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LIKE EQUATIONS
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ABSTRACT. This paper is concerned with the stability and asymptotic stability
at large time of solutions to a system of equations, which includes the Lifschitz-
Slyozov-Wagner (LSW) system in the case when the initial data has compact
support. The main result of the paper is a proof of weak global asymptotic
stability for LSW like systems. Previously strong local asymptotic stability
results were obtained by Niethammer and Velazquez for the LSW system with
initial data of compact support. Comparison to a quadratic model plays an
important part in the proof of the main theorem when the initial data is
critical. The quadratic model extends the linear model of Carr and Penrose,
and has a time invariant solution which decays exponentially at the edge of its
support in the same way as the infinitely differentiable self-similar solution of
the LSW model.

1. INTRODUCTION.

In this paper we continue the study of the large time behavior of solutions to the
Lifschitz-Slyozov-Wagner (LSW) equations [8, 17] begun in [4]. The LSW equations
occur in a variety of contexts [14, 15] as a mean field approximation for the evolution
of particle clusters of various volumes. Clusters of volume x > 0 have density
c(z,t) > 0 at time ¢t > 0. The density evolves according to a linear law, subject to
the linear mass conservation constraint as follows:

(1.1) w - 8%((1—(mLfl(t))l/?’)c(x,t)), x>0,

(1.2) /Oocxc(x,t)dx = 1

One wishes then to solve (1.1) for ¢ > 0 and initial condition c(z,0) = ¢o(z) >
0, > 0, subject to the constraint (1.2). The parameter L(t) > 0 in (1.1) is
determined by the constraint (1.2) and is therefore given by the formula,

(1.3) L)Y = /OO xl/gc(x,t)dx/ /00 c(z, t)dx.

Evidently then L(¢)'/? is the average cluster radius at time ¢ and the time evolution
of the LSW system is in fact non-linear. Existence and uniqueness of solutions to
(1.1), (1.2) with given initial data ¢q(z) satisfying the constraint has been proven
in [7] (see also [3]) for integrable functions cg(-), and in [10] for initial data such
that co(z)dz is an arbitrary Borel probability measure with compact support. In
[11] the methods of [10] are further developed to prove existence and uniqueness
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for initial data such that c¢o(z)dz is a Borel probability measure with finite first
moment.

The main focus of [4] and the current paper is to understand the phenomenon
of coarsening for the LSW system. Specifically, beginning with rather arbitrary
initial data satisfying the constraint (1.2), one expects the typical cluster volume
to increase linearly in time. This is a consequence of the dilation invariance of the
system. That is if the function ¢(x,t), x,t > 0, is a solution of (1.1), (1.2), then for
any parameter A > 0 so also is the function A2c(\z, At). Letting A(t) be the mean
cluster volume at time £,

(1.4) At) = /OOO xc(m,t)dm/ /000 c(z,t)dz, t>0,

one expects A(t) ~ Ct at large ¢ for some constant C' > 0. The problem of proving
that typical cluster volume increases linearly in time is subtle since it is easy to see
that the constant C' depends on detailed properties of the initial data. In fact if the
initial data is a Dirac delta measure then C' = 0. Less trivially one can construct a
family of self-similar solutions [9] to (1.1), (1.2) depending on a parameter 3, which
may take any value in the interval 0 < 5 < 1. In that case A(t) ~ C(B)t at large t,
where 0 < C(8) < . The main result of [4] is an upper and lower bound on the
rate of coarsening of the LSW model for a large class of initial data: there exist
positive constants C,Cs depending only on the initial data such that

(1.5) C\T <AT) <C,T for T > 1.

The class of initial data for which (1.5) holds includes the exponential function
co(z) = e®, 0 <z < oo, and the slowly decreasing functions co(z) = K. /(1 +
r)?te, 0 < 2 < oo, where we require ¢ > 0 in order to satisfy the conservation
law (1.2). Tt also includes initial data with compact support such as ¢o(z) =
K,(1—z)P7', 0<2 <1, ¢x) =0, z > 1, where here we require p > 0 so that
(1.2) holds. A time averaged upper bound on the rate of coarsening for such a wide
class of initial data was already known from a result of Dai and Pego [5], which
applies the Kohn-Otto argument [6] to the LSW system.

In this paper we shall be confining our investigation of the LSW system to
solutions of (1.1), (1.2) which have initial data with compact support. It is easy
to see that if the initial data c¢o(+) for (1.1) has compact support then the solution
c(+,t) at any later time ¢ > 0 also has compact support. Furthermore all self-similar
solutions of (1.1), (1.2) have compact support. The study of solutions to (1.1), (1.2)
with initial data which has compact support generally proceeds [9] by normalizing
the support of the function ¢(-, t) to be the interval 0 < z < 1 for all ¢ > 0. Denoting
this normalized density also by ¢(-,t), we define functions w(-,t) > 0, h(-,t) > 0 by
the formulas

1 1
(1.6) w(z,t) = / c(x',t) dz’ , h(x,t) = / w(@' t)dr' , 0<x<1.
Then the dynamical evolution of solutions to the LSW system is governed by the
PDE

ow(x,t)
ot

ow(z,t)

(1.7) -

+ [o(x) — K(t)Y(x)]

=w(x,t), 0<z<l1, t>0,
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with the mass conservation law
1

(1.8) h0,1) = / w(z,t) de =1, ¢>0.
0

where the functions ¢(-) and ¢ (-) in (1.7) are given by the formulas,
(1.9) gb(x):zl/gfx, w(z)zl—xl/B, 0<z<1.

The initial data wg(-) for (1.7), (1.8) is now taken to be a non-negative decreasing
strictly positive function wg(z), 0 < x < 1, which converges to 0 as z — 1.
This implies that the solution w(z,t) of (1.7), (1.8) also is non-negative decreasing
strictly positive in 2 for 0 < & < 1 and converges to 0 as  — 1. The function x(-)
in (1.7) is uniquely determined by the conservation law (1.8) just as L(+) in (1.1) is
determined from (1.2).

The inequality (1.5) was proven in [4] by making use of the properties of a certain
function of the solution of (1.1) which we called the beta function. The beta function
B(+,t) associated with the solution w(-,t) of (1.7) is given by the formula

(1.10) Bla,t) — W ,

where c(+,t) and w(-,t) are as in (1.6). It was shown in [4] that if the beta function
of the initial data for (1.7), (1.8) satisfies

(1.11) lim f(x,0) = fo >0,

then the coarsening inequality (1.5) holds. Since the support of the function wq(-)
is the interval 0 < x < 1, it is easy to see that if (1.11) holds then one must have
Bo < 1. We shall refer to initial data wo(-) for (1.7), (1.8) as being subcritical if
(1.11) holds with 0 < By < 1, and eritical if (1.11) holds with 8y = 1. Examples of
subcritical and critical initial data are given by functions wg(-),

0<xr <1,

(1.12) wo(x) = (1 —x)P for p >0, wo(x)=exp {_1ix

] , 0<x <.

In (1.12) the first function has Sy = p/(1 +p) < 1, and the second function §y = 1.
Self-similar solutions of (1.1), (1.2) correspond to time independent solutions of

(1.7), (1.8). There is an infinite family of such time independent solutions charac-

terized by a parameter k > ko = ¢'(1)/¢'(1) > 0. These solutions w,(x) can be

easily distinguished by their behavior as  — 1 as follows:

(1.13) for K > Ko, we(z) ~ (1—x)P, 1/p = (k — ko) ¥ (1)],
for k = ko, wy(z) ~exp[—1/y(1—2)], ~=ro"(1)—¢"(1).

Letting S, (-) denote the beta function (1.10) corresponding to w/(+), it is easy to
see that

(1.14) ko= [1/ Jim Bele) — ¢'(1) — 1)/} ()]

so that w,(-) is subcritical for K > ko and critical when £ = kq. It was shown in
[12] that if the solution w(-,t) of (1.7), (1.8) converges as ¢ — oo to wy(-) with
K > Ko, then the initial data w(-,0) must be regularly varying with exponent p
given by (1.13). Furthermore if the initial data is sufficiently close in the regu-
lar variation sense to wy(-), then lim;_, o, w(x,t) = wy(z) uniformly on any com-
pact subset of [0,1). This in turn implies that the average volume (1.4) satisfies
limy_,oo A(T)/T = C > 0. In [4] it was observed that if the beta function (1.10)
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corresponding to the initial data w(-, 0) satisfies (1.11) with 8y = p/(1+4p) < 1, then
w(-,0) must be reqularly varying with exponent p, and that these two conditions
are virtually equivalent (see Lemma 4 of [4] and the remark following).

The main result of [12] can be considered a strong local asymptotic stability
result for the LSW model with subcritical initial data. A corresponding result for
critical initial data was proven in [13]. Again it was shown that if the solution
w(-,t) of (1.7), (1.8) converges as t — oo to wy(-) with kK = Ko, then the initial
data w(-,0) must satisfy a certain criterion-equation (4.1) of the present paper.
If the initial data is sufficiently close in the sense of this criterion to w(-), then
lim;—, oo w(2x, t) = wy(z) uniformly on any compact subset of [0,1). We show in §4
that if (1.11) holds with Sy = 1 then the criterion of [13] for the initial data of (1.7),
(1.8) is satisfied.

Our goal in the present paper is to prove weak global asymptotic stability results
corresponding to the strong local asymptotic stability results of [12, 13]. Tt will be
useful to our study to generalize the system (1.7), (1.8), (1.9) by allowing more
general functions ¢(-) and v(-) on [0,1] than (1.9). We do however require these
functions to be continuous on [0, 1], twice continuously differentiable on (0, 1], and
have the properties:

(1.15) ¢(x) is concave and satisfies #(0)=¢(1) =0, -1 < ¢'(1) <0
(1.16) () is convex and satisfies P(1) =0, ¢'(1) <0, ¥"(1) —¢"(1) > 0.

Evidently the conditions (1.15), (1.16) imply that the functions ¢(z), (x) are
strictly positive for 0 < x < 1. The conservation law (1. 8) when combined with
(1.7), implies that the parameter £(¢) is given in terms of w(-,¢) by the formula,

1
(1.17) L [/ 1+ ¢ (x)]w(z, t)dz| = w(0,t) / Y (x
K(t) Lo

One can see from the conditions (1.15), (1.16) and the fact that the function w(-,t)
is non-negative decreasing, that x(t) as determined by (1.17) is positive. Hence
the coefficient ¢(-) — k(t)¥(-) of dw(-,t)/Ox in (1.7) is concave for all t > 0. As
in the LSW case there is an infinite family of time independent solutions of (1.7)
characterized by a parameter k > kg = ¢’(1)/1'(1) > 0 which have the properties
(1.13), (1.14).

Our first result is a weak global asymptotic stability result for (1.7), (1.8) in the
case when the initial data is subcritical. In order to prove it we need to make a
further assumption on the functions ¢(-), ¥(-) beyond (1.15), (1.16), namely that

(1.18)  &(-), () are C® on (0,1] and ¢"”'(x) >0, ¥"'(x) <0 for 0 <z < 1.
Evidently (1.18) holds for the LSW functions (1.9).

Theorem 1.1. Let w(x,t), x,t > 0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16) and assume that the initial data w(-,0) has beta function
B(-,0) satisfying (1.11) with 0 < By < 1. Then there is a positive constant C;
depending only on the initial data such that k(t) > Cy for allt > 0. If in addition
(1.18) holds, then there is a positive constant Cy depending only on the initial data
such that k(t) < Cy for allt >0 and

T—o0

T
(1.19) lim L / R(t) dt = 180 — ¢/(1) — /10 (1)] -
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In the LSW case the condition Cy < k(t) < Cy, ¢t > 0, implies that the ratio of
the mean cluster radius to maximum cluster radius is uniformly bounded strictly
between 0 and 1 for ¢ > 0. We prove Theorem 1.1 in §2 by extending the methodol-
ogy of the beta function developed in [4]. In order to prove a version of the theorem
for critical initial data we have had to have recourse to a different approach. The
approach is based on the observation that when the functions ¢(-), (-) are qua-
dratic, then the generally infinite dimensional dynamical system (1.7), (1.8) reduces
to a two dimensional system. One way of seeing this is to note that for quadratic
o(+), ¥(-) the commutator of the operators A, B defined by

(1.20) A= o), B=i()

is a linear combination of A and B. Thus A and B generate a two dimensional Lie
algebra. The corresponding two dimensional dynamical system can be analyzed in

detail and so we are able to prove in §3 and §5 strong global asymptotic stability
for the time independent solutions (1.13) of (1.7), (1.8) .

