STOCHASTIC VARIATIONAL FORMULAS FOR SOLUTIONS TO
LINEAR DIFFUSION EQUATIONS

JOSEPH G. CONLON AND MOHAR GUHA

ABSTRACT. This paper is concerned with solutions to a one dimensional linear
diffusion equation and their relation to some problems in stochastic control
theory. A stochastic variational formula is obtained for the logarithm of the
solution to the diffusion equation, with terminal data which is the characteristic
function of a set. In this case the terminal data for the control problem is
singular, and hence standard theory does not apply. The variational formula
is used to prove convergence in the zero noise limit of the cost function for
the stochastic control problem and its first derivatives, to the corresponding
quantities for a classical control problem.

1. INTRODUCTION.

In this paper we shall be concerned with solutions to a linear diffusion equation
and their relation to some problems in stochastic control theory. Let T > 0 and
b(y,t), y € R, t < T, be a function differentiable in y with derivative continuous
in (y,t) which satisfies the uniform bound

(1.1) sup {|9b(y.1)/0y| : y € R, < T} < A,

for some constant A > 0. We shall be interested in solutions u.(z,y,t) to the
equation

A, Ou, € 0%u,
1.2 b(y,t — =0 R, t<T
with terminal condition
(1.3) tlirr%ug(x,y,t) =0 for y<uz,

2Slirrjlﬂug(gc,y,ﬁ) =1 for y>u=z.

It follows from standard methods [7] that wu.(z,y,t) is a continuous function of
(z,y,t) for z,y € R, t < T, and that also the first derivative u.(x,y,t) in ¢ and
second derivatives in (z, y) exist and are continuous in (z, y,t). Evidently u.(z,y,t)
is given in terms of the fundamental solution G¢(y,y’, ¢, T) for (1.2) by the formula

(1.4) ue(z,y,t) = / Ge(y,y', t,T)dy' .

It is well known [12] that if b(-,-) satisfies (1.1) then the stochastic differential
equation

(15) dY:(s) = b(Yz(s), 5)ds + VE W (s),
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where W(+) is Brownian motion, is uniquely solvable in the interval t < s < T with
given initial condition Yz (t) = y. Furthermore, u.(z,y,t) is related to solutions of
(1.5) by the identity,

(1.6) ue(z,y,t) =P (Ye(T) >z | Y(t) =y), t<T.

The connection between solutions of (1.2), (1.3) and control theory comes via
the function ¢.(x,y,t) defined by

(1.7) uc(z,y,t) = exp—q.(z,y,t)/e].

In view of (1.6) the function ¢. is positive, and by virtue of (1.2), (1.3) it satisfies
the PDE

dq: dg. 1 (9g:\* € 9.

1.8 by, t - = — =0 R, t<T
(1.8) 8t+(y’)8y s\ 3y ) T2, =0 veRt<T
with terminal condition
(1.9) tlinqlﬂ ge(z,y,t) =00 for y <z,

tlin% ge(z,y,t) =0 for y > x.

If we let ¢ — 0 in (1.8) we obtain a Hamilton-Jacobi equation, and therefore should
expect that the limit of ¢.(z,y,t) as € — 0 is given by the solution of a variational
problem. This turns out to be the case. Let g(z,y,t) be defined by

(1.10) g(=z,y,t) = min{; /tT [dgjj(;) - b(y(@ﬁ)}2 ds ‘ yt) =y, y(T) > x} )

Thus the functional in (1.10) is minimized over all paths y(s), ¢t < s < T, with

initial point y(t) = y and terminal point y(T) > x. Define the function F(x,t), = €

R, t <T, by F(x,t) = y(t) where y(-) is the solution to the terminal value problem,
dy(s)

(1.11) 5 = b(y(s),s), s<T, y(T)=u.

Then one easily sees that ¢(z,y,t) =0 if y > F(x,t), whence the function ¢(z,y, t)
is nontrivial only for sufficiently large negative values of y. In §3 we prove the
following theorem showing that g. converges to g as € — O:

Theorem 1.1. Assume b(-, ) satisfies (1.1). Then forx,y e R, t <T, 0 <e <1,
there is a constant C' depending only on x,y,t, T, A such that

(1.12) |g:(x,y,t) — q(z,y,t)] < CVe.

Inequalities of the type (1.12) for terminal data which is not singular- unlike in
the case of (1.9)- have been known for many years [2, 4]. A short elegant proof of
this has recently been given in [3]. The inequality (1.12) implies via (1.6) the large
deviation result for solutions to the stochastic equation (1.5),

(1.13) lim & log [P (Yo(T) > 2 | Ya(t) = y) | = —a(e.p.1),

a result which also follows from Theorem 1.1 of Chapter 4 of [8].

In proving Theorem 1.1 we take the approach of showing that in some sense
ge(x,y,t) is the cost function of a stochastic control problem. The formal limit as
€ — 0 of this stochastic control problem is a classical control problem with cost
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function ¢(z,y,t) given by (1.10). The stochastic control problem can be described
as follows: Let y.(-) be the solution to the stochastic differential equation,

(1.14) dye(s) = Ae(+, 8)ds + /e AW (s),

where A.(+, s) is a non-anticipating function. The cost function for the problem is
given by the formula,
(1.15)

¢=(7,y,t) = min £

€

T
5 PG b9 ds | 0et) = (D) >0

Thus the minimum in (1.15) is to be taken over all non-anticipating A.(:, s), ¢ <
s < T, which have the property that the solutions of (1.14) with initial condition
ye(t) = y satisfy the terminal condition y.(T') > = with probability 1. One expects
that the function g.(z,y,t) of (1.15) is identical to the function ¢.(z,y,t) of (1.7),
but this is not so easy to prove. An immediate question that arises is how to define
a suitable space of non-anticipating functions A.(+, s), ¢ < s < T, which have the
property that solutions of (1.14) with initial condition y.(t) = y satisty y.(T) > x
with probability 1.

Instead of attempting to establish the formula (1.15) with ¢.(z,y,t) given by
(1.7), we shall confine ourselves to the simpler problem of showing that the ex-
pectation on the RHS of (1.15) is greater than or equal to ¢.(x,y,t) for certain
non-anticipating functions A\:(+,s), ¢ < s < T, and that there is equality when
Ae (v, 8) is given by the formula

(1'16) )‘E('vs) = )‘;(xay8<s)7s> = b(ya(s)’s)

In order to prove Theorem 1.1 it is actually only necessary to prove equality in
(1.15) in the approximate sense
(1.17)

Jqe
- ay (1‘7 ys(s)a 8)

1

T—\/E ,
¢e(z,y,t) = E §/t A2 (,ye(s),8) — b(ye(s),8)]” ds ‘ y=(t) = y| +O(Ve).

The identity (1.17) turns out to be much easier to establish than the equality in
(1.15) when A:(+,s), t < s <T,is given by (1.16).

We turn to the proof of this equality in §4 and §6. In §4 we show that the
solution y.(s), t < s < T, of (1.14) with initial condition y.(t) = y and A.(:,s)
given by the optimal controller (1.16), has the property that

(1.18) lim 75infT Ye(t) > x with probability 1.

The proof of (1.18) depends crucially on obtaining a lower bound on the derivative
of the function ¢. of (1.7),

S w2 T L a@), 0<T-t<dz-y<n,
where « is independent of § and lims_on(d) = 0. Observe that the inequality
(1.19) is only non-trivial for y < x since —0q.(z,y,t)/dy > 0, y € R, by the
maximum principle. The proof of (1.19) relies on the use of the Cameron-Martin
formula [21] applied to the diffusion Y.(-) of (1.5). One can see from (1.4) that
the inequality (1.19) gives some information about the short time asymptotics of
fundamental solutions to diffusion equations. There has been much research over

(1.19)



4 JOSEPH G. CONLON AND MOHAR GUHA

several decades [11, 17, 18, 22] devoted to this subject. In particular, Molchanov
[18] has obtained short time asymptotic formulas for diffusions with bounded drift.
These results have been used by Fleming and Sheu [6] to prove a representation
formula analogous to (1.15) for the logarithm of the fundamental solution.

In order to establish that the expectation on the RHS of (1.15) with A.(-, ), ¢ <
s < T, given by (1.16) is equal to the LHS, one needs to prove that the inequality
(1.19) holds uniformly for y € R i.e. v = oco. This turns out to be a consider-
ably more difficult task than proving (1.19) for some v > 0. It is not possible to
obtain estimates by means of the Cameron-Martin formula, and instead one uses
an induction argument. The problem of obtaining a uniform lower bound (1.19) is
closely related to the problem of estimating probabilities for the diffusion Yz(-) of
(1.5) tied at 2 different times. In §5 we prove the following :

Theorem 1.2. Suppose b(-,s), 0 < s < T, satisfies (1.1) and in addition b(0, s) =
0, 0 < s <T. Then there exist positive universal constants, n,C1,Ca,v1,7v2 Such
that

(1.20) P (Ys(t) <

< exp [ “”;T‘f)yz] .y < —T\e/(T—1),
(L21) P (mt) CTZ | v (0) =y, v(1) = o)

provided AT <n, T —t<T/2.

In §6 we not only show that the expectation on the RHS of (1.15) with A.(+, s)
given by (1.16) equals the LHS. We also obtain corresponding formulas for the first
derivatives of ¢.(z,y,t) in  and y. An immediate consequence of this-Corollary
6.1- is that the fundamental solution G. for (1.2) satisfies the inequality

—2loguc(z,y,1)]"*
e(T—1)

where A is the constant in (1.1) and u.(z,y,t) is given by (1.4). The inequality
(1.22) appears to be nontrivial even in the case b = 0, where it states that the
cumulative distribution function N(-) for the standard normal variable,

(1.23) N(z) = \/%7 /_Z exp(—p?/2) dp = % + %Sign(z) erf (%) )

satisfies the inequality
(1.24) exp(—22/2) < 2/7N(2) [~ log N(2)]"?, z € R.

Let us assume now that the function b(y,t), in addition to satisying (1.1), is
also concave in y for each ¢t < T. In §2 we show that in this case the function
q(z,y,t) of (1.10) is C' in (x,y,t) and is a classical solution of the £ = 0 Hamilton-
Jacobi equation (1.8). Furthermore, for any ¢ < T the function ¢(z,y,t) is convex
in (x,y) and its second derivatives in (z,y) exist and are continuous on the set

(1.22) G:(y,z,t,T) <1+ (T — t)AJuc(z,y,1t) [

)
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{(z,y,t) : v,y e R, t < T, y # F(x,t)}, where F(x,t) is the function defined
by (1.11). In the Appendix we prove using the method of Korevaar [9, 10, 14]
that the function g.(x,y,t) defined by (1.7) is also convex in (z,y) for any ¢t < T
Although Korevaar’s method is simple in concept, considerable difficulty arises
here in its implementation due to the fact that we need to approximate solutions
of the linear equation (1.2) by solutions of a quasi-linear equation (A.34). Hence
we need regularity theory-Proposition A2- for solutions to quasi-linear equations
[7, 15]. Alternative approaches to Korevaar’s method [1, 16] seem to also give rise
to comparable technical difficulties in the implementation.

The proof that for fixed (z,t) the function ¢.(x,y,t) is convex in y -Theorem
Al-is much easier to establish than the joint convexity in (x,y). Using this fact
and the representation theorem of §6 we prove in §7 convergence of first derivatives
of g-(z,y,t) in (z,y) to first derivatives of ¢(x,y,t) as € — 0.

Theorem 1.3. Assume b(-,-) satisfies (1.1) and in addition that b(y,t) is concave
in y for each t <T. Then q(x,y,t) is C* in (z,y,t) fort <T and

. 0qe _Oq
(125) éll_l’)r(l) %(:Evyat) - %(xvyat)v T,y € R, t< Tv

ii_r,% 85;5 (z,y,t) = S—Z(ac,y,t)7 z,ye R, t <T.

Theorem 1.3 gives no rate of convergence as € — 0 like in Theorem 1.1, but if one
assumes some Holder continuity of 9b(y, t)/0y in y, then the proof of the theorem
yields a rate of convergence which is a power of €. It is of some interest to compare
Theorem 1.3 to the results of Kifer [13] on the asymptotics of the fundamental solu-
tion Ge(y,x,t,T) defined by (1.4) as € — 0. In that paper asymptotic formulas are
established by using the fact that G.(y,-,t,T) is the probability density function
for the random variable Y. (T') conditioned on Y. (¢) = y. Estimates on the proba-
bility density are then obtained by using large deviation techniques [8]. Emphasis
in the paper is placed on the local nature of the result. Thus the behavior of the
drift b(-,-) far away from the minimizing trajectory in (1.10) is shown to be largely
irrelevant.

2. A CrassicAL CONTROL PROBLEM
Let b(y,s), y € R, s < T, satisfy (1.1) and consider the control dynamics
dy _
ds
where the controller A(s), ¢t < s < T, is assumed to be piece-wise continuous. We

shall be interested in the optimal control problem with cost function ¢(z, y,t), x,y €
R, t < T, defined by

(2.1) As), t<s<T, yt)=y,

1 [T )
(22)  qlwy,1) = min {2/t [A(s) = b(y(s), s)]" ds ‘ y(t) =y, y(T) > x}

Formally the function g(x,y,t) of (2.2) satisfies the Hamilton-Jacobi equation,

dq dg 1 (dq\°
(2.3) RN <ay> = 0.
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Since the minimum in (2.2) is over paths y(s), t < s < T, satistying y(T') > =, the
terminal condition on the PDE (2.3) is given by

(2.4) thrr% q(z,y,t) = o0, y<uz,
li =
limg(a,y.1) 0, y>um,

The optimal controller A(-) for (2.2) is given by the formula

(2.5) Als) = X (z,y(s),s) = b(y(s), s) — Oq(x,y(s),s)/0y, t<s<T,
and the Euler-Lagrange equation for the minimizing trajectory by
d |dy 0b dy
) — | = - — - = <s<T.
20 5| 0]+ e | - buee)] =0 t<ssT

Our first goal is to prove that there exists a minimizer for the variational problem.
We have already observed that if F(-,-) is the function defined by (1.11), then
q(z,y,t) = 0 if y > F(x,t). Evidently in this case there is a unique minimizer
y(+) for (2.2), which is the solution to the differential equation (1.11) with initial
condition y(t) = y. For y < F(z,t) we need to define a space of functions y(s), ¢ <
s < T, over which to minimize the expression in (2.2). For any f € L2[t, T] let y(*)
be determined from f by

(2.7) y(s)= vy 4—/tS f(s")ds'.

Thus y(-) is Holder continuous of order 1/2 on [¢, T and y(t) = y. We define E,, ,, ; to
be the space of all such functions y(-) with f € L2[t,T] and y(T) > x. The distance
between 2 functions y1,y2 € E; . is given by the norm |ly1 — 2| = ||f1 — fall2,
where y; corresponds to fi and ys to f> in (2.7). Evidently the space E, ,; is
complete under this distance function. Now (2.6) indicates that on a minimizer
y(s), t < s < T, for (2.2) the expression y'(s) — b(y(s), s) does not change sign for
s in the interval [¢, T]. We shall show that if y < F(z,t) the sign is in fact positive.

Proposition 2.1. Assume the function b(-,-) satisfies (1.1). Then there exists a
minimizer y(-) € Eg ¢ of the variational problem (2.2). Any minimizer y(-) has the
property that y(+) is CY in [t,T]. If y < F(x,t) then y'(s) > b(y(s),s), t <s < T,
and y(T) = x. The function q(z,y,t) of (2.2) is continuous for (z,y) € R?, t < T.

Proof. We define a functional Fly(-)] on E,,; by

(2.9 o= [ |2 bos)] o

Following the standard method [20] we show that F[-] is weakly lower semi-continuous
on Eg . Thus let yn(-), N > 1, be a sequence in E,,,; converging weakly to
Yoo (") € Eyyt. Henceif fy, N > 1, fo in L?[t, T are associated with yn (-), N > 1,
and Yoo (+) respectively, we have that

(29) A}gnoo<f7f]\f>:<f7foo>v fELz[t,T]
From the uniform boundedness principle [20] it follows that sup || fa||2 < co. It also
N>1

follows from (2.9) that A}im yn(S) = Yoo(s), t < s < T, and sup{|yn(s)] : N >
— 00
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1, t < s <T} < oo. Hence by the dominated convergence theorem one has that

(2.10) lim b(yN 2 ds —/ b(Yoo(5),8)? ds.
N—oo t
Using the uniform boundedness of the fy, N > 1, we also have that
T
lim [blyn(s), ) — b(yso(s), )] fv(s)ds = 0.

N—oo t

Hence using (2.9) again we conclude that
T

T
(2.11) im [ blyw(s), s)f(s)ds = /t b(yoo (5), 5) oo (5)ds.

N —o00 t

Now (2.10), (2.11) imply that

. 1 T dyn(s)]?
l}éri};loff[yN(‘)]*il}\r,Tgof/t { ds }ds

T s T
f/t b(ym(s),s)dyzios( ) ds+% /t b(yoo(s), 5)2 ds.

The lower semi-continuity of F[-] on E, ,; follows from the inequality,

]
1 /tT [dym(s)rds<; Tim inf tT [dyN(S)rd&

2 ds N—o0 ds

which is a consequence of the convexity of the Dirichlet form [20]. One easily
concludes from the lower semi-continuity of F[-] the existence of a minimizer y(-) €
Ez,y,t~

Suppose now y(-) € E, ,; is a minimizer for F[-]. Then the first variation of F:|
about y(-) must be 0, whence

ey ' - D09 o] |~ b0 s =

provided ¢(-) is a C! function satisfying ¢(t) = 0, ¢(T) = 0. Setting
o) v | [ 520, )as| = v

it follows from (2.12) that

(2.13) / R (s | Vs =

for all C! functions ¢ : [t,T] — R with ¢(t) = (T) = 0. Equation (2.13) implies
that

(2.14) [dy

ds
from which we may conclude that if y < F(z,t) then y/(s) > b(y(s), s) for all s, ¢t <
s < T, and y(-) is C1. It also follows that y(T') = x, for if y(T') > x then there exists
t1 < T such that if y1(s), t; < s < T, satisfies y1(t1) = y(t1),y1(s) = b(y1(s), s),
t1 < s < T, then y1(T) > z. Evidently the function y*(s), ¢ < s < T, defined
by y*(s) = y(s), t < s < t1, y*(s) = v(s), t1 < s <T,isin E,,, and satisfies

- (y(s),s)] V(s) = constant, t<s<T,
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f[y*()} < f[y()}, yielding a contradiction. One can argue in a similar way to
prove the continuity of the function q(xz,y,t), (z,y) € R?, t <T. ]

We have already observed that for y > F(x,t) there is a unique minimizer
y(-) € E, 4+ for the variational expression (2.2) and it is given by the solution y(-)
of equation (1.11) with initial condition y(¢) = y. For y < F'(z,t) we need to impose
some condition on the function b(-, -) beyond (1.1) to guarantee a unique minimizer.
To see what such a condition should be let us suppose that y(s), t < s < T, is a
solution of the Euler-Lagrange equation (2.6) with initial conditions satisfying

(2.15) y(t) =y, y'(t) > by,1).

Hence (2.6) implies that y'(s) > b(y(s),s), t < s < T. Suppose now that y(s) +
o(s), t < s <T,is also a solution to (2.6) with ¢(¢) =0, ¢'(t) = e. Then to first
order in € the function ¢(s), t < s < T, satisfies the linear equation

() 069 + 5 (000, 2L

2o d [9b
2.16) 22 4|
(2.16) ds? ds {83;

2 2
_ Bgﬁ(y(s),s)} o(s) + %(Q(s),s) EZ - b(y(s)ﬁ)] p(s) =0.

Suppose now that ¢(7) = 0 for some 7, t < 7 < T. Then on multiplying (2.16) by
©(s) and integrating over the interval ¢ < s < 7 we get

(2.17) - /tT {dg;(:)} ds+2 tT g—;(y(s),s)w(s) diis) ds

lﬂgw@@rm#mzwww@wa

where V(s) is given by the formula

(2.18) vw=—%&mmﬂﬁ—M@m]

Observe that by the Schwarz inequality we have

T T 2 T 2
2 [ Lo 5L as< [T(E) s TR0 ptora
with strict inequality in general. Thus if V(+) in (2.18) is non-negative the expression
(2.17) is strictly negative in general. Since V (+) is non-negative if the function b(y, s)
is concave in y, it appears that one gets a contradiction to the fact that (2.17) is zero
when one assumes that b(y, s) is concave in y, t < s < T. We conclude therefore
that the trajectories y(-) of the Euler-Lagrange equation (2.6) which satisfy (2.15)
are non intersecting. In particular, for y < F(z,t) there is exactly one which has
the property that y(t) = y, y(T) = © . We make this argument rigorous in the
following:

Proposition 2.2. Assume the function b(-,-) satisfies (1.1) and that b(y,s) is
concave in y fory € R, s € [t,T]. Then the minimizer y(-) € E; ., of the
variational problem (2.2) is unique for all (z,y) € R%. Furthermore the function
q(x,y,t) of (2.2) is C for (z,y) e R%, t < T.
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Proof. Since the minimizer is clearly unique for y > F(z,t) we assume y < F(x,t).
We show that the functional F[] of (2.8) has a convexity property provided b(y, s) is
concave in y, t < s < T. Let E be the set of C'functions y(-) on [¢, T| which satisfy
y'(s) > b(y(s),s), t < s <T. It is evident that F is convex in y for t < s < T, in
the following sense:

(2.19) () y2(), () + (A= Nye() e B, 0<A<1,
implies

FAyn () + (1= Ny2()] < AF [y ()1 + (1= X F [52()]-
To prove (2.19) we write

o)+ 0Ol = g [ [ oo 03 {2 ot}

—{bOw1(s) + (1 = Aya(s), 5) = Ab(y1(s), 5) — (1 = A)b(ya(s), 8)}} ds.

Since y1(+) y2(-) € E and b(y, s) is concave in y, t < s < T, each term in the last
expression inside curly braces is non-negative. Assuming also that Ay;(-) + (1 —
ANyz2(-) € E we have that

0 <b(Ayi(s) + (1= Aya(s),s) = Ab(y1(s), 5) = (1 = A)d(ya(s), 5)
<2 {)\{Cilysl - b(yl(s)7s)} +(1-=X {CZ/; - b(y2(5)7s)H , t<s<T.

We conclude therefore that

T 2
Fon)+ -0 < 5 [ {09+ 00 {92 -9} as
<A Flp O]+ (- NFl0L

and hence (2.19) holds.

The uniqueness of the minimizer y(-) € E, ,+ follows from the strict convexity
of F[-] in the sense of (2.19). Let us assume y;(-) y2(-) € Ey 4 ¢ are two minimizers
where y < F(x,t). Then by Proposition 2.1 the functions y1(-), ya2(-) are in the
set E and for sufficiently small A > 0 the function Ay; () + (1 — A)y2(+) is also in
E, whence (2.19) implies that Ayi(-) + (1 — A)yz(+) is a minimizer. From the strict
convexity of F[-] we have then that

dy, dyz
_ = == _ <s<T.
dS b(yl(s)? 8) dS b(y2(8)7 8)7 t — S — T

Since y1(t) = y2(t) = y we conclude from this last identity that y1(s) = ya2(s), t <
s < T, and so the uniqueness of the minimizer.

To show that the function ¢(z,y,t) is C* we consider the optimal control \*(z,y,t) =
y'(t) where y(-) € Eg 4+ is the unique minimizer for the variational problem (2.2).
Evidently A*(x,y,t) = b(y,t) if y > F(x,t). We first prove that A*(x,y,t) is contin-
uous in (z,y,t) for (z,y) € R?, t < T. To do this let D, ,(5) C R? be the disc of
radius 6 > 0 centered at (x,y). Then there exists a constant K (J) > 0 depending
only on ¢ such that

T s 2
CEUN {di)} <K(), 2() € Euyy, (¢2') € Day(6),
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where z(+) is the minimizer of the variational problem. To see (2.20) observe that

Fl2()] > i/tT [dz(j)rds— ;/tT b(2(s), s)2ds.

Now from (1.1) one has that

b(2(5), 9)] < [b(=(2), )| + A /

Hence from the Schwarz inequality we have that

P =g [ ' [djlfj)rds - K'(0),

-8
where K'(9) is a constant depending on §. Now (2.20) follows from this last in-

equality and the continuity of the function ¢(-,-,t) on Dy ,(9).
Next we show that for any € > 0 there exists § > 0 such that

T dy dz 2
(2.21) /t [ds — ds} ds <e, 2(-) € By, (2',y') € Dy (9),
where y(-) € E, y+ is the minimizer for (2.2) and z(-) € E, 4 ; is also the minimizer.
The inequality (2.21) follows from the convexity (2.19) of the functional F[]. We
first consider the situation y > F(z,t), where the minimizer y(-) € E, , satisfies
y'(s) = b(y(s),s) and g(x,y,t) = 0. Thus for £; > 0 there exists §; > 0 and

(2.22) Flz() <e1, 2z(:) € Ep oy, (2',y") € Dy y(61).
We can restate (2.22) as z(-) satisfies the initial value problem
dz ,
B o ba(s)9) 1), t<<T )=y
s

where || f|l2 < v/2e1. Putting now ¢(s) = z(s) — y(s) it follows from (1.1) that ¢(s)
satisfies the initial value problem

d
(2:23) L= als)p(s) + f(s), t<s<T, o) =y —y.
where sup |a(s)| < A. It follows that there are constants C7,Cy > 0 such that
t<s<T
(2.24) sup |z(s) — y(s)| < C1ly’ =yl + Cav/er.
t<s<T

We write the LHS of (2.21) as

/tT {[b@(s), s) = b(z(s), 5)] + [b@@, 9 ﬂ } o

<2 / b(y(s), 5) — b2(s), )] + AF[=()].

