STRONG CONVERGENCE TO THE HOMOGENIZED LIMIT OF
ELLIPTIC EQUATIONS WITH RANDOM COEFFICIENTS II

JOSEPH G. CONLON AND ARASH FAHIM

ABSTRACT. Consider a discrete uniformly elliptic divergence form equation on
the d > 3 dimensional lattice Z¢ with random coefficients. In [3] rate of con-
vergence results in homogenization and estimates on the difference between the
averaged Green’s function and the homogenized Green’s function for random
environments which satisfy a Poincaré inequality were obtained. Here these
results are extended to certain environments in which correlations can have
arbitrarily small power law decay. These environments are simply related via
a convolution to environments which do satisfy a Poincaré inequality.

1. INTRODUCTION.

In this paper we continue the study of solutions to divergence form elliptic equa-
tions with random coefficients begun in [3]. In [3] we were concerned with solutions
u(x,n,w) to the equation

(L) pulenw) + Via(nw) Vale,n,w) = hz), =cZ% we,

where 1 > 0, Z? is the d dimensional integer lattice, and (Q, F, P) is a probability
space equipped with measure preserving translation operators 7, : 2 — Q, x € yAS
In (1.1) we take V to be the discrete gradient operator defined by

(1.2) Vo(x) = (Vig(x), ... Vag(x)), Vig(x) = d(x +e;) — d(x),

where the vector e; € Z? has 1 as the ith coordinate and 0 for the other coordinates,
1 <4 <d. Then V is a d dimensional column operator, with adjoint V* which is
a d dimensional row operator.

The function a : Q — R 4+1/2 from Q to the space of symmetric d x d matrices
satisfies the quadratic form inequality

(1.3) My <a(w) < Al, w € €,

where I; is the identity matrix in d dimensions and A, A are positive constants.

It is well known [8, 12, 15] that if the translation operators 7,, = € Z9, are
ergodic on 2 then solutions to the random equation (1.1) converge to solutions of a
constant coefficient equation under suitable scaling. Thus suppose f : R — R is a
C* function with compact support and for € satisfying 0 < & < 1 let u.(z,n,w) be
the solution to (1.1) with h(z) = €2f(ez), = € Z%. Then u.(x/e,e*n,w) converges
with probability 1 as € — 0 to a function upem(z,7), © € R%, which is the solution
to the constant coefficient elliptic PDE

(1.4) Mttom (,7) = Vanom Vinom (2,7) = f(z), € RY,
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where the d x d symmetric matrix ay,, satisfies the quadratic form inequality
(1.3). This homogenization result can be viewed as a kind of central limit theorem,
and our goal in [3] was to show that the result can be strengthened for certain
probability spaces (2, F, P). In particular, we extended a result of Yurinskii [14]
which gives a rate of convergence in homogenization,

(1.5) sup { |uc(x/e,€%n,-) — Unom(z,n)|* ) < Ce®, for 0 <e < 1.
r€eZ

Yurinskii’s assumption on (2, F, P) is a quantitative strong mixing condition.
To describe it we first observe that any environment €2 can be considered to be a
set of fields w : Z¢ — R™ with n < d(d + 1)/2, where the translation operators
Te, T € Z%, act as T,w(z) = w(z+2), z € Z¢, and a(w) = a(w(0)) for some function
a: R" — R¥+D/2 Now let X(*) be a positive decreasing function on R* such
that lim,_,o x(¢) = 0. The quantitative strong mixing condition is given in terms
of the function x(-) as follows: For any subsets A, B of Z¢ and events I'4, T'p C €,
which depend respectively only on variables w(x), « € A, and w(y), y € B, then
(1.6) P(T4NTg) — PCA)PTs) <x(_inf fo—y|).

r€A,yeB

In the proof of (1.5) he requires the function x(-) to have power law decay i.e.
lim, 00 ¢°x(q) = 0 for some 3 > 0. Evidently (1.6) trivially holds if the w(z), = €
Z?, are independent variables. Recently Caffarelli and Souganidis [2] have ob-
tained rates of convergence results in homogenization of fully nonlinear PDE under
the quantitative strong mixing condition (1.6). In their case the function x(q)
is assumed to decay logarithmically in g to 0, and correspondingly the rate of
convergence in homogenization that is obtained is also logarithmic in . In their
methodology a stronger assumption on the function x(-), for example power law
decay, does not yield a stronger rate of convergence in homogenization.

In [3] we followed an approach to the problem of obtaining rates of convergence
in homogenization pioneered by Naddaf and Spencer [11]. They obtained rate of
convergence results under the assumption that a Poincaré inequality holds for the
random environment. Specifically, consider the measure space (Q, F ) of vector fields
& : Z% — R*, where F is the minimal Borel algebra such that each &(z) : @ — R¥
is Borel measurable, 2 € Z%. For any C* function G : @ — C we denote by
duG(y; @) = 0G(@)/8a(y), y € Z¢, its gradient. Thus for fixed & € € the gradient
d;G(-;@) is a mapping from Z? to C¥, which has Euclidean norm [|d;G(-;@)]|2 in
(%(Z?, CF). A probability measure P on (Q,}: ) satisfies a Poincaré inequality if
there is a constant K5 > 0 such that

(1.7) Var[G(-)] < Kp( |daG(;@)||3) for all O functions G : Q — C.