Theorem 1.2. Assume that the functions ¢(-), ¥(-) are quadratic, and that the
initial data w(-,0) for (1.7), (1.8) has beta function B(-,0) satisfying (1.11). Then
setting k = [1/Bo — ¢’ (1) — 1]/|¢'(1)|, one has for By < 1,

(1.21) Jim a(t) =, Jim [1B0,1) ~ Au() oo =0,

where By () is the beta function of the time independent solution wy(-) of (1.13). If
Bo =1 then for any ¢ with 0 < € < 1, one has
(1.22) tlggo K(t) = Ko, tlggo ogilgfs |B(x,t) — Bro(x)] = 0.

In §5 we note that the convergence result (1.22) for critical initial data can be
improved if we make the further assumption on the initial data:

(1.23) There exists ¢ > 0 such that §(z,0) <1lforl1l—-§ <z <1.

Thus if (1.11) with 8y = 1 and (1.23) hold, then lim;, [|B(:;t) — Bro()]loo = 0.
The condition (1.23) turns out to be important for us when we seek to extend
Theorem 1.1 to the case of critical initial data. We also need an extra assumption
on the functions ¢(-), ¥(-) beyond (1.15), (1.16) and (1.18). The assumption is as
follows:

(1.24) The function z — ¢'(z) + ¢'(1) — ¢(x)[¢)' (x) + ¢’ (1)] /¥ (x)

is decreasing for 0 <z < 1.
One can easily see that the LSW functions (1.9) satisfy (1.24).

Theorem 1.3. Let w(x,t), x,t >0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16), (1.18),(1.24) and assume that the initial data w(-,0) has
beta function B(-,0) satisfying (1.11) with By = 1. If lim,_0 ¢(x)/x = oo, then
there exist positive constants C1,Cy depending only on the initial data such that
C1 < k(t) < Cy, fort >0, and (1.19) holds. If the functions ¢(-),%(-) are C?
on the closed interval [0,1] and in addition the initial data satisfies (1.23), then
there exist positive constants C1,Cy depending only on the initial data such that

Cy < k(t) < Cq, fort >0, and (1.19) holds.
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Since the LSW function ¢(-) of (1.9) satisfies lim,_,¢ ¢(z)/z = 0o, Theorem 1.1
implies that weak global asymptotic stability holds for solutions of the LSW system
with critical initial data as defined by (1.11) with Sy = 1. It seems at first surprising
that the system (1.7), (1.8) is more stable when the function ¢(-) has a singularity
at © = 0. Proposition 4.2 however and the remark following indicates why this may
be the case. The proof of Theorem 1.3 is contained in §4 and §6. In §4 we use
the methodology of the beta function to prove certain results, in particular some
bounds on the function (-). In order to prove the asymptotic stability result (1.19),
we transform in §6 the system (1.7), (1.8) to a system which can be compared to
the quadratic model. Hence our proof of asymptotic stability in the critical case
hinges on viewing (1.7), (1.8) as a perturbation of the quadratic model. In contrast,
the proof of asymptotic stability in the subcritical case can be accomplished by
using the properties of the beta function alone. In [4] it was observed that the
methodology of the beta function is a way of viewing the system (1.7), (1.8) as a
perturbation of the linear model studied by Carr and Penrose [1, 2]. Since there is
no critical time independent solution wy,(+) of (1.7), (1.8) for the linear model, it
is therefore not surprising that in the proof of asymptotic stability for the critical
case one needs to go beyond the methodology of the beta function.

2. GLOBAL STABILITY FOR SUBCRITICAL INITIAL DATA

In this section we shall prove Theorem 1.1. First recall that the solution w(z, t) to
(1.7) is given in terms of the initial data wq(-) by the formula w(z, t) = etwy(F(z,t)), 0 <
x < 1, where the mapping F(-,t) is defined by F(z,t) = 2(0), with z(s), 0 < s <,
being the solution to the terminal value problem

dfif) = ¢(x(s)) — K(s)y(a(s)), s <t, x(t) =z

The derivative OF (x,t)/0x is given in terms of the solution to (2.1) by the formula

e 2D g - [0 - e (o) d

(2.1)

By virtue of our assumptions (1.15), (1.16) and the positivity of the function (),
it follows from (2.2) that F(x,t) is a convex function of z, 0 <2 < 1.

Lemma 2.1. Let F'(-,-) be defined by (2.1), where k(-) is determined by the solution
of (1.7), (1.8). Then F(0,t) is an increasing function of t and lim;_, ., F'(0,t) = 1.

Proof. Evidently F(0,t) is an increasing function of ¢, whence lim;_, o F(0,t) =
a < 1. The conservation law (1.8) is equivalent to

1
(2.3) /F(O ) wo(2)/[0F (z,t)/0z]) dz = e ",

where the variables z and x are related by z = F(x,t). From (1.15), (1.16) and
(2.2) we see that 0F(z,t)/0x < exp[—t¢'(1)], 0 < x < 1, whence (2.3) implies that

(2.4) / wo(z) dz < exp[—t{1+¢'(1)}] .

F(0,t)

We conclude from (1.15), (2.4) that o = 1. O
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Lemma 2.2. Let w(z,t), x,t > 0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16). Assume the initial data w(-,0) has beta function B(-,0)
satisfying (1.11) with 0 < By < 1. Then there is a positive constant C depending
only on the initial data such that k(t) > C for all t > 0.

Proof. Setting c(z,t) = —0w(z,t)/0x > 0, 0 < z < 1, and X; to be the random
variable with probability density function c(x,t)/w(0,t), 0 < x < 1, we see from
(1.17) that (t) satisfies the inequality

1+ 8(1)
(2.5) k(t) > 20
where () denotes expectation value. We assume that Sy = lim,_1 8(z,0) < 1.
Since the function x — F(z,t), 0 < < 1, is convex, it follows from the inequality
(57) of [4] that B(z,t) < B(F(x,t),0) for 0 < 2 < 1. Hence Lemma 2.1 implies
that there exists 7" > 0 depending only on the initial data, such that §(z,t) <
(1+60)/2, 0 <x <1, t>T. Now for a positive random variable X which has
beta function §(-) and satisfies || X||o < 0o, one finds after integration by parts,

[1X oo
(2.6) (X) = [ X[ — / B(z) d .

Applying (2.6) to the variable X; with ¢t > T', and using the fact that | Xl = 1,
we conclude that ( Xy ) > (1 — f9)/2 provided ¢t > T. The result follows by
observing that k(t) is a continuous strictly positive function of ¢ for ¢ > 0. O

(Xe),

To obtain an upper bound on k() we first obtain an alternative formula to (1.17)
for £(t). Observing that the function ¢(-,t) of (1.6) satisfies ¢(z, t) = —0w(z,t)/0x >
0, we see that c(x,t) satisfies the equation
2D 1 9 o) — mlep @) ela, ) = el 1)
Hence we obtain a formula for x(t) equivalent to (1.17),

1
_ Jolz+o@)e(@, ) de (X, +¢(X) )
fol Y(z)e(x, t) do ((Xe))

Lemma 2.3. Let X be a positive random variable such that || X||cc = 1, and set

KX) = { X 4+ ¢(X) )/ v(X) ) where ¢(-), () satisfy (1.15), (1.16). Then
for any 6, 0 < 6 < 1, there are positive constants C1(5), C2(0) with the property

lims_o C1(6) = o0 and limgs_y1 C2(5) = 0, such that

(2.7)

(2.8) k(%)

(2.9) 1—(X) < § implies k(X)> C1(9),

(2.10) 1—(X) > ¢ implies k(X)<Cy(0).

Proof. We see from (1.16) that for any n > 0,

(2.11) (X)) < Y(OPX <n)+[¢' (][l -(X)] .
Combining (2.11) with the inequality

(2.12) PX <n) < I-X)]/(A-n), 0<n<l,

we conclude that there is a constant C' > 0 depending only on #(-) such that
(2.13) k(X) > C(X)/[1 —(X)] .

This proves (2.9).
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To prove (2.10) observe that by Jensen’s inequality, { ¥(X) ) > (X)) >
$(1-8)>0and ( X +6(X) ) < (X)+6((X)) <1—8-+5upgeyes s 3(x). Now
(2.10) and lims_,; C2(5) = 0 follows from the continuity of ¢(-) and the fact that
#»(0) =0, ¥(0) > 0. O

Lemma 2.4. Let w(z,t), x,t > 0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16), (1.18). Assume the initial data w(-,0) has beta function
B(-,0) satisfying (1.11) with 0 < By < 1. Then there is a positive constant C
depending only on the initial data such that k(t) < C for allt > 0.

Proof. From (1.6) we see that h(z, t) satisfies w(x,t) = —0h(x,t)/0x > 0, lim,_,1 h(x,t) =
0, whence it follows that h(z,t) is a solution to the equation

(2.14)
LD+ o) — n(oppa) P = [ 16) = e (a1 + i)

We conclude then from (1.7), (2.7), (2.14), that the function B(x,t) of (1.10) is a
solution to

0 0
(2.15) ¢ 108 8@, 1) + [6(x) — w(t)d(2)] 7 - log f(x,) = —g(x,1)
where the function g(x,t) is given by the formula
1

1
216) g(e0) = (o)~ KO0/ (@)} 5o [ 16) = w0 Dtz
It follows from (1.15), (1.16) and the non-negativity of x(-) that g(-,-) is a non-
negative function and lim,_,; g(x,t) = 0. From (2.16) we also have that

1
2 {¢~<m>-m<tw<x>}—2”<§Zf’$l / (6" (2) — A1) ())h(z. t)dz .

Assuming now that —¢”(+), ¥"(-) are decreasing, it follows from (2.17) that

219 200 < ) @) [1 - D[]

Note that the expression in square brackets on the RHS of (2.18) is 1 minus the
beta function of the convolution of A(-,t) with the function H : R — R defined
by H(z) =0, z > 0; H(z) =1, 2 < 0. We observed in [4] that if 3(:) is the
beta function associated with a function h(-) by (24) of [4], then the condition
supfB(-) < 1 is equivalent to the condition that h(-) is log-concave. Since the
function H(-) is log-concave, the Prékopa-Leindler inequality [16] implies that if
sup S(+,t) < 1 then the convolution h(-,¢) * H is also log-concave. It follows that if
sup (-, t) < 1, then the expression in the square brackets on the RHS of (2.18) is
non-negative. We can see this directly by writing h(x,t) = exp[—q(z,?)], 0 <z < 1,
where the function © — ¢(z,t) is increasing and convex with lim,_,1 ¢(z,t) = co.
Then

(2.17)

(2.19) w(@, ?) / h(z,t)dz = exp[q(x,t)]aq(;x’t)[ exp[—q(z,t)] dz

Iz, 0)?
" 0q(z,1)
A

exp[—q(z,t)] dz = 1.

< expla(e. ) [

x
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We conclude from (2.18), (2.19) that if sup 8(-,¢) < 1 then g(x,t) is a decreasing
function of z with lim,_,; g(z,¢) = 0.

From Lemma 2.1 we see that there is a Tp > 0 such that sup 8(+,t) < 1 for t > Tj
and inf 5(-, 7o) = Bo > 0. Next let §9 > 0 have the property that the constant C;(J)
in Lemma 2.3 satisfies C1(d9) > ko = ¢'(1)/4'(1). Suppose now that

(2.20) /0 Bz, t) de < J

for ¢ in the interval T7 <t < Ty, where 71 > Tj and there is equality in (2.20) when
t = T1. We show that in this case there is a §; > 0 such that

1
0

The result follows from (2.21) and Lemma 2.3.
To prove (2.21) we use the fact that for ¢ > T} one has

(222) Be.t) = e~ [ jg<x<s>,s> 5] a1

where z(s), s <, is the solution of (2.1) with terminal condition z(t) = z. Observe
next that since k(s) > C1(dp) > ko for Ty < s < T3, one has

(2.23) k(s)¥(2) —d(z) > [k(s)—rol['(1)|(1—2) >0, Ty <s<Tp, 0<z<1.
We conclude that

(2.24) [1—x(s)] < [1—z]exp {—/ [k(s")) — m0]|1//(1)ds’} T1<s<t<Ty.

Observe now that for any s, T < s < T5, the function ¢'(2) —k(s)y’(2) is a positive
decreasing function of z, 0 < z < 1 and the function g(-, s) of (2.16) satisfies the
inequality

(2.25) 0 < g(z,8) < ¢ (2) — k()Y (2), Th<s<Tr, 0<z<1.
It follows from (2.24), (2.25) that
¢
(2.26) 0 < / g(x(s),s) ds < C5(dp), T1 <t<Ty,
Tyv(t—1)

for a constant C3(dp) depending only on §p. From (2.17) and the fact that —¢”(+), ¥" ()
are decreasing we see that for any x1 > 0,

(2.27) 0 <g(z,8) <[V (1) —¢"(x1)](1—2), z1<2<1, s>Tp.
Hence if 77 < t < T then we have the inequality

TV (t—1)
(2.28) /T g(z(s),s) ds <

TV (t—1) TyV(t—1)
/ ds [k(s)Y" (x1)—¢" (1)](1—21) exp {/ [K(s") — ko] ¥ (1) dS’} :

T

where z(t — 1) = x1 > C4(d) for a positive constant Cy(dg) depending only on dy.
It follows from (2.26), (2.28) that there is a constant Cs(dp) depending only on dg
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such that

¢
(2.29) 0 < / g(x(s),s) ds < C5(dp), T1 <t<Ths.

