STRONG CONVERGENCE TO THE HOMOGENIZED LIMIT OF
ELLIPTIC EQUATIONS WITH RANDOM COEFFICIENTS

JOSEPH G. CONLON AND THOMAS SPENCER

ABSTRACT. Consider a discrete uniformly elliptic divergence form equation on
the d dimensional lattice Z% with random coefficients. It has previously been
shown that if the random environment is translational invariant, then the
averaged Green’s function together with its first and second differences, are
bounded by the corresponding quantities for the constant coefficient discrete
elliptic equation. It has also been shown that if the random environment is
ergodic, then solutions of the random equation converge under diffusive scaling
to solutions of a homogenized elliptic PDE on R®. In this paper point-wise
estimates are obtained on the difference between the averaged Green’s function
and the homogenized Green’s function for certain random environments which
are strongly mixing.

1. INTRODUCTION.

Let (Q,F, P) be a probability space and denote by ( - ) expectation w.r. to
the measure P. We assume that the d dimensional integer lattice Z¢ acts on
by translation operators 7, : Q — Q, = € Z?, which are measure preserving and
satisfy the properties 7,7, = To4y, 70 = identity, z,y € Z%. Consider a bounded
measurable function a : Q@ — R @TD/2 from Q to the space of symmetric d x d
matrices which satisfies the quadratic form inequality

(1.1) My <alw) <Al;, weq,

where I, is the identity matrix in d dimensions and A, A are positive constants. We
shall be interested in solutions u(z,n,w) to the discrete elliptic equation

(L2)  nule.nw)+ Via(nw) Vu(e,n,w) = hz), =eZ, we

In (1.2) we take n > 0 and V the discrete gradient operator, which has adjoint V*.
Thus V is a d dimensional column operator and V* a d dimensional row operator,
which act on functions ¢ : Z? — R by

(1.3)  Vo(x) = (Vig(z),... Vad(2)), Vig(z) = d(z +e;) — d(x),
Vig(x) = (Vid(),... Vid(x)), Vie(z)=o(z —e) — d().
In (1.3) the vector e; € Z? has 1 as the ith coordinate and 0 for the other coordi-
nates, 1 <i <d.
It is well known [14, 20, 25] that if the translation operators 7,, = € Z9, are
ergodic on 2 then solutions to the random equation (1.2) converge to solutions of

a constant coefficient equation under suitable scaling. Thus suppose f : R —
R is a C'*° function with compact support and for ¢ satisfying 0 < ¢ < 1 set
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2 JOSEPH G. CONLON AND THOMAS SPENCER

h(z) = e2f(ex), v € Z%, in (1.2). Then u(x/e,e?n,w) converges with probability
1 as ¢ — 0 to a function u(x,n), € R? which is the solution to the constant
coefficient elliptic PDE

(1.4) nu(z,n) + VapemVu(z,n) = f(z), = €RY,

where the d x d symmetric matrix apom satisfies the quadratic form inequality (1.1).
This homogenization result can be viewed as a kind of central limit theorem, and
our purpose here will be to show that the theorem can be strengthened for certain
probability spaces (2, F, P).

We consider what the homogenization result says about the expectation of the
Green’s function for equation (1.2). By translation invariance of the measure we
have that

(1.5) (u(z,n,)) =Y Gaylr—y)hly), =eZ,
yeZ4

where Ga,(2) is the expected value of the Green’s function. Setting h(z) =
e2f(ex), = € Z%, then (1.5) may be written as

(1.6) (ula/e,e2,) ) :/ 279G, oy (”5 - Z) £(2) dz, € eZd,

ez

where integration over ¢Z? is defined by

(1.7) / g9(z) dz = Z g(z) €%

ez¢ z€eZd
Let Gay,...n(7), € R%, be the Greens function for the PDE (1.4). One easily sees
that Ga,,,. n(-) satisfies the scaling property

(1.8) 271Gy, . 2n(x)e) = Gapnn(z), &,1>0, € RY—{0}.

From (1.6), (1.8) we see that homogenization implies that the function 279G, .2, (z/¢), © €
€Z?, converges in an averaged sense to the Greens function Ga,, .. ,(z), * € R A
consequence of our results here will be that for certain probability spaces (92, F, P)
and functions a : @ — R*(4+1)/2 this convergence is point-wise in z. In particular
for some « satisfying 0 < o < 1, there are positive constants C,~ such that
(1.9)

(0
279G g (/)G < T

We_’y v n/A‘xl, O<e < 1, HASS EZd—{O}

It is clear that the inequality (1.9) for ¢ < 1 follows from the same inequality for
e=11ie.

C
(110)  [Gan(@) = Conrnn)| < g pymmes

provided we are able to obtain an inequality (1.10) which is uniform in > 0 as
n — 0. We shall prove such an inequality and also similar inequalities for the
derivatives of the expectation of the Green’s function,

C —v4/ T
(111) IVGa’n(f,U) - VGath’n(fL'” S W@ YV n/Al " T e Zd _ {0}7

e WAl g e 74— {0y,

(1.12) |VVGay(2) = VVGay (@) < & ¢ e VAl g e 78 {0},

(|z] + )¢t
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Theorem 1.1. Suppose a(-) satisfies (1.1), the matrices a(t,-), = € Z%, are inde-
pendent, and 0 < n < A. Then for d > 2 there exists a > 0 depending only on d
and A/, such that (1.10), (1.11) and (1.12) hold for some positive constants v, C,
depending only on d and A/A.

We also consider here probability spaces (2, F, P) corresponding to certain Eu-
clidean field theories. These Euclidean field theories are determined by a potential
V : R* — R which is a C? uniformly convex function. Thus the second deriva-
tive a(-) = V”() of V(+) is assumed to satisfy the inequality (1.1). Next consider
functions ¢ : Z? — R on the integer lattice in R%. Let © be the space of all
such functions and F be the Borel algebra generated by finite dimensional rect-
angles {¢ € Q: |p(z;) —a;| <7, i =1,... N}, 2, € Z% a; € R, 1, >0, i =
1,...,N, N > 1. The translation operators 7, : @ — Q, z € Z%, are defined by
7.0(2) = ¢(x +2), z € Z. For any d > 1 and m > 0 one can define [4, 9] a unique
ergodic translation invariant probability measure P on (£, F) which depends on
the function V' and m. The measure is formally given as

(1.13) exp |— Z V (Vo(x)) + m?p(z)? H d¢(x) /normalization.

z€Zd z€Zd

Theorem 1.2. Let a: R — RU4HD/2 pe o C function on R with values in the
space of symmetric d x d matrices which satisfy the quadratic form inequality (1.1).
Let (2, F, P) be the probability space of fields ¢(-) determined by (1.13), and set
a() in (1.2) to be a(¢) = a(p(0)), ¢ € Q. Suppose in addition that the derivative
Da(-) of a(-) satisfies the inequality ||Da(-)||co < A1. Then for d > 2 there exists
a > 0 depending only on d and A/X, such that (1.10), (1.11) and (1.12) hold for
some positive constants vy and C = C1[A1/mA + 1], where v, Cy depend only on d
and A/

The limit as m — 0 of the measure (1.13) is a probability measure on gradient
fields w : Z¢ — RY, where formally w(z) = V(¢(x)), € Z¢. This massless field
theory measure is ergodic with respect to translation operators [4, 9] for all d > 1.
In the case d = 1 it has a simple structure since then the variables w(z), = € Z, are
i.i.d. Note that in the probability space (Q, F, P) for the massless field theory, the
Borel algebra F is generated by the intersection of finite dimensional rectangles and
the hyperplanes imposing the gradient constraints for w(-). For d > 3 the gradient
field theory measure induces a measure on fields ¢ : Z% — R which is simply the
limit of the measures (1.13) as m — 0. For d = 1,2 the m — 0 limit of the measures
(1.13) on fields ¢ : Z¢ — R does not exist.

We can show that the inequalities (1.10), (1.11), (1.12) also hold when (2, F, P)
is given by the massless field theory environment.

Theorem 1.3. Let a: R4 — R¥4H1/2 pe ¢ C function on R with values in the
space of symmetric d x d matrices which satisfy the quadratic form inequality (1.1).
Let (2, F, P) be the probability space of gradient fields w(-) = V¢(-) determined by
the limit of (1.18) as m — 0, and set a(-) in (1.2) to be a(w) = a(w(0)), w €
Q. Suppose in addition that the derivative Da(-) of a(-) satisfies the inequality
IDa( )|l < A1. Then for d > 2 there exists o > 0 depending only on d and
A/X, such that (1.10), (1.11) and (1.12) hold for some positive constants v and
C = C1[A/AVX + 1], where v, Cy depend only on d and A/\.
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Our method of proof for Theorems 1.1-1.3 combine methods used to prove reg-
ularity of averaged Green’s functions for pde with random coefficients with meth-
ods for obtaining rates of convergence in homogenization. Regularity of averaged
Green’s functions was first proved in [6]. The results of that paper imply that for any
probability space (2, F, P) with translation invariant operators 7, : Q — Q, x € Z¢4,
the inequalities (1.10), (1.11) hold for & = 0 and (1.12) for any o < 0. The approach
of the paper is to obtain good control on the Fourier transform éam(é), ¢ e [-m, 74,
of Gay(z), x € Z% for €] close to 0. Using the Fourier inversion formula, one then
obtains the inequalities (1.10)-(1.12). In [7] the inequality (1.12) is proven with
a =0, and in fact Holder continuity of the second difference of Ga ,(x), z € yAS
is also established. In contrast to [6], the approach of [7] is local in configuration
space, and uses results from harmonic analysis which are deeper than those used
in [6]. In particular, the Harnack inequality [12] for uniformly elliptic equations in
divergence form is needed to prove (1.12) with o = 0, whereas the proof of (1.12)
with a < 0 in [6] follows from interpolation inequalities.