In [11] it is assumed that P is translation invariant i.e. the translation operators
7o, T € Z9) acting by 7,0(2) = O(x + 2), z € Z%, are measure preserving, and that
the Poincaré inequality (1.7) holds. Rate of convergence results are then obtained
provided a(w) = a(©(0)) in (1.1), where the function a : R* — RU¥+1)/2 is C1 and
has bounded derivative, in addition to satisfying (1.3).

Gloria and Otto [6, 7] have developed much further the methodology of Naddaf
and Spencer, under the assumption that the environment satisfies a weak Poincaré
inequality. This weak Poincaré inequality holds for an environment in which the
variables a(T,w), = € Z%, are independent, whereas the inequality (1.7) in general
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does not. These papers are concerned with establishing an optimal rate of conver-
gence for finite length scale approximations to the homogenized coefficient ayqy, of
(1.4). The recent paper [5] uses a similar approach to obtain optimal estimates on
the variance of u.(z/e, %, -).

If the translation invariant probability measure P is Gaussian, then the measure
is determined by the 2-point correlation function I' : Z¢ — R* ® RF defined by
I(z) = ( @(z)&(0)* ), = € Z4¢, where &(-) € R* is assumed to be a column vector
and the superscript * denotes adjoint. Defining the Fourier transform of a function
h:Z%— C by

(L8) o) = 3 h@)e, €el-ma,

TzEZA

one can easily see that the Poincaré inequality (1.7) holds if and only if I e
L>®([—m,7]%). Hence if T'(-) is summable on Z? then (1.7) holds. Suppose now
that for some 8 > 0 the function T'(z) ~ 1/|z|? for large |z|. Then the inequality
(1.6) holds for a function x(-) with power law decay 3, but the Poincaré inequality
does not hold in general unless 5 > d.

The main goal of the present paper is to show that the approach to obtaining rate
of convergence results in homogenization based on using the Poincaré inequality can
be extended to some environments for which I'(-) is not summable. In particular
they include certain Gaussian environments for which I'(z) ~ 1/|z|® at large ||
and 8 > 0 can be arbitrarily small. Hence our approach bridges a gap between
the Yurinskii criterion (1.6) which only requires § > 0, and the Naddaf-Spencer
criterion (1.7) which corresponds to S > d. The idea is to consider environments
defined by a(w) = a(w(0)) where w : Z% — R™ is a convolution w(-) = h*&(-), & €
Q. The function h : Z¢ - R™ @ RF from Z¢ to n x k matrices is assumed to
be ¢ summable for some g < 2, and the probability space (Q,]:", ]5) to satisfy the
Poincaré inequality (1.7).

In [3] we proved rate of convergence results for a massive Euclidean field theory
environment (Q, F, P). The environment consists of fields ¢ : Z% — R with measure
P formally given by

(1.9) exp | = 3V (Vo) + %m2¢(x)2 [] dé(x)/mormalization,

zEZ? z€Zd

where V : R? — R is a uniformly convex function and m > 0. Then (Q, F, P)
with measure (1.9) satisfies the inequality (1.7). In the Gaussian case when V()
is quadratic one has that the correlation function { ¢(z)¢(0) ) = G,,z2(z), = € Z4,
where the Green’s function G,(+) is the solution to

(1.10) vG,(z) + V*V'VG,(z) = 6(x), =eZ%
Hence { ¢(x)$(0) ) decays exponentially in |z| as |z| — oco. Taking w(-) = h * ¢(+)
for some h € £9(Z?) we have that
(1.11) D) = (w@w©0)) = Y hlz—yh(-y)Gnly—y)
vy’ €Z4

and soif 1 < ¢ < 2 then (w(0)?) < co. If 8 > 0 and h(z) = 1/[1+|2|¥/?+F/?], 2 € Z°,
then h € £4(Z%) for ¢ > 2d/(d + B). We easily see from (1.11) that T'(z) ~ |z|~7 as
|z| = oo.
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The limit as m — 0 of the measure (1.9) is a probability measure P on gradient
fields @ : Z¢ — R?, where formally &(x) = Vé(x), x € Z%, a result first shown
by Funaki and Spohn [4]. This massless field theory measure satisfies a Poincaré
inequality (1.7) for all d > 1. In the case d = 1 the measure has a simple structure
since then the variables @(z), x« € Z, are i.i.d. For d > 3 the gradient field theory
measure induces a measure on fields ¢ : Z¢ — R which is simply the limit of the
measures (1.9) as m — 0. For d = 1,2 the m — 0 limit of the measures (1.9) on
fields ¢ : Z% — R does not exist. If d > 3 then ( ¢(x)p(0) ) =~ |z|~(4=2) as || — oo
for the massless field theory. Observe now that

(1.12) ¢(z) = Y [VGo(x—y)]'Ve(y) = hxi(z), ze€Zf,

yeZd

where Go(-) is the Green’s function for (1.10) with v = 0,V"” = I,;. Since h : Z¢ —
R%in (1.12) is ¢ summable for any ¢ > d/(d—1), the environment of massless fields
¢:Z% — R with d > 3 is of the form ¢ = h * &, where h : Z? — R? is ¢ summable
for some g < 2 and (Q,f', P) satisfies the Poincaré inequality (1.7).

