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Abstract. This paper is concerned with the study of solutions to discrete

parabolic equations in divergence form with random coefficients, and their

convergence to solutions of a homogenized equation. It has previously been
shown that if the random environment is translational invariant and ergodic,

then solutions of the random equation converge under diffusive scaling to so-

lutions of a homogenized parabolic PDE. In this paper point-wise estimates
are obtained on the difference between the averaged solution to the random

equation and the solution to the homogenized equation for certain random

environments which are strongly mixing.

1. Introduction.

Let (Ω,F , P ) be a probability space and denote by 〈 · 〉 expectation w.r. to
the measure P . We assume that the d dimensional integer lattice Zd acts on Ω by
space translation operators τx,0 : Ω→ Ω, x ∈ Zd, which are measure preserving and
satisfy the properties τx,0τy,0 = τx+y,0, τ0,0 = identity, x, y ∈ Zd. We assume also
that either the integers Z or the real line R acts on Ω by time translation operators
τ0,t : Ω → Ω, where t ∈ Z in the former case and t ∈ R in the latter. In either
case we assume that for all t, s, one has τ0,tτ0,s = τ0,t+s, and that the operators τ0,t
commute with the operators τx,0, so we may set τx,t = τx,0τ0,t = τ0,tτx,0.

Consider a bounded measurable function a : Ω→ Rd(d+1)/2 from Ω to the space
of symmetric d× d matrices which satisfies the quadratic form inequality

(1.1) λId ≤ a(ω) ≤ ΛId, ω ∈ Ω,

where Id is the identity matrix in d dimensions and Λ, λ are positive constants. In
the case when Z acts on Ω by operators τ0,t, we shall be interested in solutions
u(x, t, ω) to the discrete parabolic equation

(1.2) u(x, t+1, ω)−u(x, t, ω) = −∇∗a(τx,tω)∇u(x, t, ω) , x ∈ Zd, t ≥ 0, ω ∈ Ω,

with initial data

(1.3) u(x, 0, ω) = h(x), x ∈ Zd, ω ∈ Ω .

In the case when R acts on Ω by operators τ0,t, we shall be interested in solu-
tions u(x, t, ω) to the corresponding continuous in time, discrete in space parabolic
equation

(1.4)
∂u(x, t, ω)

∂t
= −∇∗a(τx,tω)∇u(x, t, ω) , x ∈ Zd, t ≥ 0, ω ∈ Ω,
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with initial data (1.3). In (1.2) and (1.4) we take ∇ to be the discrete gradient
operator, which has adjoint ∇∗. Thus ∇ is a d dimensional column operator and
∇∗ a d dimensional row operator, which act on functions φ : Zd → R by

∇φ(x) =
(
∇1φ(x), ... ∇dφ(x)

)
, ∇iφ(x) = φ(x+ ei)− φ(x),(1.5)

∇∗φ(x) =
(
∇∗1φ(x), ... ∇∗dφ(x)

)
, ∇∗iφ(x) = φ(x− ei)− φ(x).

In (1.5) the vector ei ∈ Zd has 1 as the ith coordinate and 0 for the other coordi-
nates, 1 ≤ i ≤ d.

One expects that if the translation operators τx,t are ergodic on Ω then solutions
to the random equation (1.2) or (1.4) converge to solutions of a constant coefficient
homogenized equation under diffusive scaling. Thus suppose f : Rd → R is a C∞

function with compact support and for ε satisfying 0 < ε ≤ 1 set h(x) = f(εx), x ∈
Zd, in (1.3), and let uε(x, t, ω) denote the corresponding solution to (1.2) or (1.4)
with this initial data. It has been shown in [21], just assuming ergodicity of the
translation operators, that uε(x/ε, t/ε

2, ω) converges in probability as ε → 0 to a
function uhom(x, t), x ∈ Rd, t > 0, which is the solution to a constant coefficient
parabolic PDE

(1.6)
∂uhom(x, t)

∂t
= −∇∗ahom∇uhom(x, t) , x ∈ Rd, t > 0,

with initial condition

(1.7) uhom(x, 0) = f(x), x ∈ Rd .

The d × d symmetric matrix ahom in (1.6) satisfies the quadratic form inequality
(1.1). Similar results under various ergodic type assumptions on Ω can be found
in [1, 6, 12, 28]. In time-independent environments the corresponding results for
elliptic equations in divergence form have been proven much earlier -see [19, 20, 26,
33].

In this paper we shall confine ourselves to studying the expectation 〈 u(x, t, ·) 〉
of the solution u(x, t, ω) to (1.2) and(1.4) with initial condition (1.3). Our first
theorem is consistent with the result of [21] already mentioned:

Theorem 1.1. Let f : Rd → R be a C∞ function of compact support and set
h(x) = f(εx), x ∈ Zd in (1.3). For the translation group τx,t, x ∈ Zd, t ∈ Z, on Ω
assume that one of the operators τej ,0, j = 1, .., d, or τ0,1 is ergodic on (Ω,F , P ).
Then if 4dΛ ≤ 1 the solution uε(x, t, ω) of (1.2) with initial data (1.3) has the
property

(1.8) lim
ε→0

sup
x∈εZd,t∈ε2Z+

|〈 uε(x/ε, t/ε2, ·) 〉 − uhom(x, t)| = 0.

For the translation group τx,t, x ∈ Zd, t ∈ R, on Ω assume that one of the operators
τej ,0, j = 1, .., d, or the continuous 1 parameter group τ0,t, t ∈ R, is ergodic on
(Ω,F , P ). Then the solution uε(x, t, ω) of (1.4) with initial data (1.3) has the
property

(1.9) lim
ε→0

sup
x∈εZd,t>0

|〈 uε(x/ε, t/ε2, ·) 〉 − uhom(x, t)| = 0.

It as been shown in the case of homogenization of elliptic equations in divergence
form with random coefficients, that a rate of convergence in homogenization can be
obtained provided the random environment satisfies some quantitative strong mixing
property. The first results in this direction were proven in the 1980’s by Yurinski
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[32], but there have been several papers more recently extending his work. In
particular, Caffarelli and Souganidis [10] have obtained rates of convergence results
in homogenization of fully nonlinear PDE. In recent work of Gloria and Otto [15]
an optimal rate of convergence result was obtained for linear elliptic equations in
divergence form. Following an idea of Naddaf and Spencer [24], they express the
quantitative strong mixing assumption as a Poincaré inequality. This formulation
of the strong mixing assumption is very useful when the random environment is a
Euclidean field theory with uniformly convex Lagrangian.

For the case of parabolic equations in divergence form with random coefficients,
we shall obtain a rate of convergence, but only for the averaged solution to the
parabolic equation as in Theorem 1.1, and for two particular environments. For
the discrete time problem (1.2), (1.3) we assume the environment is i.i.d. That is
we assume the variables a(τx,t·), (x, t) ∈ Zd+1, are i.i.d. For the continuous time
problem (1.3), (1.4) we assume the environment is the stationary process associated
with a massive Euclidean field theory. The only paper we were able to find in the
literature proving results on rate of convergence in homogenization for the parabolic
problem is the recent preprint [23], in which the environment is assumed fixed in
time. In [23] as in the present paper, the results are restricted to establishing
rates of convergence for the mean 〈uε(x/ε, t/ε2, ·)〉 of the solution of the parabolic
equation with random coefficients to uhom(x, t).

The Euclidean field theory is determined by a potential V : Rd → R, which is
a C2 uniformly convex function, and a mass m > 0. Thus the second derivative
a(·) = V ′′(·) of V (·) is assumed to satisfy the inequality (1.1). Consider functions
φ : Zd ×R → R which we denote as φ(x, t) where x lies on the integer lattice Zd

and t on the real line R. Let Ω be the space of all such functions which have the
property that for each x ∈ Zd the function t → φ(x, t) on R is continuous, and
F be the Borel algebra generated by finite dimensional rectangles {φ(·, ·) ∈ Ω :
|φ(xi, ti) − ai| < ri, i = 1, ..., N}, where (xi, ti) ∈ Zd × R, ai ∈ R, ri > 0, i =
1, ..., N, N ≥ 1. The translation operators τx,t : Ω → Ω, (x, t) ∈ Zd × R, are
defined by τx,tφ(z, s) = φ(x+ z, t+ s), z ∈ Zd, s ∈ R.

For any d ≥ 1 and m > 0 one can define [7, 14] a unique ergodic translation
invariant probability measure P on (Ω,F) which depends on the function V and
m. In this measure the variables φ(x, t), x ∈ Zd, t > 0, conditioned on the variables
φ(x, 0), x ∈ Zd, are determined as solutions of the infinite dimensional stochastic
differential equation
(1.10)

dφ(x, t) = − ∂

∂φ(x, t)

∑
x′∈Zd

1

2
{V (∇φ(x′, t))+m2φ(x′, t)2/2} dt+dB(x, t) , x ∈ Zd, t > 0,

where B(x, ·), x ∈ Zd, are independent copies of Brownian motion. Formally
the invariant measure for the Markov process (1.10) is the Euclidean field theory
measure

(1.11) exp

−∑
x∈Zd

V (∇φ(x)) +m2φ(x)2/2

 ∏
x∈Zd

dφ(x)/normalization.

Hence if the variables φ(x, 0), x ∈ Zd, have distribution determined by (1.11), then
φ(·, t), t > 0, is a stationary process and so can be extended to all t ∈ R to yield
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a measure P on (Ω,F). For this measure the translation operators τx,t, (x, t) ∈
Zd ×R, form a group of measure preserving transformations on (Ω,F , P ).

Theorem 1.2. Let f : Rd → R be a C∞ function of compact support and set
h(x) = f(εx), x ∈ Zd in (1.3). Then if 4dΛ ≤ 1 and the variables a(τx,t·), (x, t) ∈
Zd+1, are i.i.d., the solution uε(x, t, ω) of (1.2) with initial data (1.3) has the prop-
erty

(1.12) sup
x∈εZd,t∈ε2Z+

|〈 uε(x/ε, t/ε2, ·) 〉 − uhom(x, t)| ≤ Cεα, 0 < ε ≤ 1,

where α > 0 is a constant depending only on d,Λ/λ and C is a constant depending
only on d,Λ, λ and the function f(·).

Let ã : R → Rd(d+1)/2 be a C1 function on R with values in the space of
symmetric d × d matrices which satisfy the quadratic form inequality (1.1). Let
(Ω,F , P ) be the probability space of fields φ(·, ·) determined by (1.10), (1.11) and
set a(·) in (1.4) to be a(φ) = ã(φ(0, 0)), φ ∈ Ω. Suppose in addition that the
derivative Dã(·) of ã(·) satisfies the inequality ‖Dã(·)‖∞ ≤ Λ1. Then the solution
uε(x, t, ω) of (1.4) with initial data (1.3) has the property

(1.13) sup
x∈εZd,t>0

|〈 uε(x/ε, t/ε2, ·) 〉 − uhom(x, t)| ≤ Cεα, 0 < ε ≤ 1,

where α > 0 is a constant depending only on d,Λ/λ and C is a constant depending
only on d,Λ, λ,m,Λ1 and the function f(·).

Remark 1. It is clear that the exponent α > 0 in Theorem 1.2 must satisfy α ≤ 2.
This follows from the fact that the error in approximating the solution to the heat
equation on Rd by the solution to the corresponding lattice problem on εZd is O(ε2).
One can conclude from our method of proof that if λ/Λ is sufficiently close to
1, then the exponent α can be taken equal to 1. The exponent α can be taken
equal to 2 for λ/Λ sufficiently close to 1 provided ∇ in (1.2), (1.4) is defined by
central difference rather than forward difference as in (1.5) and a(·) is a diagonal
matrix. In addition the environment (Ω,F , P ) must satisfy a reflection invariant
condition. The i.i.d. environment satisfies this reflection invariance condition, but
the massive field theory environment determined by (1.10) satisfies it only if the
function V : Rd → R is reflection invariant (see Appendix).

We consider what Theorem 1.2 tells us about the expectation of the Green’s
function for the equations (1.2) and (1.4). By translation invariance of the measure
we have that

(1.14) 〈 u(x, t, ·) 〉 =
∑
y∈Zd

Ga(x− y, t)h(y), x ∈ Zd,

where Ga(x, t) is the expected value of the Green’s function. Setting h(x) =
f(εx), x ∈ Zd, then (1.14) may be written as

(1.15) 〈 uε(x/ε, t/ε2, ·) 〉 =

∫
εZd

ε−dGa

(
x− z
ε

,
t

ε2

)
f(z) dz, x ∈ εZd,

where integration over εZd is defined by

(1.16)

∫
εZd

g(z) dz =
∑
z∈εZd

g(z) εd.
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Let Gahom
(x, t), x ∈ Rd, t > 0, be the Greens function for the PDE (1.6). One

easily sees that Gahom
(·, ·) satisfies the scaling property

(1.17) ε−dGahom
(x/ε, t/ε2) = Gahom

(x, t), ε > 0, x ∈ Rd, t > 0.

Hence Theorem 1.2 implies that averages of ε−dGa(x/ε, t/ε2)−ε−dGahom
(x/ε, t/ε2)

with respect to x ∈ εZd are bounded by Cεα for some constant C. Conversely
Theorem 1.2 is implied by the point-wise estimate on Green’s functions:
(1.18)∣∣ε−dGa(x/ε, t/ε2)−ε−dGahom

(x/ε, t/ε2)
∣∣ ≤ Cεα

[Λt+ ε2](d+α)/2
exp

[
−γmin

{
|x|
ε
,
|x|2

Λt+ ε2

}]
,

provided Λt ≥ ε2 and x ∈ εZd.
It is clear that the inequality (1.18) for ε < 1 follows from the same inequality

for ε = 1:

(1.19)
∣∣Ga(x, t)−Gahom

(x, t)
∣∣ ≤ C

[Λt+ 1](d+α)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
,

provided Λt ≥ 1 and x ∈ Zd. We shall prove such an inequality and also similar
inequalities for the derivatives of the expectation of the Green’s function,
(1.20)∣∣∇Ga(x, t)−∇Gahom

(x, t)
∣∣ ≤ C

[Λt+ 1](d+1+α)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
,

(1.21)∣∣∇∇Ga(x, t)−∇∇Gahom
(x, t)

∣∣ ≤ C

[Λt+ 1](d+2+α)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
.

Theorem 1.3. Let (Ω,F , P ) and a(ω), ω ∈ Ω, be as in the statement of The-
orem 1.2. Then for d ≥ 1 there exists α, γ > 0 depending only on d and Λ/λ,
such that (1.19), (1.20) and (1.21) hold for some positive constant C. In the dis-
crete time case C depends only on d,Λ, λ, and in the continuous time case only on
d, λ,Λ,m,Λ1.

The proofs of Theorem 1.2 and Theorem 1.3 follow the same lines as the proofs
of the corresponding results for elliptic equations proved in [10]. One begins with
a Fourier representation for the average of the solution to the random parabolic
equation, which was obtained in [8]. Then for the i.i.d. environment the general-
ization by Jones [18] of the Calderon-Zygmund theorem [5] to parabolic multipliers,
together with some interpolation inequalities, yields Theorem 1.2 and the inequal-
ities (1.19), (1.20) of Theorem 1.3 in the discrete time case. Similarly to [10] we
need to use the result of Delmotte and Deuschel [11] on the Hölder continuity of the
second difference ∇∇Ga(x, t) in order to prove (1.21). In the continuous time case
we need in addition to prove some Poincaré inequalities for time dependent fields.
To do this we follow the methodology of Gourcy-Wu [16] by using the Clark-Ocone
formula [25].

2. Fourier Space Representation and Homogenization

In this section we shall prove the homogenization result Theorem 1.1. The proof
of this is based on a Fourier representation for the solutions of (1.2), (1.4) which
was given in [8].



6 JOSEPH G. CONLON AND ARASH FAHIM

We begin by summarizing relevant results from [8] for the discrete time equation
(1.2). Thus we are assuming a probability space (Ω,F , P ) and a set of translation
operators τx,t, x ∈ Zd, t ∈ Z, acting on Ω. For ξ ∈ Rd and ψ : Ω→ C a measurable
function we define the ξ derivative of ψ(·) in the j direction ∂j,ξ, and its adjoint
∂∗j,ξ, by

∂j,ξψ(ω) = e−iej .ξψ(τej ,0 ω)− ψ(ω),(2.1)

∂∗j,ξψ(ω) = eiej .ξψ(τ−ej ,0 ω)− ψ(ω).

The d dimensional column ξ derivative operator ∂ξ is then given by ∂ξ = (∂1,ξ, ...., ∂d,ξ).
Similarly to (1.5) its adjoint ∂∗ξ is given by the row operator ∂∗ξ = (∂∗1,ξ, ...., ∂

∗
d,ξ).

Let P : L2(Ω)→ L2(Ω) be the projection orthogonal to the constant function, and
η ∈ C with real part denoted by <η and imaginary part by =η so that η = <η+i=η.
Then for ξ ∈ Rd and η ∈ C with <η > 0 there is a unique square integrable solution
Φ(ξ, η, ω) to the equation

(2.2) eηΦ(ξ, η, τ0,1ω)− Φ(ξ, η, ω) + P∂∗ξa(ω)∂ξΦ(ξ, η, ω) = −P∂∗ξa(ω),

provided 4dΛ ≤ 1. Thus there is a unique row vector Φ(ξ, η, ω) = [Φ1(ξ, η, ω), ....,Φd(ξ, η, ω)]
with Φj(ξ, η, ·) ∈ L2(Ω), j = 1, .., d, which satisfies (2.2). Let q(ξ, η) = [qr,r′(ξ, η)]
be the d× d matrix function given in terms of the solution to (2.2) by the formula

(2.3) q(ξ, η) = 〈 a(·) 〉+ 〈 a(·)∂ξΦ(ξ, η, ·) 〉 .

One can easily see that the homogenized diffusion constant ahom of (1.6) in the case
of an ergodic environment (Ω,F , P ) is given by the formula ahom = limη→0 q(0, η).
This follows by observing that the solution to (2.2) in the case ξ = 0, <η > 0 is
also the solution to the equation

(2.4) eηΦ(0, η, τ0,1ω)− Φ(ξ, η, ω) + ∂∗0a(ω)∂0Φ(ξ, η, ω) = −∂∗0a(ω) ,

since 〈 Φ(0, η, ·) 〉 = 0. The standard formula for ahom is given by ahom =
limη→0 q(0, η), where Φ(0, η, ω) is the solution to (2.4) -see [15, 32] for the ellip-
tic case τ0,1 ≡ identity and [21] for the parabolic case.

