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1. Black’s Model

A basic object of study in interest rate theory is the price of a zero coupon zero
default risk bond such as a treasury bond. Let
(1.1)
P (t, T ) = value at time t < T of the bond with face value 1 which matures at time T.

We can use bond prices to compute forward rates of interest. Thus for t < T0 < T1

let
(1.2)
F (t, T0, T1) = (simple) interest rate given at time t for borrowing at T0 with repayment at time T1.

Evidently the no-arbitrage value of F (t, T0, T1) is given in terms of bond prices by
the formula

(1.3) F (t, T0, T1) =
P (t, T0)− P (t, T1)

(T1 − T0)P (t, T1)
.

More generally we can consider swap rates for money borrowed at time T0 and
repaid at time TN with interest rate payments at times T1, T2, .., TN where T0 <
T1 < · · · < TN . The swap rate at time t < T0 is then R(t) where

(1.4) R(t) =
P (t, T0)− P (t, TN )∑N
j=1(Tj − Tj−1)P (t, Tj)

.

Observe that the forward rate F (t, T0, T1) and the swap rate R(t) are known today
(time t = 0) from today’s yield curve, but for t > 0 they are unknown and are
therefore random variables.

In order to value interest rate derivatives we need to model these random vari-
ables. To see how we might go about this we consider one of the simplest interest
rate derivatives- an interest rate cap on a loan. Suppose the loan is as described
above, so money is borrowed at time T0 and repaid at time TN with interest rate
payments at times T1, T2, .., TN . The interest rate is set at time Tj−1 for the period
(Tj−1, Tj) to be L(Tj−1, Tj) where L(t, t′) is the floating rate available at time t for
borrowing at t with repayment at time t′ > t. If K is the interest rate cap then the
contribution to the cost of the cap for the interest period (Tj−1, Tj) is

(1.5) (Tj − Tj−1) max[L(Tj−1, Tj)−K, 0] at time Tj .

Hence the value of the cap for a loan of 1 at time T0 with repayment at TN in terms
of today’s money is

(1.6)

N∑
j=1

(Tj − Tj−1) max[L(Tj−1, Tj)−K, 0] P (0, Tj) .

1



2 JOSEPH G. CONLON

We can therefore think of the cap as being a sum of N caplets with each caplet
corresponding to an interest rate period, so the cap is a sum of simpler derivatives.
The value today of the caplet corresponding to (1.5) is given by the formula
(1.7)
value of caplet for the period Tj−1 → Tj = P (0, Tj)(Tj−Tj−1)E [max{L(Tj−1, Tj)−K, 0} ] .

In Black’s model he values a caplet by making a parallel with the problem of
pricing a European call option on a stock. First he observes that L(Tj−1, Tj) is
the limit of forward rates L(Tj−1, Tj) = limt→Tj−1

F (t, Tj−1, Tj). Then he models
the random variables F (t, Tj−1, Tj), t < Tj−1, as in the BS model by geometric
Brownian motion. Thus he sets
(1.8)

F (t, Tj−1, Tj) = F (0, Tj−1, Tj)S(t) ,
dS(t)

S(t)
= σdB(t) , 0 ≤ t < Tj−1, S(0) = 1.

The parameter σ in (1.7) is the Black caplet volatility for the period (Tj−1, Tj). In
the parallel with the BS model for pricing stock options we have then
(1.9)

today′s stock price = today′s forward rate for the period Tj−1 → Tj ,

stock volatility = Black caplet volatility for the period Tj−1 → Tj ,

expiration date = Tj−1 ,

strike price = K .

The value of the caplet in (1.7) is then given by P (0, Tj)(Tj − Tj−1) times the BS
price of a call option with risk free rate r = 0 and the other parameters as in (1.9).
The BS hedging strategy now consists of taking a position in the forward rate for
the time period (Tj−1, Tj), which is the same as taking a position in bonds with
maturities Tj−1 and Tj . Note that we take r = 0 in the BS formula since the
discount factor is already included in the multiplication by P (0, Tj).

There is an analogous Black model for swaptions. Swaptions are a very common
form of interest rate derivative since most mortgages have prepayment options, and
these are in fact a type of put swaption. To see this consider a fixed rate loan at
rate K which has a prepayment option at exactly one time T0, with the remaining
interest rate payments at T1, T2, .., TN . The cost of this prepayment option is

(1.10) max{K −R(T0), 0}
N∑
j=1

(Tj − Tj−1)P (t, Tj) at time t < T0 ,

where R(·) is the swap rate (1.4). The formula (1.10) is saying that if the swap
rate at time T0 is greater than the fixed rate the borrower is currently paying then
he does nothing. If it is less than the fixed rate then he pays off the loan and takes
out another loan for the remaining period at the lower rate. The cost of this to the
bank at time t is given by the formula (1.10). The value of the swaption is given
as an expectation of (1.10) so
(1.11)

value of swaption today = E [max{K −R(T0), 0} ]

N∑
j=1

(Tj − Tj−1)P (0, Tj) .

In Black’s model the value of the swaption is estimated by making a parallel with
the problem of pricing a European put option on a stock. He models the random
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variable R(t), t < T0, of (1.4) as in the BS model by geometric Brownian motion.
Thus he sets

(1.12) R(t) = R(0)S(t) ,
dS(t)

S(t)
= σdB(t) , 0 ≤ t < T0, S(0) = 1.

