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Abstract. This paper is concerned with the stability and asymptotic stability

at large time of solutions to a system of equations, which includes the Lifschitz-

Slyozov-Wagner (LSW) system in the case when the initial data has compact
support. The main result of the paper is a proof of weak global asymptotic

stability for LSW like systems. Previously strong local asymptotic stability

results were obtained by Niethammer and Velázquez for the LSW system with
initial data of compact support. Comparison to a quadratic model plays an

important part in the proof of the main theorem when the initial data is

critical. The quadratic model extends the linear model of Carr and Penrose,
and has a time invariant solution which decays exponentially at the edge of its

support in the same way as the infinitely differentiable self-similar solution of

the LSW model.

1. Introduction.

In this paper we continue the study of the large time behavior of solutions to the
Lifschitz-Slyozov-Wagner (LSW) equations [8, 17] begun in [4]. The LSW equations
occur in a variety of contexts [14, 15] as a mean field approximation for the evolution
of particle clusters of various volumes. Clusters of volume x > 0 have density
c(x, t) ≥ 0 at time t > 0. The density evolves according to a linear law, subject to
the linear mass conservation constraint as follows:

∂c(x, t)

∂t
=

∂

∂x

((
1−

(
xL−1(t)

)1/3)
c(x, t)

)
, x > 0,(1.1) ∫ ∞

0

xc(x, t)dx = 1.(1.2)

One wishes then to solve (1.1) for t > 0 and initial condition c(x, 0) = c0(x) ≥
0, x > 0, subject to the constraint (1.2). The parameter L(t) > 0 in (1.1) is
determined by the constraint (1.2) and is therefore given by the formula,

(1.3) L(t)1/3 =

∫ ∞
0

x1/3c(x, t)dx
/∫ ∞

0

c(x, t)dx.

Evidently then L(t)1/3 is the average cluster radius at time t and the time evolution
of the LSW system is in fact non-linear. Existence and uniqueness of solutions to
(1.1), (1.2) with given initial data c0(x) satisfying the constraint has been proven
in [7] (see also [3]) for integrable functions c0(·), and in [10] for initial data such
that c0(x)dx is an arbitrary Borel probability measure with compact support. In
[11] the methods of [10] are further developed to prove existence and uniqueness
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for initial data such that c0(x)dx is a Borel probability measure with finite first
moment.

The main focus of [4] and the current paper is to understand the phenomenon
of coarsening for the LSW system. Specifically, beginning with rather arbitrary
initial data satisfying the constraint (1.2), one expects the typical cluster volume
to increase linearly in time. This is a consequence of the dilation invariance of the
system. That is if the function c(x, t), x, t > 0, is a solution of (1.1), (1.2), then for
any parameter λ > 0 so also is the function λ2c(λx, λt). Letting Λ(t) be the mean
cluster volume at time t,

(1.4) Λ(t) =

∫ ∞
0

xc(x, t)dx
/∫ ∞

0

c(x, t)dx, t ≥ 0,

one expects Λ(t) ∼ Ct at large t for some constant C > 0. The problem of proving
that typical cluster volume increases linearly in time is subtle since it is easy to see
that the constant C depends on detailed properties of the initial data. In fact if the
initial data is a Dirac delta measure then C = 0. Less trivially one can construct a
family of self-similar solutions [9] to (1.1), (1.2) depending on a parameter β, which
may take any value in the interval 0 < β ≤ 1. In that case Λ(t) ∼ C(β)t at large t,
where 0 < C(β) < β. The main result of [4] is an upper and lower bound on the
rate of coarsening of the LSW model for a large class of initial data: there exist
positive constants C1, C2 depending only on the initial data such that

(1.5) C1T ≤ Λ(T ) ≤ C2T for T ≥ 1.

The class of initial data for which (1.5) holds includes the exponential function
c0(x) = e−x, 0 ≤ x < ∞, and the slowly decreasing functions c0(x) = Kε/(1 +
x)2+ε, 0 ≤ x < ∞, where we require ε > 0 in order to satisfy the conservation
law (1.2). It also includes initial data with compact support such as c0(x) =
Kp(1 − x)p−1, 0 ≤ x ≤ 1, c0(x) = 0, x > 1, where here we require p > 0 so that
(1.2) holds. A time averaged upper bound on the rate of coarsening for such a wide
class of initial data was already known from a result of Dai and Pego [5], which
applies the Kohn-Otto argument [6] to the LSW system.

In this paper we shall be confining our investigation of the LSW system to
solutions of (1.1), (1.2) which have initial data with compact support. It is easy
to see that if the initial data c0(·) for (1.1) has compact support then the solution
c(·, t) at any later time t > 0 also has compact support. Furthermore all self-similar
solutions of (1.1), (1.2) have compact support. The study of solutions to (1.1), (1.2)
with initial data which has compact support generally proceeds [9] by normalizing
the support of the function c(·, t) to be the interval 0 ≤ x ≤ 1 for all t ≥ 0. Denoting
this normalized density also by c(·, t), we define functions w(·, t) ≥ 0, h(·, t) ≥ 0 by
the formulas

(1.6) w(x, t) =

∫ 1

x

c(x′, t) dx′ , h(x, t) =

∫ 1

x

w(x′, t) dx′ , 0 ≤ x < 1.

Then the dynamical evolution of solutions to the LSW system is governed by the
PDE

(1.7)
∂w(x, t)

∂t
+ [φ(x)− κ(t)ψ(x)]

∂w(x, t)

∂x
= w(x, t), 0 ≤ x < 1, t ≥ 0,
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with the mass conservation law

(1.8) h(0, t) =

∫ 1

0

w(x, t) dx = 1 , t ≥ 0.

where the functions φ(·) and ψ(·) in (1.7) are given by the formulas,

(1.9) φ(x) = x1/3 − x, ψ(x) = 1− x1/3, 0 ≤ x ≤ 1.

The initial data w0(·) for (1.7), (1.8) is now taken to be a non-negative decreasing
strictly positive function w0(x), 0 ≤ x < 1, which converges to 0 as x → 1.
This implies that the solution w(x, t) of (1.7), (1.8) also is non-negative decreasing
strictly positive in x for 0 ≤ x < 1 and converges to 0 as x→ 1. The function κ(·)
in (1.7) is uniquely determined by the conservation law (1.8) just as L(·) in (1.1) is
determined from (1.2).

The inequality (1.5) was proven in [4] by making use of the properties of a certain
function of the solution of (1.1) which we called the beta function. The beta function
β(·, t) associated with the solution w(·, t) of (1.7) is given by the formula

(1.10) β(x, t) =
c(x, t)h(x, t)

w(x, t)2
, 0 ≤ x < 1,

where c(·, t) and w(·, t) are as in (1.6). It was shown in [4] that if the beta function
of the initial data for (1.7), (1.8) satisfies

(1.11) lim
x→1

β(x, 0) = β0 > 0 ,

then the coarsening inequality (1.5) holds. Since the support of the function w0(·)
is the interval 0 ≤ x ≤ 1, it is easy to see that if (1.11) holds then one must have
β0 ≤ 1. We shall refer to initial data w0(·) for (1.7), (1.8) as being subcritical if
(1.11) holds with 0 < β0 < 1, and critical if (1.11) holds with β0 = 1. Examples of
subcritical and critical initial data are given by functions w0(·),

(1.12) w0(x) = (1− x)p for p > 0, w0(x) = exp

[
− 1

1− x

]
, 0 ≤ x < 1.

In (1.12) the first function has β0 = p/(1 + p) < 1, and the second function β0 = 1.
Self-similar solutions of (1.1), (1.2) correspond to time independent solutions of

(1.7), (1.8). There is an infinite family of such time independent solutions charac-
terized by a parameter κ ≥ κ0 = φ′(1)/ψ′(1) > 0. These solutions wκ(x) can be
easily distinguished by their behavior as x→ 1 as follows:

for κ > κ0, wκ(x) ∼ (1− x)p, 1/p = (κ− κ0)|ψ′(1)|,(1.13)

for κ = κ0, wκ(x) ∼ exp[−1/γ(1− x)], γ = κ0ψ
′′(1)− φ′′(1).

Letting βκ(·) denote the beta function (1.10) corresponding to wκ(·), it is easy to
see that

(1.14) κ = [1/ lim
x→1

βκ(x)− φ′(1)− 1]/|ψ′(1)| ,

so that wκ(·) is subcritical for κ > κ0 and critical when κ = κ0. It was shown in
[12] that if the solution w(·, t) of (1.7), (1.8) converges as t → ∞ to wκ(·) with
κ > κ0, then the initial data w(·, 0) must be regularly varying with exponent p
given by (1.13). Furthermore if the initial data is sufficiently close in the regu-
lar variation sense to wκ(·), then limt→∞ w(x, t) = wκ(x) uniformly on any com-
pact subset of [0, 1). This in turn implies that the average volume (1.4) satisfies
limT→∞ Λ(T )/T = C > 0. In [4] it was observed that if the beta function (1.10)
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corresponding to the initial data w(·, 0) satisfies (1.11) with β0 = p/(1+p) < 1, then
w(·, 0) must be regularly varying with exponent p, and that these two conditions
are virtually equivalent (see Lemma 4 of [4] and the remark following).

The main result of [12] can be considered a strong local asymptotic stability
result for the LSW model with subcritical initial data. A corresponding result for
critical initial data was proven in [13]. Again it was shown that if the solution
w(·, t) of (1.7), (1.8) converges as t → ∞ to wκ(·) with κ = κ0, then the initial
data w(·, 0) must satisfy a certain criterion-equation (4.1) of the present paper.
If the initial data is sufficiently close in the sense of this criterion to wκ(·), then
limt→∞ w(x, t) = wκ(x) uniformly on any compact subset of [0, 1). We show in §4
that if (1.11) holds with β0 = 1 then the criterion of [13] for the initial data of (1.7),
(1.8) is satisfied.

Our goal in the present paper is to prove weak global asymptotic stability results
corresponding to the strong local asymptotic stability results of [12, 13]. It will be
useful to our study to generalize the system (1.7), (1.8), (1.9) by allowing more
general functions φ(·) and ψ(·) on [0, 1] than (1.9). We do however require these
functions to be continuous on [0, 1], twice continuously differentiable on (0, 1], and
have the properties:

φ(x) is concave and satisfies φ(0) = φ(1) = 0, −1 < φ′(1) < 0.(1.15)

ψ(x) is convex and satisfies ψ(1) = 0, ψ′(1) < 0, ψ′′(1)− φ′′(1) > 0.(1.16)

Evidently the conditions (1.15), (1.16) imply that the functions φ(x), ψ(x) are
strictly positive for 0 < x < 1. The conservation law (1.8), when combined with
(1.7), implies that the parameter κ(t) is given in terms of w(·, t) by the formula,

(1.17)
1

κ(t)

[∫ 1

0

[1 + φ′(x)]w(x, t)dx

]
= ψ(0)w(0, t) +

∫ 1

0

ψ′(x)w(x, t)dx.

One can see from the conditions (1.15), (1.16) and the fact that the function w(·, t)
is non-negative decreasing, that κ(t) as determined by (1.17) is positive. Hence
the coefficient φ(·) − κ(t)ψ(·) of ∂w(·, t)/∂x in (1.7) is concave for all t ≥ 0. As
in the LSW case there is an infinite family of time independent solutions of (1.7)
characterized by a parameter κ ≥ κ0 = φ′(1)/ψ′(1) > 0 which have the properties
(1.13), (1.14).

Our first result is a weak global asymptotic stability result for (1.7), (1.8) in the
case when the initial data is subcritical. In order to prove it we need to make a
further assumption on the functions φ(·), ψ(·) beyond (1.15), (1.16), namely that

(1.18) φ(·), ψ(·) are C3 on (0, 1] and φ′′′(x) ≥ 0, ψ′′′(x) ≤ 0 for 0 < x ≤ 1.

Evidently (1.18) holds for the LSW functions (1.9).

Theorem 1.1. Let w(x, t), x, t ≥ 0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16) and assume that the initial data w(·, 0) has beta function
β(·, 0) satisfying (1.11) with 0 < β0 < 1. Then there is a positive constant C1

depending only on the initial data such that κ(t) ≥ C1 for all t ≥ 0. If in addition
(1.18) holds, then there is a positive constant C2 depending only on the initial data
such that κ(t) ≤ C2 for all t ≥ 0 and

(1.19) lim
T→∞

1

T

∫ T

0

κ(t) dt = [1/β0 − φ′(1)− 1]/|ψ′(1)| .
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In the LSW case the condition C1 ≤ κ(t) ≤ C2, t ≥ 0, implies that the ratio of
the mean cluster radius to maximum cluster radius is uniformly bounded strictly
between 0 and 1 for t ≥ 0. We prove Theorem 1.1 in §2 by extending the methodol-
ogy of the beta function developed in [4]. In order to prove a version of the theorem
for critical initial data we have had to have recourse to a different approach. The
approach is based on the observation that when the functions φ(·), ψ(·) are qua-
dratic, then the generally infinite dimensional dynamical system (1.7), (1.8) reduces
to a two dimensional system. One way of seeing this is to note that for quadratic
φ(·), ψ(·) the commutator of the operators A, B defined by

(1.20) A = φ(x)
d

dx
, B = ψ(x)

d

dx
,

is a linear combination of A and B. Thus A and B generate a two dimensional Lie
algebra. The corresponding two dimensional dynamical system can be analyzed in
detail and so we are able to prove in §3 and §5 strong global asymptotic stability
for the time independent solutions (1.13) of (1.7), (1.8) .

Theorem 1.2. Assume that the functions φ(·), ψ(·) are quadratic, and that the
initial data w(·, 0) for (1.7), (1.8) has beta function β(·, 0) satisfying (1.11). Then
setting κ = [1/β0 − φ′(1)− 1]/|ψ′(1)|, one has for β0 < 1,

(1.21) lim
t→∞

κ(t) = κ, lim
t→∞

‖β(·, t)− βκ(·)‖∞ = 0,

where βκ(·) is the beta function of the time independent solution wκ(·) of (1.13). If
β0 = 1 then for any ε with 0 < ε < 1, one has

(1.22) lim
t→∞

κ(t) = κ0, lim
t→∞

sup
0≤x≤1−ε

|β(x, t)− βκ0
(x)| = 0.

In §5 we note that the convergence result (1.22) for critical initial data can be
improved if we make the further assumption on the initial data:

(1.23) There exists δ > 0 such that β(x, 0) ≤ 1 for 1− δ ≤ x < 1.

Thus if (1.11) with β0 = 1 and (1.23) hold, then limt→∞ ‖β(·, t) − βκ0(·)‖∞ = 0.
The condition (1.23) turns out to be important for us when we seek to extend
Theorem 1.1 to the case of critical initial data. We also need an extra assumption
on the functions φ(·), ψ(·) beyond (1.15), (1.16) and (1.18). The assumption is as
follows:

(1.24) The function x→ φ′(x) + φ′(1)− φ(x)[ψ′(x) + ψ′(1)]/ψ(x)

is decreasing for 0 ≤ x < 1.

One can easily see that the LSW functions (1.9) satisfy (1.24).