We define the d dimensional periodic column vector e(ξ) ∈ Cd to have jth entry
given by the formula ej(ξ) = e−iej ·ξ − 1, 1 ≤ j ≤ d. It was shown in [8] that the
solution u(x, t, ω), x ∈ Zd, t = 0, 1, 2, .., ω ∈ Ω, to the initial value problem (1.2),
(1.3) has the representation
(2.5)

u(x, t, ω) =
1

(2π)d+1

∫
[−π,π]d+1

ĥ(ξ)e−iξ.x+η(t+1)

eη − 1 + e(ξ)∗q(ξ, η)e(ξ)
[1 + Φ(ξ, η, τx,tω)e(ξ)] d[=η] dξ,

where ĥ(·) is the Fourier transform of h(·),

(2.6) ĥ(ξ) =
∑
x∈Zd

h(x)eiξ·x .

Note that the integration in (2.5) with respect to =η over the interval [−π, π] is for
any fixed value of <η > 0. Since the integrand is a function of η which is analytic
in η for <η > 0 and also periodic of period 2π with respect to =η, the integral on
the RHS of (2.5) is independent of <η > 0. It follows from (2.5) that the Fourier-

Laplace transform Ĝa(ξ, η) of the averaged Green’s function Ga(·, ·) for (1.2), (1.3)
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given by

(2.7) Ĝa(ξ, η) =

∞∑
t=0

∑
x∈Zd

Ga(x, t) exp[ix.ξ − ηt] , ξ ∈ Rd, <η > 0,

has the representation

(2.8) Ĝa(ξ, η) = eη/[eη − 1 + e(ξ)∗q(ξ, η)e(ξ)] .

The solution to (2.5) can be generated by a convergent perturbation expansion.
Let H(Ω) be the Hilbert space of measurable functions ψ : Ω→ Cd with norm ‖ψ‖
given by ‖ψ‖2 = 〈 |ψ(·)|2 〉. We define an operator Tξ,η on H(Ω) as follows: For
any g ∈ H, let ψ(ξ, η, ω) be the solution to the equation

(2.9)
1

Λ
[eη ψ(ξ, η, τ0,1ω)− ψ(ξ, η, ω)] + ∂∗ξ∂ξψ(ξ, η, ω) = ∂∗ξ g(ω) .

Then Tξ,ηg(·) = ∂ξψ(ξ, η, ·), or more explicitly

(2.10) Tξ,ηg(ω) = Λ

∞∑
t=0

e−η(t+1)
∑
x∈Zd

{∇∇∗GΛ(x, t)}∗ exp[−ix.ξ] g(τx,−t−1ω),

where GΛ(·) is the solution to the initial value problem

(2.11) GΛ(x, t+ 1)−GΛ(x, t) + Λ∇∗∇GΛ(x, t) = 0, x ∈ Zd, t ∈ Z, t ≥ 0,

GΛ(x, 0) = δ(x), x ∈ Zd .

Equation (2.11) has a unique solution provided 4dΛ ≤ 1, and the function GΛ(x, t)
satisfies an inequality

(2.12) 0 ≤ GΛ(x, t) + (Λt+ 1)1/2|∇GΛ(x, t)|+ (Λt+ 1)|∇∇∗GΛ(x, t)|

≤ Cd
[Λt+ 1]d/2

exp

[
−

min
{
|x|, |x|2/(Λt+ 1)

}
Cd

]
,

where Cd > 0 is a constant depending only on dimension d. The inequality (2.12)
can be proved using the Fourier inversion formula and contour integration, since
the Fourier transform of GΛ can be explicitly computed from (2.11).

The operator Tξ,η is bounded onH(Ω) with ‖Tξ,η‖ ≤ 1, provided ξ ∈ Rd, <η > 0.
Now on setting a(·) = Λ[Id−b(·)], one sees that (2.2) is equivalent to the equation

(2.13) ∂ξΦ(ξ, η, ·) = PTξ,η[b(·)∂ξΦ(ξ, η, ·)] + PTξ,η[b(·)] .
Since ‖Tξ,η‖ ≤ 1 and ‖b(ω)‖ ≤ 1−λ/Λ, ω ∈ Ω, the Neumann series for the solution
to (2.13) given by

(2.14) ∂ξΦ(ξ, η, ·) =

∞∑
m=1

[PTξ,ηb(·)]m ,

converges in H(Ω).
It will be useful later to express the operator Tξ,η in its Fourier representation.

To do this we use the standard notation for the Fourier transform of a function
h : Zd+1 → C which we denote by h(x, t), x ∈ Zd, t ∈ Z. Letting ĥ(ζ, θ), ζ ∈
[−π, π]d, θ ∈ [−π, π], be the Fourier transform of h(·, ·), then

(2.15) ĥ(ζ, θ) =
∑
x∈Zd

∑
t∈Z

h(x, t)eix.ζ+it·θ .



8 JOSEPH G. CONLON AND ARASH FAHIM

The Fourier inversion formula yields

(2.16) h(x, t) =
1

(2π)d+1

∫
[−π,π]d+1

ĥ(ζ, θ)e−ix.ζ−itθ dζ dθ, x ∈ Zd, t ∈ Z .

Now the action of the translation group τx,0, x ∈ Zd, on Ω can be described by a
set A1, ..., Ad of commuting self-adjoint operators on L2(Ω), so that

(2.17) f(τx,0·) = exp[ix.A]f(·), x ∈ Zd, f ∈ L2(Ω),

where A = (A1, .., Ad). Similarly the action of the translation group τ0,t, t ∈ Z,
on Ω can be described by a self-adjoint operator B on L2(Ω) which commutes with
A1, .., Ad, so that

(2.18) f(τ0,t·) = exp[−itB]f(·), t ∈ Z, f ∈ L2(Ω),

It follows then from (2.9),(2.17), (2.18) that

(2.19) Tξ,ηg(·) =
Λe(ξ −A)e∗(ξ −A)

eη−iB − 1 + Λe(ξ −A)∗e(ξ −A)
g(·) .

The Neumann series (2.14) for the solution to (2.13) yields a convergent per-
turbation expansion for the function q(ξ, η) of (2.3). Thus for m = 1, 2..., let the
matrix function hm(ξ, η) be defined for <η > 0, ξ ∈ Rd, by

(2.20) hm(ξ, η) = 〈 b(·) [PTξ,ηb(·)]m 〉 ,
whence (2.3), (2.14) imply that

(2.21) q(ξ, η) = 〈 a(·) 〉 − Λ

∞∑
m=1

hm(ξ, η) .

It is easy to see that the function q(ξ, η) is C∞ for ξ ∈ Rd, <η > 0. As in [8, 10]
we can extend this result as follows:

Proposition 2.1. Suppose that 4dΛ ≤ 1 and any of the translation operators
τej ,0, 1 ≤ j ≤ d, or τ0,1 is ergodic on Ω. Then the limit lim(ξ,η)→(0,0) q(ξ, η) =
q(0, 0) exists. If any of the translation operators is weak mixing [27] on Ω then
q(ξ, η), ξ ∈ Rd, <η > 0, extends to a continuous function on ξ ∈ Rd, <η ≥ 0.

Proof. We follow the same argument as in Lemma 2.5 of [8] and Proposition 2.1 of
[10]. �

Remark 2. Note that the projection operator P in equation (2.2) plays a critical
role in establishing continuity. For a constant function g(·) ≡ v ∈ Cd, one has

(2.22) Tξ,ηg(·) = [e(ξ)∗v]e(ξ)
/

[(eη − 1)/Λ + e(ξ)∗e(ξ)] ,

which does not extend to a continuous function of (ξ, η) on the set ξ ∈ Rd, <η ≥ 0.

Next we show that the function q(ξ, η) with domain ξ ∈ Rd, <η > 0, can be
extended to complex ξ = <ξ + i=ξ ∈ Cd with small imaginary part.

Lemma 2.1. The C∞ operator valued function (ξ, η)→ Tξ,η with domain {(ξ, η) :
ξ ∈ Rd, <η > 0} and range the space of bounded linear operators B[H(Ω)] on H(Ω),
has an analytic continuation to a region {(ξ, η) ∈ Cd+1 : 0 < <η < Λ, |=ξ| <
C1

√
<η/Λ}, where C1 is a constant depending only on d. For (ξ, η) in this region

the norm of Tξ,η satisfies the inequality ‖Tξ,η‖ ≤ 1 + C2|=ξ|2/[<η/Λ], where the
constant C2 depends only on d.
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Proof. That there is an analytic continuation to the region {ξ ∈ Cd : 0 < <η <
Λ, |=ξ| < C1

√
<η/Λ} follows from (2.10), (2.12) using the fact that |∇∇∗GΛ(x, t)|

is bounded by (Λt+ 1)−1 times the RHS of (2.12). For (ξ, η) in this region one has
that
(2.23)
<[−η(t+1)− ix ·ξ] ≤ sup

|θ|<1

[−θ2Λ(t+1)+C1θ|x|] ≤ min{C1|x|, C2
1 |x|2/4Λ(t+1)} .

Hence using the representation (2.10) for Tξ,η, we see that the analytic continuation

extends to any region {ξ ∈ Cd : 0 < <η < Λ, |=ξ| < C1

√
<η/Λ} provided C1

satisfies the inequalities C1 < C−1
d , C2

1 < 4C−1
d , where Cd is the constant in (2.12).

The bound on ‖Tξ,η‖ can be obtained from (2.9). Thus on multiplying (2.9) by
ψ̄(ξ, η, τ0,1ω) we see that
(2.24)
e<η

Λ
〈 |ψ(ξ, η, ·)|2 〉 ≤ 1

Λ
|〈 ψ̄(ξ, η, τ0,1·)[I−Λ∂∗ξ∂ξ]ψ(ξ, η, ·) 〉|+|〈 ψ̄(ξ, η, τ0,1·)∂∗ξ g(·) 〉| .

Since 4dΛ ≤ 1 it follows that for ξ ∈ Rd the operator I − Λ∂∗ξ∂ξ is symmetric

non-negative definite. Hence if ξ ∈ Rd one has that

(2.25) |〈 ψ̄(ξ, η, τ0,1·)[I − Λ∂∗ξ∂ξ]ψ(ξ, η, ·) 〉| ≤
1

2
〈 ψ̄(ξ, η, τ0,1·)[I − Λ∂∗ξ∂ξ]ψ(ξ, η, τ0,1·) 〉+

1

2
〈 ψ̄(ξ, η, ·)[I − Λ∂∗ξ∂ξ]ψ(ξ, η, ·) 〉 .

Similarly one has that

(2.26) |〈 ψ̄(ξ, η, τ0,1·)∂∗ξ g(·) 〉| ≤ 1

2
〈 ψ̄(ξ, η, τ0,1·)[∂∗ξ∂ξ]ψ(ξ, η, τ0,1·) 〉+

1

2
‖g(·)‖2 .

We conclude from (2.24)-(2.26) that ‖Tξ,η‖ ≤ 1 provided ξ ∈ Rd and <η > 0. This
argument can then be extended as in Lemma 2.1 of [10] to ξ ∈ Cd. �

Corollary 2.1. The d × d matrix function q(ξ, η) with domain {(ξ, η) : ξ ∈
Rd, <η > 0}, has an analytic continuation to a region {ξ ∈ Cd : 0 < <η <

Λ, |=ξ| < C1

√
λ<η/Λ2}, where C1 is a constant depending only on d. There is a

constant C2 depending only on d such that for ξ in this region,

(2.27) ‖q(ξ, η)− q(<ξ, η)‖ ≤ C2Λ2

λ

|=ξ|√
<η/Λ

.

Proof. The fact that q(ξ, η) has an analytic continuation follows from the rep-
resentations (2.20), (2.21), Lemma 2.1 and the matrix norm bound ‖b(ω)‖ ≤
1 − λ/Λ, ω ∈ Ω. On summing the perturbation series (2.21), we conclude that

for ξ satisfying |=ξ| < C1

√
λ<η/Λ2, then ‖q(ξ, η)‖ ≤ C2Λ2/λ for a constant C2

depending only on d, provided C1 is chosen sufficiently small, depending only on
d. By arguing as in Lemma 2.1 we also see that there are positive constants C1, C2

such that

(2.28) ‖Tξ,η − T<ξ,η‖ ≤ C2|=ξ|/
√
<η/Λ , ξ ∈ Cd, |=ξ| < C1

√
<η/Λ .

The inequality (2.27) follows from (2.28). �

It follows from Corollary 2.1 that for ξ ∈ Cd, η ∈ C with fixed =ξ ∈ Rd, <η >
0 satisfying 0 < <η < Λ, |=ξ| < C1

√
λ<η/Λ2, the periodic matrix function

(<ξ,=η)→ q(ξ, η) on Rd+1 with fundamental region [−π, π]d+1, is bounded.
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Corollary 2.2. There exist positive constants C1, C2 depending only on d and Λ/λ
such that

(2.29) |eη − 1 + e(ξ̄)∗q(ξ, η)e(ξ)| ≥ C2[ |η|+ Λ|e(<ξ)|2] ,

provided 0 < <η < Λ, |=ξ| < C1

√
<η/Λ.

Proof. The inequality (2.29) follows from Corollary 2.1 and Lemma 2.7, Lemma 2.8
of [8]. �

Proof of Theorem 1.1-discrete time case. Taking h(x) = f(εx), we have from (2.5)
that
(2.30)

〈 uε(x/ε, t/ε2, ·) 〉 =
1

(2π)d+1

∫
[−π/ε,π/ε]d

∫ π/ε2

−π/ε2

ε2f̂ε(ξ)e
−iξ.x+η(t+ε2)

eε2η − 1 + e(εξ)∗q(εξ, ε2η)e(εξ)
d[=η] dξ ,

where

(2.31) f̂ε(ξ) =
∑
y∈εZd

εdf(y)eiy·ξ .

We also have that

(2.32) uhom(x, t) =
1

(2π)d+1

∫
Rd

∫
R

f̂(ξ)e−iξ.x+ηt

η + ξ∗q(0, 0)ξ
d[=η] dξ,

where f̂(·) is the Fourier transform of f(·),

(2.33) f̂(ξ) =

∫
Rd

f(y)eiy·ξ dy , ξ ∈ Rd.

Since f : Rd → R is C∞ of compact support it follows from (2.31), (2.33) that
(2.34)

sup
0<ε≤1,ξ∈[−π/ε,π/ε]d

|f̂ε(ξ)|(1+|ξ|2)N <∞, sup
0<ε≤1,ξ∈[−π/ε,π/ε]d

|f̂ε(ξ)−f̂(ξ)|(1+|ξ|2)N/ε2 <∞ ,

where N in (2.34) can be arbitrarily large.
We first observe from (2.34) and Lemma 2.9, Lemma 2.10 of [8] that

(2.35)

∫
|ξ|>1/

√
Λε

∣∣∣∣∣
∫ π/ε2

−π/ε2

ε2f̂ε(ξ)e
−iξ.x+η(t+ε2)

eε2η − 1 + e(εξ)∗q(εξ, ε2η)e(εξ)
d[=η]

∣∣∣∣∣ dξ ≤ Cε ,

for a constant C depending only on the function f(·) and d, λ,Λ. Since the function
q(ξ, η) is continuous at (ξ, η) = (0, 0), we similarly see there exists for any δ > 0 an
ε(δ) > 0 depending only on δ, d, λ,Λ, such that if ε ≤ ε(δ), then
(2.36)∣∣∣∣∣
∫ π/ε2

−π/ε2

ε2eη(t+ε2)

eε2η − 1 + e(εξ)∗q(εξ, ε2η)e(εξ)
− ε2eη(t+ε2)

eε2η − 1 + e(εξ)∗q(0, 0)e(εξ)
d[=η]

∣∣∣∣∣ ≤ δ

for all ξ ∈ [−π/ε, π/ε]d such that |ξ| ≤ 1/
√

Λε. It follows from (2.34), (2.35),
(2.36) that for any δ > 0 there exists ε(δ) > 0 depending only on δ, d, λ,Λ, and the
function f(·), such that
(2.37)

sup
x∈εZd,t∈ε2Z+

∣∣∣∣∣〈 uε(x/ε, t/ε2, ·) 〉 −
∫

[−π/ε,π/ε]d

∫ π/ε2

−π/ε2

ε2f̂(ξ)e−iξ·x+η(t+ε2)

eε2η − 1 + e(εξ)∗q(0, 0)e(εξ)
d[=η] dξ

∣∣∣∣∣ ≤ δ
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provided ε ≤ ε(δ). If we use the identities
(2.38)

1

2π

∫ π/ε2

−π/ε2

ε2eη(t+ε2)

eε2η − 1 + e(εξ)∗q(0, 0)e(εξ)
d[=η] = [1− e(εξ)∗q(0, 0)e(εξ)]

t/ε2
,

(2.39)
1

2π

∫
R

eηt

η + ξ∗q(0, 0)ξ
d[=η] = exp [−{ξ∗q(0, 0)ξ}t] ,

we can conclude from (2.32),(2.37) that for any δ > 0 there exists ε(δ) > 0 depend-
ing only on δ, d, λ,Λ, and the function f(·), such that

(2.40) sup
x∈εZd,t∈ε2Z+

∣∣〈 uε(x/ε, t/ε2, ·) 〉 − uhom(x, t)
∣∣ ≤ δ

provided ε ≤ ε(δ). �

Remark 3. It is easy to see that if τej ,0 for some j, 1 ≤ j ≤ d, or τ0,1 acts
ergodically on Ω then

(2.41) lim
(ξ,η)→(0,0)

[
e<η − 1

]
‖Φ(ξ, η, ·)‖2 = 0.

In the case of an elliptic equation with random coefficients, the limit corresponding
to (2.41) implies that the solution to the random equation converges in distribu-
tion to the solution of the homogenized equation [10]. This is not the case for the
parabolic problem due to the fact that integrand in (2.30), when multiplied by an
arbitrary bounded function of η, can have a logarithmic divergence upon integration
with respect to =η.

In the continuous time case there is a similar development to the above. The
solution u(x, t, ω) to (1.3), (1.4) has the representation
(2.42)

u(x, t, ω) =
1

(2π)d+1

∫
[−π,π]d

∫ ∞
−∞

ĥ(ξ)e−iξ.x+ηt

η + e(ξ)∗q(ξ, η)e(ξ)
[1 + Φ(ξ, η, τx,tω)e(ξ)] d[=η] dξ,

where now the d dimensional row vector Φ(ξ, η, ω) is the solution to the equation

(2.43) ηΦ(ξ, η, ω) + ∂Φ(ξ, η, ω) + P∂∗ξa(ω)∂ξΦ(ξ, η, ω) = −P∂∗ξa(ω) .