We have already observed that the inequality (1.10) with a > 0 implies (1.9),
which gives a rate of convergence of £* in homogenization. In §8 we show how
the methodology used in proving theorems 1-3 can also be used to obtain rate of
convergence results. In particular we prove the following:

Theorem 1.4. Supposed > 2, n >0, and f : R? — R is a C* function of compact
support. Let u.(w,n,w) be the solution to (1.2) with h(z) = &*f(ex), » € Z9,
and upom(z,m), € R, the solution to (1.4). We further assume that (2, F, P)
is either the independent variable environment of Theorem 1.1, the massive field
theory environment of Theorem 1.2 or the massless field theory environment of
Theorem 1.3. Then there is a constant « > 0 depending only on d,A/X and a
constant C' independent of € such that
(1.14) sup ( |ue(z/2,%n,") — unom(z,n)|? ) < Ce®, for0<e<1.
z€cZd

The first results establishing a rate of convergence for homogenization of elliptic
PDE in divergence form were obtained by Yurinskii in [24]. Yurinskii’s result is
stronger than (1.14) since he proves that
(1.15) ( sup |uc(z/e,€*n,") — tnom(z,n)> ) < Ce®, for0<e<1,

z€cZd
but it does not apply to all the environments covered by Theorem 1.4. Yurinskii’s
assumption on the environment is a quantitative strong mixing condition. Thus
let x(-) be a positive decreasing function on R* such that lim,_,~ x(¢) = 0. The
quantitative strong mixing condition is given in terms of the function x(-) as follows:
For any subsets A, B of Z¢ and events I'4, I'g C €2, which depend respectively only
on variables ¢(x), « € A, and ¢(y), y € B, then
(1.16) [P(TANTs) — PCAPTE)] <x(inf |o—y|).
r€EA,yeB

In the proof of (1.15) he requires the function x(-) to have power law decay i.e.
lim, 00 ¢®x(g) = 0 for some a > 0. This condition evidently holds for the inde-
pendent variable environment of Theorem 1.1, but is only known to hold for the
massive and massless field theory environments in the Gaussian case where the
function V() of (1.13) is quadratic. Recently Caffarelli and Souganidis [3] have
obtained rates of convergence results in homogenization of fully nonlinear PDE
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under the quantitative strong mixing condition (1.16). In their case the function
x(q) is assumed to decay logarithmically in ¢ to 0, and correspondingly the rate
of convergence in homogenization that is obtained is also logarithmic in €. In the
fully nonlinear case a stronger assumption on the function x(-), for example power
law decay, does not yield a stronger rate of convergence in homogenization.

Rates of convergence in homogenization when (£, F, P) is either the massive
field theory of Theorem 1.2 or the massless field theory of Theorem 1.3 were first
obtained in [18]. The main tools used to prove these results are the Brascamp-Lieb
(BL) inequality [1] and Meyer’s theorem [15]. Meyer’s theorem is a consequence
of the continuity in p of the norms of Calderon-Zygmund operators acting on the
spaces LP(Z9) of functions whose pth powers are summable. In [5] it was shown
that Meyer’s theorem could also be used to obtain a rate of convergence in the
independent variable case of Theorem 1.1. In recent work of Gloria and Otto [10, 11]
the independent variable case was taken up again, showing that the method of [18]
can also be implemented in this case by assuming a weakened version of the BL
inequality. Because of the perturbative nature of Meyer’s theorem, the method of
[18] alone does not yield optimal rates of convergence in homogenization. However
by combining the method with some deterministic estimates on Green’s functions,
optimal rates of convergence to homogenization are obtained in [10, 11].

In the present paper we follow the methodology of [6] to obtain estimates on
Gan(€), € € [=m,m)%, which imply (1.10), (1.11) with o = 0. The estimates on
éayn(f) are improved by the use of Meyer’s theorem for the independent variable
environment, and by the BL inequality plus Meyer’s theorem in the field theory case.
The inequalities (1.10), (1.11) for some « > 0 follow then upon using the Fourier
inversion formula. To prove (1.12) we also have to use the results of [7] to estimate
the contribution of high Fourier modes. These estimates are a consequence of the
Holder continuity of the second difference of Ga (), « € Z4, already mentioned.

2. FOURIER SPACE REPRESENTATION AND ESTIMATES

In this section we summarize relevant results of previous work [5, 6] which were
used to prove pointwise bounds on the Green’s function Ga, (), @ € Z%, defined
by (1.5). The starting point for this is the Fourier representation

1
(2.1) Gay(@) = W/[_M]d 1+ e(€)*al€,me(§)

where the d x d matrix function q(¢,7), &€ € R%, 1 > 0, is a complex Hermitian
positive definite function of (£,7), periodic in ¢ with fundamental region [—m, 7]¢,

which satisfies the quadratic form inequality
(2:2) Mg <q(&n) <Ay, E€RT, n>0.

The d dimensional column vector e(€) in (2.1) has jth entry e;(§) = e "¢ -1, 1 <
j<d.

The function ¢(-, -) is given in terms of the solution of an elliptic equation on .
For a measurable function ¢ : Q@ — C we define the £ derivative of ¢(:) in the j
direction 9 ¢, and its adjoint 0J; ¢, by

(2.3) Ojed(w) = e tY(re,w) — (W),
0 eP(w) = eiej'gql)(T_ejw)fw(w).

e—i&.a:

dg



6 JOSEPH G. CONLON AND THOMAS SPENCER

We also define a d dimensional column £ derivative operator 0¢ by ¢ = (01,¢, ..., Oa,¢),
which has adjoint 97 given by the row operator J; = (81‘76, ceens 8;)5). Let ®(&,n,w)
be the d dimensional row vector which is the solution to the equation

(24) n®(&,n,w) + Poia(w)d®(é,n,w) = —Pdfa(w), n>0, {€ERY weQ,

where P is the projection orthogonal to the constant function. Then ¢(§,7) is given
in terms of the solution to (2.4) by the formula

(2.5) q(&mn) = (a() )+ (a()9:2(n,-) ) -

The solution to (2.4) can be generated by a convergent perturbation expansion.
Let H(Q) be the Hilbert space of measurable functions 1 : @ — C? with norm |[|2)||
given by [[¢]|? = ( [¢(-)]? ). We define an operator T, on H(f2) as follows: For
any g € H, let ¥(&,n,w) be the solution to the equation

(26) (& mw) T Odu(Enw) = diglw). n>0, EER! weQ
Then T¢ »g(-) = 0¢p(€, 7, ), or more explicitly
(2.7) Teng(w) = > {VV*Gya(2)} expl—iz.g] g(row),

zE€Z?

where G, (-) is the solution to the equation
(2.8) nGy(z) + V*VG,(z) = 6(x), z€Z
It is easy to see from (2.6) that T¢, is a bounded self-adjoint operator on H(£2)
with ||T¢,,|| < 1, provided ¢ € R%, n > 0. Now on setting a(-) = A[l; — b(-)], one
sees that (2.4) is equivalent to the equation
(2.9) Oe®(&,1,-) = PTe n[b(-)0:®(E, 7, )] + PTe n[b()] -
Since ||Te || < 1 and ||b(w)|| < 1—-XA/A, w € Q, the Neumann series for the solution
to (2.9) converges in H ().

It will be useful later to express the operator 1% , in its Fourier representation. To

do this we use the standard notation for the Fourier transform h(¢), ¢ € [—m, 7)<,
of a function h : Z% — C. Thus

(2.10) Q) = 3 b, CeRY,
z€Z
and the Fourier inversion formula yields
1 . ,
2.11 hz) = —— h(¢)e™™¢ d VAN
(.11) @ = g [ WO, ae

Now the action of the translation group 7., = € Z%, on € can be described by a set
Ay, ..., Ay of commuting self-adjoint operators on L?(f2), so that

(2.12) f(re) = expliz.Alf(-), =€Z% feL*Q),
where A = (A44,.., Ag). It follows then from (2.7) and (2.12) that

e(§ —Ae"(§ — A)
2.13 Teng(r) = g(-) .
213 L) = et - Apete — )
It is easy to see that the function q(¢,n) is O for ¢ € R4, n > 0. In [5, 6] it was
further shown that if the translation operators 7., = € Z%, are ergodic on (£, F, P)

then lime .y 0,0)¢(€,m) = ¢(0,0) exists. We shall be able to extend this result
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by recalling the notion of weak mizing [21] of a measure preserving transformation
7 : Q — Q. Like ergodicity it is a spectral property. Thus 7 is weak mixing if
the operator U : L*(Q) — L%*(Q) induced by 7 ie. Uf(-) = f(:) for f € L*(Q),
has exactly one eigenfunction in L?(2), which then must be the constant function.
Just as with ergodicity, weak mixing can also be characterized directly in terms of
the probability measure P on €. The transformation 7 : ) —  is weak mixing if
=
. n _

(2.14) Jim ;O |P(™"ANB) — P(A)P(B)| = 0, for A,BeF.

In subsequent sections we shall establish weak mixing of transformations 7 by ac-
tually proving that they are strong mizing, that is

(2.15) lim P(r""ANB) = P(A)P(B), for ABeF.
n—oo

Thus our proof of weak mixing uses the criterion (2.14) implied by (2.15), whereas
in the following proposition it is the spectral definition of weak mixing which is
useful for us.

Proposition 2.1. Suppose that the operator Te, is weak mizing on  for some
j, 1 <4 <d. Then q(&,m), € € RY n > 0, estends to a continuous function on
£eRY n>0.

Proof. We first define an operator T¢ , on H(2) for £ € R% and n = 0. To do this
first observe from (2.6) that if the function g(-) € H(Q2) satisfies 9fg(-) = 0, we
should set T¢ og(-) = 0. Alternatively if g(-) = d¢h(-) for some h € L*(Q2), then
from (2.7) we should set T¢ gg(-) to be given by the formula,

(2.16) Teog() = D I {V'(V'V)Goya(@)} expl—iz.g] h(r-) -
z€Z9

In view of the inequality
(2.17) IVH(V*V)G,(z)] < C/[1+ 2| zeZ n>0,

for a constant C' depending only on d, we see that the right hand side of (2.16) is in
H(£2). Since the orthogonal complement in H(Q2) of the null space of the operator
Of is the closure of the linear space & () = {9¢h(-) : h € L?(Q)}, we have defined

Te,09(-) for a dense set of functions g € H(Q2) and
(2.18) Jim |[Te ng — Teogll = 0.

Using the fact that ||T¢ || < 1 for all n > 0, one sees that the operator T¢ o, defined
above on a dense linear subspace of H(£2), extends to a bounded operator on H(£2)
with norm ||T¢ || < 1, and the limit (2.18) holds for all g € H(12).

Having extended the operators T¢ ,, £ € R?, 1 > 0, to the region £ € R, 1 >0,
we can use this fact to similarly extend the function ¢(§,n). Thus for m = 1,2...,
let the matrix function h,,(&,7) be defined for n > 0, ¢ € R, by

(2.19) h(§,m) = (b(-) [PTeyb()]™ ),
whence (2.5), (2.9) imply that

(2.20) a&m) = (a() ) =AD hm(&n) .
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Evidently we can extend the definition of ¢(£,n) to n = 0 by setting n = 0 in (2.19),
(2.20). In view of (2.18) one has that lim, 0 q(&,n) = ¢(&,0), € € RY, whence the
inequality (2.2) continues to hold in the extended region.