Theorem 1.3. Let w(x, t), x, t ≥ 0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16), (1.18),(1.24) and assume that the initial data w(·, 0) has
beta function β(·, 0) satisfying (1.11) with β0 = 1. If limx→0 φ(x)/x = ∞, then
there exist positive constants C1, C2 depending only on the initial data such that
C1 ≤ κ(t) ≤ C2, for t ≥ 0, and (1.19) holds. If the functions φ(·), ψ(·) are C2

on the closed interval [0, 1] and in addition the initial data satisfies (1.23), then
there exist positive constants C1, C2 depending only on the initial data such that
C1 ≤ κ(t) ≤ C2, for t ≥ 0, and (1.19) holds.
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Since the LSW function φ(·) of (1.9) satisfies limx→0 φ(x)/x =∞, Theorem 1.1
implies that weak global asymptotic stability holds for solutions of the LSW system
with critical initial data as defined by (1.11) with β0 = 1. It seems at first surprising
that the system (1.7), (1.8) is more stable when the function φ(·) has a singularity
at x = 0. Proposition 4.2 however and the remark following indicates why this may
be the case. The proof of Theorem 1.3 is contained in §4 and §6. In §4 we use
the methodology of the beta function to prove certain results, in particular some
bounds on the function κ(·). In order to prove the asymptotic stability result (1.19),
we transform in §6 the system (1.7), (1.8) to a system which can be compared to
the quadratic model. Hence our proof of asymptotic stability in the critical case
hinges on viewing (1.7), (1.8) as a perturbation of the quadratic model. In contrast,
the proof of asymptotic stability in the subcritical case can be accomplished by
using the properties of the beta function alone. In [4] it was observed that the
methodology of the beta function is a way of viewing the system (1.7), (1.8) as a
perturbation of the linear model studied by Carr and Penrose [1, 2]. Since there is
no critical time independent solution wκ0

(·) of (1.7), (1.8) for the linear model, it
is therefore not surprising that in the proof of asymptotic stability for the critical
case one needs to go beyond the methodology of the beta function.

2. Global Stability for subcritical initial data

In this section we shall prove Theorem 1.1. First recall that the solution w(x, t) to
(1.7) is given in terms of the initial data w0(·) by the formula w(x, t) = etw0(F (x, t)), 0 ≤
x ≤ 1, where the mapping F (·, t) is defined by F (x, t) = x(0), with x(s), 0 ≤ s ≤ t,
being the solution to the terminal value problem

(2.1)
dx(s)

ds
= φ(x(s))− κ(s)ψ(x(s)), s ≤ t, x(t) = x.

The derivative ∂F (x, t)/∂x is given in terms of the solution to (2.1) by the formula

(2.2)
∂F (x, t)

∂x
= exp

[
−
∫ t

0

{φ′(x(s))− κ(s)ψ′(x(s))} ds
]
.

By virtue of our assumptions (1.15), (1.16) and the positivity of the function κ(·),
it follows from (2.2) that F (x, t) is a convex function of x, 0 ≤ x ≤ 1.

Lemma 2.1. Let F (·, ·) be defined by (2.1), where κ(·) is determined by the solution
of (1.7), (1.8). Then F (0, t) is an increasing function of t and limt→∞ F (0, t) = 1.

Proof. Evidently F (0, t) is an increasing function of t, whence limt→∞ F (0, t) =
α ≤ 1. The conservation law (1.8) is equivalent to

(2.3)

∫ 1

F (0,t)

w0(z)/[∂F (x, t)/∂x] dz = e−t ,

where the variables z and x are related by z = F (x, t). From (1.15), (1.16) and
(2.2) we see that ∂F (x, t)/∂x ≤ exp[−tφ′(1)], 0 ≤ x ≤ 1, whence (2.3) implies that

(2.4)

∫ 1

F (0,t)

w0(z) dz ≤ exp[−t{1 + φ′(1)}] .

We conclude from (1.15), (2.4) that α = 1. �
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Lemma 2.2. Let w(x, t), x, t ≥ 0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16). Assume the initial data w(·, 0) has beta function β(·, 0)
satisfying (1.11) with 0 < β0 < 1. Then there is a positive constant C depending
only on the initial data such that κ(t) ≥ C for all t ≥ 0.

Proof. Setting c(x, t) = −∂w(x, t)/∂x ≥ 0, 0 ≤ x ≤ 1, and Xt to be the random
variable with probability density function c(x, t)/w(0, t), 0 ≤ x ≤ 1, we see from
(1.17) that κ(t) satisfies the inequality

(2.5) κ(t) ≥ 1 + φ′(1)

ψ(0)
〈 Xt 〉 ,

where 〈·〉 denotes expectation value. We assume that β0 = limx→1 β(x, 0) < 1.
Since the function x→ F (x, t), 0 ≤ x < 1, is convex, it follows from the inequality
(57) of [4] that β(x, t) ≤ β(F (x, t), 0) for 0 ≤ x < 1. Hence Lemma 2.1 implies
that there exists T > 0 depending only on the initial data, such that β(x, t) ≤
(1 + β0)/2, 0 ≤ x < 1, t ≥ T . Now for a positive random variable X which has
beta function β(·) and satisfies ‖X‖∞ <∞, one finds after integration by parts,

(2.6) 〈 X 〉 = ‖X‖∞ −
∫ ‖X‖∞
0

β(z) dz .

Applying (2.6) to the variable Xt with t ≥ T , and using the fact that ‖Xt‖∞ = 1,
we conclude that 〈 Xt 〉 ≥ (1 − β0)/2 provided t ≥ T . The result follows by
observing that κ(t) is a continuous strictly positive function of t for t ≥ 0. �

To obtain an upper bound on κ(·) we first obtain an alternative formula to (1.17)
for κ(t). Observing that the function c(·, t) of (1.6) satisfies c(x, t) = −∂w(x, t)/∂x ≥
0, we see that c(x, t) satisfies the equation

(2.7)
∂c(x, t)

∂t
+

∂

∂x
{[φ(x)− κ(t)ψ(x)] c(x, t)} = c(x, t) .

Hence we obtain a formula for κ(t) equivalent to (1.17),

(2.8) κ(t) =

∫ 1

0
[x+ φ(x)]c(x, t) dx∫ 1

0
ψ(x)c(x, t) dx

=
〈 Xt + φ(Xt) 〉
〈 ψ(Xt) 〉

.

Lemma 2.3. Let X be a positive random variable such that ‖X‖∞ = 1, and set
κ(X) = 〈 X + φ(X) 〉/〈 ψ(X) 〉 where φ(·), ψ(·) satisfy (1.15), (1.16). Then
for any δ, 0 < δ < 1, there are positive constants C1(δ), C2(δ) with the property
limδ→0 C1(δ) =∞ and limδ→1 C2(δ) = 0, such that

1− 〈X〉 ≤ δ implies κ(X) ≥ C1(δ),(2.9)

1− 〈X〉 ≥ δ implies κ(X) ≤ C2(δ).(2.10)

Proof. We see from (1.16) that for any η > 0,

(2.11) 〈 ψ(X) 〉 ≤ ψ(0)P (X < η) + |ψ′(η)| [1− 〈X〉] .
Combining (2.11) with the inequality

(2.12) P (X < η) ≤ [1− 〈X〉]/(1− η) , 0 < η < 1,

we conclude that there is a constant C > 0 depending only on ψ(·) such that

(2.13) κ(X) ≥ C〈X〉/[1− 〈X〉] .
This proves (2.9).
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To prove (2.10) observe that by Jensen’s inequality, 〈 ψ(X) 〉 ≥ ψ(〈X〉) ≥
ψ(1− δ) > 0 and 〈 X + φ(X) 〉 ≤ 〈X〉+ φ(〈X〉) ≤ 1− δ+ sup0≤x≤1−δ φ(x). Now
(2.10) and limδ→1 C2(δ) = 0 follows from the continuity of φ(·) and the fact that
φ(0) = 0, ψ(0) > 0. �

Lemma 2.4. Let w(x, t), x, t ≥ 0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16), (1.18). Assume the initial data w(·, 0) has beta function
β(·, 0) satisfying (1.11) with 0 < β0 < 1. Then there is a positive constant C
depending only on the initial data such that κ(t) ≤ C for all t ≥ 0.

Proof. From (1.6) we see that h(x, t) satisfies w(x, t) = −∂h(x, t)/∂x ≥ 0, limx→1 h(x, t) =
0, whence it follows that h(x, t) is a solution to the equation
(2.14)
∂h(x, t)

∂t
+ [φ(x)− κ(t)ψ(x)]

∂h(x, t)

∂x
=

∫ 1

x

[φ′(z)− κ(t)ψ′(z)]w(z, t)dz + h(x, t) .

We conclude then from (1.7), (2.7), (2.14), that the function β(x, t) of (1.10) is a
solution to

(2.15)
∂

∂t
log β(x, t) + [φ(x)− κ(t)ψ(x)]

∂

∂x
log β(x, t) = −g(x, t) ,

where the function g(x, t) is given by the formula

(2.16) g(x, t) = {φ′(x)− κ(t)ψ′(x)} − 1

h(x, t)

∫ 1

x

[φ′(z)− κ(t)ψ′(z)]w(z, t)dz .

It follows from (1.15), (1.16) and the non-negativity of κ(·) that g(·, ·) is a non-
negative function and limx→1 g(x, t) = 0. From (2.16) we also have that

(2.17)
∂g(x, t)

∂x
= {φ′′(x)−κ(t)ψ′′(x)}− w(x, t)

h(x, t)2

∫ 1

x

[φ′′(z)−κ(t)ψ′′(z)]h(z, t)dz .

Assuming now that −φ′′(·), ψ′′(·) are decreasing, it follows from (2.17) that

(2.18)
∂g(x, t)

∂x
≤ {φ′′(x)− κ(t)ψ′′(x)}

[
1− w(x, t)

h(x, t)2

∫ 1

x

h(z, t)dz

]
.

Note that the expression in square brackets on the RHS of (2.18) is 1 minus the
beta function of the convolution of h(·, t) with the function H : R → R defined
by H(z) = 0, z > 0; H(z) = 1, z ≤ 0. We observed in [4] that if β(·) is the
beta function associated with a function h(·) by (24) of [4], then the condition
supβ(·) ≤ 1 is equivalent to the condition that h(·) is log-concave. Since the
function H(·) is log-concave, the Prékopa-Leindler inequality [16] implies that if
supβ(·, t) ≤ 1 then the convolution h(·, t) ∗H is also log-concave. It follows that if
supβ(·, t) ≤ 1, then the expression in the square brackets on the RHS of (2.18) is
non-negative. We can see this directly by writing h(x, t) = exp[−q(x, t)], 0 ≤ x < 1,
where the function x → q(x, t) is increasing and convex with limx→1 q(x, t) = ∞.
Then

(2.19)
w(x, t)

h(x, t)2

∫ 1

x

h(z, t)dz = exp[q(x, t)]
∂q(x, t)

∂x

∫ 1

x

exp[−q(z, t)] dz

≤ exp[q(x, t)]

∫ 1

x

∂q(z, t)

∂z
exp[−q(z, t)] dz = 1.
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We conclude from (2.18), (2.19) that if supβ(·, t) ≤ 1 then g(x, t) is a decreasing
function of x with limx→1 g(x, t) = 0.

From Lemma 2.1 we see that there is a T0 ≥ 0 such that supβ(·, t) ≤ 1 for t ≥ T0
and inf β(·, T0) = β0 > 0. Next let δ0 > 0 have the property that the constant C1(δ)
in Lemma 2.3 satisfies C1(δ0) > κ0 = φ′(1)/ψ′(1). Suppose now that

(2.20)

∫ 1

0

β(x, t) dx ≤ δ0

for t in the interval T1 ≤ t ≤ T2, where T1 ≥ T0 and there is equality in (2.20) when
t = T1. We show that in this case there is a δ1 > 0 such that

(2.21)

∫ 1

0

β(x, t) dx ≥ δ1, T1 ≤ t ≤ T2 .

The result follows from (2.21) and Lemma 2.3.
To prove (2.21) we use the fact that for t ≥ T1 one has

(2.22) β(x, t) = exp

[
−
∫ t

T1

g(x(s), s) ds

]
β(x(T1), T1) ,

where x(s), s ≤ t, is the solution of (2.1) with terminal condition x(t) = x. Observe
next that since κ(s) ≥ C1(δ0) > κ0 for T1 ≤ s ≤ T2, one has

(2.23) κ(s)ψ(z)−φ(z) ≥ [κ(s)−κ0]|ψ′(1)|(1− z) > 0, T1 ≤ s ≤ T2, 0 < z < 1.

We conclude that

(2.24) [1− x(s)] ≤ [1− x] exp

{
−
∫ t

s

[κ(s′))− κ0]|ψ′(1)|ds′
}

T1 ≤ s ≤ t ≤ T2 .

Observe now that for any s, T1 ≤ s ≤ T2, the function φ′(z)−κ(s)ψ′(z) is a positive
decreasing function of z, 0 < z < 1 and the function g(·, s) of (2.16) satisfies the
inequality

(2.25) 0 ≤ g(z, s) ≤ φ′(z)− κ(s)ψ′(z), T1 ≤ s ≤ T2, 0 < z < 1.

It follows from (2.24), (2.25) that

(2.26) 0 ≤
∫ t

T1∨(t−1)
g(x(s), s) ds ≤ C3(δ0), T1 ≤ t ≤ T2,

for a constant C3(δ0) depending only on δ0. From (2.17) and the fact that−φ′′(·), ψ′′(·)
are decreasing we see that for any x1 > 0,

(2.27) 0 ≤ g(z, s) ≤ [κ(s)ψ′′(x1)− φ′′(x1)](1− z), x1 ≤ z ≤ 1, s ≥ T0.

Hence if T1 < t < T2 then we have the inequality

(2.28)

∫ T1∨(t−1)

T1

g(x(s), s) ds ≤∫ T1∨(t−1)

T1

ds [κ(s)ψ′′(x1)−φ′′(x1)](1−x1) exp

{
−
∫ T1∨(t−1)

s

[κ(s′)− κ0]|ψ′(1)| ds′
}
,

where x(t− 1) = x1 ≥ C4(δ0) for a positive constant C4(δ0) depending only on δ0.
It follows from (2.26), (2.28) that there is a constant C5(δ0) depending only on δ0
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such that

(2.29) 0 ≤
∫ t

T1

g(x(s), s) ds ≤ C5(δ0), T1 ≤ t ≤ T2.

We conclude then from (2.22) that there is a constant C6(δ0) depending only on δ0
such that

(2.30) β(x, t) ≥ C6(δ0) β(x(T1), T1), T1 ≤ t ≤ T2.

In view of the monotonicity of the function g(·, s) for s ≥ T0 we also have that

(2.31) β(z, s) ≥ (1− γ)β(x, s), s ≥ T0, z ≥ x,

for some constant γ < 1. Since x(T1) ≥ x in (2.30) we conclude from (2.31) that
(2.21) holds. �

Lemma 2.5. Under the conditions of Lemma 2.4 the limit (1.19) holds.