The parameter σ in (1.12) is the Black swaption volatility for this particular swap.
In the parallel with the BS model for pricing stock options we have then

(1.13)


today′s stock price = today′s swap rate for the given swap ,

stock volatility = Black swaption volatility for the swap ,

expiration date = T0 ,

strike price = K .

The value of the swaption in (1.10) is then given by
∑N
j=1(Tj−Tj−1)P (0, Tj) times

the BS price of a put option with risk free rate r = 0 and the other parameters as
in (1.13). The BS hedging strategy now consists of taking a position in the swap
rate, which means a position in bonds with maturities T0, ..., TN .

The Black model is certainly a good first step in attempting to put a fair value
on interest rate derivatives. However it has serious drawbacks due to its ad-hoc
approach in which only volatilities estimated from market data are inputed into
the model. Correlations between forward rates should clearly play an important
role in pricing interest rate derivatives as well as volatilities. The simplest way to
include correlation data is to model the short rate by the solution to an SDE with
parameters which will be determined by both yield curve volatility and yield curve
correlation.

2. Hull-White Model

In the HW model the short rate r(t), t ≥ 0, is assumed to be the solution to the
initial value problem for the linear SDE

(2.1) dr(t) = [θ(t)− ar(t)] dt+ σdB(t) , r(0) = r0 .

There are two parameters a, σ > 0 which we assume constant and a family θ(s), s ≥
0. The parameters a, σ are first determined from yield curve correlation and volatil-
ity data. Then the family θ(s), s ≥ 0, is determined from calibrating the model
to today’s yield curve. The model is mean reverting since a > 0 so the short term
interest rate can never get very large. It can however become negative, but if this
happens with small probability then we expect that prices obtained from the model
are still realistic.

The linear SDE (2.1) is exactly solvable just like the corresponding ODE (2.1)
when σ = 0. For the ODE initial value problem we wish to solve

(2.2) dr(t) = [θ(t)− ar(t)] dt , r(0) = r0 .

We can rewrite (2.2) as

(2.3) d[eatr(t)] = eatθ(t) dt, r(0) = r0 .

Evidently the solution to (2.3) is

(2.4) r(t) = e−atr0 +

∫ t

0

e−a(t−s)θ(s) ds .



4 JOSEPH G. CONLON

The solution to (2.1) is similar, so

(2.5) r(t) = e−atr0 +

∫ t

0

e−a(t−s)θ(s) ds+ σ

∫ t

0

e−a(t−s) dB(s) .

It follows from (2.5) that for t > 0 the random variable r(t) is Gaussian with
(2.6)

mean[r(t)] = e−atr0 +

∫ t

0

e−a(t−s)θ(s) ds , variance[r(t)] = σ2

∫ t

0

e−2a(t−s) ds .

We can evaluate the integral in the formula for the variance to obtain

(2.7) variance[r(t)] =
σ2

2a

[
1− e−2at

]
, whence variance[r(t)] ' σ2

2a
at large t.

Since variance is bounded for all time the short term rate is bounded with high
probability for all time, a desirable property since in practice we would not expect
large interest rates (certainly beyond 10%) to play an important role in our model.

To see how correlations are involved in the model we find a formula for the
autocorrelation function of r(t), t ≥ 0, which is the correlation function for r(t1)
and r(t2) with 0 ≤ t1 ≤ t2 <∞. Thus from (2.5) we have that

(2.8) cov[r(t1), r(t2)] = σ2E

[{∫ t1

0

e−a(t1−s) dB(s)

}{∫ t2

0

e−a(t2−s) dB(s)

}]
= σ2

∫ t1

0

ds e−a(t1−s)−a(t2−s) =
σ2

2a

[
e−a(t2−t1) − e−a(t2+t1)

]
.

From (2.7), (2.8) we conclude that at large t1 the coefficient of correlation ρ[r(t1), r(t2)]
between r(t1) and r(t2) is given as

(2.9) ρ[r(t1), r(t2)] ' e−a(t2−t1) .

We see from (2.9) that the parameter a has the dimensions of inverse time and that
the short rates r(t1), r(t2) are close to independent if t2 − t1 >> 1/a, so 1/a is the
correlation timescale for the yield curve. We can now estimate from (2.7), (2.9)
what are reasonable values for the parameters a, σ of the HW model. Assuming
that the standard deviation for the short rate should be around 5% then (2.7) gives

us that σ/
√

2a ' 0.05. Assuming that short term rates are close to independent
after 5 − 10 years gives us 1/a ' 5. We conclude then that reasonable values of
a, σ are a ' 0.2, σ ' 0.03. Hence in HW we expect the value of a to be an order of
magnitude (i.e. roughly 10 times) larger than the value of σ when we take time in
years.