Assume now that the operator 7, is weak mixing on 2 for some j, 1 < j < d,
and let £ ¢(Q) = { 9j,e9(-) : g € H(Q)}. Then [21] the closure of &; () C H(Q)
contains the orthogonal complement of the constants i.e. {g € H(Q) : { g() ) =
0} C & ¢(Q). Suppose now g € H(Q) and ( g(-) ) = 0. Then for any € > 0 there
exists 6 > 0 depending only on €,£ and g(+), but not on n > 0, such that

(2.21) 1Terng — Tengll < e,

provided |’ — &| < 0. To see this first note that there exists g. ¢ € £;¢(2) which
satisfies ||g — 0j.egc.¢ll < €/3. Next observe that

(2.22)

I Terniegee —Tendieges I < || TermOiergee — TemOjeges ||+ CIE" — &l llgeell;
where the constant C' depends only on d. It also follows from (2.17) that there is a
constant C' depending only on d such that

(2.23) | Terndiegee — Temdiegee | < ClE — €Y l|geell -
The inequality (2.21) follows from (2.22), (2.23) on choosing § sufficiently small
independent of n > 0.

Since ( Pb(:) ) = 0, the continuity of the function hq(§,n) in the region £ €
R?, 7 > 0, immediately follows from (2.21). The continuity of the functions
h(-,-), m > 1, follow similarly on using the uniform bound ||T¢,| < 1, § €
R, n>0. O

Remark 1. Note that the projection operator P in the formula (2.19) plays a
critical role in establishing continuity. For a constant function g(-) = v € C%, one
has

(2.24) Teng(:) = [e(€) vle(€)/In/A +e(€)e(€)]

which does not extend to a continuous function of (&,m) on the set ¢ € R, n > 0.

Next we show that the function ¢(¢,7n) with domain & € R?, 5 > 0, can be
extended to complex & = RE + iS¢ € C? with small imaginary part.

Lemma 2.1. For fized n satisfying 0 < n < A, the C* operator valued function
¢ — Te,, from R? to the space of bounded linear operators B[H ()] on H(SY) has
an analytic continuation to a region {& € C4 : |S¢| < Ci+/n/A}, where Cy is a
constant depending only on d. For £ in this region the norm of T¢ , satisfies the
inequality || T¢ || < 14 C2|S€?/[n/A], where the constant Cy depends only on d.

Proof. The fact that there is an analytic continuation to the region {¢ € C¢ : |J¢| <
Ci+/n/A} is a consequence of the bound on the function G, (-) of (2.8),
Cs exp[—Cyy/1 |z]]
2.25 VvV G <
where the constants Cs, Cy depend only on d. The bound on ||T% .|| can be obtained

from (2.6). Thus on multiplying (2.6) by (&, n,w), taking the expectation and
using the Schwarz inequality, we see that

(226) {1 - C5|S¢P/In/A] } 19meto(€,m, )1 + %Ilz/f(f,n, P <

reZl 0<n<l,
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1 1
{ 5+ G /al Flal® + Jlomevten 1P + kllwien. 1.

where the constants Cs,Cg depend only on d. Evidently (2.26) yields the bound
on ||T¢ || on taking C; sufficiently small, depending only on d. O

Corollary 2.1. For fized n satisfying 0 < n < A, the d x d matriz function q(§,n)
with domain & € R%, has an analytic continuation to a region {£ € C? : |I¢| <
Cy1+v/An/A2%}, where Cy is a constant depending only on d. There is a constant Cs
depending only on d such that for & in this region,

CoA? ||

A Vn/A

Proof. The fact that ¢(£,n) has an analytic continuation follows from the rep-
resentations (2.19), (2.20), Lemma 2.1 and the matrix norm bound |b(w)| <
1—A/A, w e Q. On summing the perturbation series (2.20), we conclude that
for ¢ satisfying |S¢| < C1+/An/A2, then ||q(&,m)]] < C2A%/\ for a constant Co
depending only on d, provided C; is chosen sufficiently small, depending only on

d. By arguing as in Lemma 2.1 we also see that there are positive constants Cy, Cy
such that

(2.28) | Tey = Trenll < ColS€El/Vn/A, €€ C [S€] < Crv/n/A .
The inequality (2.27) follows from (2.28). O

(2.27) lla(€,m) — q(RE,n)|| <

We have seen in Corollary 2.1 that the periodic matrix function ¢(¢ +ia,n), £ €
[—7,7]¢, is bounded provided a € R satisfies |a| < Cy1/An/A2. Tt was shown in [6]

that derivatives of this function are in certain weak LP spaces. For 1 < p < oo the
d

weak LP space L ([—m,7]?) is defined to be all measurable functions f : [-7, 7]? —
C such that
(2.29) meas{€ € [—m, 77 [[(©)] > u} < CPJuP, >0,

The weak LP norm of f(-), || fllpw is the minimum constant C' such that (2.29)
holds. From [6] we have the following:

Proposition 2.2. Letd > 1,0 <n < A, 1 <k, k' <d, and m = (mq,..,mq) be
a d—tuple of non-negative integers with norm |m| = my + --- + mg. Then there
exists a positive constant Cy depending only on d such that if |a] < Cyy/An/A% and
|m| < d, the function

d m;
8 J . d
(2.30) j1;[1 (6@) Qe (€ +ia,m), &€ [-m 7],
is in the space L ([—m,71]%) with p = d/|m| and its norm is bounded by CA, where
the constant C' depends only on d and A/ > 1.

If|m| =d—1and 0 < & <1 then for any p € R? satisfying |p| < 1, the function
(2.31)

d m;
H (aé;) [ qeir (€4 p+ia,n) — qrp (€ +ia,n) ]/|p|1*5, ¢ e [—W»W]d 7
j=1 N5

is in the space LE ([—m,7|?) with p = d/(d — &) and its norm is bounded by CsA,
where the constant Cs depends only on d, A/X and § > 0.
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3. CONFIGURATION SPACE ESTIMATES FROM FOURIER SPACE ESTIMATES

In this section we shall show how to obtain configuration space estimates on
Gay(z), © € Z%, from Fourier space estimates on the function ¢(¢,7), £ € R% In
[6] it was shown that for d > 3, Proposition 2.2 implies the inequality

Cexp|—v|z|/n/A
(3.1) 0 < Gaylz) < A([J;|+|1|)d—2/ ], reZl 0<n<A,

where the positive constants C, v depend only on d and A/\. It was also shown that
for d > 2, Proposition 2.2 implies a similar inequality for the gradient of Ga (),

Cexp[ 7‘$| V 77/1&] d
2 VGa < , ez, <A.
(3 ) | 77(95)\ < (| | 1)d71 x 0<n

Finally for d > 1, Proposition 2.2 implies Holder continuity of VGa (),

—s Cs exp[—v|z[y/n/A]
) A < /. 1=0
(3 3) ‘VGa,n(x ) VGa,n(m)‘ — |:E :E‘ A(|1‘| + 1)(1_5 )

0<n<A, 2 xeZ 1/2< (2| +1)/(z] +1) <2,

for any §, 0 < § < 1, where the constant Cs depends now on d > 0 as well as on d
and A/\. Here we assume a strengthened version of Proposition 2.2 (Hypothesis 3.1
below), and show how it implies the inequalities (1.10), (1.11) and almost implies
(1.12). In subsequent sections we shall establish Hypothesis 3.1 for the environments
(Q, F, P) introduced in §1.

Hypothesis 3.1. There exist positive constants C1,Cs and o < 1 depending only
on d and A/X, such that

(34) g€, n) —a& )| < CiA| € —&* + (' —n)/A|*/ } ;
0<n<n <A, ¢,¢eChwith |S¢]+ |IE| < Can/n/A .

With the same assumptions as in Proposition 2.2, the derivative (2.30) is in the
space LP ([—m,7]|%) with p = d/(Jm| — «) and its norm is bounded by CA, where
the constant C depends only on d and A/X\. The difference (2.31) is in the space
LP ([—m, 7]¢) with p=d/(d — 6 — «) and its norm is bounded by CA, where now «
and C' depend on ¢ as well as d and A/\.

Hypothesis 3.1 enables us to compare the function Ga,(z), = € Z%, to the

function Gt (1), x € Z%, defined by

677;5.1

; 1
3.5 Gatiee (z) = ——3 /
( ) homJ]( ) (27T)d [—m,x]¢ T + 6(5)*61(070)@(5)
Theorem 3.1. Assume the function q(-,-) in (2.1) satisfies Hypothesis 3.1, and

n lies in the interval 0 < n < A. Then there exist positive constants «,~y,C with
a <1, depending only on d and A/ such that

de .

attice c -7/ T
(36) |Ga,n(1’) — Gght;mm(xﬂ < W@ vV n/Al \7 T c Zd,
c

(3.7) |VGay(x) — VG (1) e WAl g e 7

< -
- A(‘I| _|_1)d—1+a



STRONG CONVERGENCE 11

where (3.6) holds if d > 2 and (3.7) if d > 1. Ford > 1 and 0 satisfying 0 < § <1,
there is the inequality

(38) { [VGa,n(!L'/) _ leattice (.’IJ/)} _ [VGa’n(.’IJ) _ VGlattice (LU)] ‘

Ahom " @hom 7

C
< o'l g e VL @he e 2 12 < (WD /(2 <2

where C' and o in (8.8) depend on § > 0 as well as d and A/X\. In particular oo < 6.
Proof. Let Ga,...n(z) be the function

~ 1 e~z

. Ga,... = —— d¢ ,
39 o) = g | A
so (2.1) and Corollary 2.1 imply that

s _ er” —i.x
310 Gagl@) = Conunl®) = oz [ s@) e
where the function f(&) is given by the formula
(3.11)
€)= e(€ —ia)*{q(0,n) — q(§ +ia,n)}e(¢ + ia)

[0+ e(§ —ia)*q(0, n)e(§ + ia)] [n + e(§ — ia)*q(§ + ia, n)e(§ +ia)] -
It follows from (3.4) and Corollary 2.1 that there are positive constants Cj,Cs
depending only on d and A/ such that the function in (3.11) is bounded by

Cq
(3.12) lF©] < ;. for |a| < Cav/n/A .
Afn/A+ le(§)P=2 i
Choosing a appropriately and o < 1 one sees already from (3.10), (3.12) that if
d =1 the function |Ga ,(z) — Ga,,..»(x)| is bounded by the RHS of (3.6) provided