Proof. It follows from (2.6) that if X is a positive random variable with ‖X‖∞ = 1
and beta function β(·) satisfying ‖β(·)‖∞ < 1 then 〈X〉 ≥ 1 − ‖β(·)‖∞. As
in Lemma 2.2 there exists T0 ≥ 0 such that supβ(·, t) ≤ (1 + β0)/2, t ≥ T0.
Hence for t ≥ T0 there is the inequality 1 ≤ w(0, t) ≤ 2/(1 − β0). Next for
0 < η < min[β0/2, (1 − β0)/2] let ε(η) be such that |β(x, T0) − β0| < η provided
1−x < ε(η). Then from Lemma 1 of [4] we see that there are constants C1(η), C2(η)
depending only on η and w(·, 0) such that
(2.32)

C1(η)[1− x](β0+η)/(1−β0−η) ≤ w(x, T0)/w(0, T0) ≤ C2(η)[1− x](β0−η)/(1−β0+η)

provided 1 − x < ε(η). Assuming now wlog that T0 = 0, we see from Lemma 2.1
that there exists Tη ≥ 0 such that 1−F (0, t) < ε(η) provided t ≥ Tη. We conclude
then from (2.32) and the bound on w(0, t) when t ≥ T0 the inequalities

w(0, 0)C2(η)et[1− F (0, t)](β0−η)/(1−β0+η) ≥ 1, t ≥ Tη,(2.33)

w(0, 0)C1(η)et[1− F (0, t)](β0+η)/(1−β0−η) ≤ 2/(1− β0) , t ≥ Tη.(2.34)

Observe next from (2.2) using the convexity of the function F (·, t), that

(2.35) 1− F (0, t) ≤ exp

[
−φ′(1)t+ ψ′(1)

∫ t

0

κ(s)ds

]
.

Now (2.33) and (2.35) imply that

(2.36) lim sup
T→∞

1

T

∫ T

0

κ(s)ds ≤ [1/β0 − φ′(1)− 1]/|ψ′(1)| .

In order to prove a lower bound on the time average of κ(·) analogous to (2.36),
we observe as in (2.4) that the solution x(s), s ≤ t, of (2.1) with terminal condition
x(t) = 0 satisfies the inequality

(2.37)

∫ 1

x(t−τ)
w(z, t− τ) dz ≤ exp[−τ{1 + φ′(1)}] , 0 < τ < t.

We can also see as in (2.32) that

(2.38) w(z, s)/w(0, s) ≥ C(1− z)(1+β0)/(1−β0), 0 < z < 1, s ≥ T0,
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where the constant C depends only on β0. It follows then from (2.37), (2.38) that
there are positive constants C, γ depending only on β0 such that

(2.39) 1− x(t− τ) ≤ Ce−γτ , t > T0, τ < t− T0.

If we use now (2.2), (2.34) and (2.39) we conclude the lower bound

(2.40) lim inf
T→∞

1

T

∫ T

0

κ(s)ds ≥ [1/β0 − φ′(1)− 1]/|ψ′(1)| .

�

Proof of Theorem 1.1. This follows from Lemma 2.2, 2.4, 2.5. �

3. The Quadratic Model

We have already observed that the solution w(x, t) of (1.7) is given by w(x, t) =
etw0(F (x, t)) where F (x, t) is defined by (2.1). It follows from (1.7) that F (x, t) is
the solution to the initial value problem

∂F (x, t)

∂t
+ [φ(x)− κ(t)ψ(x)]

∂F (x, t)

∂x
= 0, 0 ≤ x < 1, t ≥ 0,(3.1)

F (x, 0) = x, 0 ≤ x < 1.

Now suppose φ(·), ψ(·) are quadratic and satisfy (1.15), (1.16). Then φ(·), ψ(·)
are given by the formulas,

(3.2) φ(x) = φ′(1)x(x− 1), ψ(x) = ψ′(1)(x− 1) + ψ′′(1)(x− 1)2/2,

whence φ(·), ψ(·) are determined by the three parameters φ′(1), ψ′(1), ψ′′(1), which
are subject to the constraints in (1.15), (1.16). For t ≥ 0 let u(t) be the function

(3.3) u(t) = exp

[∫ t

0

{φ′(1)− ψ′(1)κ(s)} ds
]
.

Then it is easy to see that if the function v(t) is the solution to the initial value
problem

(3.4)
dv(t)

dt
= u(t), t ≥ 0, v(0) = 0,

the solution to (3.1) is given by the formula

(3.5) 1− F (x, t) =
1− x

u(t) + a(t)(1− x)
, 0 ≤ x < 1, t ≥ 0,

where a(·) is given in terms of u(·), v(·) by the formula

(3.6) a(·) = {ψ′′(1)[u(·)− 1] + |φ′(1)|[ψ′′(1)− 2ψ′(1)]v(·)}/2|ψ′(1)| .

Using the identity

(3.7) |φ′(1)|v(t) = 1− u(t) + |ψ′(1)|
∫ t

0

κ(s)u(s) ds ,

we see that u(t)−1+ |φ′(1)|v(t) ≥ 0 for all t since the function κ(·) is non-negative.
Hence the function a(·) in (3.6) is strictly positive for all t ≥ 0. Define now a
function G(u, v) by

(3.8) G(u, v) =

∫ 1

0

w0

(
1− 1− x

u+ a(1− x)

)
dx,
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with a given in terms of u, v by (3.6). Since the conservation law (1.8) is equivalent
to etG(u(t), v(t)) = 1, it follows from (3.4) that

(3.9) G(u, v) +Gu(u, v)
du

dt
+Gv(u, v)u = 0 .

Hence if [u(t), v(t)] is the solution to the two dimensional dynamical system (3.4),
(3.9) with initial condition u(0) = 1, v(0) = 0, then w(x, t) = etw0(F (x, t)) with
F (x, t) given by (3.5) is the solution to (1.7), (1.8) with initial condition w0(·).

Observe now that w0(z) ∼ (1 − z)p as z → 1 where p = β0/(1− β0), and also
from Theorem 1.1 we have limt→∞ u(t) = ∞. Hence from (3.6), (3.8) we may
conclude that at large time,

(3.10) G(u, v) ∼ u−pG0(v/u),

where the function G0(ξ) is given by the formula

(3.11) G0(ξ) =

∫ 1

0

[
1− x

1 + (1− x){a1 + a2ξ}

]p
dx ,

with

(3.12) a1 = ψ′′(1)/2|ψ′(1)|, a2 = |φ′(1)|[ψ′′(1)− 2ψ′(1)]/2|ψ′(1)| .

Note that a1 is non-negative and a2 strictly positive. If we replace the function
G(u, v) of (3.8) by the RHS of (3.10), then we easily see that in the variables [u, ξ]
the system (3.4), (3.9) reduces to

dξ(t)

dt
=

(p− ξ)G0(ξ)

pG0(ξ) + ξG′0(ξ)
,(3.13)

d

dt
log u(t) =

G0(ξ) +G′0(ξ)

pG0(ξ) + ξG′0(ξ)
.(3.14)

It is evident from (3.13) that ξ = p is a globally asymptotically stable critical point
for the equation provided we can establish a few properties of the function G0(·).

Lemma 3.1. The function G0(ξ) is a positive monotonic decreasing function of ξ
for ξ > 0, and satisfies the differential inequality
(3.15)

ξG′0(ξ) + (p+ 1)G0(ξ) ≥ (1 + {ψ′′(1) + |φ′(1)|[ψ′′(1)− 2ψ′(1)]ξ}/2|ψ′(1)|)−p .

Furthermore the function G0(·) satisfies the inequality

(3.16) G0(ξ) < (1 + {ψ′′(1) + |φ′(1)|[ψ′′(1)− 2ψ′(1)]ξ}/2|ψ′(1)|)−p , ξ ≥ 0.

Proof. Observe from (3.11) that

(3.17) G0(ξ) =

∫ 1

0

[(1− x)g0(x, ξ)]p dx, ξ ≥ 0,

where

(3.18) 0 ≤ − ∂

∂ξ
g0(x, ξ) ≤ (1− x)

ξ

∂

∂x
g0(x, ξ) .

The inequality (3.15) follows from (3.18) if we integrate by parts in (3.17). To
see that (3.16) holds we use the fact that (1− x)∂g0(x, ξ)/∂x ≤ g0(x, ξ), whence
(1−x)g0(x, ξ) is a decreasing function. Hence G0(ξ) ≤ g0(0, ξ)p, which is (3.16). �



GLOBAL STABILITY 13

Proposition 3.1. Assume that the functions φ(·), ψ(·) are quadratic and satisfy
(1.15), (1.16). Assume further that the beta function β(x, 0), 0 ≤ x ≤ 1, for the
initial data is Hölder continuous at x = 1 and β(1, 0) = β0 with 0 < β0 < 1. Then
setting κ = [1/β0−φ′(1)−1]/|ψ′(1)|, there are positive constants C, γ such that for
t ≥ 0

(3.19) |κ(t)− κ| ≤ Ce−γt, ‖β(·, t)− βκ(·)‖∞ ≤ Ce−γt,
where βκ(·) is the beta function of the time independent solution wκ(·) of (1.13).

Proof. We write the function G(u, v) of (3.8) as G(u, v) = u−pG0(ξ, η), where
p = β0/(1− β0), ξ = v/u, η = 1/u. Thus G0(ξ, η) is given by the formula

(3.20) G0(ξ, η) =

∫ 1

0

η−pw0

(
1− ηz

1 + z{a1(1− η) + a2ξ}

)
dz.

With the extra dependence of G0(·, ·), the system (3.13), (3.14) needs to be modified
to

dξ(t)

dt
=

(p− ξ)G0(ξ, η) + η∂G0(ξ, η)/∂η

pG0(ξ, η) + ξ∂G0(ξ, η)/∂ξ + η∂G0(ξ, η)/∂η
,(3.21)

d

dt
log u(t) =

G0(ξ, η) + ∂G0(ξ, η)/∂ξ

pG0(ξ, η) + ξ∂G0(ξ, η)/∂ξ + η∂G0(ξ, η)/∂η
.(3.22)

Observe that the denominator on the RHS of (3.21), (3.22) is the same as−up+1Gu(u, v)
and hence by (3.8) is strictly positive. From the proof of Lemma 2.5 it follows that
for any δ > 0 there exists Tδ > 0 such that

(3.23) u(t) ≥ Cδ exp[(1/β0 − 1− δ)t], t ≥ Tδ ,
for a constant Cδ depending on δ and the initial data. Choosing δ < 1/β0 − 1 in
(3.23) we see that the system (3.21), (3.22) converges to the simpler system (3.13),
(3.14) as t→∞.

We first show that supt≥0 ξ(t) < ∞. In the case β(·, 0) ≡ β0 this follows from
the inequality |∂G0(ξ, η)/∂η| ≤ pa1G0(ξ, η), ξ ≥ 0, 0 ≤ η ≤ 1 and (3.23). More
generally let g1(z), g2(z, ξ, η) be defined by

g1(z) =

∫ z

0

[1− β(1− z′, 0)] dz′, 0 ≤ z < 1,(3.24)

g2(z, ξ, η) =
z

1 + z{a1(1− η) + a2ξ}
, 0 ≤ z < 1.

Then ∂G0(ξ, η)/∂η is given by the formula

(3.25)
∂

∂η
G0(ξ, η) =

∫ 1

0

g3(z, ξ, η) η−pw0

(
1− ηg2(z, ξ, η)

)
dz,

where

(3.26) g3(z, ξ, η) =

[
a1β

(
1− ηg2(z, ξ, η), 0

)
ηg2(z, ξ, η)2

g1
(
ηg2(z, ξ, η)

) ]
+[

β
(
1− ηg2(z, ξ, η), 0

)
g2(z, ξ, η)

g1
(
ηg2(z, ξ, η)

) − p

η

]
.

Observe that there exists η0 > 0 such that the first term on the RHS of (3.26) and η
times the second term are bounded by a constant for all (z, ξ, η) with 0 ≤ z ≤ 1, ξ ≥
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0, 0 ≤ η ≤ η0. We conclude that |η∂G0(ξ, η)/∂η| ≤ CG0(ξ, η), ξ ≥ 0, 0 ≤ η ≤ η0,
for some constant C. Hence (3.21) implies that supt≥0 ξ(t) <∞.

Next we obtain bounds on the denominator of the RHS of (3.21), (3.22). The
denominator is −up+1Gu(u, v), which is given in terms of the (ξ, η) variables by

(3.27) −up+1Gu(u, v) =

∫ 1

0

g4(z, ξ, η) η−pw0

(
1− ηg2(z, ξ, η)

)
dz,

where

(3.28) g4(z, ξ, η) =
(1 + a1z)β

(
1− ηg2(z, ξ, η), 0

)
ηz−1g2(z, ξ, η)2

g1
(
ηg2(z, ξ, η)

) .

It is evident from (3.28) that there exists η0 > 0 such that for any ξ0 ≥ 0, there are
positive constants C1, C2 with the property

(3.29) C1 ≤ g4(z, ξ, η) ≤ C2, 0 ≤ η ≤ η0, 0 ≤ ξ ≤ ξ0, 0 ≤ z ≤ 1.

It follows from (3.29) that

(3.30) C1G0(ξ, η) ≤ −up+1Gu(u, v) ≤ C2G0(ξ, η), 0 ≤ η ≤ η0, 0 ≤ ξ ≤ ξ0.
To see that [ξ(t), κ(t)] converges exponentially fast to [p, κ], we need to use

the Hölder continuity of β(x, 0) at x = 1. Observe that the Hölder continuity
implies that η times the second term of (3.26) is bounded by ηα for some α > 0
when η << 1. The exponential convergence of ξ(t) to p as t → ∞ follows now
from (3.21) and (3.30). To see exponential convergence of κ(t) we use the fact
that |∂G0(ξ, η)/∂ξ| ≤ CG0(ξ, η), ξ ≥ 0, 0 ≤ η ≤ 1, for some constant C. The
convergence follows then from the fact that limη→0G0(ξ, η) = G0(ξ), ξ ≥ 0, Lemma
3.1, the exponential convergence of ξ(t) and (3.22).

To see that β(·, t) converges as t→∞ first note that the invariant solution wκ(·)
of (1.13) with κ > φ′(1)/ψ′(1) is given by the formula

(3.31) wκ(x) = C

[
1− x

1 + (1− x){a1 + pa2}

]p
,

for some positive constant C. It follows that w(x, t) = wκ(x)g(x, t) where g(x, t) is
a positive function defined by

(3.32)
∂

∂x
log g(x, t) =

p

[1 + z{a1 + pa2}]z
− g4(z, ξ(t), η(t))

(1 + a1z)z
, z = 1− x.