T

We conclude then from (2.22) that there is a constant Cs(dg) depending only on dg
such that

(2.30) Blz,t) = Ce(do) B(z(T1), Tr), TA<t<Th.
In view of the monotonicity of the function g(-, s) for s > Tj we also have that
(231) 6(275) Z (1 - 7)6('1:’3)’ S Z T07 z 2 x,

for some constant v < 1. Since x(71) > x in (2.30) we conclude from (2.31) that
(2.21) holds. O

Lemma 2.5. Under the conditions of Lemma 2.4 the limit (1.19) holds.

Proof. Tt follows from (2.6) that if X is a positive random variable with || X /s =1
and beta function S(-) satisfying ||8(*)|]|cc < 1 then (X) > 1 —||8(")]|cc. As
in Lemma 2.2 there exists Ty > 0 such that sup 3(-,t) < (1 + 50)/2, t > Tp.
Hence for ¢t > T there is the inequality 1 < w(0,t) < 2/(1 — fp). Next for
0 < 1 < min[fy/2, (1 — Bo)/2] let e(n) be such that |B(x,TH) — Bo| < n provided
1—2 < &(n). Then from Lemma 1 of [4] we see that there are constants C1 (), Ca(n)
depending only on 1 and w(-,0) such that

(2.32)

C1(n)[1 — ] Botm/A=Bo=m) < y(x, Tp) /w(0,Ty) < Co(n)[1 — a]Po—m/A=Fotm)

provided 1 — z < ¢(n). Assuming now wlog that To = 0, we see from Lemma 2.1
that there exists T,, > 0 such that 1 — F(0,t) < e(n) provided ¢ > T,,. We conclude
then from (2.32) and the bound on w(0,t) when ¢ > Ty the inequalities

(233)w(0,0)Ca(n)e’[1 = F(0,8)]Fomm/U=fotn) > 1 ¢ > 1T,
(2.34)w(0,0)Cy(n)e’[L — F(0,¢)]Fotm/(=fo=n) < 2/(1— ), t>T,

Observe next from (2.2) using the convexity of the function F'(-,¢), that

(2.35) 1= F(0,1) < exp[ ¢(1)t+¢(1)/0 fi(s)ds} .
Now (2.33) and (2.35) imply that

1 T
(2.36) i sup 7 / w(s)ds < [1/Bo— &'(1) — 1)/l0'(1)]

In order to prove a lower bound on the time average of x(-) analogous to (2.36),
we observe as in (2.4) that the solution z(s), s <, of (2.1) with terminal condition
x(t) = 0 satisfies the inequality

(2.37) /:t_ )w(zyt —71)dz < exp[-T{1+¢'(1)}], O0<T<L

We can also see as in (2.32) that
(2.38) w(z, s)/w(0,s) > C(1—z)I+F)/A=F) <2 <1, 5s>Tp,



GLOBAL STABILITY 11
where the constant C' depends only on Sy. It follows then from (2.37), (2.38) that
there are positive constants C,~y depending only on Sy such that
(2.39) l—z(t—7) <Ce™ ", t>Ty, T<t—Tp.

If we use now (2.2), (2.34) and (2.39) we conclude the lower bound

1 T
(2.40) tpnint 7 [ so)ds = [1/5 - /() ~ 1/ 1)
T—oo T 0
O
Proof of Theorem 1.1. This follows from Lemma 2.2, 2.4, 2.5. a

3. THE QUADRATIC MODEL

We have already observed that the solution w(z,t) of (1.7) is given by w(z,t) =
etwo(F(z,t)) where F(z,t) is defined by (2.1). It follows from (1.7) that F(x,t) is
the solution to the initial value problem

(3.1) 6F((33§,t) + [¢(x) — k(t)Y(z)] 8Fa(i’t) = 0, 0<z<1,t>0,
F(z,0) = z, 0<z<Ll.

Now suppose ¢(-), 1(-) are quadratic and satisfy (1.15), (1.16). Then ¢(-), ()
are given by the formulas,
(32) o) =¢'(Ma(z—1), Y(z)=¢'1)(z—1)+¢"(1)(x-1)%/2,

whence ¢(+), 9(-) are determined by the three parameters ¢'(1),¢’(1), ¥"(1), which
are subject to the constraints in (1.15), (1.16). For ¢ > 0 let u(t) be the function

(3.3) = exp U {¢'(1 )K(s)} ds

Then it is easy to see that if the function v(t) is the solution to the initial value

problem
du(t
(3.4) % =u(t), t>0, v(0)=0,

the solution to (3.1) is given by the formula
1—-2z
3.5 1—-F(z,t) = 0< 1,t>0
( ) (']:7 ) u(t)—i—a(t)(l—x) ) ST < ) = Y,
where a(+) is given in terms of u(-), v(-) by the formula

(3:6)  a() ={¢"(M)[ul) =1+ [¢'O)I[¥" (1) = 2" (D]o()}/21 ()] -

Using the identity

(3.7) ¢/ (Dv(t) = 1—u(t)+ |w’(1)\/0 k(s)u(s) ds

we see that u(t) —1+|¢'(1)|v(t) > 0 for all ¢ since the function () is non-negative.
Hence the function a(-) in (3.6) is strictly positive for all ¢ > 0. Define now a
function G(u,v) by

(3.8) Glu,v) = /01w0 <1 - era(lx_x)> da,
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with a given in terms of w, v by (3.6). Since the conservation law (1.8) is equivalent
to e'G(u(t),v(t)) = 1, it follows from (3.4) that
du
dt
Hence if [u(t), v(t)] is the solution to the two dimensional dynamical system (3.4),
(3.9) with initial condition u(0) = 1,v(0) = 0, then w(x,t) = e'wo(F(x,t)) with
F(z,t) given by (3.5) is the solution to (1.7), (1.8) with initial condition wq(-).
Observe now that wg(z) ~ (1 — 2)P as z — 1 where p = Bo/(1 — o), and also
from Theorem 1.1 we have lim; ,o, u(t) = co. Hence from (3.6), (3.8) we may
conclude that at large time,

(3.9 G(u,v) + Gy(u,v)— + Gy(u,v)u =0 .

(3.10) G(u,v) ~ u PGo(v/u),
where the function Go(€) is given by the formula
1 1— 2 P
3.11 G = d
( ) 0(5) /(; [1+(11‘){a1+a2§} Z

with
(3.12) ar = ()20 (D), a2 = |¢'(DI[Y"(1) = 2¢"(1)]/2[4"(1)] -

Note that a; is non-negative and asy strictly positive. If we replace the function
G(u,v) of (3.8) by the RHS of (3.10), then we easily see that in the variables [u, {]
the system (3.4), (3.9) reduces to

dt) _ (p—8Go(§)

(3.13) cdt pGo(§) +EGH(E)
d Go(&) + G,(8)

(3.14) 7 logu(®) pGZ(E) + ECO%(O '

It is evident from (3.13) that £ = p is a globally asymptotically stable critical point
for the equation provided we can establish a few properties of the function Gg(+).

Lemma 3.1. The function Go(§) is a positive monotonic decreasing function of &
for € >0, and satisfies the differential inequality
(3.15)

EGG(€) + (p+1)Go(§) = (1+{¢"(1) + [/ (MI["(1) - 2¢'(1)]E}/2lw' (1)) .
Furthermore the function Go(-) satisfies the inequality
(3.16) Go(§) < (1+{v"(1)+[¢' MW" (1) —2¢'(W)]E} /2" (M) . €20
Proof. Observe from (3.11) that

(3.17) Gol6) = / (1 - D)go(w. O de, €>0,
where
(3.18) 0 < _87590@’5) < (1?) (%go(x,ﬁ)-

The inequality (3.15) follows from (3.18) if we integrate by parts in (3.17). To
see that (3.16) holds we use the fact that (1 — z)9go(z,£)/0z < go(x,&), whence
(1—z)go(z, ) is a decreasing function. Hence Go(&) < go(0,&)P, which is (3.16). O
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Proposition 3.1. Assume that the functions ¢(-), ¥(-) are quadratic and satisfy
(1.15), (1.16). Assume further that the beta function B(x,0), 0 < x < 1, for the
initial data is Holder continuous at x =1 and B(1,0) = By with 0 < By < 1. Then
setting k = [1/Bo— ¢’ (1) —1]/|¥'(1)]|, there are positive constants C,~ such that for
t>0

(3.19) [6(t) — k| < Ce™™,{IB(1) = Br()loo < Ce™,
where B (+) is the beta function of the time independent solution w,(-) of (1.13).

Proof. We write the function G(u,v) of (3.8) as G(u,v) = uPGy(,n), where
p=0o/(1—PBo), £ =v/u, n =1/u. Thus Go(&,n) is given by the formula

(3.20) Go(&m) = /0 1w (1 1 +z{al(177i ) +a2£}) o

With the extra dependence of Gy (-, -), the system (3.13), (3.14) needs to be modified
to

dt pGo(§,n) +£0Go(&,m) /€ + ndGo(&,n)/0n
B2 o8 = LG + €0Ga(E )96 + ndGo(E.n) [On
Observe that the denominator on the RHS of (3.21), (3.22) is the same as —uP G, (u, v)
and hence by (3.8) is strictly positive. From the proof of Lemma 2.5 it follows that
for any § > 0 there exists Ts > 0 such that

(3.23) u(t) > Csexp[(1/Bo—1=06)t], t>Ts,
for a constant Cs depending on J§ and the initial data. Choosing § < 1/5p — 1 in
(3.23) we see that the system (3.21), (3.22) converges to the simpler system (3.13),
(3.14) as t — oo.

We first show that sup,~,&(t) < co. In the case 5(,
the inequality [9Go (&, n)/0n| < parGo(&,m), € = 0,0 <
generally let g1(z), g2(z,&,m) be defined by

(3.24) gi(z) = /02[1 -8 -2,0)]d, 0<z<1,

0) = (o this follows from
n < 1 and (3.23). More

z
g2(2,6,m) = T+ {11 — 1) + asf}’ 0<z<1.

Then 0Gy(&,n)/0n is given by the formula

1
(3.25) %Go(f,ﬂ) - /0 g5, E.m) 1P (L = nga(z £m)) d,
where

alﬂ(l - 7792(2757 77)7 0)7792(27 51 77)2
91(ng2(2,&m))

[5(1 —192(2,€,1m),0)g2(2,&, 1) p] _

91(ng2(2,€,m)) n

Observe that there exists 19 > 0 such that the first term on the RHS of (3.26) and n
times the second term are bounded by a constant for all (z,£,7) with0 < 2z <1,£ >
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0,0 < n < ny. We conclude that [n0Gy(&,n)/0n| < CGo(&, 1), £ > 0,0 <n < nq,
for some constant C. Hence (3.21) implies that sup,~q &(t) < oo.

Next we obtain bounds on the denominator of the RHS of (3.21), (3.22). The
denominator is —u?*1G, (u, v), which is given in terms of the (£,n) variables by

1
(3.27) —uPTGy (u,v) = / 94(2,&,m) 17 Pwo (1 —nga(z,€,m)) dz,
0

where

(1 + alz)ﬂ 1- 7792(2’ §7 T])? 0 7727192(27 67 77)2
91 (ng2(2,€,m))

It is evident from (3.28) that there exists 79 > 0 such that for any & > 0, there are
positive constants C7,Cy with the property

(3.29) Cr < ga(z,6m) <Coy 0<n<m, 0<E<&, 0<z<1

It follows from (3.29) that

(830) C1GolEn) < —uT'Guluv) < CoGol€m), 0<n<ne, 0<E< .

To see that [£(t),x(t)] converges exponentially fast to [p, k], we need to use
the Holder continuity of S(x,0) at « = 1. Observe that the Holder continuity
implies that 7 times the second term of (3.26) is bounded by n* for some a > 0
when n << 1. The exponential convergence of £(t) to p as t — oo follows now
from (3.21) and (3.30). To see exponential convergence of k(t) we use the fact
that |0Go(&,m)/0&| < CGo(&,m), € > 0,0 < n < 1, for some constant C. The
convergence follows then from the fact that lim, o Go(&,7) = Go(£), £ > 0, Lemma
3.1, the exponential convergence of £(t) and (3.22).