Vn/Alz| = 1. i
We wish to show for d = 1 that |VGa ,(2) — VGay,,..n(z)| is bounded by the RHS
of (3.7). The representation of VGy ,(x) — VGa,,,. »(x) corresponding to (3.10) is

- ea.x ita
319 VOuple) = V@) = o [ TEel©) de.
Let p € R? be the vector of minimum norm which satisfies e~ = —1. Then we
have that
—i.x 1
Gy | | e < g /[ L) —ele+ )16+ )] e

The integral on the RHS of (3.14) can be estimated by separately estimating the
integral over the region |£| < C/[|z| + 1] and [£| > C/[|z| 4 1] for sufficiently large
universal constant C. Using the estimate for |f(£)| obtained from (3.12) and the
fact that |p| < C'/[|z|+ 1], we see that the integral over |£| < C/[|z|+ 1] is bounded
by a constant times [|z| + 1]7®. To estimate the integral over [¢| > C/[|z| + 1] we
use the Hélder continuity of the function f(-). From (3.4) it follows that

. Cilp|*
(3.15) le(&)f(&) E+p)f(E+p) < A[n/A + |e(€)|2]72

for a constant C; depending only on d and A/, provided C is sufficiently large.
Hence the integral over || > C/[|z[ + 1] is bounded by a constant times [|z| +
1]~ log[|z| +2]. We have shown that |VGa ,(z) — VGa,,,.n(2)| is bounded by the

1€l > C/ll= + 1],
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RHS of (3.7) for any « less than the Holder constant in (3.4). We can similarly
bound |VGa,,,. »(x) — VGt ()] by the RHS of (3.7) on using the estimate

Ahom ;"
14(0,m) — ¢(0,0)|| < CA(n/A)*/? from (3.4). Hence (3.7) holds for d = 1, and by
similar argument (3.8).
In order to prove (3.6) for d > 2 we need to use the bounds on the derivatives of
the function ¢(-,-) given in Proposition 2.2. For d = 2 the first derivative estimate
is sufficient. Thus we write

3.16 —IET L) dE = T F(E) dé+
(310) /[—mwe © /|s|<0/[|¢+1}6 ©

/ (e (€)] e 67 f(e) de— -
le|=C/llz|+1] |

x|?

s / e [V (6] de
2] [€1>C/llal+1)

where n(&) is the unit inward normal vector at £ on the sphere {|¢| = C/[|z| + 1]}.
It follows from (3.12) that the first two integrals on the RHS of (3.16) are bounded
by Cy/A[|x| + 1]9=2+2 for some constant Cy depending only on d and A/\. The
third integral can be similarly bounded for d = 2 by using the fact from Hypothesis
3.1 that the function Veq(€ + ia,n) is in L2 ([—m, 7]?) with p = 2/(1 — «). To see
this we note that for any measure space (X, B, ) and 1 < p < co one has that if
g € LP (X) then

(3:17) / gldi < Cyllglyw m(E)'"VP | EeB,
E

where C,, depends only on p. It follows that for n =1,2, ..,

012—(1—a)n

Vef(©)l dE < 5

(3.18) Az + 11

/2"10/[Ir+1]<5<2"0/[lm+1]
where C; depends only on d = 2 and A/A. Hence on summing over n > 1 in (3.18)

we see that for d = 2 the function |Gy, (2) — Gay,,, »(2)| is bounded by the RHS of
(3.6). We can bound |G, ,(z) — Gitice ()| using the Holder continuity (3.4) of
q(0,7m), 0 <n <A, by the RHS of (3.6) for any « smaller than the Hélder constant
in (3.4). We have therefore proven (3.6) for d = 2.

To prove (3.7) for d = 2 we need to use the fact from Hypothesis 3.1 that
the difference [Veq(€ + p + ia,n) — Veq(€ +ia,n)]/|p|*~° is in LB ([—,7]?) with
p =2/(2— 6 — ) and norm bounded independent of |p| < 1. Thus in bounding
VGay(x) — VGayomn(2) we write the integral over ¢ as in (3.16). The first two
terms on the RHS can be bounded in a straightforward way. To bound the third

term we need to estimate the integral

(3.19) / e (2.9)[e(€) F(€)] dE =
[€1>C/[|=|+1]

1

5 [ T (1.V)e(€)f(€) — el€ + p)[(€ +p)] dE + Brror.
[€[>C7 /[|z|+1]

In (3.19) the vector p € R% is as in (3.14) and C” is a universal constant. The error
term in (3.19) is bounded by

(3.20) |(2.Ve)[e(€) F(€)]] dE

Error < /
C/10[|z|+1]<|¢]<10C/[|=|+1]
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which can be appropriately estimated by using the fact that Veq(¢ + ia,n) is in
LP ([—m,7)?) with p = 2/(1 — «). Similarly to (3.18) we have for n = 1,2, .., the
bound

(3.21)

0627(170476)71|p|176

Vel F©)—e(Etn) fErolll dE < —Frrser—

/2"IC’/[|$+1]<E<2”C’/[|€L’+1]
where Cs depends only on d = 2 and A/\. Choosing now o < 1 — ¢ in (3.21), we
conclude that |VGa,,(z) — VGa,.,. n(x)| is bounded by the RHS of (3.7). As in the
previous paragraph, we can bound |VGa,,,, »(z) — VG2t (3)| using the Hélder
continuity (3.4) of ¢(0,7), 0 < n < A, by the RHS of (3.7) for any « smaller than
the Holder constant in (3.4). We have therefore proven (3.7) for d = 2.

We proceed similarly for the proof of (3.8) in the case d = 2. Thus we write

(3.22) / [T — 6] (2.V)[e(€) F(6)] dE =
[E1>C/[|x]|+1]

5/ 776 — I @ TOe(€) () — o€ + P+ )] dE +

1€1>C" /[l]+1]

%[1 — ¢ir (@' =) / e % (2.V¢)[e(€ + p) f(E+ p)] d¢ + Error.
1€1>C" /[l +1]

where p € R? is the vector of minimum norm such that e~ire = _1, Arguing as
n (3.20) we see that
(3.23) | Error | < Cilz — 2'|/A[]=] + 1],

where C; depends only on A/\. From (3.21) we see that the first term on the RHS
of (3.22) is bounded by the sum

[e%s} 21'7,0/ 1-6 05/27(17a76/)n|p|176/
/1-6
(3.24) ElEEr Y < EES ) NCES G

n=1

for any ¢’ satisfying 0 < §’ < 1. Provided o < § we may choose §' > 0 so that the
sum in (3.24) converges, whence the sum is bounded by Cs|z —/|* =% /A[|z| +1]*°
for a constant Cs depending only on § > 0 as well as A/A. The second term
on the RHS of (3.22) is [1 — ¢?(#'~%)] times an integral similar to the integral
on the LHS of (3.19). Hence the second term is bounded in absolute value by
Cylx — | /A[Jz| + 1]%, where C; depends only on A/A. We have therefore shown
that |VGa,,(z) — VGa,....n(2)| is bounded by the RHS of (3.8). Since we can argue
as previously to bound |VGa,, . ,(z) — VGRtce ()], the proof of (3.8) is complete.

To prove the result for d > 3 we use multiple integration by parts and the
integrability properties of the higher derivatives of ¢(¢ + ia,n), & € [—m,7]%, given
in Hypothesis 3.1. (]

Finally we compare the function Gttice (1) of (3.5) to the Green’s function
Gapom.n(+) for the PDE (1.4).

Lemma 3.1. Assume n lies in the interval 0 < n < A. Then there exist positive
constants v, C depending only on d and A/ such that

i C o ST R
(3.25) \G?::,ff}n( ) = Gayom,n ()| < WC kel e 74 — {0},
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attice c — T
(3:26)  [VG5(@) = VG ()| < grmmgyae VYL w e 20— {0},
(3.27)
attice 9 — T
VVGE (@) = V¥ Gy a(@)| < gromgyare V"L e e 20— {0},

where (3.25) holds if d > 2 and (3.26), (3.27) if d > 1.

Proof. Taking anem = ¢(0,0) in (1.4), we see from (3.5) that Gt () is the
Green’s function for the discrete elliptic equation on Z¢ corresponding to (1.4).
To prove the theorem we follow a standard method of numerical analysis for esti-
mating error between the solution of a continuous problem and its approximating
discrete problems. The method is to regard the solution of the continuous prob-
lem as an approximate solution to the discrete problem. An alternative approach
based on comparison of the Fourier representation (3.5) of the lattice Green’s func-
tion Gﬁt;rfen() to the Fourier representation of the continuous Green’s function
Gapom.n(+) is pursued in [16].

Let f : R = R be a nonnegative C* function with support contained in the
ball {z € R : |z| < 1} and u(-,n) be the solution to the PDE (1.4). With V,, V?
denoting the discrete operators (1.3), we have that
(3.28)
nu(z+2,0)+Vianem Vau(r+z,m) = nu(z+z,n)+TracelanomA(z+2)], 2 € Z9, 2 € RY,

where the d x d matrix A(y) = [4;;(y)], y € RY, is given by the formula
(3.29)

Ais(y) = uly) +uly+e; —er) —uly +e;) — uly —e;) = E[a“‘y””)} ,

0y;0y;

with Y; ; the random variable uniformly distributed in the unit square {y,;e; —y;e; €
R%:0 <vy;,y; <1}. Tt follows from (1.4), (3.28), (3.29) that

(3.30) nu(z+2z,0)+ViapemVeu(z+z,n) = f(z+2)+h(z+2), =e€Z 2eRY

where the function h : R? — R is given by the formula

d
o Ouly + Vi, n)} &uly n)}
3.31) h = Ahom(?, E = - : ’ € Rd '
(331) h(y) = D anoml J){ { B8y:0y; DyiOy; Y

ij=1
We conclude that

(3.32) u(x+2z,n) = Z Glattice (o )[fly+2)+hly+2)], z€Z? zcRe.

@hom;"
yeZa
Let Qo C R? be the unit cube centered at the origin. Then we have that

(3.33) / do |u(@+zm)— 3 G (o) fy+2)| =

o yeZd

(Gosran(®) = G @) [ 1la) dy + Brvor(a)
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where |Error(x)| is bounded by the RHS of (3.25). Next we observe from (3.31)
that

(3.34) / dz Y hly+z) =0,

yez?
and hence (3.32) implies that the LHS of (3.33) is equal to
) [ e Y Gk ) - G )] by +2)

0 yezd

Using the fact that the distribution of Y;; is the same as the distribution of —Yj ;
we see from (3.31) that h() is bounded by the fourth derivative of u(-,n), whence
we conclude that there is a constant C' such that

C
3.36 h(y)| < —————e VA R? .
(3.36) )| < gremee VT ve
The inequality (3.25) follows from (3.33), (3.35), (3.36). The inequalities (3.26),
(3.27) follow by similar argument. (]

Evidently the inequalities (3.6), (3.7) of Theorem 3.1 together with Lemma 3.1
imply the inequalities (1.10), (1.11).