The Hölder continuity of β(x, 0) at x = 1 and (3.32) implies that

(3.33) |(1− x)
∂

∂x
log g(x, t)| ≤ Ce−γt, 0 ≤ x ≤ 1, t ≥ 0,

for some positive constants C, γ. The exponential convergence of β(·, t) follows from
(3.33). To see this we note that

(3.34) |h(x, t)− hκ(x)g(x, t)| ≤
∫ 1

x

hκ(x′)|∂g(x′, t)/∂x′| dx′

≤ Ce−γt
∫ 1

x

wκ(x′)g(x′, t) dx′ = Ce−γth(x, t),

where hκ(·) is the h function associated with wκ(·). Similarly we have that

(3.35) |c(x, t)− cκ(x)g(x, t)| ≤ p−1Ce−γtcκ(x)g(x, t) ,

where cκ(·) is the c function associated with wκ(·). �
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Proof of Theorem 1.2-subcritical case. The fact that limt→∞ ξ(t) = p follows from
the argument of Proposition 3.1 on observing that continuity of β(x, 0) at x = 1
implies
limη→0 η sup0≤ξ≤ξ0 [|∂G0(ξ, η)/∂η|/G0(ξ, η)] = 0 for any ξ0 ≥ 0. Now limt→∞ κ(t) =
κ follows from limt→∞ ξ(t) = p, limt→∞ η(t) = 0 and (3.22). The convergence of
β(·, t) to βκ(·) in the L∞ norm as t → ∞ follows just as in Proposition 3.1 by
noting that continuity of β(x, 0) at x = 1 implies the inequality (3.33) holds with
a constant C(t) on the RHS which has the property limt→∞ C(t) = 0. �

4. The Critical Case

Here we begin the proof of Theorem 1.3 using only the beta function method-
ology. First we consider a necessary condition obtained by Niethammer and Ve-
lasquez [13] on the initial data w(x, 0), 0 ≤ x < 1, of (1.7), (1.8) for convergence
in the critical case to the self-similar solution at large time. We show that this
condition, which was proven in Theorem 3.1 of [13], is implied by the condition
limx→1 β(x, 0) = 1. The condition for convergence of [13] is given in terms of a new
variable y determined by the requirement that wκ0

(x)/wκ0
(0) = e−y, 0 ≤ x < 1.

Writing w(x, 0) = w̃0(y), 0 ≤ x < 1, the necessary condition for convergence is
that

(4.1) lim
y→∞

w̃0(y + λ(y)z)

w̃0(y)
= e−z

locally uniformly in z ≥ 0 for some positive function λ(y), y ≥ 0.

Proposition 4.1. Suppose the initial data w(x, 0), 0 ≤ x < 1, of (1.7), (1.8) satis-
fies limx→1 β(x, 0) = 1. Then (4.1) holds for the function λ(y) = 2g(x)/[κ0ψ

′′(1)−
φ′′(1)](1− x)2, where

(4.2) g(x) =

∫ 1

x

[1− β(x′, 0)] dx′ , 0 ≤ x < 1.

Proof. We first observe that

(4.3) lim
x→1

w(x+ zg(x), 0)

w(x, 0)
= e−z

locally uniformly in z ≥ 0. To see this note that the logarithm of the fraction on
the LHS of (4.3) is given by zg(x) times

(4.4)
d

dx′
logw(x′, 0) = −β(x′, 0)

g(x′)
,

for some x′ satisfying x < x′ < x+ zg(x), and that

(4.5) |g(x)− g(x′)| ≤ zg(x) sup
x≤x′′<1

|1− β(x′′, 0)| .

Next we show that (4.3) implies (4.1). To do this we note that the transformation
x→ y is explicitly given by

(4.6) y =

∫ x

0

dx′

[κ0ψ(x′)− φ(x′)]
=

2[1 + o(1− x)]

[κ0ψ′′(1)− φ′′(1)](1− x)
,
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assuming the continuity of φ′′(x), ψ′′(x) at x = 1. Suppose now that xz → y+λ(y)z.
Since the function κ0ψ(·)− φ(·) is positive decreasing we conclude from (4.6) that

(4.7) λ(y)z ≥ 2[1 + o(1− x)](xz − x)

[κ0ψ′′(1)− φ′′(1)](1− x)2
.

Now (4.5) and the fact that limx→1 β(x, 0) = 1 implies that xz−x ≤ (1−x)o(1−x),
whence we obtain from (4.6) the upper bound

(4.8) λ(y)z ≤ 2[1 + o(1− x)](xz − x)

[κ0ψ′′(1)− φ′′(1)](1− x)2
.

The result follows from (4.3), (4.7), (4.8). �

Next we wish to obtain a uniform upper bound on κ(t), t ≥ 0, in the critical
case. In view of (2.6) and Lemma 2.3, this is a consequence of the following:

Lemma 4.1. Let w(x, t), x, t ≥ 0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16), (1.18). Assume the initial data w(·, 0) has beta function
β(·, 0) satisfying (1.11) with 0 < β0 ≤ 1. Then there are constants β∞ > 0 and
T0 ≥ 0 depending only on the initial data, such that inf β(·, t) ≥ β∞ for all t ≥ T0.

Proof. We follow the argument of Proposition 10 of [4]. Thus for N = 0, 1, 2, ...,
define points xN (0) by

(4.9) x0(0) = 0, w(xN (0), 0) = w(xN−1(0), 0)/2 for N ≥ 1.

Let xN (s), s ≥ 0, be the solution of the differential equation (2.1) with initial
condition xN (0). Then there is an increasing function N : (0,∞) → Z+ such that
xN (t) ≥ 0 for N ≥ N (t), and xN (s) = 0 for some s < t, if N < N (t). From Lemma
2.1 we see that limt→∞N (t) =∞. For t > 0, N ≥ N (t), let IN (t) be the interval
IN (t) = {x : xN (t) ≤ x ≤ xN+1(t)} with length |IN (t)|. It follows from (2.1) that

(4.10) |IN (t)|
/
|IN (0)| =

exp

[∫ t

0

ds

∫ 1

0

dλ {φ′(λxN (s) + (1− λ)xN+1(s))− κ(s)ψ′(λxN (s) + (1− λ)xN+1(s))}
]
.

Hence from (1.15), (1.16) and (4.10) we conclude that the ratio |IN (t)|/|IN+1(t)| is
an increasing function of t, and from [4] that

(4.11) lim
N→∞

|IN (0)|
/
|IN+1(0)| = 21/β0−1 ≥ 1 .

We define a function βN (t) for t > 0, N ≥ N (t) by

(4.12) βN (t) = exp

[∫ t

0

ds |IN (s)| {φ′′(xN+1(s))− κ(s)ψ′′(xN+1(s))}
]
,

whence βN (t) is a positive decreasing function of t providedN (t) ≤ N . From (1.15),
(1.16), (1.18) it follows that there exists constants C,α satisfying 0 < C,α < 1 such
that

(4.13) |IN (t)|
/
|IN+1(t)| ≥ C

/
βN (t)α for t ≥ 0.

In view of (4.11) there exists N0 ≥ 0 such that for N ≥ max{N0,N (t)},
(4.14)

βN (t) ≤ exp

[
1

2

∫ t

0

ds |IN+1(s)| {φ′′(xN+2(s))− κ(s)ψ′′(xN+2(s))}
]

= βN+1(t)1/2 .
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We conclude from (4.13), (4.14) that there exists T0 ≥ 0 and a function N1 :
[T0,∞)→ Z+ ∪ {∞} with the property that N1(t) ≥ N (t) and βN (t) satisfies

(4.15) βN (t) ≥ (C/2)3/α if N ≥ N1(t),

βN (t) is an increasing function of N if N (t) ≤ N < N1(t) .

As in [4] we can compare the function β(·, t) to the functions βN (t), N ≥ N (t).
For 0 ≤ x < 1 let Ix(t) = {x′ : w(x, t)/2 ≤ w(x′, t) ≤ w(x, t)}, so that the left
endpoint of the interval Ix(t) is x and IN (t) = IxN (t)(t). In view of (1.15), (1.16),
(1.18) and the fact that β0 ≤ 1, it follows that there are positive constants γ1, γ2
such that the function g(·, ·) defined by (2.16) satisfies the inequalities
(4.16)
γ1|Ix(t)|[κ(t)ψ′′(x+|Ix(t)|/2)−φ′′(x+|Ix(t)|/2)] ≤ g(x, t) ≤ γ2|Ix(t)|[κ(t)ψ′′(x)−φ′′(x)] .

It follows from (4.11), (4.12), (4.16) that there exists α,C > 0 and T0 ≥ 0, such
that

(4.17) β(x, t) ≥ CβN (t)α for x ∈ IN+1(t), N ≥ N (t), t ≥ T0 .

We also conclude from (2.16), (4.16) that there exist positive constants C, T0, α and

(4.18) β(x′, t) ≥ Cβ(x, t)α for x′ ∈ Ix(t), t ≥ T0.

To see this we note that for x ≤ x′ ≤ x + |Ix(t)|/2 the inequality (4.18) is a
consequence of the fact that there exists a constant γ > 0 such that

(4.19)

∫ 1

x

w(z, t)dz ≤ (1 + γ)

∫ 1

x′
w(z, t)dz for x ≤ x′ ≤ x+ |Ix(t)|/2 .

For x+ |Ix(t)|/2 ≤ x′ ≤ x+ |Ix(t)| the inequality follows from (4.16) since |Ix′(t)| ≤
2|Ix(t)| if T0 is sufficiently large. It follows from (4.15), (4.17), (4.18) that there
exist positive constants α,C, T0 such that

(4.20) β(x, t) ≥ Cβ(0, t)α for 0 ≤ x < 1, t ≥ T0 .

We proceed now in a manner similar to that followed in the proof of Lemma 2.4.
We choose δ0 with 0 < δ0 < 1 such that C[1 − δ0]/δ0 > κ0 = φ′(1)/ψ′(1), where
C is the constant in (2.13). We also choose δ1 satisfying δ0 < δ1 < 1 such that
the constant C2(δ1) of Lemma 2.3 satisfies the inequality C2(δ1) < κ0. Finally we
choose β1 with 0 < β1 < 1 such that

(4.21) β1ψ(0) sup
δ0≤δ≤δ1

C2(δ)/[1− δ] ≤ 1/2 .

With T0 as in (4.20) and assuming β1 > 0 sufficiently small, we may suppose that
T0 ≤ T1 < T2 are such that β(0, T1) = β1 and β(0, t) < β1 for T1 < t < T2. Let T3
satisfy T1 ≤ T3 ≤ T2 and have the property that 〈Xt〉 ≥ 1 − δ0 for T1 < t ≤ T3
and either T3 = T2 or 〈XT3

〉 = 1− δ0. It follows from (2.13), (2.29), and (4.20) that
there is a constant C1 such that

(4.22) β(0, t) ≥ C1β1 , T1 ≤ t ≤ T3 .

To obtain a lower bound for β(0, t) in the region T3 ≤ t ≤ T2 we use the equation

(4.23)
d

dt
log 〈Xt〉 =

β(0, t)ψ(0)κ(t)

〈Xt〉
− 1 .
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Since 〈XT3
〉 = 1− δ0, it follows from (4.21) that

(4.24)
d

dt
log〈Xt〉 ≤ −

1

2
, T3 ≤ t ≤ T4,

where T4 has the property that 〈Xt〉 ≥ 1− δ1 for T3 ≤ t ≤ T4 and 〈XT4〉 = 1− δ1
or T4 = T2. Evidently (4.24) implies that

(4.25) T4 − T3 ≤ 2 log[(1− δ0)/(1− δ1)]; 〈Xt〉 ≤ 1− δ0 for T3 ≤ t ≤ T2 .

From Lemma 2.3 and (4.24) we have that C2(δ1) ≤ κ(s) ≤ C1(δ0) for T3 ≤ s ≤ T4.
Hence there is a constant C1(δ0, δ1) such that

(4.26) 0 ≤
∫ t

T3

g(x(s), s) ds ≤ C1(δ0, δ1),

on any solution of (2.1) with x(t) = 0, where T3 ≤ t ≤ T4. We conclude from (4.22),
(4.26) that β(0, t) ≥ C2(δ0, δ1)β1 for T3 ≤ t ≤ T4.

Finally we consider the interval T4 ≤ t ≤ T2. From (4.23) and the assumption
β(0, t) < β1 it follows that 〈Xt〉 ≤ 1 − δ1 for T4 ≤ t ≤ T2. Assuming that
δ1 > 1/2, we see from (2.6) and the fact that β0 ≤ 1 that there exists x1 such that
0 < x1 < 3(1− δ1) and β(x1, t) ≥ 1/2. Let x0 > 0 be the unique maximum of the
function φ(x) in the interval 0 < x < 1. In addition to choosing δ1 > 1/2 such that
C2(δ1) < κ0, we choose it sufficiently close to 1 so that 3(1 − δ1) < x0. Observe
now that since β(x1, t) ≥ 1/2 it follows that

(4.27) 0 ≤
∫ t

T4

g(x1(s), s) ds ≤ log 2 ,

on any solution of (2.1) with x1(t) = x1, where T4 ≤ t ≤ T2. Letting x2(·) be the
solution of (2.1) with x2(t) = 0, it follows from the fact that 3(1− δ1) < x0, that

(4.28) 0 ≤
∫ t

T4

[g(x2(s), s)− g(x1(s), s)] ds ≤ C(δ1) ,

for a constant C(δ1) depending only on δ1. We conclude from (4.27), (4.28) that
β(0, t) ≥ C2(δ0, δ1)β1 for T4 ≤ t ≤ T2.

We have therefore proven that there is a constant C such that β(0, t) ≥ Cβ1 for
T1 ≤ t ≤ T2. We conclude that inft≥T0

β(0, t) > 0, whence the result follows from
(4.20). �

Corollary 4.1. Suppose that the function φ(·), in addition to satisfying the as-
sumptions of Lemma 4.1, also satisfies the condition limx→0 φ(x)/x = ∞ . Then
there is a positive constant C depending only on the initial data w(x, 0), 0 ≤ x < 1,
for (1.7), (1.8) such that κ(t) ≥ C for all t ≥ 0.

Proof. From (2.8), (4.23) we have that

(4.29)
d

dt
log 〈Xt〉 =

β(0, t)ψ(0)

〈ψ(Xt)〉

[
〈φ(Xt)〉
〈Xt〉

+ 1

]
− 1 ≥ β∞〈φ(Xt)〉

〈Xt〉
− 1 ,

for some β∞ > 0. From Lemma 1 of [4] there exists a constant γ > 0 such that for
t ≥ 0 one has the inequality P (Xt > γ〈Xt〉) ≥ 1/2. Hence we have that

(4.30) 〈φ(Xt)〉 − φ′(1)〈Xt〉 =

∫ 1

0

[φ′(x)− φ′(1)]P (Xt > x) dx
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≥ 1

2
[φ(γ〈Xt〉)− φ′(1)γ〈Xt〉] .

It follows from (4.29), (4.30) that

(4.31)
d

dt
log 〈Xt〉 ≥

β∞φ(γ〈Xt〉)
2〈Xt〉

+ φ′(1)[1− γ/2]− 1 ,

whence we conclude that there exists a positive constant C such that 〈Xt〉 ≥ C for
t ≥ 0. The result follows from (2.5). �

The following proposition shows that if we assume limx→0 φ(x)/x <∞ then the
lower bound of Corollary 4.1 may not hold for all initial data satisfying (1.11) with
β0 = 1.