Rather than attempt to formulate a general theorem for environments w = h* @
where (Q, F, 15) satisfies the Poincaré inequality (1.7), we shall only rigorously prove
that the results obtained in [3] hold for massless fields ¢ : Z? — R with d > 3. In §2
we indicate the generality of our argument by showing that the proof of Proposition
5.3 of [3] formally extends to environments w = h % @. Our first theorem concerns
the rate of convergence (1.5) in homogenization:

Theorem 1.1. Let & : R — RU4TD/2 pe ¢ C function on R with values in the
space of symmetric dx d matrices, which satisfies the quadratic form inequality (1.3)
and has bounded first derivative Da(-) so ||Da(:)||cc < 00. Ford > 3 let (2, F, P) be
the probability space of massless fields ¢(-) determined by the limit of the uniformly
convex measures (1.9) asm — 0, and set a(-) in (1.1) to be a(¢) = a(4(0)), ¢ € .
Let f : RY — R be a C* function of compact support, u-(x,n,w) the corresponding
solution to (1.1) with h(x) = e2f(ex), = € Z%, and upom(z,n), © € R, the solution
to (1.4). Then there is a constant o > 0 depending only on d, A/\ and a constant
C depending only on n,d, A, A, || Da(")||cc, f(+) such that (1.5) holds.

Our second theorem concerns point-wise convergence at large length scales of the
averaged Green’s function for (1.1) to the homogenized Greens function for (1.4),
which is uniform as  — 0. The averaged Green’s function Ga ,(z), = € Z4, for
(1.1) is defined by Ga,,(z) = ( u(z,n,-) ), where h(-) in (1.1) is the Kronecker delta
function h(z) =0 if x # 0 and h(0) = 1.

Theorem 1.2. With the same environment as in the statement of Theorem 1.1,
let Gayoon(T), © € RY, be the Green’s function for the homogenized equation (1.4).
Then there are constants o,y > 0 depending only on d and the ratio A/\ of the
constants A, A of (1.3), and a constant C depending only on || Da(*)||co, A/, d such
that

C — T
(118)  [Gan(#) = G (@] < g pramarge V7N, v e 27— {0},

C Tk
(1.14) [VGan(®) = VGaypn(@)] < ¢ e VN g e 28 — {0},

(|2 + 1)d-1+e
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(1.15) |VVGay(x) = VVGay. ()] < n ¢ e/l e zd — {0},

(|z] + )¢t
provided 0 < n < A.

It was shown in [3] that Theorem 1.2 follows once one has established some
regularity properties of the Fourier transform of the averaged Green’s function
Ga,y(-). We establish these properties (Hypothesis 3.1) in §3 for the massless field
theory environment. As observed in [3] the proof of Theorem 1.1 follows along the
same lines as the proof of Theorem 1.2, and is somewhat simpler. We therefore
have omitted its proof here. The problem of determining the optimal value of « in
(1.5) is a subtle one. In our proof for an environment w = h * & with h(-) being ¢
summable with ¢ < 2, the exponent a depends on ¢ as well as the ellipticity ratio
A/ for the PDE (1.1). If ¢ — 2 then o — 0 in our approach, which corresponds
to @ — 0 when $ — 0 in the Yurinskii approach.

2. VARIANCE ESTIMATE ON THE SOLUTION TO A PDE oON Q

We recall some definitions from [3]. For ¢ € R? and 1 < j < d we define the ¢
derivative of a measurable function v : 8 — C in the j direction by 0;¢, and its
adjoint by 07 ., where

(2.1) 0jev(w) = e Y(Te,0) — Y(w),

O ev(w) = €Y(Toe,w) — P(w).
We also define a d dimensional column £ gradient operator 0 by 0z = (O1¢, ..., Oa,¢),
which has adjoint 9 given by the row operator 97 = (0] ¢, ...., 0 ¢). Let H(R) be
the Hilbert space of measurable functions ¥ : © — C% with norm [|¥||3q) given
by H\I]H%-l(ﬂ) = {|¥(-)|2 ), where |- | is the Euclidean norm on C?. Then there is a
unique row vector solution ®(§,n,w) = (<I>1(§, W), ..., Pa(€, n,w)) to the equation

(22)  n®(&,n,w) + 0fa(w)de®(&,n,w) = —dfaw), n>0, E€ERY weQ,

such that ®(&,n,-)v € L?(Q) for any v € C% Furthermore ®(&,n,-)v € L()
satisfies the inequality

(2.3) N[ ®(&n, ol F2q) + AO@E,n, Yull3q)y < APol?/A .