4. INDEPENDENT VARIABLE ENVIRONMENT

Our goal in this section will be to prove Hypothesis 3.1 in the case when the
variables a(7,-), = € Z%, are independent. Following [5] we first consider the case
of a Bernoulli environment. Thus for each n € Z? let Y;, be independent Bernoulli
variables, whence Y,, = +1 with equal probability. The probability space ({2, F, P)
is then the space generated by all the variables Y,,, n € Z%. A point w € 2 is a set
of configurations {(Y;,,n) : n € Z4}. For y € Z¢ the translation operator 7, acts on
Q by taking the point w = {(Y;,,n) : n € Z4} to Tyw = {(Yniy,n) : n € Z9}. The
random matrix a(-) is then defined by
(4.1) a(w) = 1+Y) Iy, w={(Y,,n):neZl},
where 0 < v < 1. In [5] we defined for 1 < p < oo Fock spaces FP(Z4) of complex
valued functions, and observed that F2(Z9) is unitarily equivalent to L2(£2). Thus
for each N = 1,2, .., let Z%N be the collection of all sets of N distinct elements
{z1,...;an} with z; € Z¢, 1 < j < N. For 1 < p < oo a function ¢y : Z4N — C
is in LP(Z%N) with norm [[¢y||, if

(4.2) lonlls = > Jenm)P < .
meZN

The Fock space FP(Z4) consists of all sets ¢ = {1n : N = 0,1,2,..} of functions
Yy € LP(Z3N), N =1,2,.., and ¢y € C with norm |||, satisfying

(4.3) lellz = ol + 3 llowl < oo .
N=1
We can similarly define Fock spaces ’Hp}-(Zd) of vector valued functions with
domain C?, such that HZ(Z%) is unitarily equivalent to H({2). Hence we can
regard the operator T, of (2.7) as acting on H%(Z?), and by unitary equivalence
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it is a bounded operator satisfying ||T¢.,|| < 1 for £ € R, 5 > 0. From (2.7) we

see that the action of T¢, on a function ¢ = {¢)y : N =0,1,2,..} in HZ(Z?) is

given by the formula

(4.4)

Tenn (21, ., xN) = Z {VV G, a (@)} exp[—iz' £y (x1—2', .., any—2") , N > 1.
' €Z4

We may apply therefore the Calderon-Zygmund theorem [22] to conclude the fol-

lowing;:

Lemma 4.1. For £ ¢ R% 0 <n <1, and 1 < p < oo, the operator Ten 15 @
bounded operator on HY%(Z?) with norm ||T¢ , ||, satisfying an inequality ||T¢ |, <
1+ 6(p), where lim,_,26(p) = 0.

It is well known for the independent variable environment (92, F, P) that the
operators T, j = 1,..d, are strong mixing on 2. Hence Proposition 2.1 implies that
the function ¢(&,n) with domain ¢ € [—7, 7%, 0 < n < A, is uniformly continuous.
Lemma 4.1 enables us improve this result to uniform Hélder continuity.

Proposition 4.1. The function q(&,m) of (2.5) with domain ¢ € [—m,7]¢, 0 <
n < A, is uniformly Hélder continuous. That is there exist positive constants C, a
with 0 < a < 1 depending only on d and A/X, such that ||q(&',n') — q(&n)| <
CA[E =€+ —m)/A*? ] for €.& € [=m,7]* and 0 < n,7’ < A.

Proof. We use the representation (2.19), (2.20) for ¢(&,n). From (2.19) we have
that

m—1
m—1—j j
(b() [PTer yb()]" 7 PTery = Te ] b() [PTe b)) -
§=0
From (2.7) and the weak Young inequality we see that for 0 < o < 1, the operator
P(Te . — T ) from HE(Z?) to HZ(ZY) with p = 2d/(d + 2c) is bounded with
norm satisfying

(46) ”P [Tﬁ’,n - Té,n] ||p,2 < C|f/ - f|a

for a constant C' depending only on d if d > 3. In the case d < 2 we need to take
a < d/2, in which case C depends also on «. For the inequality (4.6) to hold it is
necessary to include the projection P (see remark following Proposition 2.1).

It follows now from Lemma 4.1 and (4.5), (4.6) that

(4.7) 1 (€'m) = hin (&)l < Cl€" = €1 = A/A)" T 1+ 6(p)" ",

where p = 2d/(d + 2a). Note here we are using the fact that (4.1) implies that a
column vector of b(+) is in H%(Z?) with norm less than 2v/(1 + ~). The uniform
Hélder continuity of the family of functions ¢(-,n), 0 < n < A, follows from (4.7)
and Lemma 4.1 by taking p sufficiently close to 2 so that (1 — A/A)[1 4 4d(p)] < 1.

The uniform Holder continuity of the family of functions ¢(¢,-), & € [—m, 7%,
can be obtained in a similar way by observing that

(4.8) 1P (Teay = Tea) lp2 < Ol —m)/A1,
where C and p are as in (4.6). O
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For 1 < p < oo let LP(Z%, C? ® C%) be the Banach space of d x d matrix valued
functions g : Z¢ — C% ® C? with norm ||g||, defined by
(4.9)

lole= sup 3 lg@l Ep<oo, llgle= sup [sup g<x>v|},
vECd:\v|:1I€Z(i veC:|v|=1 L z€Zd

where |g(x)v| is the Euclidean norm of the vector g(z)v € C¢. We similarly define
spaces LP([—, 7] x Q, C?® C?) of d x d matrix valued functions g : [-7, 7]¢x Q —
C? ® C? with norm ||g|, defined by

(4.10) [lglly = sup
P veCe:|v|=1 (27T)d

[t e ity <o

sup  ([g(&,-)of* )/
ge[_ﬂ'vﬂ']d

9lloc = sup
veCd:|v|=1

Forn > 0,m = 1,2, .., we define an operator T}, ,, from functions g : 74— ClpCt
to periodic functions Ty, ,g : [-7,7]¢ x @ — C?® C¢ by

(4.11) Tinng(€,) = Y gl@)e” ™ o Pb(-) [PTe,b()"

z€Z4
We shall be interested in showing that for certain values of p, ¢ the operator T, ,, is
bounded from LP(Z?, C?®C?) to L([—m, 7% x Q, C*® C4), uniformly in > 0. In
[6] this was already shown for p = 1,¢ = oo and p = ¢ = 2, with the corresponding
operator norms ||y, ,|p,q satisfying the inequalities
22 < Vd (m+1)(1=MA)".

Observe now from the proof of Proposition 4.1 that for the independent random
variable environment corresponding to (4.1) we can improve upon (4.12). Thus
there exists po(A/\) with 1 < pg(A/\) < 2 depending only on d and A/, such that

(4.13) T llpoe < (L=A/A)™2, for 1 <p < po(A/A) .
It follows now from (4.12), (4.13) and the Riesz convexity theorem [23] that

(4.12) [T ]

1,00 S (1 7)\/A)m7 ||Tm77]|

(4.14) || Trmllp.g < Vd (m+1)(1 =X /A)™2 for1<p<2,

1 1 1 2

and 1> 24150 {1} {1} |

P g Po(A/A) q
We can use (4.14) to obtain an improvement on Proposition 2.2 in the case |m| = 1.
Lemma 4.2. Suppose d > 2 and (2, F, P) in Proposition 2.2. is the Bernoulli
environment corresponding to (4.1) Then in the case |m| =1 the derivative (2.30)
is in the space LP([—m,m]%) with p = [d + §(A/N)]/Im| and its norm is bounded
by AC(A/N), for positive constants 6(A/X) and C(A/N) depending only on d and
A/XA>1.

Proof. Observe from (2.13) and (2.19) that

(4.15) ((;;) hen(€1) = 3> ([Tong1-kmr (6N Trmhin(€,0) )

k=1r=1
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for certain d x d matrix valued functions g;.(x), h;(z), * € Z%. The functions
gjr(-), hjr(-) are determined from their Fourier transforms (2.10) by the formula

_ 0 [ e(=Qe(=0)"
9G Ln/A+e(=0)re(=Q)]

which follows from (2.13). Evidently one can choose the g;.(-), h;(-) satisfying
(4.16) so that they also satisfy the inequality

C exp[—y|z|y/n/A]

(o[ + 1)1z 7
for positive constants C, v depending only on d > 1. Hence we may estimate the
RHS of (4.15) by using (4.14) for any p > d/(d — 1/2). Since we require p < 2 in
(4.14) it is only possible to do this when d > 2. The result follows. d

(4.16) > 500 hi Q) =
r=1

417) gz @)+ [[hyr (@) < z€Z% 0<n<A,

As in [6] we need to obtain norm estimates analogous to (4.14) on multilinear
versions of the operator (4.11) in order to prove estimates on the derivatives (2.30)
for |m| > 1. Forn > 0, k > 1 and mq,ma,..,mi; = 1,2, .., we define a multlinear
operator Ty, my...my.n from a sequence [g1, g2, .., gi] of k functions g; : Z? — C¢®

C? j = 1,..,k, to periodic functions Ty yms,mim 91> 92, -k [-m,7]e x Q —
C? @ C? by
(4.18)
k
—ix,. i—1
T?rzl,..,mk,’r][glag% "'agk](§7 ) = Z H gj(xj)e ! ETIng() [PTf,Ub(')]m] .

z1,.. 2 €LY j=1

For p satisfying 1 < p < oo let p’ be the conjugate of p, so 1/p+ 1/p’ = 1. In [6]
the following generalization of (4.12) was obtained:

Lemma 4.3. Suppose 2 < q < oo and p1,...,pr with 1 < p1,...,pr < 2 satisfy the
identity

1
(4.19) R U S

If for j =1,.., k, the function g; € LPi(Z4,C1® C?), then Ty o,y 91, 92, -Gk
is in Li([—m, 7% x Q,C% ® C9) and

k
(4.20) || Ty omzscmrnlgn, g2, 90 llg < d*2(m+1) (1= X/0™ T llgilly, -
j=1

where m = mq + -+ + my.

For the independent random variable environment corresponding to (4.1) one
can obtain an improvement of Lemma 4.3 analogous to the improvement (4.13)
over (4.12).