Proposition 4.2. Assume β0 satisfies the inequality 0 < β0 < 1/[1 + φ′(0)], and
w(x, t) is as in Lemma 4.1 with initial condition w(x, 0) = C(x0−x)β0/(1−β0), 0 ≤
x ≤ x0; w(x, 0) = 0 for x0 ≤ x ≤ 1. There exists δ(β0) > 0 such that if
0 < x0 < δ(β0) then limt→∞ κ(t) = 0 .

Proof. First observe that the linear approximation at 0 to φ(x)−κ(t)ψ(x) is φ′(0)x−
κ(t)ψ(0). The function w(x, t) defined by

w(x, t) = Ceλt[x0 − xeλt]β0/(1−β0) for 0 ≤ x ≤ x0e−λt ,(4.32)

w(x, t) = 0 for x0e
−λt ≤ x ≤ 1 ,(4.33)

is a solution to (1.7), (1.8) in this linear approximation provided λ = 1 − β0[1 +
φ′(0)] > 0. In that case κ(t) is given by the formula

(4.34) κ(t) = e−λt[1 + φ′(0)](1− β0)x0/ψ(0) .

To prove that limt→∞ κ(t) = 0 more generally, one uses the equation (4.29).
From the argument of Lemma 2.3 we see that

(4.35)
d

dt
log〈Xt〉 ≤

β(0, t)ψ(0)[〈Xt〉+ φ(〈Xt〉)]
〈Xt〉ψ(〈Xt〉)

− 1 .

The result follows from (4.35) and Lemma 2.3 since β(0, t) ≤ β0 for all t ≥ 0. �

Remark 1. It is easy to construct initial data w(x, 0), 0 ≤ x ≤ 1, for (1.7), (1.8)
with support equal to the full interval [0, 1], the property limx→1 β(x, 0) = 1, and
such that w(·, 0) is arbitrarily close to the initial data of Proposition 4.2. In fact
we can define β(x, 0) by

(4.36) β(x, 0) = β0 for 0 ≤ x ≤ x0, β(x, 0) = 1− ε(1− x) for x0 < x ≤ 1,

where ε << 1. Note in this case the discontinuity in β(x, 0) at x = x0. In §6
we are able to obtain a positive lower bound on inf κ(·) for such initial data since
β(x, 0) ≤ 1 for x close to 1. We are not however able to obtain a lower bound if
β(x, 0) oscillates above and below 1 as x→ 1.

Lemma 4.2. Let w(x, t), x, t ≥ 0, be the solution to (1.7), (1.8) with coefficients
satisfying (1.15), (1.16), (1.18). Assume the initial data w(·, 0) has beta function
β(·, 0) satisfying (1.11) with β0 = 1. Then the limit (1.19) holds provided inf κ(·) >
0 and

(4.37) inf
t≥0

w(x, t) > 0 for all x satisfying 0 ≤ x < 1.



20 JOSEPH G. CONLON AND BARBARA NIETHAMMER

Proof. We define a function z(t), t ≥ 0, by etw0(z(t)) = 1. Since the conservation
law (1.8) implies that w(0, t) ≥ 1 we conclude that z(t) ≥ F (0, t), t ≥ 0. Observe
also from (4.4) that z(t) satisfies the differential equation

(4.38)
dz(t)

dt
=

g(z(t))

β(z(t), 0)
, t ≥ 0,

where g(·) is the function (4.2). Next we have from (2.35) that

(4.39) 1− z(t) ≤ exp

[
−φ′(1)t+ ψ′(1)

∫ t

0

κ(s)ds

]
, t ≥ 0.

Since limx→1 β(x, 0) = 1 it follows from (4.2) that

(4.40) lim
t→∞

log[1− z(t)]/t = 0.

Hence we obtain the upper bound (2.36) in the case β0 = 1.
To prove the lower bound (2.40) for β0 = 1 we first note that Lemma 2.3 implies

that there is a positive constant t0 depending only on the initial data such that
〈Xt〉 ≥ e−t0 for all t ≥ 0, whence et−t0w0(F (0, t)) ≤ 1. We conclude that z(t−t0) ≤
F (0, t) for all t ≥ 0. The final fact we need in analogy to (2.39) is that for any
ε > 0 there exists δ > 0 depending only on the initial data w0(·) such that for any
t ≥ 0,

(4.41)

∫ 1

x

w(z, t) dz < δ implies 1− x < ε .

It is easy now to conclude (2.40) for β0 = 1. Finally we note that (4.37) implies
(4.41). �

5. The Quadratic Model-Critical Case

We return to the quadratic model studied in §3.

Lemma 5.1. Assume the initial data w0(·) for (1.7), (1.8) satisfies limx→1 β(x, 0) =
1 and w(x, t) = etw0(F (x, t)), where F (x, t) is given by the formula (3.5). Then
limt→∞ u(t)/v(t) = 0 if and only if there are constants C1, C2 > 0 such that
C1 ≤ κ(t) ≤ C2 for all t ≥ 0.

Proof. We first assume C1 ≤ κ(·) ≤ C2, whence Lemma 2.3 implies that there
exists C3 > 0 such that 〈Xt〉 ≥ C3 for all t ≥ 0. We conclude then from Lemma 1
of [4] that there exists γ > 0 such that

(5.1) w(γ, t)/w(0, t) ≥ 1/e, 0 ≤ t <∞.
Next we write

(5.2) w(γ, t)/w(0, t) = w0(F (0, t) + [F (γ, t)− F (0, t)])/w0(F (0, t)) .

Since limt→∞ F (0, t) = 1, it follows from (4.3), (5.1) that there exists T0 ≥ 0 such
that

(5.3) F (γ, t)− F (0, t) ≤ 2g(F (0, t)) , t ≥ T0 .
Using the fact that limx→1 β(x, 0) = 1, we conclude that

(5.4) lim
t→∞

F (γ, t)− F (0, t)

1− F (0, t)
= 0 .
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We see from the identity

(5.5)
F (γ, t)− F (0, t)

1− F (0, t)
=

γu(t)

u(t) + (1− γ)a(t)
,

and (5.4) that limt→∞ u(t)/a(t) = 0. Since (3.7) implies that

(5.6) a(t) ≤ {ψ′′(1) supκ(·) + 2|φ′(1)|}v(t)/2 ,

we conclude that limt→∞ u(t)/v(t) = 0.
Conversely let us assume that limt→∞ u(t)/v(t) = 0. Since limt→∞ F (0, t) = 1

we also have that limt→∞[u(t)+a(t)] =∞, and hence we conclude that limt→∞ v(t) =
∞. We define now y(t) by

(5.7) y(t) = 1− 1/a1(t) = 1− 2|ψ′(1)|/{ |φ′(1)|[ψ′′(1)− 2ψ′(1)]v(t)− ψ′′(1) } ,

and observe that y(t) is an increasing function of t which satisfies

(5.8) lim
t→∞

y(t) = 1,
dy(t)

dt
=
{ |φ′(1)|ψ′′(1)/2|ψ′(1)|+ 1}u(t)

a1(t)2
.

One can further see that

(5.9) F (x, t)− y(t) =
{1 + (1− x)ψ′′(1)/2|ψ′(1)|}u(t)

a1(t)[a1(t)(1− x) + {1 + (1− x)ψ′′(1)/2|ψ′(1)|}u(t)]
,

and hence we conclude that there are positive constants C, T0 such that

(5.10) F (x, t)− y(t) ≤ C
dy(t)

dt
, for t ≥ T0, 0 ≤ x ≤ 1/2.

Let z(t), t ≥ 0, be as in Lemma 4.2, whence F (0, t) ≤ z(t), t ≥ 0. Suppose now
that at some t ≥ T0 one has y(t) = z(t − τ0) where τ0 > 0. Then for 0 ≤ x ≤ 1/2
we have that

(5.11) etw0(F (x, t)) ≥ etw0

(
y(t) + C

dy(t)

dt

)
= eτ0

w0(y(t) + Cdy(t)/dt)

w0(y(t))
.

Since (1.8) implies that the LHS of (5.11) is bounded above by 2 when x = 1/2,
we conclude from (4.3) that if τ0 ≥ 1 + 2C + log 2 and T0 is sufficiently large then
dy(t)/dt ≥ 2g(y(t)). Hence if y(T0) ≥ z(T0− τ0) then y(t) ≥ z(t− τ0) for all t ≥ T0.
Since (5.9) implies that y(t) < F (0, t) we further have that z(t− τ0) ≤ y(t) ≤ z(t)
for t ≥ T0. We conclude therefore that

(5.12) 〈Xt〉 =
1

etw0(F (0, t))
≥ 1

etw0(y(t))
≥ e−τ0 , t ≥ T0.

Now Lemma 2.3 and (5.12) imply that inf κ(·) > 0.
To see that supκ(·) < ∞, we observe from (5.8), (5.9) that there are positive

constants α, β with the property

(5.13) F (x, t) = y(t) +
α+ β(1− x)

(1− x) + o(t)

dy(t)

dt
, 0 ≤ x < 1,

where limt→∞ o(t) = 0. It is easy to see that there exists T0 > 0 such that y(t) <
F (0, t) < z(t) for t ≥ T0, whence y(t) = z(t − τ(t)) for some unique τ(t) > 0. We
show there are constants τ1, τ2 > 0 such that

(5.14) τ1 ≤ τ(t) ≤ τ2, t ≥ T0 .
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To obtain the upper bound in (5.14) note that from (1.8), (4.3), (5.13) there exists
τ2 > 0 and T1 ≥ T0 with the property that

(5.15) τ(t) ≥ τ2 implies
dy(t)

dt
≥ 2g(y(t)) for t ≥ T1.

Hence if t2 ≥ T1 and τ(t2) > τ2 then from (4.38) and (5.15) we see that for
sufficiently large T1 and t ≥ t2 satisfying inft2≤s≤t τ(s) ≥ τ2, then

(5.16) y(t) ≥ z(3(t− t2)/2+ t2− τ(t2)) which implies τ(t) ≤ τ(t2)− (t− t2)/2 .

The upper bound in (5.14) follows. To obtain the lower bound observe again from
(1.8), (4.3), (5.13) that there exists τ1 > 0 and T1 ≥ T0 with the property that

(5.17) τ(t) ≤ τ1 implies
dy(t)

dt
≤ g(y(t))/2 for t ≥ T1.

The lower bound in (5.14) follows from (5.17) by analogous argument for the upper
bound.

Assuming (5.14) holds, we show there exists T2 ≥ T0 and δ > 0 such that

(5.18) etw0(F (0, t)) ≥ 1 + δ, t ≥ T2.
Thus from (4.3), (5.13) we see that for any η with 0 < η < 1 there exists Tη ≥ T0
such that

(5.19)

∫ 1−η

0

exp

[
− α+ β(1− x)

(1− x)g(y(t))

dy(t)

dt

]
dx ≤ e−τ1/2 for t ≥ Tη .

Choosing η < [1 − e−τ1/2]/2 in (5.19) and putting T2 = Tη, we see that there is a
constant C(τ1) > 0 depending only on τ1 such that

(5.20)
dy(t)

dt
≥ C(τ1)g(y(t)) for t ≥ T2 .

Now (4.3), (5.13) and (5.20) imply that there exists δ > 0 such that

(5.21) w0(F (1/2, t)) ≤ 1− δ
1 + δ

w0(F (0, t)) for t ≥ T2 .

The inequality (5.21) and (1.8) imply (5.18). Since (5.18) implies that 〈Xt〉 ≤
1/(1 + δ) < 1 for t ≥ T2, we see from Lemma 2.3 that supκ(·) <∞. �

Lemma 5.2. Assume the initial data w0(·) for (1.7), (1.8) satisfies limx→1 β(x, 0) =
1 and w(x, t) = etw0(F (x, t)), where F (x, t) is given by the formula (3.5). Then
limt→∞ u(t)/v(t) = 0.

Proof. Observe that since v(t) is an increasing function one has limt→∞ v(t) = v∞
where 0 < v∞ ≤ ∞. If v∞ <∞ then it follows from (3.4) that there is an increasing
sequence tm with limm→∞ tm = ∞ and u(tm) ≤ 1. In that case (3.5) implies that
lim inft→∞ F (0, t) < 1, which is a contradiction to Lemma 2.1. We conclude that
limt→∞ v(t) =∞.

Next we show that there exist constants C0, T0 > 0 such that u(t) ≤ C0v(t) for
all t ≥ T0. To see this we set ξ(t) = v(t)/u(t) and note from (3.4), (3.9) that

(5.22)
dξ(t)

dt
=

u(t)Gu(u(t), v(t)) + v(t)Gv(u(t), v(t)) + ξ(t)G(u(t), v(t))

u(t)Gu(u(t), v(t))
.

Arguing as in Proposition 3.1, we see that there exists v0 > 0 such that

(5.23) uGu(u, v) + vGv(u, v) +G(u, v) < 0 for u > 0, v ≥ v0.
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Hence there exists T0 > 0 such that for any t ≥ T0 the function v(t)/u(t) is
increasing if u(t) > v(t), whence there is a constant C0 > 1 such that u(t) ≤ C0v(t)
for t ≥ T0.

It follows now from (5.9), (5.13) that there exists T1 > 0 and a constant C1 > 0
such that o(t) in (5.13) satisfies the inequality 0 ≤ o(t) ≤ C1 for t ≥ T1. Using the
fact that o(t) ≥ 0 we see from the argument to prove (5.14) that we can choose
T1 ≥ T0 such that τ(t) ≤ τ2 for t ≥ T1. From (1.8) and the inequality o(t) ≤ C1 we
can further choose T2 ≥ T1 and C2 > 0 such that for any t ≥ T2,

(5.24)
dy(t)

dt
≤ C2g(y(t)) .

The result follows from (4.2) and (5.24) since limx→1 β(x, 0) = 1. �

Proof of Theorem 1.2-critical case. Using the notation of Lemma 5.1, we shall show
that there exists τ0 > 0 such that limt→∞ τ(t) = τ0. To obtain a formula for τ0 we
assume y(t) ∼ z(t− τ0) and conclude from (4.38) and (5.13) that for large t

(5.25) F (x, t) ∼ z(t− τ0) +

[
α

1− x
+ β

]
g(z(t− τ0)) , 0 ≤ x < 1.

Now (1.8) and (4.3) imply that

(5.26) eτ0−β
∫ 1

0

exp

[
− α

1− x

]
dx = 1,

which uniquely determines τ0 > 0.
We first prove that lim inft→∞ τ(t) ≤ τ0. To see this observe from (1.8), (4.3)

and (5.13) that if lim inft→∞ τ(t) ≥ τ0 + ε for some ε > 0, then there exists Tε
sufficiently large and δ(ε) > 0 depending on ε with the property

(5.27)
dy(t)

dt
≥ [1 + δ(ε)]g(y(t)) , t ≥ Tε.

