003.

We can write (1.5) alternatively as
(1.6)
X1 + · · ·+XN

N
− µ = Error(N), where Error(N) <

3σ√
N

with high probability.

Hence the error in the MC method is proportional to the inverse square root of the
number of simulations. We conclude that MC enables us to estimate E[X] with

' N computations up to an accuracy ' 1/
√
N .

To implement the MC method for estimating E[X] we proceed as follows:

(a) Generate N ' 107 values X1, .., XN of i.i.d. variables with the same distribution
as X.
(b) Compute the averages X̂n, n = 1, 2, ..N given by

(1.7) X̂n =
1

n

n∑
j=1

Xj ,
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and graph the convergence diagram n→ X̂n, n = 1, .., N .
(c) Compute the sample variance σ̂2

N defined by

(1.8) σ̂2
N =

1

N

N∑
j=1

[Xj − X̂N ]2 .

(d) Report the estimated value X̂N for E[X] and the standard error εN = σ̂N/
√
N .

In addition report the proportional error which is εN/X̂N .

Remark 1. Note that the sample variance (1.8) is not an unbiassed estimator of
the variance σ2 of X. “Unbiassed” means that the expectation of the estimator is
equal to the quantity of interest. To get an unbiassed estimator we need to replace
1/N in (1.8) by 1/(N − 1).

We can compare the efficiency of the MC method with deterministic methods.
Thus let Φ : [0, 1]d → R be a function on the d dimensional unit “cube”, and
suppose we wish to estimate its integral. Evidently we have that

(1.9)

∫ 1

0

· · ·
∫ 1

0

Φ(x1, .., xd) dx1 · · · dxd = E[Φ(X1, .., Xd)] ,

where X1, .., Xd are i.i.d. variables uniform on the interval [0, 1]. The standard
Riemann sum algorithm for estimating the integral is to choose N equally spaced
points x1, .., xN in [0, 1]d which are the centers of disjoint subcubes each of volume
1/N . Then we estimate

(1.10)

∫
[0,1]d

Φ(x) dx ' 1

N
[Φ(x1) + · · ·Φ(xN )] .

If Qj is the subcube with center xj then
(1.11)∣∣∣∣∣
∫
Qj

Φ(x) dx− Φ(xj)

N

∣∣∣∣∣ ≤
∫
Qj

|Φ(x)− Φ(xj)| dx ≤
supx∈Qj

|Φ(x)− Φ(xj)|
N

.

If the function Φ(·) is differentiable then |Φ(x)−Φ(xj)| ≤ C|x− xj | for a constant

C. Since the volume of Qj is 1/N the length of an edge of Qj is ' 1/N1/d. We
conclude from (1.11) that

(1.12)

∣∣∣∣∣
∫

[0,1]d
Φ(x) dx− 1

N
[Φ(x1) + · · ·Φ(xN )]

∣∣∣∣∣ ≤ C

N1/d

for some constant C. In the MC method we have

(1.13)

∫
[0,1]d

Φ(x) dx ' 1

N
[Φ(X1) + · · ·Φ(XN )] ,

where Xj = (X1
j , .., X

d
j ), j = 1, 2, .., and each Xr

j , 1 ≤ r ≤ d, j = 1, 2, .., are i.i.d.

uniform on [0, 1]. The error is ' 1/
√
N and hence is worse than the Riemann sum

method if d = 1, 2 but is better if d ≥ 3. We see then that the MC method has a big
advantage over deterministic methods when we wish to estimate high dimensional
integrals.
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Example 1. We can use MC to estimate the value of the standard put option. We
have already seen in §2 of Chapter I that the BS price of the put option is given by
the expectation

(1.14) V (S0, 0) = e−rTE
[
max[K − S(T ), 0]

∣∣ S(0) = S0

]
.

The variable S(T ) is log normal and given by the formula

(1.15) S(T ) = S0 exp
{

(r − σ2/2)T + σ
√
Tξ
}
,

where ξ is standard normal. In our MC simulation we generate using randn N
values ξ1, .., ξN of i.i.d. standard normal variables and set

(1.16) Xj = e−rT max
[
K − S0 exp

{
(r − σ2/2)T + σ

√
Tξj

}
, 0
]
, j = 1, .., N.

Then we proceed as in the MC procedure (a)-(d) already given.

2. Numerical Methods for the Solution of Stochastic Differential
Equations (SDE)

In Chapter I we studied solutions of ODEs and numerical methods for solving
them. Here we shall do an analogous study of stochastic differential equations
(SDEs). An SDE can be thought of as a randomly perturbed ODE. Thus if b :
R ×R → R and σ : R ×R → R+ are given functions we associate to them the
SDE
(2.1)
dY (t)

dt
= b(Y (t), t)+σ(Y (t), t)W (t), where W (t), t ∈ R, is the white noise process.

The effect of the process W (·) is to give the particle with position X(·) a random
“kick” at each time t with the kicks being i.i.d. for different times. To make this
precise let ξj , j = 0,±1,±2, .., be an infinite set of i.i.d. standard normal variables.
Then for ∆t > 0 we have

(2.2)

∫ (j+1)∆t

j∆t

W (s)ds =
√

∆t ξj .

The actual white noise process is a limit as ∆t→ 0 of the process defined by (2.2).
Another way of thinking about the white noise process is as the “derivative” of
Brownian motion. If B(t), t ≥ 0, is BM then a typical path of B(·) is very wiggly
and in fact not differentiable in the sense that the pointwise derivative

(2.3)
dB(t)

dt
= lim

∆t→0

B(t+ ∆t)−B(t)

∆t

never exists with probability 1. We can however write (2.2) alternatively as

(2.4)

∫ ((j+1)∆t

j∆t

W (s)ds = B((j + 1)∆t)−B(j∆t), j = 0, 1, ...

Taking ∆t → 0 in (2.4) we have formally the equation dB(t)/dt = W (t). This
however needs to be interpreted not in the classical sense (2.3) but in a generalized
sense. We therefore can write (2.1) in differential form as

(2.5) dY (t) = b(Y (t), t)dt+ σ(Y (t), t)dB(t) ,
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which is the form we used in Chapter I. Just as for ODEs the evolution equation
can be solved uniquely for t > 0 with given initial data Y (0) = Y 0 given. Evidently
Y 0 can be an arbitrary random variable, which as a special case could be chosen
deterministically as Y 0 ≡ y0 ∈ R with probability 1.