In order to price interest rate derivatives we need to give a formula for bond
prices in terms of the short rate r(·). A fundamental assumption of short rate
models is that bond prices at time t are a deterministic function of the short term
rate r at time t. The bond price is given by the discount formula
(2.10)

P (t, T ) = P (r(t), t, T ) where P (r, t, T ) = E

[
exp

{
−
∫ T

t

r(s) ds

} ∣∣∣∣ r(t) = r

]
.
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To calibrate the short rate model to today’s yield curve we shall need to choose the
parameters of the model so that

(2.11) P (0, T ) = E

[
exp

{
−
∫ T

0

r(s) ds

} ∣∣∣∣ r(0) = r0

]
for all T > 0,

where the LHS of (2.11) is today’s price of a zero coupon bond with face value 1
and maturity T . The value of r0 is today’s short rate.

The calibration of the HW model to today’s yield curve is fairly simple because
the short rate r(t) can be written as a sum

(2.12) r(t) = r∗(t) + α(t), where dr∗(t) = −ar∗(t)dt+ σdB(t), r∗(0) = 0.

The function α(t), t ≥ 0, is deterministic and satisfies

(2.13) dα(t) = [θ(t)− aα(t)] dt , α(0) = α0 .

It is easy to see that if r∗(·) satisfies (2.12) and α(·) satisfies (2.13) with α0 = r0

then r(·) satisfies (2.2). We can view the decomposition (2.12) of the short rate as
into a part r∗(·) which is entirely due to yield curve volatility, and a deterministic
part obtained from today’s yield curve. In particular if there is zero yield curve
volatility then today’s forward rates are frozen in time. The instantaneous forward
rate at time t is α(t) and today’s bond price is given by the discount formula

(2.14) P (0, T ) = exp

{
−
∫ T

0

α(s) ds

}
.

From (2.11), (2.12) we have more generally that

(2.15) P (0, T ) = g(σ, a, T ) exp

{
−
∫ T

0

α(s) ds

}
where the function g of the three variables σ, a, T is given by the expectation

(2.16) g(σ, a, T ) = E

[
exp

{
−
∫ T

0

r∗(s) ds

} ∣∣∣∣ r∗(t) = 0

]
.

Since g(0, a, T ) = 1 we get the formula (2.14) in the case of zero yield curve volatil-
ity.

We wish now to develop a lattice model for the SDE (2.12) which r∗(t), t ≥ 0,
satisfies. Our lattice will consist of integer points (m, j) with m = 0, 1, 2, ..., and
|j| ≤ min[m,J ], where J is some fixed integer which we need to choose appropriately
depending on a, σ. We associate with each (m, j) a time t = m∆t and a value
r∗ = j∆r. In one time step ∆t a walk on the lattice can go from (m, j) to one of
three points (m + 1, j), (m + 1, j + 1), (m + 1, j − 1) if |j| < J . At a boundary
point (m,J) a walk can go from (m,J) to (m+ 1, J), (m+ 1, J −1), (m+ 1, J − 2)
with a similar formula for (m,−J). The transition probabilities are defined by

(2.17)


(m, j)→ (m+ 1, j + 1) with probability pu(j) ,

(m, j)→ (m+ 1, j) with probability ps(j) ,

(m, j)→ (m+ 1, j − 1) with probability pd(j)
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if |j| < J . If j = J then they are defined by

(2.18)


(m,J)→ (m+ 1, J) with probability pu(J) ,

(m,J)→ (m+ 1, J − 1) with probability ps(J) ,

(m,J)→ (m+ 1, J − 2) with probability pd(J) .

Note that the SDE (2.12) is reflection invariant so the random variable r∗(t) has
pdf which is symmetric about 0. We build this reflection property into the lattice
model by requiring that

(2.19) ps(j) = ps(−j), pu(j) = pd(−j) for |j| ≤ J.

We find values for the probabilities pu, ps, pd by equating the zeroth, first and second
moments of the increment r∗(t+ ∆t)− r∗(t) in the discrete and continuous models.
For the discrete model the three moments are given by

(2.20)


zeroth moment : pu(j) + ps(j) + pd(j) = 1 ,

first moment : [pu(j)− pd(j)]∆r ,
second moment : [pu(j) + pd(j)](∆r)

2 .

To get the first and second moments in the continuous case we observe from
(2.12) that

(2.21) r∗(t+ ∆t)− r∗(t) ' −ar∗(t)∆t+ σ
√

∆t ξ where ξ is standard normal.

We have then on making the approximation (2.21) that

(2.22)


E[ r∗(t+ ∆t)− r∗(t) ] = −ar∗(t)∆t ,
E[ {r∗(t+ ∆t)− r∗(t)}2 ] = σ2∆t+ [ar∗(t)∆t]2 ,

E[ {r∗(t+ ∆t)− r∗(t)}3 ] = −3aσ2r∗(t)[∆t]2 − [ar∗(t)∆t]3 .

Equating the first and second moments in the discrete case (2.20) and in the con-
tinuous case (2.22) we have that

(2.23)

{
[pu(j)− pd(j)]∆r = −aj∆r∆t ,
[pu(j) + pd(j)](∆r)

2 = σ2∆t+ [aj∆r∆t]2 .