Since limx→1 β(x, 0) = 1 it follows from (4.38) and (5.27) that if Tε is sufficiently
large depending only on ε, then y(t) ≥ z([1+δ(ε)/2](t−Tε)+Tε−τ(Tε)) for t ≥ Tε.
Evidently this inequality implies that τ(t) ≤ 0 for large t, which is a contradiction,
whence lim inft→∞ τ(t) ≤ τ0. We can further see that lim supt→∞ τ(t) ≤ τ0 by
observing that for any ε > 0 there exists Tε with the property

(5.28) τ(t) ≤ τ0 + ε for some t ≥ Tε implies τ(s) ≤ τ0 + ε for all s ≥ t.

To see this note that if τ(s) = τ0 + ε then

(5.29)
dy(s)

ds
>

g(y(s))

β(y(s), 0)
,

which implies τ(s′) < τ0 + ε for s′ > s close to s. The inequality (5.28) follows
from (1.8), (4.3) and (5.13) on choosing Tε sufficiently large. Since we can see by a
similar argument that lim inft→∞ τ(t) ≥ τ0, we conclude that limt→∞ τ(t) = τ0. It
immediately follows from (1.8), (4.3) and (5.13) that

(5.30) lim
t→∞

τ(t) = τ0, lim
t→∞

1

g(y(t))

dy(t)

dt
= 1.

Hence we have from (4.3), (5.13) and (5.30) that limt→∞〈Xt〉 = eα+β−τ0 < 1.
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To see that limt→∞ κ(t) = κ0 = φ′(1)/ψ′(1), we use the identity

(5.31)
d

dt
log u(t) = −G(u(t), v(t)) + u(t)Gv(u(t), v(t))

u(t)Gu(u(t), v(t))
,

where G(u, v) is the function (3.8). From (5.30) we see that for any ε > 0 there
exists Tε > 0 such that if t ≥ Tε then

−u(t)Gu(u(t), v(t)) ≥ CG(u(t), v(t)),(5.32)

|G(u(t), v(t)) + u(t)Gv(u(t), v(t))| ≤ εG(u(t), v(t)) ,

where C > 0 is independent of ε. The limit of the RHS of (5.31) as t → ∞ is
therefore 0, whence (3.3) implies limt→∞ κ(t) = κ0.

Finally we show that β(·, t) converges as t → ∞. The invariant solution wκ0
(·)

of (1.13) when κ = κ0 is given by the formula

(5.33) wκ0(x) = exp

[
τ0 − β −

α

1− x

]
, 0 ≤ x < 1,

with τ0, α, β as in (5.26). Following the argument of Proposition 3.1 again, we
define the function g(x, t) by w(x, t) = wκ0

(x)g(x, t). From (5.13) and (5.30) we
see that for any δ with 0 < δ < 1 there exists Tδ > 0 such that

(5.34) |(1− x)2
∂

∂x
log g(x, t)| ≤ δ for 0 ≤ x ≤ 1− δ, t ≥ Tδ .

Now (5.34) implies that there is a constant C independent of δ such that

(5.35) |c(x, t)− cκ0
(x)g(x, t)| ≤ Cδ cκ0

(x)g(x, t) for 0 ≤ x ≤ 1− δ, t ≥ Tδ .

We also have similarly to (3.34) that for 0 ≤ x ≤ 1− δ and t ≥ Tδ,

(5.36) |h(x, t)− hκ0
(x)g(x, t)| ≤ |h(1− δ, t)− hκ0

(1− δ)g(1− δ, t)|

+

∫ 1−δ

x

hκ0
(x′)|∂g(x′, t)/∂x′| dx′ .

From (5.34) it follows that there is a constant C independent of δ such that

(5.37)

∫ 1−δ

x

hκ0(x′)|∂g(x′, t)/∂x′| dx′ ≤ Cδh(x, t) t ≥ Tδ .

Consider any ε with 0 < ε < 1. It is clear that we may choose δ < ε and Tε > 0
depending on ε such that

(5.38) w(1− δ, t) ≤ εw(1− ε, t), h(1− δ, t) ≤ εh(1− ε, t) for t ≥ Tε.

It follows from (5.38) that there are constant C,C ′ independent of ε such that

(5.39) hκ0
(1− δ)g(1− δ, t) ≤ Cδ2wκ0

(1− δ)g(1− δ, t)
= Cδ2w(1− δ, t) ≤ Cεδ2w(1− ε, t) ≤ Cε(1− x)2w(x, t)

= Cε(1− x)2wκ0
(x)g(x, t) ≤ C ′εhκ0

(x)g(x, t) for 0 ≤ x ≤ 1− ε, t ≥ Tε.

We conclude from (5.35)-(5.39) that there is a constant C independent of ε such
that

(5.40) |β(x, t)− βκ0
(x)| ≤ Cε for 0 ≤ x ≤ 1− ε, t ≥ Tε .

�
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If we assume that (1.23) holds, then (5.40) and the almost monotonicity of the
function β(·, t) at large t implies that

(5.41) lim
t→∞

‖β(·, t)− βκ0
(·)‖∞ = 0 .

We give a direct proof of (5.41) since it shows the key implication of the assumption
(1.23) is that it implies the function g(·) of (4.2) is monotonic decreasing. If log g(z)
has large oscillations as z → 1 then (5.41) may not hold.

Proposition 5.1. Suppose β(·, 0) satisfies (1.11) with β0 = 1 and also (1.23).
Then (5.41) holds.

Proof. We use the identity

(5.42) β(x, t) = β(F (x, t), 0)

∫ 1

F (x,t)

∂F (x, t)/∂x

∂F (x′, t)/∂x′
w0(z) dz

/∫ 1

F (x,t)

w0(z) dz ,

where z = F (x′, t), x ≤ x′ < 1. Observe that for any δ with 0 < δ < 1 there is the
inequality

(5.43)
∂F (x, t)/∂x

∂F (x′, t)/∂x′
≥ (1− δ)2 , x ≤ x′ ≤ x+ δ(1− x) .

Hence it will be sufficient for us to show that there exists δ0, ε0 with 0 < δ0, ε0 < 1
such that if 0 < δ ≤ δ0, 0 < ε < ε0, then

(5.44) lim sup
t→∞

sup
1−x≤ε

h0(F (x+ δ(1− x), t))

h0(F (x, t))
≤ exp[−αδ/2ε] .

To prove (5.44) we use the identity h0(z) = g(z)w0(z), 0 ≤ z < 1, where g(·) is
the function (4.2). Since g(·) is decreasing, (5.44) follows from the same inequality
with h0(·) replaced by w0(·). We also have from (4.4) that

(5.45)
w0(x+ zg(x))

w0(x)
≤ exp

[
−z inf

x≤x′<1
β(x′, 0)

]
for 0 ≤ x ≤ x+ zg(x) < 1.

Observe now that

(5.46) F (x+δ(1−x), t)−F (x, t) ≥ δu(t)

u(t) + a(t)(1− x)
[1−F (x, t)] , 0 < x < 1.

It follows then from (4.2), (5.45), (5.46) that for any M > 0,

(5.47) lim
t→∞

sup
1−x≤Mu(t)/v(t)

w0(F (x+ δ(1− x), t))

w0(F (x, t))
= 0.

Since limt→∞ v(t) = ∞, we also see that there exists constants T0,M0, C1, C2 > 0
such that if t ≥ T0 and 1− x ≥Mu(t)/v(t) for some M ≥M0, then
(5.48)(

α

1− x
+ β

)[
1− C1

M

]
dy(t)

dt
≤ F (x, t)− y(t) ≤

(
α

1− x
+ β

)[
1 +

C2

M

]
dy(t)

dt
.

We conclude from (5.30), (5.45), (5.48) that there exists δ0, ε0 with 0 < δ0, ε0 < 1
such that if 0 < δ ≤ δ0, 0 < ε < ε0, and M ≥ 1/δ2, then

(5.49) lim sup
t→∞

sup
Mu(t)/v(t)≤1−x≤ε

w0(F (x+ δ(1− x), t))

w0(F (x, t))
≤ exp[−αδ/2ε] .

The inequality (5.44) follows from (5.47), (5.49). �
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6. Completion of the Proof of Theorem 1.3

We wish to formulate (1.7), (1.8) for general functions φ(·), ψ(·) satisfying (1.15),
(1.16) in such a way that it can be approximated by the quadratic model studied
in §3 and §5. In order to do this recall that the function F (x, t) defined by (2.1)
is the solution to the initial value problem (3.1), where the linear first order PDE
contains a free parameter κ(t), t ≥ 0. The conservation law (1.8) determines the
function κ(·) uniquely, and in particular one sees that it is strictly positive. In (3.3)
we defined a new parameter u(t), t ≥ 0, in terms of κ(·), and it turned out that the
dynamics of the quadratic model had the simple form (3.5) in terms of the function
u(·). We therefore formulate the general case in such a way that the free parameter
is the function u(·) of (3.3) rather than the function κ(·) which enters in (3.1).

To carry this out we write the characteristic equation (2.1) in terms of u(·). Thus
(2.1) is equivalent to

(6.1)
dx(s)

ds
= φ(x(s)) +

ψ(x(s))

ψ′(1)

[
1

u(s)

du(s)

ds
− φ′(1)

]
,

whence we obtain the equation

(6.2) u(s)
dx(s)

ds
− ψ(x(s))

ψ′(1)

du(s)

ds
= u(s)

[
ψ′(1)φ(x(s))− ψ(x(s))φ′(1)

ψ′(1)

]
.

Next let f(x), 0 ≤ x < 1, be the function defined by

(6.3)
d

dx
log f(x) = −ψ

′(1)

ψ(x)
, 0 ≤ x < 1, lim

x→1
(1− x)f(x) = 1.

If the function ψ(·) is quadratic, it is easy to see from (6.3) that f(·) is given by
the formula

(6.4) f(x) =
1

1− x
− ψ′′(1)

2ψ′(1)
.

More generally f : [0, 1) → R is a strictly increasing function satisfying f(0) > 0
and limx→1 f(x) =∞. Multiplying (6.2) by f ′(x(s)), we conclude from (6.3) that

(6.5)
d

ds
[f(x(s))u(s)] = u(s)f ′(x(s))

[
ψ′(1)φ(x(s))− ψ(x(s))φ′(1)

ψ′(1)

]
.

We define now the domains D = {(x, u) ∈ R2 : 0 < x < 1, u > 0} and

D̂ = {(z, u) ∈ R2 : z > f(0)u, u > 0}. Then the transformation (z, u) = (f(x)u, u)

maps D to D̂. Furthermore from (6.4) trajectories x(s), s ≤ t, of (2.1) with u(·)
defined in terms of the function κ(·) by (3.3) have the property that (x(s), u(s)) ∈ D
map under the transformation to (z(s), u(s)) ∈ D̂, where z(s) is a solution to

(6.6)
dz(s)

ds
= g(z(s), u(s)) , s ≤ t, z(t) = z.

and g(z, u) is the function

(6.7) g(z, u) = uf ′(x)

[
ψ′(1)φ(x)− ψ(x)φ′(1)

ψ′(1)

]
.

Lemma 6.1. Assume φ(·), ψ(·) satisfy (1.15), (1.16). Then there are positive

constants C1, C2 such that −C2u ≤ g(z, u) ≤ −C1u for (z, u) ∈ D̂ and

(6.8) lim
z→∞

g(z, u) =
u[ψ′(1)φ′′(1)− ψ′′(1)φ′(1)]

2ψ′(1)
= −α0u ,
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where α0 > 0. The function z → g(z, u) is C2 in the interval z > f(0)u and
∂g(z, u)/∂z is given by the formula

(6.9)
∂g(z, u)

∂z
= Γ(x) = φ′(x) +φ′(1)−φ(x)[ψ′(x) +ψ′(1)]/ψ(x), z = f(x)u,

where Γ(·) is C1 on the interval (0, 1] and satisfies Γ(1) = Γ′(1) = 0.
If in addition φ(·), ψ(·) satisfy (1.18) then Γ(·) is C2 on (0, 1] and g(z, u) is an

increasing function of z > f(0)u. The function z → g(z, u) is concave for z > f(0)u
provided φ(·), ψ(·) satisfy (1.24). The condition (1.24) holds if φ(·), ψ(·) satisfy
(1.15), (1.16), (1.18) and ψ(·) is quadratic.

Proof. From (1.15), (1.16) we see that the function h(x) = ψ′(1)φ(x) − ψ(x)φ′(1)
is convex and satisfies h(0) > 0, h(1) = 0, h′(1) = 0, whence h(·) is decreasing
and strictly positive for 0 ≤ x < 1. It follows that if 0 < δ ≤ 1 there are positive
constants C1,δ, C2,δ such that−C2,δu ≤ g(z, u) < −C1,δu for f(0)u ≤ z ≤ f(1−δ)u.
Observe further from (6.7) that we may write the function g(z, u) as
(6.10)

g(z, u) =
uf ′(x)(1− x)2

2ψ′(1)

∫ 1

0

[ψ′(1)φ′′(λx+ 1− λ)− ψ′′(λx+ 1− λ)φ′(1)] dρ(λ) ,

where ρ(·) is a probability measure on the interval [0, 1]. Since ψ′′(1) − φ′′(1) > 0
and limx→1 f

′(x)(1− x)2 = 1, it follows from (6.10) that we may choose C1,δ, C2,δ

independent of δ as δ → 0. Evidently (6.10) implies (6.8) on using the fact that
limx→1 f

′(x)(1− x)2 = 1.
To see that g(z, u) is an increasing function of z > f(0)u, we show that ∂g(z, u)/∂x ≥

0 for 0 ≤ x < 1. From (6.3), (6.7) we have that
(6.11)

∂g(z, u)

∂x
= u {ψ(x)[φ′(x) + φ′(1)]− φ(x)[ψ′(x) + ψ′(1)]} |ψ′(1)|f(x)/ψ(x)2 .

Consider now the function k(x) = (1 − x)[φ′(x) + φ′(1)] + 2φ(x), which has the
property that k(1) = k′(1) = 0 and k′′(x) = (1 − x)φ′′′(x). Assuming φ′′(·) is
increasing, it follows that k(·) is convex and hence non-negative for 0 ≤ x < 1.
Since we can make a similar argument for ψ(·) under the assumption that ψ′′(·) is
decreasing, we obtain the inequalities
(6.12)
φ′(x) + φ′(1) ≥ −2φ(x)/(1− x), ψ′(x) + ψ′(1) ≤ −2ψ(x)/(1− x), 0 ≤ x < 1.

Now (6.11), (6.12) imply that ∂g(z, u)/∂z ≥ 0 for z ≥ f(0)u. The formula (6.9)
follows from (6.3) and (6.11). Hence the function z → g(z, u) is concave if Γ(x) is
a decreasing function of x.

If ψ(·) is quadratic then (6.9) implies that

(6.13)
∂g(z, u)

∂z
= φ′(x) + φ′(1) + 2φ(x)/(1− x) ,

and so

(6.14)
∂

∂x

∂g(z, u)

∂z
= φ′′(x) + 2φ′(x)/(1− x) + 2φ(x)/(1− x)2 .