To see that ((-,t) converges as t — oo first note that the invariant solution w(+)
of (1.13) with k > ¢/(1)/4'(1) is given by the formula

1—2
1+ (1 —=x){a1 + paz}

for some positive constant C. It follows that w(z,t) = w,(z)g(z,t) where g(x,t) is
a positive function defined by
p 9a(2,§(t), n(t))

0
3.32 —1 t) = -
(3:32) oz ogg(w,1) 1+ z{a1 + pas}]z (1+a12)z
The Hélder continuity of 8(z,0) at = 1 and (3.32) implies that

p

(3.31) we(z) = C

z=1—ux.

(3.33) (1 - x)% logg(z,t)] < Ce™, 0<x<1,t>0,

for some positive constants C, . The exponential convergence of 3(-, t) follows from
(3.33). To see this we note that

(3.34) |h(z,t) — he(x)g(x,t)] < / hi(z")|0g(2’,t)/02'| da’

1
< Ce*"’t/ wy(z)g(a',t) de’ = Ce "h(x,t),

where h,(+) is the h function associated with w (). Similarly we have that
(3.35) le(x,t) — co(2)g(x, )| < ptCe ep(x)g(,t) ,

where ¢, (+) is the ¢ function associated with w,(+). O
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Proof of Theorem 1.2-subcritical case. The fact that lim;_, . £(t) = p follows from
the argument of Proposition 3.1 on observing that continuity of S(z,0) at z = 1
implies

limy, 0 17 SUPg<¢<¢, [|0G0(§, 1) /In|/Go(€,m)] = 0 for any §o > 0. Now lim; o k(1) =
k follows from lim; o &(t) = p, lims oo (t) = 0 and (3.22). The convergence of
B(-,t) to Bk(:) in the L™ norm as t — oo follows just as in Proposition 3.1 by
noting that continuity of 8(x,0) at = 1 implies the inequality (3.33) holds with
a constant C(t) on the RHS which has the property lim;_,, C(t) = 0. O

4. THE CRITICAL CASE

Here we begin the proof of Theorem 1.3 using only the beta function method-
ology. First we consider a necessary condition obtained by Niethammer and Ve-
lasquez [13] on the initial data w(z,0), 0 < z < 1, of (1.7), (1.8) for convergence
in the critical case to the self-similar solution at large time. We show that this
condition, which was proven in Theorem 3.1 of [13], is implied by the condition
lim,_,1 5(z,0) = 1. The condition for convergence of [13] is given in terms of a new
variable y determined by the requirement that wy,(x)/w.,(0) =e ¥, 0 <z < 1.
Writing w(z,0) = wo(y), 0 < x < 1, the necessary condition for convergence is
that

dw)
4.1) Ulggo wo(y) -

locally uniformly in z > 0 for some positive function A(y), y > 0.

Proposition 4.1. Suppose the initial data w(x,0), 0 <z < 1, of (1.7), (1.8) satis-
fieslim, 1 B(x,0) = 1. Then (4.1) holds for the function MN(y) = 2g(x)/[roy” (1) —
" ()(1 — z)2, where

(4.2) (@) = / [1—B(x,0)] da! , 0<a<l.

Proof. We first observe that

(4.3) lim 2@+ 29,0 .

1 w(z,0)
locally uniformly in z > 0. To see this note that the logarithm of the fraction on
the LHS of (4.3) is given by zg(z) times

d B(z’,0)
4.4 —1 ! - _ )
(4.4 i osula'0) = 2
for some 2’ satisfying z < 2/ < x + zg(x), and that
(4.5) l9(z) — 9(a")] < zg(z) sup 11— B(=",0)| .
z<al <

Next we show that (4.3) implies (4.1). To do this we note that the transformation
T — y is explicitly given by

B P dz’' B 2[1 4 o(1 — z)]
(4.6) vy = /0 [ko(a') — p(x)]  [kow”(1) —¢”(D](1 —2)




16 JOSEPH G. CONLON AND BARBARA NIETHAMMER

assuming the continuity of ¢” (), 4" (x) at x = 1. Suppose now that z, — y+A(y)z.
Since the function ko9 (-) — ¢(-) is positive decreasing we conclude from (4.6) that
2[1 4 o(1 — z)](z, — x)
[roy” (1) = ¢"(D]J(1 — 2)*
Now (4.5) and the fact that lim,_,; 8(x,0) = 1 implies that x, —x < (1—x)o(1—x),
whence we obtain from (4.6) the upper bound
2[1 4 o(1 — z)](z, — x)
[roy"(1) = ¢"(1)](1 = z)* -
The result follows from (4.3), (4.7), (4.8). O

(4.7) AMy)z =

(4.8) AMy)z <

Next we wish to obtain a uniform upper bound on x(t), ¢ > 0, in the critical
case. In view of (2.6) and Lemma 2.3, this is a consequence of the following:

Lemma 4.1. Let w(zx,t), x,t >0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16), (1.18). Assume the initial data w(-,0) has beta function
B(+,0) satisfying (1.11) with 0 < By < 1. Then there are constants S > 0 and
Ty > 0 depending only on the initial data, such that inf (-, t) > Boo for all t > Tp.

Proof. We follow the argument of Proposition 10 of [4]. Thus for N = 0,1,2,...,
define points xn(0) by

(4.9) 20(0) =0, w(xn(0),0) =w(xn-1(0),0)/2 for N > 1.

Let xn(s), s > 0, be the solution of the differential equation (2.1) with initial
condition xy(0). Then there is an increasing function N : (0,00) — Z* such that
zn(t) > 0for N > N(t), and zn(s) = 0 for some s < t, if N < N (t). From Lemma
2.1 we see that lim;_, oo N (t) = oco. For t > 0, N > N(¢), let In(t) be the interval
INt)={z : on(t) <z <zni1(t)} with length |In(t)|. It follows from (2.1) that

(4.10)  [In(t)|//In(0)] =
exp [/0 ds/o dh {¢'Azn(s) + (1 = Nayyi(s)) — k(s)W Aen(s) + (1 = Naygi(s)}

Hence from (1.15), (1.16) and (4.10) we conclude that the ratio |In(t)|/|In+1(t)] is
an increasing function of ¢, and from [4] that
(4.11) Jim [In(0)]/[In11(0)] = 2M/Fo=t > 1.

—00

We define a function 8y (¢) for t > 0, N > N (t) by

(4.12)  Bn(t) = exp [/0 ds |In(s)[{d" (wn41(5)) — k()Y (@n41(9))}|

whence By (t) is a positive decreasing function of ¢ provided N (¢) < N. From (1.15),
(1.16), (1.18) it follows that there exists constants C, « satisfying 0 < C, o < 1 such
that

(4.13) lIn(O)]/|Ins1(t)] = C/Bn()* fort > 0.

In view of (4.11) there exists Ng > 0 such that for N > max{Ny, N'(¢)},
(4.14)

i (0) < e | [ ds (O (eneals) - K6 (onsa() | = v (012,
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We conclude from (4.13), (4.14) that there exists Ty > 0 and a function Nj :
[Ty, 00) — ZT U {oco} with the property that A (t) > N (t) and By (¢) satisfies

(4.15) Ba(t) > (C/2)¥~if N > Ni(t),
Bn(t) is an increasing function of N if N(t) < N < Ni(t) .

As in [4] we can compare the function S8(-,t) to the functions Sy (t), N > N(¢).
For 0 <z < 1let I,(t) = {2/ : w(z,t)/2 < w(z',t) < w(z,t)}, so that the left
endpoint of the interval I,(t) is = and In(t) = I, () (t). In view of (1.15), (1.16),
(1.18) and the fact that By < 1, it follows that there are positive constants v1,y2
such that the function g(-,-) defined by (2.16) satisfies the inequalities
(4.16)

YL (O[O (@+ I ()] /2) =¢" (2 +[1:(1)]/2)] < g(2,t) < 72ll®)|K(E)Y" (2)—¢" ()] .

It follows from (4.11), (4.12), (4.16) that there exists o,C > 0 and Ty > 0, such
that

(4.17) B(z,t) > CBN()" forx € Iny1(t), N>N({), t>1Tp .
We also conclude from (2.16), (4.16) that there exist positive constants C, Ty, o and
(4.18) Bz’ t) > CB(z,t)* for 2’ € I(t), t > Tp.

To see this we note that for z < 2’ < x + |[;(¢)|/2 the inequality (4.18) is a
consequence of the fact that there exists a constant v > 0 such that

1 1

(4.19) / wiztdz < (14 7)/ w(zt)dz forz <2’ <+ |L(#)]/2.

For x4 |I,(t)]|/2 < o’ < x4+ |I,(t)| the inequality follows from (4.16) since |I/(t)| <
2|I,(t)| if Ty is sufficiently large. It follows from (4.15), (4.17), (4.18) that there
exist positive constants «, C, Ty such that

(4.20) Blx,t) > CB0,t)¢ for0<z<1, t>Tp.

We proceed now in a manner similar to that followed in the proof of Lemma 2.4.
We choose §p with 0 < §p < 1 such that C[1 — §y]/d¢ > ko = ¢'(1)/¢'(1), where
C' is the constant in (2.13). We also choose ¢; satisfying dp < 01 < 1 such that
the constant C3(d1) of Lemma 2.3 satisfies the inequality Co(d1) < ko. Finally we
choose 81 with 0 < 81 < 1 such that
(4.21) Ary(0) sup Ca(0)/[1—0] < 1/2.

30<6<d1
With T} as in (4.20) and assuming 7 > 0 sufficiently small, we may suppose that
To < Ty < Ty are such that 5(0,71) = B and 5(0,t) < By for Ty <t < Ty. Let T
satisfy 71 < T5 < Ty and have the property that (X;) > 1— g for Ty <t < Tj
and either T5 = T5 or (X7,) = 1 —dp. It follows from (2.13), (2.29), and (4.20) that
there is a constant C7 such that

(4.22) B0,t) > C1p4, Th <t<T;.
To obtain a lower bound for (0, ¢) in the region T5 < t < T» we use the equation

d ey BODG0)()

dt -1
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Since (Xr,) =1 — do, it follows from (4.21) that

1
(424) %lOg<Xt> < —5 5 T3 <t< T4,

where Ty has the property that (X;) > 1—09; for T3 <t < Ty and (X7,) =1—6;
or Ty = Ts. Evidently (4.24) implies that

(425) T4—T3 < 210g[(1—(50)/(1—51)], <Xt> S 1—(50 for T3 Stf T2 .

From Lemma 2.3 and (4.24) we have that C2(d1) < k(s) < C1(dg) for T5 < s < Ty.
Hence there is a constant Cq(dp, d1) such that

¢
(4.26) 0 < / g(z(s),s) ds < Ci(do,01),

Ts
on any solution of (2.1) with z(t) = 0, where T3 < t < Ty. We conclude from (4.22),
(426) that B(O,t) Z 02(50, 51)51 for T3 S t § T4.

Finally we consider the interval Ty < ¢t < T5. From (4.23) and the assumption
B(0,t) < pBp it follows that (X;) < 1—6; for Ty < ¢ < Tp. Assuming that
91 > 1/2, we see from (2.6) and the fact that Sy < 1 that there exists 21 such that
0 <z <3(1—961) and B(x1,t) > 1/2. Let xg > 0 be the unique maximum of the
function ¢(z) in the interval 0 < z < 1. In addition to choosing d; > 1/2 such that
C3(61) < Ko, we choose it sufficiently close to 1 so that 3(1 — d1) < . Observe
now that since S(z1,t) > 1/2 it follows that

¢
(4.27) 0 < / g(z1(s),s) ds <log2,

Ty
on any solution of (2.1) with x4 (¢) = x1, where Ty < t < Ts. Letting x2(-) be the
solution of (2.1) with z5(t) = 0, it follows from the fact that 3(1 — d1) < xo, that

t
(4.28) 0 < / [9(z2(s), 5) — g(@1(s),5)] ds < C(é1) ,
Ty

for a constant C(d1) depending only on ¢;. We conclude from (4.27), (4.28) that
B(0,t) > Ca(b0,01)51 for Ty <t < Ts.

We have therefore proven that there is a constant C such that 3(0,t) > C3; for
T, <t < Ty. We conclude that inf;>1, 5(0,¢) > 0, whence the result follows from
(4.20). O

Corollary 4.1. Suppose that the function ¢(-), in addition to satisfying the as-
sumptions of Lemma 4.1, also satisfies the condition lim,_o ¢(z)/x = oo . Then
there is a positive constant C' depending only on the initial data w(x,0), 0 < x < 1,
for (1.7), (1.8) such that x(t) > C for all t > 0.