Letting P denote the projection orthogonal to the constant function, our general-
ization of Proposition 5.3 of [3] is as follows:

Proposition 2.1. Suppose a(-) in (2.2) is given by a(w) = a(w(0)) wherea: R™ —
R+D/2 45 4 C' d x d symmetric matriz valued function satisfying the quadratic
form inequality (1.3) and ||Da(+)||sc < 0o. The random field w : Z* — R™ is a
conwolution w(-) = h*&(+) of an nx k matriz valued function h : Z¢ — R"@R* and
a random field w : Z% — RF¥. The function h is assumed to be py summable for some
po with 1 < py < 2 and the probability space (Q, F,P) of the fields & : Z% — RF
to satisfy the Poincaré inequality (1.7). Then there exists p1 depending only on
d,A/X\,po and satisfying 1 < p; < 2, such that for g € LP(Z? C? @ C%) with
1<p<p and v € C4,

Q) P Y o€ n m vl < PRl g,

z€Z4

IN
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where K is the Poincaré constant in (1.7) and C is a constant depending only on
da n, k’ A/)‘apO

Proof. From (1.7) we have that

(2.5)

wEZ” z€Z4 9

From the chain rule we see that

g 0
m&g@(f,nﬂ'@-)v = Z [&}J@)afcb(f’anx')v] h(y_ Z) .

yEeZ4

(2.6)

Hence using the translation invariance of the probability measure P on 2 we con-
clude from (2.5), (2.6) that

(2.7)
0
1P 9(2)0e®(E . m)ol3i) < Kp Y < > @) Y [T_zwag@@,n,mv] h(y — 2)
reZa z€Z4 reZa yeZa

For a differentiable function ¢ : Q — C we denote its gradient by d,,1 : Z*xQ — C
so that d,¥(y;w) = O(w)/dw(y), y € Z¢ w € Q. The gradient operator d,, does
not commute with the translation operators 75, = € Z¢, and in fact we have that

0
2.8 —(rpw) = do(y — x;Tew), xy € Z.
(2.8) 90) (Taw) (y ), T,y
Defining now the function u : Z¢ x Q@ — CF by
(2.9) u(z,w) = e **¢ Z [dow®(y; &,m, Tow)v] Ry + 2)
yeZd

we conclude from (2.8) that

(2.10) Vu(z — z,w) = =28 Z (I)(f,n,rzw)v} h(y — z) .

[Tzaf(y)ag

yeZ?
Hence (2.7) becomes
(2.11)
1P > 9(2)0c® (& n,mo)ollFyy < Kp D (1 D 9l@)e™ P Vul@—2,) [3) .
x€Zd z€Z4 z€Z?

In [3] we also defined the ¢ derivative of a measurable function v : Z¢ x Q — C
in the j direction by Dj ¢, and its adjoint by Dj ., where
(212) Dj,iw(x7w) = e—iejfw(x — €y, Tij) - QZJ(ZC, UJ),
D}:gﬂ)(% w) = eiej.gqu(x + ey, T—ejw) - 1/1(13, w)'
The corresponding d dimensional column & gradient operator D¢ is then given by

D¢ = (Dig,.....; Dgg¢), and it has adjoint Dy given by the row operator Df =
(DiE’ ceens D;;,E)' We see from (2.8) that these operators satisfy the identity

0
(2.13) m@gw(w) = DedY(y;w), y€Z%weQ,

2

2

> |
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for differentiable functions ¥ : 2 — C. A similar relationship holds for the adjoints
0¢,D¢. Hence on taking the gradient of equation (2.2) with respect to w(:) we
conclude from (2.13) that

(2.14) 1 du®(y; €, n,w)v + Dia(w(0))De duw®(y; €, n,w)v
= —D¢[d(y)Da(w(0)){v + 9:®(&,n,w)v}] fory e Z% weq.

Evidently (2.14) holds with w € € replaced by 7.w for any z € Z%. We now multiply
(2.14) with 7.w in place of w on the right by e™**¢h(y + z) and sum with respect
to y € Z. Tt then follows from (2.9) that

(2.15) 0 ulzw) + ViAW) Vu(zw) = —V*f(zw)
where the function f : Z¢ x Q — C¢ ® CF is given by the formula
(2.16) f(z,w) = Da(w(z){v+0®(&n, msw)vie*<h(z) .

Now from (2.3) it follows that 0:®(&,n,-)v € H(Q) and [[0:D(&,n, - )v|ln@) <
Alv|/A. Hence if h € L?(Z4, R"®RF) then the function f is in L2(Z%x Q, C¢® CF)
and ||fllz2 < |Da()||oo(1 + A/N)|v]||h]l2. We see from (2.15) that if f € L2(Z? x
Q,C? ® C*) then Vu is in L?(Z4 x Q,C? ® CF) and ||Vullz < || f|l2/A. Tt follows
then from (2.11) and Young’s inequality for convolutions [13] that (2.4) holds with
po=2and p=1.