Now just as before the condition φ′′′(·) ≥ 0 implies that the RHS of (6.14) is not
positive for 0 < x < 1. �
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Remark 2. Observe that we have in the case of quadratic φ(·), for example φ(x) =
x(1− x), the identity

(6.15) Γ′(0) = φ′′(0)−φ′(0)[ψ′(0) + ψ′(1)]/ψ(0) = −2−[ψ′(0) + ψ′(1)]/ψ(0) .

We have already seen in (6.12) that if (1.18) holds then the RHS of (6.15) is
positive if ψ(·) is not quadratic. Hence the function z → g(z, u) is concave when
φ(·) is quadratic only if ψ(·) is also quadratic.

Observe that the condition κ(·) a positive function, which ensures that trajec-
tories (x(s), u(s)), s ≤ t, of (2.1) with (x(t), u(t)) ∈ D remain in D, becomes the
condition

(6.16)
d

dt
log u(t) > φ′(1) , t ≥ 0.

Hence if u(·) satisfies (6.16) then solutions (z(s), u(s)), s ≤ t, of (6.6) with (z(t), u(t)) ∈
D̂ remain in D̂. To see this directly first observe from (6.3), (6.7) that g(f(0)u, u) =

φ′(1)f(0)u < 0. For the trajectory (z(s), u(s)), s ≤ t, to remain in D̂ we must have

(6.17)
dz

du
> f(0) if (z(s), u(s)) ∈ ∂D̂ and

du(s)

ds
< 0,

since dz(s)/ds < 0. Now (6.7) implies in this case that

(6.18)
dz

du
= g(z(s), u(s))

/du(s)

ds
= φ′(1)f(0)u(s)

/du(s)

ds
> f(0) .

The first order PDE with characteristic equation (6.6) is given by

∂F̂ (z, t)

∂t
+ g(z, u(t))

∂F̂ (z, t)

∂z
= 0, z > f(0)u(t), t ≥ 0,(6.19)

F̂ (z, 0) = z, z > f(0).

Comparing now (3.1) to (6.19) and using (6.5), we conclude that the solutions

F (x, t) of (3.1) and F̂ (z, t) of (6.19) are related by the identity

(6.20) f(F (x, t)) = F̂ (f(x)u(t), t) , 0 < x < 1, t > 0.

In the case when ψ(·), φ(·) are quadratic functions, the solution to (6.19) is given
by the formula

(6.21) F̂ (z, t) = z + α0v(t) ,

where v(t), t ≥ 0, is the solution to (3.4). We easily conclude from (6.4), (6.19),
(6.20) that in the quadratic case F (x, t) is given by the formula (3.5). More gener-
ally we have as a consequence of Lemma 6.1 the following:

Corollary 6.1. Assume φ(·), ψ(·) satisfy (1.15), (1.16). Then for t ≥ 0 the

function z → F̂ (z, t) with domain {z ≥ f(0)u(t)} is increasing, and there are

positive constants C1, C2 such that z+C1v(t) ≤ F̂ (z, t) ≤ z+C2v(t). If in addition

(1.18) holds then ∂F̂ (z, t)/∂z ≤ 1. If the function z → g(z, u) is concave for all

u > 0 then F̂ (z, t) is a convex function of z > f(0)u(t).

Proof. We have that F̂ (z, t) = z(0), where z(s), s ≤ t, is the solution to (6.6)

with z(t) = z, whence it follows that the function z → F̂ (z, t) is increasing. From
Lemma 6.1 it follows that

(6.22) z(s) ≤ z + C2

∫ t

s

u(s′) ds′ , 0 ≤ s ≤ t ,
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and so F̂ (z, t) ≤ z + C2v(t). We conclude that ∂F̂ (z, t)/∂z ≤ 1 from the formula

(6.23)
∂F̂ (z, t)

∂z
= exp

[
−
∫ t

0

∂g(z(s), u(s))

∂z
ds

]
and Lemma 6.1. Evidently (6.23) implies the convexity of the function z → F̂ (z, t)
is a consequence of the concavity of the function z → g(z, u). �

Next we show that lim supt→∞ v(t)/u(t) = ∞ if limx→1 β(x, 0) = 1. We can
already obtain from the results of §4 a positive lower bound lim inft→∞ v(t)/u(t) >
0. To see this note that we have shown that supκ(·) ≤ M < ∞ and hence (3.3)
implies that

(6.24) u(s) ≥ 1

M |ψ′(1)|
du(s)

ds
, s ≥ 0.

We conclude that v(t) ≥ [u(t) − 1]/M |ψ′(1)| for t ≥ 0. Since (3.4) also implies
that v(t) ≥ M1 > 0 for all t ≥ 1, it follows that there exists M2 > 0 such that
v(t) ≥M2u(t) for t ≥ 1.

Corollary 6.2. Assume φ(·), ψ(·) satisfy (1.15), (1.16) and that limx→1 β(x, 0) =
1. Then if u(·), v(·), are given by (3.3), (3.4) one has lim inft→∞ v(t)/u(t) > 0
and lim supt→∞ v(t)/u(t) =∞.

Proof. Now w(x, t) = etw(F (x, t), 0), whence it follows from (1.8) that

(6.25) w(F (0, t), 0) ≥ e−t , w(F (1/2, t), 0) ≤ 2e−t .

We also have from (6.20) and Corollary 6.1 that

(6.26) f(x)u(t) + C1v(t) ≤ f(F (x, t)) ≤ f(x)u(t) + C2v(t) .

Since limx→1 f(x)(1− x) = 1, we conclude from (6.25), (6.26) and Lemma 2.1 that
there are positive constants T0, C3, C4 such that
(6.27)

w

(
1− C3

u(t) + v(t)
, 0

)
≥ e−t and w

(
1− C4

u(t) + v(t)
, 0

)
≤ 2e−t for t ≥ T0 .

Hence if z(t) is defined as in Lemma 4.2 by w(z(t), 0) = e−t, then (6.27) implies
that

(6.28)
C4

1− z(t− log 2)
≤ u(t) + v(t) ≤ C3

1− z(t)
for t ≥ T0 .

Observe from (3.4) that

(6.29) v(t) =

∫ t

0

es−t[u(s) + v(s)] ds ,

and so we conclude from (6.28), (6.29) that

(6.30) v(t) ≥ C4

∫ t

t−1
es−t

ds

1− z(s− log 2)
for t ≥ T0 + 1 .

Observe next from (4.3) and the fact that limx→1 g(x)/(1 − x) = 0, that we can
choose T0 sufficiently large so that 1−z(t−1− log 2) ≤ 2[1−z(t)] for t ≥ T0+1. We
conclude from (6.28), (6.30) that v(t)/u(t) ≥ C4(e− 1)/2C3e provided t ≥ T0 + 1.

To prove that lim supt→∞ v(t)/u(t) =∞ we assume for contradiction that there
is a constant K such that v(t) ≤ Ku(t) for t ≥ 0. By Lemma 2.1 and (6.26) we see
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that limt→∞[u(t) + v(t)] =∞, and so we conclude that limt→∞ u(t) =∞. We also
see from (6.26) that

(6.31) f(x)u(t) ≤ f(F (x, t)) ≤ [f(x) + C2K]u(t) , t ≥ 0.

We define functions G1(u), G2(u) with domain u ≥ 1 by
(6.32)

G1(u) =

∫ 1

0

w(f−1[f(x)u], 0) dx, G2(u) =

∫ 1

0

w(f−1[{f(x) + C2K}u], 0) dx.

Evidently G1(·), G2(·) are strictly decreasing functions satisfying limu→∞Gj(u) =
0, j = 1, 2 and G1(u) ≥ G2(u) for all u ≥ 1. Hence there exists T0 ≥ 0 such that
there are strictly increasing functions uj(t), j = 1, 2 with domain t ≥ T0 such that
Gj(uj(t)) = e−t, j = 1, 2. It follows from (6.31) that u2(t) ≤ u(t) ≤ u1(t) for
t ≥ T0, and hence

(6.33)
v(t)

u(t)
≥ 1

u1(t)

∫ t

T0

u2(s) ds, t ≥ T0 .

We obtain a contradiction to the assumption sup[v(·)/u(·)] ≤ K by showing that
the RHS of (6.33) converges to ∞ as t→∞.

To see this let η = inf0≤x<1[f(x)/{f(x)+C2K}] so 0 < η < 1 and u2(t) ≥ ηu1(t)
for t ≥ T0. Observe next that there is a positive constant C3 such that

(6.34) f−1[{f(x) + C2K}2u]− f−1[{f(x) + C2K}u] ≥
C3{1− f−1[{f(x) + C2K}u] } , 0 ≤ x < 1, u ≥ 1.

Since the function g(·) of (4.2) satisfies limx→1 g(x)/(1 − x) = 0, it follows from
(4.3), (6.34), that limu→∞G2(2u)/G2(u) = 0. Hence for any δ > 0 there exists
uδ ≥ 1 such that G2(2u)/G2(u) ≤ δ for u ≥ uδ. Since limt→∞ u1(t) = ∞ and
lim inft→∞ u2(t)/u1(t) > 0, it also follow that limt→∞ u2(t) = ∞. Hence there
exists Tδ such that u2(t) ≥ uδ for all t ≥ Tδ. It follows that if t0 ≥ Tδ then

(6.35) t0 ≤ t ≤ t0 + log(1/δ) implies u2(t) ≥ u2(t0 + log(1/δ))/2 .

We conclude that the RHS of (6.33) is bounded below by η log(1/δ)/2 provided
t ≥ Tδ + log(1/δ). �

In order to prove the inequality (4.37) and obtain a lower bound on κ(·) in the
case when limx→0 φ(x)/x <∞, we need to consider the dependence of the function
u(t), t ≥ 0, on v(t), t ≥ 0. Since v(t) is a strictly increasing function of t we may
write u(t) = U(v(t)), t ≥ 0. It follows from (3.3), (3.4), Lemma 4.1 and Corollary
6.2 that

(6.36) φ′(1) ≤ U ′(v) ≤ C for v ≥ 0, U(v) ≤ Cv for v ≥ 1,

where C is a positive constant.

Lemma 6.2. Assume φ(·), ψ(·) satisfy (1.15), (1.16), (1.18), (1.24) and either
that limx→0 φ(x)/x = ∞ or the functions φ(·), ψ(·) are C2 on the closed interval
[0, 1]. Assume also that the solution w(x, t) of (1.7), (1.8) satisfies (1.11) with
0 < β0 ≤ 1. Then for any k ≥ 1 there is a constant Ck, independent of t ≥ 0,
which is an increasing function of k and satisfying limk→1 Ck = 1, such that

(6.37)
∂F̂ (f(0)u(t), t)

∂z
≤ ∂F̂ (kf(0)u(t), t)

∂z
≤ Ck

∂F̂ (f(0)u(t), t)

∂z
, t ≥ 0.
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Proof. Let zk(s), s ≤ t, be the solution to (6.6) with terminal condition zk(t) =

kf(0)u(t). From the convexity of F̂ (·, t) and (6.23) it will be sufficient for us to
show that

(6.38)

∫ t

0

∂g(zk(s), u(s))

∂z
ds ≥

∫ t

0

∂g(z1(s), u(s))

∂z
ds−Dk, k ≥ 1,

for a constant Dk depending only on k which satisfies limk→1Dk = 0. Making the
change of variable t↔ v, s↔ v′, we have that the integral in (6.38) can be written
as

(6.39)

∫ t

0

∂g(zk(s), u(s))

∂z
ds =

∫ v

0

∂g(z̃k(v′), U(v′))

∂z

dv′

U(v′)
,

where zk(s) = z̃k(v′). Observe now that

(6.40) z̃k(v′) ≥ kf(0)U(v) + C1{v − v′} for 0 ≤ v′ ≤ v,
where C1 is the constant in Lemma 6.1. Upon using the properties of the function
Γ(·) stated in Lemma 6.1, it also follows from (6.40) and the second inequality of
(6.36) that there are positive constants C, γ with 0 < γ ≤ 1 such that
(6.41)
∂g(z̃k(v′), U(v′))

∂z
≤ CU(v′)2

[f(0)U(v) + C1{v − v′}]2
for 0 ≤ v′ ≤ γv, v ≥ 1, k ≥ 1.

In the case when the functions φ(·), ψ(·) are C1 on the closed interval [0, 1] we can
take γ = 1 in (6.41). Otherwise we need to take γ < 1. We conclude that there is
a constant C such that

(6.42)

∫ vmin{γ,1/2}

0

∂g(z̃k(v′), U(v′))

∂z

dv′

U(v′)
≤ C for v ≥ 1, k ≥ 1.

We also have from the properties of the function Γ(·) that if 0 < δ < 1 then there
is a constant Cδ such that

(6.43) 0 ≤ ∂g(z, u)

∂z
− ∂g(z′, u)

∂z′
≤ Cδu

2(z′ − z)
z3

for f(δ)u ≤ z ≤ z′ .

Observe now from Corollary 6.1 that

(6.44) z̃1(v′) ≤ z̃k(v′) ≤ z̃1(v′) + (k − 1)f(0)U(v) for 0 ≤ v′ ≤ v.
It follows then from (6.43), (6.44) that there is a constant C such that
(6.45)∫ vmin{γ,1/2}

0

[
∂g(z̃1(v′), U(v′))

∂z
− ∂g(z̃k(v′), U(v′))

∂z

]
dv′

U(v′)
≤ C(k−1) for v ≥ 1, k ≥ 1.

Next we note that there exists δ0 > 0 such that if 0 < δ ≤ δ0 then there is a
constant η(δ) with the property limδ→0 η(δ) = 0 such that

(6.46)

∫ v

v−δU(v)

∂g(z̃1(v′), U(v′))

∂z

dv′

U(v′)
≤ η(δ) if v ≥ 1.

The inequality (6.46) follows from (6.36) in the case when the functions φ(·), ψ(·)
are C1 on the closed interval [0, 1] since then we can take γ = 1 in the inequality
(6.41). In the case when limx→ 0 φ(x)/x = ∞ we need to use Corollary 4.1 that
inf κ(·) > 0. Defining T by v(T ) = v we have from (3.3), (3.4) that

(6.47) v(T − t1) ≤ v(T )− t1eC2ψ
′(1)t1u(T ) for 0 ≤ t1 ≤ T,
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where C2 = supκ(·). Hence there exists δ1 > 0 such that for 0 < δ ≤ δ1 one has

(6.48)

∫ v

v−δU(v)

∂g(z̃1(v′), U(v′))

∂z

dv′

U(v′)
≤
∫ T

T−2δ
Γ(x(s)) ds .

We conclude from (2.1), (6.9) upon using the inequality inf κ(·) > 0 that

(6.49)

∫ T

T−2δ
Γ(x(s)) ds ≤ η(δ) where lim

δ→0
η(δ) = 0.