In (2.43) the operator ∂ is the infinitesimal generator of the time translation group
τ0,t, t ∈ R. The d × d matrix function q(ξ, η) in (2.42) is given in terms of the
solution to (2.43) by the formula (2.3). It follows from (2.42) that the Fourier

transform Ĝa(ξ, η) of the averaged Green’s function Ga(·, ·) for (1.4) defined by

(2.44) Ĝa(ξ, η) =

∫ ∞
0

dt
∑
x∈Zd

Ga(x, t) exp[ix.ξ − ηt] ,

has the representation

(2.45) Ĝa(ξ, η) = 1/[η + e(ξ)∗q(ξ, η)e(ξ)] , ξ ∈ Rd, <η > 0.

Let G(x, t), x ∈ Zd, t > 0, be the solution to the initial value problem

∂G(x, t)

∂t
+∇∗∇G(x, t) = 0, x ∈ Zd, t > 0,(2.46)

G(x, 0) = δ(x), x ∈ Zd .
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Then the equation (2.43) is equivalent to (2.13) where the operator Tξ,η is given by
the formula

(2.47) Tξ,ηg(ω) = Λ

∫ ∞
0

e−ηt dt
∑
x∈Zd

{∇∇∗GΛ(x, t)}∗ exp[−ix.ξ] g(τx,−tω) ,

with GΛ(x, t) = G(x,Λt), x ∈ Zd, t > 0. Note that in the continuous time case
there is no restriction on the value of Λ > 0. The operator Tξ,η of (2.47) is bounded
on H(Ω) with ‖Tξ,η‖ ≤ 1, provided ξ ∈ Rd, <η > 0, and hence the Neumann series
for the solution of (2.13) converges in H(Ω).

As in the discrete time case it will be useful later to express the operator Tξ,η in
its Fourier representation. To do this we use the standard notation for the Fourier
transform of a function h : Zd×R→ C which we denote by h(x, t), x ∈ Zd, t ∈ R.

Letting ĥ(ζ, θ), ζ ∈ [−π, π]d, θ ∈ R, be the Fourier transform of h(·, ·), then

(2.48) ĥ(ζ, θ) =

∫ ∞
−∞

dt
∑
x∈Zd

h(x, t)eix.ζ+itθ .

The Fourier inversion formula yields

(2.49) h(x, t) =
1

(2π)d+1

∫ ∞
−∞

∫
[−π,π]d

ĥ(ζ, θ)e−ix.ζ−itθ dζ dθ, x ∈ Zd, t ∈ R .

Now the action of the translation group τx,0, x ∈ Zd, on Ω can be described by a
set A1, ..., Ad of commuting self-adjoint operators on L2(Ω), so that

(2.50) f(τx,0·) = exp[ix.A]f(·), x ∈ Zd, f ∈ L2(Ω),

where A = (A1, .., Ad). Similarly the action of the translation group τ0,t, t ∈ R,
on Ω can be described by a self-adjoint operator B on L2(Ω) which commutes with
A1, .., Ad, so that

(2.51) f(τ0,t·) = exp[−itB]f(·), t ∈ R, f ∈ L2(Ω) ,

whence the infinitesimal generator ∂ in (2.43) is given by ∂ = −iB. It follows now
from (2.47),(2.50), (2.51) that

(2.52) Tξ,ηg(·) =
Λe(ξ −A)e∗(ξ −A)

η − iB + Λe(ξ −A)∗e(ξ −A)
g(·) .

The Neumann series for the solution to (2.13)-with the operator Tξ,η given now
by (2.52)- yields a convergent perturbation expansion (2.20), (2.21) for the function
q(ξ, η). It is easy to see that the analogues of Proposition 2.1, Lemma 2.1 and
Corollary 2.1 continue to hold for the continuous time case. In the continuous time
analogue of Corollary 2.2 the inequality (2.29) is replaced by

(2.53) |η + e(ξ̄)∗q(ξ, η)e(ξ)| ≥ C[ |η|+ Λ|e(<ξ)|2] .

The inequality (2.53) follows from Lemma 5.3 of [8].

Proof of Theorem 1.1-continuous time case. We proceed as in the discrete time
case replacing (2.5) by (2.42) and using Lemma 5.4, Lemma 5.5 of [8] in place
of Lemma 2.9, Lemma 2.10 of [8]. �



STRONG CONVERGENCE 13

3. Rate of Convergence in Homogenization

In this section we shall prove Theorem 1.2 under the assumption that the solu-
tions Φ(ξ, η, ω) of (2.2), (2.43) satisfy a certain property which we describe below.
In §5 we shall show that this property holds for the independent variable environ-
ment, and in §6 for the massive field theory environment. We first consider the
discrete time case, whence Φ(ξ, η, ω) is a solution to (2.2).

For 1 ≤ p ≤ ∞ let Lp(Zd+1,Cd ⊗ Cd) be the Banach space of d × d matrix
valued functions g : Zd+1 → Cd ⊗Cd with norm ‖g‖p defined by
(3.1)

‖g‖pp = sup
v∈Cd:|v|=1

∑
(x,t)∈Zd+1

|g(x, t)v|p if p <∞, ‖g‖∞ = sup
v∈Cd:|v|=1

[
sup

(x,t)∈Zd+1

|g(x, t)v|

]
,

where |g(x, t)v| is the Euclidean norm of the vector g(x, t)v ∈ Cd. We assume the
following:

Hypothesis 3.1. There exists p0(Λ/λ) > 1 depending only on d,Λ/λ and a con-
stant C such that for 1 ≤ p ≤ p0(Λ/λ),

(3.2) ‖P
∑

(x,t)∈Zd+1

g(x, t)b(τx,−t·)[v + ∂ξΦ(ξ, η, τx,−t·)v]‖ ≤ C‖g‖p|v|

for all ξ ∈ Rd, η ∈ C with 0 < <η < Λ, and g ∈ Lp(Zd+1,Cd ⊗Cd), v ∈ Cd.

Remark 4. Note from Lemma 2.3 of [8] that since ‖∂ξΦ(ξ, η, ·)v‖2 ≤ Λ|v|2/λ for
ξ ∈ Rd, <η > 0, the inequality (3.2) holds for p = 1. Hence if (3.2) holds for
p = p0(Λ/λ), by the Riesz convexity theorem [31] it also holds for any p satisfying
1 ≤ p ≤ p0(Λ/λ).

We show that if Hypothesis 3.1 holds then the function q(ξ, η) defined by (2.3)
is Hölder continuous with exponent depending on d,Λ/λ.

Lemma 3.1. Assume Hypothesis 3.1 holds. Then there exists α > 0 depending
only on d,Λ/λ and a constant Cα such that the d × d matrix function q(ξ, η) of
(2.3) satisfies the inequality

(3.3) ‖q(ξ′, η′)− q(ξ, η)‖ ≤ CαΛ[ |ξ′ − ξ|α + |(η′ − η)/Λ|α/2 ]

for all ξ′, ξ ∈ Rd, 0 < <η′,<η < Λ.

Proof. It follows from (2.20) that
(3.4)

hk(ξ′, η′)−hk(ξ, η) =

k∑
j=1

〈 b(·) [PTξ′,η′b(·)]j−1 P [Tξ′,η′−Tξ,η]b(·) [PTξ,ηb(·)]k−j 〉 .

Hence we conclude from (2.13), (2.21) and (3.4) upon using the inequality ‖Tξ′,η′‖ ≤
1 that for v ∈ Cd,

(3.5) ‖[q(ξ′, η′)− q(ξ, η)]v‖ ≤ (Λ2/λ)‖P [Tξ′,η′ − Tξ,η]b(·) [v + ∂ξΦ(ξ, η, ·)v]‖ .

From (2.10) we see that the RHS of (3.5) is the same as the LHS of (3.2) with the
function g(·, ·) given by the formula

(3.6) g(x, t) = Λ[∇∇∗GΛ(x, t− 1)]∗[ e−η
′t−ix·ξ′ − e−ηt−ix·ξ ] .
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Observe now that for 0 ≤ α ≤ 1 one has
(3.7)

|e−η
′t−ix·ξ′−e−ηt−ix·ξ| ≤ 2 exp [−min(<η,<η′)t ]

{
|x|α|ξ′ − ξ|α + (Λt)α/2|(η′ − η)/Λ|α/2

}
.

Hence from (2.12) the function g(·, ·) is in Lp(Zd+1,Cd⊗Cd) with p > (d+2)/(d+
2− α), and with ‖g(·, ·)‖p satisfying the inequality

(3.8) ‖g(·, ·)‖p ≤ CpΛ
1−1/p[ |ξ′ − ξ|α + |(η′ − η)/Λ|α/2 ] ,

where the constant Cp depends only on d, p. The Hölder continuity (3.3) for suffi-
ciently small α > 0 follows from (3.5) and (3.8). �

Proof of Theorem 1.2-discrete time case. We follow the proof of Theorem 1.1 using
the Hölder continuity of the function q(·, ·). �

For the continuous time case we prove Theorem 1.2 assuming a hypothesis anal-
ogous to Hypothesis 3.1. For 1 ≤ p ≤ ∞ let Lp(Zd ×R,Cd ⊗Cd) be the Banach
space of d × d matrix valued functions g : Zd × R → Cd ⊗ Cd with norm ‖g‖p
defined by
(3.9)

‖g‖pp = sup
v∈Cd:|v|=1

∑
x∈Zd

∫ ∞
−∞

dt |g(x, t)v|p if p <∞, ‖g‖∞ = sup
v∈Cd:|v|=1

[
sup

(x,t)∈Zd×R
|g(x, t)v|

]
,

where |g(x, t)v| is the Euclidean norm of the vector g(x, t)v ∈ Cd.

Hypothesis 3.2. There exists p0(Λ/λ) > 1 depending only on d,Λ/λ and a con-
stant C such that for 1 ≤ p ≤ p0(Λ/λ),

(3.10) ‖P
∑
x∈Zd

∫ ∞
−∞

dt g(x, t)b(τx,−t·)[v + ∂ξΦ(ξ, η, τx,−t·)v]‖ ≤ C‖g‖p|v|

for all ξ ∈ Rd, η ∈ C with 0 < <η < Λ, and g ∈ Lp(Zd ×R,Cd ⊗Cd), v ∈ Cd.

It is easy to see that Hypothesis 3.2 implies the Hölder continuity of the matrix
function q(·, ·) defined by (2.3), (2.43). We conclude that Theorem 1.2 holds for
the continuous time case also.

4. Fluctuations of averaged Green’s functions

In this section we shall prove Theorem 1.3 under the assumption that the solu-
tions Φ(ξ, η, ω) of (2.2), (2.43) satisfy stronger versions of Hypothesis 3.1 and 3.2
of §3. Thus in the discrete time case our hypothesis is:

Hypothesis 4.1. Let Tξ,η be the operator (2.10) on the Hilbert space H(Ω) and
T ∗ξ,ηdenote its adjoint. Then for k ≥ 1, p2 = p3 = · · · = pk = 1, and Sξ,η = Tξ,η
or Sξ,η = T ∗ξ,η, there exists p0(Λ/λ) > 1 depending only on d,Λ/λ and a constant

C(k) such that

(4.1)

∥∥∥∥∥∥
∑

(x1,t1),...(xk,tk)∈Zd+1


k∏
j=1

gj(xj , tj)τxj ,−tjPb(·)[I − PSξ,ηb(·)]−1

 v

∥∥∥∥∥∥
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≤ C(k)

k∏
j=1

‖gj‖pj |v| for gj ∈ Lpj (Zd+1,Cd ⊗Cd), j = 1, .., k, v ∈ Cd,

provided 1 ≤ p1 ≤ p0(Λ/λ) and ξ ∈ Cd, η ∈ C satisfy 0 < <η < Λ, |=ξ| ≤
C1

√
<η/Λ, with C1 depending only on d,Λ/λ.

Remark 5. Note that from (2.13) and Lemma 2.1 we see that the inequality (4.1)
holds for p1 = 1. Hence if (4.1) holds for p1 = p0(Λ/λ), by the Riesz convexity
theorem [31] it also holds for any p1 satisfying 1 ≤ p1 ≤ p0(Λ/λ).

We define spaces Lp([−π, π]d+1 × Ω,Cd ⊗Cd) of d× d matrix valued functions
g : [−π, π]d+1 × Ω→ Cd ⊗Cd with norm ‖g‖p defined by

(4.2)

‖g‖pp = sup
v∈Cd:|v|=1

1

(2π)d+1

∫
[−π,π]d+1

〈 |g(ξ,=η, ·)v|2 〉p/2 d[=η] dξ if p <∞,

‖g‖∞ = sup
v∈Cd:|v|=1

[
sup

(ξ,=η)∈[−π,π]d+1,

〈 |g(ξ,=η, ·)v|2 〉1/2
]
.

We consider ξ ∈ Cd, η ∈ C with ξ having fixed imaginary part, η having fixed
positive real part, and satisfying the conditions of Hypothesis 4.1. For k ≥ 1 we
define a multilinear operator Tk,=ξ,<η from a sequence [g1, g2, .., gk] of k functions
gj : Zd+1 → Cd ⊗ Cd, j = 1, .., k, to periodic functions Tk,=ξ,<η[g1, g2, ..gk] :
[−π, π]d+1 × Ω→ Cd ⊗Cd by

(4.3) Tk,=ξ,<η[g1, g2, ..., gk](<ξ,=η, ·) =∑
(x1,t1),..(xk,tk)∈Zd+1

k∏
j=1

gj(xj , tj)e
−i(xj .<ξ+t=η)τxj ,−tjPb(·)[I − PTξ,ηb(·)]−1 .

Note that the RHS of (4.3) depends on (<ξ,=ξ) and (<η,=η) through taking ξ =
<ξ+ i=ξ and η = <η+ i=η in the operator Tξ,η as well as through the exponential

term. We similarly define multilinear operators T̃k,=ξ,<η by replacing Tξ,η in (4.3)
with T ∗ξ,η. For p satisfying 1 ≤ p ≤ ∞ let p′ be the conjugate of p, so 1/p+1/p′ = 1.

In [8] the following result was obtained:

Lemma 4.1. Suppose 2 ≤ q ≤ ∞ and p1, ..., pk with 1 ≤ p1, ..., pk ≤ 2 satisfy the
identity

(4.4)
1

p′1
+

1

p′2
+ · · ·+ 1

p′k
=

1

q
,

and for j = 1, .., k, the functions gj ∈ Lpj (Zd+1,Cd ⊗ Cd). Then there ex-
ist positive constants C1, C2 depending only on d,Λ/λ such that if 0 < <η <

Λ, |=ξ| < C1

√
<η/Λ, the function Sk,=ξ,<η[g1, g2, ..gk] = Tk,=ξ,<η[g1, g2, ..gk] or

Sk,=ξ,<η[g1, g2, ..gk] = T̃k,=ξ,<η[g1, g2, ..gk] is in Lq([−π, π]d+1 × Ω,Cd ⊗Cd) and

(4.5) ‖ Sk,=ξ,<η[g1, g2, ..gk] ‖q ≤ Ck2
k∏
j=1

‖gj‖pj .

If we assume Hypothesis 4.1 we can improve Lemma 4.1 as follows:
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Lemma 4.2. Suppose Hypothesis 4.1 holds with p0(Λ/λ) ≤ 2, and q, p1, ..., pk with
2 ≤ q ≤ ∞, 1 ≤ p1, ..., pk ≤ 2 satisfy the inequality

(4.6)
1

q
≤ 1

p′1
+

1

p′2
+ · · ·+ 1

p′k
≤ 1

q
+

[
1− 1

p0(Λ/λ)

] [
1− 2

q

]
.

Then there exists a positive constant C1 depending only on d,Λ/λ such that if 0 <

<η < Λ, |=ξ| < C1

√
<η/Λ, the function Sk,=ξ,<η[g1, g2, ..gk] = Tk,=ξ,<η[g1, g2, ..gk]

or Sk,=ξ,<η[g1, g2, ..gk] = T̃k,=ξ,<η[g1, g2, ..gk] is in Lq([−π, π]d+1×Ω,Cd⊗Cd) and

(4.7) ‖ Sk,=ξ,<η[g1, g2, ..gk] ‖q ≤ C(k)

k∏
j=1

‖gj‖pj ,

for some constant C(k).

Proof. We assume first that p2 = p3 = · · · = pk = 1, in which case Hypothesis 4.1
and Lemma 4.1 imply respectively that (4.7) holds for 1/p′1 ≤ 1−1/p0(Λ/λ), q =∞,
and for p1 = q = 2. The Riesz convexity theorem then implies that (4.7) holds if
p′1, q satisfy (4.6) with p2 = p3 = · · · = pk = 1. Next assume for induction that we
have proved (4.7) in the case when (4.6) holds with pr+1 = pr+2 = · · · = pk = 1 for
some r ≥ 1. Hence (4.7) holds for 1/p′1+· · · 1/p′r ≤ 1−1/p0(Λ/λ), pr+1 = 1, q =∞,
where the functions gr+1, .., gk are fixed with pr+2 = pr+3 = · · · = pk = 1. From
Lemma 4.1 we see that (4.7) also holds for 1/p′1 + · · · 1/p′r+1 = 1/2, q = 2, with
the same functions gr+1, .., gk. Now we fix the functions g1, .., gr, gr+2, .., gk with
pr+1 = pr+2 = · · · = pk = 1 and 1/p′1 + · · · 1/p′r ≤ 1− 1/p0(Λ/λ) ≤ 1/2. Applying
the Riesz convexity theorem to the functions gr+1, we conclude that (4.7) holds if
p1, .., pr+1 satisfies (4.6) with pr+2 = pr+3 = · · · = pk = 1. �

For 1 ≤ p <∞ let Lpw([−π, π]d+1) be the space of functions g : [−π, π]d+1 → C
which are weakly p integrable. The norm ‖g‖p,w of g is defined to be the minimum
number satisfying the inequality
(4.8)

(2π)−(d+1)meas{(ξ,=η) ∈ [−π, π]d+1 : |g(ξ,=η)| > z } ≤ ‖g‖pp,w/zp for all z > 0.