To prove the inequality for some p > 1 we use a version of Meyer’s theorem [9]
for solutions of elliptic equations on Z?. Lattice versions of Meyer’s theorem were
already used in [11] and more recently in [6]. For any 1 < ¢ < co we consider the
function f as a mapping f : Z¢ — L?(Q, C? ® C¥) with norm defined by

(2.17) A1 = > 105

z€Zd

where | f(2,)||2 is the norm of f(z,-) € L?(£2, C¢®C¥). It was observed in [13] that
the Calderon-Zygmund theorem applies to Fourier multiplier operators of functions
on R¢ with range in a Hilbert space. One can similarly see that it applies to Fourier
multiplier operators of functions on Z?¢ with range in a Hilbert space. We conclude
therefore that there exists go depending only on d, A/A with 1 < gg < 2 such that if
| fllqo < oo then [|[Vully < 2||f|lq/A for go < ¢ < 2. If h is py integrable with py < 2
we can take max[po,qo] = ¢1 < ¢ < 2. It follows again from (2.11) and Young’s
inequality for convolutions [13] that (2.4) holds with p1 = 2¢1/(3¢1 — 2). O

3. PROOF OF THEOREM 1.2

The basic approach of [3] is to use the fact that the solution to (1.1) can be
expressed by a Fourier inversion formula in terms of the solution to the equation

(3.1) n®(&,n,w) +Podfa(w)de®(,n,w) = —Pdia(w), 1n>0, € R% weq,

where P is the projection orthogonal to the constant. It is easy to see that, just
like the solution to (2.2), the solution to (3.1) also satisfies the inequality (2.3). If
¢ = 0 the solution ®(£,n,w) to (2.2) has zero mean so ( ®(0,7,-) ) = 0. Hence the

solutions to (2.2), (3.1) coincide if £ = 0 but are in general different. For ¢ € R4
and 7 > 0 let e(£) € C¢ be the vector e(§) = d¢1 and ¢(€,n) be the d x d matrix

(3.2) q(&n) = (a()) +(a()0®e(&n,-) ),
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where ®(£,n,w) is the solution to (3.1). The solution to (1.1) is then given in [3]
by the formula
(3.3)

_ ! ﬁ(f) e Trw)e T d W
wrne) = g [t e L HEn O] de, 2B wen

If the environment (2, F, P) is ergodic then the limit lim,_,o ¢(0,7) = anom exists,
and apom is the diffusion matrix for the homogenized equation (1.4). It follows
from (3.3) that the Fourier transform Ga ,(€), € € [, 7]%, of the averaged Green’s
function Ga,(z), * € Z%, is given by the formula

(3.4) Gan(€) = 1/[n+e(€) (&, n)e(€)] for € € [~m,7]? .

In [3] it was shown (see especially §7) that Theorem 1.2 is a consequence of the
following:

Hypothesis 3.1. For £ € C¢ denote its real part by RE € R and its imaginary
part by IE € R so that € = RE +iSE. Then there exist positive constants C, and
a < 1 depending only on d and A/, such the function q(&,m), € € R%,n > 0, has
an analytic continuation to the region |S¢| < C1y/n/A and

(3:5) lla(€'.n) = al&ml < CA [ 1€ =€+ |t —m)/A1/2 |
0<n<n <A, € ¢&eCtwith 3¢, [S¢] < Crvn/A,
where C is a constant depending on the environment and the function a(-).

Here we shall prove that Hypothesis 3.1 holds for the massless field theory envi-
ronment (2, F, P) of Theorem 1.1. To do this we recall some operators defined in
[3]. For any g € H(Q), let (&, 7n,w) be the solution to the equation

(3.6) %wm,w) + 0f0cp(Emw) = Fg(w), n>0, (€RY, weq

The operator T¢, on H(QQ) is defined by T ,g(-) = O¢yp(§,7n,-). It also has the
representation

(3.7) Teng(w) = > {VV*Gya(2)} expl-izg] g(rw), weQ,
z€Z4

where G, (+) is the Green’s function defined by (1.10) with V”(:) = I;. It easily
follows from (3.6) that T¢, is a bounded operator on H(2) with [|T¢ |l @) < 1
provided ¢ € R4 n > 0. Furthermore by Lemma 2.1 of [3] the function £ — Tg,
from R? to the Banach space of bounded linear operators on H(f2) has an analytic
continuation to a strip |3¢| < C'y/n/A where C is a constant depending only on
d. Let b be the d x d matrix valued function b(w) = I; — a(w)/A, w € Q, whence
(1.3) implies the quadratic form inequality 0 < b(-) < (1 — A/A)I;. We define
for n > 0,7 = 1,2,.., and S¢ € R? with |S¢| < C/n/A an operator T, g¢ from
functions g : Z? — C¢® C? to periodic functions T}, s¢g : [-m, 7|4 x Q — Cl@ C?
by

(3.8) Trpaeg(RE,) = Y g(a)mPb(:) [PTe,b()] ™", where £ = RE +iS¢

r€Z4
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For 1 < p < oo let #7(Z4,C? @ C?%) be the Banach space of d x d matrix valued
functions g : Z¢ — C% ® C? with norm ||g||, defined by

(3.9) gl = sup > |g(a)ulf

d. —
veCe:|v|=1 veZd

where |g(x)v]y is the Euclidean norm of the vector g(z)v € C? We similarly
define the space L>®([—m, 7] x Q,C? @ C?) of d x d matrix valued functions g :
[—7, 7% x Q — C? @ C? with norm ||g||sc defined by

(3.10) [9lloc = sup sup [l9(¢; )vllue)
veC:|v|=1 | (€[—m,m]?