To numerically solve (2.5) with given initial data we use the explicit Euler method
as we did for ODEs. Thus on setting Y m ' Y (m∆t), then (2.5) yields the recur-
rence relation

(2.6) Y m+1 = Y m + b(Y m,m∆t)∆t+ σ(Y m,m∆t)
√

∆t ξm, m = 0, 1, 2, ..,

where ξ0, ξ1, .., are i.i.d. standard normal. Suppose now we wish to estimate the
expectation E[Φ(Y (T )) | Y (0) = Y 0] for some function Φ : R→ R. Then we choose
an integerM such thatM∆t = T and use randn to generate ξ0, .., ξM−1. Solving the
recurrence (2.6) with initial data Y 0 gives us one MC realization of YM ' Y (T ).
We can do this N times yielding N independent simulations YM1 , .., YMN of the
random variable Y (T ). Then we set

(2.7) E[Φ(Y (T )) | Y (0) = Y 0] '
[
Φ(YM1 ) + · · ·+ Φ(YMN )

]
/N .

Observe that there are two sources of error in the estimate (2.7). There is the MC

error as we have seen before which isO(1/
√
N). There is also the discretization error

which depends on ∆t and disappears as ∆t→ 0. Now the amount of computation
required to get the estimate (2.7) is 'MN , and so we should ask that for a given
value of MN say MN = 107, how we should choose M and N to minimize the error.
In the Euler method for ODEs we saw the discretization error is O(∆t) ' 1/M .
If the same holds for the SDE then we should choose M so that discretization
error is comparable to MC error i.e. 1/M ' 1/

√
N or N = M2. In actual fact

the discretization error in (2.6) is O(
√

∆t ) ' 1/
√
M , whence we should expect to

choose M ' N in order to minimize error.
We write the Euler method (2.6) for the SDE (2.5) as

(2.8) Y (t+ ∆t) = Y (t) + b(Y (t), t)∆t+ σ(Y (t), t)[B(t+ ∆t)−B(t)] .

We can see from this why the discretization error for the SDE is O(
√

∆t) whereas for
the deterministic Euler method it is O(∆t). The reason is that |B(t+∆t)−B(t)| '√

∆t with high probability. In the algorithm (2.8) the coefficient of B(t+∆t)−B(t)
is σ(Y (t), t), but this obviously carries an error comparable to σ(Y (t+∆t), t+∆t)−
σ(Y (t), t), which is O(∆t) or worse. The truncation error for (2.8) then is at least

O[(∆t)3/2], whence the cumulative error is O(
√

∆t). We can reduce the truncation
error by improving the approximation

(2.9)

∫ t+∆t

t

σ(Y (s), s) dB(s) ' σ(Y (t), t)[B(t+ ∆t)−B(t)] ,

which is used in (2.8). From (2.5) we have that for t < s < t+ ∆t,

(2.10) Y (s)− Y (t) =

∫ s

t

dY (s′) ' σ(Y (t), t)[B(s)−B(t)] .

In this approximation then
(2.11)

σ(Y (s), s) ' σ(Y (t)+σ(Y (t), t)[B(s)−B(t)], t) ' σ(Y (t), t)+
∂σ(Y (t), t)

∂y
[B(s)−B(t)] ,
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upon doing the Taylor expansion of σ(y, t) in y about y = Y (t). Now from (2.5),
(2.11) we have that

(2.12)

Y (t+ ∆t)− Y (t) =

∫ t+∆t

t

dY (s) ' b(Y (t), t)∆t+

∫ t+∆t

t

σ(Y (s), s)dB(s)

' b(Y (t), t)∆t+σ(Y (t), t)[B(t+∆t)−B(t)]+σ(Y (t), t)
∂σ(Y (t), t)

∂y

∫ t+∆t

t

[B(s)−B(t)]dB(s) .

Using the Ito calculus we have that

(2.13)

∫ t+∆t

t

[B(s)−B(t)]dB(s) =
1

2
[B(t+ ∆t)−B(t)]2 − ∆t

2
.

If we write now B(t + ∆t) − B(t) =
√

∆t ξ where ξ is standard normal, then the
algorithm (2.12) is the same as

(2.14) Y (t+ ∆t) = Y (t) + b(Y (t), t)∆t

+ σ(Y (t), t)
√

∆t ξ + σ(Y (t), t)
∂σ(Y (t), t)

∂y

∆t

2
[ξ2 − 1] .

Evidently (2.14) is a refinement of the basic Euler algorithm (2.6) and is known as
Milstein’s algorithm. Generally we expect the discretization error in (2.14) to be
O(∆t). Note that at each step of the algorithm we just need to generate a single
standard normal variable to implement the algorithm, as is also the case with the
Euler algorithm.

We already observed in Chapter I that for geometric Brownian motion S(t) which
is a solution to the SDE

(2.15) dS(t) = S(t)[rdt+ σdB(t)] ,

we have that

(2.16) S(t+ ∆t) = S(t) exp[(r − σ2/2)∆t+ σ
√

∆t ξ] ,

where ξ is standard normal. We can expand the exponential in (2.16) in its series
expansion

(2.17) ez = 1 + z +
z2

2
+
z3

6
+ · · · ,

to obtain increasingly accurate approximations for S(t + ∆t). If we keep just the
first 2 terms in the expansion (2.17) we have from (2.16) that

(2.18) S(t+ ∆t) = S(t) + (r − σ2/2)S(t)∆t+ σS(t)
√

∆t ξ ,

which we can compare to the Euler algorithm (2.6),

(2.19) S(t+ ∆t) = S(t) + rS(t)∆t+ σS(t)
√

∆t ξ .

If we keep the first 3 terms in the expansion (2.17) we have
(2.20)

S(t+∆t) = S(t)+[(r−σ2/2)S(t)∆t+σS(t)
√

∆t ξ]+
S(t)

2
[(r−σ2/2)∆t+σ

√
∆t ξ]2 .