Proof. From (2.8), (4.23) we have that

(4.29) %log (Xy) = B0, 1)¥(0) [<¢(Xt)> + 1} -1 > Boo (6(X1))

d (P(Xt)) (Xt) T (X

for some S > 0. From Lemma 1 of [4] there exists a constant v > 0 such that for
t > 0 one has the inequality P(X; > v(X;)) > 1/2. Hence we have that

_17

(430) (6(X,) — #(1)(X;) = / [6(2) - S (DIP(X, > 2) da
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1
> By [(v{(Xe)) — &' (D)7 (Xe)]
It follows from (4.29), (4.30) that
d Boop(v{X1)) /
4.31 —log (X;) > ———— DL —~/2] -1
(431) gilos (X0 = PRt e g —a/2 -1,
whence we conclude that there exists a positive constant C' such that (X;) > C for
t > 0. The result follows from (2.5). O

The following proposition shows that if we assume lim,_, ¢(z)/z < oo then the
lower bound of Corollary 4.1 may not hold for all initial data satisfying (1.11) with

Bo = 1.

Proposition 4.2. Assume By satisfies the inequality 0 < By < 1/[1 + ¢'(0)], and
w(x,t) is as in Lemma 4.1 with initial condition w(x,0) = C(xq —x)P/(1=5) (0 <
x < xzp; w(x,0) =0 for zg < x < 1. There exists 6(fy) > 0 such that if
0 <o <d(Bo) then limy_oo k(t) = 0.

Proof. First observe that the linear approximation at 0 to ¢(z)—x(t)(x) is ¢'(0)z—
k(t)(0). The function w(z,t) defined by

(4.32) w(z,t) = CeMxg— xer])P/0=50)  for 0 <z < zge ™™,
(4.33) w(z,t) = 0 for zope M <z <1,

is a solution to (1.7), (1.8) in this linear approximation provided A = 1 — Sp[1 +
@’'(0)] > 0. In that case x(t) is given by the formula

(4.34) K(t) = e M1+ ¢'(0)](1 — Bo)zo/¥(0) -

To prove that lim; o x(t) = 0 more generally, one uses the equation (4.29).
From the argument of Lemma 2.3 we see that

d B0, 1) (0)[(X+) + o({X3))]
(4.35) %10g<Xt> < X o)
The result follows from (4.35) and Lemma 2.3 since 5(0,¢) < fp for allt > 0. O

—1.

Remark 1. It is easy to construct initial data w(x,0), 0 <x <1, for (1.7), (1.8)
with support equal to the full interval [0,1], the property lim,_; 8(x,0) = 1, and
such that w(-,0) is arbitrarily close to the initial data of Proposition 4.2. In fact
we can define B(x,0) by

(4.36)  B(z,0)=pp for 0 <z <uzg, PB(z,0)=1—-¢e(l—2) forzo <z <1,

where € << 1. Note in this case the discontinuity in B(x,0) at x = xo. In §6
we are able to obtain a positive lower bound on inf k(-) for such initial data since
B(x,0) <1 for x close to 1. We are not however able to obtain a lower bound if
B(x,0) oscillates above and below 1 as x — 1.

Lemma 4.2. Let w(z,t), x,t > 0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16), (1.18). Assume the initial data w(-,0) has beta function
B(+,0) satisfying (1.11) with By = 1. Then the limit (1.19) holds provided inf k(-) >
0 and

(4.37) iggw(x,t) >0 for all z satisfying 0 < < 1.



20 JOSEPH G. CONLON AND BARBARA NIETHAMMER

Proof. We define a function z(t), t > 0, by e‘wg(2(t)) = 1. Since the conservation
law (1.8) implies that w(0,¢) > 1 we conclude that z(t) > F(0,t), t > 0. Observe
also from (4.4) that z(¢) satisfies the differential equation

B0 _ g
dt B(=(1),0)
where g¢(-) is the function (4.2). Next we have from (2.35) that

(4.38)

t

(4.39) 1—2(t) < exp {d)’(l)t + w'(l)/ /{(s)ds} , t>0.
0

Since lim, 1 B(x,0) = 1 it follows from (4.2) that

(4.40) tlg(r)lo log[1 — z(t)]/t = 0.

Hence we obtain the upper bound (2.36) in the case 5y = 1.

To prove the lower bound (2.40) for Sy = 1 we first note that Lemma 2.3 implies
that there is a positive constant ¢y depending only on the initial data such that
(X1) > et forallt > 0, whence e~ 0wy (F(0,¢)) < 1. We conclude that z(t—ty) <
F(0,t) for all ¢ > 0. The final fact we need in analogy to (2.39) is that for any
g > 0 there exists § > 0 depending only on the initial data wg(-) such that for any
t>0,

1
(4.41) / w(z,t) dz < § implies 1 —z <e .

It is easy now to conclude (2.40) for 8y = 1. Finally we note that (4.37) implies
(4.41). O

5. THE QUADRATIC MODEL-CRITICAL CASE
We return to the quadratic model studied in §3.

Lemma 5.1. Assume the initial data wo(+) for (1.7), (1.8) satisfies lim,_,1 f(z,0) =
1 and w(z,t) = elwo(F(x,t)), where F(x,t) is given by the formula (3.5). Then
limy o0 u(t) /v(t) = 0 if and only if there are constants C1,Coy > 0 such that
Cy < k(t) < Cy forallt > 0.

Proof. We first assume C; < k(-) < C3, whence Lemma 2.3 implies that there
exists C3 > 0 such that (X;) > Cj for all t > 0. We conclude then from Lemma 1
of [4] that there exists v > 0 such that

(5.1) w(y,t)/w(0,t) > 1/e, 0<t< 0.
Next we write
(52)  w(y,)/w(0,t) = wo(F(0,t) + [F(y,t) — F(0,1)])/wo(F(0,1)) .

Since lim;_, o F'(0,t) = 1, it follows from (4.3), (5.1) that there exists Ty > 0 such
that

(5.3) F(o,t) — F(0,1) < 29(F(0,8)) , t>Ty.
Using the fact that lim,_; 5(z,0) = 1, we conclude that

(5.4) im £00t) = F(0.t)

=0.
>0 1— F(0,t)
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We see from the identity

Fu) = FO,8)  ult)
(5:5) T—FO.0 w1 —)a()
and (5.4) that lim; o u(t)/a(t) = 0. Since (3.7) implies that
(5.6) a(t) <{¢"(1)supk(-) +2/¢'()[}o(t)/2,

we conclude that lim;_,o u(t)/v(t) = 0.

Conversely let us assume that lim; o u(t)/v(t) = 0. Since lim;,o, F(0,t) =1
we also have that lim;_, o [u(t)+a(t)] = 0o, and hence we conclude that lim;_, o v(t) =
oo. We define now y(t) by

(5.7) y(t) =1—1/ar(t) =1 =2["()[/{ [¢' (D" (1) = 2¢"(D]o(t) = ¢"(1) }
and observe that y(t) is an increasing function of ¢ which satisfies

: dy(t) { " (W)]9"(1)/2¢"(1)] + 1}u(t)
68 fmy® =1 =~ = a1 (6)? '

One can further see that
{1+ (1 —2)y"(1)/2[¢'(1)[Ju(?)
a1 (t)[ar () (1 — ) + {1 + (1 —2)y"(1)/2[¢'(1)[}u(t)]

and hence we conclude that there are positive constants C, Ty such that

dy(t
(5.10) Fla,t) —y(t) < C’% , fort>Ty, 0<a<1/2.
Let z(t), t > 0, be as in Lemma 4.2, whence F(0,t) < z(t), t > 0. Suppose now
that at some ¢ > Tj one has y(t) = z(t — 79) where 79 > 0. Then for 0 < z < 1/2

we have that

(5.9) F(x,t)—y(t) =

(5.11)  etwo(F(xz,t)) > e'wo <y(t)+cdy(t)> o Wo(y(t) + Cdy(t)/dt)

dt wo(y(t))
Since (1.8) implies that the LHS of (5.11) is bounded above by 2 when z = 1/2,
we conclude from (4.3) that if 79 > 1+ 2C + log 2 and Tj is sufficiently large then
dy(t)/dt > 2g(y(t)). Hence if y(Ty) > 2(To — 70) then y(t) > z(t — 1) for all t > Tp.
Since (5.9) implies that y(t) < F(0,t) we further have that z(t — m9) < y(t) < z(t)
for t > T,. We conclude therefore that

1 1
5.12 X)) = > > e t > Tp.
R (0 B o7y B
Now Lemma 2.3 and (5.12) imply that inf x(-) > 0.
To see that sup k(-) < oo, we observe from (5.8), (5.9) that there are positive
constants «, 8 with the property

1—
at Pl —a) dvlt) ooy,
(1—x)+o(t) dt
where lim;_, o 0(t) = 0. It is easy to see that there exists Tp > 0 such that y(t) <
F(0,t) < z(t) for t > Ty, whence y(t) = z(t — 7(t)) for some unique 7(t) > 0. We
show there are constants 7,7 > 0 such that

(5.13) F(z,t) = y(t) +

(514) 1 S’T(t) STQ, tZTg .
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To obtain the upper bound in (5.14) note that from (1.8), (4.3), (5.13) there exists
79 > 0 and 177 > T with the property that

dy(t)

(5.15) 7(t) > 7o implies 3 > 2g(y(t)) fort>1Tj.

Hence if to > Ty and 7(t2) > 72 then from (4.38) and (5.15) we see that for
sufficiently large Th and t > ¢ satisfying infy,<s<¢ 7(s) > 72, then

(5.16) y(t) > 2z(3(t—t2)/2+ta—7(t2)) which implies 7(t) < 7(t2) — (t—t2)/2 .

The upper bound in (5.14) follows. To obtain the lower bound observe again from
(1.8), (4.3), (5.13) that there exists 7, > 0 and T} > Ty with the property that

dy(t
(5.17) 7(t) <71 implies zil(t) <g(y(t)/2 fort>1T.
The lower bound in (5.14) follows from (5.17) by analogous argument for the upper
bound.
Assuming (5.14) holds, we show there exists T > Tp and ¢ > 0 such that
(5.18) elwo(F(0,t) > 1+6, t>T.

Thus from (4.3), (5.13) we see that for any n with 0 < 1 < 1 there exists T;, > Tj
such that

1=n 1- t

(5.19) / exp [— o+ 6 7) dy(t) dv < e /2 fort> T, .
0 (1—x)g(y(t)) di

Choosing 7 < [L — e~™/2]/2 in (5.19) and putting T = T},, we see that there is a

constant C'(71) > 0 depending only on 7 such that

(5.20) dziliit) > C(m)g(y(t)) fort>T;.

Now (4.3), (5.13) and (5.20) imply that there exists 6 > 0 such that

(5.21) wolF(1/2,6) < 15 w(FO0,6) fort2T; .

The inequality (5.21) and (1.8) imply (5.18). Since (5.18) implies that (X;) <
1/(1+9) < 1 for t > Ty, we see from Lemma 2.3 that sup x(-) < co. O

Lemma 5.2. Assume the initial data wo(-) for (1.7), (1.8) satisfies lim,_1 B(z,0) =
1 and w(z,t) = e'wy(F(x,t)), where F(z,t) is given by the formula (3.5). Then
limy o0 u(t) /v(t) = 0.

Proof. Observe that since v(t) is an increasing function one has lim;_, o v(t) = Voo
where 0 < v < 00. If oo < 00 then it follows from (3.4) that there is an increasing
sequence t,, with lim,, . t;, = 00 and u(t,,) < 1. In that case (3.5) implies that
liminf;, . F(0,¢) < 1, which is a contradiction to Lemma 2.1. We conclude that
limy o0 v(t) = 0.

Next we show that there exist constants Cp, Ty > 0 such that u(t) < Cyu(t) for
all t > Ty. To see this we set £(¢) = v(t)/u(t) and note from (3.4), (3.9) that
a0 (OG0 00) + oG (u(D).0(0) + NGt o(0)

dt ul(t)Gra(u(t), 0(1))
Arguing as in Proposition 3.1, we see that there exists vy > 0 such that

(5.23) uGy(u,v) + vGy(u,v) + G(u,v) <0 for u >0, v > vy.
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Hence there exists Ty > 0 such that for any ¢ > T, the function v(t)/u(t) is
increasing if u(t) > v(t), whence there is a constant Cy > 1 such that u(t) < Couv(t)
for t > Tg.