The inequality (2.21) follows from this last inequality and (2.22), (2.24).

We prove (2.21) for y < F(z,t). First let 61 > 0 be such that closure of D, ,(d1)
lies in the set {(2/,y’) € R? 1y < F(2',t)}. Then it follows from (2.20) that there
exists Ag, 0 < A\g < 1, such that

)\OZ(‘) + (1 - )‘O)y(') €k, Z() € Ez/,y/,ta (x/’y/) € Dm,y(él)a
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where y(-) € E; ¢ and z(-) € E, . are the minimizers for (2.2). Since z(-)
and y(-) are also in E we may use the convexity (2.19) of the functional F[-]. In
particular we have that

Flroz(-) + (1 = Xo)y(-)] < MoF[z(-)] + (1 = Xo) Fly(-)]

- 2
=) [ ) e

Using the continuity of the function ¢(-,-,t) at (z,y) we conclude from the last
inequality that there exists da, 0 < do < 7 such that
(2.25)

1 (T (dy d ?
5/ Lﬁ—Z+M4$$—MM%@}@<@,zMeEﬂwhmnmewaﬁ
¢ s ds

where again y(-) € E; 4+ and 2(-) € Eg 4 are the minimizers for (2.2). Here
€2 > 0 can be chosen arbitrarily and d> depends on 5. Now we may argue as for
the case when y > F(z,t). Thus letting ¢(s) = z(s) — y(s) we have that ¢(s)
satisfies the equation (2.23) with || f|l2 < 1/2e2. Hence we obtain an inequality
analogous to (2.24), which together with (2.25) implies (2.21).

The continuity of A*(z,y,t) in (z,y) follows easily from (2.21) upon using (2.14).
Thus for a minimizer of (2.2), z(-) € Ey 4+ one has

(2.26) % —b(z(s),s) = A(2', ', t) exp {— t g—z
where \*(2/,y/,t) = b(y', t)+ A(2’, 3/, t). Evidently (2.21) implies that the function
A(-,+,t) is continuous at (z,y). Finally we observe that the continuity of A*(x,y, t)
as a function of (z,y,t) for (z,y) € R? t < T, follows from (2.26). In fact if
y(-) € Eg 4 is the minimizer for (2.2) then (2.26) implies that for fixed x the
function s — A*(x,y(s),s) is continuous, ¢ < s < T. Hence if we combine this
with the previous argument on the continuity of \*(-,-,t) for fixed ¢ we obtain the
continuity of A*(-,-,-) in all three variables.

We prove the C! property of the function q(z,y,t), (x,y) € R? t < T. First
we observe that there is differentiability of the function ¢ in a least one direction.
Thus

(227) ey 9)] = 5 Wy 0) — bl

where y(-) € E, 4 ¢ is the minimizer for (2.2). We use the continuity of the function
A*(-, -, ) to show differentiability in other directions. Let us assume that y < F(x,t)
and Ay small enough so that |Ay| < F(x,t) —y. Then

(2(s8'),8")ds"|, t <s <T.

1 [T 5
228) aley+ Apt) —alent) < —5 [ N6 = b)) ds

1

3 [ W)= AT ) = blyte) + (T = )BT = 1) 5) ds,

where y(-) € E, 4 is the minimizer for (2.2) and A*(s) = y/(s), t < s <T. Letting
Ay — 0 in (2.28) we conclude that

(2:29) limsupla(e,y+ Ay, 1) — alw,y,1)] /Ay <
Ay—0
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- % ) [1 +(T - 8)25(1/(8),8)} [\*(s) — b(y(s), s)] ds.

Alternatively let ya(-) € Eg 44y, be the minimizer for (2.2) and A} (s) = yA(s), t <
s < T'. Then one also has

17 2
230) a(e.y+Aut) —alent) > 5 [ NAG) ~lua(s). o)) ds

1

=5 PG AT~ ) = buals) — (T = 5)Ay/(T = 0).5) ds.

It follows from (2.30) by using (2.21), (2.26) and the continuity of the function
A*(+,,-) that

(2.31)  liminflg(z,y + Ay, 1) — q(z,y, )] /Ay >

y—0
1 ! 1+ (T ob A* b d
e [ =950  B0 ) - e as.

The differentiability of q(x,y,t) w.r. to y follows from (2.29), (2.31). Using (2.21),
(2.26) again we also see from the formula on the RHS of (2.29) that dq(z,y,t)/0y
is continuous in (z,y,t) for y < F(x,t), t <T. It is easy to extend this argument
to show that dq(x,y,t)/0y exists for all y € R and the derivative is continuous in
(x,y,t) for (x,y) € R?, t < T. This follows from the fact that the formula on the
RHS of (2.29) is zero if y = F(x,t).

One can see by a similar argument that ¢(x,y,t) is differentiable w.r. to x and
that dq(x,y,t)/0x is continuous for (r,y) € R?, t < T. Finally (2.27) and the fact
that dq(x,y,t)/0y is continuous shows that ¢(z,y,t) is differentiable w.r. to ¢ and
9q(z,y,t)/0t is continuous in (z,y,t), (z,y) € R?, t <T. We have shown that the
function q(x,y,t) is C* for (x,y) € R% t < T. O

Corollary 2.1. Assume b(-,-) satisfies the conditions of Proposition 2.2, q(x,y,t)
is the function defined by (2.2), and \*(x,y,t) is the corresponding optimal control,
(r,y) € R%, t < T. Then there are the identities,

(232) aQ(l'vyat)/ay = b(yvt) - A*(xay,t)a
1 *
Oq(x,y,t)/0t = 5 [N(@,5,1)* = by, 1)*] .
Furthermore, for y < F(x,t) there are the inequalities
9q(z,y,1) 9q(z,y,)
2.33 — <0, ——==>0.
(2.33) oy <O P

Proof. We first show the identity (2.32) for dq(z,y,t)/0y. We assume y < F(x,t)
since it is obvious otherwise. Using the fact that ¢(z,y,t) is the minimizer for the
variational problem (2.2) we have that for A € R,

1
q(z,y,t) < 3 X = b(y, t)]> At + q(a,y + AAt, t + At) + O [(At)?].

Since ¢ is C* this implies that
(2.34)

% [)\*(x,y,t)z - b(y’t)]2 S [)\ - b(yvt)]Z + P‘ - /\*(xayat)] @(xayat)a A S Ra

dy

N |
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where we have used (2.27). The inequality (2.34) implies the first identity of (2.32).
The second identity follows from the first identity and (2.27).

The first inequality of (2.33) follows from Proposition 2.1. To show that dg(x,y,t)/0x >
0 we derive a formula for dq(z, y, t)/dz similar to the formula (2.32) for dq(x, y,t)/y.

We have already seen that dq(z,y,t)/0z is given by an expression similar to the
RHS of (2.29),

23 Layn-— [ 1o 6-0 L0 W - o).l
. 5 U t) =7 S 3y , S S y(s), s)] ds.
Adding (2.29) and (2.35) we conclude that

dq dq T ab .
2. — — =— — — .
@36 Glewn+Eaun == [ D)) (s - bly(s). o) ds
If we use now the identity (2.26) we conclude from the previous expression that

9q s T op

(237) %((E,yﬂf) - [>‘ (.’E,y,t) b(yvt)] exXp [ g’ ay(y(S)S)ds] )

where y(-) € E, 4 ¢ is the minimizer for (2.2). Proposition 2.1 and (2.37) now imply
0q(z,y,t)/0x > 0. O

Remark 2.1. Observe that Proposition 2.2 and Corollary 2.1 imply that q(x,y,t)
is a classical solution to the e = 0 Hamilton-Jacobi equation (1.8).

Next we show that g(z,y,t) is twice differentiable in (z,y). Since this is obvious
for y > F(x,t) we consider y < F(z,t). Let ¢(s), t < s < T, be the solution of the
first variation equation (2.16) with terminal data ¢(T") = 0, ¢’'(T') = —1. Then one
should have the identity

(2.38) N (z,y,8)/0y = &'(t)/e().

We have already given an argument to show ¢(s) > 0, t < s < T, if we assume
b(-, s) is concave for t < s < T. Hence in this case the RHS of (2.38) makes sense.
Note also that we may write (2.16) in the form

(2.39) ot 9] [ = 90| - Vet 0.

where V(s) > 0 if b(-,s) is concave for all s, t < s < T. Hence it follows
from (2.39) that if we assume the concavity of b(-,s) t < s < T, then ¢'(t) —
b/ dy(y(t,),t)p(t) < 0. Thus from (2.32), (2.38) we conclude that d?q(x, y,t)/dy? >
0. We make this argument rigorous in the following:

Proposition 2.3. Assume the function b(-,-) satisfies (1.1) and that b(y,s) is
concave in y fory € R,s < T. Then the function q(x,y,t) of (2.2) is convez in
(x,y) for (z,y) € R?, t <T. Suppose in addition that b(y, s) is twice differentiable
iny fory € R,s < T, and 8*b(y,s)/0y? is continuous in (y,s). Then q(x,y,t)
is twice differentiable in (z,y) for (z,y,t) € Ur = {(x,y,t) : (z,y) € R%t <
T, y < F(x,t)}. The second derivatives of q(x,y,t) w.r. to (x,y) are continuous
in Ur and satisfy 0%q(x,y,t)/0x? > 0,0%q(x,y,t)/0y? > 0, 9*q(z,y,t)/0x0y < 0.
Furthermore, if (xg,yo,t0) € OUr and to < T then

(2.40)

0?q(x,y,t)/0z* > 0, lim 0%q(x,y,t)/0y* > 0.

1m
(z,y,t)—(z0,y0,t0) (2,y,t)—(x0,Y0,t0)
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Proof. Observe that the function F(x,t), x € R, t < T, defined by (1.11) is a
convex function of z. In fact one has

oF

T
(2.41) —(z,t) = exp l— ob (y(s), s)ds

Oz ¢ Oy ’
where y(s),s < T, is the solution to (1.11). Hence by concavity of b(-,s), t < s < T,
one has that OF(z,t)/0x is an increasing function of z. It follows that the set
V; = {(z,y) € R* : y > F(z,t)} on which g(,-,t) vanishes is convex. We also
have from the argument of Proposition 2.2 that ¢(z,y,t) is locally convex on the
not necessarily convex open set R?\V;. Hence ¢(z,y,t) is convex in (z,y) for all
(z,y) € R%

We assume now b(y, s) is twice continuously differentiable in y fory € R, s < T.
We can write (2.39) as a system

T R = v, t<s<T,

d b

T ) =V, t<s<T.
where y(-) € Ey 4 is the minimizer for (2.2). Evidently (2.42) has a unique solution
[o(s),¥(s)], t <s < T, with terminal data ¢(T) = 0, ¥(T) = 1. Multiplying the
first equation in (2.42) by ¥(s) and the second by ¢(s) we see on integration that

(2.42)

T
(2.43) Up(s) = [ U V)R A, <5<

From the terminal conditions on [¢(s),1(s)] we have that ¢(s) > 0, ¥(s) > 0 for s
close to T'. It follows then from (2.43) that ¢(s) >0, ¥(s) >0 fort < s < T.

Next we use (2.26) to write the equation for the minimizer y(-) € E, , 4 of (2.2)
in a form similar to (2.42). Thus we have

dp ab
— P < < .
Is + 3y (y(s),s)p(s) =0, t<s<T

In (2.44) the first equation is the definition of the Hamiltonian momentum p(s)
while the second equation is equivalent to (2.26). Suppose now z(-) € Ey v, is
also a minimizer for (2.2) and define ®(s) = z(s) — y(s), ¥(s) = P(s) — p(s), where
P(s) is the momentum corresponding to z(-). Then since z(+) satisfies an equation
similar to (2.44) we have that

1
245) G =00s) [ e+ (1= s(e)9) du = —W(s), e<s<T
ot (W) = ~(ep(e) [ T (s) + (1= e i ¢SS,

We consider now the situation where 2’ = z so ®(T) = 0. Then if y' = y + Ay we
may write

(2.46) (1) = a(Ay)W(T), () = B(Ay)¥(T),
where the functions a(-) and g(-) satisfy
(2.47) Alirgoa(Ay) = ¢(t), AI?i/rgoﬁ(Ay) = (t)
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since the coefficients in the equations (2.45) converge as Ay — 0 to the coefficients
in the equations (2.42). Now we have that

@,y + Ay, t) = X (@y.8)] /Ay

- [@(t) / 1 5 () + (1= (). 5) d = w)} /A,

and ®(t) = Ay. Hence it follows from (2.46), (2.47) that A*(z,y, t) is differentiable
w.r. to y and

(2.48) ON*(x,y,1)/dy = Ob(y, 1)/ Dy — p(t)/(1).

One also sees easily from the representation (2.48) that OA*(x, y, t) /Oy is continuous
in Ur and that the limit exists as (z,y,t) — (xo,Y0,t0) € OUr provided tg < T.
The fact that 9%q(z,y,t)/0y? > 0 follows now from (2.32) and the fact that 1 (¢) >
0, ¢(t) > 0.

We can similarly see that A*(x, y, t) is differentiable w.r. to x and OA*(x,y,t)/0x
is continuous in Ur and the limit exists as (x,y,t) — (2o, yo,t0) € OUr provided
to < T. To see that 9?q(z,y,t)/020y < 0 we note that 8%q(w,y,t)/0xdy =
() /o(T), where [p(s),¥(s)], t < s < T, is the solution of (2.42) with initial
data ¢(t) =0, 9(t) = 1. We have in this case

Bls)p(s) = - / () 4 V(s (s

whence p(T) < 0 and so 9%q(z,y,t)/0xdy is negative.
To prove the twice differentiability of ¢(x, y, t) w.r. to x we use the representation

(2.49) q(z,y,t)/0x = p(T),

where p(s) is given by (2.44) for the minimizer y(-) € E,,; of (2.2). The differen-
tiability of dq(x,y,t)/0x and the positivity of 82q(x,y,t)/0x? proceeds as before
by representing 9%q(z,y,t)/02? in terms of a solution to (2.42). Finally we observe
that (2.49) follows from (2.26), (2.32) and (2.36). O

Remark 2.2. Proposition 2.8 shows that all second derivatives of q(x,y,t) with
respect to (x,y) have jump discontinuities across the boundary y = F(x,t). Hence
q(z,y,t) is not C% in (x,y) for all (z,y) € R2.

3. PROOF OF THEOREM 1.1

Our main goal in this section is to show that the function ¢.(x,y,t) defined by
(1.7) converges as € — 0 to the function g(x,y,t) defined by (1.10). The formula
(1.15) for g.(z,y,t) makes this intuitively clear, but it is not obvious under what
circumstances the function defined by (1.7) has the representation (1.15). As part
of our proof of convergence we shall make use of various situations in which (1.15)
is valid. First we regularize the terminal data (1.9).

Lemma 3.1. Suppose b(-,-) satisfies (1.1) and q.(x,y,t) is given by (1.7). Then
there exists § > 0 and universal constants C1,Co > 0 such that if T —t < 0, e < 1,
there is the inequality

(3.1) Ci(x —y)?/(T — 1) < ge(z,y,t) < Co(x — y)* /(T — 1),



16 JOSEPH G. CONLON AND MOHAR GUHA

for y in the region

T
(3.2) x—y>2 /t |b(z, s)|ds + \/e(T —t).

Proof. Since b(-,-) satisfies (1.1) one can uniquely solve the stochastic equation
(1.5) with given initial data. The solution wu.(z,y,t) of the terminal value problem
(1.2), (1.3) is then given by the formula (1.6). Letting Z.(s) = Y(s) — y, we have
then that

s 1

33 2= [ [ [ dn G @)+ -] 2
t LJo
+/ by, s')ds +Ve[W(s) —W(t)], s>t
t
Now applying Gronwall’s inequality to (3.3) we conclude that
(34)  swp |Z.(s)| < AGT) sup | / by, ')ds' + VE[IW () ~ W (1))
t<s<T t<s<T | J¢

where A(t,T) is a constant depending only on ¢,T. The lower bound in inequality
(3.1) follows from (3.4) and (1.6), (1.7).

To obtain the upper bound we consider the stochastic process Z.(s), s > t,
defined by the equation

(3.5) dZ!(s) = [AZL(s) + bz, s)]ds + /edW (s), Z.L(t)=z—1y,

where A is the constant in (1.1). If 7 is the first hitting time at x for the process
Y.(s) of (1.5) with Y.(t) = y, then it is evident that Z/(s) > x — Y.(s), t < s < 7.
It follows that

(3.6) P(r <T)>P(Z(T) <0 | ZL(t) =z —y).

Since the stochastic equation (3.5) is exactly solvable, we can estimate the RHS of
(3.6). Assuming x — y satisfies (3.2) we conclude that

(37)  P(ZUT) <0 | ZUt) = 2 —y) > exp [-Cla — y)>/=(T ~1)].

for a constant C' depending only on the parameter A in (3.5). The upper bound in
(3.1) follows now from (3.6), (3.7), and the inequality

(38) POLT) >z | Vt)=9) > Plr < T) i P(Y(T) > | Ye(s) = 2),
since it is clear that for § small enough the infimum in (3.8) is larger than 1/4. O

We consider a controller \.(y, s), y € R, s < T, which is uniformly Lipschitz in
y for t < s <T — 6. Thus there is a constant C such that

(3.9) Ae(y,8) =Xy 8)| < Cly =9, v,y eR, t<s<T—4.

Hence we may solve the stochastic differential equation (1.14) for ¢t < s < T — 4.
We show that in this case the the expectation on the RHS of (1.15) is bounded
below by the LHS.

Lemma 3.2. Suppose A\ (-,-) satisfies (3.9) and b(-,-) satisfies (1.1). Then if
ge(x,y,t) is given by (1.7) there is the inequality

T—6
310) o) < By [ Delonoh) - bln(s). o) ds
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bl (T =0).7=0) [ 40) =,
where ye(+) is the solution to the SDE (1.14).
Proof. Let V.(y,s), y € R, s < T —§, denote the RHS of (3.10). Arguing as in

Lemma 3.1, one sees that
(3.11) 0<Viy,s)<Ay¥>’+B, yeR, t<s<T -3,

for some constants A, B. In addition V.,dV./0s, OV./0y and 9°V./dy? are all
continuous functions of (y,s), y € R, t < s < T — 4, and satisfy the equation

(3.12)
oV, ov. € 0%V, 1 2
—_ — p— _ p— < -
9s TRWaG s 5 T3 [A(y,s) = bly,s)]" =0, yeR, t<s<T-4,
with terminal condition
(313) VE(y,T—é):qs(x,y,T—(SL yGR

Note that the twice differentiability of V.(y,s) with respect to y uses the fact
that the function A.(-,s) — b(+, s) is Lipschitz continuous for t < s < T — § (see [7]
Chapter 1, Theorem 9). From (1.8), (3.12) we conclude that the function W, (y, s) =
Va(y,s) — ge(x,y, s) satisfies the PDE

oW, OW. € O?*W. 1 0q.
5 )\5 ) -b ’

0s dy 2 0y? +2 (y,5) = bly, 5) + Oy

and all the derivatives W, /0s, OW./dy, 0*W./dy? are continuous. Furthermore

by (3.13) the terminal condition for W, is W (y,T — ) =0, y € R. It follows then

from Lemma 3.1, (3.11) and the maximum principle (see [7] Chapter 2, Theorem

9) that W.(y,t) > 0, y € R, whence the result follows. O

2
=0, yeR t<s<T-9,

+A:(y, s)

Lemma 3.3. Suppose b(-,-) satisfies (1.1). Then for z,y e R, t <T, ande < 1,
there is the inequality

(3.14) ¢ (2, y,t) < q(z,y,t) + Cla,y,t, T)Ve,
where q(x,y,t) is given by (1.10) and C(x,y,t,T) is a constant independent of .

Proof. Let y(s), t < s < T, be a minimizer for (1.10), whose existence has been
established by Proposition 2.1. We set A\.(y,s) = A(s) =¢'(s), ye R, t <s < T,
and apply Lemma 3.2, taking 6 = /. We consider first the case y < F(x,t) so
y(T) = x. Hence z — y(T — 0) < Cy/e for some constant C. It follows then from
Lemma 3.1 that

(3.15) E{qg(x,ya(T— §), T —9) ‘ ye(t) = y} < Cive

for some constant C7. Here we are using the fact that y.(s) — y(s) = e [W(s) —
W (t)] and that ¢.(z,y,T — J) is a decreasing positive function of y € R. We can
similarly see that

1 [T—6
(3.16) E {2/ A(s) = bly=(s), )] ds ‘ ye(t) = y} < q(z,y,t) + Cav/e.

t
for some constant Co. Thus (3.14) follows from (3.15) (3.16) in the case y < F(z,t).
For y > F(z,t) we may use the same argument, noting that ¢.(z,-,T — ) is a
decreasing positive function. [
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To obtain a lower bound for g.(x,y,t) corresponding to the upper bound estab-
lished in Lemma 3.3 we shall need to use the fact that the function dq.(z,y,s)/dy
is uniformly Lipschitz continuous in y for (y, s) in any region {(y,$) : y > yo, t <
s <T — 4}, where § > 0, yo € R can be arbitrarily chosen.

Lemma 3.4. Suppose b(-,-) satisfies (1.1) and u.(z,y,t), t < T,y € R, is the
unique bounded solution to (1.2), (1.3). Then for any 6 >0, yo € R, t < T, there
is a positive constant C(8,yo,t) such that

(3.17) ue(z,y,5) =2 1/C(6,y0,t), y=yo, t<s<T—9,
\8u5(m,y,s)/8y| + |82Ue(l"7ya3)/ay2| < O(5a y07t)a Yy > Yo, t<s<T- J.

Proof. To prove the first inequality in (3.17) we proceed as in Lemma 3.1, using the
representation (1.6). Since the solution Y:(s) of (1.5) which has initial condition
Y.(t) = y satisfies the inequality (3.4), it follows that there exists y; > x with the
property that u.(z,y1,s8) > 1/2, t < s < T. We consider now y in the interval
Yo <y < y1. Let a be defined by

a:inf{b(y’,s):yo—lgylgyl, tSsST},
and Z.(s) satisfy the stochastic equation
dZ.(s) = ads+ e dW(s), Z.(t)=y.
Then Y.(s) > Z.(s), t < s < 7, where 7 is the first exit time of Z.(s) from the
interval [yo — 1,y1]. We can easily estimate from below P (7 < T, Z.(T) = y1).

Combining this with (3.4) we see that the first inequality in (3.17) holds for yo <

Yy <Y1

We turn to the problem of estimating the derivatives in (3.17). Let y; € R
and T3 < T. We shall be interested in constructing the solution to the terminal-
boundary value problem

ow ow e Pw
3.18 Yy, L2
(3.18) 8t+(y)8y+28y2

w(y,T1) = wo(y), y€lyr—n, y1+nl

w(yr —n,8) =w-(s), wlyr+1n,5) =w(s), s <T,
where n > 0 and the functions wy(+), w_(-), w4 (-) are assumed to be continuous on
their domains. The solution to (3.18) can be represented in terms of the Dirchlet
Green’s function G(y,y’,t,T1) for the problem. Thus

Oa yl_n<y<y1+nat<Tlv

y1+n
319) vl = [ Gluy 0T wnly)dy'+
Yyi—n
T T 8G
€ ) dsw—(s)@(yayl_nvtvs)_g ) d8w+(3)@(y791+n,t,8)-

We shall show that the Green’s function may be constructed by perturbation ex-
pansion provided t < T} lies in an interval ¢t € [T} — A, Ty] where A, n satisfy the
inequalities

(3.20)

2
A<utfe, A<ve/ |sw{by )i -n<y<ytn T-A<s<T}]

for some v < 1 independent of b(-,-) and ¢.
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We construct the Green’s function by the standard method [7]. Thuslet Gp(y,y',t)
be the Green’s function for the heat equation on the interval [—1, 1] with Dirichlet
boundary conditions. The function Gp is given from the method of images as an
infinite series,

oo

(321) GD(Z/) y/7 t) = Z (_1)p(m) G(y - y;rw t))

m=0
where y, = ¢/ and y,,,, m > 1, are the multiple reflections of 3 in the boundaries
—1,1, with p(m) being the parity of the reflection, p(0) = 0. The function G(y,t)
is a Gaussian with mean 0 and variance t. We now set K(y,v’,t,s) to be
(3.22)
K(y,y',t,8) =0~ 'Go(ly—wil/n, W' —wnl/n, e(s—t)/n°), v,y € [ya—n,p1+1), t <s.

