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Abstract

Calibration of the BDT model to cap prices is notoriously simple, since an almost
exact`guess’ of the correct time-dependent volatility can be obtained from the market
implied volatility of caplets. This is a priori surprising, since the unconditional
variance of the BDTshort rate process should be expected to depend on the
(deterministic) history of the short rate volatility, and on the mean reversion of
logarithm of the short rate. This apparent paradox is resolved in the first part of the
paper, where general expressions (usable, for instance, to calibrate the Black-
Karasinsky model) for the unconditional variance are obtained for a variety of one-
factor models. The class of one-factor models for which the same type of relationship
holds true is also introduced.

The results are then extended to more-than-one-factor models, with the introduction of
a class of stable and arbitrage-free Generalized Brennan and Schwartz models. It is
shown that, if no arbitrage is to be enforced, this very large class of log-normal-short
rate models cannot be calibrated to cap prices using higher-dimensional extensions of
the BDT procedure.

Introduction

Of the several one-factor models used for pricing interest rate options, the Black
Derman and Toy (1990) (BDT in the following) is one of the best known, and of the
most widely used. Amongst its most appealing features are the capability to price
exactly an arbitrary set of received market discount bonds, the log-normal distribution
of the short rate, and the ease of calibration to cap prices. The first feature (exact
pricing of the yield curve) is shared by a variety of (non-equilibrium) models, such as
the Ho and Lee (1986) or the Hull and White (1990). The second (log-normal
distribution of rates) is also shared by the Black and Karasinski model. Only the BDT
approach, however, allows log-normal ratesand calibration to caplet prices (in absence
of smile effects) that can be accomplished almost by inspection. This latter feature is,



at the same time, the blessing and the bane of the BDT model, and directly stems
from the inflexible specification of the reversion speed, which is completely
determined by the future behaviour of the short rate volatility. This latter feature is
well known, and has already been amply criticized on theoretical grounds in the
literature. The decision as to whether, despite this rather artificial characteristic, the
BDT model can be profitably used in practical applications for option pricing depends
crucially on the type of option, and requires a considerable degree of experience and a
rather subtle understanding of the implications of the model. A discussion of the
related issues can be found, for instance, in Rebonato (1996).

In the light of the above, the present note

1. highlights the intimate connection, hitherto not fully appreciated, to the best
knowledge of the authors, between the ease of calibration to cap prices and the
particular link between the reversion speed and the logarithmic derivative of the
short rate volatility;

2. extends the results to different classes of one-factor models;

3. shows to what extent these findings affect the calibration of an important class of
no-arbitrage two-factor models.

Statement of the problem

For a generic Wiener process of the form

d ln r�t� � ��t�dt� �inst�t�dz�t� �1�
with ��t� a determinsticdrift, dz the increment of a Brownian process and�inst�t� an
instantaneous volatility (standard deviation per unit time) it is well known that the
unconditional variance out to timeT is given by

Var�ln r�T�� �
Z T

0
�inst�u�2du: �2�

Furthermore, for a mean-reverting process of the form

d ln r�t� � ���t� � k� �t� ÿ ln r�t���dt� �inst�t�dz�t� �3�
(with reversion speedk, reversion level �t�, and��t� a deterministicdrift component)
the unconditional variance will, in general, depend on the reversion speed.

The continuous-time equivalent of the BDT model can be written as

d ln r�t� � ���t� ÿ f 0�t�� �t� ÿ ln r�t���dt� �inst�t�dz�t� �4�
with

f 0�t� � @ ln ��t�=@t �5�
and both��t� and��t� deterministic functions of time. Equation (4) and its
implications as to the model behaviour are well known in the literature (see, e.g.
Rebonato (1996), where the link between the function��t� and the median of the short
rate distribution is highlighted). For the present purposes it will suffice to say that it is
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only in the presence of a time decaying short rate volatility�@ ln ��t�=@t < 0� that the
resulting reversion speed�ÿf 0� is positive and the model displays mean reversion.