It follows now from (5.9), (5.13) that there exists 77 > 0 and a constant Cy > 0
such that o(t) in (5.13) satisfies the inequality 0 < o(t) < Cj for t > T. Using the
fact that o(t) > 0 we see from the argument to prove (5.14) that we can choose
Ty > Tp such that 7(t) < 75 for t > T;. From (1.8) and the inequality o(t) < C; we
can further choose To > T} and C5 > 0 such that for any t > T,

dy(t
(5.24) % < Cag(y(?)) -
The result follows from (4.2) and (5.24) since lim,_,; 8(z,0) = 1. O

Proof of Theorem 1.2-critical case. Using the notation of Lemma 5.1, we shall show
that there exists 79 > 0 such that lim;_, . 7(¢) = 7. To obtain a formula for 75 we
assume y(t) ~ z(t — 79) and conclude from (4.38) and (5.13) that for large ¢

(5.25) F(z,t) ~ 2(t—10) + fo + ﬁ} g(z(t—m)), 0<z<1.

Now (1.8) and (4.3) imply that

1
@

5.26 To—B - de = 1

( ) e /Oexp{ 1x} T ,

which uniquely determines 79 > 0.

We first prove that liminf; . 7(t) < 79. To see this observe from (1.8), (4.3)
and (5.13) that if liminf; , 7(t) > 79 + ¢ for some £ > 0, then there exists T
sufficiently large and §(g) > 0 depending on ¢ with the property

dy(t)

(5.27) —r > [14+6(e)]gly(t), t>T..

Since lim,_,1 B(z,0) = 1 it follows from (4.38) and (5.27) that if T, is sufficiently
large depending only on €, then y(t) > z([1+0(¢)/2](t —T2) + T —7(T%)) for t > T..
Evidently this inequality implies that 7(¢) < 0 for large ¢, which is a contradiction,
whence liminf, .o, 7(¢) < 79. We can further see that limsup,_,. 7(t) < 79 by
observing that for any € > 0 there exists 7. with the property

(5.28) 7(t) < 19 + ¢ for some t > T, implies 7(s) < 79 + ¢ for all s > ¢.
To see this note that if 7(s) = 79 + ¢ then

dy(s) - 9(y(s))
ds ﬁ(y(s),O) ’

which implies 7(s’) < 79 + ¢ for s’ > s close to s. The inequality (5.28) follows
from (1.8), (4.3) and (5.13) on choosing T, sufficiently large. Since we can see by a
similar argument that liminf;_, . 7(¢) > 79, we conclude that lim;_, . 7(t) = 79. It
immediately follows from (1.8), (4.3) and (5.13) that

1 dy(t)

(5.30) Am Tt =m0, Hm e =

Hence we have from (4.3), (5.13) and (5.30) that lim; ., (X;) = e®TF=™ < 1.

(5.29)
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To see that lim;_, o k() = ko = ¢'(1)/9'(1), we use the identity
d Gu(t),v(t)) + u(t)Go(u(t), v(t))

. 1 71 = —
>3 ai o WG o)
where G(u,v) is the function (3.8). From (5.30) we see that for any ¢ > 0 there
exists T, > 0 such that if ¢ > T. then
(5.32) —u(t)Gu(u(t), v(t)) CG(u(t), v(t)),

|G (u(t), v(t) + u(t) Gy (u(t), v(t))| eG(u(t), v(t)) ,

where C' > 0 is independent of €. The limit of the RHS of (5.31) as t — oo is
therefore 0, whence (3.3) implies lim; o0 £(t) = Ko.

Finally we show that §(-,t) converges as t — co. The invariant solution wy,(-)
of (1.13) when k = kg is given by the formula

>
<

«

(5.33) Wy () = exp |:T0 -8 - } , 0z <],

11—z
with 79,c, 8 as in (5.26). Following the argument of Proposition 3.1 again, we
define the function g(x,t) by w(z,t) = wy,(x)g(x,t). From (5.13) and (5.30) we
see that for any § with 0 < § < 1 there exists Ty > 0 such that

0
(5.34) \(1—x)28—10gg(m,t)\ <6 for0<z<1-6,t>Ts.

x
Now (5.34) implies that there is a constant C' independent of § such that
(5.35) |e(m,t) — o (@)g(2,t)| < C8 cy(x)g(,t) for 0<az<1-96, t>Ts.
We also have similarly to (3.34) that for 0 <2 <1 -0 and t > Ty,

(5‘36) |h(£€',t) - hno (x)g(x,t)| < |h(1 - 57 t) - hno(l - 6)9(1 - 67 t)‘

1-6
+/ hio (2)|0g(2’, 1) /02| dx’ .
From (5.34) it follows that there is a constant C' independent of ¢ such that
1-6
(5.37) / hio (2)|0g(2’, 1) /02| da’ < CSh(z,t) t>Ts .
Consider any € with 0 < € < 1. It is clear that we may choose § < € and T, > 0
depending on € such that
(5.38) w(l—20,t) < ew(l—e,t), h(l—=06,t) < eh(l—g,t) fort>T..
It follows from (5.38) that there are constant C,C’ independent of € such that
(5.39) Ay, (1 —=0)g(1 —6,t) < C6*wy, (1 — 8)g(1 —6,t)
= C6?w(l —6,t) < Ced?w(l —e,t) < Ce(1 — x)*w(x,t)
= Ce(1 — )?we, (2)g(x,t) < C'chyy(2)g(x,t) for0<az<1—¢g, t>T..

We conclude from (5.35)-(5.39) that there is a constant C' independent of & such
that

(5.40) |B(x,t) — Bro(x)] < Ce for0<z<1-—¢,t>T..
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If we assume that (1.23) holds, then (5.40) and the almost monotonicity of the
function ((-,t) at large ¢ implies that

(5.41) Hm ([5G, ) = Bro (oo = 0.

We give a direct proof of (5.41) since it shows the key implication of the assumption
(1.23) is that it implies the function g(-) of (4.2) is monotonic decreasing. If log g(z)
has large oscillations as z — 1 then (5.41) may not hold.

Proposition 5.1. Suppose B(-,0) satisfies (1.11) with Sy = 1 and also (1.23).
Then (5.41) holds.

Proof. We use the identity

(5.42) B(a,t) = 5(F($,t)a0)/F( 9 aajf((f ii;gi // t) ’

where z = F(a/,t), © <’ < 1. Observe that for any § with 0 < § < 1 there is the
inequality

OF (z,t)/0x 9 ,
— 2 > (1= <z' < 0(l—=x).

oF( jow = 0 rsrsetilloa)
Hence it will be sufficient for us to show that there exists dqg, g with 0 < dg,e9 < 1
such that if 0 < § < §p, 0 < € < &g, then
| ho(F(x +5(1 - 2),1))

5.44 limsup su

(>4 e R T (R (1)

To prove (5.44) we use the identity ho(z) = g(z)wp(z), 0 < z < 1, where g(-) is
the function (4.2). Since g(-) is decreasing, (5.44) follows from the same inequality
with ho(-) replaced by wg(-). We also have from (4.4) that

wo(@ + 29(x)) <exp|—z inf B(z,0)| for0<z<z+29(z)<1.
wo () x<z/<1

(5.43)

< exp[—ad/2e] .

(5.45)

Observe now that
(5.46) F(z+05(1—2),8)— F(z,) > ou(t)
’ ’ u(t) + a(t)(1 — )
It follows then from (4.2), (5.45), (5.46) that for any M > 0,
(5.47) lim sup wo(F(w + (1 — 2), t))
£=00 1 o< Mu(t) /o (t) wo(F(x,1))
Since lim;_, o, v(t) = 0o, we also see that there exists constants Ty, My, C1,Cy > 0

such that if t > Ty and 1 — z > Mu(t)/v(t) for some M > My, then
(5.48)

<1m+ﬁ>[ iﬂdng(m,t)—y(fK(l )[Hgﬂdd(t)'

We conclude from (5.30), (5.45), (5.48) that there exists dg,eq with 0 < dp,e9 < 1
such that if 0 < 6 < &y, 0 < e < g9, and M > 1/62, then

F 6(1 — t
(5.49) lim sup sup wo(F(w +0(1 = z), 1)) < exp[—ad/2e] .
t—=oo  Mu(t)/v(t)<l—z<e wO(F(J:»t))

The inequality (5.44) follows from (5.47), (5.49). O

1-F(z,t)], O0<z<l.

= 0.




26 JOSEPH G. CONLON AND BARBARA NIETHAMMER

6. COMPLETION OF THE PROOF OF THEOREM 1.3

We wish to formulate (1.7), (1.8) for general functions ¢(-), 1(-) satisfying (1.15),
(1.16) in such a way that it can be approximated by the quadratic model studied
in §3 and §5. In order to do this recall that the function F'(z,t) defined by (2.1)
is the solution to the initial value problem (3.1), where the linear first order PDE
contains a free parameter k(t), ¢ > 0. The conservation law (1.8) determines the
function x(-) uniquely, and in particular one sees that it is strictly positive. In (3.3)
we defined a new parameter u(t), ¢ > 0, in terms of x(-), and it turned out that the
dynamics of the quadratic model had the simple form (3.5) in terms of the function
u(+). We therefore formulate the general case in such a way that the free parameter
is the function u(-) of (3.3) rather than the function x(-) which enters in (3.1).

To carry this out we write the characteristic equation (2.1) in terms of u(-). Thus
(2.1) is equivalent to

dz(s)

(6.1) )~ ptato + S | )]
whence we obtain the equation

da(s)  P(a(s)) du(s) _ P'(1)o(x(s)) — v(x(s))¢'(1)
(6.2) u(s) is o) ds u(s){ o) } .

Next let f(z), 0 < < 1, be the function defined by
d P'(1) )
— < —
(6.3) e log f(x) = o) 0<z <1, ilml(l x) f(z) 1.

If the function (-) is quadratic, it is easy to see from (6.3) that f(-) is given by
the formula
e

More generally f : [0,1) — R is a strictly increasing function satisfying f(0) > 0

and lim,_,; f(z) = co. Multiplying (6.2) by f’(x(s)), we conclude from (6.3) that
d "1 — (1

65) A = ulo) el [ LA LI0)

We define now the domains D = {(z,u) € R®* : 0 < z < 1, u > 0} and
D = {(z,u) € R?: 2> f(0)u, u > 0}. Then the transformation (z,u) = (f(z)u,u)
maps D to D. Furthermore from (6.4) trajectories z(s), s < ¢, of (2.1) with u(-)
defined in terms of the function x(-) by (3.3) have the property that (x(s),u(s)) € D
map under the transformation to (z(s),u(s)) € D, where z(s) is a solution to

dz(s)

(6.6) 25 = IEG)uls)), s<t a(t) =2
and g(z,u) is the function

P(1)
Lemma 6.1. Assume ¢(-), ¥(-) satisfy (1.15), (1.16). Then there are positive
constants Cq,Cy such that —Cou < g(z,u) < —Chu for (z,u) € D and

69 Bpetaw - WOSQ_ VOO,
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where ag > 0. The function z — g(z,u) is C? in the interval z > f(0)u and
0g(z,u)/0z is given by the formula

89;’“) = [(z) = ¢'(2)+¢' (1) —o(x) [ () +¢' ()] /¢(x), 2= f(z)u,

where T'(+) is C' on the interval (0,1] and satisfies T'(1) = T'(1) = 0.
If in addition ¢(-), (-) satisfy (1.18) then T'(-) is C? on (0,1] and g(z,u) is an
increasing function of z > f(0)u. The function z — g(z,u) is concave for z > f(0)u

provided ¢(-), ¥(-) satisfy (1.24). The condition (1.24) holds if ¢(-), ¥(-) satisfy
(1.15), (1.16), (1.18) and () is quadratic.

(6.9)

Proof. From (1.15), (1.16) we see that the function h(zx) = ¢'(1)é(z) — ¥ (x)¢'(1)
is convex and satisfies h(0) > 0, h(1) = 0, A'(1) = 0, whence h(-) is decreasing
and strictly positive for 0 < z < 1. It follows that if 0 < § < 1 there are positive
constants C1 5, Ca 5 such that —Cs su < g(z,u) < —Cq sufor f(0)u < z < f(1-9)u.
Observe further from (6.7) that we may write the function g(z,u) as

(6.10)

uf/($>(1 _x)z ! 1 1" " /
T [ W6 (e 1= 3) = 0O+ 1= N (0] do()

where p(-) is a probability measure on the interval [0,1]. Since ¢”(1) — ¢”(1) > 0
and lim, 1 f/(2)(1 — x)? = 1, it follows from (6.10) that we may choose Cy 5, Ca s
independent of 6 as § — 0. Evidently (6.10) implies (6.8) on using the fact that
lim,; f/(z)(1 —2)? = 1.

To see that g(z, u) is an increasing function of z > f(0)u, we show that dg(z,u)/0x >
0 for 0 < z < 1. From (6.3), (6.7) we have that
(6.11)

ag(azg;w = u{(@)[¢'(x) + ¢'(1)] = o)W’ () + &' (DI} ' (V)] f () /2 (2)* .