The Green’s function G(y,y’,t,T1) is formally given by an expansion in terms of
the function K. Let L;, denote the operator on the LHS of (3.18), so (3.18) is
Ly yw = 0. Then

oo

(323) G(yay,7t7Tl) = K y7y t Tl Z y7y t Tl)
Ty y1+?7
on(y,y' 6, Th) = / dS/ dz K(y,2,t,8)gn(2,9', 5, 1),
a8

go(y7yl7t7TI) = ‘Ct,y (i%y 7t7T1)u

Ty y1+n
gn-‘rl(yay/at:Tl) = / dS/ dz ‘CtJJK(y: Zat7 s)gn(z, Z//, SaTl)'

t Yy1—n

One easily obtains from (3.23) the estimate
(3.24)
lgn(y,y',t, T1)] < C" [SUP{\b(%S” o —n<z<yi+n t<s<T}

(Tl _ t)n/? —1/2
c(n+1)/2

for some universal constant C, provided n > /(11 — t). It follows from (3.24) that
the series expansion (3.23) for the function G converges provided ¢ € [T} — A, T,
where A, n satisfy (3.20) for some sufficiently small universal v > 0. In that case
one has the following estimate on the Green’s function:

(3.25) Gly,y,t, 1)) <C Gy —y',2e(Th — 1)),

for a universal constant C' > 0.

We can obtain estimates for the derivatives of G analogous to (3.25) by differ-
entiating the expansion (3.23) term by term. We first consider 0G(y, /', t,T1)/0y .
For t € [Th — A, Ty] and A, n satisfying (3.20). We have from (3.23) that

890 C v
(3.26) Dy’ (y,y',t T1)‘ i\ A Gy —y',2e(Th - 1))

for some universal constant C. The integral representation in (3.23) for dvg(y, v, t,T1) /0y’
gives rise to a non-integrable singularity in the integration with respect to s, ¢ <
s < T, if we use (3.26). We therefore need to use the fact that go(z,y',s,T1) =

:|n+1

Gly—y,2e(Ty —t)), n=0,1,2,...,
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b(z,s) OK(z,y',s,T1)/0z and integrate by parts with respect to z in the represen-
tation (3.23) for vo(y,y’, ¢, T1). We conclude that

A Tlft 1/2+(l/)1/2
€ eA
for some universal constant C', where A is the upper bound in (1.1) on the derivative

of b(-,-). We can use a similar method to obtain a bound on the derivative of g;.
Thus we have

(3.27) a%(%yJJU\S CGly—1vy,2:(Ty —t))

oy’

og

Dy CGly—vy, 2Ty —1))

(328) |55 v t.T)| <

) s

eA A E(Tl - t)

for some universal constant C. Choosing A now to also satisfy A < /v/A we
conclude from (3.28) and the representation (3.23) for g, that

(3.29)
agn l/(n+1)/2(T1 _ t)n/2 -1 .
ay/ (y7y/7t7T1)‘ < \/g A(n+1)/2 c G(y_y,72€(T1 _t))7 n= 1727"'7

where C' is a universal constant. The estimate (3.29) gives an estimate on the
derivatives of v,, n > 1,

Ov,, py( /20 yn/2
‘a, (y7ylat)Tl)’§ ( 11 2)
Y Ve At/
for a universal constant C'. We conclude then from (3.27), (3.30) that on choosing
v > 0 sufficiently small in a universal way, the function G(y, ', t, T} ) is differentiable
with respect to ¢’ for ¢ € [Ty — A, T1] and
‘aG(yay/ataTl)‘ < C
oy = Vamon
for some universal constant C. Hence the integral representation (3.19) is well-
defined for A, n satisfying (3.20) and t € [T} — A, T1].

We can obtain estimates on other derivatives of G by a similar method. Observe
that from (3.24) we may conclude that G(y,y’,t,T1) is differentiable with respect
to y for t € [Ty — A, Ty] and
aG(y7ylataTl) ‘ < C

Ay T Ve -t

(3.30) C" Gy —y,2e(Ty —t)).

(3.31) Gy —y',2e(Th — 1)),

G(y - ylv 2€(T1 - t))?

(3.32) ’

for some universal constant C. To obtain an estimate on 8*G(y,y',t,Ty)/0y* we
must first obtain estimates on dg,(y,y’,t,T1)/0y. Evidently we have that

A,
eI —t) (T —t)VeA

for some universal constant C. To estimate dg1(y,y’,t,T1)/Oy we write the inte-
gral representation (3.23) as an integral over ¢t < s < (Ty + t)/2 plus an integral
over (T} +t)/2 < s < Ty. Since the integral over (T} 4+ t)/2 < s < Ty, may be
estimated using (3.24) we concentrate on the integral over t < s < (T1 + t)/2.
Now the kernel £, , K (y, 2,1, s) which appears in the integral representation (3.23)
for g is a sum of terms generated by the boundary reflections which occur in the

(3:33) |22 (y,y/,1,13)| <

o C Gly—y, 2T~ 1)
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representation (3.21) for Gp. We consider the principle term in this series, which
makes a contribution to the representation for g; given by

(3.34)
(T1+t)/2 y1+n o
Fyy/ £ T1) = / ds / dz by, ) 2-Gly — 2. 2(s — ))go(2, 4/ 5. T1)
t Yy1—n ay
(T1+t)/2 yi+n dgo
- / s / dz by, 1) Gly — ze(s — ) 2R (2, 5, T1)
t Yy1—n 0z

(T1+t)/2
+ / ds by, t) Gly — g1+ m.e(s — ))golys — m.y/ 5, Th)
t

(T1+t)/2
- / ds b(y,t) Gy —y1 —n,e(s —t))go(y1r + 0,9, 5, T1).
t

Denoting the first integral on the RHS of (3.34) by I1(y) we see from (3.33) that
I (y) is differentiable with respect to y and
(3.35)

%(y)‘ < [A(Tl —t) +Vu(Ty — t)l/Q/\/Z}

A N NG
e(T) —t) (Ty —t)VeA

for some universal constant C'. Let I5(y) denote the second integral on the RHS of
(3.34). Using the fact that

6 é— 52 oo /2 1/2
d . S dz e=*
/0 s (e5)3/2 exp { 253] /52/55 2 el

we see that I(y) is differentiable w.r. to y and

o [0 ()" 1 (=)

dy eA
for some universal constant C. We get a similar estimate to (3.36) for the third
integral on the RHS of (3.34). It is clear that the higher terms in the series (3.21)
for £, K(y, 2,t,s) make smaller contributions to dg1/0y than the RHS of (3.35),

(3.36). We conclude that
(3.37)
1/272
A 4+ #
{A(T1 —1) }
for some universal constant C'. Using the representation (3.23) for g,+1 we can now
(Tl _ t)" —1/2

0
ﬂ(y,y’,t,Tl)‘ < (
see by induction that
1/2
v
A -z
Ve i {Am —) }

dy
(3.38)
for some universal constant C. We may use (3.24) and (3.38) to estimate the second
derivative of the function v, (y,y’,t,T1) in (3.23) with respect to y. Thus we have

(3.39)
1/2
A+ {zm )

C Gy -y, 2T — 1)),

T\ /2
15 t) CG(y—vy' 2Ty —t)),

n+1

Agn n
‘aiy(y7yl7taT1)‘ < C G(y_yl72€(T1_t)>7 n > 07

9 n+1
0%,

Ty — )"
oy?

(y7y/7t7T1)‘ < ( - C" G(y—y,2e(Ty—t)), n >0,

c G(y_y/a 25(T’1 _t))7
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for some universal constant C. We conclude then from (3.39) that G(y,v’,t,T1) is
twice differentiable with respect to y for ¢ € [T} — A, T3] and

‘82G(y7yl7thI) C

(840 e

Gy —vy',2e(Ty — 1))

for some universal constant C.

Next we wish to estimate 0°G(y,y’,t,T1)/0ydy’. We can easily obtain this
from the representation (3.23) for v, and (3.29). Thus from (3.29) we can esti-
mate 0%v, (y,y',t,T1)/0ydy’ for n > 1. We need to integrate by parts to estimate
vg(y,y,t,T1)/0y0y’ just as was the case for the estimate (3.27). We conclude
that

C
- €(T1 - t)

2 /

dyoy’

Gy -y, 2e(Ty — 1))

for some universal constant C, provided ¢ € [T1—A, T1]. Finally we need to estimate
the derivative 93G(y,y’,t,T1)/0*ydy’. To do this we must first obtain estimates
on 0%g,(y,y',t,T1)/0ydy’. Evidently we have that

(3.42)

3290 (yv ylv ta Tl)
Yoy’

1
- €(T1 — t)

Py 1/2
A+{A(T‘1—t)} ] CG(y*yl,2€(T17t)),

for some universal constant C. To estimate 8%g;(y,y',t,T1)/0ydy’ we write the
integral representation (3.23) for ¢g; as an integral over ¢t < s < (T} +t)/2 plus an
integral over (T +1)/2 < s < T1. The second integral cannot be bounded by using
(3.26) so we need to resort to integration by parts as we did for the estimate (3.27).
To bound the contribution to g; from the integral over t < s < (T} + t)/2 we use
the representation (3.34). We conclude that

for some universal constant C'. Now by induction we see from the representation
(3.23) for g,, that

2
2
sl CGly -y 26(T1 — 1)),

4
(3.43) oyoy'

1
(y’y/at7T1)’ < g

(3.44)
n+1
0° n T, —t)r 1 1/2
8yé’gy’ e {A(le—t)} C" Gly—y',2e(Ti~t)), n >0,

for some universal constant C. Similarly to how we obtained (3.39) from (3.38) we
conclude from (3.44) that

(3.45)
n+1
9, T, — $)n — 1/2 v 1/2 .
D920y (y»y’,t,Tﬁ‘ < (163% A+ {A(Tl—t)} C"Gy—y',2¢(Ti—t)), n =0,

for some universal constant C. We conclude then from (3.45) that provided ¢ €
[Ty — A, T3], there is a universal constant C' such that

PGy, y,t, T C
‘M 3/2 G(y _ yl,2€(T1 _ t))

(3.46) Oy20y’ [e(Ty —t)]

(yvylvtaTl)‘ S



STOCHASTIC VARIATIONAL FORMULAS 23

We use the estimates (3.32), (3.40), (3.41) and (3.46) to obtain bounds on the
derivatives in (3.17). In (3.19) we set w(y,t) = 1 — u-(z,y,t), where the bound-
ary functions wg, w_,w are all bounded by 1. Then we estimate the derivatives of
ue(,y,t) with respect to y by setting y = y; and estimating dw(y, t)/0y, 9*w(y,t)/0%y
at y = y; using the Green’s functions estimates. It is clear then that by choosing
A to be given by its maximum value in (3.20) that we get an estimate

(3.47) |Oue (2,1, 5)/0y| + |0%ue (2, y, 5)/0y*| < C(8, 50, Yoo, 1)

for (y,s) in any interval yo < ¥ < Yoo, t < 8 < T — 4. Our final task is to show
that the constant C(6,yo, Yo, t) can be chosen independent of y, as yoo — 0o. To
see this we use the fact that the boundary functions wg,w_,w, converge to 0 as
Y1 — 0.

Let Y.(s), t < s < T, be the solution of the stochastic equation (1.5) with
Y. (t) =y, where y > z. We need to estimate P(Y.(T) < z | Yz(t) = y) as y — oc.
To do this we let Z.(s) be the solution to the equation

(3.48)  dZ.(s) =[—A Z.(s) + b(x,s)]ds + edW (s), s>t, Z.(t)=y— =,

where A is the upper bound in (1.1) for the derivative of b(-,-). Then Y.(s) >
Z.(s)+x,t < s <7, where 7 > ¢ is the first hitting time at 0 for the diffusion
Ze(s) with Z.(t) = y — x. The solution to (3.48) is given by

(349)  Z(s) = (y—x)e AN 4 / e~ A=) bz, 8 )ds' + E(s), s>t
t

where £ (s) satisfies the stochastic integral equation

(3.50) E5) =~ [ &)+ VEWL). s>t
t
Applying Gronwall’s inequality to (3.50) we have that
(3.51) sup [€:(5)] < ATD Z sup [W(s)].
t<s<T t<s<T

We can estimate the probability that inf;<s<7 Z.(s) < 0 by using the inequality

(3.52) P( sup |[W(s)| > a) < {S(T_“] v exp { Q(GQ] .

t<s<T Ta? T—1t)

Let us assume that the second term on the RHS of (3.49) is smaller in absolute
value than 1/2 the first term for ¢ < s <T. This can evidently be accomplished by
choosing y — « sufficiently large. Then from (3.51), (3.52) we conclude that

(3.53)

, (té?iT Zu(s) < O) - {S(Tﬂ t)]l/Q 2\/(552:1;w ; [_ M 64A<Tt>] .

Using the inequality

t<s<

PY(T)<z|Y(t)=y) <P ( infTZE(s) < 0) ;

we obtain from (3.53) bounds on the boundary functions wg,w_, w4 in (3.19).
Evidently these are decaying exponentially in y; as y; — oo, whereas it follows
from (3.20) and the Lipschitz condition (1.1) on b(,-) that we may take A ~ 1/y}
as y; — 0o. We conclude that (3.47) holds uniformly as y., — oc. (]
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Lemma 3.5. Suppose b(-,-) satisfies (1.1). Then for x,y € R, t < T, and e < 1
there is the inequality

(354) q&‘(x7y7t) 2 Q(x7y7t) - C(xvyvta T)\/ga

where q(z,y,t) is given by (1.10) and C(x,y,t,T) is a constant independent of €.

Proof. Suppose yp < z and y > yo. Then by Lemma 3.4 we have the representation

1

(T—0)AT
359 a0 =E{g [ D)9 - (o), s

0o lT = ) A7), (= 5)AT) [ 5elt) =3,
Here A (y, s) is given by the formula

(3.56) Ae(y,s) =b(y,s) — 0q-(x,y,5) /0y, yeR, s<T.

By Lemma 3.4 the function A.(y,s) is uniformly Lipschitz in y for y > yo and
t < s <T—46. Hence (1.14) has a unique solution y.(s), t < s < (T — ) A7, where
7 is the first hitting time at yp.

We consider a random path y.(s), t < s < T — 4, for which 7 > T — §, and
associate with it a classical path y. .(s), t < s <T. To do this let k be defined by

T—6
(3.57) k = max [x —d—y— / Ae(ye(s),8)ds, 0
t
Then y. o(s), t < s < T, is the solution to the initial value problem
d g,C
(3.58) yc%s(S) = A(ye(5),8) +k/(T—t—0), t<s<T—34
dye,c(s)

ds = 2+ b(ys,c(s)a 5); T-0<s< T, ys,c(t) =Y.

Since from (3.57) one has that y. (T — 0) > x — §, it follows that y. .(T) > =
provided ¢ is sufficiently small. Hence from (1.10) we conclude that

1 (7 [dye.c(s) 2
. a — = c 9 Z yYs ).
(359) 3 [ b0 a5 = gt
From (1.14), (3.58) we see that
(3.60) Ye,o(s) — ye(s) = m +VE W(s)—W(t)], t<s<T-4.
We may also rewrite the parameter k in (3.57) as
(3.61) k=max [z — 0 —y.(T — &) + e [W(T —6) — W(t)], 0].
Observe now that
(3.62)
1 (T=9) 1 T8 14 (s 2
s P v asz g [ [ g 0,0) as
t t $

(T-9) s
L b9):9) 5, 8) = W) 5) = AT~ £ s

Evidently from (3.59) the first term on the RHS of (3.62) is bounded below by
q(x,y,t) — CH for some constant C. Using (3.61) and Lemma 3.1 we may bound
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the second term on the RHS of (3.62). First observe that this second term is
bounded in absolute value by

(T-9)
(3.63) g/t [)\s(ys(s)vs) - b(ys(s)»s)]z ds +

1] T
P+%J[ by c(5). 5) = bly=(s). 5) = k/(T —t = 8)]* ds,

for any n > 0. From (3.60) and the Lipschitz condition (1.1) on b(-,-) the second
term in (3.63) is bounded above as

(T-5)
(3.64) [ By c(5) ) — blye(s), 8) — B/(T — £ — 6)]2 ds

<Cie /tT 6 [W(s) = W(t)]* ds+ Ca k2,

where the constants C7, Cy depend only on T' — ¢, assuming § < (T — t)/2. Hence
from (3.61), (3.63), (3.64) we conclude that the second term on the RHS of (3.62)
is bounded by

n (T—9) 9 016 (T-9) 9
3659 § [ Delielshn) = b)) s+ S5 [T W)~ Wil s
t t
C C
+ W -5 - W)+ 73 {max [z — § — y.(T - 3), 0]}°,
for any n, 0 < n < 1 and constants Cy, Cs, C5 depending only on T' — ¢. It follows
then on taking  ~ § in (3.65) and using Lemma 3.1 that

1 (T=9) )
396) oo =57 =0 +5 [ Dulunls)) ~blunle). o) ds

(T 6)
m@>aw9ﬁ’ WP ds+0()

(T-9)
_ % W(T = 8) = W ()] - c4é/t e (ye(s), 8) = blye(s), 5)]” ds,

for constants C1, Cy, C3, Cy depending only on T — t.

To conclude the proof we take the expectation of (3.66) on a set of paths y.(s),
t <s<T-6, for which 7 > T — 6. To find a suitable set of paths note that
0qe(x,y,8)/0y < 0,y € R, s < T, whence (3.56) implies that A.(y,s) > b(y, s),
y€R,s <T. Thusy.(s) > Yo(s), t < s <T—§, where Y. (s) is the solution to (1.5)
with Y:(t) = y. We have already estimated the fluctuation of Y.(s), ¢t < s < T,
from y by (3.4). We therefore conclude that for given y we may choose yy < y such
that
(3.67) sup |W(s) —W(t)| <1/y/e implies 7> T — .

t<s<T

The inequality (3.54) follows now on taking § = 1/ in (3.66) and taking the expec-
tation on the paths for which (3.67) holds. O

Proof of Theorem 1.1. Evidently (1.12) follows from Lemma 3.3 and Lemma 3.5.
O
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4. THE OPTIMALLY CONTROLLED PROCESS

In Lemma 3.5 we already used the optimally controlled process y.(s) of (1.14)
with controller (1.16) to obtain a lower bound on g.(z,y,t). The main goal of this
section is to prove that liminfs 7 y.(s) > x with probability 1. To do this we need
to prove some short time asymptotic results for the cost function g.(x,y,t).

Lemma 4.1. Suppose that 0 < T —t < 0 < e < 1. Then the function q.(z,y,t)
satisfies the inequalities

(4.1)
0 < (@, ,8) < Cola—y)*/(T-D)+C(2,0) [(y —2)* + ly =2l + VT = 1), y<a,

0 < g-(z,y,t) < Ceexp [—(z — y)?/2¢(T — t)]+C(z,6) [(y —2)? + |y — x|+ Ve(T - t)} , Y>>,
where C' is a universal constant and C(x,d) depends only on x and 6. The function
0qe(x,y,t) /0y satisfies the inequality

(4.2)
) 2 5 exp [, ) {(T = O)l1og(T 0] + (T = 02 + (g = a2/ + 1y~ al/e}].

for a constant C(x,d) depending only on x and d.

Proof. We apply the Schwarz inequality in the PDE (1.8) for ¢.(z,y,t). Thus for
any a > 0,

(4.3)

+ b(x,t)

9g- 0g. 1 9g:-\* | € ¢
——(1-a) <

ot oy 2 Oy 2 Oy?
Setting v, (y,t) = exp[—(1 — a)ge(z,y,t)/e], we see from (4.3) that

OVq e € vy _ (1-0)
<

2
(44) ﬁ + b(.’IJ, t)aiy + 5 ayz = %ae [b(y7 t) - b($7 t)] Vas

provided a < 1. It follows now from (4.4) that v, is bounded below by
(4.5)

+ i[b(y,t) — bz, t)]* > 0.

va(y,t) > B

exp {—/t (1 —a)bly +g(s) + Ve W(s —1t),s) — b(x, 5)]2d3/2a5}

va(y +9(T) + Ve W(T —1),T)|,

where W (-) is Brownian motion and ¢(-) is given by

(4.6) g(s) = /ts b(z,s")ds', t<s<T.

Observing that v, has terminal data v, (y,T) = 0 for y < x, and v, (y,T) = 1 for
y > x, we conclude from (4.5) that

= 1 (y — 2)?
(4.7) Va(y,t) > /z_g(T) me){p [_M_t)} F(y,z) dz,

where F(y, z) is given by the formula

(18) F(y.2) = B| exp{ - /t (1= o) (T = s)y + (s~ )21/ ~ )
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2
+vaﬂqs—ﬂ—%s—ﬂWKT—ﬂ/U¥¢ﬂ+g®LQ—b@ﬁﬂ M/%w”.

In (4.7) we have used the Brownian bridge representation for Brownian motion
conditioned at times ¢ and 7. Using Jensen’s inequality in (4.8) and the Lipschitz
bound (1.1) on b(-,-), we conclude that

(49) —logF(y,2) < A(;a‘“)/T as B[{(T - 5)(y— =)

F (s 0z =) /(T— 1)+ gls) +VE W(s 1) — (s — OW(T — )/ 1))} |

:14(210;0[)/]E ds{[(T—S)(y—x)+(8—t)(2—33)]/(T_t)+9(5)}2
21—¢q) (T
+A(;a)/t ds (5 — t)(T — s) /(T —t) .

It follows now from (4.6) and (4.5) that for any § > 0 there is a constant C(z, )
depending only on x, such that

A%(1 - a)

4.1 —log F <
(110)  ~log F(y,2) < “g —

(z = 2)2(T —t) + (y — 2)*(T — t)
+cuﬁxT_w3+qT—ww@, T—t<s.

We may combine (4.7), (4.10) to obtain an upper bound on ¢.(z,y,t). Thus on
using the inequality (2 — z)? < 2(z — y)? + 2(y — x)? in (4.10), we conclude from
(4.7) that
(4.11)

A%(1-a)

va(y,t) > exp {_M {S(y —2)(T —t) + C(z,0)(T — ) + (T — t)2/6}}

o 1 1 A%(1 -
/ ——————exp [—2'2 { + (1=a) (T — t)}] dz', T—t<é.
z—y—g(T) 27TE(T — t) QE(T - t) g

Let us recall the inequality

1 1 o 1
(4.12) - <1 - 2) e /2 < / e dr < = 67“2/2, a>0.

a a a
We shall use it to show that there is a universal constant C' such that
(4.13)
/ e /2 4y > exp [f n*/2 — Cnmax{a, 1}] / e /2 dz, n>0,aeR.
a-+n a
To see this observe that by Jensen’s inequality
/ e /2 dzzexp[—r]Q/Q—n(Z>]/ e /2 gz,
a+n a

where Z is the standard normal variable conditioned on Z > a. Evidently if a < 2
then | (Z) | < C for some universal constant C;. If a > 2 we see from (4.12) that

2) < <1l> < daf3,
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whence (4.13) holds for all a € R.

We shall apply the inequality (4.13) in (4.11) to obtain an upper bound on
ge(z,y,t) in terms of the cumulative distribution function & for the standard normal
variable. Now the integral with respect to 2z’ on the RHS of (4.11) is given by

1 —x T 9
(4.14) 12421 — )T 1) 2 d (y 5(;f(t)> [1+24 (1—04)(T_t)]1/2>

if we set « = T —t. We write the argument of ® in (4.14) as —[a + 5] with
a=(x—y)/\/e(T —t) and apply (4.13). Thus we obtain the inequality

y—z+g(T)

(4.15) @( S

[1+4242(1 — a)(T — t)]1/2> >

®<H>6Xp[_0(ag,5) {(y_x)2+|y_m|+m}], T-t<§<e,

e(T—1) €

for some constant C(x,d) depending only on z,d. If we combine (4.15) with (4.11),
taking a = T — ¢, we obtain an upper bound on g,

(416) qo(w,y,t) < —clog® (y — al/V/=(T — 1) ) +
C(sc,6){(y—x)2+|y—x|+\/5(T—t)}7 T-t<é<e,

for a constant C(x,d) depending only on x and §. The inequality (4.1) follows from
(4.16) on using (4.12). Note that (4.12) for y < z follows from (4.16) on using the
fact that log a < a?/2 for a > 1.