Proposition 4.1. Assume Hypothesis 4.1 holds, 4dΛ ≤ 1 and m is a positive
integer. Then there exist positive constants C1 and α ≤ 1 depending only on d and
Λ/λ, such that

(4.9) ‖q(ξ′, η′)− q(ξ, η)‖ ≤ CΛ
[
|ξ′ − ξ|α + |(η′ − η)/Λ|α/2

]
,

for 0 < <η,<η′ ≤ Λ, ξ′, ξ ∈ Cd with |=ξ|+ |=ξ′| ≤ C1

√
<η/Λ ,

where C is a constant.
If ξ ∈ Cd, η ∈ C with fixed =ξ ∈ Rd, <η > 0 satisfying 0 < <η < Λ, |=ξ| <

C1

√
<η/Λ, and m < 1 + d/2, the function

(4.10) (<ξ,=η)→ ∂mqr,r′(ξ, η)

∂ηm
, (<ξ,=η) ∈ [−π, π]d+1 ,

is in the space Lpw([−π, π]d+1) with p = (1+d/2)/(m−α/2) and its norm is bounded
by CΛ1−m+1/p for some constant C.



STRONG CONVERGENCE 17

If m is the largest integer strictly less than 1 + d/2 and 0 ≤ δ < 1 + d/2 −m,
then for any ρ ∈ R satisfying |ρ| ≤ 1, the function

(4.11) (<ξ,=η)→ ∂m

∂ηm
[ qr,r′(ξ, η + iρ)− qr,r′(ξ, η) ] /|ρ|δ

is in the space Lpw([−π, π]d+1) with p = (1 + d/2)/(m + δ − α/2) and its norm is
bounded by CpΛ

1−m−δ+1/p, where the constant Cp can diverge as p→ 1.

Proof. The Hölder continuity (4.9) of the function q(·, ·) has already been proven in
Lemma 3.1. We first prove that the derivative (4.10) withm = 1 is in Lpw([−π, π]d+1)
with p = (1 + d/2)/(1 − α/2) for some α > 0 depending only on d,Λ/λ. Observe
from (2.20) and (2.21) that
(4.12)(

∂

∂η

)
q(ξ, η) = −Λ〈 b(·)[I − PTξ,ηb(·)]−1

{
∂

∂η
Tξ,η

}
Pb(·)[I − PTξ,ηb(·)]−1 〉 .

Denoting by [·, ·] the inner product for H(Ω), we therefore have for v1, v2 ∈ Cd that
(4.13)(

∂

∂η

)
v∗1q(ξ, η)v2 = −Λ

[
T̃1,=ξ,<η g(<ξ,=η, ·)v1, T1,=ξ,<η h(<ξ,=η, ·)v2

]
for certain d×d matrix valued functions g(x, t), h(x, t), x ∈ Zd, t ∈ Z. The functions
g(·, ·), h(·, ·) are determined from their Fourier transforms (2.15) by the formula

(4.14) ĝ(ζ, θ)∗ĥ(ζ, θ) = − Λe(i=ξ − ζ)e(−i=ξ − ζ)∗

[e<η−iθ − 1 + Λe(−i=ξ − ζ)∗e(i=ξ − ζ)]
2 ,

which follows from (2.19). We take ĥ(·, ·) to be given by the formula

(4.15) ĥ(ζ, θ) =

(
Λ

d

)1/2
1d e(−i=ξ − ζ)∗

[e<η−iθ − 1 + Λe(−i=ξ − ζ)∗e(i=ξ − ζ)]
,

where 1d is the d dimensional column vector with all entries equal to 1. From (2.11)
and (4.15) it follows that
(4.16)

h(x, t) =

(
Λ

d

)1/2

1d {∇GΛ(x, t− 1)}∗ex·=ξ−t<η if t ≥ 1, h(x, t) = 0 otherwise.

Assuming 0 < <η < Λ, |=ξ| ≤ C
√
<η/Λ, for sufficiently small positive constant C

depending only on d, it follows from (2.12), (4.16) that h(·, ·) is in Lpw(Zd+1) with
p = (d+ 2)/(d+ 1) and ‖h‖p,w ≤ CΛ1/2−1/p for a constant C depending only on d.

Observe now that by the Hunt interpolation theorem [29] the inequality (4.7) also
holds for the operator T1,=ξ,<η as a mapping from Lp1w (Zd+1) to Lqw([−π, π]d+1 ×
Ω,Cd⊗Cd). Hence T1,=ξ,<ηh is in Lqw([−π, π]d+1×Ω,Cd⊗Cd) provided q satisfies
the inequality in (4.6) with p1 = (d + 2)/(d + 1). Evidently we can choose q
so that q/2 > 1 + d/2. Since we can make an exactly similar argument for the

function g(x, t) and T̃1,=ξ,<ηg, we conclude from (4.13) that ∂qr,r′(ξ, η)/∂η is in the

space L
q/2
w ([−π, π]d+1) with norm bounded by Λ2−2/p times a constant. We have

proved for m = 1 that the derivative (4.10) is in the appropriate weak Lp space.
We proceed similarly to estimate the higher derivatives (4.10) and the fractional
derivative (4.11). �
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Remark 6. Proposition 4.1 with α = 0 was proven in [8]. In that case the constant
C in the statement of the Proposition depends only on d,Λ/λ.

Proposition 4.1 enables us to compare the averaged Green’s functionGa(x, t), x ∈
Zd, t ∈ Z+ for (1.2), (1.3) to the lattice Green’s function Glattice

ahom
(x, t), x ∈ Zd, t ∈

Z+ defined by

(4.17) Glattice
ahom

(x, t) =
1

(2π)d+1

∫
[−π,π]d+1

e−iξ.x+η(t+1)

eη − 1 + e(ξ)∗q(0, 0)e(ξ)
d[=η] dξ .

Theorem 4.1. Assume Hypothesis 4.1 holds and 4dΛ ≤ 1. Then there exist positive
constants α, γ, with α ≤ 1, depending only on d,Λ/λ and a constant C such that
for x ∈ Zd, t ∈ Z, t ≥ 0,

(4.18) |Ga(x, t)−Glattice
ahom

(x, t)| ≤ C

[Λt+ 1](d+α)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
,

(4.19)

|∇Ga(x, t)−∇Glattice
ahom

(x, t)| ≤ C

[Λt+ 1](d+1+α)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
.

If δ satisfies 0 < δ ≤ 1 then there exists α, γ > 0 depending only on d,Λ/λ, δ and a
constant Cδ such that the following inequality holds:

(4.20)
∣∣ [∇Ga(x′, t)−∇Glattice

ahom
(x′, t)]− [∇Ga(x, t)−∇Glattice

ahom
(x, t)]

∣∣
≤ |x′−x|1−δ Cδ

[Λt+ 1](d+2−δ+α)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
, x′, x ∈ Zd, 1/2 ≤ (|x′|+1)/(|x|+1) ≤ 2.

The constant α in (4.20) must satisfy α < δ.

Proof. From (2.8), (4.17) and Corollary 2.1 there is a constant C depending only
on Λ/λ such that for a ∈ Rd with |a| ≤ 1,
(4.21)

Ga(x, t)−Glattice
ahom

(x, t) =
exp[a.x/C + Λ|a|2(t+ 1)]

(2π)d+1

∫
[−π,π]d+1

e−iξ.x+i=η(t+1)fa(ξ,=η) dξ d[=η] ,

where the function fa(ξ,=η) is given by the formula

(4.22) fa(ξ,=η) =
e(ξ − ia/C)∗{q(0, 0)− q(ξ + ia/C,Λ|a|2 + i=η)}e(ξ + ia/C)

[exp[Λ|a|2 + i=η]− 1 + e(ξ − ia/C)∗q(0, 0)e(ξ + ia/C)]

× 1

[exp[Λ|a|2 + i=η]− 1 + e(ξ − ia/C)∗q(ξ + ia/C,Λ|a|2 + i=η)e(ξ + ia/C)]
.

The exponential decay in the inequalities (4.18)-(4.20) is obtained by choosing a in
(4.21) to be given by

(4.23) a = −x/(C+1)(Λt+1) if |x| ≤ Λt+1, a = −x/(C+1)|x| if |x| ≥ Λt+1 .

It follows from (2.29), Proposition 4.1 and Corollary 2.1 that there is a positive
constant C1 such that the function in (4.22) is bounded by

(4.24) |fa(ξ,=η)| ≤ C1[|e(ξ)|2 + |a|2]

Λ[|=η|/Λ + |e(ξ)|2 + |a|2]2−α/2
, for (ξ,=η) ∈ [−π, π]d+1.
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To complete the proof of the theorem we need to obtain the polynomial decay in
[Λt+ 1] in (4.18)-(4.20), whence we may assume that Λt ≥ 1. We divide the torus
[−π, π]d+1 into various regions, the first of which is

(4.25) E0,0 = {(ξ,=η) ∈ [−π, π]d+1 : Λt|e(ξ)|2 ≤ 1, |=η| ≤ 1/t } .

It follows then from (4.24) that there is a constant C2 such that

(4.26)

∫
E0,0

|fa(ξ,=η)| dξ d[=η] ≤ C2/[Λt+ 1](d+α)/2 .

Next we consider for k = 1, 2, .., regions

(4.27) E0,k = {(ξ,=η) ∈ [−π, π]d+1 : Λt|e(ξ)|2 ≤ 1, 2k−1/t < |=η| ≤ 2k/t } .

From (4.24) we see that if |a| ≤ 2/Λt there is a constant C3 such that
(4.28)∣∣∣∣∣

∫
E0,k

e−iξ.x+i=η(t+1)fa(ξ,=η) dξ d[=η]

∣∣∣∣∣ ≤ C32−k(1−α/2)/[Λt+ 1](d+α)/2 .

In general a = O(1), so we need to take advantage of the oscillatory nature of the
integral in (4.28). Let ρ = π/(t + 1) so that eiρ(t+1) = −1, and Eρ0,k = { (ξ,=η) :

(ξ,=η + ρ) ∈ E0,k }. Then the LHS of (4.28) is bounded by

(4.29)
1

2

∫
E0,k∩Eρ0,k

|fa(ξ,=η)− fa(ξ,=η + ρ)| dξ d[=η]+

1

2

∫
E0,k−Eρ0,k

|fa(ξ,=η)| dξ d[=η] +
1

2

∫
Eρ0,k−E0,k

|fa(ξ,=η + ρ)| dξ d[=η] .

It follows again from (4.24) that the last two integrals on the RHS of (4.29) are
bounded by the RHS of (4.28). In order to bound the first integral we observe from
the Hölder continuity (4.9) of the function q(·, ·) that there are constants C4, C5

and

(4.30) |fa(ξ,=η)− fa(ξ,=η + ρ)| ≤ C4[|e(ξ)|2 + |a|2](ρ/Λ)α/2

Λ[|=η|/Λ + |e(ξ)|2 + |a|2]2

+
C5[|e(ξ)|2 + |a|2](ρ/Λ)

Λ[|=η|/Λ + |e(ξ)|2 + |a|2]3−α/2
, for (ξ,=η) ∈ E0,k ∩ Eρ0.k .

Since we are assuming |a| ≥ 2/Λt it follows from (4.30) that

(4.31)
∑
k≥1

∫
E0,k∩Eρ0,k

|fa(ξ,=η)− fa(ξ,=η + ρ)| dξ d[=η] ≤ C6/[Λt+ 1](d+α)/2

for some constant C6. We therefore conclude from (4.26)-(4.31) that there is a
constant C7 and

(4.32)
∑
k≥0

∣∣∣∣∣
∫
E0,k

e−iξ.x+i=η(t+1)fa(ξ,=η) dξ d[=η]

∣∣∣∣∣ ≤ C7/[Λt+ 1](d+α)/2 .

The inequality (4.32) can also be derived by using the fact from Theorem 3.1
that the derivative ∂q(ξ + ia/C,Λ|a|2 + i=η)/∂[=η] is in the space Lpw([−π, π]d+1)
with p = (1 + d/2)/(1− α/2). Thus we observe that
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(4.33)

∣∣∣∣∣
∫
E0,k

e−iξ.x+i=η(t+1)fa(ξ,=η) dξ d[=η]

∣∣∣∣∣ ≤ 1

t+ 1

∫
∂E0,k

|fa(ξ,=η)| dξ

+
1

t+ 1

∫
E0,k

∣∣∣∣ ∂fa(ξ,=η)

∂[=η]

∣∣∣∣ dξ d[=η] ,

where ∂E0,k is the union of sets {(ξ,=η) : Λt|e(ξ)|2 ≤ 1, =η = constant} with the
constant given by ±2k/t or ±2k−1/t. It follows from (4.24) that the first integral on
the RHS of (4.33) is bounded by the RHS of (4.28). To bound the second integral
we use the inequality

(4.34)

∣∣∣∣ ∂fa(ξ,=η)

∂[=η]

∣∣∣∣ ≤ C8[|e(ξ)|2 + |a|2]

Λ2[|=η|/Λ + |e(ξ)|2 + |a|2]3−α/2

+
C9[|e(ξ)|2 + |a|2]

Λ2[|=η|/Λ + |e(ξ)|2 + |a|2]2

∣∣∣∣∂q(ξ + ia/C,Λ|a|2 + i=η)

∂[=η]

∣∣∣∣ ,
where C8, C9 are constants. We can bound the integral of the first term on the RHS
of (4.34) just as we did with the second term on the RHS of (4.30). To bound the
integral of the second term we use the well known fact that if f ∈ Lpw([−π, π]d+1)
with 1 < p <∞, then for any measurable set F , one has

(4.35)

∫
F

|f | ≤ Cp‖f‖p,wm(F )1−1/p ,

where the constant Cp depends only on p. Taking p = (1 + d/2)/(1 − α/2) we
conclude from Proposition 4.1 that 1/(t + 1) times the integral over E0,k of the
second term on the RHS of (4.34) is bounded by

(4.36)
C10[1/Λt+ |a|2]

Λt[2k/Λt+ |a|2]2
2k(1−1/p)

[Λt+ 1](d+α)/2

for some constant C10. Summing (4.36) over k ≥ 1 we obtain the inequality (4.32)
again.

For r ≥ 1, k ≥ 0, let Er,k be defined by
(4.37)
Er,k = {(ξ,=η) ∈ [−π, π]d+1 : 2r−1 < Λt|e(ξ)|2 ≤ 2r, 2k−1/t < |=η| ≤ 2k/t } , k ≥ 1,

Er,0 = {(ξ,=η) ∈ [−π, π]d+1 : 2r−1 < Λt|e(ξ)|2 ≤ 2r, |=η| ≤ 1/t } .
Then we have that

(4.38)

∞∑
k=0

∫
Er,k

e−iξ.x+i=η(t+1)fa(ξ,=η) dξ d[=η] =

im

(t+ 1)m

∞∑
k=0

∫
Er,k

e−iξ.x+i=η(t+1) ∂
mfa(ξ,=η)

∂[=η]m
dξ d[=η] .

Just as in (4.34) we see from Proposition 4.1 that

(4.39)
∂mfa(ξ,=η)

∂[=η]m
=

|e(ξ)|2 + |a|2

Λ2[|=η|/Λ + |e(ξ)|2 + |a|2]2
ga,m(ξ,=η) ,

where for m < 1 + d/2 the function ga,m(·, ·) is in Lpw([−π, π]d+1) with p = (1 +
d/2)/(m− α/2). Thus there is a constant C11 such that

(4.40)

∫
F

|ga,m(ξ,=η)| dξ d[=η] ≤ C11Λ1−m+1/pm(F )1−1/p , F ⊂ [−π, π]d+1 .
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It follows from (4.39), (4.40) that
(4.41)

1

(t+ 1)m

∫
Er,k

∣∣∣∣ ∂mfa(ξ,=η)

∂[=η]m

∣∣∣∣ dξ d[=η] ≤ C12

[Λt+ 1](d+α)/2

2(rd/2+k)(1−1/p)

2r + 2k

for some constant C12. Observe that

(4.42)

∞∑
k=0

∞∑
r=1

2(rd/2+k)(1−1/p)

2r + 2k
< ∞

provided m satisfies the inequality m > (d + α)/2. If d is odd then there is an
integer m satisfying d/2 < m < 1 + d/2, whence (4.32), (4.38), and (4.41) imply
that (4.18) holds for some α > 0.

In the case when d is even we note from (4.38) that

(4.43)

∞∑
k=0

∫
Er,k

e−iξ.x+i=η(t+1)fa(ξ,=η) dξ d[=η] =

im

2(t+ 1)m

∞∑
k=0

∫
Er,k

e−iξ.x+i=η(t+1)

[
∂mfa(ξ,=η)

∂[=η]m
− ∂mfa(ξ,=η + ρ)

∂[=η]m

]
dξ d[=η] ,

where m is the largest integer satisfying m < 1 + d/2 and ρ = π/(t+ 1). Similarly
to (4.39) we have that
(4.44)

1

|ρ|δ

[
∂mfa(ξ,=η)

∂[=η]m
− ∂mfa(ξ,=η + ρ)

∂[=η]m

]
=

|e(ξ)|2 + |a|2

Λ2[|=η|/Λ + |e(ξ)|2 + |a|2]2
ga,δ(ξ,=η) ,

where for 0 ≤ δ < 1 + d/2 −m the function ga,δ(·, ·) satisfies an inequality (4.35)
with p = (1 + d/2)/(m+ δ − α/2). Hence as in (4.41) we conclude that
(4.45)

1

(t+ 1)m

∫
Er,k

∣∣∣∣ ∂mfa(ξ,=η)

∂[=η]m
− ∂mfa(ξ,=η + ρ)

∂[=η]m

∣∣∣∣ dξ d[=η] ≤ C13

[Λt+ 1](d+α)/2

2(rd/2+k)(1−1/p)

2r + 2k
,

where C13 also depends on δ as well as Λ, d,Λ/λ. Now (4.18) for some α > 0 follows
from (4.32), (4.43), and (4.45) by choosing δ in (4.45) so that 0 < δ < 1.

In order to prove (4.19) we follow the previous argument, replacing the function
fa(ξ,=η) by the function e(ξ)fa(ξ,=η). To prove (4.20) we use the inequality

(4.46) |eiξ·(x−x
′) − 1| ≤ 10|x− x′|1−δ|e(ξ)|1−δ ,

and replace the function fa(ξ,=η) by the function |e(ξ)|2−δfa(ξ,=η) in the argu-
ment to prove (4.18). �

Remark 7. In the case when α = 0 the constant C in (4.18), (4.19) depends only
on d,Λ/λ. For α > 0 the constant C also depends on the constant in the inequality
(4.1) of Hypothesis 4.1.