Consider now the function k(z) = (1 — z)[¢'(z) + ¢'(1)] + 2¢(x), which has the
property that k(1) = k(1) = 0 and k”(z) = (1 — 2)¢"'(z). Assuming ¢"(-) is
increasing, it follows that k(-) is convex and hence non-negative for 0 < x < 1.
Since we can make a similar argument for 1(-) under the assumption that ¢ (-) is
decreasing, we obtain the inequalities

(6.12)

F@)+d (1) = —20()/(1—2), ¥(@)+v'(1) < —20()/(1-3), 0<z <1,

Now (6.11), (6.12) imply that dg(z,u)/0z > 0 for z > f(0)u. The formula (6.9)
follows from (6.3) and (6.11). Hence the function z — g(z,u) is concave if I'(z) is
a decreasing function of x.

If ¢(+) is quadratic then (6.9) implies that

9(zu) =

(6.13) WED — (w)+ 0/(1) + 200)/(1— )
and so
610) 22U iy ag@) (1 - x) 4 26(2))(1 - 2)? .

ox 0z

Now just as before the condition ¢"/(-) > 0 implies that the RHS of (6.14) is not
positive for 0 < x < 1. (]
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Remark 2. Observe that we have in the case of quadratic ¢(-), for example ¢(x) =
z(1 — x), the identity

(6.15) T7(0) = ¢"(0)—¢'(0)[¢'(0) +¢'(1)]/9(0) = —2—[¢'(0) +4'(1)]/4(0) .
We have already seen in (6.12) that if (1.18) holds then the RHS of (6.15) is

positive if ¥ (-) is not quadratic. Hence the function z — g(z,u) is concave when
&(+) is quadratic only if () is also quadratic.

Observe that the condition k(-) a positive function, which ensures that trajec-
tories (z(s),u(s)), s < t, of (2.1) with (z(¢),u(t)) € D remain in D, becomes the
condition

d
(6.16) pr logu(t) > ¢'(1), t>0.
Hence if u(-) satisfies (6.16) then solutions (z(s), u(s)), s < t, of (6.6) with (z(¢),u(t)) €
D remain in D. To see this directly first observe from (6.3), (6.7) that g(f(0)u,u) =
@' (1)f(0)u < 0. For the trajectory (z(s),u(s)), s < t, to remain in D we must have

dz . A du(s)
(6.17) i f(0) if (2(s),u(s)) € 9D and I <0,
since dz(s)/ds < 0. Now (6.7) implies in this case that
dz du(s) du(s)
618) %= ge,u) /D = gy /M > o).
The first order PDE with characteristic equation (6.6) is given by
619) PB4 w B~ o s o, 20,
ot 0z
F(z,0) = z z> f(0).

Comparing now (3.1) to (6.19) and using (6.5), we conclude that the solutions
F(z,t) of (3.1) and F(z,t) of (6.19) are related by the identity

(6.20) f(F(x,t) = F(f(x)u(t),t), 0<z<1, t>0.

In the case when 9(-), ¢(-) are quadratic functions, the solution to (6.19) is given
by the formula

(6.21) F(z,t) = z+ apu(t) ,

where v(t), t > 0, is the solution to (3.4). We easily conclude from (6.4), (6.19),
(6.20) that in the quadratic case F(x,t) is given by the formula (3.5). More gener-
ally we have as a consequence of Lemma 6.1 the following:

Corollary 6.1. Assume ¢(-), () satisfy (1.15), (1.16). Then for t > 0 the
function z — F(z,t) with domain {z > f(0)u(t)} is increasing, and there are
positive constants Cy,Cy such that z+Cro(t) < F(z,t) < z+Cyo(t). If in addition
(1.18) holds then OF(z,t)/8z < 1. If the function z — g(z,u) is concave for all
u> 0 then F(z,t) is a convez function of z > f(0)u(t).

Proof. We have that F(z,t) = z(0), where z(s), s < t, is the solution to (6.6)
with z(t) = z, whence it follows that the function z — F(z,t) is increasing. From
Lemma 6.1 it follows that

t
(6.22) z2(s) <z+ Cg/ u(s')ds', 0<s<t,
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and so F(z,t) < z 4+ Cou(t). We conclude that OF(z,t)/dz < 1 from the formula

(6.23) aF{;z’t) ~ exp [_/O w ds

and Lemma 6.1. Evidently (6.23) implies the convexity of the function z — F(z,t)
is a consequence of the concavity of the function z — ¢(z, u). O

Next we show that limsup,_,  v(t)/u(t) = oo if lim,_,; f(x,0) = 1. We can
already obtain from the results of §4 a positive lower bound lim inf;_, o v(¢) /u(t) >
0. To see this note that we have shown that supx(-) < M < oo and hence (3.3)
implies that

1 du(s)
Sl A > 0.
Ml ds 0t
We conclude that v(t) > [u(t) — 1]/M|y’(1)| for t > 0. Since (3.4) also implies

that v(t) > M; > 0 for all t > 1, it follows that there exists My > 0 such that
v(t) > Mou(t) for t > 1.

Corollary 6.2. Assume ¢(-), ¥(-) satisfy (1.15), (1.16) and that lim,_,; B(x,0) =
1. Then if u(-), v(-), are given by (8.8), (3.4) one has liminf, . v(t)/u(t) > 0
and limsup,_, ., v(t)/u(t) = co.

(6.24) u(s) >

Proof. Now w(z,t) = e'w(F(z,t),0), whence it follows from (1.8) that

(6.25) w(F(0,1),0) > e, w(F(1/2,1),0) <2 ".
We also have from (6.20) and Corollary 6.1 that
(6.26) f(@)u(t) + Cro(t) < f(F(x,t) < fla)u(t) + Cov(t) .

Since lim; 1 f(z)(1 — ) = 1, we conclude from (6.25), (6.26) and Lemma 2.1 that
there are positive constants Ty, C3, Cy such that

(6.27)
Cs

_ Cy _
1- — > t d 1-— <% tfort>T,.
w( mw+ww”)e le( mw+ww”) ¢ fort="o

Hence if z(t) is defined as in Lemma 4.2 by w(z(t),0) = e~*, then (6.27) implies
that

(6.28)

Cu C
gy S MO < 5

Observe from (3.4) that

(6.29) o(t) = /0 S Mu(s) +v(s)] ds

and so we conclude from (6.28), (6.29) that

(6.30) t) > C /t ot 48
' Ui = T i1 1—2(s—1log2)

fort > 1T} .

fort>Ty+1.

Observe next from (4.3) and the fact that lim,_; g(z)/(1 — ) = 0, that we can
choose Ty sufficiently large so that 1 —z(t—1—1log2) < 2[1—z(t)] for t > Tp+1. We
conclude from (6.28), (6.30) that v(t)/u(t) > Cs(e — 1)/2C3e provided t > Ty + 1.

To prove that limsup,_, ., v(t)/u(t) = co we assume for contradiction that there
is a constant K such that v(t) < Ku(t) for ¢ > 0. By Lemma 2.1 and (6.26) we see
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that lim;_, o [u(t) + v(t)] = 0o, and so we conclude that lim;_, o, u(t) = co. We also
see from (6.26) that

(6.31) f@u) < f(F(z,0) < [f(z) + CoKlu(t) , t2>0.
We define functions G1(u), Ga(u) with domain v > 1 by
(6.32)

G (u) = / w(f 1 f (@), 0) dz,  Ga(u) = / w(f{f (@) + CoK yu],0) da.

Evidently G1(-), G2(-) are strictly decreasing functions satisfying lim, . G;(u) =
0, 7 =1,2 and G1(u) > Ga(u) for all u > 1. Hence there exists Ty > 0 such that
there are strictly increasing functions w;(t), j = 1,2 with domain ¢t > T such that
Gi(u;(t)) = et j =1,2. Tt follows from (6.31) that us(t) < u(t) < uy(t) for
t > Ty, and hence

¢
(6.33) ult) L/ ws(s) ds, t>Th .
u(t) uy(t) Jr,
We obtain a contradiction to the assumption sup[v(-)/u(-)] < K by showing that
the RHS of (6.33) converges to co as t — oo.
To see this let n = info<z<1[f(x)/{f(z) +C2K}] s0 0 < n < 1 and ua(t) > nu(t)
for t > Tj. Observe next that there is a positive constant C3 such that

(6.34)  fH{f(2) + CoaK}2u] — fH{f(2) + CoK}u] >
Ca{l = [ {f(2) + CoK}u] }, 0<a <1, u>1.

Since the function g(-) of (4.2) satisfies lim,_,; g(z)/(1 — ) = 0, it follows from
(4.3), (6.34), that lim, oo G2(2u)/Ga(u) = 0. Hence for any § > 0 there exists
us > 1 such that G2(2u)/Gz2(u) < 6 for v > wus. Since limy oo u1(t) = oo and
liminf;, o uo(t)/ui(t) > 0, it also follow that lim; oo ua(t) = co. Hence there
exists Ts such that us(t) > us for all ¢ > Tys. It follows that if tg > Ts then

(6.35) to <t <tp+log(l/6) implies ua(t) > uz(to +log(1/0))/2 .

We conclude that the RHS of (6.33) is bounded below by nlog(1/6)/2 provided
t > Ts + log(1/9). O

In order to prove the inequality (4.37) and obtain a lower bound on «(-) in the
case when lim,_,o ¢(z)/x < 0o, we need to consider the dependence of the function
u(t), t >0, on v(t), t > 0. Since v(t) is a strictly increasing function of ¢t we may
write u(t) = U(v(t)), t > 0. It follows from (3.3), (3.4), Lemma 4.1 and Corollary
6.2 that

(6.36) (1) < U'(v) < Cforv>0, U(v) < Cvforv>1,
where C' is a positive constant.

Lemma 6.2. Assume ¢(-), () satisfy (1.15), (1.16), (1.18), (1.24) and either
that lim,_,0 ¢(z)/x = oo or the functions ¢(-),1(-) are C* on the closed interval
[0,1]. Assume also that the solution w(x,t) of (1.7), (1.8) satisfies (1.11) with
0 < By < 1. Then for any k > 1 there is a constant Cy, independent of t > 0,
which is an increasing function of k and satisfying limg_1 Cy, = 1, such that

OF(f(0yu(t),t) _ OF(kf(0)u(t).t) _ Ckaﬁ(f(O)U(t)yt)

(6.37) 0z - 0z - 0z ’

t > 0.
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Proof. Let z(s), s < t, be the solution to (6.6) with terminal condition zj(t) =
kEf(0)u(t). From the convexity of F(-,t) and (6.23) it will be sufficient for us to
show that

(6.38) / 99(zk(s), u(s)) Z’“ / 99 Zl 99(z1(3),ul$)) o p o gs 1,

for a constant Dy, dependlng only on k which satisfies limy_,; Dy = 0. Making the
change of variable t <+ v, s <> v/, we have that the integral in (6.38) can be written
as

(6.39) /89<<>u<>>d _ / g(a(v)), U(v')) v’

0z 0z U’
where zj(s) = Z,(v). Observe now that
(6.40) Zk(W'") > kf(O)U(v) + Ci{v—'} for 0 <o’ <o,

where C is the constant in Lemma 6.1. Upon using the properties of the function
I'(-) stated in Lemma 6.1, it also follows from (6.40) and the second inequality of
(6.36) that there are positive constants C,~ with 0 < v < 1 such that
(6.41)
29(1(v), UW)) _ CU(w)?

0z ~ [f(OU@) + Crfv —v'}]?
In the case when the functions ¢(-),(-) are C'* on the closed interval [0, 1] we can
take v = 1 in (6.41). Otherwise we need to take v < 1. We conclude that there is
a constant C' such that

vmin{~y,1/2} 5 / ! ’
/ 99k (), U(v)) _dv < C forv>1, k>1.
0 0z U(v)
We also have from the properties of the function I'(-) that if 0 < § < 1 then there

is a constant Cs such that
9g(z,u)  9g(z',u) < Csu?(2' — 2)

for0 <v' <yv, v>1, k> 1.

(6.42)

) < <z<z.
(6.43) 0 < o 5 = 3 for fOlu<z<z
Observe now from Corollary 6.1 that

(6.44) Z1(v) < Z(V) < ZH0)+ (k=1 f(0)U(v) for 0 <0 <w.

It follows then from (6.43), (6.44) that there is a constant C' such that
(6.45)

— < C(k-1) forv>1,k>1.

/”mm{”’m} [39(51(11’), U')) 09z (v),U@))] dv
0 0z 0z U(v')

Next we note that there exists §o > 0 such that if 0 < § < dg then there is a
constant 1(d) with the property lims_,o7(d) = 0 such that

(6.46) /v”w(v) ag(él(va')z, U')) Ud(zl/) < n() ifv>1.