Whilst this is well known, it does seem to create a paradox, since it is ‘empirically’
known, and shown in the following, that, in discrete time, the unconditional variance
of the short rate in the BDT model neither depends on the instantaneous volatility
from time 0 to timeT ÿ�t (as one would have been led to expect from Equation (2))
nor does it depend on the reversion speedÿf 0 (as one might have surmised from
Equation (4)). More precisely, one can easily show (see below) that

Var �ln r�N�t� � �N�t��2�N�t�; �6�
where�2�N�t� is the (square of) the instantaneous short rate volatility at time
T � N�t. It is important to stress the crucial importance of Equation (6) for
calibration purposes; it is only because the instantaneous volatility of the log-normal
short rate is simply given by the expression above that calibration to caplet prices is
so easy: market prices are in fact routinely quoted on the basis of the log-normal
Black (1976) model, and the BDT forward induction construction implicitly carries out
the Girsanov’s drift transformation from the measure associated with the discount bond
numeraire implied with the Black model to the equivalent measure asociated with the
(discretely-compounded) money-market account implied by the BDT approach (see
Rebonato (1996)). Since the market Black implied volatilities give direct information
about the unconditional variance of the relevant forward rates (spot rates at expiry),
from the quoted implied Black volatilities of caplets of different expiries the user can
almost exactly1 obtain their exact BDT pricing by assigning a time-dependent short
rate volatility matching the implied Black volatilities: see Equation (6) above.

It is rather well known amongst practitioners that this is the case. What is not
generally appreciated is how this can be, since Equations (2) and (4) would in general
suggest that both the instantaneous short rate volatility from time 0 to timeT and the
reversion speedÿf 0 should affect the unconditional variance from time 0 to timeT,
that, in turn, determines, the Black price of theT-expiry caplet. The first part of this
paper (Sections 3 and 4) will first show that the ‘empirically known’ result mentioned
above regarding the unconditional variance is indeed correct, and then (Section 4),
moving to the continuous limit, shed light on the origin and resolution of the resulting
apparent paradox.

The unconditional variance of the short rate in BDT ± the discrete case

A calibrated BDT lattice is fully described by a vectorr � fri0g; �i � 0; k� whose
elements are the lowest values of the short rate at time stepi, and by a vector
� � f�ig; �i � 0; k�, whose elements are the volatilities of the short rate from timestep
i to timestepi � 1. Every raterij , in fact, can be obtained asrij � ri0 exp �2�i j �

p
t�.

(�t, as usual is the time step in years). Let us now definek random variables
y1; y2; . . . ; yk by

1 Since the short rate enters the expression of the drift, the unconditional variance is not exactly equal
to �2

Black � (where� is the time to expiry and�Black the market implied volatility). The
approximation is however excellent (see Rebonato (1998)) for a discussion of this point.
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yk � 1 if an up move occurs at time (k - 1) D t
0 if a down move occurs at time (k - 1) D t.

�
For instance, for the path highlighted in Figure 1,y1 � 0, y2 � 1, y3 � 0, y4 � 0. It
will further be assumed i) that the variablesyj are independent, and ii) that the
probability P�yk � 1� � P�yk � 0� � 1

2. The variableXk �
P

j�1;k yj therefore gives the
‘level’ of the short rate at timek�t, and the value of the short rate at timek�t in the
state labelled byXk is given by

rk;X�k� � rk0 exp �2�iXk �
p

t�: �7�
Our task is now to evaluate the expectation and variance of the logarithm of this
quantity, denoted byE�ln rk;X�k�� and Var�ln rk;X�k��, respectively. To this effect one
must first find the distribution ofXk. By evaluating its characteristic function one can
easily show that the probability ofXk assuming valuej is given by

P�Xk � j� � Cj
k=2

k; �8�
with

Cj
k � k!=��kÿ j�! j !�: �9�

Therefore

P�rk;X�k� � rk0 exp �2�kj �
p

t�� � P�Xk � j� � Cj
k=2

k: �10�
We are now in a position to evaluateE�ln rk;X�k�� (rk;X�k� will be abbreviated asrk in
the following to lighten notation):

E�ln rk� �
X
j�0;k

1
2

k

Cj
k�ln rk � 2�k �

p
tj� � ln rk

1
2

k

2k � 1
2

k

2�k �
p

t
X
j�1;k

jC j
k: �11�

Given, however, the definition ofC j
k,

jC j
k � kCjÿ1

kÿ1;

0
1 0

0= =

=

=

Figure 1 Values assumed by the random variables y1, y2, y3 and y4 for the
down-up-down-down path highlighted
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and, after substituting in (11), one obtains

E�ln rk� � ln rk � k�k �
p

t: �12�
Similarly for the variance

E��ln rk�2� �
X
j�0;k

1
2

k

C j
k�ln rk � 2�k �

p
tj�2

� �ln rk�2� 2k�k�ln rk� �
p

t � 4�2
k�t

X
j�1;k

j2C j
k: �13�

But the last term is simply equal to

j2C j
k � k�kÿ 1�C jÿ2

kÿ2� kCjÿ1
kÿ1; �14�

and therefore the last summation adds up toX
j�0;k

j2C j
k � k�kÿ 1�2kÿ2� k2kÿ1: �15�

It follows that the unconditional variance is given by

Var�ln rk� � E��ln rk�2� ÿ �E�ln rk��2

� �ln rk�2� 2k�k�ln rk� �
p

t � �2
k�tk�k� 1� ÿ �ln rk � k�k �

p
t�2

� �2
kk�t: �16�

The expression above therefore shows that the unconditional variance of the logarithm
of the short rate in the BDT model only depends on the final instantaneous volatility
of the short rate, despite the continuous-time limit of the model displaying both mean-