The inequalities (1.19), (1.20) of Theorem 1.3 are a consequence now of Theorem
4.1 and the following result which compares the lattice Green’s function Glattice

ahom
(x, t)

to the Green’s function Gahom
(x, t) for the PDE (1.6):
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Lemma 4.3. Assuming 4dΛ ≤ 1, then there exist positive constants γ,C depending
only on d,Λ/λ such that for x ∈ Zd, t ∈ Z with Λt ≥ 1,
(4.47)

|Gahom
(x, t)−Glattice

ahom
(x, t)| ≤ C

[Λt+ 1](d+1)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
,

(4.48)

|∇Gahom
(x, t)−∇Glattice

ahom
(x, t)| ≤ C

[Λt+ 1](d+2)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
,

(4.49)

|∇∇Gahom
(x, t)−∇∇Glattice

ahom
(x, t)| ≤ C

[Λt+ 1](d+3)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
.

Proof. Taking ahom = q(0, 0) in (1.6), we see from (4.17) that Glattice
ahom

(·, ·) is the
Green’s function for the discrete parabolic equation corresponding to (1.6),

(4.50) u(x, t+ 1, ω)− u(x, t, ω) = −∇∗ahom∇u(x, t, ω) , x ∈ Zd, t = 0, 1, 2....

To prove the theorem we follow a standard method of numerical analysis for esti-
mating error between the solution of a continuous problem and its approximating
discrete problems. The method is to regard the solution of the continuous prob-
lem as an approximate solution to the discrete problem. An alternative approach
based on comparison of the Fourier representation (4.17) of the lattice Green’s func-
tion Glattice

ahom
(·, ·) to the Fourier representation of the continuous Green’s function

Gahom
(·, ·) is pursued in [22] for the case of elliptic equations.

Let f : Rd → R be a nonnegative C∞ function with support contained in the
ball {x ∈ Rd : |x| < 1} and u(x, t) = uhom(x, t) be the solution to the initial value
problem (1.6), (1.7). With ∇x,∇∗x denoting the discrete operators (1.5), we have
that

(4.51) u(x+ z, t+ 1)− u(x+ z, t) +∇∗xahom∇xu(x+ z, t) =

u(x+z, t+1)−u(x+z, t)+Trace[ahomA(x+z, t)] , x ∈ Zd, z ∈ Rd, t = 0, 1, ..,

where the d× d matrix A(y, t) = [Ai,j(y, t)], y ∈ Rd, t > 0 is given by the formula
(4.52)

Ai,j(y, t) = u(y, t)+u(y+ej−ei, t)−u(y+ej , t)−u(y−ei, t) = −E
[
∂2u(y + Yi,j , t)

∂yi∂yj

]
,

with Yi,j the random variable uniformly distributed in the unit square {yjej−yiei ∈
Rd : 0 ≤ yi, yj ≤ 1}. It follows then from (4.51), (4.52) that

(4.53) u(x+z, t+1)−u(x+z, t)+∇∗xahom∇xu(x+z, t) = h1(x+z, t)−h2(x+z, t) ,

where the functions hj(·, ·), j = 1, 2 are given by the formulas

(4.54) h1(y, t) = E

[
∂u(y, t+ T )

∂t

]
− ∂u(y, t)

∂t
, y ∈ Rd, t > 0,

(4.55)

h2(y, t) =

d∑
i,j=1

ahom(i, j)

{
E

[
∂2u(y + Yi,j , t)

∂yi∂yj

]
− ∂2u(y, t)

∂yi∂yj

}
, y ∈ Rd, t > 0.
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In (4.54) the random variable T is uniformly distributed in the interval 0 < T < 1.
Since u(x+ z, 0) = f(x+ z), x ∈ Zd, we conclude from (4.53) that

(4.56)

u(x+z, t) =
∑
y∈Zd

Glattice
ahom

(x−y, t)f(y+z)+

t∑
r=1

∑
y∈Zd

Glattice
ahom

(x−y, t−r)h1(y+z, r−1)

−
t∑

r=1

∑
y∈Zd

Glattice
ahom

(x− y, t− r)h2(y + z, r − 1) .

Let Q0 ⊂ Rd be the unit cube centered at the origin. Then we have that

(4.57)

∫
Q0

dz

u(x+ z, t)−
∑
y∈Zd

Glattice
ahom

(x− y, t)f(y + z)

 =

[
Gahom

(x, t)−Glattice
ahom

(x, t)
] ∫

Rd

f(y) dy + Error(x) ,

where |Error(x)| is bounded by the RHS of (4.47).
Next observe from (1.6), (4.54), (4.55) that

(4.58)

∫
Q0

dz
∑
y∈Zd

hj(y + z, t) = 0 for j = 1, 2.

It follows from (4.58) that if we integrate the third term on the RHS of (4.56) with
respect to z ∈ Q0 it is equal to

(4.59)

∫
Q0

dz

t∑
r=1

∑
y∈Zd

[Glattice
ahom

(x− y, t− r)−Glattice
ahom

(x, t− r)]h2(y + z, r − 1) .

Using the fact that the distribution of Yj,i is the same as the distribution of −Yi,j
we see from (4.55) that h2(·, t) is bounded by the fourth derivative of u(·, t), whence
we conclude that there are constants γ,C depending only on d such that

(4.60) |h2(y, t)| ≤ CΛ‖f‖∞
[Λt+ 1](d+4)/2

exp

[
− γ|y|2

Λt+ 1

]
, y ∈ Rd, t > 0.

We also have that there are constants γ,C depending only on d such that
(4.61)

|∇Glattice
ahom

(y, t)| ≤ C

[Λt+ 1](d+1)/2
exp

[
−γmin

{
|y|, |y|2

Λt+ 1

}]
, y ∈ Zd, t ∈ Z+.

Using (4.60), (4.61) we can estimate (4.59) and see that it is bounded by the RHS
of (4.47). Since we can do a similar estimate with the function h2 replaced by
h1 we conclude from (4.57) that (4.47) holds. We can obtain the bounds (4.48),
(4.49) by taking the gradient of (4.56) with respect to x and following the previous
argument. �

The inequality (1.21) of Theorem 1.3 is a consequence of Lemma 4.3 and the
following:
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Theorem 4.2. Assume Hypothesis 4.1 holds and 4dΛ ≤ 1. Then there exist positive
constants α, γ, with α ≤ 1, depending only on d,Λ/λ and a constant C such that
for x ∈ Zd, t ∈ Z, t ≥ 0,
(4.62)

|∇∇Ga(x, t)−∇∇Glattice
ahom

(x, t)| ≤ C

[Λt+ 1](d+2+α)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
.

Proof. Let χ : Rd+1 → R be a C∞ function with compact support such that the
integral of χ(·) over Rd+1 equals 1. We write

(4.63) Ga(x, t) = χL ∗Ga(x, t) + [Ga(x, t)− χL ∗Ga(x, t)] ,

where χL(x, t) = ΛL−(d+2)χ(x/L,Λt/L2), x ∈ Rd, t ∈ R, and ∗ denotes convo-
lution on Zd+1. Let χ̂L(ζ, θ), ζ ∈ [−π, π]d, θ ∈ [−π, π] be the Fourier transform
(2.15) of χL(·, ·) restricted to the Zd+1 lattice. Since χL(·, ·) has compact support
χ̂L(·, ·) has an analytic continuation to Cd+1. Furthermore for L ≥ 1 there is a
constant C such that

(4.64) |χ̂L(0, 0)−1| ≤ C/L,
∣∣χ̂L(ζ + ia, θ − iΛ|a|2)

∣∣ ≤ C exp[C|a|2L2] a ∈ Rd.

There also exists for positive integers n constants Cn such that

(4.65)
∣∣χ̂L(ζ + ia, θ − iΛ|a|2)

∣∣ ≤ Cn
[1 + L|ζ|+ L2|θ|/Λ]n

if |a|L ≤ 1.

We assume now that R <
√

Λt+ 1 < 2R and choose L = R1−δ for some δ > 0.
Then from (2.5) we see that
(4.66)

χL∗∇k∇jGa(x, t) =
1

(2π)d+1
exp

[
a · x/C + Λ|a|2(t+ 1)

] ∫
[−π,π]d

∫ π

−π
fa(ζ, θ) dθ dζ ,

where a is given by (4.23) and fa(ζ, θ) is defined by
(4.67)

fa(ζ, θ) =
ek(ζ + ia/C)ej(ζ + ia/C)χ̂L(ζ + ia/C, θ − iΛ|a|2)e−iζ.x+iθ(t+1)

eΛ|a|2+iθ − 1 + e(ζ − ia/C)∗q(ζ + ia/C,Λ|a|2 + iθ)e(ζ + ia/C)
.

It follows from Corollary 2.2 and the second inequality of (4.64) that if |a|L ≥ 1
there is a constant C1 such that

(4.68) exp
[
a · x/C + Λ|a|2(t+ 1)

] ∫
[−π,π]d

∫ π

−π
|fa(ζ, θ)| dθ dζ ≤

C1

[Λt+ 1](d+3)/2
exp

[
−γmin

{
|x|, |x|2

Λt+ 1

}]
.

If |a|L < 1 we also have from Corollary 2.2 and (4.65) that

(4.69)

∫
[−π,π]d∩{|ζ|>1/R1−2δ}

∫ π

−π
|fa(ζ, θ)| dθ dζ+∫

[−π,π]d

∫
[−π,π]∩{

√
|θ|/Λ>1/R1−2δ}

|fa(ζ, θ)| dθ dζ ≤ C1/[Λt+ 1](d+3)/2

for some constant C1.
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To estimate the integral of fa(ζ, θ) over the set {(ζ, θ) : |ζ| < 1/R1−2δ,
√
|θ|/Λ <

1/R1−2δ} we use the Hölder continuity (4.9) of the function q(·, ·). Thus let ga(·, ·)
be defined similarly to the function fa(·, ·) by
(4.70)

ga(ζ, θ) =
ek(ζ + ia/C)ej(ζ + ia/C)χ̂L(ζ + ia/C, θ − iΛ|a|2)e−iζ.x+iθ(t+1)

eΛ|a|2+iθ − 1 + e(ζ − ia/C)∗q(0, 0)e(ζ + ia/C)
.

Then from (4.9) we see that
(4.71)∫
{|ζ|<1/R1−2δ}

∫
√
|θ|/Λ<1/R1−2δ

|fa(ζ, θ)− ga(ζ, θ)| dθ dζ ≤ C2/[Λt+ 1]d+2+α)(1−2δ)

for some constant C2. We choose now δ > 0 in (4.71) sufficiently small so that
(d + 2 + α)(1 − 2δ) > d + 2. It follows then from (4.68), (4.69), (4.71) that |χL ∗
∇k∇jGa(x, t)− χL ∗ ∇k∇jGlattice

ahom
(x, t)| is bounded by the RHS of (4.62).

To complete the proof of the inequality (4.62) we use the Hölder continuity result
of [11]. Thus from the first inequality of (4.64) and [11] we see that |∇k∇jGa(x, t)−
χL ∗ ∇k∇jGa(x, t)]| is bounded by the RHS of (4.62) for some α > 0. The result
follows. �

We can essentially repeat the foregoing arguments for the continuous time av-
eraged Green’s function Ga(x, t), x ∈ Zd, t ≥ 0, for (1.4). In the continuous time
case our hypothesis is:

Hypothesis 4.2. Let Tξ,η be the operator (2.47) on the Hilbert space H(Ω) and
T ∗ξ,ηdenote its adjoint. Then for k ≥ 1, p2 = p3 = · · · = pk = 1, and Sξ,η = Tξ,η
or Sξ,η = T ∗ξ,η, there exists p0(Λ/λ) > 1 depending only on d,Λ/λ and a constant

C(k) such that

(4.72)∥∥∥∥∥∥
∑

x1,...xk∈Zd+1

∫
Rk

dt1 · · · dtk


k∏
j=1

gj(xj , tj)τxj ,−tjPb(·)[I − PSξ,ηb(·)]−1

 v

∥∥∥∥∥∥
≤ C(k)

k∏
j=1

‖gj‖pj |v| for gj ∈ Lpj (Zd ×R,Cd ⊗Cd), j = 1, .., k, v ∈ Cd,

provided 1 ≤ p1 ≤ p0(Λ/λ) and ξ ∈ Cd, η ∈ C satisfy 0 < <η < Λ, |=ξ| ≤
C1

√
<η/Λ, with C1 depending only on d,Λ/λ.

Assuming Hypothesis 4.2 holds, we can prove the analogues of Proposition 4.1,
Theorem 4.1 and Theorem 4.2 for the continuous case. Theorem 1.3 therefore
follows in the continuous time case once we are able to establish Hypothesis 4.2.

5. Independent Variable Environment

Our goal in this section will be to prove Hypothesis 3.1 and its generalized
form Hypothesis 4.1 in the case when the variables a(τx,t·), x ∈ Zd, t ∈ Z, are
independent. Following [9] we first consider the case of a Bernoulli environment.
Thus for each x ∈ Zd, t ∈ Z, let Yx,t be independent Bernoulli variables, whence
Yx,t = ±1 with equal probability. The probability space (Ω,F , P ) is then the
space generated by all the variables Yx,t, (x, t) ∈ Zd+1. A point ω ∈ Ω is a set of
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configurations {(Yn, n) : n ∈ Zd+1}. For (x, t) ∈ Zd+1 the translation operator τx,t
acts on Ω by taking the point ω = {(Yn, n) : n ∈ Zd+1} to τx,tω = {(Yn+(x,−t), n) :

n ∈ Zd+1}. The random matrix a(·) is then defined by

(5.1) a(ω) = (1 + γY0)Id, ω = {(Yn, n) : n ∈ Zd+1} ,
where 0 ≤ γ < 1.

In [9] we defined for 1 ≤ p < ∞ Fock spaces Fp(Zd+1) of complex valued
functions, and observed that F2(Zd+1) is unitarily equivalent to L2(Ω). We can
similarly define Fock spaces HpF (Zd+1) of vector valued functions with range Cd,
such that H2

F (Zd+1) is unitarily equivalent to H(Ω). Hence we can regard the
operator Tξ,η of (2.10) as acting on H2

F (Zd+1), and by unitary equivalence it is
a bounded operator satisfying ‖Tξ,η‖ ≤ 1 for ξ ∈ Rd, <η > 0. From (2.10) we
see that Tξ,η acts as a convolution operator on N particle wave functions ψN (·) in
H2
F (Zd+1) as

(5.2) Tξ,ηψN (x1, t1, ..., xN , tN ) =

Λ

∞∑
t′=1

e−ηt
′ ∑
x∈Zd

{∇∇∗GΛ(x′, t′ − 1)}∗ exp[−ix′·ξ] ψN (x1−x′, t1−t′, .., xN−x′, tN−t′) .

Note that for all N particle wave functions, Tξ,η acts as a convolution operator on
functions on Zd+1. Hence its action is determined by its action on 1 particle wave

functions. Let ψ̂1(ζ, θ), ζ ∈ [−π, π]d, θ ∈ [−π, π], be the Fourier transform (2.15)
of the 1 particle wave function ψ1(x, t), x ∈ Zd, t ∈ Z. We see from (5.2) that for
ξ ∈ Cd, <η > 0, the action of Tξ,η in Fourier space is given by
(5.3)

T̂ξ,ηψ̂1(ζ, θ) =
Λe(ξ − ζ)e(ξ̄ − ζ)∗

eη−iθ − 1 + Λe(ξ̄ − ζ)∗e(ξ − ζ)
ψ̂1(ζ, θ) , ζ ∈ [−π, π]d, θ ∈ [−π, π].

Hence the result of Lemma 2.1 for the Bernoulli case follows from:

Lemma 5.1. Assume 4dΛ ≤ 1. Then there exist positive constants C1, C2 depend-
ing only on d such that for (ξ, η) in the region {(ξ, η) ∈ Cd+1 : 0 < <η < Λ, |=ξ| <
C1

√
<η/Λ}, there is the inequality

(5.4) Λ max[ |e(ξ)|2, |e(ξ̄)|2] ≤
(
1 + C2|=ξ|2/[<η/Λ]

)
|eη − 1 + Λe(ξ̄)∗e(ξ)| .

Proof. We have that

(5.5) |eη − 1 + Λe(ξ̄)∗e(ξ)| ≥ e<η − |1− Λe(ξ̄)∗e(ξ)|

≥ e<η − 1 + Λe(<ξ)∗e(<ξ)− Λ|e(<ξ)∗e(<ξ)− e(ξ̄)∗e(ξ)| ,
where we have used the fact that 4dΛ ≤ 1. Observe that there is a constant C
depending only on d such that

(5.6) Λ|e(<ξ)∗e(<ξ)− e(ξ̄)∗e(ξ)| ≤ CΛ[|=ξ|2 + |=ξ||e(<ξ)|]
≤ C2{Λe(<ξ)∗e(<ξ)}|=ξ|2/[<η/Λ] + [1/4 + CC2

1 ]<η .
We conclude then from (5.5), (5.6) that

(5.7) |eη−1+Λe(ξ̄)∗e(ξ)| ≥ [3/4−CC2
1 ]<η+[1−C2|=ξ|2/[<η/Λ]Λe(<ξ)∗e(<ξ) .

The inequality (5.4) follows from (5.7) by observing similarly to (5.6) that

(5.8) Λ|e(ξ)|2 ≤ Λe(<ξ)∗e(<ξ) + CΛ[|=ξ|2 + |=ξ||e(<ξ)|] .
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�

Lemma 5.2. Assume 4dΛ ≤ 1. Then there exist positive constants C1, C2, C3

depending only on d such that for (ξ, η) in the region {(ξ, η) ∈ Cd+1 : 0 < <η <
Λ, |=ξ| < C1

√
<η/Λ}, the operator Tξ,η of (5.2) is bounded on HpF (Zd+1) for

p = 3/2 or p = 3, and the norm ‖Tξ,η‖p of Tξ,η satisfies the inequality ‖Tξ,η‖p ≤
C3

(
1 + C2|=ξ|2/[<η/Λ]

)
.

Proof. It will be sufficient for us to prove the theorem on the space of 1 particle
wave functions. To do this we follow the argument of Jones [18], which adapts the
methodology of Calderon-Zygmund [5] to Fourier multipliers associated with para-
bolic PDE. A more general theory of Fourier multipliers can be found in Chapter IV
of [30], but because of the generality it is hard to estimate the values of constants
using this theory.