Next we turn to estimating 9g.(x,y,t)/dy. To do this we consider the Green’s
function G(y,y’,t,T) of (1.4). It follows from (1.4) that —Ou.(z,y,t)/0x = G(y,z,t,T).
If we differentiate (1.2) with respect to y and use the maximum principle, we see
also that

(4.17) Oue(z,y,t)/0y > e*A(T*t)G(y,x,LT),

where A is the Lipschitz constant in (1.1). Since —0q.(x,y,t)/0y = € [Qu.(z,y,t)/0y]/ues(z,y,t),
we may obtain the lower bound (4.2) by finding a lower bound for G(y, z,t,T) and
a lower bound for ¢.(z,y,t) which is complimentary to (4.16).
We turn to the problem of obtaining a lower bound for ¢g.. Instead of (4.3) we
use the differential inequality

Dq. g 1 9g:\> | e 9%
(1 <
ot ( +°‘)(ay> 2 By

(4.18) == 4 b(a, t) — [b(y, t) = b(z,1)]* /20 < 0,

oy 2
for any o > 0. Setting v, (y, t) = exp[—(1 + a)qe(z, y, t)/e] we see from (4.18) that

> 1 (y — 2)*
(4.19) Vo (y, 1) < /w_g(T) e (@D exp {— 2e(T — t)] F(y, z)dz,

where F(y, z) is given by the formula

(4.20)

Fy,2) = E[exp{/tT“M as(IT = s)y — ) + (s - )z~ D] /(T ~ 1)

2ae
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() VE W (s — 1)~ (s - W@~ /(7 - 0)]) }].

The expectation in (4.20) cannot be evaluated exactly as was the case with (4.9),

but it may be estimated using the fact that one knows the probability density

function of sup W(s —t). Taking o =T — ¢t in (4.20), we see from this that
t<s<T

(4.21)

A2
log F'(y, 2) < ¢

[(z—2)+ @y —2)?+C(z,6)(T—t)*+e(T—t)], T-t<§,

for a universal constant C' and constant C(z,d) depending on only z,d. Note here
that we require § < 1/A? for the expectation (4.20) to be finite. To obtain the
lower bound on ¢. we combine (4.21) and (4.19) with the inequality (4.13). Since
we are obtaining an upper bound on the function v, (y,t), we apply (4.13) with

a+n=(x—y)/\/e(T —t). Hence we get an inequality complimentary to (4.16),
(422) qo(w.1) > —= log® ([y— a]/v/(T — 1) ) -
C(z,0) {(y—x)2+|y—x|+\/€(T—t) } , T—t<d§<e,

for a constant C(x, ) depending only on x and 4.

The lower bound for G(y, x,t,T) may be obtained in a similar way to the upper
bound on ¢.(z,y,t). Let 0 < A <T —¢ and 0 < a < 1. Then just as in (4.5) we
have that

(4.23)  G(

y,(E,t,T)l_a 2/ !
—oo \21e(T —t — A)
(y—2)°
26(T —t— A)

where Fa is as in (4.8) but with T replaced by T'— A. Observe that we cannot
take A — 0 on the RHS of (4.23) since the integrand would contain in the limit
§(z 4+ g(T — A) — x)'=2, which is identically zero. We shall choose A so that
0<A<<T—tand a =T —1, in a way that the function z — G(z + ¢g(T —
A),z, T — A, T)'=% is approximately a Dirac delta function concentrated at .

It is evident that the RHS of (4.23) is decreased upon replacing G by the corre-
sponding Dirichlet Green’s function G p for an interval centered at x. As in Lemma
3.4 we choose this interval sufficiently small and A sufficiently small so that Gp
may be expanded in a perturbation series. The condition for this has already
been given in (3.20). Thus the Green’s function Gp(z,2,T — A, T) on the interval
x —n < z < x4+ n has a convergent perturbation expansion provided 7, A satisfy
the inequalities

exp { ] Fa(y,2) Gz + g(T — A), e, T — A, T)' dz,

(4.24) A<, A< us/[An +C(x,0)% A<S,

where A is the Lipschitz constant from (1.1) and C(z,0) is a constant depending
only on x,d. In that case there are universal constants C, Co such that

T+
(4.25) / Gp(z,x, T — A, T)dz > 1 — Cqyexp|—n?/4eA]
]

— ColAn+ C(z,0))(A/e)2, 0< A <.
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Observe that if we take A = (T —t)3,n = (T — t)y/z then the RHS of (4.25) is
bounded below by 1 — C(z,0)(T —t) for 0 <T —t < ¢ < ¢, where C(z,d) depends
only on z and §. Taking o = T — t we may see further that with the same values

for A, n there is the inequality
(4.26)

z+n
/ Gp(z, 2, T—A,T)'"%dz > 1-C(z,0)(T—t)|log(T—t)|, 0<T—t<d<e,
x—1

for a constant C(z,d) depending only on x,d. It follows then from (4.10), (4.23),
(4.26), that

(4.27)
Gy, z,t,T) > (y —z)?

1
= are(m—t) V| 2e(T—1)

+(y—a)/e+ly—a|/e}|, 0<T—-t<s<e,

— C(,8){(T —t)|log(T — t)|

for a constant C(z,d) depending only on z, é.
To obtain the lower bound (4.2) we combine (4.22) and (4.27) using (4.17). The
inequality (4.2) now follows from (4.12). O

Remark 4.1. There is a vast literature on short time asymptotics of solutions
to diffusive equations. See in particular the classical papers of Kannai [11], Mi-
nakshisundaram [17], Molchanov [18], and Varadhan [22].

Lemma 4.1 shows that for y <  and s < T with T — s small, the optimal
controller A\*(z,y, s), given by (1.16) for the stochastic control problem (1.15), is
approximately \*(z,y,s) = (z —y)/(T — s). This will enable us to show that the
solution y.(s) of the corresponding stochastic differential equation (1.14) satisfies
lisrg ijlef ye(8) > x with probability 1. First we show this for the linear approximation

which we have just established.

Lemma 4.2. Suppose u >0, € >0 and Z.(s), t < s < T, is a solution to the SDE
—uz
(4.28) dZ.(s) = %&S) ds + /e dW (s),

with initial condition Z.(t) = z € R. Then lin} Z.(s) = 0 with probability 1, and
if u>1/2 then lim ijlef Ze(s)/VT — s = —oo with probability 1.

Proof. The SDE (4.28) is explicitly solvable, whence we find

(4.29)  Z.(s) = @:j)# z+\@[ (g:j)ﬂ aw(s), t<s<T.

Thus Z.(s) is a Gaussian variable with mean of order (7' — s)* as s — T'. We shall
assume wlog that p > 1/2, in which case the variance of Z.(s) is order T — s as
s — T. Hence the standard deviation of Z.(s) dominates the mean for s — T'. For
n=0,1,2...,lets, =T —(T—1)/2",s0t =859 <s51 <$3<---<T.Fort<s<T
we consider the Martingale M (s) defined by

M(s) = /ts (T — s~ dwW (s),
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which by Doob’s inequality satisfies

P( sup |M(s)| > a) < 2(2“_1)"/a2(2u —1)(T -t a>0.

t<s<sp
It follows that

o0
Z P( sup |M(s)| > 2(“_1/4)"> < 00.

n—1 t<s<spn

Hence by the Borel-Cantelli lemma limsup (T — s)* |M(s)| = 0 with probability 1.

Ss—

We conclude from (4.29) that lirr:1F Z(s) = 0 with probability 1.
We turn to showing that lim i%lf Zs(s)/\/T — s = —oo with probability 1. For

n=1,2,... we define variables Y,, by Y;, = (T — s,,)*~1/2 [M(s,) — M(s,-1)]. We
may write the Z.(s,) in terms of the Y;, as
(4.30)

T—s,\" n
Z.(8y) = <T—St) 2+ +/e(T — s,) Z Ym/z(n—m)(ﬂ—l/Q)’ n=12---

m=1

Evidently the Y,,, n > 1, are independent and Gaussian with zero mean and vari-
ance var(Y;,) = [1—2'72#] /(2u — 1). By the Borel-Cantelli lemma for any K > 0,
one has Y,, < —K for infinitely many n, with probability 1. Thus if in (4.30) we
were to replace the sum over 1 < m < n by its dominant term m = n, we would
have shown that lim inf Z:(s)/\/T — s, = —co with probability 1.

To take account of the sum in (4.30) we need to make a more elaborate argument.
Denoting the sum in (4.30) by &, it is easy to see that

(431) gn =Y, + £n71/2(”_1/2)7 n > ]-7
where {y = 0. For £ e R, n > 1, we put
u(fvn):P[€m>a; 1§m§n’€0:£]7

where the &, are defined by the recurrence (4.31). Setting § = 1/2(+=1/2) < 1 it is
easy to see that the u(§,n) satisfy the recurrence equation

\/2;? / d¢' u(€',n —1)exp [_ (51 _ 55)2/202} o>,

where we define u(¢,0) = 1, £ € R, and o = [1 —2'72#] /(2 — 1). If for
z >0, 4(&, 2) is the Laplace transform of u(€, n),

(4.32) wu(&,n)=

oo

W& 2) =Y ulgn)e ™, (ER, z2>0,

n=0
then we see from (4.32) that
o—?
V2ro?
It follows from (4.33) that for n > 0,

(4.34) sup [@(&, 2)e™ ] < e 1 + e Fsup [A(€, z)e” ] sup hy(€),
§>a £>a E>a

(4.33) (g, 2) = 1+

/Oo d¢' a(¢', 2)exp [— (€' —5€)%/20%], £€R, z>0.
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where h,(§) is given by the expression

\/2;7 /OO d¢’ exp [77(5' —&) - (5/ - 55)2/202] .

Evidently sup h,(§) = 1 if n = 0. We shall show that there is an n > 0 such that
E>a

sup h,(§) < 1.
£>a

To see this we shall assume wlog that a < 0 and 0 < n < 1. We choose « to
satisfy § < a < 1, and for £ > 0 consider the integral

hy(€) =

[ e e ue - o)~ (¢ e 20] =
ag

rexp [~ n(1-a¢] | " exp [no¢ — /2.

where K = [a — 0]¢/0. We have now that

/OO exp [nUC - CQ/Q} d¢ = 6"2‘72/2/ e=¢7/2 d¢
K

K—no
< exp [77202 +C(K - 770)770] / ¢ /2 d¢,
K

where we have used (4.13) and assumed K —no > 1. Taking C' > 1 and choosing
a so that (1 —6) > C(a — ), we conclude from the last 2 inequalities that there
exists &y > 0 depending only on o, «, such that

[ e esn ot — ) - (& —se?207]
ag

<ep[~n6{(1-0)~Cla )] [ de'ep[ (¢ ~oe/20”
provided £ > &y. It easily follows that
(4.35) hy(§) < exp[—pné], £>&, 0<n <1,

where p = min [(1 — §) — C(a — ), 1 — a]. One can also see that we may choose

n > 0 sufficiently small such that sup h,(£) < 1. Combining this with (4.35), we
a<é<&o
conclude that sup h,(£) < 1 for sufficiently small > 0. Now on letting z — 0 in
£>a

(4.34), we see that

Z P(§m>a, lgmgn’&:f) < 00.
n=1
Hence by the Borel-Cantelli lemma liminf &, < a with probability 1. Now (4.30)
implies that lim inf Zg(sn)/\/T — 8, = —oo with probability 1. O
n—oo

Theorem 4.1. Let \.(-,-) be the optimal controller defined by (3.56). Then the
SDE (1.14) has a unique strong solution y.(s), t < s < T, with initial condition
Y (t) =y, Furthermore lim ijrwlf ye(8) > x with probability 1.
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Proof. To show existence and uniqueness of a solution to (1.14) we argue as in

Lemma 3.5. Thus for yo < y let 7(yo) = inf{s >t : s < T, y.(s) = yo}. Since

Ae(y'y8) > by, s), v €R, s <T,it follows that lim P(7(yo) <T) = 0. Hence
Yo——©

by the Lipschitz property of A.(y',s) for ¢/ > yo, t < s < T —§, for any § > 0, we
obtain a unique strong solution to (1.14) up to time 7" — §. Letting § — 0 we get
existence and uniqueness in the interval t < s < T.

To show that ligi%lf Ye(8) > x we consider for yg < y solutions y.(s), t < s < T,

of (1.14) with y.(t) = y such that 7(yo) = 7. From (4.2) and the fact that b(-, s) is
uniformly Lipschitz for ¢t < s < T, we see that there exists sg with t < s < T, and
o > 0, such that such that

(4.36)  dye(s) > (b(W) + M

on paths y. () for which 7(yg) = T It follows then from (4.36) and Lemma 4.2 that
on paths y.(+) for which 7(yo) = T one has in fact lim ijl}f Ye(8) > x with probability

)ds—l—ﬁdW(s), s0<s<T,

1. Letting yg — —oo, we conclude that lim i%lf Ye(8) > x with probability 1 on all

paths y.(-) for which y.(¢) = y.
Next for n > 0 and so < T let Uy, s, = {y-(-) : 4 (t) =y, y=(s) >z —n, so <
s < T}. If p and T — s¢ are sufficiently small it follows from (4.2) that we may
take po > 1/2 for a path y.(-) € U,s,. Hence by Lemma 4.2 we have that
hm sup [y-(s) — x /\/ — s = 400 with probability 1 for all paths y.(-) € U, s,-
-7

Slnce limg,—7 P(Uy,s,) = 1, we conclude that limsup [y.(s) — z]/VT — s = +o0
s—T
with probability 1 on all solutions to (1.14) with y.(t) = y.

For K > 0 we define a stopping time 7x by 7 = inf{s >t:s<T, ye(s) —

= KVT —s}. We have just shown that P(rx < T) = 1. Consider now a
solution y.(s) to (1.14) for s; < s < T with initial condition y.(s1) = y1. Now
Ye(s) > Yo(s), s1 < s < T, where Y.(s) is the solution to (1.5) with Yz(s1) = y1.
From (3.4) we conclude that

(437 inf_y(s) >y —C sup ]/ (1. 5)ds' + V2 [W(s) - W(s1)]

s1<s<T sl<s<T

for some constant C. We take now s; > ¢ and y1 =  + K+/T — s1 in (4.37). It is
clear that there is a constant Ky > 0 such that for K > Kj,
(4.38)

P( inf ys()§w>§P<\/5 sup W<s>w<51>|>f<ﬂ/2>s4s/f<2.

s1<s<T s1<s<T
Taking s; = 7k in (4.38) we conclude that for K > Kj one has P(lim i%lf Ye(s) <
x) < 45/K2. Letting K — oo yields the result. ([

Corollary 4.1. Let A\.(-,-) be the optimal controller defined by (3.56), and y-(s)
be the corresponding solution to (1.14) with initial condition y.(t) = y. Then one
has

(4.39) %iﬂ(l) g (@, y-(T — 6),T — §) = 0 with probability 1.
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Proof. We use the second inequality of (4.1) to obtain an estimate on g.(x,y,T —9)
when y > x. Since ¢, (:L', -, T'— ) is a positive decreasing function we have that

(4.40) g.(z,y, T —0) < Ceexp [—(x — y)?/2e6] + C1(e8)/*, o <y < x+(e8)Y/4,

q€(xava_5) Scl(55)1/4, y>x+(55)1/4,
for some constants C, Cy. Now (4.39) follows from (4.40) and Theorem 4.1. O

5. PROOF OF THEOREM 1.2

The problem of estimating 9q.(z,y,t)/0dy is closely related to the problem of
estimating certain conditional probabilities. For 0 < § < T'/2 we shall consider the
conditional probability P(Yz(T —¢) € U | Yz(0) =y, Y-(T) = 0), where Y.(s), 0 <
s < T, satisfies the SDE (1.5) and U is an arbitrary open set. In the linear
approximation b(y,s) = A(s)y the variable Y.(T) conditioned on Y;(0) = y is
Gaussian with mean A(T)y and variance e0?(T), where A(T), o2(T) are given by

the formulas,
T T T
/ A(s)ds| , o*(T) :/ exp [2 / A(s’)ds/] ds.
0 0 s

The variable Y. (T — ¢) conditioned on Y. (0) =y, Y.(T) = 0, is also Gaussian with
mean and variance given by the formulas

(5.1) A(T) = exp

. T I T ]

BYAT =) | V.0 = Vo) =0] = 252y [ ey [ acas| as
(5.2) _ _
2 _ T T T

Var [Yo(T = 6) | Y(0) =y, Yo(T)=0] = W /T_(S exp |2 / A(s")ds' | ds.

The mean in (5.2) is equal t0 Ymin (T — 0) where ymin(s), 0 < s < T, is the unique
minimizer for the functional F[y(-)] of (2.8) conditioned on y(0) =y, y(T) = 0.
One easily sees from (5.2) that there are positive universal constants C7,Cs such
that

C2T6?J EY(T =0) | Yo(0) =y, Yo(T) = 0] < C;Sy’
0155 S Var [Y;(T— 5) | Y;(O) =Y, }/E(T) = 0] S 025(57

for y < 0 provided 0 < 6 < T/2, AT < 1. It follows from (5.3) that there are
positive universal constants Cs, 3, Cy,v4 such that

(5.3)

IN

C36 dy?
Plr@-o < S |v,0)=yv.@)=0) <ex [—”j;; } N
(5.4)

C46 Sy
Plr@-o > S |v,0)=yv.@)=0) <ex [—”;TZ } N

provided 0 < 6 < T/2, AT < 1.
Evidently (5.4) proves Theorem 1.2 in the case of b(y, ) linear in y € R. We
need to show therefore that (5.4) continues to hold for nonlinear b(-,-) satisfying
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(1.1) and b(0, -) = 0. Towards that goal we first observe that in the linear case there
are positive universal constants Cs, s, Cy,v4 such that if Frnin = F[Ymin(+)] then

(5.5) Fly()] = Fuin = 36 y° /T if y(T — 6) < C30y/T,
Fly()] = Fuin = a6 y°/T if y(T — 6) > Cydy/T,

provided 0 < 6 < T/2, AT < 1, y < 0. For nonlinear b(-, -) there is not necessarily
a unique minimizer of the functional Fy(-)] subject to y(0) = y < 0, y(T) = 0.
Nevertheless, if Finin denotes now the minimum of Fly(+)] then (5.5) continues to
hold.

Lemma 5.1. Let b(-,-) satisfy (1.1) and b(0,-) = 0. Assume further thaty < 0, § <
T/2, AT < 1 and Fin is the minimum of the functional Fly(-)] of (2.8) subject
to y(0) =y, y(T) = 0. Then (5.5) holds for some positive universal constants
C3,73,C4,74, on any path y(s),0 < s < T, satisfying y(0) = y,y(T) = 0.

Proof. We first show that there are positive universal constants C7, Co such that
(5.6) C1y*/T < Fuin < Cay?/T.

The upper bound in (5.6) can be obtained by estimating F[y(-)] for the linear
path y(s) = (T — s)y/T, 0 < s < T. To get the lower bound we consider a path
y(s),0 < s < T, satisfying y(0) = y,y(T) = 0, and write

d
(5.7) (TZ = bly(s), ) + f(s) = Als)y(s) + f(5),
where |A(s)] < A, 0 < s <T. Evidently we see from (5.7) that

v=v0 == [ o[- ["acas] soyas

Since AT < 1 we conclude that
1/2

T
/ ()2 ds] 7
0

whence we obtain the lower bound in (5.6) with C; = 1/2¢2.

To prove the first inequality in (5.5) we consider for A > 1 a path y»(s), 0 < s <
T, satisfying y»(0) = y, y»(T) = 0 and yx (T —0) = A\dy/T. We derive a second path
yi from yy by setting y3(s) =0, T — 6 < s < T, yi(s) = ya(s) — sAéy/T(T — 9),
0 <s<T—9. Thus y3(-) is continuous and y3(0) = y, y3(T) = 0, whence we
must have F[y}(-)] > Fmin. We also have that

T
vl <e / F(s)lds < eVT

(5.8)

T-6 *(g 2
FnOl=5 [ [ s - i)+ T - 9).9)| ds

ds (T —9)
- ;/TT_(S [CS/; - b(yA(S%S)r ds.

Arguing as we did to get the lower bound in (5.6) we see that

1 [T Tdya(s) 2 A26y?
(59) 5 [ )] sz ot
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The first term on the RHS of (5.8) is bounded below by

' 20yl [T i)
1 I = 2 A
where we have used the fact that AT < 1. It follows then from (5.9), (5.10) that
* 2\/§A5|y‘ * 1/2 )‘25y2
. I > I = 222070 . _

Observe now from (5.6), (5.8), (5.9) that there is a universal constant C3 such that
if A0/T > Cs then Flyx(-)] — Fmin > N20y?/2e?T?. Suppose now that \§/T <
Cs. If Flyi(1)] > [2C2 + 64C3]y? /T it follows from (5.11) that Flyx(-)] — Fmin >
A25y? /2e*T?. On the other hand if F[y5(-)] < [2C2+ 64C%]y? /T we see again from
(5.11) that Flya(-)] — Fumin > A20y%/4€*T? if X > \g > 1 for some universal \g. We
have proven the first inequality of (5.5).

We turn to the proof of the second inequality in (5.5). Let y1(-) be a trajectory
satisfying y1(0) =y, y1(T) = 0 and set 7 = inf{s > 0 : y1(s) = 0}. Suppose now
that 7 < T — 6. From (5.6) one has that Fly;(-)] > C1y?/7, and so the second
inequality of (5.5) follows if 7 < C1T/2C5. We assume therefore that C17T/2Cs <
7 < T —9§. Let ymin(-) be a minimizing path for the functional F[y(-)] subject to
the conditions y(0) =y, y(s) =0, 7 < s < T. Then Flyi(-)] > F[ymin(-)]. From
(2.14) we see that there are positive universal constants Cs, Cy such that

Csly| _ dymin(s) Culyl
. < - min ) S T S S .
(5.12) T ST 4 b(Ymin(8), $) T 0<s<r
Since AT < 1 we conclude from (5.12) that
(5.13) eCy(T — 8)y/T < ymin(s) < C3(r — s)y/eT, 0<s<T.

It is clear that there is a positive universal constant g such that for 0 < € < ¢g
we may define a path y.(-) as follows: y:(s) = ymin(s), 0 < s < 7 —ed; y(s) =
(T = $)Ymin(T — €0)/(T — T+ €d), T —ed < s < T. Since y.(-) is continuous,
Y:(0) = v, y.(T) = 0, we have that Fly.(-)] > Fmin. From (5.12), (5.13) we also
have that

(5.14) Flymin(-)] = Fly=()] = e6C3y?/2T% — *Cie*dy?/2(1 + )17,

where we have used the fact that 7 < T — §. Evidently the second inequality of
(5.5) follows from (5.14) by choosing ¢ = min[1, C3/2eCy)?.

To complete the proof of the second inequality of (5.5) we need to consider the
case T —§ < 7 < T. Tt is evident that if Coy/T < y1(T — 4) < 0 for sufficiently
small universal C' > 0 we may repeat the argument of the previous paragraph.
Hence the result follows in all cases. d

We begin the proof of (5.4) by sharpening the estimate (4.27) on the Green’s
function G(y, z,t,T) defined by (1.4).

Lemma 5.2. Suppose b(-,-) satisfies (1.1) and in addition b(0,-) = 0. Then there
are universal constants C,6 > 0 such that the Green’s function G defined by (1.4)
satisfies the inequalities

—y?

1
5.15 G(y,0,0,T) < e
(5.15) v VS oz O | 3T + CAT)

+ CAT| ,
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(5.16) G(,0,0,T) >

{—yQ(l + CAT)
exXp | ————F——

— CAT
2eT ¢ ]’

1
V2mweT
provided AT < 4.

Proof. We shall first prove (5.16). Suppose that we have shown that
(5.17)
1

G(y,0,t,T) > T T 1) exp {2
for T —t = T/2N, where NN is some integer N > 1. We shall show that for
sufficiently large universal constant C' > 0 then (5.17) also holds for T—t = T/2N 1.
The inequality (5.16) will then follow by induction if we can prove (5.17) holds as
T—-t—0.

Defining ty by T —ty = T/2V, N =0,1,2, ... we see in a similar way to how we
derived (4.23) that
(5.18)

G

2

Y
e(T —t)

{1+ CA(T —1t)} — CA(T — t)} ,

- = 1 (y —2)?
7Oat 77T1 O(Z/ exp[—
5,0 tn-1,T) oo \/2meT 2N 2:T/2N
where Fy(y, z) is given by the formula,

A’(1—a) T A%(1—a) T?
(5.19) Fn(y,z) = eXP{M N 12a22N} .

Assuming now that we may bound G(z,0,tx,T) according to (5.17), then the RHS
of (5.18) becomes a Gaussian integral which we can evaluate. Taking o = AT/2V
in (5.18) and Cx to be the constant C in (5.17) when t = ¢y, we see that it is
possible to take Cy_1 = 5Cn/8 + 2 provided N > 1 and § < 1. We conclude

therefore that
N N
16 ) )
2 =—|1—(= = N>1
(5.20) Co=1 [ Z) [+() o w2
The inequality (5.16) follows from (5.20) if we can show that A}im 5NCy /8N = 0.