Evidently (2.23) has generally a unique solution for pu(j), pd(j) and then we can
find ps(j) from the first equation of (2.20). We still need to decide on suitable
values for ∆r,∆t. Note that since pu(j) + pd(j) ≤ 1 the second equation of (2.23)
implies that σ2∆t/(∆r)2 ≤ 1, so as in the forward Euler method we must take time
discretization to be the same order as the square of the space discretization. HW
choose a value consistent with this namely

(2.24) HW choice : σ2∆t/(∆r)2 = 1/3 .

This is actually a minor thing but the reason the value (2.24) is taken is so that
third order discrete and continuous moments agree if (2.24) holds. To see this note
from (2.22) that the two third order moments agree to leading order if

(2.25) [pu(j)− pd(j)](∆r)3 = −3aσ2j∆r[∆t]2 .

Then the first equation of (2.23) implies (2.25) provided ∆r,∆t are related by
(2.24).
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We take now the HW value (2.24) for the ratio and then (2.23) becomes

(2.26)

{
pu(j)− pd(j) = −aj∆t ,
pu(j) + pd(j) = 1/3 + (aj∆t)2 .

Combining the equations (2.26) with the first equation of (2.20) we conclude that

(2.27)


pu(j) = 1/6 + [(aj∆t)2 − aj∆t]/2 ,
pd(j) = 1/6 + [(aj∆t)2 + aj∆t]/2 ,

ps(j) = 2/3− (aj∆t)2 .

The formula (2.27) holds provided |j| < J . The case j = J is dealt with similarly.
The first and second moment equations become now

(2.28)

{
[ps(J) + 2pd(J)]∆r = aJ∆r∆t ,

[ps(J) + 4pd(J)](∆r)2 = σ2∆t+ [aJ∆r∆t]2 .

Hence we have from (2.28) on using the HW formula (2.24) again that

(2.29)


pu(J) = 7/6 + [(aJ∆t)2 − 3aJ∆t]/2 ,

pd(J) = 1/6 + [(aJ∆t)2 − aJ∆t]/2 ,

ps(J) = −1/3− (aJ∆t)2 + 2aJ∆t .

In order to ensure that all values for the probabilities in (2.27), (2.29) are non-
negative we shall need to limit the size of J . From (2.27) we see that we need to

have aJ∆t <
√

2/3. We can write ps(J) in (2.29) by completing the square as

(2.30) ps(J) = 2/3− [aJ∆t− 1]2 whence |aJ∆t− 1| <
√

2/3 .

Observe that the condition from (2.30) forces J to be very large as well as being
bounded above so we have in all that

(2.31) aJ∆t <
√

2/3, 1−
√

2/3 ≤ aJ∆t ≤ 1 +
√

2/3 .

We can take the

(2.32) HW choice : J = JHW = [1−
√

2/3]/a∆t ' .184/a∆t ,

in which case all the probability values (2.27), (2.29) are positive.
Next we wish to argue that we can actually take a much smaller value of J than

is given in (2.32) without significant loss of accuracy in computing interest rate
derivative values. We use the “3 standard deviations rule” that we used in Chapter
I to reduce the infinite interval −∞ < x < ∞ for the parabolic PDE which we
needed to solve for pricing stock options to a finite interval a < x < b. From (2.7)

we see that the standard deviation of r∗(t) is less than σ/
√

2a no matter how large

t is and the mean of r∗(t) is zero. Hence r∗(t) takes values larger than 3σ/
√

2a in
absolute value with very small probability-less than .1%. Thus a good interval for
the range of r∗ is −3σ/

√
2a < r < 3σ/

√
2a, whence we should set J∆r = 3σ/

√
2a.

Using again (2.24) we conclude that the alternative value

(2.33) J = JALT =

{
3

2a∆t

}1/2

should give the same accuracy as the HW value (2.32). Note that JALT << JHW

if a∆t is small. Of course we cannot use the boundary probability values (2.29)
when we take J = JALT since we have seen that ps(J) < 0 in that case. Our
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intuition helps us here also since we expect that the random walk on the HW
tree corresponding to a solution of the SDE (2.12) is very unlikely to reach the
values r∗ = ±J∆r. Hence the actual boundary condition we set really makes little
difference in pricing the values of derivatives so we can choose anything reasonable.
One natural choice is to use reflecting boundary conditions,

(2.34)


pu(J) = 0 ,

pd(J) = 0 ,

ps(J) = 1 .

Before we can price interest rate derivatives we need to calibrate the HW model
to today’s yield curve, which means setting the values for the function α(t), t ≥ 0,
from the equation (2.11) or (2.15). We set

(2.35) Pm = P (0,m∆t), m = 1, 2, ..., αm = α(m∆t), m = 0, 1, 2, ...

In (2.35) we assume we know the bond prices Pm,m = 1, 2, ., but in actual practice
bond prices for every maturity date T = m∆t are not available. We shall therefore
need to use some interpolation procedure to obtain the values of Pm for all m =
1, 2, .., from the quoted values available for some m. We can easily find α0 from
(2.11) as

(2.36) P 1 = exp[−α0∆t] implies α0 = − log[P 1]/∆t > 0 since P 1 < 1 .

To calculate α1 we approximate the integral of the short term rate by a Riemann
sum,

(2.37)

∫ 2∆t

0

r(t) dt ' α0∆t+ [α1 + r∗(∆t)]∆t .