It follows from (6.44) and Lemma 6.1 that

(6.50) z̃k(v′) ≤ z̃1(v′ − (k − 1)f(0)U(v)/C1) if v′ ≥ (k − 1)f(0)U(v)/C1,

where C1 is the constant of Lemma 6.1. Hence there exists k0 > 1, δ2 > 0 such
that for v ≥ 1, 1 ≤ k ≤ k0, 0 ≤ δ ≤ δ2, one has
(6.51)∫ v−δU(v)

vmin{γ,1/2}

∂g(z̃k(v′), U(v′))

∂z

dv′

U(v′)
≥
∫ v−δU(v)−ρ

vmin{γ,1/2}

∂g(z̃1(v′), U(v′ + ρ))

∂z

dv′

U(v′ + ρ)
,

where ρ = (k − 1)f(0)U(v)/C1. Next observe that
(6.52)
∂g(z, U1)

∂z

1

U1
−∂g(z, U2)

∂z

1

U2
= [f(x1)Γ(x1)−f(x2)Γ(x2)]/z , where f(x1)U1 = z, f(x2)U2 = z.

We see now from (6.3), (6.52) and Lemma 6.1 that for any ε satisfying 0 < ε ≤ 1
there is a constant Cε depending on ε such that

(6.53)

∣∣∣∣∂g(z, U1)

∂z

1

U1
− ∂g(z, U2)

∂z

1

U2

∣∣∣∣ ≤ Cε|U1 − U2|
z2

for ε ≤ x1, x2 ≤ 1 .

If the functions φ(·), ψ(·) are C2 on the closed interval [0, 1] then limε→0 Cε = C0 <
∞, but in the case limx→0 φ(x)/x = ∞ it is possible that Cε becomes unbounded
as ε → 0. To estimate from below the integral on the RHS of (6.51) we take z =
z̃1(v′), U1 = U(v′+ρ), U2 = U(v′) in (6.53) with vmin{γ, 1/2} ≤ v′ ≤ v−δU(v)−ρ.
Since inf κ(·) > 0 if limx→0 φ(x)/x =∞ we may take ε = ε(δ) > 0 in (6.53) in that
case. We conclude then from (6.36), (6.40), (6.53) that
(6.54)∫ v−δU(v)−ρ

vmin{γ,1/2}

∣∣∣∣∂g(z̃1(v′), U(v′ + ρ))

∂z

1

U(v′ + ρ)
− ∂g(z̃1(v′), U(v′))

∂z

1

U(v′)

∣∣∣∣ dv′ ≤ Cδ(k−1) ,

where Cδ depends only on δ and can diverge as δ → 0 in the case when limx→0 φ(x)/x =
∞. It follows now from (6.45), (6.46), (6.54) that there exists k0 > 1 such that (6.38)
holds for 1 ≤ k ≤ k0. To prove the result for k ≥ k0 we repeat the argument but
in this case we do not need to be concerned with the case limx→0 φ(x)/x =∞. �

Corollary 6.3. Assume that φ(·), ψ(·) and the solution w(x, t) of (1.7), (1.8)
satisfy the assumptions of Lemma 6.2. Then for any ε with 0 < ε < 1 there is a
constant γε such that the function F (x, t) defined by (2.1) has the property

(6.55)
∂F (0, t)

∂x
≤ ∂F (x, t)

∂x
≤ [1 + γε]

∂F (0, t)

∂x
for 0 ≤ x ≤ ε, t ≥ 0,

and limε→0 γε = 0.
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Proof. From (6.20) we have the identity

(6.56)
∂F (x, t)

∂x
=

f ′(x)u(t)

f ′(F (x, t))

∂F̂ (f(x)u(t), t)

∂z
.

From (6.3) we see that f ′(·) is an increasing function, and since F (·, t) is also
increasing we conclude that f ′(F (0, t)) ≤ f ′(F (x, t)) for 0 ≤ x < 1. The result
follows from (6.56) and Lemma 6.2. �

Proposition 6.1. Assume that φ(·), ψ(·) and the solution w(x, t) of (1.7), (1.8)
satisfy the assumptions of Lemma 6.2. If limx→0 φ(x)/x = ∞ then (4.37) holds.
If φ(·), ψ(·) are C2 on the closed interval [0, 1] and the initial data additionally
satisfies (1.23), then inf κ(·) > 0 and (4.37) holds.

Proof. Assuming first that inf κ(·) > 0, we see from (1.8) and Lemma 2.3 that there
exists α > 0 such that 1 ≤ w(0, t) ≤ 1 + α for all t ≥ 0. We conclude from (1.8)
that

(6.57)
w0(F (1/2(1 + α), t))

w0(F (0, t))
=

w(1/2(1 + α), t)

w(0, t)
≥ 1

1 + 2α
.

In view of the convexity of the function F (·, t) it follows from (4.3) and (6.57) that
there exists T0 > 0 such that

(6.58)
∂F (0, t)

∂x
≤ 3(1 + α) log(1 + 2α)g(F (0, t)) for t ≥ T0 .

It follows from Corollary 6.3 and (6.58) that if t ≥ T0 then

(6.59) w(x, t) = etw0(F (x, t)) ≥ etw0(F (0, t) + x∂F (x, t)/∂x) ≥
etw0(F (0, t) + x(1 + γx)∂F (0, t)/∂x) ≥ C(x, α)etw0(F (0, t)) ≥ C(x, α),

for a positive constant C(x, α) depending only on x, α. We have proved the in-
equality (4.37).

Finally we need to show that inf κ(·) > 0 in the case when the functions φ(·), ψ(·)
are C2 on the closed interval [0, 1] and the initial data additionally satisfies (1.23).
We show that for any δ > 0 there exists Tδ,Kδ > 0 such that if t ≥ Tδ and
w(0, t) ≥ Kδ > 2, then β(0, t) ≥ 1 − δ. To see this let us suppose that w(0, t) =
etw0(F (0, t)) ≥ Kδ > 2, whence it follows from (1.8), (4.3) and (6.55) that there
are positive constants T0, C0 such that

(6.60)
∂F (0, t)

∂x
≥ C0g(F (0, t)) logKδ for t ≥ T0 .

We conclude from (4.3), (6.55), (6.60) that there is a constant C1 > 0 such that

(6.61)
w0(F (x, t))

w0(F (0, t))
≤ exp [−C1x logKδ] for 0 ≤ x ≤ 1/2.

Now just as in Proposition 5.1 we see that the ratio h0(F (x, t))/h(F (0, t)) is also
bounded by the RHS of (6.61) since we are assuming that the initial data satisfies
(1.23). Thus from (5.42) we obtain for any ε ≤ 1/2 the lower bound

(6.62) β(0, t) ≥ β(F (0, t), 0) {1− exp [−C1ε logKδ]} /(1 + γε) for t ≥ T0 .

It is clear from (6.62) that we may choose Kδ, Tδ such that β(0, t) ≥ 1− δ if t ≥ Tδ
and w(0, t) ≥ Kδ.
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To complete the proof of inf κ(·) > 0 we argue as in Corollary 4.1. Thus

(6.63)
d

dt
log 〈Xt〉 ≥ (1− δ)

[
〈φ(Xt)〉
〈Xt〉

+ 1

]
− 1 if 〈Xt〉 ≤ 1/Kδ , t ≥ Tδ .

We have already observed in Corollary 4.1 that there exists γ > 0 such that P (Xt >
γ〈Xt〉) > 1/2 for t ≥ 0. Let x0 ∈ (0, 1) be the point at which the function φ(·)
achieves its maximum. Then from the Chebysev inequality we have that

(6.64) P (γ〈Xt〉 < Xt < x0) ≥ 1/2− 〈Xt〉/x0 ≥ 1/4 if 〈Xt〉 ≤ x0/4 .
Hence (6.63), (6.64) imply that

(6.65)
d

dt
log 〈Xt〉 ≥ (1− δ)

[
φ(γ〈Xt〉)

4〈Xt〉
+ 1

]
− 1 if 〈Xt〉 ≤ 1/Kδ , t ≥ Tδ ,

provided Kδ > 4/x0. Choosing δ now to satisfy (1 − δ)[γφ′(0)/4 + 1] > 1, we see
from (6.65) that there exists T1,δ ≥ Tδ such that 〈Xt〉 ≥ 1/Kδ for t ≥ T1,δ. We
conclude from Lemma 2.3 that inf κ(·) > 0. �

Proof of Theorem 1.3. The result follows from Lemma 4.1, Corollary 4.1, Lemma
4.2 and Proposition 6.1. �

We conclude this section by making some observations concerning the conditions
(1.18), (1.24) on the functions φ(·), ψ(·). In Lemma 6.1 we saw that (1.18) implies
that the function z → g(z, u) is increasing. This fact can also be concluded from
(6.8) and the concavity of the function z → g(z, u), which follows from (1.24).
Therefore the only part of the proof of Theorem 1.3 in which we need to assume
(1.18) is in the proof of Lemma 4.1. We can however replace Lemma 4.1 by the
following proposition in the case when limx→0 φ(x)/x <∞, and so dispense entirely
with the assumption (1.18) for the proof of Theorem 1.3.

Proposition 6.2. Assume φ(·), ψ(·) satisfy (1.15), (1.16), (1.24) and that the
initial data for (1.7), (1.8) satisfies (1.11) with β0 = 1. Then if limx→0 φ(x)/x <∞
there is a constant C such that κ(t) ≤ C for t ≥ 0.

Proof. It follows from Lemma 6.1 that the function g(z, u) of (6.7) is negative, in-
creasing and concave for z ≥ f(0)u. We first note that the assumption limx→0 φ(x)/x <
∞ implies that the function z → g(z, u) is C1 on the closed interval [f(0)u,∞) since
limx→0 xψ

′(x) = 0. Hence we can extend g(z, u) to be a C1 function on [0,∞) by
setting ∂g(z, u)/∂z = ∂g(f(0)u, u)/∂z for 0 ≤ z ≤ f(0)u. The extended function
g(·, u) is negative, increasing, concave and g(0, u) = −α1u for some positive con-
stant α1 ≥ α0, where α0 is defined by (6.8). We now define an extended function

F̂ (z, t), z ≥ 0, as the solution to the initial value problem (6.19) in the domain

{(z, t) : z > 0, t > 0}, and it is clear that the extended function F̂ (·, t) is increas-

ing convex and ∂F̂ (z, t)/∂z ≤ 1 for z ≥ 0. We further define a function y(t) by

f(y(t)) = F̂ (0, t) where the function f(·) is determined by (6.3). Observe that
in the case of quadratic φ(·), ψ(·) this function coincides with the function y(t) of

(5.7). Since z + C1v(t) ≤ F̂ (z, t) ≤ z + C2v(t) for z, t ≥ 0 as in Corollary 6.1, we

have that limt→∞ F̂ (0, t) =∞. Hence there exists T0 ≥ 0 such that y(t) is uniquely
defined for t ≥ T0 and satisfies 0 < y(t) < F (0, t) < 1.

Let k : [f(0),∞)→ [0, 1) be the inverse function of f : [0, 1)→ [f(0),∞). Since
f(·) is strictly increasing and convex, it follows that k(·) is strictly increasing and
concave. We have now from (6.20) that
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(6.66) F (x, t)− y(t) = k(F̂ (f(x)u(t), t))− k(F̂ (0, t)) ≥

k′(F̂ (f(x)u(t), t))[F̂ (f(x)u(t), t)−F̂ (0, t)] ≥ k′(F̂ (f(x)u(t), t))f(x)u(t)∂F̂ (0, t)/∂z ,

where in (6.66) we have used the fact that the function z → F̂ (z, t) is increasing
and convex. From (6.3) we see that the function k(·) is C1 on [f(0),∞) and
satisfies limy→∞ y2k′(y) = 1. Using the fact that limt→∞ v(t) =∞, it follows from
corollaries 6.1,6.2 that there are positive constants C1, T1 such that

(6.67) k′(F̂ (f(x)u(t), t)) ≥ C1k
′(F̂ (0, t)) for 0 ≤ x ≤ 1/2, t ≥ T1 .

Hence Lemma 6.1, (6.19) and (6.66), (6.67) imply that there is a positive constant
C2 such that

(6.68) F (x, t)− y(t) ≥ C2
dy(t)

dt
for 0 ≤ x ≤ 1/2, t ≥ T1 .

Since y(t) < F (0, t) < z(t) we can define as in §5 a positive function τ(t) satisfy-
ing y(t) = z(t−τ(t)). Following the argument of Lemma 5.1 we see that (6.68) and
the conservation law (1.8) imply that there exists T0, τ0 > 0 such that τ(t) ≥ τ0 for
t ≥ T0. Observe next as in (6.66) that we have

(6.69)

F (x, t)− F (0, t) ≥ k′(F̂ (f(x)u(t), t))[f(x)− f(0)]u(t)∂F̂ (f(0)u(t), t)/∂z ,

F (0, t)− y(t) ≤ k′(F̂ (0, t))f(0)u(t)∂F̂ (f(0)u(t), t)/∂z .

Hence there exists positive constants C2, T2 such that

(6.70) F (x, t)− F (0, t) ≥ C2x[F (0, t)− y(t)] for t ≥ T2, 0 ≤ x ≤ 1/2.

Suppose now that etw(F (0, t), 0) = eδ for some 0 < δ < τ0/2. Then (4.3) implies
that there exists Tδ > 0 such that F (0, t) − y(t) ≥ τ0g(F (0, t))/2 provided t ≥
Tδ. Hence (4.3) and (6.70) imply that for small δ the integral on the LHS of
(1.8) is strictly less than 1. We conclude that there exists T2, δ2 > 0 such that
etw(F (0, t), 0) ≥ eδ1 for t ≥ T2. The result follows from Lemma 2.3. �
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[7] Laurençot, P. The Lifshitz-Slyozov-Wagner equation with preserved total volume, SIAM J.

Math. Anal. 34 (2002), 257–272,MR1951774
[8] Lifschitz, I. M.; Slyozov, V. V. Kinetics of precipitation from supersaturated solid solutions.

J. Phys. Chem. Sol. 19 (1961), 35-50.



36 JOSEPH G. CONLON AND BARBARA NIETHAMMER

[9] Niethammer, B. ; Pego, Robert L. Non-self-similar behavior in the LSW theory of Ostwald

ripening. J. Statist. Phys. 95 (1999), 867-902, MR 1712441.

[10] Niethammer, B. ; Pego, Robert L. On the initial value problem in the Lifschitz-Slyozov-
Wagner theory of Ostwald ripening. SIAM J. Math. Anal. 31 (2000), 467-485, MR 1735959.

[11] Niethammer, B. ; Pego, Robert L. Well-posedness for measure transport in a family of non-

local domain coarsening models. Indiana Univ. Math. J. 54 (2005), 499-530, MR 2136819.
[12] Niethammer, B. ; Velázquez, J.J.L. Global stability and bounds for coarsening rates within

the mean-field theory for domain coarsening. Comm. Partial Differential Equations 31 (2006),

1679-1708, MR 2273970.
[13] Niethammer, B. ; Velázquez, J.J.L. On the convergence to the smooth self-similar solution in

the LSW model. Indiana Univ. Math. J. 55 (2006), 761-794, MR 2225452.

[14] Pego, R. Lectures on dynamic models of coarsening and coagulation. Dynamics in models
of coarsening, coagulation, condensation and quantization, 1-61, Lect. Notes Ser. Inst. Math.

Sci. Natl. Univ. Singap., 9, World Sci. Publ., Hackensack, NJ, 2007, MR 2395779.
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