We can do this by the same method we used to derive (4.27).
We shall show that the inequality (5.16) holds with a constant C' = C'(AT) which
can diverge as T — 0, but in a mild in fact logarithmic way. As in (4.23) we write

1 o [_ (y —2)? ]
el —A) P 2e(T-A)

FO(y7 Z)GDJ] (2707T - AvT)lia dZ,

] Fn(y,2)G(z,0, tN,T)l_O‘ dz,

(v + 2y + 2°) —

n
(5.21) G(y,O,O7T)1_O‘2/
-n

where Gp ,, is the Dirichlet Green’s function for the equation (1.2) on the interval
[—n,n]. The function Fy is given by the formula (5.19) when N = 0, and we take
o= AT. As in Lemma 3.4 we use perturbation theory to estimate Gp ,. In order
for the perturbation expansion to converge we need that

(5.22) n=KVeA, (An)*A = e,
where K >> 1 and v << 1. In that case there is the lower bound

(5.23) Gp,(2,0,T —A,T) >

1 722 2
expld —— b —Cy e K/4
m{ p{zsA} '
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2
— Ca(p)v*/? exp {w} } el <,
where C} is a universal constant, p > 0 can be arbitrary and Cs(p) is a constant
depending only on p. We shall substitute the RHS of (5.23) into (5.21), choosing
A/T, K and v to be powers of AT, in order to obtain a lower bound as in (5.16).
Consider the situation when we approximate Gp , by the first term on the RHS
of (5.23). From (5.21) we have that

(5.24) G(y,0,0,T)'~* > inf {exp {—M} Fo(y,z)}

|z|<n
1

V2me(T — A)

n
/ Gpoy(2,0,T —AT) ™ d.
-n

Observe now that

1 n 1 22(1 N Oé) 1/(1—c)
(5.25) { V2me(T — A) /n (2reA)1 /2 P [ 2eA } z}
1 2
> — 1= 7 5/4] exp [~ Cho AT log(AT)]],

for some universal constant C, provided we choose A/T = (AT)* with kg > 1 and
AT < 1/2. From (5.25) it is clear that it is sufficient to choose K = (AT)~* for
any k; > 0, whence (5.21) implies that v'/2 = (AT)*0*t1=%1_ If we now use the
inequality
20|yl /eT < (AT)/27* [y? feT + 1],

and choose ko > 2k; +2, we conclude from (5.24), (5.25) that (5.16) holds with C =
C'|log(AT)| for some universal constant C’. We may easily extend this argument
to apply to the actual lower bound (5.23) on Gp,, by using the inequality

(5.26) max[a — b,0]'"* > (a —b), a,b>0, a< 1.

Returning now to (5.20), it follows that we may take Cy = O(N) whence limy _ 5 Cn /8" =
0. We have therefore show that (5.16) holds for some universal constant C' > 0 pro-
vided AT < § where § is also universal.
To prove (5.15) we use a similar method as in the proof of the lower bound.
Suppose we have shown that
(5.27)

G(y7 07 t’ T) S

1 —y? }
——————ex +CA(T —-t)|,
e (@ ) [2€(T—t)[1+CA(T—t)] =0
for T—t = T/2N where N is some integer N > 1. We shall show that for sufficiently
large universal constant C' > 0, the inequality (5.27) also holds for T —t = T/2N 1.
Analogously to (5.18) there is the inequality

(5.28) G( = 2)2}

S
0.t ,T1+°‘</ o |-
O BN VAl NP VPh
FN(yaZ)G (ZvovtN7T)1+a dz,

where Fi(y, z) is given by (4.20) with ¢ = 0,2 =0, t = ty—_1 and T is replaced by

tn. Using the fact that one knows the pdf of sup W (s —t) we see that Fy(y,z)
t<s<T
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is bounded above by

A%(1 T
(5.29)  Fn(y,z) <exp {(—i—a) oN (y* 4+ zy + 2%) +

K0A2(1 + a) T2
3ae

a 22N

for a universal constant Ky > 0, where we are assuming a = AT/2" < § and § is a
sufficiently small universal constant. Letting Cy be the constant C' in (5.27) when
t = tn, we see from (5.28), (5.29) that it is possible to take Cny_1 = 2CN/3+ Ko +4,
N > 1, provided AT < ¢ and ¢ is sufficiently small. Arguing as before then, in
order to complete the proof of (5.15) we need to show that ngnOC 2NCn /3N =0.

To do this we show that (5.15) holds with a constant C' = C(AT') which can
diverge as T' — 0 but only in a logarithmic way. We use the inequality

(5.30) G(

2
,0,0,T)1+ < / { k) }
4 ,/Qm-;T A) 2¢(T — A)
Fo(y,2)G (2,0,T — A,T)HO‘ dz,

where Fj is given by the RHS of (5.29) when N = 0.

Choosing 71, v as in (5.22) we see by perturbation theory that there is an upper
bound
(5.31)

1 22 22
T—-AT) < 1/2 _c
Gon(:0.T-07) < <= [eow{~ g5 | + Catow e { -] i<

analogous to the lower bound (5.23). Suppose now that 0 < z < 1/2. Then
T
(5:32) G(2,0,T — A,T) = Gp.o(2,0,T — A.T) + / dt plt) Gpoy(n)2,0,4,T),
T-A
where p(t) is the density of the hitting time at 7/2 for paths of the diffusion Y(+)
satisfying (1.5) with Y.(T'— A) = z, which exit the interval [0, 5] through n before
time 7. Since |z| < n/2, it is evident that

T n
(5.33) / p(t)dt <1 7/ Gpn(z,2, T —AT) dZ < Cre K°/16 4 ¢, p1/2
T—-A —n

for universal constants C,Cs. One can also see from (5.31) on replacing T'— A by
t>T — A that

Cs _K?2
5.34 G 2,0,t,T) < ———e X/ T-A<t<T,
( ) D,n(n/ ) — \/m
for some universal constant Cs. Substituting the RHS of (5.33), (5.34) into the
RHS of (5.32) we conclude from (5.31) that

1 2
(5.35) G(Z7O,T_A7T) S ﬂ[exp{ 2 A}+C e_K /16
e
2
C 1/2 = 2.
+aalop e { -t b <

We may estimate G(z,0,T — A, T) similarly for |z| > n/2. Thus we have

T
(5.36) azaT—Aﬂvz/’ dt p()G(n/2,0,t,T), = > /2,
N
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where again p(-) is the hitting time density at /2. Evidently we have that
T
(5.37) /T_A p(t)dt = P(T_in<ft<T Yo(t) < n/2 | Yo(T - A) = z)

It is easy to bound the RHS of (5.37) by using the inequality b(y, s) > —Ay, y > 0,
in (1.5) and estimating the probability on the RHS of (5.37) for the corresponding
Gaussian process. Assuming that AA < 1/10 and z > 2n we have that

(5.38) /T p(t)dt§P< inf /teASdW(s)<—z/2\£),
0

T_A 0<t<A

where W (-) is Brownian motion. We may estimate the RHS of (5.38) by using the
fact that

exp [/\ /0 t e dW (s) — N2 [24" — 1] /44

is a Martingale for any A € R. We conclude that

T
(5.39) / p(t)dt < exp [— 22/165A], z > 2n.
T-A

From (5.35) and (5.39) applied to (5.36) we can see now that there is a universal
constant C5 such that
2

05 —z
2.
zmApr%aJ,A>w

The estimates (5.35), (5.40) may be substituted into the RHS of (5.30) to obtain
the inequality

(5.40) G(2,0,T — A, T) <

(5.41) G(y,0,0,T)1** <

(y —2)? } } /"/2
su ex Fy(y,
RGO v =t

exp [*K2/06][ \/m { (yT— )Z)} Fo(y, 2)

where Cg is a universal constant. The second term on the RHS of (5.41) is a
Gaussian integral and so can be explicitly evaluated. To estimate the first term we
use (5.35) and the inequality

(a4 b)) <a't* 421 + a)a®b + 2T T a,b > 0,

G(2,0,T-A,T) " dz +

L S
(2meA)1 /2 R TeRN

in the integration over the interval [—7n/2,7/2]. One sees then from (5.41) that
(5.15) holds for a constant C' = C’'|log(AT)| where C’ is universal. Hence as for
the lower bound we may conclude that (5.15) holds for some universal C' provided
AT < 6 with § > 0 also universal. O

We can use the methodology of Lemma 5.2 to obtain similar estimates on
G(y,&,0,T) for all £ € R. To motivate the estimates we shall obtain, consider
the linear case b(y, s) = A(s)y for which

Cl.0.1) (Sl

2mec?(T) P [_ 2e02(T)
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where A(T),0%(T) are as in (5.1). Observe now that

T
y—E/AT) =y + / b(E, 5)ds — & + O[(AT)?]E.

It follows that provided AT < 1 there is a universal constant C' > 0 such that

y+/ b(E, s)ds — &

Lemma 5.3. Suppose b(-,-) satisfies (1.1) and in addition b(0,-) = 0. Then there
are universal constants 6,C > 0 such that the Green’s function G defined by (1.4)
satisfies the inequalities,

[y — &/A(T (1 + CAT) + C(AT)3¢2.

(5.42)
1 {y+f0 s)ds — £} C(AT)*¢?
G(y,£,0,T) < JameT 25T(1+CAT) T TOAT)
5.43
(G )OT > 1 My e ds g CATYE
(1,60.7) 2 ——ex 2T = e

provided AT < 9.

Proof. We proceed as in Lemma 5.2. To establish (5.43) we suppose we have already
shown that

(5.44)
oty g b s)ds — gy
e 1) ¢ 2€(T t)
CIA(T —t)]°¢?
— T =1 —CA(T—t)}

for T —t = T/2N, where N is some integer N > 1. We shall show that for
sufficiently large constant C' > 0 then (5.44) also holds for T —t = T/2N¥~!. Using
(4.4) with £ = £ we may obtain an inequality analogous to (5.18). Thus on setting
T—ty=T/2N, N =0,1,2, ..., it follows from (4.5) that

Gy, &t,T) >

{1+ CA(T — 1)}

(y —2)*

o 1
ty_1, T)o > B — - F
yafa N-—1, ) _/_OO 27T€T/2N eXp|: 2€T/2N:| N(yaz)

-«
tN
G <Z+/ b(&, s)ds, &, tn, T> dz,
tN—1

where similarly to (5.19) one may take

(5.45) G(

2 —
% 211\[[(y_£)2—|—(y—g)(z—§)+(2_£)2}

2
+A?(1oé)/tN p / b(e.s')ds' +/12(1704)T72
R AR I AR 120 22N

(5.46) —log Fn(y,z) =



42 JOSEPH G. CONLON AND MOHAR GUHA

We change the variable z of integration in (5.45) to 2’ where

T
(5.47) Z=z+ / b(&,s)ds — €.

tN—1

From (5.46) we see that

201 _ o T 2
(5.48) —log Fy(y,2) < Ad-o) T {y—l—/ b(f,s)ds—f} + 2"

N
Qe 2 N1

9N | 2N 1200 22N -

3A2(1—a) T [ATgr A2(1—a) T?
+
ae 2N

Using the variable 2’ of (5.47) and (5.48) we may argue as in Lemma 5.2 that (5.44)
holds for ¢t = tx_1 with constant Cy_; = 5Cn /8 + K for some universal constant
K, where Cy is the constant in (5.44) when ¢ = ty. Thus we have established
(5.43) provided we can show that limy_ ., 5¥Cn/8Y =0.

As in Lemma 5.2 we shall complete the proof of (5.43) by showing that it holds
with a constant C' = C(AT') which diverges logarithmically as 7' — 0. To see this
we observe as in (5.45) that

(5.49)
Y+ f b(&,8)ds — € — z}
, 0 T 11—« >/ { 0 F ,Z
Cs Wi oA w2
T l—«o
G<z+§— b(&, s)ds, & T — A, T) dz,
T-A
where as in (5.48) we may take F(y, z) to be given by
2
A2 1— T
(5.50) —logF(y,z2) = %T {y+/ b(&, s)ds §} + 22
0
201 _ 2(1 —
L34 20) g AU e
12c
Let F(-,-) be the function defined from (1.11). Then the function
v(z,t) =G(z+ F(&t), & ¢, T), t<T,
satisfies the terminal value problem
v v e 0%
(5.51) 0 = il [b(z + F(&,t),t) — b(F(&,1), )}82 +5 59 t<T z€R
0(z=¢ = tllH%U(Z t), zeR.

From (5.51) we see that we may proceed now exactly as in Lemma 5.2 by replacing
the Green’s function on the RHS of (5.49) by the solution to (5.51) on the interval
|z| < n with Dirichlet boundary conditions on |z| = 7. Using the fact that

F(E 1) — (€~ / b(&, s)ds}| < CLA(T - t)2l¢],
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for some universal constant C, we conclude that the inequality (5.43) holds. The
proof of the upper bound (5.42) on the Green’s function is obtained in a similar
way, following the argument of Lemma 5.2. (]

Corollary 5.1. Suppose b(-,-) satisfies (1.1) and b(0,-) = 0. Then there exist
positive universal constants 1, Cs,v3, Cy,v4 such that (5.4) holds provided AT <
and § =T/2.

Proof. To show the first inequality in (5.4) we consider

P (Y(T/2) < Csy/2 | Y-(0) =y, Yo(T) =0)
= G(y,0,0,7)~! /Cw/z d¢ G(y,£,0,T/2) G(£,0,T/2,T).

— 00
It is easy to see now by using Lemma 5.2 how to bound G(y,0,0,T) from below
and G(&,0,T/2,T) from above. Using also Lemma 5.3 to bound G(y, £, 0,7T/2) from
above, we conclude that the first inequality in (5.4) holds for § = T'/2 provided n > 0
is sufficiently small. To show the second inequality of (5.4) we write

P (Yo(T/2) > Cyy/2 | Yo(0) =y, Yo(T) =0)

— G(y,0,0,T)" /C 0.1/ GE0.T/2.T),
4Y

and argue as in the previous paragraph. (I

In order to show that (5.4) continues to hold when 6 /T << 1/2 we need to obtain
some further estimates on Green’s functions. Towards that goal we strengthen
Corollary 5.1 as follows:

Lemma 5.4. Suppose b(-,-) satisfies (1.1) and b(0,-) = 0. Then there exist positive
ungversal constants n, C1,Cy such that if AT <n,

550 P ( sw V(9> 0| Ye0) =y VoT) =0) < exp[-Cip?/2:T].

0<s<T
provided |p| > Cs [|y| + \/€T} .

Proof. We do a dyadic decomposition of the interval 0 < s < T. Thus let S,,,n =
0,1,2,...,bedefined by S, = {j7/2" : 0 < j < 2"}. Tt is evident from the continuity
of Y(-) that

6559 P (s V)] > p | Y0 =5, Ye(T) =0) <

Sop( s P> a1, s V9] < plin") | Y0 =5, YD) =0),

n—1 S€ESR—Sn—-1 SES, -1
provided u € (0,1) satisfies p(1 — ) > |y|. Observe next that
(5.54)

P( sup  |Ye(s)| > p(1 = p" ™), sup [Ya(s)] < p(1—p") | Ye(0) =y, Yo(T) = 0) ;
SES,—Sn—_1 s€ES,_1

< Y P([Ye(s) = Ye(s+T/2™)| > pp™ (1 — ) | Yz(0) =y, Yo(T) =0).
s€S,—Sn—1
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The probability in the sum on the RHS of (5.54) can be expressed in terms of the
Green’s function (1.4) as follows:

(5.55) P ([Ya(s) — Ya(s + T/2")| > pu"(1 - ) | Ya(0) = 3, Yo(T) = 0) =
G(4.0,0,T)" / / de d¢ Gy, €,0,5)H (1€ — | — pu(1 — )

G(&,¢,s,s +T/2N) G(¢,0,5 +T/2",T),

where H(z), z € R, is the Heaviside function. We may estimate the integral on the
RHS of (5.55) by using Lemma 5.2 and Lemma 5.3. We first consider the integral
with respect to £ in (5.55) for a fixed £ € R. From Lemma 5.3 we have that

(5.56)

n ; {y+f0 dS _5}2 _
G(y,€,0,5) G(&. ¢, 5,5+T/2") < ome /oI P 255 (1-CAs)
C(As)*¢? {6+ [T (¢, 8)ds' — ¢} (AT /2y i
O As— 573 (I=CAT/2" )+ — o I C+CAT/2 } .

Setting z =y + [ b(¢,s')ds’ — ¢ we see from (5.56) that

(5.57) G(y,&,0,s) G(&,¢, 8,8 +T/2") <

o [ A2 (Ce,
2me\/sT /2" P 2es 2€T/2“ e

for some universal constant C. Integrating the RHS of (5.57) over the region |{—(| >
pu™ (1 — p) we conclude that

[(C £)? +22+C2]+CAT],

o) [ e Gy £,0,8) H (16— ¢| — (1 — w)) G(E, s + T/2") <

2,.2n 2 2
P (1 — p) 1 _ % 172CAT 7A 2 2
eXp[ 4eT)2n } Somern P9 2 o {F+Cp+0AT)

where 7, =T/2" + s/2 — 2C AsT/2". Hence if we use the inequalities
(y = O)*[1 — As] — AsC* < 2% < (y — ()?[1 + As] + 245(?,

which are valid for AT < 1, and substitute the RHS of (5.58) into the RHS of
(5.55), we may conclude from Lemma 5.2 that the LHS of (5.55) is bounded by a
Gaussian integral in (. Evaluating this integral we have then that

(5.59) P (|[Ya(s) = Ye(s +T/2")| > pp™(1 — ) | Y2(0) =y, Yo(T) = 0) <
V2 p2u2"(1 —p)? y? CAy?
71 _
G 0,01 o gz P [ wr aemiaey e oA

for some universal constant C. Choosing now g in (5.59) to satisfy 1/v/2 < p < 1
and using the lower bound for G(y,0,0,7T) in Lemma 5.2 we conclude from (5.59)
that

(5.60) P ([Yo(s) = Ye(s +T/2")| > pu" (1 — p) | Yo(0) =y, Yo(T) = 0) <

2,2 2n
pept(l—p) .
_— fp> + VeT
exp[ 8T /2n } it o= Colly T}
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provided Cj is a sufficiently large universal constant. Hence (5.53), (5.54) imply
that

660 P (s V)] > p | Y00 =5, Ye(T) =0) <

0<s<T
00 P22 (1 — ) C1p?
o1 P ( < oen |1
; eXp[ ser/on | =P | Teer |

for some universal constant C; > 0. O

To prove (5.4) under the assumptions (1.4) and b(0,-) = 0 we actually need
versions of Lemma 5.3 and Lemma 5.4 which hold in the situation when b(0, -) # 0.
A slight modification of the proof of Lemma 5.3 yields:

Corollary 5.2. Suppose b(-,-) satisfies (1.1). Then there are universal constants
1, C > 0 such that the Green’s function G defined by (1.4) satisfies the inequalities
(5.62)

{y+ [ bE,s)ds — €} C(AT)*¢2 cA [ (T 2
G(y,£,0,T) < g | wrarcar T e CAT + — /0 160, s)|ds & |,
1 {y+ J, b€ s)ds — €}
(5.63) G(y,&£,0,T) > o exp | — 5T (1+CAT)
2
C(AT)3¢? cA | [T

provided AT <.
We can also slightly modify the proof of Lemma 5.4 to obtain the following;:
Corollary 5.3. Suppose b(-,-) satisfies (1.1). Then for any y € R which satisfies
T
(5.64) |+ VT > / 15(0, 5)|ds.
0

the result of Lemma 5.4 holds.

Proof. We simply use the Green’s functions bounds of Corollary 5.2 in place of the
bounds of Lemma 5.3 in the argument of Lemma 5.4. O

Lemma 5.5. Suppose b(-,-) satisfies (1.1) and b(0,-) = 0. For A\ € R define by(-,-)
by ba(y,s) = by + As,s), y € R, 0 < s <T, and let Gy be the Green’s function
(1.4) associated with by. Then there are universal constants n,C > 0 such that the
following inequalities hold provided AT < n:

GA(y,0,0,T) CINAT 9
5.65 = < _— MNAT CAT
(5.65) Goly. 0.0.7) =P |~ {lyl + INAT?} + :
GA(y,0,0,T) C|AJAT )
5.66 > — MAT* — CAT| .
(5.66) oty 0.0.7) = P |77 vl + AIAT?
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Proof. Consider first the situation when |y| < |[A\|[AT?. The result follows from
Corollary 5.2 on using the inequality fOT |62 (0, 5)|ds < |A|AT?/2, whence we need
only prove (5.65), (5.66) for |y| > |\|AT?. Observe now that if |y| = O(v/eT ) then
INAT|y|/e = O(y*/eT) = O(1). Hence we might expect to prove (5.65), (5.66)
for |y| = O(VeT ) by perturbation methods. To implement this we consider the
function uy(z,t), z € R, t < T, defined by

T
(5.67) us(z1) = Gy (z— / bA(0, 5)ds, 0, 1, T).

Evidently u) is a solution to the terminal value problem

- Oun € O%uy
T oEDGE S T

th—{ri}“ ux(z,t) = 0(2),

(9’LL)\

(5.68) 5

=0, zeR, t<T,

where lNJA(z, t) is given by the formula

T
(5.69) Ba(2,8) = by (z— / b (0, 5) ds, t) N

Following the argument of Lemma 3.4 we see that the terminal value problem
(5.68) on the interval |z| < n with Dirichlet boundary conditions can be solved by
perturbation expansion for times 0 < ¢ < T provided sup{|bx(z,t)| : |z| < 1,0 <
t < TY(T/e)'/? << 1. Assuming now that y,7 satisfy the inequalities

(5.70) INAT? < [y| < VET/(AT)’, 0= VeT /(AT)*,

it is clear that the perturbation expansion converges provided § < 1/2 and AT
is smaller than some constant depending only on ¢. In fact, letting G(z,t),z €
R, t > 0, be the probability density function for the normal variable with mean 0
and variance t we have that

(5.71)
T n ~
uA(z,t)—G(z,s(Tft))Jr/t ds[ d¢ G(z—¢,e(s—1)) bx(f,s)ng(&e(T*SD
< C(AT)* ™ G(z, 2¢(T —t)),

provided |z| < VeT/(AT)?. Here AT needs to be smaller than some constant
depending only on §, and the constant C' on the RHS of (5.71) also depends on §.
It is easy to see that

62 | [ de Gl -gss—0) iales) 5 GleoT—9)|
< % /_O; de Gz — €, e(s — t))g(T{S) 362 + A2N2T(T — 5)°] G(&,e(T — 5))
1 (ABN2T2(T — s 3A(T — s)z2  3A(s—

:2{ L E((T_t))Q T(_tt)}G(z,s(T—t)).

Substituting the inequality (5.72) into (5.71) we conclude that uy(z,t) satisfies the
inequalities

(5.73) ur(z,t) < G(z,e(T —t)) + C(AT)* G (z,2e(T — t))+
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3y272 2 2
{A A T4(€T D 3115 . 3A(1; t)}G(z,g(T—t)),
(5.74)  ur(z,t) > G(z,e(T —t)) — C(AT)>4 G(z,2e(T —t))—

3\272 2 2
{A A T4(€T D 3115 . 3A(1; t)}G(w(T_t))_

We have shown that (5.73), (5.74) holds for the function wy(z,t) which satisfies
(5.68) on the intervals |z| < n, 0 <t < T, and with Dirichlet boundary conditions
on |z| = n. It follows that the function wy(z,t) defined by (5.67), also satisfies
(5.74) for |z| < VeT/(AT)?, 0 < t < T. From the argument of Lemma 5.2 we
see that the upper bound (5.73) continues to hold for the function (5.67) when
2| < VT /(AT)?.

The inequalities (5.65), (5.66) can be deduced from (5.73) ,(5.74) in the case
when 7 lies in the interval |\ AT? < |y| < Kv/eT, where K > 1 is a constant. The
constant C' now in (5.65), (5.66) depends on K, and AT must be chosen sufficiently
small depending only on K. To obtain the lower bound (5.66) we set 6 = 1/8 and
z2=19y+ fOT bx(0,s)ds, t =0 in (5.74). Thus we obtain the inequality
(5.75)

T N(AT)*T >
Gi(y,0,0,7) > G <y+/ b (0, s) ds, 5T> exp [C{(g) + AT X H
0

for some universal constant C. Lemma 5.2 implies that Go(y,0,0,T) satisfies the
upper bound

(5.76) Go(y,0,0,T) < Gy, eT) exp [CAT(l n K2)}

for some universal constant C. Now (5.66) follows by estimating from below the
ratio of the RHS of (5.75) to (5.76). The upper bound (5.65) can be similarly
obtained from (5.73) and Lemma 5.2.

To complete the proof of the lemma we use induction as we did in Lemma 5.2.
We consider the lower bound (5.66). Observe first that the previous arguments
imply that the lower bound
Ga(y,0,t,T) —CI\AT
D > exp | ————
Go(y, O, t, T)
holds for 0 < ¢ < T if y lies in one of the regions |y| < |N\AT(T—t) or |\NAT(T—t) <
lyl < K+/e(T —t). For the former region the constant C in (5.77) can be chosen in
a universal way provided AT is smaller than some universal constant. For the latter
region C' depends on K and AT, and must be taken sufficiently small depending
only on K.