Then we use the fact that r∗(∆t) = ∆r with probability pu(0) = 1/6 and r∗(∆t) = 0
with probability ps(0) = 2/3. Finally we have r∗(∆t) = −∆r with probability
pd(0) = 1/6. We conclude then from (2.37) that
(2.38)

P 2 = E

[
exp

{
−
∫ 2∆t

0

r(t) dt

} ]
= e−(α0+α1)∆t

[
2

3
+

1

6
e∆r∆t +

1

6
e−∆r∆t

]
.

Since we have already computed α0 we can compute the value of α1 explicitly from
(2.38).

We wish now to systematize our method of computing the αm from bond prices.
To carry this out we introduce the notion of an Arrow-Debreu (AD) security. On
an historical note both Arrow and Debreu won the Nobel prize in economics. For
each lattice site (m, j) we define the AD security Qmj by

(2.39) Qmj = E

[
exp

{
−
∫ m∆t

0

r(t) dt

}
; r∗(m∆t) = j∆r

]
.

Thus we are restricting ourselves in (2.39) to paths [m′, X(m′)], m′ = 0, ..,m, on
the lattice which have endpoint X(m) = j. Then Qmj is the sum over all such paths
of the exponential times the probability of the path. In financial terms we can think
of Qmj as the value of a virtual security which pays 1 if the short term rate at time
m∆t is αm + j∆r, and otherwise 0. Note that the expectation in (2.39) is not a
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conditional expectation. We can write the bond price at time (m+ 1)∆t in terms
of the Qmj as

(2.40) Pm+1 =

min{m,J}∑
j=−min{m,J}

Qmj exp[−(αm + j∆r)∆t] .

Evidently we can factor exp[−αm∆t] out of the RHS of (2.40) and what is left
depends only on α0, ..., αm−1. Hence if we have already computed these and also
the Qmj , |j| ≤ min{m,J}, we can compute αm explicitly from (2.40).

The AD securities satisfy a recurrence relation corresponding to writing

(2.41)

∫ (m+1)∆t

0

r(t) dt =

∫ m∆t

0

r(t) dt+

∫ (m+1)∆t

m∆t

r(t) dt .

This yields the recurrence

(2.42)

Qm+1
j = Qmj exp[−(αm+j∆r)∆t]ps(j)+Qmj+1 exp[−(αm+(j+1)∆r)∆t]pd(j+1)

+Qmj−1 exp[−(αm + (j − 1)∆r)∆t]pu(j − 1) ,

provided (m, j) is not close to the boundary of the HW lattice. The three terms on
the RHS of (2.42) correspond to the three possible positions of the random path on
the lattice at time m which terminates at time m + 1 on the site (m + 1, j). The
three positions are clearly (m, j), (m, j+1), (m, j−1). Close to the boundary we get
different recurrence formulas. In the HW version (2.29) of boundary probabilities
the recurrence formula for Qm+1

j with j = J−2 is a sum of four terms corresponding

to the points (m,J), (m,J−1), (m,J−2), (m,J−3) since there is a finite transition
probability of going from any of these points to (m,J − 2) in one time step. Thus
(m,J) → (m + 1, J − 2) with probability pd(J) and (m,J − 3) → (m,J − 2) with
probability pu(J − 3). Hence in the recurrence algorithm for AD securities we need
to include the various boundary cases as well as the general formula (2.42) which
is valid sufficiently far from the boundary. Note that we set Q0

0 = 1 to begin the
computation of the AD securities from the recurrence formulas.

Once we have the recurrence relations for the AD securities we can combine these
with the bond price equation (2.40) to find the values of all the αm. Thus if we have
already computed α0, ..., αm−1 and the corresponding Qmj , |j| ≤ min{m,J}, then

we can compute αm explicitly from (2.40). This enables us to compute the Qm+1
j

from the recurrence relations (2.42) etc and again using (2.40) with m replaced
by m + 1 we compute αm+1 and so on. We have therefore given an algorithm for
calibrating the HW model to today’s yield curve.

We have already pointed out the need for interpolation to obtain values for all
Pm, m = 0, 1, ..., from bond prices observed in the market. Let us consider what
a reasonable value for ∆t is. Initially we are inclined to take ∆t = .25 corre-
sponding to the three month treasury bill. However we really need to take ∆t
smaller than this. To see why let us take σ ' .015 in which case (2.24) implies

that ∆r = σ
√

3∆t ' .013. Hence for this lattice model the smallest jump in in-
terest rate is more than 1%, which is large so we should take ∆t smaller than .25
to reduce the size of the jump. We can interpolate in various ways, so we could
for example interpolate observed bond prices or interpolate yields on observable
bond prices. Another possibility is to interpolate observable forward rates. We
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have also discussed in Chapter I two kinds of interpolation -linear and spline in-
terpolation. In our context we shall find that the graph of the function α(·) is
continuous when we use spline interpolation but has lots of discontinuities when we
use linear interpolation. We can see why that is the case from the formula (2.15).
This formula shows that the function α(·) depends on the derivative of the function
T → P (0, T ), T > 0. If we use linear interpolation to obtain this function then
its derivative will have discontinuities, which in turn gives rise to discontinuities in
the function α(·). Because spline interpolation gives a continuously differentiable
function T → P (0, T ), T > 0, the corresponding function α(·) will be continuous.