We can rewrite (2.20) as

(2.21) S(t+∆t) = S(t)+rS(t)∆t+σS(t)
√

∆t ξ+σ2S(t)
∆t

2
[ξ2−1]+O[(∆t)3/2],
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which gives us the Milstein algorithm for solving (2.15).
We can also see from (2.21) why the Euler algorithm (2.19) is a correct numerical

scheme for solving the SDE (2.15) whereas the algorithm (2.18) is incorrect. The
reason is that the principal correction term to the Euler algorithm involves the
variable ξ2 − 1 which has mean 0. Now the cumulative error will involve a sum
of ' 1/∆t i.i.d. such variables, and hence by the CLT this sum will be ' 1/

√
∆t.

Hence the cumulative error in the Euler method is ' ∆t/
√

∆t = O(
√

∆t ). By
contrast the error in the algorithm (2.18) is ∆t/∆t = O(1) and so does not vanish
as ∆t → 0. It is clear then that there are some extra subtleties involved with
algorithms for solving SDEs beyond those which occur in algorithms for solving
ODEs.

As an application of the above we consider the Heston stochastic volatility model,
given by

dY (t) = [θ − κY (t)]dt+ β
√
Y (t) dB(t) ,(2.22)

dS(t) = S(t)
[
rdt+

√
Y (t){ρ dB(t) +

√
1− ρ2 dZ(t)}

]
.(2.23)

In (2.22), (2.23) the parameters θ, κ, β are positive and the parameter ρ satisfies
−1 ≤ ρ ≤ 1. The processes B(·) and Z(·) are independent Brownian motions. We
have that

(2.24) Var

[∫ t+∆t

t

ρ dB(s) +
√

1− ρ2 dZ(s)

]
= ρ2∆t+ (1− ρ2)∆t = ∆t,

so the process B̃(t) = ρ B(t) +
√

1− ρ2 Z(t), t ≥ 0, is also a copy of Brownian

motion. Hence the stock volatility is
√
Y (t), which is stochastic since Y (t) evolves

by the SDE (2.22).
The set of equations (2.22), (2.23) can be solved uniquely for t > 0 with given

initial conditions Y (0) = Y 0, S(0) = S0. The value of a call option today with
expiration T and strike price K is as in Chapter I given by the formula

(2.25) V (S0, 0) = e−rTE
[
max{S(T )−K, 0} | S(0) = S0, Y (0) = Y 0

]
.

Now today’s stock price S0 is easily observed, but it is not so clear how to assign
the initial condition Y 0 for the volatility process (2.22). To see what this should
be we note that the process is mean reverting. This means that |Y (t)| is bounded
for all t ≥ 0 with probability 1, in contrast to the stock price S(t) which tends to
grow exponentially. To see this we consider the deterministic situation β = 0 with
initial data y0, which can be easily solved to obtain

(2.26) y(t) = e−κty0 + θ[1− e−κt]/κ .
It follows from (2.26) that y(t) converges exponentially fast in time to the value
y∞ = θ/κ. In the stochastic case β > 0 we expect something similar to happen
but now the random variable Y (t) converges in distribution to a random variable
Y∞, the so called invariant measure for the SDE (2.22), which for β small should
be concentrated around θ/κ. Hence it makes sense to take Y (0) = θ/κ in (2.25).

To estimate the value (2.25) of the call option using the MC method, we therefore
choose an integer M so that M∆t = T and use the Euler method to solve (2.22),
(2.23) with initial conditions Y (0) = Y 0 = θ/κ, S(0) = S0. Thus as in (2.6) we
define Y m, Sm, m = 0, ..,M by the recurrence

Y m+1 = Y m + [θ − κY m]∆t+ β
√
Y m
√

∆t ξm ,(2.27)
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Sm+1 = Sm + Sm
[
r∆t+

√
Y m
√

∆t {ρ ξm +
√

1− ρ2 ηm}
]
,(2.28)

where the ξm, ηm, m = 0, ...,M − 1 are samplings of i.i.d. standard normal
variables. The corresponding value of the call option is from (2.25)

(2.29) value of option = e−rT max{SM −K, 0} .
We then need to do N >> 1 independent samples of this procedure and average
over the corresponding values of (2.29) to estimate the MC value of the option.

We need to restrict the parameters θ, β in (2.22) to satisfy θ > β2/2 since if this
inequality is violated the solution Y (t) becomes 0 at some random time τ > 0 with
probability 1, and then Y (t) = 0 for all t ≥ τ . Thus the stock eventually has zero
volatility, which is the trivial situation of the value of the equity increasing at the
risk free rate r. We can see heuristically why if θ < β2/2 then Y (t) becomes zero
eventually and remains there for all later times. Suppose that Y (t) = y > 0 where
y is small, and consider how much time is needed for Y (s), s > t, to decrease to
y/2 with probability which is ' 1/2. From(2.22) we have that

(2.30) −y/2 ' θ∆t− β
√
y∆t .

Now (2.30) is a quadratic in z =
√

∆t given by the equation

(2.31) θz2 − β√yz + y/2 = 0, with real solution if (β
√
y)2 > 4θy/2 .

Hence if θ < β2/2 there is a probability ' 1/2 that Y (t+∆t) = y/2, where ∆t ' y.
It is easy to see now that the probability that Y (t+ ∆t) ≤ y/2 for some ∆t ' y is
strictly large than 1/2 if θ < β2/2. Hence Y (·) with probability 1 hits 0 at some
random time τ and then remains there.

The Heston model can be used to explain to some degree the so called volatility
“smiles” which are observed in the market. Thus consider quoted options on a
particular stock with a range of strike prices K and expiration dates T . These
options have observed prices V (K,T ), and so we can assign to the underlying stock
implied volatilities σ(K,T ) defined by

(2.32)

V (K,T ) = Black Scholes price of the option with strike K, expiration T,

and volatility σ = σ(K,T ) .