Table 1 Caplet prices per unit notionals and ATM strikes for the GBP sterling
curve of expiries reported on the left-hand column, as evaluated using the Black
model (column Black), and the BDTmodel calibrated as described in the text
(column BDT)

Sterling Curve Nov 1995
Expiry Black BDT

01-Nov-95
31-Jan-96 0.000443 0.000431
01-May-96 0.000773 0.000757
31-Jul-96 0.001148 0.001133
31-Oct-96 0.001559 0.001548
30-Jan-97 0.002002 0.001994
01-May-97 0.002422 0.002416
01-Aug-97 0.002746 0.002742
31-Oct-97 0.003024 0.003020
30-Jan-98 0.003265 0.003263
02-May-98 0.003471 0.003471
01-Aug-98 0.003449 0.003452
31-Oct-98 0.003406 0.003411
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reversion and a non-constant short rate volatility, and therefore validates the
‘empirical’ procedure, well-known amongst practitioners, to calibrate to caplet market
prices. The table above shows the results of calibrating the BDT tree using the Black
implied volatilities.

The unconditional variance of the short rate in BDT ± the continuous-
time equivalent

The above derivation has shown that, in discrete time, the unconditional variance of
the short rate is indeed given by expression (6). What is not apparent, however, iswhy
the reversion speed and/or the instantaneous short rate volatility from time 0 to time
T ÿ�t does not appear in the equation. To see why this is the case it is more
profitable to work in the continuous-time equivalent of the BDT model, Equation (4).
This can be re-written as a diffusion of the general form:

d lnr�t� � �a�t��b�t� ÿ ln r�t���dt� ��t�dz�t�; �17�
wherea�t�, b�t� and��t� aredeterministicfunctions of time. The SDE (*) can easily
be solved (see Appendix I) giving

Var�ln r�T�� � exp�ÿ2
Z t

0
a�s�ds�

Z t

0
��t�2exp�2

Z t

0
a�s�ds�dt: �18�

As it can be appreciated from this result, the unconditional variance of the logarithm
of the short rate out to timeT does in general indeed depend on the reversion speed,
and on the values of the instantaneous volatility��t� from time 0 to timeT. This
result is completely general, but it is instructive to specialize it to the case of the BDT
model. In this casea�t� � ÿf 0, and therefore, recalling thatf �t� � ln ��t�, the
unconditional variance of the short rate out to timeT becomes

Var�ln r�T�� � exp�2f �T� ÿ f �0��
Z t

0
��t�2 exp�ÿ2�f �t� ÿ f �0���dt

� exp�2f �T��
Z T

0
��t�2exp�ÿ2f �t��dt: �19�

Finally, recalling thatf �t� � ln ��t�, one can immediately verify that, in the BDT
case, the unconditional variance is indeed simply given by

Var�ln ��T�� � ��T�2
Z T

0
du� ��T�2T; �20�

i.e. for any mean-reverting process for which the reversion speed is exactly equal to
the negative of the logarithmic derivative of the instantaneous volatility with respect to
time (i.e., a�t� � ÿ@ln ��t�=@t� neither the reversion speed nor the past instantaneous
volatilty enter the expression for the unconditional variance, which only depends on
the instantaneous short rate volatility at the final time. This result fully resolves the
‘BDT paradox’, and indicates the necessary and sufficient conditions under whichany
locally log-normal model can be simply calibrated to cap prices by using its terminal
instantaneous volatility.
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Extensions to two-factor approaches

The importance of using more-than-one- factor models is widely recognized in the
financial community, especially for pricing options that depend in an important way
on the imperfect correlation amongst rates. From the discussion above, on the other
hand, it is easy to see that retaining a log-normal distribution of rates is very important
if one is to achieve easy calibration of any model to market cap prices across several
strikes. The impact of non-log-normal distributions on model cap prices has been
clearly shown, for instance, for the normal-short-rate Hull and White Generalized
Vasicek model (see Rebonato (1996)).