Lemma 4.4. Suppose (2, F, P) is the independent random variable environment
corresponding to (4.1). Then there exists po(A/X\) with 1 < po(A/X) < 2 depending
only on A/X and d such that if 2 < ¢ < 0o and

(121) L N +1<1+[1 1 Hl 2]
' qg — pi v P T q Po(A/N) ql’
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the function Ty msy...me.nlg15 92, --gk) is in LI([—m, 7% x Q,C¢ @ C¢) and

k
(422) || Ty marmicnlgns 92,98 g < @2 (m+1) (1= N0 T gy, -

Jj=1

Proof. We have already proved the lemma for k£ = 1 so we consider the case k = 2.
Observe that (4.22) holds if p» = 1 in a similar way to the proof of (4.14). Evidently
Lemma 4.3 implies that (4.22) also holds if ¢ = 2. Hence by an application of the
Riesz convexity theorem we conclude that the result holds for the case k = 2. To
prove the result for £ = 3 we proceed similarly, using the fact that we have proved
it for k = 2, and Lemma 4.3 with £ = 3 and ¢ = 2. (]

Proof of Hypothesis 3.1. We argue just as in [6] to show that for a = 0, Lemma 4.4
implies the derivative (2.30) is in the space LP([—m,7|?) with p = d/(|m| — a), and
hence in L2 ([—n,7]?). A similar argument holds for the difference (2.31). Since
one can easily show that the proofs of Proposition 4.1 and Lemma 4.4 continue to
hold for |a| < C1+/An/A?, we have proven Hypothesis 3.1 for the environment cor-
responding to (4.1). It is shown in [5] how to extend the argument for the Bernoulli
environment corresponding to (4.1) to general i.i.d. environments a(7,-), = € Z9.
We have therefore proven Hypothesis 3.1 for a(7,-), = € Z%, i.i.d. such that (1.1)
holds. O

5. MASSIVE FiIELD THEORY ENVIRONMENT

In this section we shall show that Hypothesis 3.1 holds if (2, F, P) is given by
the massive field theory environment determined by (1.13). The main tool we use
to prove the theorem is the Brascamp-Lieb (BL) inequality [1]. This is perhaps
natural to expect since the BL inequality is needed to prove that the operators
Te;; 1 < j < d, on Q are strong mixing, which by Proposition 2.1 implies the
continuity of the function ¢(&,7) in the region £ € R4, n > 0.

We recall the main features of the construction of the measure (1.13), where the
function V : R? — R is assumed to be C? uniformly convex with Hessian V(")
satisfying the inequality Ay < V"(-) < Al;. Let L be a positive even integer and
Q = Q1 C Z? be the integer lattice points in the cube centered at the origin with
side of length L. By a periodic function ¢ : ) — R we mean a function ¢ on @)
with the property that ¢(z) = ¢(y) for all z,y € @ such that © —y = Ley, for some
k, 1 <k < d. Let Qg be the space of all periodic functions ¢ : Q — R, whence
Qg with @ = Q, can be identified with R where N = L?. Let F¢ be the Borel
algebra for 2 which is generated by the open sets of RV. For m > 0, we define a
probability measure Py on (Qq, Fq) as follows:

(5.1) < F() >q,=

| Feen |- %

{V(Vd)(x)) + ;m2¢(a:)2} H d¢(x) /normalization ,
TEQ

TEQ

where F : RN — R is a continuous function such that |F(2)| < Cexp[A|z]], z €
RY, for some constants C, A. Differentiating the probability density in (5.1) we
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see that for any f € Qg

(5:2) (VL V(YD) +m* (f():6()] dog = 0,

where (-,-) denotes the Euclidean inner product on L?(Q). Hence by translation
invariance of the measure (5.1) we conclude that ((f,¢))q, = 0 for all f(-). The
BL inequality [1] applied to (5.1) and function F(¢(- )) = exp[(f7 @)] then yields the
inequality

(5-3) (exp[(f,P)l)aq < exp %(fv{—AAﬂLmz}*lf)

The probability space (Q, F, P) on fields ¢ : Z? — R is obtained as the limit of the
spaces (g, Fg, Pg) as |@Q| — co. In particular one has from Lemma 2.2 of [4] the
following result:

Proposition 5.1. Assume m > 0 and let F : R¥ — R be a C' function which
satisfies the inequality

(5.4) |DF(z)| < Aexp| Blz| ], z¢€RF,

for some constants A, B. Then for any x1,....x; € Z%, the limit

(5:5)  dim (F(¢(21), 6(@2), s B(wh)))0g = (F (B(21), $(2), - H(@k)))
exists and is finite.

From (5.3) and the Helly-Bray theorem [2, 8] one sees that Proposition 5.1 implies
the existence of a unique Borel probability measure on R™ corresponding to the
probability distribution of the variables (¢(z1), .., ¢(z,)) € R™, and this measure
satisfies (5.5). The Kolmogorov construction [2, 8] then implies the existence of a
Borel measure on fields ¢ : Z¢ — R with finite dimensional distribution functions
satisfying (5.5). This is the measure (1.13), which we have formally written as
having a density with respect to Lebesgue measure. Note however that we do not
have a proof of this fact. In particular, we do not know if the distribution measure
for the one dimensional variable ¢(z) € R is absolutely continuous with respect to
Lebesgue measure.

Proposition 5.2. Let (2, F, P) be the probability space corresponding to the mas-
sive field theory with measure (1.18). Then the operators 7;, 1 < j < d, on §2 are
strong mixing.

Proof. Tt will be sufficient for us to show [21] that for any m > 1 and x4, .., 7, € Z4,

(5:6)  lim ( f(Ba1 +n€r), o o +1€1)) g(B(21), o)) ) =
CFO(1), s ) ) { 9(DL1), e Blm) )

for all C*° functions f,g: R™ — R with compact support. We shall just consider
the case m = 1 since the general case follows from this in a straightforward manner.
We define the function i : Z — R by

(5.7)  h(n) = ( f(d(ne1)) g(¢(0)) ) = ( f(¢(0)) ) (9(4(0)) ), neZ.
Then Proposition 5.1 implies that for any function &k : Z — R of finite support,

(5.8) lim k = > kn

Q= nez
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where hg(-) is given by

(5.9) hq(n) = ( f(¢(ne1)) 9(6(0)) Jag = ( f($(0) )ag ( 9(¢(0) )ag, n € Z

We assume that Q = @, with L large enough so that the support of k(+) is contained
in the interval [-L/2+41, L/2—1]. Hence both k(-) and hq(-) are periodic functions
on Iy, = ZN[-L/2,L/2]. We may therefore write the sum on the LHS of (5.8)
in its Fourier representation. Thus the Fourier transform of a periodic function
F : I, — C is the periodic function F: I, — C defined by

(5.10) F(¢) = ) F(a)e™, (el
zelr

where I, is the set of lattice points of (27/L)Z which lie in the interval [—m, 7].
Then

(.11) > Khg(n) = 5= [ #(0) gl dc

nez

with integration on I, defined by
27
5.12 = — .
(5.12) AR
Celr

We can estimate iLQ (¢) by using translation invariance of the measure (5.1) and the
BL inequality. Thus translation invariance implies that

(513) ha(¢) = +{a(f,¢.0()) alg.C.001) Jag
where a(f, ¢, #(-)) is given by the formula

(5.14) a(f,¢,6()) = Y [f(d(ner)) = ( f(d(ner)) )ag]) €™ .

nely
The BL inequality implies then that

(5.15) (1a(f,¢ 0 Yag <

Hence there is a constant C' independent of @ such that |iLQ(()\ < C, ¢ el
Applying then the Schwarz inequality in (5.11) and using (5.8) we conclude that

1/2
(5.16) | > k(n)h(n) | < O{Zk(n)z} :

nez neZz

LIDf()Z
m?2 '

It follows that h(-) € L?(Z), and consequently lim,, o, h(n) = 0. O

We shall show how the BL inequality can be used to improve the most elementary
of the inequalities contained in §2. Thus let us consider an equation which differs
from (2.4) only in that the projection operator P has been omitted,

(517)  n®(§,n,w) + FFa(w)o®(§,n,w) = —dfa(w), n>0, (e R?, weq.
For any v € C? we multiply the row vector (5.17) on the right by the column vector
v and by the function ®(£, 7, w)v on the left. Taking the expectation we see that

A
(515) Poce(e,n, il < 190 (En, ol <
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where ||-|| denotes the norm in H(f2). Let g : Z¢ — C?® C9 be in LP(Z¢, C¢® C?)
with norm given by (4.9). If p = 1 then (5.18) implies that

(5.19) P Y g(@)de®(En, ool < |1 Y 9(@)e®(En, 7o )o]| <

z€Z4 =y A

The BL inequality enables us to improve (5.19) to allow g € LP(Z%, C? @ C%) for
some p > 1.

Alv
Al

Proposition 5.3. Suppose a(-) in (5.17) is as in the statement of Theorem 1.2.
Then there exists po(A/A) depending only on d and A/ X and satisfying 1 < po(A/X) <
2, such that for g € LP(Z4,C? @ C%) with 1 < p < po(A/N) and v € C4,

A1 Clv
(5.20) 1P a@ocaten o] < S,

r€Z4

where Ay is the constant in Theorem 1.2 and C depends only on d and A/ .

Proof. As in Proposition 5.1 we first assume that g(-) has finite support in Z¢. For
a cube @ containing the support of g(-) let (&, 7, ) be the solution to (5.17) with
a(¢) = a(¢(0)), ¢ € Qgq, so the random environment for (5.17) is (Qq, Fo, Pg).
The BL inequality implies that

(5.21)
1P Y 9(2)de®o (& n m ] < — Z | Z 9()0e®q (&, n, 7)ol -
z€Z? m a(’b =y A

Translation operators 7,,, € Z9, act on functions Fp : Qg — C by 7. Fo(¢(+)) =
Fo(1:6(-)). We shall also need to use translation operators Ty, * € Z%, which act
on functions Gg : Q X Qg — C by T,Gg(z,¢(-)) = Go(z + z,4(-)), so T, acts
on the first variable of Gg(-, ¢(-)). The operators 7., © € Z9, act on the second
variable of Gg (-, ¢(-)), and it is clear that they commute with the T}, x € Z?. For
a C! function Fg : Qg — C let dFg (-, ¢(+)) denote its gradient so that

(5.22) dFo(z6()) = af(z)FQw(-)), e q.