For a set E ⊂ Zd+1, we denote by |E| the number of lattice points of Zd+1

contained in E. Let ψ(x, t), x ∈ Zd, t ∈ Z, be a 1 particle wave function with
finite support. We shall show that for any γ > 0, the set Eγ = {(x, t) ∈ Zd+1 :
|Tξ,ηψ(x, t)| > γ} satisfies the inequality

(5.9) |Eγ | ≤ C4

(
1 + C2|=ξ|2/[<η/Λ

)
γ−2

∑
(x,t)∈Zd+1

min[|ψ(x, t)|, γ]2 +C5β
ψ(γ) ,

where C2 is the constant of Lemma 5.1 and C4, C5 depend only on d. The function
βψ(·) is defined in [5, 18] in terms of the distribution function of ψ(·, ·). Once (5.9)
is proved the result follows from the argument of [5], which shows that ‖Tξ,η‖p is
simply bounded in terms of the constants occurring in (5.9).

We use a Calderon-Zygmund decomposition to prove (5.9). Recalling that 1/Λ ≥
4d, let N0 ≥ 2 be the integer which satisfies 2N0 ≤ 1/Λ < 2N0+1. We choose
a1, ..ad, b ∈ Z and sufficiently large integer N1 such that the rectangle R = {(x, t) =
(x1, ., xd, t) ∈ Rd+1 : aj + 1/2 ≤ xj ≤ 2N1 + aj + 1/2, j = 1, .., d, and b+ 1/2 ≤
t ≤ 22N1+N0 + b+ 1/2 } contains the support of ψ(·, ·) and

(5.10)
1

|R|
∑

(x,t)∈R∩Zd+1

|ψ(x, t)| ≤ γ .

Note that the length of the side of R in the t direction is 2N0 times the square of
the length of a side in an xj direction for all 1 ≤ j ≤ d. We subdivide R into 2d× 4
sub-rectangles with the same property and continue to similarly subdivide until we
reach a set of disjoint rectangles Rm, m = 1, ..,M1, with side in the xj , 1 ≤ j ≤ d,
direction a non-negative power of 2, which satisfy the inequality

(5.11) γ <
1

|Rm|
∑

(x,t)∈Rm

|ψ(x, t)| ≤ 2d+2γ , 1 ≤ m ≤M1,

together with a set of rectangles R′m, m = 1, 2, ...M2, with side in the xj , 1 ≤ j ≤ d,
direction equal to 1 and equal to 2N0 in the t direction which satisfy

(5.12)
1

|R′m|
∑

(x,t)∈R′m

|ψ(x, t)| ≤ γ .

We subdivide the rectangles R′m, m = 1, ..,M2, into 2 rectangles with side in the t
direction of length 2N0−1, and continue to subdivide until we reach a set of disjoint
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rectangles Rm, m = M1 +1, ..,M, with side in the t direction a non-negative power
of 2, which satisfy the inequality

(5.13) γ <
1

|Rm|
∑

(x,t)∈Rm

|ψ(x, t)| ≤ 2γ , M1 + 1 ≤ m ≤M,

together with a set of unit cubes centered at lattice points of Zd+1. Setting Dγ =
∪Mm=1Rm, one sees that Rd+1 − Dγ is a union of unit cubes centered at lattice
points of Zd+1, whence

(5.14) |ψ(x, t)| ≤ γ for (x, t) ∈ Zd+1 ∩ [Rd+1 −Dγ ] .

We consider the distribution function γ → |{(x, t) ∈ Zd+1 : |ψ(x, t)| > γ}|
of ψ(·, ·) with domain {γ ≥ 0}, which is a piece-wise constant right continu-
ous decreasing function with range 0 ≤ s ≤ |supp[ψ(·, ·)]|. The decreasing re-
arrangement ψ∗(s) of ψ(·, ·) with domain s ≥ 0 is also a piece-wise constant right
continuous decreasing function satisfying ψ∗(0) = sup |ψ(·, ·)| and ψ∗(s) = 0 for
s ≥ |supp[ψ(·, ·)]|. It is the approximate right continuous inverse of the distribution
function for 0 ≤ s ≤ |supp[ψ(·, ·)]| . In view of (5.11), (5.13) we have that

(5.15) γ <
1

|Dγ |
∑

(x,t)∈Dγ

|ψ(x, t)| ≤ 1

|Dγ |

∫ |Dγ |
0

ψ∗(s) ds = βψ(|Dγ |) ,

where the function βψ(s) with domain s ≥ 0 is decreasing and continuous with
range 0 < γ ≤ sup |ψ(·, ·)|. There is a well-defined inverse function βψ(γ) for βψ(·)
with domain 0 < γ < sup |ψ(·, ·)|, and (5.15) implies that |Dγ | ≤ βψ(γ).

We write ψ(·, ·) = ψ1(·, ·) + ψ2(·, ·), where the function ψ1(·, ·) is defined by

(5.16)

ψ1(x, t) =
1

|Rm|
∑

(x′,t′)∈Rm

ψ(x′, t′) if (x, t) ∈ Rm for some m, 1 ≤ m ≤M,

ψ1(x, t) = ψ(x, t) otherwise .

From Lemma 5.1 and (5.14) we have then that

(5.17) |{(x, t) ∈ Zd+1 : |Tξ,ηψ1(x, t)| > γ/2 }| ≤

(
1 + C2|=ξ|2/[<η/Λ

)24γ−2
∑

(x,t)∈Zd+1

min[|ψ(x, t)|, γ]2 + 22d+6|Dγ |

 .

To bound the distribution function of ψ2(·, ·) which has support contained in Dγ ,

we consider a rectangle Rm, 1 ≤ m ≤M, with center (xm, tm) ∈ Zd+1 and let R̃m
be the double of Rm. We observe that similarly to (2.12) there is a constant Cd
depending only on d such that the function ∇∇∗GΛ(x, t) satisfies inequalities

(5.18) |e−<η(t+1)−ix·=ξ∇∇∗GΛ(x, t+ 1)− e−<ηt−ix·=ξ∇∇∗GΛ(x, t)|

≤ Cd
(t+ 1)[Λt+ 1]d/2+1

exp

[
−

min
{
|x|, |x|2/(Λt+ 1)

}
Cd

]
,

(5.19) |e−<ηt−i(x+ej)·=ξ∇∇∗GΛ(x+ ej , t)− e−<ηt−ix·=ξ∇∇∗GΛ(x, t)|
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≤ Cd
[Λt+ 1]d/2+3/2

exp

[
−

min
{
|x|, |x|2/(Λt+ 1)

}
Cd

]
, j = 1, ., d,

provided ξ ∈ Cd, η ∈ C, satisfy the conditions in the statement of the lemma.
Extending the function GΛ(x, t), x ∈ Zd, t = 0, 1, 2, .., defined by (2.11) to have
domain Zd+1 by setting GΛ(x, t) = 0 for x ∈ Zd, t < 0, we conclude from (5.18),
(5.19) that if (x′, t′) ∈ Rm, then there is a constant Cd depending only on d such
that

(5.20)
∑

(x,t)∈Zd+1−R̃m

Λ |e−<η(t−t′)−i(x−x′)·=ξ∇∇∗GΛ(x− x′, t− t′)

− e−<η(t−tm)−i(x−xm)·=ξ∇∇∗GΛ(x− xm, t− tm)| ≤ Cd.

It follows from (5.11), (5.13), (5.20) that if D̃γ = ∪Mm=1R̃m, then

(5.21)
∑

(x,t)∈Zd+1−D̃γ

|Tξ,ηψ2(x, t)| ≤ Cdγ|Dγ |

for some constant Cd depending only on d. Hence we have that
(5.22)

|{(x, t) ∈ Zd+1 : |Tξ,ηψ2(x, t)| > γ/2 }| ≤ 2Cd|Dγ |+ |D̃γ | ≤ [2Cd + 2d+2]|Dγ | .

The inequality (5.9) follows from (5.17) and (5.22). �

Corollary 5.1. Under the assumptions of Lemma 5.2 the operator Tξ,η is bounded
on Hp(Zd+1) for 3/2 ≤ p ≤ 3, and ‖Tξ,η‖p ≤ [1+δ(p)]

(
1 + C2|=ξ|2/[<η/Λ]

)
, where

the function δ(·) depends only on d and limp→2 δ(p) = 0.

Proof. The result follows from Lemma 5.1, Lemma 5.2 and the Riesz-Thorin inter-
polation theorem [31]. �

Proof of Hypothesis 4.1. We choose q0 = q0(Λ/λ) with 1 < q0 < 2 so that δ(q0) ≤
λ/2Λ, where δ(·) is the function in the statement of Corollary 5.1. It follows then
from Young’s inequality that Hypothesis 4.1 holds if we choose p0 = p0(Λ/λ) >
1 with 1/p0 + 1/q0 = 3/2. It is shown in [9] how to extend the argument for
the Bernoulli environment corresponding to (5.1) to general i.i.d. environments
a(τx,t·), (x, t) ∈ Zd+1. We have therefore proven Hypothesis 4.1 for a(τx,t·), (x, t) ∈
Zd+1, i.i.d. such that (1.1) holds. �

6. Massive Field Theory Environment

In this section we show that Hypothesis 3.2 and its generalization Hypothesis 4.2
holds if (Ω,F , P ) is given by the massive field theory environment determined by
(1.10), (1.11). We recall the main features of the construction of this measure. Let L
be a positive even integer and Q = QL ⊂ Zd be the integer lattice points in the cube
centered at the origin with side of length L. By a periodic function φ : Q×R→ R
we mean a function φ on Q × R with the property that φ(x, t) = φ(y, t) for all
x, y ∈ Q, t ∈ R, such that x − y = Lek for some k, 1 ≤ k ≤ d. Let ΩQ be
the space of continuous in time periodic functions φ : Q ×R → R and FQ be the
Borel algebra generated by the requirement that the functions φ(·, ·)→ φ(x, t) from
ΩQ → R are Borel measurable for all x ∈ Q and t rational. For m > 0 we define a
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probability measure PQ on (ΩQ,FQ) by first defining expectations of functions of
the variables φ(x, 0), x ∈ Q, as follows:

(6.1) < F (φ(·, 0)) >ΩQ=∫
RLd

F (φ(·)) exp

−∑
x∈Q

{
V (∇φ(x)) +

1

2
m2φ(x)2

} ∏
x∈Q

dφ(x)/normalization ,

where F : RLd → R is a continuous function such that |F (z)| ≤ C exp[A|z|], z ∈
RLd , for some constants C,A. By translation invariance of the measure (6.1) we
see that 〈φ(x, 0)〉ΩQ = 0 for all x ∈ Q and hence the Brascamp-Lieb inequality
[2] applied to (6.1) and function F (φ(·)) = exp[(f, φ)], where (·, ·) is the Euclidean
inner product for periodic functions on Q, yields the inequality

(6.2) 〈exp[(f, φ)]〉ΩQ ≤ exp

[
1

2
(f, {−λ∆ +m2}−1f)

]
.

The variables φ(x, t), x ∈ Q, t > 0, are determined from the variables φ(x, 0), x ∈
Q, by solving the stochastic differential equation
(6.3)

dφ(x, t) = − ∂

∂φ(x, t)

∑
x′∈Q

1

2
{V (∇φ(x′, t))+m2φ(x′, t)2/2} dt+dB(x, t) , x ∈ Q, t > 0,

where B(x, ·), x ∈ Q, are independent copies of Brownian motion modulo the pe-
riodicity constraint on Q. Since (6.1) is the invariant measure for the stochastic
process φ(·, t), t ≥ 0, it follows that (6.1), (6.3) determine a stationary process for
t ≥ 0, which therefore can be extended to all t ∈ R. Furthermore the functions
t → φ(x, t) on R are continuous with probability 1 for all x ∈ Q. The proba-
bility measure PQ on (ΩQ,FQ) is the measure induced by the stationary process
φ(·, t), t ∈ R.

The probability space (Ω,F , P ) on continuous in time fields φ : Zd ×R→ R is
obtained as the limit of the spaces (ΩQ,FQ, PQ) as |Q| → ∞. In particular one has
from Lemma 2.4 of [7] the following result:

Proposition 6.1. Assume m > 0 and let F : Rk → R be a C1 function which
satisfies the inequality

(6.4) |DF (z)| ≤ A exp[ B|z| ], z ∈ Rk,

for some constants A,B. Then for any x1, ....xk ∈ Zd, and t1, .., tk ∈ R, the limit
(6.5)

lim
|Q|→∞

〈F (φ(x1, t1), φ(x2, t2), ....., φ(xk, tk))〉ΩQ = 〈F (φ(x1, t1), φ(x2, t2), ....., φ(xk, tk))〉

exists and is finite.

From (6.2) and the Helly-Bray theorem [3, 13] one sees that Proposition 6.1
implies the existence of a unique Borel probability measure on Rk corresponding
to the probability distribution of the variables (φ(x1, t1), .., φ(xk, tk)) ∈ Rk, and
this measure satisfies (6.5). The Kolmogorov construction [3, 13] then implies the
existence of a Borel measure on fields φ : Zd × R → R with finite dimensional
distribution functions satisfying (6.5). We have constructed the probability space
(Ω,F , P ) corresponding to (1.10),(1.11) for which Ω is the set of continuous in
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time functions φ : Zd × R → R, and it is clear that the translation operators
τx,t, x ∈ Zd, t ∈ R, are measure preserving and form a group.

The BL inequality [2] plays a crucial role in establishing the existence of the limit
(6.5) in [7, 14]. In particular it yields a Poincaré inequality for the measure (6.1).

Thus if F : RLd → R is a C1 function such that |DF (z)| ≤ C exp[A|z|], z ∈ RLd ,
for some constants C,A, then
(6.6)

varΩQ [F (φ(·, 0))] = 〈 [F (φ(·, 0))− 〈F (φ(·, 0))〉]2〉ΩQ ≤
1

m2
〈‖dF (φ(·, 0))‖2〉ΩQ ,

where dF (φ(·, 0)) ∈ RLd is the gradient of F at φ(·, 0). A simple proof of (6.6)
follows from the Helffer-Sjöstrand (HS) representation [17]
(6.7)
〈F1(φ(·, 0))F2(φ(·, 0))〉ΩQ = 〈dF1(φ(·, 0))[d∗d+∇∗V ′′(∇φ(·))∇+m2]−1dF2(φ(·, 0))〉ΩQ ,

which holds for C1 functions F1, F2 : RLd → R that satisfy |Fj(z)| + |DFj(z)| ≤
C exp[A|z|], z ∈ RLd , j = 1, 2, for some constants C,A, and 〈F1(φ(·, 0))〉ΩQ = 0.
In (6.7) the operator d∗ is the adjoint of the gradient operator d with respect to
the measure (6.1), and hence d∗d is a non-negative self-adjoint operator.

Our first goal here will be to prove strong mixing of the operator τe1,0 on
(Ω,F , P ). In order to do this we will need a Poincaré inequality for the measure
(ΩQ,FQ, PQ), in particular a generalization of (6.6) to functions F (φ(·, t1), .., φ(·, tk))
depending on values of the field φ(·, ·) at different times. To do this we follow
the development of Gourcy-Wu [16] who make use of the Malliavin calculus [25]
to prove a log-Sobolev inequality for such measures. The basic insight of the
Malliavin calculus is that the Wiener space generated by independent Brownian
motions B(x, t), x ∈ Q, t > 0, can be identified with a probability space whose
set of configurations is the Hilbert space L2(Q × R+), where R+ is the open in-
terval (0,∞). We denote the Euclidean inner product on L2(Q × R+) by [·, ·].
The measure on L2(Q ×R+) is uniquely determined by the requirement that the
variables ψ → [ψ,ψj ], j = 1, .., k, are i.i.d. standard normal for any set of or-
thonormal vectors ψj , j = 1, .., k. We denote this Malliavin probability space by
(ΩQ,Mal,FQ,Mal, PQ,Mal), where ΩQ,Mal = L2(Q × R+) and FQ,Mal is determined
by the requirement that the functions ψ → [ψ,ψ0] from ΩQ,Mal to R are Borel
measurable for all ψ0 ∈ L2(Q×R+).

The identification of the Wiener space with (ΩQ,Mal,FQ,Mal, PQ,Mal) follows from
the fact that the expectation of a function F (ψ(·, ·)) with respect to (ΩQ,Mal,FQ,Mal, PQ,Mal)
is the same as the expectation of F (W (·, ·)) with respect to Wiener space, where
W (·, ·) is the white noise process corresponding to B(·, ·) in (6.3). Hence the iden-
tification may be summarized as follows:

(6.8) ψ(x, t)↔W (x, t), W (x, t) = dB(x, t)/dt, x ∈ Q, t > 0.

For t > 0 let Ft be the σ−field generated by the Brownian motions B(x, s), x ∈
Q, s < t, of (6.3), so from (6.8) we can regard Ft as a sub σ−field of FQ,Mal.
We consider next vector fields G : L2(Q ×R+) → L2(Q ×R+) on ΩQ,Mal which
are measurable in the sense that for any ψ0 ∈ L2(Q ×R+) the function ψ(·, ·) →
[G(ψ(·, ·)), ψ0] is (ΩQ,Mal,FQ,Mal) measurable. The vector field is predictable if
for any t, 0 < t < ∞, ψ0 has support in the interval Q × [0, t] implies that the
function [G(ψ(·, ·)), ψ0] is Ft measurable. The Martingale representation theorem
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[25] implies that for any function F ∈ L2(ΩQ,Mal) there is a predictable vector field
G : L2(Q×R+)→ L2(Q×R+) such that

varΩQ,Mal
[F (·)] = 〈 ‖G(·)‖2 〉ΩQ,Mal

,(6.9)

F (ψ(·, ·))− 〈F (·)〉 = [G(ψ(·, ·)), ψ(·, ·)] .

Suppose now that F ∈ L2(ΩQ,Mal) also has a Malliavin derivative DMalF : L2(Q×
R+) → L2(Q × R+) with the property that 〈 ‖DMalF (·)‖2 〉ΩQ,Mal

< ∞. The
Clark-Ocone formula [25] states that the vector field G(ψ(·, ·)) in (6.9) can be
expressed in terms of the Malliavin derivativeDMalF (ψ(·, ·)). Denoting the values of
G(ψ(·, ·)), DMalF (ψ(·, ·)), at (x, t) ∈ Q×R+ by G(x, t;ψ(·, ·)), DMalF (x, t;ψ(·, ·))
respectively, then

(6.10) G(x, t;ψ(·, ·)) = 〈 DMalF (x, t;ψ(·, ·)) | Ft 〉ΩQ,Mal
x ∈ Q, t > 0.