Suppose now we have proved (5.77) for T —t = T/2N, y € R, where N is
some integer N > 1 with constant C = Cy. We show that (5.77) also holds for
T —t=T/2N"1 y € R, with a constant Cy_; given in terms of Cy. To do this
we use the inequality

(5.77) {ly| + INAT(T —¢)} — CA(T —t)

(5.78) Ga(y,0,tn_1,T)' "% >
(1—a) A2N2T3
20e 2N

(oo}
/ GO(y727tN717tN)eXp - G)\ (Z7O7tN7T)17a dZ7
—o0
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where T — t,, = T/2™, n =0,1,2..., 0 < a < 1. The inequality (5.78) is derived
similarly to (5.18).

We assume y in (5.78) satisfies |y| > max || NAT(T —tn—1), K+/e(T — tN)} and
set o = [A|AT?/|y|2Y < 1/2. Then, on substituting (5.77) for ¢t = ¢ into (5.78)
we obtain the inequality

G)\(ya 0; tN—17T)1_a

5.79 >
(5.79) Go(y,0,tn—1, T)t 7> —
(1~ @NATly| ~Cx (1 = )NPATPT _Cn(1L — @) AT .
€xp |:_ % €2N - 2N Go(yaovthlvT)
Cn (1 — Q)| ATV, (¢
B{ GVt 0.t 7y exp | - YO RIEEREIN [y ) =y, vy o},

where Yz (+) is the solution to (1.5). From Lemma 5.2 we have that

Go(yaovtN—laT) > ex _110 9 _ y2 _ CAT
Go(2,0,tn,T) = P | 727987 2e7/2N T oN |0
for some universal constant C. Since we are assuming that |y| > K\/e(T — ty),
we conclude from (5.80) that for sufficiently large K,
ty—1,T)" AAT
Go(y,0,tn-1,T) > exp _| |AT |y|
GO(Z70atNaT)a

To get a lower bound for the RHS of (5.79) we are therefore left to estimate from
below the expectation

52 B {op |- U Py ) =y, viir) o}

(5.80) €R,

(5.81)

}, z€R.
€

€
Cn(1— a)|>\|ATE{
5

> e | Yato)| | Yetros) =3 ve(T) =0}

We estimate the expectation on the RHS of (5.82) by

(5.83) E[|Ye(tn)| | Ye(tn-1) =y, Yo(T) =0] <

B [ o P (el - w2 > | Yeltwo) =) =0).
We have now that
(5.84) P (|Ye(tn) —y/2| > p| Ye(tn-1) =y, Yo(T) =0)

oo

= G(y707tN—1aT)_1/ d§ G(y7£atN—17tN) H(|£_y/2| _p) G(§7OatN7T)7

— 00

with H(-) being the Heaviside function. Now, arguing in the same way as we did
to obtain (5.60) we conclude from (5.84) that

(5.85) P (IYaltn) — /2l > p| Yalty—1) = y, Yo(T) = 0) <

exp |-+ A it > KAt
2eT /2N e |’ - ’

where C' and K are universal constants. Hence we have that
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Gso) [ o; dp P (V-(t) — /2] > p | Yaltn-1) =y, Yo(T) = 0)

< el y|? 2V 4 n C Ay?
————exp |—
~ |y|2N—2 P 2eT e |’

provided the constant Ky in (5.85) satisfies K > 4K,. Now (5.83) and (5.86)
imply that the expectation on the LHS of (5.83) is bounded by 4|y|/5. Hence
it follows from (5.79), (5.81), (5.82), that we can take Cy_; = 4Cn/5 + K; for
some universal constant K;. Thus in order to complete the proof of (5.66) we need
to show that Oy satisfies limy .o, 4" Cn/5" = 0. To do this we proceed as in
Lemma 5.2 by proving that (5.66) holds with a constant C' = C'(AT') which diverges
logarithmically in AT as AT — 0.

We have already observed that (5.66) holds for a universal constant C' if |y| <
IA|JAT? and for a constant C' depending only on K if [\|AT? < |y| < K+/T. Hence

we shall assume that |y| > max [|)\|AT2,K\/5T}. Analogously to (5.78) there is
the inequality

(5.87) Ga(y,0,0,7)'"* >
/ Go(y,2,0,T — A)exp [—

We set a = |\ AT?/2]y| in (5.87), whence 0 < a < 1/2 and the exponential on the
RHS of (5.87) can be absorbed into the RHS of (5.66). As in (5.67) we shall obtain
a perturbation expansion of Gy (z,0,T — A, T) by considering the function,

(5.88) ux(z,t) = Gx(z+¢a(t),0,t,T), where
¢/)\(t) b)\(<p)\(t)7 t), t<T, (p)\(T) =0.
Then uy(z,t) is a solution to the terminal value problem (5.68) but now with drift
ba(z,t) given by
(5.89) BA(Z,t) =bx(z + or(t),t) — bx(pa(t),t).

Since |by(z,t)| < A|z|, z € R, we may expand the solution of the Dirichlet problem
(5.68) by perturbation theory on the intervals |z| < n, T — A <t < T, provided
7, A satisfy

(5.90) n=KVeA, (An)*A =ve,

where K; >> 1 and v << 1. Thus if uy p(z,t) denotes the solution to this Dirichlet
problem we have as in (5.23) the inequality

% A2A2T3} Gy (2,0,T — A, T) ™ dz.

1 —z?
5.91 T—-A)> —
590 (T - 8) > o { =]
C S — Cu(p)? 2 2| <
3 €Xp 4 4(p)V"€xp 2(1+ p)A IR m,

where Cj3 is a universal constant, p > 0 can be arbitrary and Cy(p) is a constant
depending only on p. We choose now v, K1, A/T by

(5.92) K; = (AT)"“1 exp[ClAyQ/E], V2 = (AT)k"’ exp[—CgAyQ/E],
AT = (AT)Mr+he—lexp [7(01 + Cg)Ay2/€] ,
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where k1, ko, C1,Co > 0 and ki + ko > 1. Evidently the choice of K,v, A in (5.92)
is consistent with (5.90).

To estimate from below the LHS of (5.66) we use the inequality derived from
(5.87), (5.88),

1—a)|NAT
(593) G)\ (y’ Oa 07 T)lioé 2 €xXp |:_(Oé)|€|y|
nt+ex(T—A) —a
/ Go(y, 2,0, T — A) u,\,D(z—go,\(T—A), T—A) dz.
—n+ex(T—A)
If we substitute now the RHS of (5.91) into the RHS of (5.93) we obtain an integral
which we would like to show is comparable to Go(y,0,0,T)!~%. To do this we write

(5.94) Go(y,0,0,T) = / Go(y, 2,0, T — A) Go(2,0,T — A, T) dz,

and use perturbation analysis to show that Gy(z,0,T — A, T) is comparable to the
RHS of (5.91). Using the upper bound (5.35) on Go(z,0,7 — A, T) in (5.94) we
obtain an upper bound on Go(y,0,0,7) which has the same form as the integral
on the RHS of (5.93).

We compare the principal terms of these integrals. Thus for the integral on the
RHS of (5.93) the principal term is

(5.95)
2 sA)a/Q/MmTA) Goly 2,0, T—A)—— o [ (1-a)
U o\Yy, =z, U, L — Xp | — -«
—ntea(T—A) V2reA

For the integral on the RHS of (5.94) the principal term is

{z—oa(T —A)}?

2e A dz.

& 1 —2z2
(5.96) [00 Go(y,2,0,T — A) 5A exp |:2<€A] dz.

Observe now that we may assume | (T — A)| < 1/2. To see this we first note
from (5.88) that |px(T — A)| < CA|MTA for some universal constant C, whence
it follows that | (T — A)| < Cly|A/T. Thus from (5.90) the inequality will follow
if we can show that 2C|y| < K1(T/A)Y/? /T, which is equivalent to showing that
4C?%|y|?/eT < K}(T/A). Choosing K1, T/A as in (5.92) we see that this inequality
holds provided 3k; + k2 > 2 and AT is sufficiently small, depending only on Cy, Cs.
Similarly we have that

AT =AP | alr(T - 8) _ CANPTA | CrANT
2e A eA 2¢ €
CANP T | CKjy (A)”Z _ CPAP T
2 VeT T 2
provided the constants in (5.92) satisfy ko > k1 + 5, Co > C;. In that case the
constant C’ in (5.97) depends only on ki, ke, C1,Ce. We conclude then that the

expression in (5.95) is bounded below by
(5.98)
2

C|A? A2 T3 ] n/2 1 z
2meN)* % exp |- = CAT / Goly,z,0,T—A exp | ———| dz,
( ) p c /2 O(y )m p 2eA

for a constant C' depending only on the constants in (5.92)

(5.97)

+ C'AT,
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Next we bound the integral in (5.98) from below by a constant times the integral
in (5.96). To show this we use Lemma 5.3. Thus the Green’s function Gy(y, z,0, t)
is bounded above and below by the inequalities
1 (y—2)? , CA H }
exp | — + 22 (2 4+ 22) + CAt|
\27et P [ ¢t € (v )
1 [ (y—2)2 CA
exp |[———— — —
V2met 2¢et €

Substituting the lower bound of (5.99) into (5.96) we conclude that

(5.99) Go(y, 2,0,t)

IN

GO(y7 Z, 07 t) > (y2 + 22) - OAt:| :

o] 2
(5.100) / Go(y,2,0,T — A) ! exp [ : } dz >

V2meA C2A
1 y? cA ,
Y XA 2 car
mm’{ 2 = V¢ ]

for some universal constant C. Using the upper bound in (5.99) we also have that

1 22
5.101 Go(y,z,0,T — A e ——— | dz
(5.101) /lw oy ) xp[ M}

2 e e} 2
n 1 z
<exp|— T A) ——exp |-
=P [ IGEA} /m Golw =0, ) Vomen O [ 45A] dz
L { "oy

CA , 1
716€A725—T+7y +CAT+§ 10g2:|,

< X
© V2meT P
for some universal constant C'. Observe that in (5.101) we are assuming that the
constants in (5.92) satisfy k1 + ko > 2 so that A/T < AT. Now taking n to be
given by (5.90), (5.92), we conclude from (5.100), (5.101) that

! e [ 2 } dz
D | —
V2meA P 2eA

1 oo 1 22
< . — T-A —= | d=.
= [ 32(AT)2k1] /—oo Coly. =0, ) V2meA P [ 2€A} dz

It follows that (5.95) is bounded below by

(5.102) / Goly,z,0,T — A)
|21>n/2

(V12 A273
(5.103) (2meA)*/Zexp {—CA{_:AT

- car|

1 o0 1 52
1= exp |~ oo ires T—A N
{ P [ 32(AT)2’“] } /_oo Coly.2.0.T = 4) T oxp [ 25A} dz

The integral in (5.103) is the principle term in the expression (5.94) for Go(y,0,0,T).
Assuming then that we can replace the integral by Go(y,0,0,T) and that we take
into account only the principal term for uy p in (5.93), we have from (5.103) that
the inequality

(5.104) Ga(y,0,0,7)1% > [(2men) 12 Go(y,0,0,T)r

C(1— a)|\AT

exp {— {lyl + \AT?} — (1 - a)AT} Go(y,0,0,T)' ™
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holds for some universal constant C. By Lemma 5.2 we have that
(5.105)
ay?

[(2728)172 Go(y,0,0,7)] " = exp [—;‘ log(T/A) = 52 (1+ CAT) - aCAT]
for some universal constant C. Taking « as before to be given by a = |\ AT?/2|y| <
1/2 and using the fact that |y| > KveT we see from (5.92), (5.105) that
(5.106)

[(27T€A)1/2 Gol(y, 0, O,T)ré > exp {—(1 —a)CAT {|/\€y| log(AT)| + 1}] ,

where the constant C' depends only on the constants Cy,Cs, ki, ko of (5.92) and
also K. Combining then (5.104), (5.106) we have obtained a lower bound of the
form (5.66) with a constant C' = C(AT) = C’|log(AT)|.

To complete the proof of (5.66) with a constant C' = C(AT) = C’|log(AT)| we
need to estimate the effect of the error terms in (5.35), (5.91). From (5.35) the
main error term in (5.94) is given by

222

1
= 4
V2reA exp{ 25(1+P)A} “

where v is given by (5.92). It is evident that by choosing ko, Cy sufficiently large
in a universal way in (5.92) that the integral of (5.107) is bounded above by AT
times the integral on the LHS of (5.100). We can similarly estimate the error terms
in (5.93) of uy,p. If we use the inequality (5.26) then from (5.91) we obtain a term
like (5.107). Hence (5.66) with a constant C' = C'(AT) = C'|log(AT)| holds. By
previous argument it follows then that (5.66) holds with some universal constant
C provided AT < 7, where 1 may also be chosen in a universal way.

The completion of the proof of the upper bound (5.65) can be carried out in a
similar way to the method we used to prove the lower bound. O

(5.107) / Go(y, 2,0, T — A) Cy(p)v*/?

Lemma 5.6. Suppose b(-,-) satisfies (1.1) and b(0,-) = 0. If G is the Green’s
function defined by (1.4), then there are universal constants n,C > 0 such that G
satisfies the inequalities,

G(y,&,0,T 2
G(y,£,0,7) ? &y

for all y,& € R, provided AT <.

Proof. The result follows from Lemma 5.3 if |y| < |£], so we shall assume that
€] < |y|. Letting w(z,t) = G(2,&,t,T), t < T, it follows from (1.2) that the
function wy(z,t) defined by

(5.110) wx(z,t) = exp {—/\EZ + % (T —t)| w(z+ A, 1)

is the solution to the terminal value problem

(5.111) 0 = I gy Iy

E 8210)\ A
ot 0z 2 0z2

+ = bz + A, t)wy,
€
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. Az
th_,n:lrwA(z’t) = exp [—6} 0(z+ A\T —¢).

Taking A = ¢/T in (5.111) we see from Lemma 5.5 that
(5.112)

wx(y,0) = Gi(y,0,0,T)E

)

exp{ /b 2 a(8) + As, 5) s}‘YE,A(O):y, You(T) =0

where Y. 5 () is the solution to (1.4) with the drift by of Lemma 5.5 in place of b.
Since

T
| s0.9)1ds < a2 < el <1l
0

if AT <2, we can use Corollary 5.3 to estimate the expectation in (5.112). To see
this first observe that the expectation is bounded above by
(5.113)

A2AT? AT\
exp E |exp AT sup [Yz a(s) ‘Ys,\ 0) =y, Yoa(T)=0].
2¢e € 0<s<T

To bound the expectation in (5.113) we use the identity,
1

(5.114) E[eﬂ =1 +/ E[Xekx}dk
0

for any random variable X. From (5.52) we have that

(5.115) FE [ sup |Yza(s)|exp {r sup |Yea(s } ’ Yoa(0) =y, You(T) = 0}
0<s<T 0<s<T

< G [lyl + VET| exp {rCs [Iy) + VET |}

nz::o(n +1)exp {nTCg [|y| + \/?T} — 01C2n? [|y\ n @] /25T} :

for any r > 0. Assuming r < AT|)\|/e and using the fact that [A| < |y|/T, we
see that there is an integer ng > 1, depending only on AT and Cy,C5, such that
2r < C1Conolly| + VeT]/2eT. Hence (5.115) implies that there is a constant C
depending only on AT such that

(5.116) E[ sup IYE,A(S)eXp{T sup |Yza(s) }‘}/8/\ 0) =y, Yeu(T ):o}
0<s<T 0<s<T

< C{|y\+\/€7T} exp{Cr{|y|+\/57T}}, 0<r<AT|)\/e.

It follow now from (5.116), on using the inequality 2v/eT < £/|A| + |A|T, that there
is a constant C' depending only on AT such that

(5.117) E

T
exp{j / b(Ya,A(s)vLA&S)dS} | Yo(0) = 9. Yer(1) = 0
0
CINAT
o | SR

< ex lyl + \)\|T} + CAT] .

Substituting (5.117) into (5.112) and using inequality (5.65) of Lemma 5.5, we con-
clude that upper bound (5.108) holds. The lower bound (5.109) can be established
by a similar argument. [
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Proof of Theorem 1.2. Since in Corollary 5.1 we already proved the result for § ~
T /2 we shall be concerned here with the situation where §/T << 1. We have now
with y < 0, the identity

(5.118) P (Y.(T = 6) < Cady/T | Ya(0) =y, Yo(T) =0) =

Cséy/T
G(y,o,o,T)—l/ d¢ G(y,£,0,T —6) G(£,0,T — 4, T).
There is also the identity,
(5.119) G.0.0.7) = [ d Gly.£0.T~8) G(E.0.7 - 0.7),

From Lemma 5.2 and Lemma 5.6 one obtains from (5.119) the inequality,

. oo _ 2
(5.120) G(y,o,o,T)zw/ d exp [255

V2med oo (T —9)
—& &y CAEZ  CAlgy|
@—Fe(Tfé) e e _CAT}

for some universal constant C. Now let X be the normal variable with mean dy/T
and variance €d(T — 0)/T. Then (5.120) is equivalent to

(5.121)
T—5\"? 51y —CAX?  CAy|X|
> o) [ —= A - ,
G(y,0,0,T) > G(y,0,0,T—0) ( T > exp [QET(T =3 C’AT} E {exp{ 5 E H
Applying Jensen’s inequality in (5.121) and then the Schwarz inequality, we con-
clude that
(5.122)
T-65\"? 592 C Asy? 5\ ?
T) > A % cAr— —ca(?l
G(y,0,0,T) > G(y,0,0,T-0) ( T ) P | ST =) C 7~ C <5> vl
for some universal constant C'. We similarly have from Lemma 5.2 and Lemma 5.6
that
Cs6y/T
T—5\"? 51y CAX?  CAy|X| Cs6y
G(y,0,0,chS) (T> exp [W—(S)+CAT:|E [exp{ - + - } ) X < T:| s

for some universal constant C'. Assuming now that C3 > 1, we have then

CAX?  CAly|X| Csdy (C3 —1)5y*
) : 27 < =) %
(5.124) E[exp{ 6 + - } ; X < T ] _\/iexp[ =TT —0) }

AX? Aly| X AX? Aly| X
E[exp{ce 1+C |g| 1}+exp{c)3 I—C |g‘ 1}],

where X is the Gaussian variable with mean dy /T and variance 2¢6(T—3)/T. The
expectation on the RHS of (5.124) can be explicitly computed. Hence we conclude
that

2
129) 8oy {CAXT, CAWINIY o Coti]
€ €
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1)25,2 2
22 exp [_(03 1)2dy +CA6y

A
4eT(T - 90) eT oA,

for some universal constant C. The first inequality of (5.4) follows from (5.118) —
(5.125) upon taking C5 large enough and using the fact that y < —T\/e/é.
To prove the second inequality of (5.4) we consider the identity,

1
(5.126) P <Y5(T —9) > C4Ty | Y.(0) =y, Yo(T) = 0) =
G(y,0,0,7)~" / d¢ G(y,£,0,T —8) G(£,0,T — 6, 7).
Caby/T
We now choose Cy to satisfy 0 < Cy < 1 and proceed as previously. O

6. REPRESENTATION FORMULA FOR THE STOCHASTIC COST FUNCTION

Corollary 4.1 suggests that we may take the limit § — 0 in (3.55) by setting
%il’l’(l) Elq-(z,y-(T — 0),T — §)] = 0, but it does not prove it. In fact Lemma 3.1

shows that g.(z,y-(T — 9),T — J) becomes arbitrarily large for y close to z with
y < x as d — 0. To deal with this problem we need to obtain a sharper lower bound
on —0q.(z,y,t)/dy than in (4.2), in particular one that does not decay as y — —oc.
In the linear approximation b(y,s) = A(s)y, one can express —dq.(0,y,0)/dy for
y < 0 by the formula,

Gy 000 =AM {A(T)Qf] /q)( A(T)y )

Oy - /2ne0? (T) 2¢02(T) eo?(T)

where @ is the cumulative distribution function for the standard normal variable
and A(T), o*(T) are given by (5.1). Hence provided AT < 1 we see from (4.12)
that

2
—%(ZE (0,9,0) ~ —A(T) Y y/\/aT << —1.

(6.2) T

Comparing (6.2) and (4.2), we see that the exponential factor in (4.2) may be
removable in the case of nonlinear b(-,-). We prove this in the following;:

Lemma 6.1. Suppose b(-,-) satisfies (1.1) and let g-(x,y,t), z,y € R, t < T, be
defined by (1.7). Then there are universal constants C,n > 0 such that

7aq€(xv Y, t) > F(:Ev t) -y ech(Tft)
Oy - Tt ’

provided 0 <t < T, A(T—t) <n, y < F(z,t), where F(x,t) is the function defined
from (1.11).

(6.3)

Proof. From (4.17) we see that

(6.4) _w S o~ AT-t)__E G(y,x,t,T)
' dy - [ Gy, z,t,T) dz

Let us assume first that b(xz,s) = 0, 0 < s < T, whence F(z,t) =z, 0 <t < T.
From Lemma 5.6 we see that provided A(T —t) < n and 7 is chosen sufficiently



56 JOSEPH G. CONLON AND MOHAR GUHA

small,

(6.5)

fzoo Gy, z,t,T)dz 1 [ & —y) (T -t){1+CA(T - t)}
eGly,z,t,T) = € /0 dg exp {_E(T—t){l—i—CA(T—t)} N z—y

where C' is a universal constant. The inequality (6.3) follows now from (6.4), (6.5).
To deal with the more general case we make the change of variable as in (5.88),
(5.89), and proceed as above. O

Theorem 6.1. Suppose b(-,-) satisfies (1.1) and q.(z,y,t), z,y € R, t < T,
is defined by (1.7). If M\.(-,-) is the optimal controller defined by (1.16) then for
0<t<T,z,y €R, the functions q-(z,y,t), 0g:(z,y,t)/0x and dq-(z,y,t)/y
have the representations,

1 T 2
(6.6) qs(m,y,w:E{g | el 9) = b (3). ) dsyyé.(t):y}

0qe(x,y,t)
(67) G =

1 4 b
e B {/ L (1= 952 0:060,9)] D005 9) = B9, 9] s | ) = y} 7

0q:(x,y,t)
(6.8)

T
— E{/ 1 = 050 02060:5)] P51 ) = (61 ] s | 20 y}
where y:(s), t < s < T, is the solution to the SDE (1.14) with initial condition

Ye(t) = y.

Proof. From (3.55) the representation (6.6) for g.(z,y,t) holds provided we can
show that

(6.9) lim B [ge (2, y= (T = ), T = 8) | ye(t) = y] = 0.

In view of Lemma 3.1 and Corollary 4.1, (6.9) will follow if we can show that for
M >1,

(6.10)
limsup (@, ye(T = 6),T = 8) 5 yo(T = 8) <& — M3 | ye(t) = y| < e(a),

where the constant c(M) satisfies limpr.oo ¢(M) = 0. To prove (6.10) we use
Lemma 6.1. Thus let tg < T be such that CA(T — ty) < 1/10, where C is the
constant in (6.3). If in addition A(T —tg) < 1/10 then y.(s) satisfies the differential
inequality,

(6.11) dy.(s) > [3 vl o |b(x,s’)|} ds + /e dW (s),

4 T—s s<s'<T

provided tg < s < T, and y.(s) < z. If t > to then we see from (6.11), by following
the argument of Lemma 4.2, that for §/(T —t) < 1/K,

(6.12) P(ye(T =0) <z —p|y(t) =y) <exp[—p°/20e0],
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provided p > K+/ed and the constant K depends only on z,y. Evidently (6.10)
follows from (6.12) on using Lemma 3.1. If ¢ < ¢ then one can argue as in Theorem
4.1 equation (4.37) that the probability of y.(ty) conditioned on y.(t) = y being
very negative is extremely small. Then one applies (6.11) for ¢y < s < T to show
that (6.10) holds in this case also. We have obtained the representation (6.6).

To prove (6.7) we proceed in a similar way to how we obtained the analogous
representation (2.29) in the classical case. Thus let y.(s),t < s < T, with y.(t) =y
be as before and for Ay € R define y. a4(s) by

(6.13) Ye,Ay(S) = ye(s) + (T — s)Ay/(T —t), t<s<T,
so that y. Ay (t) = y + Ay and y. a,(s) satisfies the SDE
(6.14)

dYe,ay(8) = [Ae (ye,ay(s) — (T = s)Ay/(T — t),8) — Ay/(T — t)] ds+e dW (s), t <s <T.
Then by Lemma 3.2 there is the inequality

(6.15) ge(z,y + Ay, t) < E{qe(,y-(T = 8) + 6Ay/(T —t),T —6) | y=(t) =y}

T-6
JrE{%/t Ae(ye(s),8) — Ay /(T —t) = b(ye(s) + (T — 5)Ay /(T — 1), 3)}2 ds | ye(t) = y} )

where we have used the fact that (6.13) gives the solution to (6.14). Since by the
argument we used to establish (6.6) one has that

lim B {q.(w,ye(T = 0) + 6Ay/(T = 1),T = 6) | ye(t) = y} =0,
we conclude from (6.15) that

(6.16) qo(z,y+ Ay,t) <

T
E{%/t [)\s(ys(s)’s) - Ay/(T - t) - b(ys(s) + (T — S)Ay/(T — t),S)]2dS ’ ye(t) = y}

To see that the RHS of (6.16) is finite, it will be sufficient to show that

T
(6.17) E {/t )‘s(ys(s)as)z ds | ye(t) = y} < Q.