Since || Te 5 llmo) < 1if € € R, 7 > 0 it follows from (3.7), (3.8) that if S¢ = 0 then
T,.n.5¢ is a bounded operator from ¢*(Z%, C? @ C?) to L>([—m,7]¢ x Q,C? @ C?)
with norm ||}, s¢ll1,00 < (1 —A/A)". In the following we show that T, , g¢ is a
bounded operator from ¢?(Z<¢, C¢®2C?) to L ([, ]9 xQ, C?®@C?) for some p > 1
in the case of the environment of Theorem 1.1 and estimate its norm ||}, s¢||p,c0-
This extends Lemma 5.1 of [3] to the massless field case.

Lemma 3.1. Let (0, F,P) be an environment of massless fields ¢ : Z9 — R
with d > 3, and a : R — R 4TD/2 be as in the statement of Theorem 1.1. Set
a(¢) = a(¢(0)), ¢ € Q. Then there exists po(A/N) with 1 < po(A/X) < 2 depending
only on d and A/X, and positive constants Cy(A/N), Co(A/N) depending only on d
and A/X such that

(3.11)

Co(A/N)r|[Da(:)|lo
Tr IR e’} S

ITs el s

provided 1 < p < po(A/A).

(1-A/A)TD2 for 0 < < A, [SE] < CL(A/N)Vi/A

Proof. Tt will be sufficient for us to bound ||}, s¢g| in terms of | g, for g :
Z¢ — C% @ C? of finite support. Let Q be a cube in Z¢ containing the support of
the function ¢(-) and (Qq, Fq, Po,m) be the probability space of periodic functions
¢ : @ — R with measure

1
(3.12) exp |— Z V (Vo(z)) + §m2¢(x)2 H d¢(x) /normalization,
zeQ z€Q
where we assume m > 0 and V : RY — R is C’2~ with a(-) = V”(-) satisfying
the quadratic form inequality (1.3). We denote by g the space of periodic fields
@:Q — R%and let F: Qg x Qg —+Chea C' function which for some constants

A, B satisfies the inequality
(3.13)

|F(@, )| +Hda F(y; 0, 9) | +|ds Fy; @,9)| < Aexp[B{[@ll2+]¢l2}],  y€Q, d€Qq, ¢ €Qq.
Let (-)q,,m denote expectation with respect to the measure (3.12) and note that
the Hessian of 3, .o V (Vo(z))+ im2¢(z)? is bounded below in the quadratic form

sense by the constant operator —AA +m?2. It follows then from the Brascamp-Lieb
inequality [1] that

(3.14) Varg, m[F(V¢,¢)] <
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([V*doF(Vo, ¢)+dyF(Ve, §)]* (—AA+m?) T [V*da F(V, ) +deF(Vé,d)] Jag.m
< 2 [V¥daF(Vé, 9)"(—AA +m?) T [V da F(V,6)] Dag.m
2( [deF(V, )" (=AA +m?)  dg F(V, )] Dag.m -

We conclude from (3.14) that the Poincaré inequality
(3.15)

Varag,m[F(V,¢)] < < lds F (Y, d)3 Yrgm to3 < lds F (Vo )3 g m

holds. We shall show using (3.15) that ||T;., s¢9||o is bounded in terms of ||g||,
if the environment is the probability space (g, Fq, Pg,m). The result will then
follow by taking first Q — Z¢ and then m — 0.

Let us suppose that the cube Q is centered at the origin in Z? with side of length
L, where L is an even integer. Let G, : Z¢ — R be the solution to (1.10) with
V"(-) = I;. Then there exist positive constants C,~ depending only on d such that
G, satisfies the inequality
(3.16)
G, (x) + (Jz| +1)|VG, (z)] < wa‘i_gevﬁlxl ford>3, 0<v<1, ezl
The inequality (3.16) can be proved by using the Fourier inversion formula (see [10]
and references therein). We denote by G, g : @ — R the corresponding Green’s
function for the periodic lattice @, so

(3.17) Guo(x) = Z G,(x+Ln), z€Q@.

nezd

Then any periodic function ¢ : @ — R can be written as

(3.18)  ¢(x) = > [VGiglz—y)]'Vey) + Y vGiglr—y)o(y), z€Q.

yeQ yeQ
We take v = 1/L? in (3.18) to obtain a representation
(3.19) ¢() = hg*@()+kq* (),

where hg = [hq,1, ..., hg,4] is a row vector and the operation * denotes convolution
on the periodic lattice Q. It follows from (3.16), (3.17) that if ¢ > d/(d — 1) there
is a constant Cy depending only on g¢,d such that |hg|q < C4. Similarly if ¢ > 1
and q # d/(d — 2) then |kg|l, < C,/min[LI~1/d) 2],

We first prove (3.11) when r = 1. For the environment (Qq, Fo, Pg.m) we have
from (3.19) that

(3.20) Tiys5e9(RE,8) = Y g(@)Pb(hg *@(x) + ko * d(x)) .
T€EQ

Let H,»(€Qq) be the Hilbert space of functions f : Qg — C? which are square
integrable with respect to the measure Py . It follows from (3.15) that if v € C¢
the norm of T 5, 5¢g(RE, -)v € Hon(2q) is bounded as