We show how the Clark-Ocone formula (6.9), (6.10) implies the HS formula
(6.7). Let φ(·, T ) be the solution at time T > 0 of (6.3) with initial data φ(·, 0) = 0
and f : Q → R. We can find an expression for the Malliavin derivative of the
function F (ψ(·, ·)) = (f(·), φ(·, T )) by analyzing the first variation equation for
(6.3). Evidently one has that DMalF (x, t;ψ(·, ·)) = 0 for x ∈ Q, t > T . To get an
expression for DMalF (x, t;ψ(·, ·)) when t ≤ T we first note from (6.3) that
(6.11)
d

dt
(f(·), φ(·, t)) = −1

2

{
(∇f(·), V ′(∇φ(·, t))) +m2(f(·), φ(·, t))

}
+(f(·),W (·, t)) , t > 0.

It follows from (6.11) that for ψ0 ∈ L2(Q×R+) the function ξ(·, t) = [DMalφ(·, t)), ψ0]
from Q to R is a solution to the initial value problem

(6.12)
d

dt
(f(·), ξ(·, t)) = −1

2
{(∇f(·), V ′′(∇φ(·, t))∇ξ(·, t))+

m2(f(·), ξ(·, t))}+ (f(·), ψ0(·, t)) for t > 0, f : Q→ R; ξ(·, 0) = 0.

From (6.12) we see that ξ(x, t), x ∈ Q, t > 0, is the solution to the initial value
problem for the parabolic PDE

∂ξ(x, t)

∂t
= −1

2
{∇∗V ′′(∇φ(x, t))∇ξ(x, t) +m2ξ(x, t)}+ ψ0(x, t),(6.13)

ξ(x, 0) = 0.

Consider now the terminal value problem for the backwards in time parabolic PDE

∂u(x, t)

∂t
=

1

2
∇∗V ′′(∇φ(x, t))∇u(x, t), t < T,(6.14)

u(x, T ) = u0(x),

with solution

(6.15) u(x, t) =
∑
y∈Q

G(x, y, t, T, φ(·, ·))u0(y) , t < T.

Then the solution to (6.13) is given by the formula

(6.16) ξ(y, T ) =

∫ T

0

e−m
2(T−t)/2dt

∑
x∈Q

G(x, y, t, T, φ(·, ·))ψ0(x, t) , y ∈ Q.
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We conclude from (6.16) that
(6.17)

(f(·), DMalφ(x, t; ·, T )) = e−m
2(T−t)/2(f(·), G(x, ·, t, T, φ(·, ·))), x ∈ Q, t < T, f : Q→ R.

Suppose now that F : RLd → R is a C1 function such that |DF (z)| ≤ C exp[A|z|], z ∈
RLd , for some constants C,A. Then from (6.17) it follows that

(6.18)

DMalF (x, t;φ(·, T )) = e−m
2(T−t)/2(dF (·, φ(·, T )), G(x, ·, t, T, φ(·, ·))), x ∈ Q, t < T,

DMalF (x, t;φ(·, T )) = 0, x ∈ Q, t > T.

Next we observe from (6.14), (6.18) that the conditional expectation (6.10) is given
by the formula

(6.19) 〈 DMalF (·, t;φ(·, T )) | Ft 〉ΩQ,Mal
= e−H(T−t)/2dF (·, φ(·, t)) , t < T,

where the operator H is as in (6.7), so H = d∗d + ∇∗V ′′(∇φ(·))∇ + m2. Since
for any fixed s ≥ 0 the distribution of φ(·, T − s) converges as T → ∞ to the
distribution of φ(·) for the invariant measure (6.1), it follows that
(6.20)

lim
T→∞

〈
∣∣〈DMalF (·, T−s;φ(·, T )) | FT−s 〉ΩQ,Mal

∣∣2 〉ΩQ,Mal
= 〈 dF (·, φ(·)) e−HsdF (·, φ(·)) 〉ΩQ .

Now (6.7) for F1 = F2 follows from (6.9), (6.20) on letting T → ∞. The identity
(6.7) for general F1, F2 is then a consequence of the symmetry of the LHS of (6.7)
in F1, F2.

Proposition 6.2. Let (Ω,F , P ) be the massive field theory probability space defined
by Proposition 6.1. Then the operators τej ,0, 1 ≤ j ≤ d, on Ω are strong mixing.

Proof. We proceed as in the proof of Proposition 5.2 of [10]. It will be sufficient to
prove that for k ≥ 1 and (xj , tj) ∈ Zd ×R, j = 1, ..., k,

(6.21)

lim
n→∞

〈 f(φ(x1 + ne1, t1), ...., φ(xk + ne1, tk)) g(φ(x1, t1), ...., φ(xk, tk)) 〉 =

〈 f(φ(x1, t1), ...., φ(xk, tk)) 〉 〈 g(φ(x1, t1), ...., φ(xk, tk)) 〉

for all C∞ functions f, g : Rk → R with compact support. Let Q ⊂ Zd be a large
cube centered at the origin with side of length an even integer L. We define hQ,T (n)
for n ∈ Z and T > 0 large by

(6.22)

hQ,T (n) = 〈 f(φ(x1+ne1, t1+T ), ...., φ(xk+ne1, tk+T )) g(φ(x1, t1+T ), ...., φ(xk, tk+T )) 〉ΩQ,Mal −
〈 f(φ(x1, t1+T ), ...., φ(xk, tk+T )) 〉ΩQ,Mal 〈 g(φ(x1, t1+T ), ...., φ(xk, tk+T )) 〉ΩQ,Mal .

The function hQ,T : Z → R is periodic on the interval IL = Z ∩ [−L/2, L/2]. We
shall show that there is a constant C independent of L, T as L, T →∞ such that

(6.23)
∑
n∈IL

|hQ,T (n)|2 ≤ C.

Then (6.21) follows from (6.23) and Proposition 6.1 as in Proposition 5.2 .of [10].
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To estimate the LHS of (6.23) we go into Fourier variables, using the Plancherel
theorem

(6.24)
∑
n∈IL

|hQ,T (n)|2 =
1

2π

∫
ÎL

|ĥQ,T (ζ)|2 dζ .

Let a(f, ζ, φ(·, ·)) be the function

(6.25) a(f, ζ, φ(·, ·)) =
∑
n∈IL

f(φ(x1 + ne1, t1 + T ), ...., φ(xk + ne1, tk + T )) einζ .

Then the Fourier transform of hQ,T (·) is bounded by

(6.26) |ĥQ,T (ζ)|2 ≤ 1

L2
varΩQ,Mal

[a(f, ζ, φ(·, ·))] varΩQ,Mal
[a(g, ζ, φ(·, ·))] .

From (6.17) we see that
(6.27)

|DMala(x, t; f, ζ, φ(·, ·))| ≤ ‖Df(·‖∞
k∑
j=1

∑
n∈IL

e−m
2(T+tj−t)/2G(x, xj+ne1, t, T+tj , φ(·, ·)) ,

where we are using the convention G(·, ·, s, S) = 0 if s > S. It follows from (6.27)
that

(6.28)
∑
x∈Q
|DMala(x, t; f, ζ, φ(·, ·))|2 ≤

kL‖Df(·‖2∞
k∑
j=1

e−m
2(T+tj−t) sup

y∈Q

∑
x∈Q

∑
n∈IL

G(x, y+ne1, t, T+tj , φ(·, ·))G(x, y, t, T+tj , φ(·, ·)) .

Observe now that

(6.29)
∑
y′∈Q

G(x, y′, t, T, φ(·, ·)) =
∑
x′∈Q

G(x′, y, t, T, φ(·, ·)) = 1, x, y ∈ Q, t < T.

We conclude from (6.9), (6.28), (6.29) that

(6.30) varΩQ,Mal
[a(f, ζ, φ(·, ·))] ≤ k2L‖Df(·‖2∞/m2 .

The inequality (6.23) follows from (6.24), (6.26), (6.30). �

To proceed further we need to obtain a more general Poincaré inequality than
was used in Proposition 6.2. In order to do this we consider functions F (φ(·, ·)) of
continuous in time fields φ : Q×R→ R. For h ∈ L2(Q×R), which is continuous
in time, we define the directional derivative of F (φ(·, ·)) in direction h by

(6.31) dFh(φ(·, ·)) = lim
ε→0

[F (φ(·, ·) + εh(·, ·))− F (φ(·, ·))]/ε .

For the functions F (φ(·, ·)) we shall be interested in, the directional derivative (6.31)
can be written as

(6.32) dFh(φ(·, ·)) =
∑
x∈Q

∫ ∞
−∞

dt dF (x, t;φ(·, ·))h(x, t) = [dF (φ(·, ·)), h] .

We shall call dF (·, ·;φ(·, ·)) the field derivative of F (φ(·, ·)). One can use the HS
formula (6.7) to obtain a Poincaré inequality for functions F (φ(·, ·)) of the form

(6.33) F (φ(·, ·)) =

∫ ∞
−∞

g(t)G(φ(·, t)) dt ,
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where g : R → C is a continuous function of compact support and G(φ(·)) is a
complex valued C1 function of fields φ : Q→ R which satisfies |G(z)|+ |DG(z)| ≤
A exp[B|z|), z ∈ RLd , for some constants A,B . Evidently from (6.32) we see that
the field derivative of the function (6.33) is given by the formula

(6.34) dF (x, t;φ(·, ·)) = g(t)dG(x, φ(·, t)), x ∈ Q, t ∈ R.

Let us define now the correlation function h : R→ C by

(6.35) h(t) = 〈 G(φ(·, t)) G(φ(·, 0)) 〉ΩQ − 〈 G(φ(·, t)) 〉ΩQ 〈 G(φ(·, 0)) 〉ΩQ .

Then the variance of F (φ(·, ·)) is given in terms of the Fourier transforms of g(·)
and h(·) by

(6.36) varΩQ [F (φ(·, ·))] =
1

2π

∫ ∞
−∞
|ĝ(ζ)|2ĥ(ζ) dζ .

Note that the function ĥ(·) is real and non-negative. Observe next that h(t) can be
written as an expectation with respect to the measure (6.1) by using the operator
d∗d which occurs in (6.7). Thus we have that
(6.37)

h(t) = 〈 e−d
∗dt/2[Ḡ(φ(·, 0))−〈Ḡ(φ(·, 0)〉ΩQ ] [G(φ(·, 0))−〈G(φ(·, 0)〉ΩQ ] 〉ΩQ , t > 0,

with a similar formula for t < 0. For ζ ∈ R let u(ζ, φ(·)) be the solution to the
elliptic PDE

(6.38) [d∗d/2 + iζ]u(ζ, φ(·)) = [G(φ(·))− 〈G(φ(·)〉ΩQ ] , φ : Q→ R.

We conclude from (6.37), (6.38) that

(6.39) ĥ(ζ) = 〈 [Ḡ(φ(·, 0))− 〈Ḡ(φ(·, 0)〉ΩQ ] [u(ζ, φ(·, 0)) + u(−ζ, φ(·, 0))] 〉ΩQ .

If we apply the gradient operator d to (6.38) we obtain the equation
(6.40)[
d∗d+ 2iζ +∇∗V ′′(∇φ(·))∇+m2

]
du(·, ζ, φ(·)) = 2dG(·, φ(·)) , φ : Q→ R.

Hence (6.39), (6.40) and the HS formula (6.7) imply that

(6.41) ĥ(ζ) = 4× real part of

〈 dḠ(·, φ(·, 0))
[
d∗d+∇∗V ′′(∇φ(·))∇+m2

]−1 [
d∗d+ 2iζ +∇∗V ′′(∇φ(·))∇+m2

]−1
dG(·, φ(·, 0)) 〉ΩQ .

Just as (6.6) follows from (6.7), we see from (6.41) that

(6.42) 0 ≤ ĥ(ζ) ≤ 4

m4
〈‖dG(φ(·, 0))‖2〉ΩQ .

It follows from (6.36), (6.42) that

(6.43) varΩQ [F (φ(·, ·))] ≤ 4

m4
〈‖dG(·, φ(·, 0))‖2〉ΩQ

∫ ∞
−∞
|g(t)|2 dt.

Since from (6.34) the inequality (6.43) can be rewritten as

(6.44) varΩQ [F (φ(·, ·))] ≤ 4

m4
〈‖dF (·, ·;φ(·, ·))‖2〉ΩQ ,

we have obtained a Poincaré inequality for functions F (φ(·, ·)) of time dependent
fields which are of the form (6.33). We generalize this as follows:
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Lemma 6.1. Let F (φ(·, ·)) be a bounded function of continuous in time fields φ :
Q ×R → R which is C1 with respect to the L2(Q ×R) metric, and assume that
the field derivative function dF (·, ·, φ(·, ·)) with range L2(Q ×R) is also bounded.
Then the inequality (6.44) holds.

Proof. Let T > 0 be large and consider F (τ0,Tφ(·, ·)) as a function of solutions
φ(x, t), x ∈ Q, t > 0, to the stochastic equation (6.3). By the chain rule we have
that

(6.45) DMalF (x, t; τ0,Tφ(·, ·)) =∑
y∈Q

∫ ∞
t−T

ds dF (y, s; τ0,Tφ(·, ·))DMalφ(x, t; y, T + s) , x ∈ Q, t > 0.

It follows then from (6.17) that

(6.46) DMalF (x, t; τ0,Tφ(·, ·)) =∑
y∈Q

∫ ∞
t−T

ds dF (y, s; τ0,Tφ(·, ·)) e−m
2(T+s−t)/2G(x, y, t, T+s, φ(·, ·)) , x ∈ Q, t > 0.

Hence we have that

(6.47)
∑
x∈Q

∫ ∞
0

dt |DMalF (x, t; τ0,Tφ(·, ·))|2 =

2
∑
x∈Q

∫
0<t<T+s<T+s′

dt ds ds′ e−m
2(T+s−t)/2e−m

2(T+s′−t)/2h(x, s)h(x, s′) ,

where

(6.48) h(x, s) =
∑
y∈Q

G(x, y, t, T + s, φ(·, ·)) dF (y, s; τ0,Tφ(·, ·)) .

It follows from (6.29) that

(6.49)
∑
x∈Q
|h(x, s)|2 ≤

∑
y∈Q
|dF (y, s; τ0,Tφ(·, ·)|2 ,

and so we conclude from (6.47) that
(6.50)∑
x∈Q

∫ ∞
0

dt |DMalF (x, t; τ0,Tφ(·, ·))|2 ≤ 4

m4

∑
y∈Q

∫ ∞
−∞

ds |dF (y, s; τ0,Tφ(·, ·))|2 .

Hence (6.9), (6.10) imply that

(6.51) varΩQ,Mal[F (τ0,Tφ(·, ·))] ≤ 4

m4
〈‖dF (·, ·; τ0,Tφ(·, ·))‖2〉ΩQ,Mal .

The result follows now by observing that the limit of the LHS of (6.51) as T →∞
is equal to the LHS of (6.44). Similarly the RHS of (6.51) converges to the RHS of
(6.44). �

We shall show how the Poincaré inequality (6.44) can be used to improve the
most elementary of the inequalities contained in §2. Thus let us consider an equation
which differs from (2.43) only in that the projection operator P has been omitted,
(6.52)
ηΦ(ξ, η, ω) + ∂Φ(ξ, η, ω) + ∂∗ξa(ω)∂ξΦ(ξ, η, ω) = −∂∗ξa(ω), η > 0, ξ ∈ Rd, ω ∈ Ω.
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For any v ∈ Cd we multiply the row vector (6.52) on the right by the column vector

v and by the function Φ(ξ, η, ω)v on the left. Taking the expectation we see that

(6.53) ‖P∂ξΦ(ξ, η, ·)v‖ ≤ ‖∂ξΦ(ξ, η, ·)v‖ ≤ Λ|v|
λ

.

where ‖ · ‖ denotes the norm in H(Ω). Let g : Zd ×R → Cd ⊗Cd be in Lp(Zd ×
R,Cd ⊗Cd) with norm given by (3.9). If p = 1 then (6.53) implies that

(6.54) ‖P
∑
x∈Zd

∫ ∞
−∞

dt g(x, t)∂ξΦ(ξ, η, τx,−t·)v‖ ≤
Λ|v|
λ
‖g‖1 .

The Poincaré inequality (6.44) enables us to improve (6.54) to allow g ∈ Lp(Zd ×
R,Cd ⊗Cd) for some p > 1.

Proposition 6.3. Suppose a(·) in (6.52) is as in the statement of Theorem 1.2.
Then for ξ ∈ Rd, <η > 0, there exists p0(Λ/λ) depending only on d and Λ/λ
and satisfying 1 < p0(Λ/λ) < 2, such that for g ∈ Lp(Zd × R,Cd ⊗ Cd) with
1 ≤ p ≤ p0(Λ/λ) and v ∈ Cd,

(6.55) ‖P
∑
x∈Zd

∫ ∞
−∞

dt g(x, t)∂ξΦ(ξ, η, τx,−t·)v‖ ≤
CΛ1|v|

m2Λ3/2−1/p
‖g‖p ,

where Λ1 is the constant in Theorem 1.2 and C depends only on d and Λ/λ.

Proof. We shall first assume that g(·, ·) is continuous in time and has compact
support in Zd×R. For a cube Q such that Q×R contains the support of g(·, ·), let
ΦQ(ξ, η, ·) be the solution to (6.52) with a(φ) = ã(φ(0, 0)), φ ∈ ΩQ, so the random
environment for (6.52) is (ΩQ,FQ, PQ). The inequality (6.44) implies that

(6.56) ‖P
∑
x∈Zd

∫ ∞
−∞

dt g(x, t)∂ξΦ(ξ, η, τx,−t·)v‖2 ≤

4

m4

∑
z∈Q

∫ ∞
−∞

ds ‖ ∂

∂φ(z, s)

∑
x∈Zd

∫ ∞
−∞

dt g(x, t)∂ξΦ(ξ, η, τx,−t·)v‖2 ,

where we are using the notation ∂/∂φ(z, s)F (φ(·, ·)) to denote the value of the field
derivative dF (z, s;φ(·, ·)) defined by (6.32) of a function F (φ(·, ·)) at (z, s).

Translation operators τx,t, x ∈ Zd, t ∈ R, act on functions FQ : ΩQ → C
by τx,tFQ(φ(·, ·)) = FQ(τx,tφ(·, ·)). We shall also need to use translation opera-
tors Tx,t, x ∈ Zd, t ∈ R, which act on functions GQ : Q × R × ΩQ → C by
Tx,tGQ(z, s;φ(·, ·)) = GQ(z + x, s+ t;φ(·, ·)), so Tx,t acts on the first two variables
of GQ(·, ·;φ(·, ·)). The operators τx,t, x ∈ Zd, t ∈ R, act on the third variable of
GQ(·, ·;φ(·, ·)), and it is clear that they commute with the Tx,t, x ∈ Zd, t ∈ R. Let
FQ : ΩQ → C be a function which is C1 with respect to the L2(Q ×R) metric as
in Lemma 6.1. One easily sees from (6.31), (6.32) that

(6.57) d[τx,tFQ] = T−x,−tτx,tdFQ, x ∈ Zd, t ∈ R,

whence it follows from (2.1) that
(6.58)
d[∂j,ξτx,−tFQ] = [e−iej .ξT−ej ,0τej ,0−1]T−x,tτx,−tdFQ, 1 ≤ j ≤ d, x ∈ Zd, t ∈ R.