Finally we point out some advantages and some disadvantages of the HW model.
Advantage: Mean reversion-short term rate gets large only with very small
probability.
Advantage: Calibration to zero yield curve explicit (no need for equation solvers).
Disadvantage: Short term rate can become negative (but with small probability).
Disadvantage: Not clear how to compute correlation and volatility parameters
a, σ from market volatility data.

3. Valuation of interest rate derivatives

We already mentioned that in short rate models bond prices are deterministic
functions of (r, t, T ) as given by the discount formula (2.10). The function P (r, t, T )
on the HW lattice becomes a function of lattice sites. Thus suppose M∆t = T for
some integer T and m∆t = t for some integer m ≤ M . Then if r = αm + j∆r
we have P (r, t, T ) ' P (j,m,M) where the function P (j,m,M) is to be computed
using a recurrence backward in time. The fundamental recurrence relation is given
by the discount formula
(3.1)
V (m−1, j) = [pu(j)V (m, j+1)+ps(j)V (m, j)+pd(j)V (m, j−1)] exp[−rm−1

j ∆t] ,

where rm−1
j is the short term rate associated with the lattice site (m − 1, j) so

rm−1
j = αm−1+j∆r. To compute the values of P (j,m,M) we solve (3.1) backwards

in time for m ≤ M with the terminal condition V (M, j) = 1 for all j. Then we
have that P (j,m,M) = V (m, j) for 0 ≤ m ≤M . Observe that we can check if our
calibration to today’s yield curve is correct by testing if our bond values computed
from (3.1) satisfy P (0, 0,M) = PM , where PM is the current value of the bond
with maturity T .

We have observed that the value of an interest rate cap is a sum of caplets, each
corresponding to an interest rate period. In Black’s model we computed the value
of each caplet (1.7) and summed them up. Here we can do everything together by
using the backward recurrence

(3.2) V (m− 1, j) =

[{rm−1
j −K}+∆t+pu(j)V (m, j+1)+ps(j)V (m, j)+pd(j)V (m, j−1)] exp[−rm−1

j ∆t] ,

with the terminal condition V (M, j) = 0 for all j. The value of the interest rate cap
is then V (0, 0). Note that the caplets corresponding to (3.2) are for a time period
∆t. If interest is paid only after several time periods ∆t then we get a rather more
complicated formula.
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The value of the put swaption described in §1 can be carried out similarly.
Letting Tn = Mn∆t, n = 0, .., N, for integers M0 < M1 < · · · < MN , then the
swap rate R(T0) defined by (1.4) is given by

(3.3) swap(M0, j) =
P (j,M0,M0)− P (j,M0,MN )∑N
n=1(Tn − Tn−1)P (j,M0,Mj)

where P (j,M0,M0) = 1 .

From (1.10) the value of the swaption at time T0 is given by the formula
(3.4)

V (M0, j) = max{K − swap(M0, j), 0}
N∑
n=1

(Tn − Tn−1)P (j,M0,Mn) for all j.

Now the value of the swaption is obtained by using the discount recurrence (3.1)
for 0 ≤ m ≤M0 with terminal date given by (3.4). The value of the swaption today
is then V (0, 0). This is the same as the expectation

(3.5) value of swaption today =

E

[
max{K − swap(M0, ·), 0} exp

{
−
∫ T0

0

r(t) dt

}
N∑
n=1

(Tn − Tn−1)P (·,M0,Mn)

]
.

Note that the value of the swaption today is not the same as

(3.6)

E [ max{K − swap(M0, ·), 0} ] E

[
exp

{
−
∫ T0

0

r(t) dt

}
N∑
n=1

(Tn − Tn−1)P (·,M0,Mn)

]

= E [ max{K − swap(M0, ·), 0} ]

N∑
n=1

(Tn − Tn−1)P (0, Tn) .

The formula (3.6) is analogous to the formula (1.11) of Black’s model for pricing
swaptions.

We can also use Monte-Carlo methods to value interest rate derivatives. To do
this we need to generate random walks through the HW lattice. A walk then is a
sequence of lattices sites [m,X(m)], m = 0, 1, .. with X(0) = 0 and

(3.7)


X(m+ 1) = X(m) + 1 with probability pu(X(m)) ,

X(m+ 1) = X(m) with probability ps(X(m)) ,

X(m+ 1) = X(m)− 1 with probability pd(X(m)) ,

provided |X(m)| < min[m,J ]. To generate the random step in (3.7) by MC we
use the generator “rand” in MATLAB, which generates a random number ξ with
uniform distribution in the interval 0 < ξ < 1. Then we set:

(3.8)


if ξ < pu(X(m)) then X(m+ 1) = X(m) + 1 ,

else if ξ < pu(X(m)) + ps(X(m)) then X(m+ 1) = X(m) ,

else X(m+ 1) = X(m) .

To calculate the value of the interest rate cap we generate a random path [m,X(m)], 0 ≤
m ≤ M, and calculate the value of the cap for this path just as in (3.2). Thus we
set

(3.9) V = 0; for m = M : −1 : 1
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V = [{rm−1
X(m−1) −K}

+∆t+ V ] exp[−rm−1
X(m−1)∆t] ;

end.