One easily sees that

(5.23) dr.Fg] = T_,7,dFg, x€Z,

whence it follows from (2.3) that

(5.24)  d[0;emoFg] = [e7"9 T ¢, 7o, — 1|T_,7dFp, 1<j<d, zecZ
Hence if we define a function Gg : @ x Qg — C by

(5.25) Galy6()) = dFo(-y o), yeQ,

then (5.24) implies that

(6.26) d[0;eT:Fol(2,0())) = V;eGo(x — z,m:0(:)), 1<j<d, z,z2¢€Z%

where Ve = (Vig, .., Vi) and its adjoint Vi = (V] ,.., V) are generalizations
of the gradient operators (1.3),

(5.27)  Vjed(x) = e "%z +e;)— o), 1<j<d, z€Z,
Vieplx) = e ip(z —e;) — (), 1<j<d, zeZf
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and act on the first variable of Gg(-, #(-)). On taking Fg(¢(-)) = @&, n, ¢(-))v
and defining G¢ by (5.25), we conclude from (5.26) that (5.21) is the same as

(5.28) I ) 9(2)0c®q(&,n, mar)v]® < o Z I >~ 9(@)VeGola—z6())* .

reZd 2€EQ  x€Zd

We can find an equation for Gg(y, ¢(-)) by applying the gradient operator d to
(5.17). Thus from (5.24) we obtain the equation

(5.29) 1 dFq(-,¢()) + Dga(¢(0)) De dFq(-, ¢(:))
= —Dg[6(-)Da(¢(0){v + 0eFo(o(-)}]
where the operators Dg = (D1 g, .., Dg¢) and D; = (DT,@ . D(’;’g) are given by the

formulae

(5.30)  Dje=[e" T ¢,7e, — 1], Dj¢=[" T, —1], 1<j<d,

and § : @ — R is the Kronecker delta function, 6(0) = 1, d(z) = 0, z # 0.
Evidently for any y € Z? we can replace ¢(-) in (5.29) by 7,¢(-). If we now evaluate
(5.29) with 7,¢(-) substituted for ¢(-) and with the first variable equal to —y we
obtain an equation for the function Gg(-, ¢(+)) of (5.25),

(5:31) 1 Galy,¢(-) + Vea(o(y)) Ve Galy, ¢(-))
= —Veld(=y)Da(d(y){v + deFo(ryd()}], ¥y €Q, o() € Qo
From (5.18) and (5.31) we immediately see that

1/2
A Aq A
630 | LIV Gol oI | < o+ akRoel < 5 1+ 3o
yeq
where A; is the constant of Theorem 1.2. Hence (5.28) implies the inequality
Aqlv
639 IPY s@oedo(ennol < A1+ 8]l
z€Z9

The inequality (5.33) is evidently weaker than (5.19) since it involves the bound
A on the derivative of a(+). The point is that the method applies by using Meyer’s
theorem to give bounds in terms of the p norm of g(-) for some p > 1. To see this
first observe that one can take the limit Q@ — Z? in the inequality (5.28), whence
we have that

1
(5:34) [P 9@ n.re)ol® < —5 3 | Y 9(@)VeGle—200),
z€Zd z€Z4  xeZd

where G(-, ¢(+)) is the solution to the equation

(5.35) 1 Gy, 6()) + Vea(d(y)) Ve Gy, ¢(-))
= —Veld(—y)Da(g(y){v+0cF(ryo()} . y €2, ¢() €,

with F(¢(-)) = ®(£,m,6(-))v. To see that the LHS of (5.28) converges as Q — Z?
to the LHS of (5.34) we expand 9:®(,n,-) in an L? convergent Neumann series
as was done with the solution of (2.9). Since > 0 each term in the corresponding
expansion of the expectation on the LHS of (5.28) converges by Proposition 5.1 to
the same term in the expansion of the LHS of (5.34). The tail of the expansion is
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uniformly small as Q — Z¢ from L? estimates. A similar argument shows that the
RHS of (5.28) converges as Q — Z? to the RHS of (5.34).

The Neumann series for the solution to (5.35) is given in terms of an operator
T¢ n acting on functions g : Z? x Q — C? which is analogous to the operator (2.7),
(5.36)

Teng(z,0(-) Z {VV Gya( )}*exp[—i:c.«f] glx+z,6()), z¢€ VA o) e
z€Z4

Let B : Z¢ x Q — C? @ C? be defined by B(y,¢(-)) = b(¢(y)) where a(-) =

Al — b(-)]. Equation (5.35) is then equivalent to the equation

(5.37) Ve G(-0())) = Teq[B(, 0() Ve G(, ¢())] = Te.h(- 6())
with h : Z% x Q — C? given by the formula

(5.38) h(y,o(-)) = %5(—?/)135(45(3/)){& +02(&,m 0())}v, yeZl, o() e Q.

Consider now the Hilbert space H(Z9 x Q) of functions g : Z¢ x Q — C¢ with norm
llgll2 given by

(5.39) lgllz = > llgly, oI,

yeZd

where ||g(y, ¢(+))|| is the norm of g(y,¢(:)) € H(). Evidently the function h of
(5.38) is in H(Z? x Q) and
Ay A

. < — .
(5.40) I < & [1 " J ol
Since ||T¢ 5| <1 and ||B(-, ¢(-))|| <1 — A/A, we conclude from (5.40) on summing
the Neumann series for (5.37) that (5.32) holds for Q — Z<.

We may define for any ¢ > 1 the Banach space LI(Z¢ x Q,C?) of functions
g:Z% x Q — C? with norm ||g||, given by

(5.41) lglls = > gy, oD -

yeZ

As in Lemma 4.1 the operator ¢, is bounded on L%(Z¢ x 2, C%) for ¢ > 1 with
norm ||T¢ ,llq < 1+ 6(q), where limy_,50(¢q) = 0. Noting that ||h||, is bounded by
the RHS of (5.40) for all ¢ > 1, we conclude then from (5.37) that there exists
qo(A/)) < 2 depending only on d and A/ such that

CiAq|v
(5.42) Vet ol < PR g <a<a
where the constant C; depends only on d and A/X. The result follows from (5.34),
(5.42) and Young’s inequality. O

We proceed now to establish Hypothesis 3.1 for the massive field theory envi-
ronment (2, F, P) along the same lines followed in §4 for the i.i.d. environment.

Lemma 5.1. Let T, ,, r=1,2,.., n >0, be the operator (4.11). Then there exists

po(A/A) with 1 < po(A/N) < 2 depending only on d and A/X, such that

A1T

(5.43) ITrnllpoe < H(1= AN for 1< p < po(A/N) .
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Proof. As in Proposition 5.3 it will be sufficient to assume g : Z¢ — C? ® C? has
finite support and take the @ — Z? limit in the BL inequality for finite cubes
Q C Z?. The inequality (5.43) follows immediately from BL in the case r = 1.
Thus we have for v € C¢ that the norm of Ty ,g(£, -)v € H(Q) is bounded as

G4 [Tugl€ Dol < o5 3 g Dbl < (AxlaC)lblol)

VA

for any p satisfying 1 < p < 2.
For r > 1 we write

(5.45) Trng(&p()v = P> gla)e " Sr,b()0cFr(6() . ¢(-) € Q,

rz€Z4

where the functions F.(¢(-)) are defined inductively by

(5.46) LF(6() + O 0eFr(6() = POLIB(G(0)IeFr—1(6())]: v >2,
TE(0() + 0 0eFa(6() = POLB(6(0))e]

Similarly to (5.35) we define for r > 2 functions G, : Z% x Q — C by

(5.47) Go(y,6() = dF(y, 7)), yEZ7, o) € Q.

Then from (5.46) we see that the G, (y, ¢(-)) satisfy the equations

(548) LGy, () + ViVeGr(y,6() =
PVE[3(—=4)Db(6(y)) 9 Fr1(7,6()) + B(6W) VeGror (y, 6())], 7> 2
TGa(y, 8)) + ViVeGaly,6()) = PVE(—y)DB(6()v] -

From (5.45) and BL we have that

(5.49)  [|Trpg(€, ol* <

LS a2 = Db(6(2)AF (r0()+ 3 gl h(o() VeGr (-, 7.6() |
z€Zd z€Zd
= ST 1 g()e Db (6(0) 0 (o) 3 glw)e T Eb(b(e—2))VeG(a—2,6() |1
2€Z4d reZd

Just as in (5.44) we see that
(5.50)

r—1 2
LS a2 =€ Db(o(0)acE (60) | < { o (1-3) ||g(~>||p|v|}

2€Z4

for any p satisfying 1 < p < 2. The second term in the last expression in (5.49) can
be bounded using an inequality similar to (5.42). It is clear from (5.48) that

(5.51) 96,0l < -0 (1-3) Tl
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Applying the Calderon-Zygmund theorem [22] to (5.48) we see that there exists
qo(A/X) < 2 depending only on d and A/ such that

AL A\ (D72
(5.52) IVeGr(0()llg < =(r=1) 1=+ vl

A A
provided go(A/A\) < ¢ < 2. The result follows from (5.49), (5.50), (5.52) and
Young’s inequality. (I

Corollary 5.1. The function q(&,m) of (2.5) with domain ¢ € [—m, 7%, 0 <n <A,
is uniformly Holder continuous. That is there exist positive constants C, o with
0 < a <1 depending only on d and A/, such that

CA
(5:53)  la€.n) —a&ml < ==

for &' ¢ € [—m,m|? and 0 < n,n’ <A.

|1 =€+ 10y = m)/A7

Proof. We proceed as in the proof of Proposition 4.1. Instead of (4.6) we use the
fact that

(5.54) P(Tgy = Ten)b() [PTeyb()) = Tjr19(,-)
where
(5.55) g(x) = {VV*Gya()} e 1), zezd.

Evidently for 0 < a < 1 one has that g € LP(Z?¢, C? ® C?) for any p > d/(d — «)
and ||g|l, < Cpl&’ —&£|* for a constant C), depending only on p and d. The Hélder
continuity of ¢(£,n) in £ follows then from Lemma 5.1. The Holder continuity of
q(&,7m) in 1 can be obtained in a similar way. O

To complete the proof of Hypothesis 3.1 for the massive field theory environ-
ment we need to prove a version of Lemma 4.4 and also that one can do analytic
continuation in the variable ¢ € R%. The proof of this follows along the same lines
as in §4.