Now if the BS theory perfectly matched the market then σ(K,T ) would be a con-
stant function of K and T . In practice the function K → σ(K,T ) is non-constant.
For stock options it tends to be a decreasing function of K. For foreign currency
options it tends to be convex with a minimum when K equals today’s currency
price, so for the at the money option. The qualitative difference in these behaviors
can be explained by the value of the coefficient of correlation ρ in (2.23). Now stock
price and stock volatility are positively correlated if ρ > 0 and negatively correlated
if ρ < 0. We expect ρ < 0 for stocks since as the price of the stock increases players
withdraw from the market, which tends to drive down volatility. Correspondingly
as prices decrease stock volatility tends to increase. In contrast for foreign currency
we expect ρ ' 0, in other words little correlation between currency price and cur-
rency volatility. The reason for this is that there is more of an even balance between
buyers and sellers of the currency than in the case of a stock. If say the British
pound increases in value with respect to the US dollar, then dollars have become
cheaper in Britain, which encourages increased buying of dollars in Britain. If the
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British pound decreases in value with respect to the US dollar, then pounds have
become cheaper in the US, which encourages increased buying of pounds in the
US. The Heston model for different ρ does produce “smile” curves, which are quali-
tatively similar to the curves observed in the market. However there is a significant
quantitative difference in the effect. The observed market effect is much larger than
the effect produced in the Heston model.

3. Correlation

We have already discussed correlation in the context of the Heston model. There
are many ways of measuring the correlation of 2 random variables X and Y , but
the simplest way is through the covariance cov[X,Y ] defined by

(3.1) cov[X,Y ] = E [{X − E[X]}{Y − E[Y ]}] = E[XY ]− E[X]E[Y ] .

Evidently the variance of a random variable X is just the covariance of X and
X, so var[X] = cov[X,X]. Observe now from (3.1) that upon using the Schwarz
inequality we have that
(3.2)

|cov[X,Y ]| ≤ E
[
{X − E[X]}2

]1/2
E
[
{Y − E[Y ]}2

]1/2
=
√

var[X]var[Y ] .

From (3.2) the coefficient of correlation ρ(X,Y ) between X,Y defined by

(3.3) ρ(X,Y ) = cov[X,Y ]
/√

var[X]var[Y ] ,

satisfies the inequality −1 ≤ ρ(X,Y ) ≤ 1. If ρ(X,Y ) = +1 then X = λY for some
scalar λ > 0. If ρ(X,Y ) = −1 then X = −λY for some scalar λ > 0. Thus if
|ρ(X,Y )| = 1 then X,Y are perfectly correlated, i.e. the value of X determines the
value of Y . Observe also that if X,Y are independent then ρ(X,Y ) = 0. It does
not however follow that ρ(X,Y ) = 0 implies X,Y independent. Nevertheless one
tends to assume that if |ρ(X,Y )| << 1 then X,Y are only weakly correlated, so
are close to being independent.

We can apply these considerations to the Heston model. The volatility process
Y (·) for the Heston model is driven by the Brownian motion B(·) in (2.22), whereas

the stock process S(·) is driven by the Brownian motion B̃(·) = ρB(·)+
√

1− ρ2Z(·)
in (2.23), where Z(·) is a BM independent of B(·). We can compute the coefficient

of correlation between increments of B(·) and increments of B̃(·). Thus we have
(3.4)

cov[{B(t+ ∆t)−B(t)}, {B̃(t+ ∆t)− B̃(t)}] = ρE[{B(t+ ∆t)−B(t)}2] = ρ∆t .

We also have that

(3.5) var[B(t+ ∆t)−B(t)] = var[B̃(t+ ∆t)− B̃(t)] = ∆t .

It follows from (3.3)-(3.5) that the coefficient of correlation is ρ, so ρ is the coefficient
of correlation between the BM driving the stock price and the BM driving the stock
volatility.

Correlation ideas are important when it comes to valuing basket options, which
are options with a payoff depending on the behavior of several stocks. Consider the
case of an option with value depending on the price of d stocks, where S1(t), ..., Sd(t)
are the prices of the stocks at time t ≥ 0. The arithmetically averaged basket call
option with expiration date T > 0 and strike price K has payoff given by

(3.6) payoff = max

[
S1(T ) + · · ·+ Sd(T )

d
−K, 0

]
.
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The corresponding geometrically averaged option has payoff given by

(3.7) payoff = max
[
{S1(T ) · · ·Sd(T )}1/d −K, 0

]
.

Now a well known inequality is that the geometric mean is smaller than the arith-
metic mean, so if a1, .., ad are any d positive numbers then

(3.8) {a1 · · · ad}1/d ≤ [a1 + · · ·+ ad]/d .

It is not hard to see why (3.8) holds since it is a consequence of the Jensen inequality
(3.9)
E[f(X)] ≤ f(E[X]) for any concave function f : R→ R and random variable X.

Evidently (3.8) follows from (3.9) by taking the logarithm of (3.8) and using f(x) =
log x, x > 0, in (3.9). It follows from (3.8) that the value of the arithmetic option
is larger than the value of the geometric option.

To estimate the value of basket options on the d stocks, we model the evolution
of their prices S1(t), ..., Sd(t) by geometric BM so

(3.10)


dS1(t)
S1(t) = r dt+ σ1 dB1(t),
dS2(t)
S2(t) = r dt+ σ2 dB2(t),

· · · · · · · · · · · · · · · · · · · · · · · ·
dSd(t)
Sd(t) = r dt+ σd dBd(t),

where B1(·), ..., Bd(·) are d (in general) correlated Brownian motions. The volatili-
ties of the d stocks are given by σ1, ..., σd. The correlations between the d Brownian
motions is determined by a d × d covariance matrix ρ = [ρi,j ]. The entries ρi,j of
the matrix ρ are defined by

(3.11) ρi,j∆t = cov[{Bi(t+ ∆t)−Bi(t)}, {Bj(t+ ∆t)−Bj(t)}] , 1 ≤ i, j ≤ d.
Evidently ρi,j = ρj,i , |ρi,j | ≤ 1 and ρi,i = 1 for 1 ≤ i, j ≤ d, so ρ is a symmetric
matrix with diagonal entries all equal to 1. The matrix ρ is also non-negative
definite. This means that

(3.12)
∑

1≤i,j≤d

ξiρi,jξj ≥ 0 for all vectors ξ = [ξ1, .., ξd] ∈ Rd .

To see why (3.12) holds we observe from (3.11) that

(3.13) ∆t
∑

1≤i,j≤d

ξiρi,jξj = E

 { d∑
i=1

ξi[Bi(t+ ∆t)−Bi(t)]

}2
 ≥ 0 .