If Vn, n = 1, .., N, are the values of V obtained in (3.9) from N independent MC
simulations then

(3.10) MC value of interest rate cap ' [V1 + · · ·+ VN ]/N .

4. Black-Derman-Toys (BDT) Model

The BDT model is another short rate model which has some advantages and some
disadvantages compared to the HW model. In HW we began with the SDE (2.1)
and then derived the discrete model on a lattice. Here we shall go in the opposite
direction, first defining the discrete model and then obtaining the corresponding
SDE by taking the limit of the discrete model as ∆t→ 0.

The lattice sites are points (m, j) in the integer lattice with m = 0, 1, 2, .., and
0 ≤ j ≤ m. We associate with each lattice site (m, j) a time t = m∆t and a short
term rate rmj given by
(4.1)

rmj = rm0 exp
[
2jβm

√
∆t
]
, where rm0 , β

m are parameters depending only on m.

The parameters (rm0 , β
m) are both required to be positive so rm0 > 0 is the lowest

allowable short term rate at time t = m∆t. Transition probabilities in this model
are simply given by the formulae

(4.2)

{
(m, j)→ (m+ 1, j + 1) with probability 1/2 ,

(m, j)→ (m+ 1, j) with probability 1/2 .

It is easy to see that the βm, m = 1, 2, .., are volatilities. To see this we consider
the increment log r(t+ ∆t)− log r(t) in the logarithm of the short term rate during
one time step. Thus from (4.1), (4.2)

(4.3) log r(m∆t)− log r((m− 1)∆t)) =

{
k with probability 1/2,

k + 2βm
√

∆t with probability 1/2,

where k is given by
(4.4)

k = log rmj −log rm−1
j = log rm0 −

(
βm

βm−1

)
log rm−1

0 +

(
βm − βm−1

βm−1

)
log r((m−1)∆t) .

Hence the random variable log r(t+ ∆t)− log r(t) conditioned on r(t) is Bernoulli
with variance given by the formula

(4.5) Var
[
log r(m∆t)− log r((m− 1)∆t))

∣∣ r((m− 1)∆t)
]

= (βm)2∆t .

The formula (4.5) shows that βm is the volatility of the increment in the logarithm
of the short rate at time t = (m− 1)∆t.

To calibrate the model to market data we proceed similarly to the HW model.
Thus we define AD securities Qmj , 0 ≤ j ≤ m, as in (2.39) by

(4.6) Qmj = E

[
exp

{
−
∫ m∆t

0

r(t) dt

}
; r(m∆t) = rmj

]
.
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The bond pricing equation analogous to (2.40) is now

(4.7) Pm+1 =

m∑
j=0

Qmj exp[−rmj ∆t] .

The recurrence relation for the AD securities analogous to (2.42) is given by

(4.8) Qm+1
j =

1

2
Qmj exp[−rmj ∆t] +

1

2
Qmj−1 exp[−rmj−1∆t] if 0 < j < m+ 1.

At the boundaries j = 0,m+ 1 we have that

(4.9) Qm+1
0 =

1

2
Qm0 exp[−rm0 ∆t] , Qm+1

m+1 =
1

2
Qmm exp[−rmm∆t] .

Evidently the Qmj , 0 ≤ j ≤ m, are computable in terms of the parameter values

(rm
′

0 , βm
′
), 0 ≤ m′ < m. Then (4.7) gives us one equation to determine the two

parameter values (rm0 , β
m). We clearly need a second equation, which should be

obtained from market volatility information.
We can get an approximate second equation by making a comparison to Black’s

model for caplets. To see this we observe that

(4.10) log r(m∆t) = log rm0 + 2βm
√

∆t Xm ,

where Xm is the binomial variable for the sum of independent tosses of a fair coin.
Thus
(4.11)

Xm =

m∑
k=1

Yk where the Yk are independent and Yk = 0 or 1 with probability 1/2 .

From the central limit theorem the variable Xm is for large m approximately Gauss-
ian with mean m/2 and variance m/4. We conclude that if t = m∆t then
(4.12)

r(t) ' exponential of a Gaussian variable with variance (2βm
√

∆t)2m/4 = (βm)2t .

Now we see from (1.7) that in Black’s model the value of a caplet for the period
t→ t+ ∆t is given by
(4.13)
value of caplet for the period t→ t+∆t = P (0, t+∆t)∆tE [max{L(t)−K, 0} ] ,

where L(t) is the exponential of a Gaussian variable satisfying

(4.14) E[ L(t) ] = F (0, t), variance of logL(t) = σ2(t)t .

In (4.14) the quantity F (0, t) is the instantaneous forward rate at time t defined in
terms of the forward rates (1.3) by

(4.15) F (0, t) = lim
∆t→0

F (0, t, t+ ∆t) .

The quantity σ(t) is the instantaneous Black caplet volatility at time t, which is
the volatility for the caplet over an infinitesimal time interval (t, t+ ∆t).

Now from (3.2) the value of the caplet in (4.13) is given by
(4.16)

value of caplet for the period t→ t+∆t = E

[
exp

{
−
∫ t

0

r(s) ds

}
max{r(t)−K, 0}∆t

]
.