(3.21)

1T1,n,5¢9(RE, v Hym(QQ) =7 Z Z [ Z z)hq ;(v — Z)Db(éf’( ))v ||§{M(QQ)

2EQ j=1 z€Q
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+ % ST gla)kg(a — 2)Db(g())o]3

Hm(Qq) *
ZEQ TEQ

Since d > 3 we can choose ¢ such that d/(d — 1) < ¢ < 2 and ¢ # d/(d — 2).
It then follows from (3.21) and Young’s inequality for convolutions that for p =
2¢/(3¢—2) >1

A m2Lx9)

where a(¢) = 2min[d(1 — 1/q),2]. Let (R, F, P,,) be the probability space of fields
¢ : Z¢ — R with measure P, given by (1.9). Proposition 5.1 of [3] enables us to
take the limit of (3.22) as @ — Z? to obtain the inequality

(3.23) IT10,369(RE, V0I5, 0,0 < Callgllpl DB 0l /3

for the environment (2, F, P,). Finally Proposition 6.1 of [3] enables us to take
the limit of (3.23) as m — 0 provided d > 3. We have proved (3.11) when r = 1.

To prove the result for r > 1 we consider the environment (g, Fg, Pg,m) and
write as in [3]

(3.24)  Topseg(RE 0w = PO g(a)b(p(2)0eFr (6, 720) ,  6() € Qg -
zEQ

For ¢ € R%, 1 > 0, the functions F,.(&,7n, ¢) are defined inductively by
(B:25)LFr (6. 0) + 0:0¢Fr(€,m,6) = POIB(S(0)IcFr-a(Em,0)], 7> 2,
L, 1,6) + 0:0cFa(Em,0) = PE[B(S(O)v] -

From Lemma 2.1 of [3] it follows that for fixed n > 0 the function F,.(¢, 7, ¢), ¢ € R4,
has an analytic continuation into the strip |3¢| < Cy+/n/A for some constant C
depending only on d. Furthermore J¢F, € H,,(Qg) and

(3.26)

10 (€11, Mt miag) < (A=A/A) T L+CoSEP/ (n/A)] " ol for [€] < Crv/n/A, 7> 2,

where the constant C5 depends only on d. Note that (3.26) implies that ||}, s¢l1,00
is finite provided |J¢| < C1/n/A.

Using the representation (3.19) for ¢(-) we can consider the F,., r > 2, defined
by (3.25) as functions of &(-) and ¢(-), which we denote by E,.(&,7,&,¢). Observe
now that for 1 < j < d,

~ 1 1
(322)  |TimoesRE Yoo o) < CallgBIDBE)E o [+] ,

B2T) 5o 3 o(@)Bllq * (o) + ko » )0 (€1, o) =
J TEQ
3 9@)has(e—2) DB(ONIE (€1, 70+ 3 g()b(00)) 5z e (€, 72 7).
0w;(z)
T€EQ T€EQ J

For £ € RY and u : Q — C we denote by Veu : Q — C¢ the function Veu(z) =
[Vieu(2),..., Vjeu(z)], z € Q, where V, cu(z) = e~ fu(z+e;)—u(z), 2 € Q, j =
1,..,d. Now let u, ; : RYx Rt xQ x Qg — C be given by the formula

(3.28) Ui (61, 2,0) = Y deFr(y; &,m,m=0)hgi(y + 2) .
yEQ
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Then as in (2.6), (2.10) we have that

(3.29) Veu,;(&n,@— 2,6 Za agF (&1, 7od)hq i (y — 2)

0 ~ .
= szmagFr(g, M, TxW, Tz¢) .

Similarly to (2.15), (2.16) we see that u, ;(£,n, z, ¢) satisfies the equation
n * *
(330) K uT,j(§7’r]aZ7¢) +V£V§UT7J(£,7]7Z,¢) = Pvgfn](gvnvzad)) )

where the function f, ; : R xRt x Q x Qo — C? is given by the formula

(3.31)  fa;(&m,2,0) = Db((2))vhg;(z)
fri(€m.2,0) = Db((2))0eFro1(&,m, 720)hq i (2)+b((2)) Veur—1,;(&,m, 2, 0), 7> 2.

Suppose £ € RY, n > 0 and g:Q— C? is a periodic function on Q. We define

the function Tg 291 Q — C4 by Tg n9(2) = Veu(z), z € Q, where u: Q@ — C is the
solution to the equation
% u(z) + ViVeu(z) = Vig(z), z€Q.
It follows easily from (3.32) that the norm of T¢, acting on £%(Q,C?) satisfies
|Tenlla < 1. Observing that (3.32) is a special case of (3.6), we apply Lemma
2.1 of [3]. Hence there are positive constants Cp,Cy depending only on d such
that the function £ — T&,n from R? to linear maps on £?(Q, C%) has an analytic
continuation to the region |S¢| < C1y/n/A and [|Teplla < (1 + Ca[S¢[?/[n/A]) in
this region. We can also adapt the proof of the Calderon-Zygmund theorem [13]
to further conclude that if |S¢| < Cy+/n/A then the norm of T¢ ,, on £9(Q, C?) for
1 < ¢ < oo satisfies the inequality || T¢ [l < (1 + C2|S€[?/[n/A]) (1 + 6(q)) where
0(g) depends only on d, ¢ and lim,_,2 §(q) = 0.