Now one way of exhibiting symmetric non-negative definite d× d matrices is by
choosing any d×d matrix A and setting ρ = ATA, where AT is the transpose of A.
It turns out that the converse is also true, namely that for any non-negative definite
d × d matrix ρ there exists a d × d matrix A such that ρ = ATA. The matrix A
is not uniquely determined. In fact if A is such a matrix then for any orthogonal
matrix O i.e. OOT = OTO = Id, the matrix OAOT also works. One can specify a
unique matrix A by requiring additional conditions on A. These conditions are:
(3.14)
Cholesky Decomposition : A is lower triangular with diagonal entries all nonnegative.

Hence A = [ai,j ] with ai,j = 0 for 1 ≤ i < j ≤ d, and ai,i ≥ 0 for 1 ≤ i ≤ d. One
can use the MATLAB function “chol” to find the Cholesky matrix A corresponding
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to ρ. Now chol(ρ) gives an upper triangular matrix so we set A to be the transpose
of this, whence A = chol(ρ)′.

In order to use MC to simulate the evolution of [S1(t), ..., Sd(t)] in (3.10) it
is necessary to decompose the correlated Brownian motions B1(t), .., Bd(t) into
independent BMs. We can use the decomposition ρ = ATA to achieve this. Thus
let Z1(t), .., Zd(t), be independent BMs and set

(3.15) Bi(t) =

d∑
r=1

ai,rZr(t) , 1 ≤ i ≤ d.

Then we have that

(3.16) cov[{Bi(t+ ∆t)−Bi(t)}, {Bj(t+ ∆t)−Bj(t)}] =

∆t

d∑
r,s=1

ai,raj,sδr,s = ∆t
d∑
r=1

ai,raj,r = ∆t{AAT }i,j = ∆tρi,j .

Thus the BMs in (3.15) have the same covariance structure as the BMs in (3.10).
The solution to (3.10) at time T is therefore given by

(3.17) Si(T ) = Si(0) exp

[
(r − σ2

i /2)T + σi
√
T

d∑
r=1

ai,rξr

]
for 1 ≤ i ≤ d,

where ξ1, .., ξd are i.i,d standard normal. Once we have simulated S1(T ), .., Sd(T )
we can estimate the values of the basket options with the payoffs given by (3.6),
(3.7) using the standard procedures.

4. Variance Reduction

In the basic MC method we are interested in estimating the expectation of a
function of a random variable which we can easily simulate, such as the standard
normal variable. Thus if Φ : R → R is a function and ξ the standard normal
variable then

(4.1) E[Φ(ξ)] ' Φ(ξ1) + · · ·+ Φ(ξN )

N
,

where ξ1, .., ξN are N independent simulations of the standard normal variable.
We have already seen that the error in (4.1) is proportional to the square root of
Var[Φ(ξ)]/N . A variance reduction method for estimating E[Φ(ξ)] in (4.1) is then
a function Ψ : R→ R such that

(4.2) E[Φ(ξ)] = E[Ψ(ξ)] and Var[Ψ(ξ)] << Var[Φ(ξ)] .

Hence we can estimate E[Φ(ξ)] by

(4.3) E[Φ(ξ)] ' Ψ(ξ1) + · · ·+ Ψ(ξN )

N
.

The amount of work involved in computing the RHS of (4.3) is comparable to
the amount of work involved in computing the RHS of (4.1). However because
Var[Ψ(ξ)] is much less than Var[Φ(ξ)], it follows that the error in (4.3) is smaller
than the error in (4.1). In order to implement this method we need to come up with
a suitable function Ψ(·), and that of course is not so easy to do. Obvious choices
like Ψ(ξ) = Φ(ξ)+λξ where λ is a constant satisfy the identity in (4.2), but there is
no reason to expect the new function to have reduced variance. In this section we
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will discuss three methods of variance reduction which have application to pricing
derivatives. These methods are:

(a) Method of antithetic variables.
(b) Control variate method.
(c) Importance sampling.

Method of antithetic variables: Suppose that we wish to estimate E[Φ(ξ)]
where ξ is a symmetric variable so that ξ and −ξ have the same distribution, as for
the standard normal variable for example. Then we have that

(4.4) E[Φ(ξ)] = E[Ψ(ξ)] where Ψ(ξ) = [Φ(ξ) + Φ(−ξ)]/2 .

From (3.1) and (4.4) we see that

(4.5) Var[Ψ(ξ)] =
1

2
{Var[Φ(ξ)] + cov[Φ(ξ),Φ(−ξ)] } .

Hence if cov[Φ(ξ),Φ(−ξ)] < 0 we have a variance reduction of at least 50%. We can
be more precise about how much computation is saved in using antithetic variables
by comparing 2N simulations in the two cases. For the standard MC we have

(4.6) E[Φ(ξ)] ' Φ(ξ1) + · · ·+ Φ(ξ2N )

2N
,

where ξ1, .., ξ2N are 2N independent simulations of the variable ξ. Using the anti-
thetic method we have

(4.7) E[Φ(ξ)] ' {Φ(ξ1) + Φ(−ξ1)}+ · · ·+ {Φ(ξN ) + Φ(−ξN )}
2N

.

Observe that in computing the RHS of (4.7) we need only generate N independent
simulations of ξ, whence there is a 50% saving in computation from computing the
RHS of (4.6). We have also that

(4.8) var

[
Φ(ξ1) + · · ·+ Φ(ξ2N )

2N

]
=

var[Φ(ξ)]

2N
,

(4.9)

var

[
{Φ(ξ1) + Φ(−ξ1)}+ · · ·+ {Φ(ξN ) + Φ(−ξN )}

2N

]
=

1

2N
{Var[Φ(ξ)] + cov[Φ(ξ),Φ(−ξ)] } .

Hence if cov[Φ(ξ),Φ(−ξ)] < 0 the error in (4.9) is less than the error in (4.8).
The following lemma gives a simple criterion to determine when cov[Φ(ξ),Φ(−ξ)]

is negative

Lemma 4.1. Suppose the function Φ : R→ R is monotonic i.e. always increasing
or always decreasing. Then cov[Φ(ξ),Φ(−ξ)] ≤ 0.

Proof. Assume Φ(·) is monotonic and let η be a variable independent of ξ but with
the same distribution. Then we have that

(4.10) E [ {Φ(ξ)− Φ(η)}{Φ(−ξ)− Φ(−η)} ] ≤ 0.