6. MAssLESS FIELD THEORY ENVIRONMENT

In this section we shall prove Hypothesis 3.1 for the massless field theory en-
vironment (Q, F, P) with measure given by the m — 0 limit of the massive field
theory measure (1.13). The measure is constructed by means of the following result
proved in [4]:

Proposition 6.1. Let F : R* — R be a C! function which satisfies the inequality
(6.1) IDF(2)| < Aexp| Bl2| ], =€ RM,

for some constants A, B, and (-),, denote the massive field theory expectation with
measure (1.13). Then for any x1, ...ty € Z%, the limit

(6.2) m (F (Vé(x1), Vo(x2), oo, V() )Y = (F (w(x1), w(z2),s oooery w(Tg)))

i
m—0

exists and is finite.
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As for the massive case, Proposition 6.1 defines a unique Borel probability mea-
sure on gradient fields w : Z¢ — R? by using the inequality derived from (5.3),

(6.3) (exp[(f, Ve))m < exp[|f]*/2)]

for any function f : Z% — R? of finite support. This can most easily be seen by
using a simple identity. For a function G(w(-)) of vector fields w : Z¢ — RY we
define its gradient d,G(-,w(:)) similarly to (5.22) by

0
ow(z)
Thus d,G(z,w(-)), z € Z4, is for fixed w(-) a vector field from Z? to R?, and hence
we may compute its divergence V*d,G(z,w(-)), z € Z%. Then with d defined as in
(5.22) we have the identity
(6.5) dG(z,V¢()) = V*d,G(z,w(-), z¢€Z%
The inequality (6.3) follows from (5.3) and (6.5) on setting G(w(-)) = (f,w(+)).

(6.4) doG(z,w(") = Gw()), zezZo

Proposition 6.2. Let (2, F, P) be the probability space corresponding to the mass-
less field theory with measure given by the m — 0 limit of the massive field theory
measure (1.13). Then the operators Te,, 1 < j < d, on Q are strong mizing.

Proof. The proof follows the same lines as the proof of Proposition 5.2. Thus for

C* functions of compact support f,g : R* — R let hgm @ Z — R be defined
similarly to (5.9) by

(6.6)

hgm(n) = (f(Vo(ne1)) g(Ve(0)) Yagm—( f(VH(0)) )ag.m (9(VA(0)) Jag.m: n€Z,
where we have included the index m to emphasize the dependence of the measure
(5.1) on m. Following (5.14), let a(f,{,w(-)) be given by the formula

(6.7) a(f.¢w() = Y [f(wlner)) = { flw(ner)) Jag.m] ¢™ .

nelr,
Then it will be sufficient for us to show that
LIDSO)I
(6.9 (Jalf,C Vo) Jagm < APIOI

since the RHS of (6.8) is independent of m. This follows from BL and (6.5). O

Proposition 6.3. Suppose a(-) in (5.17) is as in the statement of Theorem 1.3.
Then there exists po(A/\) depending only on d and A/ X and satisfying 1 < po(A/N\) <
2, such that for g € LP(Z¢,C? @ C%) with 1 < p < po(A/N) and v € C4,

A10|’U|
(69) |P g(l‘ 0, (D(ganaTI' v S g )
| gzjd )0¢ )|l A gl

where Ay is the constant in Theorem 1.3 and C depends only on d and A/)\.

Proof. We proceed as in the proof of Proposition 5.3. Thus from (6.5) and BL we
see that

(6.10)
0
1P g(@)0cba(€n )l < ~ 3 o 3 g(2)0ebo(En ()]
reZd Azezd 8w(z) =y A

The remainder of the proof is exactly as in Proposition 5.3. (]
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Proof of Hypothesis 3.1. This follows the same lines as the proof of Hypothesis 3.1
in §5. (]

7. SECOND DIFFERENCE ESTIMATES

In this section we show how the inequality (1.12) follows from Hypothesis 3.1 and
the Delmotte-Deuschel argument [7]. Our starting point is the representation (2.1)
for the averaged Green’s function Ga,(z). We introduce a low momentum cutoff
into the integral (2.1), then transform the remainder into configuration space and
use the Holder continuity results of [7] for the second derivatives of Ga ,(z). Thus
let x : R — R be a C* function with compact support such that the integral of
x(-) over R? equals 1. We write

(7.1) Gapn(r) = [Gay(®) — x1 * Gay(®)] + xL * Gap(x) ,

where xr(z) = L™(x/L), * € R? and * denotes convolution on Z¢. Let
xr(6), € € [, 7%, be the Fourier transform of x, restricted to the lattice Z9.
Then for L > 1 and integers m,n > 0 there are constants C, Cy, , such that

(7.2) [Rc(0) = 1| < C/L, [(Ve)" X2 ()] < ConnL™/[1+ LI & € [-m, 7"
We assume that R < |z| < 2R and choose L = R'~° for some § > 0. Then from the
first inequality of (7.2) and the Holder continuity result of [7], one has the inequality

(73)  [VVGay(®) = VVXL * Ga(2) el

C
< - -
= A(|z] 4 1)d+e

for some positive constants v depending only on A/\ d and C,« depending only

on A/\ d, 6.
Next we consider the integral
(7.4)
1 e—i&-xek(g)ej(é) A 0T e
- : g — (e de,
(2m)° /[—m]dn+e<5>*q(s,n>e<£>““> £ = o /[] Jal&m) d€

where for a € R the function f,(£,7) is given by the formula

er(€ +ia)e; (€ + ia)
7.5 (&m) = : : _
(75) folls) 1+ e(§ —ia)*q(§ + ia, n)e(€ + ia
Observe now from the second inequality of (7.2) that for any integer n > 0 there

are positive constants C, C,,, where C' depends only on d and C,, on d and n, such
that

)ch(f +ia) .

10wt < grem. gelmal W <L,
(7.7) Xe(€+ia) < ce“lt te[-mm) Ja| > 1/L .

We choose |a] = C(A/A)y/n/A as in the proof of Theorem 3.2, where C(A/\)
depends only on A/A. Then if |a] > 1/L, one has from (7.7) that

e(l.ZL’

C
7.8 —_— d¢ < ———— ¢ 7Wn/Alel
( ) (27_[_)(1 /[W,w]d |fa(§777)| g = A(|.’I}| +1)d+1€ )

for some positive constants v depending only on A/X,d and C depending only on
A/, d,S. It |a] < 1/L, we see from (7.6) that

C
|fa(§777)‘d£ < W

a.xr

(2m)? /[—Twr]dﬂ{£>1/Rl25}

(7.9) e~V n/Alzl
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for some positive constants v depending only on A/A,d and C' depending only on
A/ d, 6.
For a € R? we define g, (&, n) similarly to f,(&,n) by

B ex(§ +ia)e; (€ +ia)
(7.10) 9a&M) = ol 0y q(0, 0)e(E + a

Then Hypothesis 3.1 implies that for |a| < 1/L and « the Holder constant in (3.4)

)

(7.11)
eﬂ..l’

(2m)? /[mr]dﬁ{fsl/R125}

for some positive constants v depending only on A/),d and C depending only on
A/X,d, 5. On choosing 6 > 0 in (7.11) to satisfy (d 4+ «)(1 — 20) > d, we conclude
from (7.8), (7.9), (7.11) that

)XL(f +ia) .

C
fal&m=gal&m] e < A(z| + 1)(d+a)(1_26)6_7\/77/7|$\’

; C
_ lattice - /Alz|
(7.12)  [VVxz * Gag(®) = VVxz x Gl ()] < & T D /n/Alz|

for some positive constants v depending only on A/\ d and C,« depending only
on A/A,d,d. The inequality (1.12) follows from Lemma 3.1 and (7.3), (7.12) upon
using the fact that

. . C /
lattice _ lattice — /A |z]
(7.13) IVVGE e (@) = VXL x G (o) < N 1)d+6e RAA

for some positive constants -y, C' depending only on A/A,d.

8. RATE OF CONVERGENCE IN HOMOGENIZATION

We turn to the proof of Theorem 1.4. The starting point for this is the Fourier
representation for the solution u(x,n,w) of (1.2),
(8.1)

u(z,n,w) ! / h(g)e ¢ (14 ®(&,n,mow)e(€)] dé, ze€Z we

> Tl = 7o d 1 Te ) ) )
(27T)d [—m,x)¢ T + e(g)*Q(€7 77)6(5)

where h(-) is the Fourier transform (2.10) of h : Z¢ — C and ®(¢,n,w) is the

solution of (2.4). Evidently if we take the expectation of (8.1) with h(:) = 1 we

obtain (2.1).

Proof of Theorem 1.4. Taking h(x) = 2 f(ex), x € Z%, we have from (8.1) that

(8.2) wu(z/e,e*nw) =

1 fe ¢ —iC.x
(2m)d /[—ﬂ/e jejd M+ s2e(sé)’22(s<762n)e(€C) [1+@(eC, 2 7apee(=)] dC, we el we,
where
(83) O = D> elfyevt, ¢eRY

y€EeZa
We also have that

1 f(Qe e
(8.4) Unom (1) = 75 /Rdn+<*q(070>< “
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where f(-) is the Fourier transform of f(-),
(85) fo) = [ swer<ay, cere,
Rd

Since f: R? — R is C°° of compact support it follows from (8.3), (8.5) that
(8.6)

sup | F(OIA+[CHY < oo, sup f-(Q)—F(O)1/e[1+[¢*] < o0,

0<e<1,C€[—m/e,m/e]d 0<e<1,C€[—7/e,m/e]?

where N in (8.6) can be arbitrarily large. It follows from (8.2), (8.4), (8.6) and
Hypothesis 3.1 equation (3.4) that there are positive constants C, « such that
(8.7) sup |(u(z/e,€%n, ")) = thom(z,7)| < Ce* .

z€eZ?

To complete the proof of the theorem we need to estimate the variance of
u(z/e,e?n,-). This was already carried out in [5] for the case of i.i.d. variables. To
see this more generally we observe from (2.4) that
(8.8)

B mw) = P Y VGyya(x) expl—i& 2] {b(raw)Oe®(€, 1, Taw) + b(raw)} .

z€Z4
Next we have from (4.13), Lemma 5.1 and the argument of Proposition 6.3 that for
all environments in the statement of the theorem there exists po(A/A) depending
only on A/X with 1 < po(A/A) < 2 such that
(8.9)
1P > g(2) {b(rew)de® (€, 1, 72) + b(rew)} | < Cligllp, g € LP(Z%,C%), 1< p < po(A/N),
z€Z4
for some constant C. It follows from (8.8), (8.9) that there is a constant C' inde-
pendent of € such that

(8.10) [@(e¢, e, )| < CedO-V/P=1 - ce RY.

We conclude from (8.10) that there exist positive constants p > 1 and C indepen-
dent of € such that

(8.11) sup varfu(z/e,e’n,)] < Ce*-1P)
z€eZd
The result follows from (8.7), (8.11). 0
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