
CHAPTER III - LATTICE METHODS

JOSEPH G. CONLON

1. Binomial Trees

Lattice methods such as binomial trees are in fact implementations of the explicit
Euler method discussed in Chapter I, but with various kinds of grid which do
not have to be uniform. The advantage of the method is its flexibility in grid
design, which can be adapted to the problem at hand. In numerical analysis these
numerical schemes are therefore often called adaptive schemes. A further advantage
of the lattice method is that there are no boundary conditions to be determined.
In the pricing of Asian options we saw that determining the appropriate boundary
conditions was a non-trivial problem. There is however a disadvantage in dispensing
with boundary conditions since it can have significant cost in terms of numerical
efficiency. We shall see why this is the case later.

We consider first the simplest problem of numerically computing the BS price
of a stock option. We first construct a discrete approximation for the evolution of
the solution S(t) to the Black-Scholes SDE

(1.1) dS(t) = S(t)[rdt+ σdB(t)], t ≥ 0, S(0) = S0.

We let ∆t be the time discretization and assume that in the time step t→ t+ ∆t
the stock price S at time t can move up to the value Su or down to the value
Sd, where 0 < d < 1 < u. Thus we are assuming that the random variable
S(t + ∆t)/S(t) is Bernoulli, in contrast to the situation in Chapter II where we
saw that S(t+ ∆t)/S(t) is the exponential of a Gaussian. To define the Bernoulli
variable completely we need to determine the probability pu of going from S to Su
and pd of going from S to Sd. We do this by choosing u, d, pu, pd so that the first two
moments of S(t+∆t)/S(t) in the Bernoulli approximation agree with corresponding
continuous time quantities. We observed in Chapter II that the solution S(t) of
(1.1) satisfies the identity

(1.2)
S(t+ ∆t)

S(t)
= exp

[
(r − σ2/2)T + σ

√
T ξ
]
, where ξ is standard normal.

Now the moment generating function for the standard normal variable is given by
(1.3)

E
[
eθξ
]

= eθ
2/2, so E

[
S(t+ ∆t)

S(t)

]
= erT , E

[{
S(t+ ∆t)

S(t)

}2
]

= e(2r+σ2)T .

Evidently for the Bernoulli variable we have that

(1.4) E

[
S(t+ ∆t)

S(t)

]
= upu + dpd, E

[{
S(t+ ∆t)

S(t)

}2
]

= u2pu + d2pd .
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Hence on equating the quantities in (1.3), (1.4) we obtain 3 equations for the 4
unknowns u, d, pu, pd,

(1.5) pu + pd = 1, upu + dpd = er∆t, u2pu + d2pd = e(2r+σ2)∆t .

Observe that we need to add one more equation to get unique values for u, d, pu, pd
which satisfy (1.5).

Consider now how we can use this method to estimate the value of a call option
with expiration date T . The value of the option is given by the formula

(1.6) value of call option = e−rTE[max[S(T )−K, 0]
∣∣ S(0) = S0] ,

where S(t), t ≥ 0, is the solution to (1.1). In the BS theory S(T ) is the exponential
of a Gaussian, but in this discrete approximation it is a the exponential of a binomial
variable. We choose ∆t and integer M such that M∆t = T . At time t = 0 we set
S(0) = S0, which is today’s stock price. Then S(∆t) takes the 2 possible values
S0d and S0u, with S(2∆t) taking the 3 possible values S0d

2, S0ud, S0u
2 etc. More

generally we have that

(1.7) S(m∆t) takes possible values S0d
m, S0d

m−1u, S0d
m−2u2, ..., S0u

m .

We can represent the situation by a lattice in 2 dimensions with integer coordinates
(m,n) where 0 ≤ n ≤ m and m = 0, 1, 2, ..M . To each lattice point we associate a
time and stock price by:

(1.8) At (m,n) the time t = m∆t and the stock price S(t) = undm−n .

We can use a recurrence equation to find the value of the option (1.6). Let V mn be
the values of the option associated with lattice points (m,n), so today’s price for
the option is V 0

0 . Since we know the payoff on the option we have that

(1.9) VMn = max[S(T )−K, 0], where S(T ) = undM−n , 0 ≤ n ≤M.