As noted in [13] one can extend the results of the Calderon-Zygmund theorem
to operators on functions with values in a Hilbert space. Let LY(Q,H,,(2q)) be
the Banach space of functions g : Q — H,,(f2g) with norm

(3.33) lglld = > 9@, ) -
TEQ

We define g, j ¢, : Q = Hm(Qq) and hyjen 1 Q = Hpm(Qg) by
(334) gT’,j,E,T](Z) = fr,j(ganwza ) ) hhju’fﬂ?(z) = vfur,j(fanaza ) , 2 € Q
From (3.26) and (3.31) it follows that if |3¢] < C1/+/n/A then

(3.32)

(335) llg2jemlle < CIDBO)ocllhaillglvl ,
~ r— r—2
lgrs.emlla < CIDDC)llsollhq,illa(1=A/A)""2 [1+ Co|SE?/(n/N)]" 7 Jol+(1=A/A)l|hr-156.0lq

where C' depends only on d. We see from the Hilbert space version of the Calderon-
Zygmund theorem (see [13] page 45) applied to (3.30) that for ¢ > 1 there is a
constant 6(q) > 0 such that

(336) llhrjenlle < [1+48(@)] [1+ColSE?/(0/M)] lgrjienlly and lim 6(q) = 0.

if 7> 2,
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It follows then from (3.35), (3.36) that
(3.37)

lgrenlls < CrIDBE)sllha,slla[14+3(@)] 2 (1=A/A) 2 [L+ Ca[SEP/(n/M)] " Jol,

where C' depends only on d.
From (3.27), (3.29) we see that

(3.38)
1 0 . -
5”@ Z g(x)b(hg * &(x) + kg * ¢($))8§Fr(f,n,TZ(IJ,Ta;(b)Hj_Lm(QQ) <
z€Q

1" 9@)hq,s(@ = 2)Db(g(x — 2))0e Fr (&, o0 |3, o) T
TEQ

IS g(@)b(é(a — 2)hrjenls - 20)|5,

z€EQ

Hm (QQ)

Observe now from (3.26) and Young’s convolution inequality for functions with
values in a Hilbert space that

339) YIS g(@)hg.i(e — 2)Db(¢(x — 2)0eFr (€, 1, 7o 20) |

Hm ()
zEQ z€EQ
- . o1 12
< C[IDBO) lselgllliha st~ A/AY " [1+ Calsel/ (/) ol]

where p = 2¢/(3¢ —2) with 1 < ¢ < 2 and C depends only on d. We can bound the
second term on the RHS of (3.38) similarly. Thus from (3.36), (3.37) we conclude
that

(3.40) Z H Z O — 2))hyjen(z— 2z, (Z))Hj-tm(QQ)

zEQ TEQ
< C [HIDBO e lgllo g lalt +6(@) (1~ /A" [+ CalSel2/t/A)] " ol]

where p = 2¢/(3¢ — 2) with 1 < ¢ <2 and C depends only on d.

We can argue now as in the » = 1 case to establish (3.11) for » > 2 by choosing
q < 2 and |S¢| < Ca(A/A)/n/A to satisfy [1+(q)](1—A/A) [1 + C'2|9s§|2/(n/A)] <
(1 — A/A)Y/2. We obtain then an estimate on the first term on the RHS of (3.15)
which is uniform as Q — Z?. By essentially repeating our argument we also see
that the second term on the RHS of (3.15) vanishes as @ — Z?. Finally (3.11)
follows by letting m — 0. (]

Proof of Hypothesis 3.1. We assume that (£,7) and (£/,7') are as in the statement
of Hypothesis 3.1. Let g : Z¢ — C? ® C? be the function defined by

(3.41) 9(2) = {VV Gya(@)} e ¢ —{VV'Gyala)}* e ¢

where the Green’s function G, (-) is the solution to (1.10) with V"(-) = It
follows from (3.7) and Lemma 2.1 of [3] that the constant C; > 0 in (3. ) can be
chosen depending only on d and A/ so that

(3.42)

(€, n")—a(& vl < CoAY I Trnseg(RE, Yol for [S¢], [SE] < Crv/n/A,

r=1
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where C is a constant depending only on d, A/\. We can see from (3.41) that there
is a constant C; depending only on d such that if |3, |S¢'| < C14/n/A then the
function g(-) is in ¢P(Z4,C? ® C9) for any p > 1. Furthermore if 0 < o < 1 and
p > d/(d — «) then || g(-)||, satisfies the inequality

(3.43) lgC)llp < ol 1€ = €1* + (0 —m)/AI*2 ],
where the constant C),, depends only on d, p. The Hélder continuity (3.5) for suffi-
ciently small o > 0 follows from (3.42), (3.43) and Lemma 3.1. O
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