To see this let us assume that Φ(·) is increasing. Then for any ξ, η ∈ R with ξ ≥ η
one has Φ(ξ)−Φ(η) ≥ 0 and Φ(−ξ)−Φ(−η) ≤ 0 so {Φ(ξ)−Φ(η)}{Φ(−ξ)−Φ(−η)} ≤
0. Since we can similarly argue if ξ ≤ η we conclude that the average on the LHS
of (4.10) is negative. �
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In Example 1 we used MC to price the standard put option. In that case

(4.11) Φ(ξ) = e−rT max
[
K − S0 exp

{
(r − σ2/2)T + σ

√
Tξ
}
, 0
]
,

so Φ(ξ) is an decreasing function of ξ ∈ R. Hence it makes sense to use the
antithetic variable method here.

Control variate method: Suppose we wish to estimate E[Φ(ξ)] using MC, and
we also know precisely the value g∗ = E[g(ξ)] of the expectation of g(ξ) for some
function g : R → R. We can use this fact to reduce variance by considering for
β ∈ R functions Ψβ(ξ) = Φ(ξ) + β[g∗ − g(ξ)]. Evidently we have that
(4.12)
E[Φ(ξ)] = E[Ψβ(ξ)] , var[Ψβ(ξ)] = var[Φ(ξ)]−2βcov[Φ(ξ), g(ξ)]+β2var[g(ξ)] .

The minimum of var[Ψβ(ξ)] over all β ∈ R occurs at β = βmin, where

(4.13) βmin =
cov[Φ(ξ), g(ξ)]

var[g(ξ)]
, min

β∈R
var[Ψβ(ξ)] = {1−ρ[Φ(ξ), g(ξ)]2}var[Φ(ξ)] .

In (4.13) the function ρ(·, ·) is the coefficient of correlation (3.3). The method
gives good variance reduction then if the function g(ξ), whose expectation we know
precisely, is closely correlated to Φ(ξ), the function whose expectation we wish
to estimate. Note that to get an order of magnitude increase in accuracy in the
modified MC simulation i.e. one more decimal place accuracy in the MC estimate,
we need to have 1 − |ρ| < 1/100. This is the case since error is proportional to
standard deviation, so to the square root of the variance. We also need to estimate
using MC the quantity βmin in (4.13).

If we wish to implement this method we need to estimate using standard MC
the values of the three quantities var[Φ(ξ)], var[g(ξ)], cov[Φ(ξ), g(ξ)]. To do this we
generate N independent simulations ξ1, .., ξN of the variable ξ and set

(4.14) Φ̂N =
1

N

N∑
j=1

Φ(ξj), var[Φ(ξ)] ' 1

N

N∑
j=1

{Φ(ξj)− Φ̂N}2 ,

(4.15)

var[g(ξ)] ' 1

N

N∑
j=1

{g(ξj)−g∗}2 , cov[Φ(ξ), g(ξ)] ' 1

N

N∑
j=1

{Φ(ξj)−Φ̂N}{g(ξj)−g∗} .

The computations (4.14), (4.15) enable us to estimate ρ = ρ[Φ(ξ), g(ξ)], which
needs to be very close to ±1 for the method to yield an improvement over standard
MC. If this is the case then we use (4.14), (4.15) to estimate βmin in (4.13). Our
improved MC estimate for E[Φ(ξ)] is then

(4.16) E[Φ(ξ)] ' Φ̂N + βmin
1

N

N∑
j=1

{g∗ − g(ξj)} .

We can use the control variate method to help improve the accuracy of a MC
estimate for the value of an arithmetic basket option with payoff (3.6). Our control
variate will be the corresponding geometric basket option with payoff (3.7). We
first observe that one can use the Black-Scholes formula to calculate the value of
the geometric option. To see this we set S(T ) = {S1(T ) · · ·Sd(T )}1/d where (3.10)
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implies that

(4.17) Sj(T ) = Sj(0) exp
[
(r − σ2

j /2)T + σjBj(T )
]
, 1 ≤ j ≤ d.

Thus we have that

(4.18) S(T ) = {S1(0) · · ·Sd(0)}1/d exp

r − 1

2d

d∑
j=1

σ2
j

T +
1

d

d∑
j=1

σjBj(T )

 .

We write now

(4.19)
1

d

d∑
j=1

σjBj(T ) = σ
√
T ξ with σ2 =

1

d2

∑
1≤i,j≤d

σiρi,jσj ,

where ξ is a standard normal variable and ρ = [ρi,j ] is the covariance matrix (3.11)
for the d Brownian motions. Next we define S(0) by

(4.20) S(0) = {S1(0) · · ·Sd(0)}1/d exp

1

2

σ2 − 1

d

d∑
j=1

σ2
j

T


so that (4.18) is the same as

(4.21) S(T ) = S(0) exp[(r − σ2/2)T + σ
√
T ξ] .

The value of the geometric basket option with payoff (3.7) is therefore given by the
BS price of a call option on a stock with strike price K, volatility σ as in (4.19),
and today’s stock price S(0) given by (4.20). The interest rate r and the expiration
time T remain the same.

It is not so obvious that the geometric option is sufficiently closely correlated
with the arithmetic option to justify using the geometric option as a control variate.
This however turns out to be the case, a fact which helps us resolve the paradox that
both stocks and indices on stocks can be accurately modeled by geometric Brownian
motion. Stock indices typically measure movements of arithmetic averages of the
stocks composing the index. If we assume there are d stocks composing the index
which evolve by GBM as in (3.10), then it is clear that the arithmetic average
[S1(t) + · · · + Sd(t)]/d cannot evolve by GBM. In contrast the geometric average
{S1(t) · · ·Sd(t)}1/d does evolve by GBM. To see this we set

(4.22) S(t) = {S1(t) · · ·Sd(t)}1/d exp

−1

2

σ2 − 1

d

d∑
j=1

σ2
j

 t

 ,

and observe that

(4.23) d[logS(t)] = d

[
logS1(t) + · · · logSd(t)

d

]
− 1

2

σ2 − 1

d

d∑
j=1

σ2
j

 dt

=

[∑d
j=1{(r − σ2

j /2)dt+ σjdBj(t)}
d

]
−1

2

σ2 − 1

d

d∑
j=1

σ2
j

 dt = (r−σ2/2)dt+σdB(t) ,

where σ is given by (4.19) and B(·) is BM. We conclude that

(4.24)
dS(t)

S(t)
= rdt+ σdB(t) ,
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so S(t) evolves according to GBM. Thus to be mathematically consistent our stock
indices should be geometric averages of stocks. Since the arithmetic and geometric
averages are closely correlated in practice, we are justified in modeling movement
of stock indices by GBM.