In order to retain the log-normality of the short rate, and to extend the analysis to
more than one factor, one is naturally led to consider the general framework
introduced by Brennan and Schwartz (1982, 1983), who showed that, if one of the two
state variables is chosen to be the consol price or yield, the accompanying market
price of risk can be made to disappear from the resulting parabolic partial differential
equation which describes the ‘real-world’ evolution of the price of a generic security.
It would be very useful for practical applications if one could specify a two-factor log-
normal short rate model along the same conceptual lines, so that the model calibration
could be accomplished as readily as in the BDT case. In the following it is shown that
this is not possible, if arbitrage is to be prevented, but approximate expressions for the
unconditional variance of the short rate for this class of models are currently under
study.

The specific model proposed by Brennan and Schwartz has been shown (Hogan(1993))
to suffer from instability of the long yield. This feature, however, stems from the
arbitrary ‘real-world’ specification of the dynamics of the state variables chosen by
Brennan and Schwartz. Their central insight regarding the market price of long yield
risk remains valid, and is made use of in the following in the context of the risk-
neutral (as opposed to ‘real-world’) measure. More precisely, the derivations presented
in the following apply to the measureQ (often referred to as ‘risk-neutral’) under
which asset prices divided by the rolled-up money-market account are martingales. It
will be recalled at this point that, in anyn-dimensional tree-basedn-nomial
methodology where, with obvious extension of the BDT algorithm, pay-offs are first
averaged and then discounted to the ‘originating’ node by the short rate corresponding
to that node, one is effectively discounting final pay-offs by the (discretely) rolled-up
money market account (see Rebonato (1996)). Therefore the risk-neutral measure
defined above is indeed the appropriate measure to consider for lattice-based
methodologies.

If one wants to retain, at the same time, the Brennan and Schwartz general approach
and local log-normality for the short rate, one is naturally led to choose (see Rebonato
(1997)) as state variables the consol yield,L, and the ratio,K, of the short rate,r, to
the consol yield:

r � KL �21�
If, in addition bothK andL are assumed to be log-normally distributed, not only
would positivity of the short rate be automatically ensured, but its distribution would
also turn out to be log-normal. Therefore
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dK=K � �K�t;K;L�dt� �KdzK �220�
dL=L � �L�t;K;L�dt� �LdzL �2200�

E�dzK ; dzL� � � �22000�
The expressions above contain the unknown drifts for the consol yield and for the
relative spreadK. Following the spirit of the Brennan and Shwartz approach, however,
the no-arbitrage risk-neutral dynamics for the consol bond,C � 1=L, can then be
obtained by imposing that, since the consol bond is an asset, it must grow inQ at
�r ÿ L�, i.e. at the short rate minus its dividend yield, if discounting is effected using
the money-market account. Applying Ito’s lemma one therefore obtains:

dL=L � �L�1ÿ K� � �2
L�dt� �LdzL �23�

or, equivalently,

dL� �L�Lÿ R� � �2
LL�dt� L�LdzL: �24�

Notice that, from this no-arbitrage condition,the long (consol) yield flees the short
rate with fleeing speedL; this would seem to imply an intrinsically unstable
behaviour for the joint dynamics of the state variables. This is, however, not
necessarily the case, as can be see in the following. Ito’s lemma, in conjunction with
the above equation and the definitions i) and ii), in fact gives for the SDE forR

dr=r � �a0�t� � �Lÿ r� � �K �dt� �rdzr ; �25�
with �2

r � �2
K � �2

L;�2�K�L�, i.e. the short rate is log-normally distributed and it
reverts to the long yield with reversion speed 1. It is important to notice that this
condition directly follows from nothing else but the distributional assumptions and the
no-arbitrage requirement. Notice also that Equation (25) implies a reversion of the
short rate to the long rate with reversion speed equal to 1. This is particularly
significant, since Hogan (1993) shows that the reversion speed above must be� 1 for
the coupled system of equations describing the evolution ofr andL to be stable.

The equations obtained up to this point have been fully determined by the no-arbitrage
conditions and the distributional assumptions. Nothing, however, has been said about
the drift of K. At this point one could want to impose that the drift ofK should be
equal to an arbitrary functionf time only and a linear function ofK andL only:

�K�t;K;L� � b0�t� � b1K � b2L; �26�
with b1 < 0 so as to ensure the reversion ofK to a constant level. Whatever the merits
of this choice, Equation (26) can always be seen as obtained by retaining the first-
order term of the expansion of the (unknown) true drift. Different choices of
functional dependence of the drift ofK on the state variables give rise to different
models, which can therefore aptly described as belonging to the Generalized Brennan
and Schwartz family.