Observe that the inequality (6.17) does not follow in a straightforward way from
the fact that y.(s) is a solution to (1.14), where A.(:,-) is given by (1.16) and
—0ge(z,y,t) /0y satisfies (6.3). In fact for Z.(s) the solution to (4.28), it is easy to

see that
' ZE(S)2 = =0

for all © > 0. To prove (6.17) we use the fact that the LHS of (6.6) is finite. Hence
(6.17) follows if we can show that

T
(6.18) E {/t ye(s)? ds | y-(t) = y} < 0.

It is easy to see that (6.18) is a consequence of the fact that A (y,s) > b(y,s), y €
R, t <s < T, and Lemma 3.4. Here we use the fact that Lemma 3.4 implies that
for any n > 0, Ac(y, s) is uniformly Lipschitz in y in any region y > x+n, t < s < T.
Having established (6.17), we obtain from (6.6), (6.16) the inequality



58 JOSEPH G. CONLON AND MOHAR GUHA

(6.19) limsup[g(z,y + Ay, t) — ge(x,y,t)] /Ay <
Ay—0

T
Tl—tE{/t {lJr(Ts)gZ(ys(s),s) Ae(ye(s),s) — b(ye(s),s)] ds | ys(t)y}.

Next in analogy to (6.16) we have that
(6.20) ge(z,y,t) <

1 T
B{5 [ Pelue().5) 4 Ay/(T — ) = buals) = (T = )89/ (T = ), ds | ye(t) = y+ )
t
Using now (6.6) with y replaced by y + Ay we conclude from (6.20) that
(6:21) liminf [ge(z,y + Ay, 1) = qe(2,y, 1)/ Ay >
y*)

T
Tl—tE{ /t {1 + (T — s)gZ(ys(S),S)} A (y=(s), s) — by=(s), 8)] ds | y=(t) = y} 7

provided we show that

(6.22) lim F
n—0

T
/t [Yem(s) = ye,0(s)] dS] =0,

(6.23) lim F
n—0

T
/t [Ac(Yen(8),8) = Ac(ye,0(s), 5)| d81 =0,

where y. ,(s), t < s < T, is the solution to (1.14) with initial condition y. ,(t) =
y + 1. To prove (6.22) we use the uniform Lipschitz continuity of A\.(z,s) in any
region z > zg, t < s < T —§, where § > 0, z9 € R can be arbitrary. Thus by
introducing a stopping time and using the fact that the probability of y. ,(s) being
large and negative is very small we see that

T-5
/ |Ye.n(8) — ye0(s)| ds| = 0.
t
Now (6.22) follows from (6.18), (6.24) using the fact that one can obtain a bound

in (6.18) which is uniform in 7 for small . To prove (6.23) first observe that (6.6)
implies that

T
(6.25) sup E {/t Ae(Ye,n(s),8)? ds} < o0,

(6.24) lim F
n—0

[n1<n0

for any 1o > 0. Thus it is sufficient to show that

(6.26) lim E

n—0

T—6
/t |Ac(Yem(s), 8) = Ac(ye,0(5), 5)] ds] =0

for any 6 > 0. For any zp € R we introduce a stopping time 7, (z9) = inf{s > ¢ :
Yen(s) = 2o}. From the uniform Lipschitz continuity of A.(z,s) in z > 2z, t <s <
T — 6, and (6.24) we have that

(T—=6)ATy(2z0)AT0(20)
6.27)  lim E /

n—0

' ‘)\E(yfﬂ’l(s)> S) - )‘s(ye,o(s)7 S)| dS] =0.
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The expectation in (6.26) exceeds the expectation in (6.27) by at most
(6.28)

2P(7y(20) ATo(20) <T —6) sup E
t<t' <T—§

T—-6
/t Ae(we(s), )] ds | ve(t') = =0

’

Since A:(z,8) > b(z,s), z € R, t < s < T, the probability in (6.28) is decaying
exponentially fast in zg as zp — —oo. In contrast the expectation in (6.28) is
increasing at most linearly in |zg| as 29 — —oo. This follows from the representation
(6.6) for ¢. and Lemma 3.1. Hence the expression in (6.28) converges to 0 as
20 — —o00, whence we conclude that (6.26) follows from (6.28). We have proved
(6.23). Now (6.7) follows from (6.19), (6.21). The proof of (6.8) is similar to the
proof of (6.7). O

Once we have the representations in Theorem 6.1 for ¢.(x,y,t) and its first
derivatives, the inequality (1.22) easily follows.

Corollary 6.1. Suppose the function b(-,-) satisfies the Lipschitz condition (1.1).
Then for x,y € R, t < T, the following inequalities hold:

0 1/2
(6.20) \ o (@ y,w' < [+ @-04|20@yn/c-0] "
x
Jq. 1/2
< — - .
S| < [ (0= 0] o0 /7 - 0]
Proof. This follows from Theorem 6.1 on using the representations (6.6), (6.7), (6.8)
and applying the Schwarz inequality in (6.7), (6.8). O

7. PROOF OF THEOREM 1.3

In order to prove convergence of first derivatives in z and y of the function
ge(z,y,t) defined by (1.7) to the corresponding derivatives of the function ¢(z,y, t)
defined by (1.10) as € — 0, it will generally be necessary to assume the concavity
in y of the function b(y,t) in (1.2). Recall however that ¢(z,y,t) = 0 if y >
F(z,t), where F(-,-) is the function defined from (1.11). Thus for y > F(z,t) the
derivatives of q(z,y,t) are 0. In this case it easily follows from Corollary 6.1 that
the derivatives in « or y of ¢.(x,y,t) converge to 0 as € — 0, without making any
further assumptions on the function b(:,-) beyond the Lipschitz condition (1.1).

Corollary 7.1. Suppose b(-,+) satisfies (1.1) and the function F(-,-) is defined from
(1.11). Then for 0 < e <1 there is a constant C(x,y,t,T) such that

(7.1)

0q. 0q. 1/4
< T
‘c’% (%y,t)‘ + ’ By (x,yi)‘ < C(z,y,t,T)e/",

provided y > F(x,t).

Proof. The inequality (7.1) follows from Theorem 1.1 and Corollary 6.1 since g(x, y,t) =
0 for y > F(x,t). O

In order to show convergence when y < F(z,t) we shall need to assume b(-,-)
is concave as well as that (1.1) holds. We first prove a result about the classical
problem.
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Lemma 7.1. For a > 0 let yo(s), 0 < s < T, be the solution to the equation

dya dq
. _— = — e < =
(7.2) ds b(ya(s)as) «a Ay (m7ya<5>75>7 0<s<T, ya(o) Y,

where q(-, -, ) is the classical cost function (1.10). There there is a constant C(AT)
depending only on AT such that

(7.3) 0 < ya(s) = yo(s) < max[l,a] C(AT) VTq(x,y,0), 0<s<T.

Proof. We first consider the case a = 1 since y; (+) is the optimal trajectory for the
variational problem (2.2). From (2.2), (2.14) we see that

(7.4)

dyi(s
Cu(AT) gty 0)/7]2 < )by (9, ) < (AT [, 0)/1)2, 0 <5<,
for some positive constants C, Cy depending only on AT. Setting ¢1(s) = y1(s) —

yo(s) it follows from (7.2), (7.4) that
(75)  |#i(s)] < Apa(s) + Co(AT) [q(,y,0)/T]V?, 0 < s ST, 1(0) = 0.

Applying Gronwall’s inequality to (7.5) we conclude that (7.3) holds for « = 1 and
a-fortiori for 0 < o < 1.

Suppose now that a > 1 in which case y4(s) > y1(s), 0 < s < T. Using the fact
that g(x,y,t) is convex in y, we see from (7.2) that

dya(s) dq
ds gb(ya(S),S)—CV iy(x,yl(s)vs)v 0<s<T.

Thus if () = ya(s) — yo(s) we have that
[#6(3)] < A pals) + a Co(AT) la(w,,0)/T]",
whence (7.3) follows for a > 1 as before. O

We can use the method of Lemma 7.1 to find a region where the paths y.(s), 0 <
s < T, for the stochastic control problem (1.14), (1.15) are most likely to be found.

Lemma 7.2. Let y-(s), 0 < s < T, be the solution to the stochastic equation (1.14)
with y-(0) =y, where A:(+,+) is given by (1.16). Then there is a universal constant
M and a constant C(AT) depending only on AT such that

(t6) P [ inf_[1(5) ~ w(s)] < —p| < exp [~02/eT C(AT)]
provided p?> > MeT C(AT). There is a further constant C1(x,y, A,T) depending

only on x,y, A, T such that

(7.7)

P | sup [y-(s) = yo(s)] > p+ C(AT)V/Ty(x,y,0) + Ci(z,y, A, T)e"/*| <exp [-p*/eT C(AT)],

0<s<T
provided p?> > MeT C(AT).

Proof. The inequality (7.6) is obtained by using the fact that y.(s) > Y:(s), 0 <
s < T, where Y.(0) = y and Y.(-) satisfies (1.5). Then one compares solutions of
(1.5) to solutions of the deterministic equation (7.2) with o = 0, using the Lipschitz
property (1.1) of b(+,-) and applying Gronwall’s inequality.

To obtain the inequality (7.7) we need to use the convexity of the function
ge(x,y, s) in y, which is established in the Appendix (Theorem Al). Let y.(s), 0 <
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s < T, be the optimal trajectory y(-) for the variational problem (1.10) with y(0) =
y. Then if y > y.(s) we have from Corollary 6.1 that
(7.8)
0 0

0< ~FE@9.5) < ~GE@0l5).9) < (1+ AT) Rac(ai(s), )T = ).
From Lemma 3.3 we see that there is a constant Cs(z,y, A,T) depending only on
x,y, A, T such that
(7.9) 0 (2, Ye(5), 8) < a(w,ye(s),8) + Co(w,y, A, T)Ve, 0<s<T.

Putting (7.8), (7.9) together and using the fact that (7.4) holds for y.(-), we conclude
that

0q-

. <-
(7.10) 0< 5

(z,y,5) < C1(AT) [q(x,y,0) /T

+ Cs(2,y, A, TV INT —s, 0<s<T, y>ye(s)

Consider now the diffusion process Z.(-) defined as a solution to the stochastic
equation

(7.11) dZ.(8) = pe(Z-(s),8)ds + e dW(s), 0<s<T,

where pe(+, ) is given by the formula

(7.12)  pe(z,8) = b(z,8) — %qys (x,2,8), z<yc(s),
pe(z,5) = b(z,8) + Ca(AT) [q(w,y,0)/T)"

+C3(2,y, A, T) eV /NT =5, 2> ye(s).

Then if Z.(0) > y.(0), it follows from (7.10) that Z.(s) > y.(s), 0 < s < T, with
probability 1.

For any ¢, 0 <t < T, suppose that zo > y.(t) and consider the solution z(s) to
the initial value problem

(7.13) dz(s) = pe(2(s),s)ds, t<s<T, z(t) = 2.
By letting ¢ — 0 in (7.10) we see that z(s) > y.(s), t < s < T. Hence on setting

od(s) = z(s) — y.(s) we have from (7.13) and the Lipschitz property of b(,-) that
(7.14)

—Ag(s) < ¢ (s) < AB(s)+C1(AT) [q(w,y,0)/T]"*+Cs(a,y, A,T) M/ VT =5, t<s<T.
Integrating (7.14) we conclude that

(7.15) [z0 — yc(t)]e*AT < z(8) —ye(s) <
AT {[zo — yo(D)] + CL(AT) [Tq(z, y,0)]"/% + 2VT Ca(x,y, A, T) 51/4} L t<s<T.

We can compare the solution of (7.13) to the solution of the stochastic equation
(7.11) with initial condition Z.(t) = zp > y.(t). Arguing as in Lemma 3.1 we see
that

(7.16) P ( sup |Ze(s) — z(s)| > 6) < exp [— 6%/eT CQ(AT)],
t<s<T
where the constant Cy(AT') depends only on AT'. Also 6 must satisfy the inequalities

(7.17) 6 < [20 — ye(t)] e 4T, 5% > MeT Cy(AT),
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where M is a universal constant. The first inequality in (7.17) ensures by (7.15)
that if |Z.(s) — z(s)| < ¢ then Z.(s) > y.(s). Hence to estimate the probability
(7.16) we can assume the drift p.(-,-) of (7.11) is given by the second formula in
(7.12).

To prove (7.7) first observe that the probability in (7.7) is bounded above by the
probability

(7.18)
1+ 2eAT n
sup P | sup |y-(s) — 5>7‘6t_ =— |,
OgtET tSSET[y (s) = yo(s) 2(1 + eAT) 1| ve(t) = mo(t) 2(1 + eAT)

where 7 is given by the formula

(7.19) n=p+C(AT)\/Tq(x,y,0) + Cy(x,y, A, T) /4.
The probability in (7.18) is in turn bounded above by the same probability with
Ye(s) replaced by Z.(s). Observe next that

1+ 2e4T
(7.20) Z(s) —yo(s) > 2(1 + eAT)
where we have used the fact that zo — yo(t) = n/2(1 + eAT) and the inequalities
(7.3), (7.15). The constants C'(AT) and Cy(z,y, A, T) in (7.19) must also be cho-
sen sufficiently large. Hence the probability in (7.18) is bounded above by the
probability

n = Z(s)—z(s) >n/4,

P Z e ™1y 7
7.21 — > t) —yolt) = ———5= | -
@20 P( s 12.6) = 260 > 17 | 2400 0(0) = 5y )
It is clear from (7.3) that if the constant C(AT') in (7.19) is chosen sufficiently large
then we may apply (7.16) to estimate (7.21), since for C'(AT') large enough the first
inequality in (7.17) is satisfied. Now (7.7) follows from (7.16) since the condition
on p implies the second inequality in (7.17). O

Lemma 7.3. Let y.(s), 0 < s < T, be as in Lemma 7.2 and y.(s), 0 < s < T,
be the solution to the corresponding classical problem (1.10) which has optimal
controller A\.(s), 0 < s < T. Then there is a constant C(x,y, A,T) such that

(7.22

)
T
E /0 e (e (s), 8) = b(ye(s), ) = Acls) + b(ye(s), 5))° dS} < Oa,y, A, T)eV™,

Proof. Following the argument of Lemma 3.5 we define a classical path y. .(-) which
corresponds to the stochastic path y.(-) by

dye,c(s)

ds
where y. .(0) =y and k is defined by

(7.23) = Ac(Ye(s),8) +k/T, 0<s<T,

T
(7.24) k = max lx —y— / Ae(Ye(s), s)ds, 0] .
0
Observe from Lemma 4.1 and Theorem 4.1 that the integral on the RHS of (7.24)

exists with probability 1. Letting o be an arbitrary number, 0 < a < 1, and using
the fact that y. .(T) > =, we have that



STOCHASTIC VARIATIONAL FORMULAS 63
(7.25)

1 [T
4(2,9,0) < Flayec() + (1 - a)ye()] = 5 /O {a{ke(ye(S)v s) = b(ye(s),s)}

(1= 0){Aels) ~ blue(),9)} + 0:(5) — hlue(s). )] s,
where the deterministic function h(z, s) is given by the formula
(7.26) h(z,s) = blaz + (1 — a)y.(s),s) — ab(z,s) — (1 — a)b(y.(s), s),
and the random function g.(s) by the formula,
(7.27) ge(s) = ak/T + b(awe(s) + (1 — @)ye(s), s) — blaye,o(s) + (1 — @)ye(s), s).
We expand out g.(-) in the quadratic expression in (7.25) to obtain the inequality

1 T T
(128) 090 <5 [ 0P dst [ gl i) 0) ds +
T

T
/ 19(8)] Phels) — bwels), )] ds + / 19:(8)] e (0e(5), 5) — bye(s), 8)] ds +
0 0

1

T 2
= / [0\ (0 (), ) =By (), )} (1= @) {Ae(5) bl (), )}~ hlye(s), )] ds.

Since b(-, s) is concave for 0 < s < T, it follows that the function h is non-negative.
Thus since [Ae(y:(8), s) —b(y<(s), s)] and [A.(s) — b(y.(s), )] are both non-negative,
one has the inequality

(7.29)
’ 2
%/0 |- (4 (5). ) by (), )+ (1= @){Aels) ~blyie(s), 5)} = hlye(s). )] ds
r 2 —« T 9
<5 [ Petre ) bt 9] s 25 [ o) b ] s

a(l —a) 2

T2 /OT [As(ys(s), s) — b(y=(s),5) — Ac(s) + b(ye(s), 5)} as,

provided that h(y(s), s) < 2(1—a)[Ae(s) —b(yc(s),s)] for 0 < s < T. Since we also
have that h(z,s) < 24a (1 — a)|z — y.(s)|, we conclude that (7.29) holds provided
ye(+) satisfies the inequality

(7.30) Aa [ye(s) = ye(s)] < [Ae(s) = b(ye(s),s)l, 0<s<T.

If we now use (7.3) and the lower bound in (7.4) we see that (7.30) is implied by
the inequality

(7.31)  y=(s) —yo(s)| < [a™! C1(AT) — C2(AT)] VTq(z,y,0), 0<s<T,

for some positive universal constants C1(AT'), Co(AT) depending only on AT.
Observe now that from Theorem 1.1 the inequality (7.22) holds if T'q(x,y,0) <
el/4 whence we may assume Tq(z,y,0) > e/ Tt follows then from Lemma
7.2 that, for « sufficiently small depending only on AT and e sufficiently small
depending only on x,y, A, T the inequality (7.31) holds with probability close to 1.
We estimate the expectation of the terms in g.(-) on the RHS of (7.28). From
Theorem 4.1 it follows that the quantity k in (7.24) satisfies the inequality

(7.32) 0 <k < e max[W(T),0],
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where W (-) is Brownian motion. We also have from (1.14),(7.23) that

(7.33) sup |ye(s) — yee(s)| < Ve sup [W(s)| + k.
0<s<T 0<s<T

We may bound the random function g.(-) of (7.27) using (7.32), (7.33) to obtain

(7.34) sup lg-(s)] < 225 (14 AT) sup |W(s)]

0<s<T T 0<s<T

Evidently (7.34) implies that

(7.35) E

T
/0 gs(S)QdS] < o’ C5(AT)

for a constant C3(AT) depending only on AT. The inequality (7.35) in turn implies
by the Schwarz inequality that

T
(7.36) E /0 19:()IIAc(s) = blye(s), )| ds| < e'%a Ca(AT)[1+ q(z,y,0)]

for a constant C4(AT) depending only on AT. Similarly one has by Theorem 1.1
that

(7.37) E

T
10 9 9) = bl (5).5) ds]

S \/E « 05(AT) |:1 + Q(‘T?:%O) + Cg(I,y,A7T)\/E],

for constants C5(AT) depending only on AT and Cgs(z,y, A,T) on x,y, A,T. The
final term involving g.(-) can be estimated by using Lemma 7.2. Thus

(7.38) E

/0 |92 ()] |1 (yz(s), 5)| dS] < av/e C3(AT)Y?

- 1/2
A 1y (5) — ye(s)]? ds] ,

and the expectation on the RHS of (7.38) is bounded as

24a(1 — a)E

(7.39) E

T
| 1e0) = e ds| < Cr(AT) {T20(2.9.0) + ooy 4TI}

Let us define now p. as the probability that the inequality (7.31) is violated, and
take the expectation of (7.28) over the event (7.31). Thus from (7.28), (7.29) and
(7.35) - (7.39) we conclude that

(7.40)

a(l —a)

E
2

/0 e (ye(s), ) — b(y=(s), 8) — Ae(s) + b(ye(s), s)]* ds ; (7.31) holds]

< [p- + €20 Co(AT) | q(2,9.0) + aCuo(w,y, A, T)H/4,
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Since we can estimate p. from Lemma 7.2, we can conclude (7.22) from (7.40)
provided we can estimate the expectation

(7.41) E

/0 A (ye(s), ) — b(ye(s),s)]* ds ; (7.31) does not hold]

appropriately. We have now from Corollary 6.1 that

(742) E

/T5 Ae(y=(5), s) — b(ye(s), s)]> ds ; (7.31) does not hold]
0

1/2

T=5 g
<ulParant [ B [0, 52(5), 5
0 T—5
Let Y:(s), s > 0, be the solution to (1.5) with Y:(0) = y. Recall that since
0qc(z, 2z,8)/0z < 0 we have that y.(s) > Y(s), s > 0. Using Lemma 3.1 then, we
conclude that

(1.43) B [a:(e.9:(9).9)°) € G [CHAT)E [{& = Ye(9)}') + Caar A T,
We are left now to estimate
T
(7.44) B l / D (1o (5), 5) — blye(s), )] ds ; (7.31) does not hold]
T—§

for some § > 0. Instead of attempting to show that the expectation (7.44) is small,
we consider as in (7.29) under what circumstances the inequality

(745) o Ae(5),5) — b(w=(5), 9)) + (1~ a){Aels) — blye(s), 9)} — h(ye(s), 9)]
< 2 Pl ) ~ b0 91+ LS o) — blaels), )
A D (0e5),9) — Blw5),8) — Acls) + Blyes), )]

holds if s lies in the region T'— § < s < T. From Theorem 4.1 we see that if 6 > 0
is sufficiently small depending only on A, then (7.45) holds if y.(s) satisfies the one
sided inequality

(7.46) Ye(s) — yo(s) < [a 'CL(AT) — Co(AT)]/Tq(z,y,0)

[\)

similar to (7.31). Thus instead of estimating (7.44) it will be sufficient to estimate

(7.47) E / [)\E(yg(s),s)—b(yg(s),s)]zx(yg(s),s)ds ,
T—§
where
(748) x(z,8) = 1 if 2> yo(s)+ [ 'C1(AT) — C2(AT)] VTq(z,y,0),
x(z,8) = 0, otherwise.

Using (7.8), (7.9) we see that if x(yc(s),s) = 1 then [A(ye(s),s) — b(ye(s),s)]” is
bounded, whence we conclude that the expectation (7.47) is bounded by C(z,y, A, T')
for a constant C'(z,y, A, T). The result follows from Lemma 7.2. O
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Proof of Theorem 1.3. We use the representation for dq(x,y,t)/dy given by (2.29)
and for 9¢g.(x,y,t)/0y by (6.7). Thus we have that

Jdq

1 r b
TE {A |:1 + (T - 5)@(95(8)7 8):| [)‘6(95(3)7 s) — b(ys(8)7 8) - )‘c<5> + b(yc(s), 5)] ds}

~ 9qe
dy

(!.C,y, 0) =

1 T b b
bLE { =9 [ 50909 = G 0e(6).8)| D) o)) ds} .

In view of Lemma 7.3 the second identity of (1.25) follows if we can show that

T
(7.50) lim E{ | 15t - §Z<ys<s>,s>)ds} -0,
We put ¢:(s) = ye(s) — yc(s), 0 < s < T, and observe that ¢.(s) satisfies the
equation,

(7.51)

doe = Ne(y(5),8) — b(y=(5),8) — Ae(8) + b(y=(5), 8)] ds + e dW (s), ¢(0) =0.
It follows from (7.51) that

(7.52)

T
sup |¢e(8)\S/O A (=(5), 8) =y (5), )= Ae(5) +b(ye (), 8) [ds+VE sup |[W(s)]-

0<s<T 0<s<T

One easily sees from (7.52) and Lemma 7.3 that (7.50) holds. We have proved the
second identity of (1.25). The first identity follows in a similar way. O

APPENDIX A. LoG CONCAVITY OF SOLUTIONS TO LINEAR DIFFUSION
EQUATIONS

Our goal in this appendix is to establish convexity properties of the function
ge(z,y,t) defined by (1.7). We shall first show convexity in y for fixed z € R,
t < T, since showing joint convexity in (z,y) is considerably more difficult. We
consider the terminal-boundary value problem

ow ow e 0w
Al — — - — = T
(A1) Y +b(y,t) 8y+2 52 0, y>0,t<T,
w(y, T) = wo(y), y>0 w(0,t) =0, t<T.

Proposition A.1. Assume b(-,-) satisfies (1.1) and the terminal function wo(y)
is C? for y >0 and C* for y > 0 with wo(0) = 0. Assume further that

(A.2) sup {lwo(y)| + |dwo(y)/dy| + |d*wo(y)/dy?|} < oo.