Importance sampling: We consider the situation where we wish to estimate
E[Φ(ξ)], where ξ is standard normal, but Φ : R → R takes on only significant
values when ξ ≤ −α where α > 2 say. An example of this is a far out of the money
put option. In this case we have Φ(ξ) given by (4.11) where

(4.25) K = S0 exp
{

(r − σ2/2)T − σ
√
Tα
}
.

Thus Φ(ξ) = 0 for ξ > −α, so if α > 2 say the option is far out of the money. If
we use the standard MC procedure then Φ(ξ) = 0 for most of our simulations ξ, in
fact with α = 2 it will be 98% of simulations. We saw in Chapter I that the Gauss
elimination method was inefficient for solving large systems of equations Au = b
where A is a sparse matrix. The reason was that in the implementation there was
a lot of adding of zeros, which we of course know the answer to without having to
write a computer code. Here we have a similar situation in that we know apriori
the answer to most of the MC simulations i.e. zero. We should try to modify the
method in such a way that each new simulation really does give us new information.
Thinking of this in terms of information theory, we should try to come up with a
method which for a given amount of computation yields maximum information on
the desired quantity.

In the case here we use a simple translation of the variable, so

(4.26) E[Φ(ξ)] =
1√
2π

∫ ∞
−∞

Φ(ξ)e−ξ
2/2 dξ =

1√
2π

∫ ∞
−∞

Φ(η−β)e−(η−β)2/2 dη .

Thus we have that

(4.27) E[Φ(ξ)] = E[Ψβ(ξ)] , where Ψβ(ξ) = Φ(ξ − α)eβξ−β
2/2 .

Now we need to decide which value of β is best to reduce variance in the MC
simulation. For the far out of the money put option we claim that we should take
β = α, where α is defined by (4.25). This is not completely obvious since for
β ≥ α the MC simulation of Ψβ(·) will typically yield something non-zero. There
is actually a trade off here. On the one hand the larger β is the more likely the
MC simulation yields non-zero values. On the other hand as β increases beyond α
then var[Ψβ(ξ)] tends to rapidly increase. The reason for this is that

(4.28) var[eβξ−β
2/2] = e−β

2

{E[e2βξ]−E[eβξ]2} = e−β
2

{e2β2

− eβ
2

} = eβ
2

− 1.

Hence we should choose β as small as we can but so that simulations of Ψβ(·)
typically give non-zero values, whence we take β = α. In that case roughly 50% of
simulations give non-zero values.

Other variance reduction methods: We touch on some other variance reduction
methods. A particularly simple method which is easy to implement is the method
of moment matching. Thus suppose we generate N independent samples ξ1, ..., ξN
of the standard normal variable. We set µ̂N and σ̂2

N to be the sample mean and
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variance of this set, so

(4.29) µ̂N =
ξ1 + · · ·+ ξN

N
, σ̂2

N =
1

N

N∑
j=1

{ξj − µ̂N}2 .

Now we modify the original sample by setting

(4.30) ηj =
ξj − µ̂N
σ̂N

, 1 ≤ j ≤ N,

and estimate E[Φ(ξ)] as

(4.31) E[Φ(ξ)] ' Φ(η1) + · · ·+ Φ(ηN )

N
.

We have modified our original sample using a translation and dilation so that the
sample mean is zero and the sample variance is 1. Thus our modified sample (4.30)
has now the same mean and variance as the standard normal variable.

Finally stratified sampling is a generalization of the importance sampling method.
In importance sampling there is a region {ξ ∈ R : a < ξ < b} where the significant
values of Φ(ξ) dominate. If this region is at least 2 standard deviations from the
mean, we were able to zero in on it by doing a translation η = ξ − α of the normal
variable. Alternatively we can write

(4.32) E[Φ(ξ)] ' E[Φ(ξ)
∣∣ a < ξ < b]P (a < ξ < b) .

If we can simulate the standard normal variable ξ conditioned on a < ξ < b, then
we can estimate E[Φ(ξ)] by a MC simulation of the RHS of (4.32). Furthermore we
can extend this to situations where the significant values of Φ(ξ) belong to several
disjoint regions. So for k regions {ξ ∈ R : aj < ξ < bj}, j = 1, .., k, we set

(4.33) E[Φ(ξ)] '
k∑
j=1

E[Φ(ξ)
∣∣ aj < ξ < bj ]P (aj < ξ < bj) .

5. The Brownian Bridge Process

In §2 we saw that if we wish to MC simulate the path S(t), t ≥ 0, of a GBM
process which satisfies (2.15), we can use the formula (2.16). The payoff in the
continuous time Asian option was given in Chapter I as

(5.1) payoff =

[
S(T )− 1

T

∫ T

0

S(t) dt

]+

,

and for the discrete time Asian option as

(5.2) payoff =

[
S(T )− 1

L+ 1

L∑
i=0

S(ti)

]+

.

In both cases the weight of the stock price S(T ) at expiration in the payoff formula
is higher than than the stock price at intermediate times. However in the MC
simulation method (2.16) the price S(T ) is the final stock price that is computed
in a path simulation, and thus accumulates more MC error than intermediate stock
prices. Since S(T ) has the highest weight in the payoff formula, it would seem
then that a method which allows us to compute S(T ) at the beginning of a path
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simulation rather than at the end will give us a more accurate method of estimating
the price of the Asian option.

The Brownian bridge process (BB) enables us to do that. Let B(t), t ≥ 0, be
BM and for t′ < t < t′′ consider the variable B(t) conditioned on B(t′), B(t′′). It
is not difficult to see that B(t) is normal with

(5.3) mean =
t′′ − t
t′′ − t′

B(t′) +
t− t′

t′′ − t′
B(t′′) , variance =

(t′′ − t)(t− t′)
t′′ − t′

.