The inequality (6.46) follows from (6.36) in the case when the functions ¢(-), 4 (-)
are C'! on the closed interval [0, 1] since then we can take v = 1 in the inequality
(6.41). In the case when lim,_, g ¢(z)/z = co we need to use Corollary 4.1 that
inf k(-) > 0. Defining T by v(T") = v we have from (3.3), (3.4) that

(6.47) (T —t1) < o(T) =t Dy(T) for 0 <ty <T,
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where Cy = sup k(+). Hence there exists d; > 0 such that for 0 < § < §; one has

(6.48) /” g(z1(v),UW)) dv . /T F(a(s)) ds .

—5U(v) 0z U(v') T-26
We conclude from (2.1), (6.9) upon using the inequality inf x(-) > 0 that
T
(6.49) / [(z(s)) ds < n(d) where lim n(d) =0.
T_95 6—0

It follows from (6.44) and Lemma 6.1 that
(6.50)  Z(v) < A = (k=1)f(0)U()/Cr) if v' = (k=1)f(O)U(v)/Ch,

where C; is the constant of Lemma 6.1. Hence there exists kg > 1, d5 > 0 such
that forv > 1, 1 <k < kg, 0<J < Js, one has

(6.51)

/u—éU(v) A9z, UW)) dv’ N /v—éU(v)—p Ag(Z1(v"), U + p)) dv’
vmin{vy,1/2} 0z U(U’) N vmin{~vy,1/2} 0z U('U/ + p) ’

where p = (k — 1) f(0)U(v)/Cy. Next observe that

(6.52)

8g(z, Ul) i_ag(z7 U2) i
0z U 0z U,

We see now from (6.3), (6.52) and Lemma 6.1 that for any ¢ satisfying 0 < ¢ <1

there is a constant C. depending on € such that

89(2, Ul) i B 8Q(Z,U2) i < CE‘Ul - U2|
0z U 0z Us| — 22

= [f(x1)D(x1)—f(x2)T(x2)]/2z, where f(x1)U; =z, f(x2)Us = 2.

(6.53) fore <zy,z90<1.

If the functions ¢(-),1(+) are C? on the closed interval [0, 1] then lim._,o C. = Cp <
00, but in the case lim,_,o ¢(z)/x = oo it is possible that C. becomes unbounded
as ¢ = 0. To estimate from below the integral on the RHS of (6.51) we take z =
Z1(v"), Uy =U(W'+p), Uz = U(v') in (6.53) with v min{y, 1/2} <’ < v—-5U(v)—p.
Since inf x(-) > 0 if lim,_,¢ ¢(x)/x = co we may take € = ¢(J) > 0 in (6.53) in that
case. We conclude then from (6.36), (6.40), (6.53) that

(6.54)

/véU(v)p
vmin{~vy,1/2}
where Cs depends only on ¢ and can diverge as 6 — 0 in the case when lim,_,¢ ¢(z)/x =
oo. It follows now from (6.45), (6.46), (6.54) that there exists kg > 1 such that (6.38)

holds for 1 < k < kg. To prove the result for £ > k¢ we repeat the argument but
in this case we do not need to be concerned with the case lim, ¢ ¢(z)/z = co. O

9g9(Z1(v'), U + p)) 1 ag(:1(v), UR)) 1 /
0z U +p) B Oz U@ dv' < Cs(k-1),

Corollary 6.3. Assume that ¢(-), ¥(-) and the solution w(x,t) of (1.7), (1.8)
satisfy the assumptions of Lemma 6.2. Then for any ¢ with 0 < € < 1 there is a
constant y. such that the function F(x,t) defined by (2.1) has the property
OF(0,t) < OF (z,t) OF(0,t)
ox - Ox Ox

and limg_,gve = 0.

(6.55)

< [1 +’Ya]

for0<z<e t>0,
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Proof. From (6.20) we have the identity

' oxr  fl(F(x,t)) 0z '
From (6.3) we see that f/(-) is an increasing function, and since F(-,t) is also
increasing we conclude that f/(F(0,t)) < f/(F(x,t)) for 0 < 2 < 1. The result
follows from (6.56) and Lemma 6.2. O

Proposition 6.1. Assume that ¢(-), ¥(-) and the solution w(x,t) of (1.7), (1.8)
satisfy the assumptions of Lemma 6.2. If lim, .o ¢(z)/z = oo then (4.37) holds.
If (), ¥(-) are C? on the closed interval [0,1] and the initial data additionally
satisfies (1.23), then inf k() > 0 and (4.37) holds.

Proof. Assuming first that inf x(-) > 0, we see from (1.8) and Lemma 2.3 that there
exists a > 0 such that 1 < w(0,t) < 1+ « for all t > 0. We conclude from (1.8)
that

(6.57) wo(F(1/20 4+ a),t))  w(1/2(1+a),t) S 1 .
wo(F(0,1)) w(0,1) T 14 2a
In view of the convexity of the function F'(-,t) it follows from (4.3) and (6.57) that
there exists Ty > 0 such that
OF(0,1)
Ox
It follows from Corollary 6.3 and (6.58) that if ¢ > T then

(6.58) < 3(1+ a)log(l 4 2a)g(F(0,t)) fort > Ty .

(6.59) w(z,t) = e'wo(F(x,t)) > e'wo(F(0,t) + x0F (x,t)/0z) >
elwo(F(0,t) + 2(1 +7,)0F(0,t)/0z) > C(z,a)e'wo(F(0,t)) > C(z,a),

for a positive constant C(z,a) depending only on x, . We have proved the in-
equality (4.37).

Finally we need to show that inf £(-) > 0 in the case when the functions ¢(-), ¥(-)
are C? on the closed interval [0, 1] and the initial data additionally satisfies (1.23).
We show that for any § > 0 there exists Ts5, K5 > 0 such that if ¢ > Ts and
w(0,t) > K5 > 2, then 8(0,t) > 1 — 4. To see this let us suppose that w(0,t) =
e'wo(F(0,t)) > Ks > 2, whence it follows from (1.8), (4.3) and (6.55) that there
are positive constants Ty, Cy such that

OF(0,t

(6.60) (';x’ ) > Cog(F(0,t))log K5 fort > Ty .

We conclude from (4.3), (6.55), (6.60) that there is a constant C; > 0 such that
F(x,t

(6.61) wo(F(z,)) < exp[—CizlogKs] for 0 <z <1/2.

wo(F(0,1)) —

Now just as in Proposition 5.1 we see that the ratio ho(F(z,t))/h(F(0,t)) is also
bounded by the RHS of (6.61) since we are assuming that the initial data satisfies
(1.23). Thus from (5.42) we obtain for any € < 1/2 the lower bound

(6.62)  B(0,t) > B(F(0,t),0){1 —exp[-CielogKs]} /(1 +7.) fort>Tp .

It is clear from (6.62) that we may choose K5, T such that 5(0,t) > 1—0if ¢t > T;
and w(0,t) > Ks.
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To complete the proof of inf k() > 0 we argue as in Corollary 4.1. Thus
d (o(X4))
. 1 Xy > (11—

We have already observed in Corollary 4.1 that there exists v > 0 such that P(X; >
(X)) > 1/2 for t > 0. Let 2o € (0,1) be the point at which the function ¢(-)
achieves its maximum. Then from the Chebysev inequality we have that

(6.64) Py(X3) < Xy <m9) > 1/2—(Xy)/z0 > 1/4 if (Xy) <zm0/4.
Hence (6.63), (6.64) imply that

+1}—1 if (X)) <1/Ks,t>T; .

(v (X4))
4(Xy)
provided K5 > 4/z¢. Choosing d now to satisfy (1 — 0)[y¢'(0)/4 + 1] > 1, we see
from (6.65) that there exists Ty 5 > Ts such that (X;) > 1/K;s for t > Ty 5. We
conclude from Lemma 2.3 that inf x(-) > 0. 0

(6.65) ilog(Xt>>(1—5){ +1}—1 if (X)) <1/Kj5 ,t>Ts,

Proof of Theorem 1.3. The result follows from Lemma 4.1, Corollary 4.1, Lemma
4.2 and Proposition 6.1. (|

We conclude this section by making some observations concerning the conditions
(1.18), (1.24) on the functions ¢(-),1(:). In Lemma 6.1 we saw that (1.18) implies
that the function z — ¢(z,u) is increasing. This fact can also be concluded from
(6.8) and the concavity of the function z — g¢(z,u), which follows from (1.24).
Therefore the only part of the proof of Theorem 1.3 in which we need to assume
(1.18) is in the proof of Lemma 4.1. We can however replace Lemma 4.1 by the
following proposition in the case when lim,_,o ¢(z)/x < 0o, and so dispense entirely
with the assumption (1.18) for the proof of Theorem 1.3.

Proposition 6.2. Assume ¢(-), ¥(-) satisfy (1.15), (1.16), (1.24) and that the
initial data for (1.7), (1.8) satisfies (1.11) with By = 1. Then if lim,_o ¢(x)/x < 00
there is a constant C such that k(t) < C fort > 0.

Proof. Tt follows from Lemma 6.1 that the function g(z,u) of (6.7) is negative, in-
creasing and concave for z > f(0)u. We first note that the assumption lim,_,o ¢(z)/z <
oo implies that the function z — g(z,u) is C* on the closed interval [f(0)u, co) since
lim,_,0 2%’ (z) = 0. Hence we can extend g(z,u) to be a C* function on [0, 00) by
setting dg(z,u)/0z = dg(f(0)u,u)/0z for 0 < z < f(0)u. The extended function
g(+,u) is negative, increasing, concave and g(0,u) = —aju for some positive con-
stant a; > ag, where ag is defined by (6.8). We now define an extended function
F(z,t), z > 0, as the solution to the initial value problem (6.19) in the domain
{(z,t): z>0,t> 0}, and it is clear that the extended function F(-,¢) is increas-
ing convex and dF(z,t)/dz < 1 for z > 0. We further define a function y(¢) by
f(y(t)) = F(0,t) where the function f(-) is determined by (6.3). Observe that
in the case of quadratic ¢(-),%(-) this function coincides with the function y(¢) of
(5.7). Since z + Crv(t) < F(z,t) < z + Cyu(t) for z,t > 0 as in Corollary 6.1, we
have that lim,_,, F(0,) = co. Hence there exists Ty > 0 such that y(t) is uniquely
defined for ¢t > T and satisfies 0 < y(t) < F(0,¢) < 1.

Let k : [f(0),00) — [0,1) be the inverse function of f : [0,1) — [f(0),00). Since
f() is strictly increasing and convex, it follows that k(-) is strictly increasing and
concave. We have now from (6.20) that
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(6.66) F(z,t) —y(t) = k(F(f(2)u(t),t) —k(F(0,1) >
K (E(f(@)ult), O)[F(f(@)ult), )=F0,1)] > K (F(f(@)u(t),t)f(@)u(t)IF(0,1)/0z,

(
where in (6.66) we have used the fact that the function z — F(z,t) is increasing
and convex. From (6.3) we see that the function k() is C! on [f(0),c0) and
satisfies limy_, o y?k'(y) = 1. Using the fact that lim;_, ., v(t) = oo, it follows from
corollaries 6.1,6.2 that there are positive constants C1,T; such that

(6.67) E'(F(f(x)u(t),t)) > Cik'(F(0,t)) for0<z<1/2, t>1T .
Hence Lemma 6.1, (6.19) and (6.66), (6.67) imply that there is a positive constant
C5 such that

dy(t
(6.68) F(x,t) —y(t) > 02% for0<z<1/2,t>T) .

Since y(t) < F(0,t) < z(t) we can define as in §5 a positive function 7(t) satisfy-
ing y(t) = z(t —7(t)). Following the argument of Lemma 5.1 we see that (6.68) and
the conservation law (1.8) imply that there exists Ty, 79 > 0 such that 7(¢) > 7o for
t > Tp. Observe next as in (6.66) that we have

(6.69)
F(z,t) = F(0,t) > K(F(f(@)u(t),n)[f(z) - fO)u()OE(f(0)u(t),t)/0z ,
F0,) —y(t) < K(F(0,0)f(0)u(t)F(f(0)ult),t)/dz .
Hence there exists positive constants Cy,T5 such that
(6.70) F(xz,t) — F(0,t) > Cyz[F(0,t) —y(t)] fort>T5,0<z<1/2.

Suppose now that efw(F(0,t),0) = e° for some 0 < § < 79/2. Then (4.3) implies
that there exists T5 > 0 such that F(0,¢) — y(t) > 10g(F(0,t))/2 provided ¢t >
Ts. Hence (4.3) and (6.70) imply that for small § the integral on the LHS of
(1.8) is strictly less than 1. We conclude that there exists Th,d2 > 0 such that
tw(F(0,t),0) > e for t > Ty. The result follows from Lemma 2.3. O
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