Then there is a unique solution w(y,t), y > 0, t < T, to the terminal-boundary

value problem (A.1) which has the property that w(y,t) is C? in y, C' in t, and

satisfies the inequality

(A.3) sup — {Jw(y,t)| + [0w(y, 1) /0y| + |0%w(y, 1) /0y°|} < oo
y>0,To<t<T

for any Ty < T. In addition, the functions w(y,t) and dw(y,t)/0y are continuous
fory>0,t<T.
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Proof. We first observe that the result holds when b = 0. In this case the solution
is given by the method of images as

(A e = [ TG — o (T — 1) — Gly + (T — ) woly') dy,

where G(-, s) is the pdf of the Gaussian variable with mean 0 and variance s. Thus
on using integration by parts we have

aw > dw y/
(A5)  —=(y,t) :/ [Gly =y, e(T =) + Gy +y',e(T - 1))] 0(, ) dy,
8y 0 dy
where we have used the fact that wy(0) = 0 in deriving (A.5). On using a further
integration by parts we have that
0%w e d?wo (y'
R0 = [ 16—y = 0) - Gly+of oo - )] Ty
dy 0 dy

It follows easily from (A.4), (A.5), (A.6) that (A.3) holds. In addition w(y,t) and
Ow(y,t)/0y are continuous for y > 0,t < T. We also have that §%w(y,t)/dy? is
continuous for y > 0, t < T, provided d?wy(y)/dy? is continuous in y > 0.

To prove the result for general b(-, -) satisfying (1.1) it will be sufficient to estab-
lish it for ¢ restricted to a small interval [T'— A, T]. We proceed as in Lemma 3.4.
Taking y; = 7 in (3.18) we see from (3.19) that w(y,t) is given by the formula

(A.6)

2 r oG
(A7) w0 = [ Gy D)~ [ ds () 5
t
provided 0 < y < 2n. The Green’s function G(y,y’,t,T) is defined by the pertur-
bation expansion (3.23). Since w4 (+) is bounded by virtue of (A.2), we see that if
A satisfies (3.20) then sup{|w(y,t)| : 0 <y <n, T —A <t <T} < oo and w(y,t)
is continuous for 0 <y <n, T — A <t < T, with w(0,t) = 0.
We consider next the first derivative dw(y,t)/0dy, which from (A.7) is given by
the formula
a8 L= [0y iy e [ ds (o) o
. ay Y, 0 8y Yy, oly )ay —¢€ ’ + ayay,

It is evident from (3.41) that the second integral on the RHS of (A.8) is uniformly
bounded in the set {(y,t) : 0 <y <n, T — A <t < T} and that the integral
converges to 0 as t — 7T, uniformly for 0 < y < 7. To estimate the first integral on
the RHS of (A.8) we do an integration by parts for the first term in the perturbation
expansion (3.23) for G(y,v’,t,T). Just as in (A.5) we see that this term is uniformly
bounded in the set {(y,t) : 0 <y <n, T — A <t < T}, and converges uniformly
to dwo(y)/dy as t — T. We can estimate the higher order terms

(y’ 2777 t’ S)’

y,21,t,s).

2n a/Un / ! /
0 )

for n > 0 simply by using (3.24). Thus we see that the sum of the higher order
terms is uniformly bounded in the set {(y,t) : 0 <y <n, T —A <t < T} To
prove continuity of dw(y,t)/0y as t — T we need to show that the integral in (A.9)
converges uniformly to 0 as t — T in the interval 0 < y < . This follows from
(3.24) when n > 1. To prove it for n = 0 we again need to make use of integration
by parts. Thus we see that



68 JOSEPH G. CONLON AND MOHAR GUHA

2n
(A.10) !/ 9o(2, 9,8, T) wo(y') dy' | <
0

Clb(z, s)| [ sup |dwo(y)/dy| + G(z = 2n,2¢(T — s))[wo(2n)]| ,
0<y<2n

for some universal constant C. It follows from (A.10) and the representation (3.23)
for vy that the integral (A.9) also converges to 0 as t — T when n = 0. We have
shown that sup{|0w(y,t)/0y| : 0 <y <n, T —A <t <T} < oo and dw(y,t)/dy
is continuous for 0 <y <n, T —A<t<T.

To estimate the second derivative 9?w(y, t)/dy? we proceed in a similar manner.
Thus we have that

(A.11)

0w oG, ’ s
)= | = Two(y)dy' — 27 (4,2 .
S = [ G D)y~ [ dswi(s) 5o (20t

We wish to show that sup{|0%w(y,t)/0y?|: 0 <y <n, T—-A<t<T} <oo. In
view of (3.46) it is sufficient to consider only the first integral on the RHS of (A.11).
We estimate the first term in the perturbation expansion (3.23) for G(y,y’,t,T)
using integration by parts as in (A.6). The higher order terms, corresponding to
vn(y,y',t,T) with n > 1, can be estimated using (3.39), so we are only left to deal
with the term corresponding to vo(y,y’, ¢, T). We can estimate this by using (A.10)
and the corresponding inequality for the derivative of gy,

2776
’”@y@Tmaw@ﬂs

(a2 | [

C

0<y<2n

, 1/2
A+{A(T—t)} ][ sup |dwo(y)/dy| + G(z — 2n,2e(T — s))|wo(20)]| ,

for some universal constant C'. We have shown that sup{|0%w(y,t)/0y?| :0 <y <
n, T—A<t<T}<o0.

We can easily extend the estimates we have made on w(y, t) and its y derivatives
in the set {(y,t):0<y<n, T —A <t <T} toall of y >0 by observing that the
function v(z,t) defined by v(z,t) = w(z + y(t),t), where y(s),s < T, is a solution
to (1.11) with y(T) = y;, satisfies the PDE

(A13) 0 4 bz + yle).) b)) 2 4 £ T~

Then we represent v(z,t) by a formula similar to (A.7) and use perturbation theory
as before, observing that the perturbation series for the Green’s function converges
in a region {|z| <n, T — A <t < T}, where 7, A can be taken independent of y;.

([l

Theorem A.1. Suppose b(-,-) satisfies (1.1), and in addition the function b(y,t)
is concave in y fory € R, t < T. Then for any fited x € R, 0 < t < T, the
function q-(x,y,t) of (1.7) is a convex function of y € R.

Proof. We shall take wlog = 0. For § satisfying 0 < 6 < 1 we define a function
gs5(2z) with domain {z € R: z > —1} by
(A.14) glz) = 1/(1+2)% if —1<z<—(1-9),

gl(z) = —2/0°(1—-0) if —(1-6)<2<0,
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95(0) = g5(0) =0,
gi(z) = 0, if z2>0.

Evidently gs(z) is a C? convex decreasing function which has the property that
gs(z) =0 for z > 0 and gs(z) ~ K5 —log(l + z) as z — —1, where Kj is a constant
depending on 0. For A > 0 and y > —A let 75 4, be the first hitting time at —A for
the diffusion Yz (s), s > t, of (1.5) with Y.(¢) = y. We define a function u. a s(y,t)
by

(A.15) ue A5y, t) = Efexp[—gs (Ye(T)/A)] 5 Taye > T}
Letting 6 — 0 in (A.15) we conclude from (A.14) that
(A.16) P (YE(T) >0 Ay >T | Yo(t) = y) = girr(lj Ue,A,5(Y, ).

It is also clear from (1.6) that
(A.17) ue(0,y,t) = lim P (Yz(T)>0; mays >T [ Ye(t) = ).

We conclude from (A.16), (A.17) that the convexity of ¢.(0,y,t) in y follows from
the log concavity of the function u. o 5(y,t) in y.

To prove log concavity we first observe that u. A 5(y,t) satisfies the PDE (1.2)
for y > —A, t < T, with Dirichlet boundary condition u. 5 s5(y,t) = 0 at y = —A,
and terminal data

(A.18) ue A 5(y, T) = exp[—gs (y/N)], y>—A.

Since the function (A.18) is increasing in y, it follows from the maximum prin-
ciple that for ¢ < T the function wue A s(y,t) is also an increasing function of y.
From (A.14) we see that uczs(y,T) is C? for y > —A and ucps(—A,T) = 0,
Oue as(—A,T)/0y > 0. We may therefore apply the regularity result of Proposi-
tion A.1. It follows from this and the Hopf maximum principle [19] that

(A.19) 8UE’A’5(—A,t)/6y >0, t<T.
Next as in (1.7) we put u.as5(y,t) = exp[—¢ea,5(y,t)/e], and observe that
e, 5(y,t) satisfies the PDE (1.8). Since ug A s(y,t) is an increasing function of

y, it follows that g. a s(y,t) is a decreasing function of y. Hence g- A s(y,t) is a
solution to the PDE

Ogens € 0%qens 0qe.As
A.20 _— — - — B t — =0
( ) at + 2 ayQ y7 ) ay bl
where the function B(y,t,p) is defined by
(A.21) B(y,t,p) = b(y,t)|p| + p°/2.

Observe that the function B(y,t,p) is concave in y for all p € R, t <T. Applying
Theorem 4.1 of [9] to (A.20) we see that ge o s(y, t) is convex iny fory > —A, t < T,
provided we can show that the expression

(A.22) Gens (Y +9)/2,1) = [Gen6(y,t) + aen6(y' 1)) /2

is less than or equal to 0 as (y,y’,t) approaches (Yoo, Y, too) With too < T finite,
and (Yoo, Y4 ) on the boundary of (—A,00)? C R? if t,, < T, and an arbitrary point
in the closure of (—A,00)? if to, =T

Suppose now that yo, = —A and —A < y,, < oo. From (A.15) we see that
Ueas(y,t) > 0 for y > —A, ¢t < T, whence the limits of the first and third terms
in (A.22) are finite as (¥,y',t) = (Yoo, Yao, Lo ), Whereas the second term converges



70 JOSEPH G. CONLON AND MOHAR GUHA

to —oo. Thus we may assume y. = yoo = —A. In that case we observe that the
exponential of 7! times the expression (A.22) is the same as

(A.23) (e p 5 (0, t) wen s (' )] Juens(y +y'}/2,1).
From (A.19) we may write (A.23) as

(A.24) p(z. 2 1) ()] [(=+2)/2,

where z = y+ A, 2/ =y + A, and lim{p(z,2',t) : 2,2’ — 0, t = to} = 1. Thus
since arithmetic mean exceeds geometric mean, it follows from (A.24) that the limit

of (A.22) as (y,y',t) — (—A, —A,ts) is less than or equal to 0.
For too = T we need to show non-positivity of (A.22) for any (¥eo,yl,) in the
closure of (—A,00)2. This follows from Proposition Al and the convexity of gs(-).
O

Theorem A.2. Suppose b(-,-) satisfies (1.1). Then 0?q.(z,y,t)/0zdy < 0 for
z,yeR, 0<t<T.

Proof. Tt will be sufficient to show that for any h > 0 the function ¢.(z + h,y,t) —
qe(z,y,t) is a decreasing function of y. Letting g(z) be the function

(A.25) g(z) =2 2<0; g(z)=0, 2>0,

we define u 5(, y, t) similarly to (A.15) by

(A.26) Ues5(2,y,t) = E {eXp [—g (Y(T;_Ccﬂ ’ Ye(t) = y} :

Evidently lims_,o ue s(z,y,t) = uc(x,y,t) and hence the function ¢ s(z,y,t) =
—clogue s(x,y,t) satisfies lims_o ¢c 5(z,y,t) = ¢e(2,y,t). Arguing as in Lemma
3.1, we also see that g. 5(z,y,t) satisfies the inequality

(A27)  0<gs(e,yt) <Cllz—y)?H(z—y)+1], yeR 0<t<T,

where H(-) is the Heaviside function and C' a constant.

In order to prove that g.(z + h,y,t) — q-(z,y,t) is decreasing in y it will be
sufficient to show that the function v 5(y,t) = ¢e5(z + h,y,t) — ge5(z,y,t) is
decreasing in y for any § > 0. To see this we note that v. s satisfies a PDE
e s N € 0.5

Oy 2 Oy?
where the drift b. 5(-,-) is given by the formula
1 aCIs,J(x + ha Y, t) o 1 a(Is,S(xv Y, t)

(A.28) =+ bes(y, 1) =0, yeR, t<T,

(A.29) be,s(y,t) = bly,t) — 5 oy 5 oy
The terminal data for v. 5 is given by
(A.30) ves(y, T) = h[2(x —y) + h]/d, ify<ua,
[z +h —y]?/s, if e <y<az+h,
0, ify>ax+h.

Consider now the diffusion process Y: 5(s) defined by
(A.31) dYz 5(8) = be 5(Yz,5(5), 8)ds + /e AW (s).

From Lemma 3.4 we see that the drift b, 5(y, s) is uniformly Lipschitz in y in any
region y > yg, 0 <t < T —1n, where yo € R and > 0 can be arbitrary. Let 7,
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be the first hitting time at yo for Y; 5(-) with Y; 5(¢t) = y > yo. Then we have the
representation,

(A32) ve5(y,t) = Elves(Yes(T —m), T —n); 7y >T — 1]
+ E e s(Yes(Ty)s Tyt) s Tye <T —1).

Observe that from (A.29) we have that b, 5(y,s) > b(y, s), t < s < T. Hence using
(A.27) we may take the limit yo — —oo in (A.32) to conclude that

(A.33) ves(y,t) = E [ves(Yes (T =), T —n) | Yes(t) =] .

If ve 5(z, T—n) were known to be a decreasing function of z then it would follow from
(A.33) that v 5(y,t) is a decreasing function of y. Since u. s(z,y,T — 1) converges
uniformly on any finite interval a < y < basn — 0 to the function exp[—g(y—x)/d],
we see that ve 5(z,T — 1) converges uniformly on any finite interval as n — 0 to the
decreasing function (A.30). Thus we can still conclude from (A.33) that v. 5(y,t)
is a decreasing function of y. The result follows. O

It appears that one cannot prove the convexity of ¢.(x,y,t) as a function of x
for fixed y directly, in analogy to Theorem A1, so we shall proceed to showing that
ge(x,y,t) is convex jointly in (x,y). To do this we consider solutions v(z,y,t) to
the semi-linear equation

ov ov

e 0%v €& 0%
A.34 — +by,t) | =— |+ ==+ = ==
(A-34) o TP T a2 T T e
in the disk Dp = {(z,y) : 2? + y* < R?}, with Dirichlet boundary condition and
given terminal data. Thus we wish to solve (A.34) subject to the conditions

(A.35) w(z,y,T) =wo(z,y), (z,y) € Dr; v(z,y,t) =0, (z,y) € IDg, t <T.

+ =0, t<T,

Using classical techniques [7, 15] for proving regularity of solutions to semi-linear
parabolic equations, we can establish the following result:

Proposition A.2. : Assumeb(-,-) satisfies (1.1) and the terminal function vo(z,y)
is C% for (x,y) in the closure D of Dg, with vo(z,y) =0 for (z,y) € 0Dgr. Then
there is a unique solution v(z,y,t), (x,y) € Dgr, t < T, to the terminal value
problem (A.34), (A.35) which has the property v(z,y,t) is C? in (z,y), C* int,
and satisfies the inequality

(A.36)  sup {[o(z,y,t)] + [Dv(z,y,t)| + |D>v(x,y,t)| : (x,y) € Dr} < oo

o<t<T

for any To < T. In (A.36) Dv(x,y,t) denotes the gradient of v(x,y,t) with respect
to (x,y), and D*v(x,y,t) the Hessian with respect to (x,y). Additionally, the func-
tions v(z,y,t), Dv(z,y,t) are continuous for (x,y) € Dg, t < T. The tangential

second derivative (y 8% —x 3%) Du(z,y,t) is also continuous.

Next we need to establish a Hopf maximum principle (A.19) for solutions to
(A.34), (A.35).

Lemma A.1. Suppose vo(z,y), (z,y) € Dr, satisfies the conditions of Proposition
A2, and in addition 0 < vo(z,y) < 1, (x,y) € Dr. Then if vg £ 0, the solution
v(z,y,t) of (A.34), (A.35) satisfies the inequalities

(A.37) 0<v(z,y,t) <1, (x,y) € Dgr, t<T,
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ov ov
(A.38) x a—x(x,y,t) +y a—y(x,y,t) <0, (z,y)€dDgr, t<T.

Proof. The fact that 0 < v(z,y,t) <1, (x,y) € Dg, t <T, follows by applying the
argument for the weak maximum principle, Theorem 1 of Chapter 3 of [19], to the
quasilinear equation (A.34). Similarly one sees that the argument for the strong
maximum principle, Theorem 2 of Chapter 3 in [19] applies to (A.34). We conclude
that (A.37) holds. Finally (A.38) follows by applying the argument of Theorem 3
of Chapter 3 in [19] to (A.34). O

The final result we need in order to apply Korevaar’s method [14] to prove
convexity in (z,y) of g-(z,y,t) is in effect a comparison principle for solutions of
the quasilinear equation (A.34) to solutions of the linear equation

Ov v e 0% € 0%
(A.39) 5 G+ 5 Gt g g =0

Lemma A.2. Assume b(-,-) satisfies (1.1) and let v(z,y,t), (z,y) € Dr, t<T,
be a solution of (A.34) which is C? in (x,y) and C' in t. Assume further that
v(z,y,t) evtends to a continuous function on Dr x {t < T}. Let w(z,y,t) be a
second solution to (A.34) with similar properties to those of v(x,y,t). Then if for
some constant M the inequality

(A.40) /T 16(0, 5)|ds + A(T —t) + /2T —8) < M

holds, there is a con;tant C depending only on M such that

(A.41) |v(0,0,t) —w(0,0,t)| <
exp [—R?/Ce(T —t)] sup {|v(z,y, s) —w(z,y,s)| : t < s < T, (z,y) € ODp}+
Zexp [—k*/Ce(T —t)] sup {|v(z,y,T) — w(z,y,T)| : (x,y) € Dpyar N Dr},

k>0
provided 0 < &' < ¢.

Proof. We set u(x,y,t) = v(z,y,t) — w(z,y,t), and observe from (A.34) that
u(x,y,t) satisfies the differential inequality

ou oul € *u € 0%u

A.42 i iy et 9% g,
( ) ot by, 1) Ay + 2 Oy? + 2 0x2 — 0
Suppose now that C(x,y,t) satisfies

oC aC| e 9*C £ o%C
A4 — —1b - = Dgr, t<T
(a4 G-l + 5 G+ 55 =0 e Dnt<T.
with boundary and terminal data given by

(A.44)
C($7yaT) = ’U/($7y7T), ($7y) € DR 5 C(l’,y,t) = U(Jﬁ,y,t), (l‘7y) € 8DR7 t<T.

Then by the maximum principle we have that u(z,y,t) > C(z,y,t) for (z,y) €
Dg, t <T. Observe next that C(z,y,t) is the cost function for an optimal control
problem. Thus

(A.45)

C(I, Y, t) = )\l(nf) {E[U(X(T)7 Y(T)a T) s Tyt > T] +E [U(X(Tm,y,t)v Y(Tx,y,t)7 t) y Tyt < T] }7
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where the stochastic process [X (s), Y (s)] satisfies the SDE
(A.46) dY (s) = MY (s),s)ds + v dW(s), dX(s)=Ve dW'(s),

and W (-), W’(-) are independent copies of Brownian motion. The controller A(y, s)
satisfies the constraints |A(y, s)| < |b(y, s)|, ¥y € R, s <T. The stopping time 7, ,
is the first hitting time on 0Dp for the process (A.46) with X(t) =z, Y (¢) = y.

If we argue now as we did in Lemma 3.1 we can see that C(0,0,t) is bounded
below by the negative of the RHS of (A.41). Thus we obtain a lower bound on
v(0,0,t) — w(0,0,t). Since we can repeat the previous argument with v and w
interchanged, we also get an upper bound on v(0,0,t) — w(0,0,t), whence (A.41)
follows. ]

Proposition A.3. Assume b(-,-) satisfies (1.1), and the terminal function vo(z,y)
in Proposition A2 s log concave and satisfies the boundary condition | Dvg(x,y)| # 0
for (z,y) € ODg. If in addition the function b(y,t) is concave iny fory € R, t < T,
then the solution v(xz,y,t) of (A.34), (A.85) is also log concave.

Proof. We again follow the method of Korevaar [14] as given in [9] (see also [10]).
Thus on setting w(z, y,t) = —log v(x, y,t) we see from (A.34) that w(z, y, t) satisfies
the PDE

ow e Pw & 0w

Ad Jw e dw < oW
(A-47) ot T2 02 2 o2

7B(y7taDw) = 07

where the function B(y,t,p) is given by the formula

(A.48) B(y,t,p) = b(y,t)|py| + €piy /2 + €'p2 /2.

Since B(y,t, p) satisfies the conditions of Theorem 4.1 of [9], the result follows pro-
vided we can show that w(z,y,t) is convex for (z,y,t) close to the boundary of
Dr x {t < T}. To see this we argue as in Lemma 2.4 of [14]. Observe that it is
sufficient to assume D?v(z,y,t) is bounded as in (A.36), and not necessarily contin-
uous as (z,y,t) approaches a boundary point, provided the tangential derivative of
Dv(z,y,t) remains continuous. To see why this is the case consider a non-negative
C? function f on the half plane H = {(z,2z) € R? : z > 0}. We assume that f
extends to a C'! function on the closure H of H and that f = 0 on H. In addition
we assume the boundary behavior at (0,0) of the second derivatives of f is given by

(A.49)
82

020z (z,2)

2 2

9L (2.2)

022

f(x,z) =0, limsup < 00.

I o) 922
im sup ’ (%2)13%0,0) Ox? (z,2)—(0,0)

(w,2)—(0,0)

‘<oo

Now define a function w(z,y) on the domain U = {(z,y) € R? : y > 22/2}
by exp[—w(x,y)] = f(z,y — 22/2). Then we can see that if df(0,0)/dz > 0, there
exists & > 0 such that the Hessian of w is strictly positive definite for (x,y) € UNDs.
The convexity of w(z,y,t) close to the boundary of D x {t < T} follows from the
regularity result Proposition A2 and Lemma A1l by analogous argument. O

Theorem A.3. Assume b(-,-) satisfies (1.1) and in addition the function b(y,t) is
concave iny fory € R, t <T. Then fort <T the function q.(z,y,t) is convex in

(z,y) for (z,y) € R?.
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Proof. Similarly to the proof of Theorem A1, we approximate g.(x, y, t) by functions
defined on finite domains D which are convex by virtue of Proposition A3. To
specify the terminal function vo(z,y), we define a function f(z) for z < 1 by

(A.50) f(z) = 0 for 2<1/2, f(1/2) = f'(1/2) =0,
2
) = =P [_(1(1_2)2)/2(22 — V)] , for1/2<z<1.

Evidently f(-) is a non-negative increasing C*° convex function which has the prop-
erty that f(z) + log(1 — 2) has a converging Taylor expansion about z = 1. Next
let g : R — R be defined by

(A.51) g(z)=2% 2<0; g(2)=0, 2>0,

whence g is a non-negative decreasing C* convex function. It follows from (A.50),
(A.51) that the function vy with domain Dp defined by

(A.52) v, y) = exp [~ F (/a2 + 42/ R) — g(ly — 21/9)|

is C? for (z,y) €
log concave for (x € Dpg and satisfies the non—degenerate boundary condition
|Dvo(x,y)| # 0 if (x,y) € ODr. Hence by Proposition A3 the corresponding
solution vs r(z,y,t) of (A.34), (A.35) is log concave in (z,y).

Next we compare the function vs r(z,y,t) to a solution of the linear equation
(A.39). Thus let vs(x,y,t) be the unique bounded solution to (A.39) in the domain
{(z,y,t) : (x,y) € R% t < T} with terminal condition

(A.53) vs(z,y,t) = exp [ —g(ly — 2]/8)], (x,y) € R®

From (A.51) one sees that vs(z,y,T) is an increasing function of y for every z € R.
The maximum principle implies then that vs(x,y,t) is also an increasing function
of y for every x € R, t < T. Thus vs(x,y,t) is also a solution to (A.34). We may
therefore use Lemma A2 to compare the functions vs and vs r. In view of the fact
that 0 < vs < 1 and the properties of the function f of (A.50), we conclude from
(A.52), (A.53) that

Dg with vg(z,y) = 0 if (x,y) € Dg. In addition vy(z,y) is
Y)
(z,

(A54) hmsup {‘Ué(xvyvt) - U§,R(xvyat)| : (Z‘,y) € DR07 To<t< T} =0,
R—o0

for any Ry >0, Tp < T.

We conclude from (A.54) and the log concavity of vs g that the function vs(z, y, )
is also log concave in (z,y) for (z,y) € R%, t < T. Observe here that we are using
the strong maximum principle to conclude that vs(z,y,t) > 0, (z,y) € R?, t < T.
Next we see that the function v(z,y,t) = lims_,g vs(x,y,t) is the unique bounded
solution of (A.39) which has terminal data v(z,y,T) =0 if y < z, v(z,y,T) = 1
if y > x. Thus v(z,y,t) = ve e (x,9y,t) is log concave for (z,y) € R? and t < T.
Finally we conclude the convexity of ¢.(z,y,t) in (x,y) by noting that the function
ue(z,y,t) of (1.2), (1.3) satisfies ue(z,y,t) = lime o ve o (2, Y, T). O
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