The recurrence equation is then

(1.10) V mn = e−r∆t[puV
m+1
n+1 + pdV

m+1
n ] for 0 ≤ n ≤ m, 0 ≤ m < M.

We can solve (1.10) backwards in time starting at m = M and ending at m = 0,
whence we can compute V 0

0 .
We can derive (1.10) by using a no arbitrage argument. Suppose at time t the

stock price is S and the value of the option is V . At time t + ∆t the value of the
stock and option are with probability pu given by S+, V + where S+ = Su, or with
probability pd given byS−, V − where S− = Sd. We wish to construct a risk free
portfolio consisting of one option minus α of stock, whence we must have

(1.11) V − αS = e−r∆t[V + − αS+] = e−r∆t[V − − αS−] .

It follows that

(1.12) α =
V + − V −

S+ − S−
, V = e−r∆t

[
V + + α{er∆tS − S+}

]
.

Substituting S+ = Su, S− = Sd in (1.12) we conclude that

(1.13) V = e−r∆t
[
er∆t − d
u− d

V + +
u− er∆t

u− d
V −
]
.

Now the first two equations of (1.5) yield the formulas

(1.14) pu =
er∆t − d
u− d

, pd =
u− er∆t

u− d
.
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Hence (1.13), (1.14) yield the recurrence formula

(1.15) V = e−r∆t
[
puV

+ + pdV
−] ,

which implies (1.10). It is not difficult to see that (1.15) is a discretization of the
Black Scholes PDE introduced in Chapter I.

We have already observed that in order to get unique values for u, d, pu, pd sat-
isfying the three equations (1.5), we need to impose a fourth constraint equation.
The set of four equations can be explicity solved in the two cases where the fourth
equation is either pu = pd = 1/2 or ud = 1.

(a) pu = pd = 1/2: Observe that the final two equations of (1.5) become

(1.16) u+ d = 2er∆t, u2 + d2 = 2e(2r+σ2)∆t .

If we square the first equation of (1.16) and subtract from it the second equation
we obtain the formula

(1.17) ud = e2r∆t[2− eσ
2∆t] .

Hence on multiplying the first equation of (1.16) by u and using (1.17) we obtain
a quadratic equation for u,

(1.18) u2 − 2er∆tu+ e2r∆t[2− eσ
2∆t] = 0.

The two solutions of (1.18) are u, d, whence we have

(1.19) u = er∆t{1 +
√
eσ2∆t − 1}, d = er∆t{1−

√
eσ2∆t − 1} .

(b) ud = 1: We multiply the second equation of (1.5) by u, whence we obtain
(1.20)
u2pu+udpd = er∆tu, so u2pu+1−pu = er∆tu, whence (u2−1)pu = er∆tu−1.

Similarly we multiply the third equation of (1.5) by u2 to obtain

(1.21) u4pu + u2d2pd = e(2r+σ2)∆tu2, so u4pu + 1− pu = e(2r+σ2)∆tu2,

whence (u4 − 1)pu = e(2r+σ2)∆tu2 − 1.

We conclude from (1.20), (1.21) that

(1.22) u2 + 1 =
u4 − 1

u2 − 1
=

e(2r+σ2)∆tu2 − 1

er∆tu− 1
.

Evidently (1.22) gives us a cubic equation for u. Since it has constant term zero
we can divide by u to obtain the quadratic equation

(1.23) u2 − [e−r∆t + e(r+σ2)∆t]u+ 1 = 0.

Just as before the solutions to (1.23) are u, d and they are given by the formulas

(1.24) u = A+
√
A2 − 1, d = A−

√
A2 − 1 , where A = [e−r∆t+e(r+σ2)∆t]/2 .

We can compare the method of computing the value of an option using (1.10)
with the explicit Euler method. If we choose to use method (b) then setting
x = logS we see from (1.7) and the fact that ud = 1 that the lattice points are
equally spaced with ∆x given by the formula

(1.25) ∆x = 2 log u = 2 log[A+
√
A2 − 1] where A = 1 +σ2∆t/2 +O[(∆t)2] .
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We have from (1.25) that

(1.26) ∆x = 2 log[1 + σ
√

∆t+O(∆t)] = 2σ
√

∆t+O(∆t) .