Whatever the choice for�K might be, Equation (25) is crucial to the following
argument: the system of SDEs (22)–(25) has been shown to stem from the very
conditions of no-arbitrage, and, therefore, for the chosen numeraire and distributional
assumptions, these results are inescapable for any viable model. This fact, however,
poses a grave problem insofar as ease of calibration is concerned. On the one hand, in
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fact, it has been observed above that necessary condition for the variance of a mean-
reverting process to depend only on the (terminal value of) the instantaneous volatility
and not on the reversion speed is that the latter should be identical to the negative of
the logarithmic time derivative of the instantaneous volatility (See Eq. (20)). We then
argued that it was because of this very feature that calibration to cap prices in the
BDT model is so straightforward. On the other hand, even if the drift ofK were
assumed to be purely a function of time, there is no way to retain stability of the
dynamics ofr andL and avoiding arbitrage without the termr�Lÿ r�, which implies a
reversion speed for the short rate (rather than its logarithm) that isnot related to the
logarithmic derivative of the instantaneous volatility. Therefore the unconditional
variance of the short rate out to timeT cannot be simply related to the instantaneous
volatility of the short rate at timeT, as it is the case for the BDT model. In other
words, it is not possible to extend the BDT model to more than one state variable as
proposed above in such a way that one of its most important features (the ease of
calibration) is preserved.

Conclusions

The inflexible nature of the reversion speed in the BDT model is, at the same time, its
blessing and its bane. The positive features, connected with the ease of calibration, are
too well known to be dwelt upon, and are, to a large extent, responsible for the wide
acceptance of the model amongst practitioners. The negative aspects, however, should
not be underestimated. These are more pernicious than the usual limitations of one-
factor or low-dimensionality models (see, e.g. Rebonato and Cooper (1996), for a
discussion of the latter): one of the distinctive features of the BDT model is in fact the
inextricable link it implies between its reversion speed and the logarithmic derivative
of the short rate volatility. The time- decaying volatility needed in the BDT model in
order to ‘contain’ an excessive dispersion of rates can, in fact, well succeed in
obtaining anunconditionaldistribution of rates consistent with the one implied by the
cap market; but, since an explicit deterministic mean reversion is absent from the
model for any non-decaying behaviour of the short rate volatility, this is obtained at
the expenses of a lower and lower forward-forward volatility. This undesirable feature
can have a limited impact for relatively short maturity options, but must always be
born in mind by users who extend their analyses well beyond the common ‘volatility
hump’ observed in most cap markets. Unfortunately, this paper has shown that it is
impossible to remove this undesirable feature and to retain at the same time the
original ease of calibration.

In an attempt to obviate those shortcomings of the BDT model shared by all one-
factor models, an obvious extension along the lines of the Brennan-and- Schwartz
approach was introduced in the second part of the paper, and a class of arbitrage-free
log-normal short rate models which do not display the Hogan instability was obtained
in the second part of the paper. It was shown, however, that, despite the log-normality
of the short rate, if arbitrage is to be avoided these models cannot have the same type
of unconditional variance displayed by the BDT model. On the one hand this allows
for ‘true’ mean reversion to occur in the SDE for the short rate even in the presence
of constant volatility; on the other hand, however, the resulting calibration to cap
prices is prima facie considerably more arduous. Research in the validity of
approximate expressions that could make the cap calibration almost as easy as for the
BDT approach is currently under way.
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Appendix: Evaluation of the variance of the logarithm of the
instantaneous short rate

From (*) one can write

d lnr�t� � a�t� ln r�t�dt � a�t�b�t�dt� ��t�dz�t�:
This implies that

exp�ÿ
Z t

0
a�s�ds�d� ln r�t� exp�

Z t

0
a�s�ds�� � a�t�b�t�dt� ��t�dz�t�:

But the quantity lnr�T� exp�R t
0 a�s�ds� can be written as

ln r�T� exp�
Z T

0
a�s� ds� � ln r�0� �

Z T

0
a�t�b�t� exp�

Z t

0
a�s� ds�dt

�
Z T

0
��t� exp�

Z t

0
a�s� ds�dz�t�;

and, therefore

ln r�T� � exp�ÿ
Z T

0
a�s� ds� ln r�0� � exp�ÿ

Z T

0
a�s� ds�

Z T

0
a�t�b�t� exp�

Z t

0
a�s�ds�dt

� exp�ÿ
Z T

0
a�s�ds�

Z T

0
��t� exp�

Z t

0
a�s�ds�dz�t�:

Remembering that, for any deterministic functionf �t�, Var�R t
0 f �u�dz�u�� � R t

0 f �s�2 dt,
it then follows that

Var�ln r�T�� � E��ln r�T�2� ÿ �E�ln r�T���2

� exp�ÿ2
Z T

0
a�s�ds�

Z T

0
��t�2 exp�2

Z t

0
a�s� ds�dt:
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