Note that (5.3) tells us that the mean of the conditioned BM B(t) is obtained by
linear interpolation of the values of B(s) at s = t′, t′′. We can use (5.3) to simulate

the path of BM B(t), 0 ≤ t ≤ T . Evidently B(0) = 0 and B(T ) =
√
T ξ0, where ξ0

is standard normal. Next we see from (5.3) that B(T/2) conditioned on B(0), B(T )
is Gaussian with mean B(T )/2 and variance T/4. Thus we have that
(5.4)

B(T/2) = B(T )/2 +
√
T/4 ξ1, where ξ1 is standard normal independent of ξ0 .

Similarly we have that
(5.5)

B(T/4) = B(T/2)/2 +
√
T/8 ξ3 , B(3T/4) = [B(T/2) +B(T )]/2 +

√
T/8 ξ4 ,

where ξ1, ξ2, ξ3, ξ4 are independent standard normal. Evidently we can generate the
entire BM path by continuing this method of dyadic decomposition of the interval
[0, T ]. The Asian option payoffs can then be computed by setting

(5.6) S(t) = S(0) exp
[
(r − σ2/2)t+ σB(t)

]
, 0 ≤ t ≤ T.

6. Random number generation

In §1 we mentioned the problem of generating i.i.d. copies of a random variable Y
with a given distribution ρ(y), y ∈ R. Our basic input is i.i.d copies of the uniform
variable X in the interval 0 < X < 1. If we can easily compute the cumulative
distribution function (cdf) F : R→ [0, 1] for the variable Y ,
(6.1)

F (x) =

∫ x

−∞
ρ(y) dy, where F (·) is increasing and F (−∞) = 0, F (∞) = 1,

then we can generate i.i.d copies of Y from i.i.d. copies of the uniform variable
X. This follows by observing that the variable Y defined by F (Y ) = X has the
distribution ρ(·) if X is uniformly distributed in 0 < X < 1. In fact

(6.2) P (Y < a) = P (F (Y ) < F (a)) = P (X < F (a)) = F (a),

so the function F (·) is the cdf for Y . To carry this out we need to be able to
efficiently invert the function F and that may not be so easy. For the standard
normal variable we have that

(6.3) F (x) =
1√
2π

∫ x

−∞
e−y

2/2 dy , −∞ < x <∞.

There is no explicit formula for F (x) in (6.3) and certainly no explicit inverse
formula. Nevertheless the standard optimally efficient method for generating i.i.d.
standard normal variables does use a sophisticated version of this basic cdf method.

A straightforward but not particularly efficient way of generating the standard
normal variable from the uniform variable is the Box-Müller method. To see how
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this works we consider two independent standard normal variables X,Y and con-
sider the distribution of the polar coordinate variables R,Θ defined by

(6.4) X = R cos Θ, Y = R sin Θ, so R =
√
X2 + Y 2, Θ = arctan(Y/X).

We can find the joint distribution of the variables (R,Θ) by writing the joint pdf
of (X,Y ) in polar coordinates. Thus we have

(6.5)
1

2π
e−(x2+y2)/2 dxdy =

1

2π
e−r

2/2 rdrdθ = d[−e−r
2/2] d

[
θ

2π

]
= dudv .

If we define two variables U, V by

(6.6) U = exp[−R2/2], V = Θ/2π ,

then it is clear that U, V are restricted to the interval 0 < U, V < 1 and from (6.5)
it follows that they are independent and uniformly distributed in [0, 1]. We can run
this argument in the opposite direction and begin with two independent variables
U, V uniformly distributed in [0, 1]. Then on inverting the formulas (6.6) we see
from (6.4) that the variables X,Y defined by

(6.7) X =
√
−2 logU cos(2πV ) , Y =

√
−2 logU sin(2πV ) ,

are independent and standard normal. The lack of efficiency in the method (6.7) is
to be found in the necessity of computing logarithms and trigonometric functions
in its implementation. In designing algorithms for random number generation it
is very important that a random number can be computed with a rather small
number of computations. However algorithms for computing accurate values of
transcendental functions like logarithm, sine and cosine have to use a significant
number of computations.

Finally we return to the discussion of some of the issues covered in §1 concern-
ing the advantages of MC simulation over deterministic methods for estimating
integrals in high dimension. We saw that

(6.8)

∫
[0,1]d

Φ(x) dx ' 1

N
[Φ(X1) + · · ·Φ(XN )] + Error(N) .

If the pointsX1, .., XN are uniformly distributed in the “cube” [0, 1]d then Error(N) '
1/N1/d, whereas if they are randomly distributed Error(N) ' 1/N1/2. Thus if d ≥ 3
the MC method outperforms (with high probability) the deterministic method. One
can try to improve on the deterministic method by choosing X1, .., XN to be pseudo-
random and hope to get an error which is better than the MC error 1/

√
N . Of

course our computer “random number generator” really is deterministic, so this
might seem like a contradiction in terms. Actually as we pointed out in §1 the
random number generator algorithm is designed to minimize correlations between
successive values of Xj , j = 1, 2, ... We might then expect that it is possible to come
up with other sets of numbers Xj , j = 1, 2, .., in which successive values do have
significant correlation, but for which the error in (6.8) is better than the MC error.
Such numbers are called low discrepancy numbers. The best of them improve on
the MC error in moderate dimensions -up to d=20 say- but for large enough d the
MC method still wins out.

The simplest of such sequences of numbers are the Halton numbers. In one
dimension we define them as follows: We associate to each integer n ≥ 1 its cor-
responding base 2 Halton number ξn by writing the positive integers to base 2.
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Thus

(6.9) n =

∞∑
k=1

ak2k−1 with ak ∈ {0, 1} implies ξn =

∞∑
k=1

ak2−k .

The ξn, n = 1, 2, .., all lie in the unit interval [0, 1] and are somewhat randomly
placed in this interval. Specifically we have ξ1 = 1/2, ξ2 = 1/4, ξ3 = 1/2 + 1/4 =
3/4, ξ4 = 1/8, ξ5 = 1/8+1/2 = 5/8 etc. To get Halton numbers in the d dimensional
cube [0, 1]d we choose d distinct prime numbers p1, .., pd and write an integer n to
base pj , which yields a Halton number ξjn ∈ [0, 1], j = 1, .., d. Then the nth Halton
point ξn ∈ [0, 1]d is given by ξn = [ξ1

n, .., ξ
d
n].
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