It follows from (1.26) that ∆t/(∆x)2 ' 1/4σ2 and hence satisfies the stability
condition ∆t/(∆x)2 < 1/σ2 for the explicit Euler method which we established in
Chapter I.

Next we consider the case of valuing options on stocks which pay dividends. If
there is a continuous dividend payment rate of D then the value of the option is
given again by (1.6), but now r is replaced by r − D in the stochastic evolution
(1.1). Hence the equations (1.5) become

(1.27) pu + pd = 1, upu + dpd = e(r−D)∆t, u2pu + d2pd = e[2(r−D)+σ2]∆t .

We can also easily include discrete dividend payments in the model. Suppose for
example there is a discrete dividend payment at time tdiv < T with the dividend
equal to βS(tdiv) for some β with 0 < β << 1. Define an integer mdiv by mdiv∆t <
tdiv ≤ (mdiv + 1)∆t. To each lattice point (m,n) with m ≤ mdiv we assign a stock
price Smn = undm−n as previously in (1.8). However for m > mdiv we proceed
differently. In particular we set

Sm+1
n = Smn d(1− β), Sm+1

n+1 = Smn u(1− β) if m = mdiv ,(1.28)

Sm+1
n = Smn d, Sm+1

n+1 = Smn u if m > mdiv .

We use the same recurrence formula (1.10) as before to value the option. Note that
today’s value of the option V 0

0 depends on the dividend since VMn , 0 ≤ n ≤ M,
is given by VMn = max[SMn − K, 0], 0 ≤ n ≤ M , and from (1.28) we see that
SMn , 0 ≤ n ≤M, depends on β.

In order to see that the recurrence (1.10) with the modified stock prices (1.28)
yields the value of the option we need to show that (1.15) is valid across the dividend
time. Thus we take t = mdiv∆t with associated stock price S and option price V .
S−, V − where S− = Sd. Now to construct a risk free portfolio consisting of one
option minus α of stock we modify (1.11) as follows:

(1.29) V − αS = e−r∆t[V + − α{S+ + βS}] = e−r∆t[V − − α{S− + βS}] ,

where S+, S− are the possible values the stock moves to after time ∆t. If we choose
now S+ = Su(1−β) as in (1.28) then we have that S+ +βS = S[u(1−β)+β] = Su
to a high degree of accuracy since (u − 1)β ' 0. Similarly we may assume that
S− + βS = Sd, and so (1.29) yields again the recurrence equation (1.15). We
can compare this method of including dividends with the formulas (1.27) for the
continuous dividend payment. In the continuous case we have that if (uD, dD) are
the values of (u, d) for dividend rate D then erD∆tuD = u0. Thus we have that
S+ = SuD = Se−rD∆tu0 = Su0(1− β) with β = rD∆t.

Finally we note that the central limit theorem implies that the price of the
discrete time option converges as ∆t → 0 to the BS price. To see this we define a
Bernoulli variable X by

(1.30) X = log u with probability pu, X = log d with probability pd .

Using method (a) we see from (1.19) that
(1.31)

log u = r∆t+log[1+σ
√

∆t{1+O(∆t)}], log d = r∆t+log[1−σ
√

∆t{1+O(∆t)}] .
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It follows from (1.31) and the equality of probabilities pu = pd = 1/2 that

(1.32) E[X] = (r − σ2/2)∆t+O[(∆t)3/2], var[X] = σ2∆t+O[(∆t)2] .

LetX1, X2, .., be i.i.d. variables with distribution given by (1.30). Then if T = M∆t
we have that

(1.33) logS(T ) = logS0 +

M∑
j=1

Xj .

From the CLT we see that

(1.34) lim
M→∞

∑M
j=1Xj − E[Xj ]

σ
√
M∆t

= ξ = standard normal variable.

We conclude then from (1.33), (1.34) that

(1.35) logS(T ) ' logS0 + (r − σ2/2)T + σ
√
Tξ as ∆t→ 0.

Hence the price of the discrete option (1.6) converges to the BS price of the option
as ∆t→ 0.
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