If we make the approximation as in (3.6) that
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(4.17) E

[
exp

{
−
∫ t

0

r(s) ds

}
max{r(t)−K, 0}

]
' E

[
exp

{
−
∫ t

0

r(s) ds

} ]
E [ max{r(t)−K, 0} ] = P (0, t) E [ max{r(t)−K, 0} ] ,

then (4.16) yields
(4.18)

value of caplet for the period t→ t+ ∆t = P (0, t)∆tE [ max{r(t)−K, 0} ] .

We can directly compare (4.13) and (4.18) since both L(t) and r(t) are exponentials
of Gaussian variables. We can also write

(4.19) E[ r(t) ] ' F (0, t) if yield curve volatility is low,

since there is equality in (4.19) if yield curve volatility is zero. Now the LHS of
(4.13), (4.18) are the same. Hence it follows from (4.12), (4.14) and (4.19) that
setting βm = σ(m∆t), m = 1, 2, .., is a reasonable assumption provided yield curve
volatility is low. We can test whether our assumption (4.19) is self-consistent by
evaluating E[ r(t) ] after calibration based on setting the βm to equal Black implied
volatilities for caplets, and then comparing with the RHS of (4.19). From (4.10),
(4.11) we have that

(4.20) E[ r(t) ] = rm0 E
[

exp{2βm
√

∆t Xm}
]

= rm0 E
[

exp{2βm
√

∆t Y1}
]m

= rm0

[
1

2
+

1

2
exp{2βm

√
∆t}

]m
since the variable Y1 is Bernoulli.

Having set the βm to be Black implied volatilities for caplets, we can complete
the calibration of the BDT model by solving (4.7) for rm0 . Note that (4.7) is an
implicit equation in x of the form

(4.21) Pm+1 =

m∑
j=0

aj exp[−bjx] , where the aj , bj , 0 ≤ j ≤ m, are known.

It can be solved efficiently by an iteration method such as Newton’s method. In
MATLAB one can use the equation solver “fsolve”. Once the model has been
calibrated the values of interest rate derivatives can be computed by the methods
given in §3.

Finally we wish to find the continuum limit ∆t → 0 of the BDT model. From
(4.3), (4.4) we have on setting βm

′
= σ(m′∆t), m′ = 1, 2, .., and t = (m − 1)∆t

that
(4.22)

log r(t+∆t)−log r(t) '
[
σ(t+ ∆t)− σ(t)

σ(t)∆t
log r(t) + θ(t)

]
∆t+σ(t)[B(t+∆t)−B(t)] ,

where B(·) is Brownian motion. Note from (4.4), (4.5) that the mean and variance
of the LHS and RHS of (4.22) agree to leading order in ∆t. The function θ(t) in
(4.22) refers to the terms in (4.4) which are deterministic and depend only on m.
If we let ∆t→ 0 in (4.22) we obtain the SDE

(4.23) d[ log r(t) ] =

[
σ′(t)

σ(t)
log r(t) + θ(t)

]
dt+ σ(t) dB(t) .

Thus in the BDT model it is the logarithm of the short rate which satisfies a
linear SDE, whereas in the HW model the short rate itself satisfies a linear SDE.
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We can easily explicitly solve (4.23). Multiplying (4.23) by σ(t)−1 and setting
X(t) = log r(t) we have from (4.23) that

(4.24)
dX(t)

σ(t)
− σ′(t)

σ(t)2
X(t) dt =

θ(t)

σ(t)
dt+ dB(t) .

We can rewrite (4.24) as

(4.25) d

[
X(t)

σ(t)

]
=

θ(t)

σ(t)
dt+ dB(t) ,

and integrate. Thus we have that

(4.26)
X(t)

σ(t)
=

X(0)

σ(0)
+

∫ t

0

θ(s)

σ(s)
ds+B(t) .

Hence log r(t) is a Gaussian variable with

(4.27) mean =
σ(t) log r(0)

σ(0)
+ σ(t)

∫ t

0

θ(s)

σ(s)
ds , variance = σ2(t)t.

We have already mentioned that an advantage of the BDT model over HW is
that the short rate is always positive. There are also disadvantages however. One
rather subtle disadvantage is that the model cannot be mean reverting. To see why
this is the case observe from (4.23) that for the model to be mean reverting the
function σ(·) must have the property that there exists a > 0 and

(4.28) σ′(t)/σ(t) ≤ −a for t ≥ 0.

We can rewrite (4.28) as

(4.29)
d

dt
[log σ(t) + at] ≤ 0 implies σ(t) ≤ σ(0)e−at for t ≥ 0.

Hence σ(t) converges exponentially to 0 and since the variance of log r(t) is σ2(t)t
this means the variance of log r(t) converges to zero. We conclude that the range
of values taken by r(t) in the BDT model as t becomes large will be wider than in
the mean reverting HW model.

Finally we summarize some advantages and some disadvantages of the BDT
model.
Advantage: Short term rate is always positive.
Advantage: Inputting market volatility data straightforward by using Black im-
plied volatilities.
Disadvantage: Calibration to zero yield curve not explicit (need for equation
solvers).
Disadvantage: No mean reversion of the short rate.
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