Hence if we define a function GQ : Q×R× ΩQ → C by

(6.59) GQ(y, r;φ(·, ·)) = e−iy·ξdFQ(−y, r; τy,−rφ(·, ·)), y ∈ Q, r ∈ R,
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then (6.58) implies that
(6.60)

d[∂j,ξτx,−tFQ](z,−s;φ(·, ·)) = ei(x−z)·ξ ∇jGQ(x−z, t−s, τz,−sφ(·, ·)), 1 ≤ j ≤ d, x, z ∈ Zd, t, s ∈ R.

On taking FQ(φ(·, ·)) = ΦQ(ξ, η, φ(·, ·))v and defining GQ by (6.59), we conclude
from (6.60) that (6.56) is the same as

(6.61) ‖P
∑
x∈Zd

∫ ∞
−∞

dt g(x, t)∂ξΦQ(ξ, η, τx,−t·)v‖2 ≤

4

m4

∑
z∈Q

∫ ∞
−∞

ds ‖
∑
x∈Zd

∫ ∞
−∞

dt g(x, t)ei(x−z)·ξ ∇GQ(x− z, t− s, φ(·, ·))‖2 .

We can find an equation for GQ(·, ·;φ(·, ·)) by applying the operator ∂/∂φ(·, ·)
to (6.52). To see this let h ∈ L2(Q×R) be C1 as a function of time and of compact
support. Then (6.52) holds for ω = φ(·, ·) and ω = φ(·, ·) + εh(·, ·). On subtracting
the equations (6.52) for the different values of ω, dividing by ε and letting ε → 0,
we have from (6.31), (6.32) that the first term on the LHS of (6.52) converges to
η[dΦ(ξ, η, φ(·, ·))v, h] = η[dFQ(φ(·, ·)), h]. To find a similar expression for the limit
as ε→ 0 of the second term on the LHS of (6.52), we observe that for δ > 0,

(6.62) lim
ε→0

FQ(τ0,δ[φ(·, ·) + εh(·, ·)])− FQ(τ0,δφ(·, ·))
ε

=

[dFQ(τ0,δφ(·, ·)), T0,δh] = [T0,−δdFQ(τ0,δφ(·, ·)), h] .

Hence, assuming one can interchange the limits ε → 0 and δ → 0, we see from
(6.62) that the second term on the LHS of the difference of the two equations
(6.52) converges to

(6.63) lim
δ→0

[
T0,−δdFQ(τ0,δφ(·, ·))− dFQ(φ(·, ·))

δ
, h

]
= [D0dFQ(φ(·, ·)), h] .

To find the limit as ε → 0 of the term on the RHS of (6.52) we use the fact that
a(φ(·, ·)) = ã(φ(0, 0)). Thus we obtain the expression
(6.64)

lim
ε→0

∂∗ξa(φ(·, ·))v − ∂∗ξa(φ(·, ·) + εh(·, ·))v
ε

= −[D∗ξ{ δ(·, ·)Dã(φ(0, 0))v}, h] ,

where the operators Dξ = (D1,ξ, .., Dd,ξ) and D∗ξ = (D∗1,ξ, .., D
∗
d,ξ) are given by the

formulae

(6.65) Dj,ξ = [e−iej .ξT−ej ,0τej ,0−1], D∗j,ξ = [eiej .ξTej ,0τ−ej ,0−1] , 1 ≤ j ≤ d.

The function δ : Q×R→ R in (6.64) is the delta function, δ(0, t) = δ(t), δ(z, t) =
0, z 6= 0, where δ(·) is the Dirac delta function. The limit as ε → 0 of the third
term on the LHS of (6.52) can be expressed by a similar formula. Thus we have

(6.66)

lim
ε→0

∂∗ξa(φ(·, ·) + εh(·, ·))∂ξΦ(ξ, η, φ(·, ·) + εh(·, ·))v − ∂∗ξa(φ(·, ·))∂ξΦ(ξ, η, φ(·, ·))v
ε

=
[
D∗ξ ã(φ(0, 0))Dξ dFQ(φ(·, ·)) +D∗ξ{δ(·, ·)Dã(φ(0, 0))∂ξFQ(φ(·, ·))}, h

]
.

It follows from (6.52) and (6.63)-(6.66) that dFQ(φ(·, ·)) satisfies the equation

(6.67) ηdFQ(φ(·, ·)) +D0dFQ(φ(·, ·)) +D∗ξ ã(φ(0, 0))Dξ dFQ(φ(·, ·))
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= −D∗ξ [δ(·, ·)Dã(φ(0, 0)){v + ∂ξFQ(φ(·, ·))}] .

Evidently for any (y,−r) ∈ Zd ×R we can replace φ(·, ·) in (6.67) by τy,−rφ(·, ·).
If we now evaluate (6.67) with τy,−rφ(·, ·) substituted for φ(·, ·) and with the first
variable of dFQ(·, ·; τy,−rφ(·, ·)) equal to −y and the second variable equal to r, we
obtain an equation for the function GQ(·, ·;φ(·, ·)) of (6.59),

(6.68) ηGQ(y, r;φ(·, ·))− ∂GQ(y, r;φ(·, ·))
∂r

+∇∗yã(φ(y,−r))∇yGQ(y, r;φ(·, ·))

= −∇∗y[e−iy·ξδ(−y, r)Dã(φ(y,−r)){v + ∂ξFQ(τy,−rφ(·, ·))}] .

We define an operator Tη on functions g : Zd × R × Ω → Cd as follows: Let
u(y, r;φ(·, ·)) be the solution to the equation
(6.69)

ηu(y, r;φ(·, ·))− ∂u(y, r;φ(·, ·))
∂r

+ Λ∇∗y∇yu(y, r;φ(·, ·)) = Λ∇∗yg(y, r;φ(·, ·)) .

Then Tηg(y, r;φ(·, ·)) = ∇yu(y, r;φ(·, ·)), y ∈ Zd, r ∈ R. It is easy to see that Tη
is a bounded operator on L2(Zd×R×Ω,Cd) with norm ‖Tη‖ satisfying ‖Tη‖ ≤ 1.
We can obtain a formula for Tη which is similar to (2.47). Thus we have that

(6.70) Tηg(y, r;φ(·, ·)) = Λ

∫ ∞
0

e−ηt dt
∑
x∈Zd

{∇∇∗GΛ(x, t)} g(y−x, r+t;φ(·, ·)) ,

with GΛ(x, t) = G(x,Λt), x ∈ Zd, t > 0, and G(·, ·) the Green’s function (2.46). We
can similarly define operators Tη,Q on periodic functions gQ : Q×R×Ω→ Cd by ex-
tending gQ periodically to the function gQ : Zd×R×Ω→ Cd and setting Tη,QgQ =
TηgQ. If we now take gQ to be given by the RHS of (6.68), so ΛgQ(y, r;φ(·, ·)) =
e−iy·ξδ(−y, r)Dã(φ(y,−r)){v+∂ξFQ(τy,−rφ(·, ·))}, then Tη,QgQ(y, r;φ(·, ·)) = erηhQ(y, r;φ(·, ·))
where

(6.71)

hQ(y, r;φ(·, ·)) =
∑
n∈Zd

e−i(y+nL)·ξ {∇∇∗GΛ(y + nL,−r)}Dã(φ(0, 0)){v+∂ξFQ(φ(·, ·))} ,

if y ∈ Q, r < 0, hQ(y, r, φ(·, ·)) = 0 if y ∈ Q, r > 0,

where L is the length of the side of Q.
We can rewrite (6.68) using the function hQ of (6.71). Thus let uQ(y, r;φ(·, ·)), y ∈

Q, r ∈ R, be the solution to the periodic equation (6.69) with g = gQ. Then (6.68),
(6.69) imply that vQ = GQ + uQ is the solution to the equation

(6.72) ηvQ(y, r;φ(·, ·))− ∂vQ(y, r;φ(·, ·))
∂r

+∇∗yã(φ(y,−r))∇yvQ(y, r;φ(·, ·))

= −erηΛ∇∗y[b̃(φ(y,−r))hQ(y, r;φ(·, ·))] ,

where ã(·) = Λ[Id − b̃(·)]. It follows from (6.53) that ∂ξFQ(φ(·, ·)) is in H(Ω)
and ‖∂ξFQ(φ(·, ·))‖ ≤ Λ|v|/λ. Since |∇∇∗GΛ(x, t)|, x ∈ Zd, t > 0, is bounded by
1/(Λt + 1) times the RHS of (2.12), it follows from (6.71) that hQ is in L2(Q ×
R×Ω,Cd) and ‖hQ‖ ≤ C

√
ΛΛ1|v|/λ, where C is a constant depending only on d,

and Λ1 is the constant in the statement of Theorem 1.2. Since from (6.72) we see

that ‖∇vQ‖ ≤ Λ‖hQ‖/λ, we conclude that ‖∇GQ‖ ≤ CΛ1|v|(Λ/λ)2/
√

Λ. It follows
now from (6.61) and Young’s inequality that (6.55) holds for p = 1 provided we
can show that the LHS of (6.61) converges as Q → Zd to the LHS of (6.55). To
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see this note that we are assuming that the function g(·, ·) in (6.61) has compact
support and that <η > 0. Hence we can use the perturbation expansion obtained
from (2.13) and Proposition 6.1 to prove the convergence.

We can also show that the RHS of (6.61) converges as Q→ Zd by generating the
function ∇GQ from a perturbation expansion. Thus let B : Zd×R×Ω→ Cd⊗Cd

be defined by B(y, r;φ(·, ·)) = b̃(φ(y,−r)), y ∈ Zd, r ∈ R. It follows from (6.69),
(6.72) that ∇vQ is the solution to the equation

(6.73) ∇vQ(·, ·;φ(·, ·)) = Tη,Q[B(·, ·;φ(·, ·)){∇vQ(·, ·;φ(·, ·))−erηhQ(·, ·;φ(·, ·))}] .

Since g ∈ L1(Zd × R) it follows by the uniform in Q estimates of the previous
paragraph that it is sufficient to prove convergence as Q→ Zd for any finite number
of terms in the Neumann series expansion of (6.73). The convergence for a finite
number of terms follows from Proposition 6.1 using the fact that the function g(·, ·)
in (6.61) has compact support and that <η > 0. We have shown now that

(6.74) ‖P
∑
x∈Zd

∫ ∞
−∞

dt g(x, t)∂ξΦ(ξ, η, τx,−t·)v‖2 ≤

4

m4

∑
z∈Zd

∫ ∞
−∞

ds ‖
∑
x∈Zd

∫ ∞
−∞

dt g(x, t)ei(x−z)·ξ ∇G(x− z, t− s, φ(·, ·))‖2 ,

where ∇G = ∇v − h with

(6.75) h(y, r;φ(·, ·)) = {∇∇∗GΛ(y,−r)}∗Dã(φ(0, 0)){v + ∂ξFQ(φ(·, ·))} ,

if y ∈ Zd, r < 0, h(y, r, φ(·, ·)) = 0 if y ∈ Zd, r > 0,

and ∇v is the solution to the equation

(6.76) ∇v(·, ·;φ(·, ·)) = Tη[B(·, ·;φ(·, ·)){∇v(·, ·;φ(·, ·))− erηh(·, ·;φ(·, ·))}] .

We can now easily extend the previous argument by using the continuous time
version of the Calderon-Zygmund theorem, Corollary 5.1, to prove (6.55) for a
range of p > 1. Define for q ≥ 1 the Banach space Lq(Zd×R×Ω,Cd) of functions
g : Zd ×R× Ω→ Cd with norm ‖g‖q given by

(6.77) ‖g‖qq =
∑
y∈Zd

∫ ∞
−∞

dt ‖g(y, r;φ(·, ·))‖q ,

where ‖g(y, r;φ(·, ·))‖ is the norm of g(y, r;φ(·, ·)) ∈ H(Ω). By following the ar-
gument of Lemma 5.2, we see that Tη is bounded on Lq(Zd × R × Ω,Cd) for
q > 1 with norm ‖Tη‖q ≤ 1 + δ(q), where limq→2 δ(q) = 0. Noting that ‖h‖q ≤
CqΛ

1−1/qΛ1|v|/λ for a constant Cq depending only on d, q, we conclude from (6.76)
and the Calderon-Zygmund theorem that there exists q0(Λ/λ) < 2 depending only
on d,Λ/λ, such that ∇G is in Lq(Zd × R × Ω,Cd) for q0(Λ/λ) ≤ q ≤ 2, and
‖∇G‖q ≤ CΛ−1/qΛ1|v| where the constant C depends only on d,Λ/λ. The inequal-
ity (6.55) with p = 2q/(3q − 2) follows from (6.74) and Young’s inequality. �

In order to establish Hypothesis 4.2 for the massive field theory environment
(Ω,F , P ) we shall need a refinement of the Poincaré inequality (6.44). We can see
what this refinement should be by considering again functions of the form (6.33), for
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which (6.36) and (6.41) hold. It follows from (6.41) that ĥ(ζ) satisfies the inequality

(6.78) 0 ≤ ĥ(ζ) ≤ 4

m4 + 4ζ2
〈‖dG(φ(·, 0))‖2〉ΩQ .

Substituting the RHS of (6.78) into (6.36) we obtain the inequality

(6.79)

varΩQ [F (φ(·, ·))] ≤ 1

m2

∫ ∞
−∞

∫ ∞
−∞

g(t)g(s)e−m
2|t−s|/2 dt ds 〈‖dG(φ(·, 0))‖2〉ΩQ

≤ 4

m4

∫ ∞
−∞
|g(t)|2 dt 〈‖dG(φ(·, 0))‖2〉ΩQ =

4

m4
〈‖dF (·, ·;φ(·, ·))‖2〉ΩQ .

Observe now that the first integral on the RHS of (6.79) can be written as a con-

volution [g, f∗g] where f(t) = m−2e−m
2|t|/2, t ∈ R. Hence it follows from Young’s

inequality that for 1 ≤ p ≤ 2,

(6.80) varΩQ [F (φ(·, ·))] ≤ C

m2(3−2/p)
‖g‖2p〈‖dG(φ(·, 0))‖2〉ΩQ ,

where ‖g‖p denotes the Lp norm of g(·) and C is a universal constant. The Poincaré
inequality (6.44) only implies (6.80) for p = 2.

We shall also need a continuous time version of Corollary 5.1, as we already did
in the proof of Proposition 6.3. Thus let Tξ,η act on functions g : Zd ×R→ Cd as

(6.81) Tξ,ηg(y, r) = Λ

∫ ∞
0

e−ηt dt
∑
x∈Zd

{∇∇∗GΛ(x, t)} eix·ξg(y − x, r + t) .

Comparing the operator Tξ,η of (6.81) to the operator Tξ,η of (5.2), we see that
one can easily extend the argument of §4 to obtain a continuous time version of
Corollary 5.1:

Corollary 6.1. For (ξ, η) satisfying the assumptions of Lemma 5.2 the opera-
tor Tξ,η of (6.81) is bounded on Hp(Zd × R) for 3/2 ≤ p ≤ 3, and ‖Tξ,η‖p ≤
[1 + δ(p)]

(
1 + C2|=ξ|2/[<η/Λ]

)
, where the function δ(·) depends only on d and

limp→2 δ(p) = 0.

Proof of Hypothesis 4.2. We shall first prove Hypothesis 3.2. We assume g : Zd ×
R → Cd ⊗Cd has compact support and for k = 1, 2, ..., denote by ak(g, ξ, η) the
random d× d matrix

(6.82) ak(g, ξ, η) =
∑
x∈Zd

∫ ∞
−∞

dt g(x, t)τx,−tPb(·) [PTξ,ηb(·)]k−1
.

Evidently Hypothesis 3.2 will follow if we can show there is a constant C such that

(6.83)

∞∑
k=1

‖ak(g, ξ, η)v‖ ≤ C‖g‖p|v| for 1 ≤ p ≤ p0(Λ/λ), v ∈ Cd.

We establish (6.83) by obtaining a bound ‖ak(g, ξ, η)v‖ ≤ Ck‖g‖p|v| where Ck
decays exponentially in k as k →∞.

In the case k = 1 we have from the Poincaré inequality (6.44) that

(6.84) ‖a1(g, ξ, η)v‖2 ≤ 4

m4

∑
x∈Zd

∫ ∞
−∞

dt ‖g(x, t)Db̃(φ(0, 0))v‖2
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≤
(

2Λ1

m2Λ
‖g‖2|v|

)2

.

We also have that a1(g, ξ, η) = ĝ(A,B)Pb(·), where ĝ is the Fourier transform
(2.48) of g and A,B are the self-adjoint operators (2.50), (2.51). Hence we have
that ‖a1(g, ξ, η)v‖ ≤ ‖g‖1|v|. We conclude therefore from (6.84) and the Riesz-
Thorin interpolation theorem [31] there is a constant C1 such that ‖a1(g, ξ, η)v‖ ≤
C1‖g‖p|v| for 1 ≤ p ≤ 2 .

When k > 1 we write

(6.85) ak(g, ξ, η)v = P
∑
x∈Zd

∫ ∞
−∞

dt g(x, t)τx,−tb(·)∂ξFk(φ(·, ·)) ,

where the functions Fk(φ(·, ·)) are defined inductively. For ξ ∈ Rd the Fk(φ(·, ·))
satisfy the recurrence equations

(6.86) [η + ∂]F2(φ(·, ·)) + Λ∂∗ξ∂ξF2(φ(·, ·)) = ΛP∂∗ξ [b̃(φ(0, 0))v] ,

[η + ∂]Fk(φ(·, ·)) + Λ∂∗ξ∂ξFk(φ(·, ·)) = ΛP∂∗ξ [b̃(φ(0, 0))∂ξFk−1(φ(·, ·))] if k > 2.

The Fk(φ(·, ·)) for ξ ∈ Cd are defined by analytic continuation from the values
of Fk(φ(·, ·)) when ξ ∈ Rd. Similarly to (6.59) we define for k ≥ 2 functions
Gk : Zd ×R× Ω→ C by

(6.87) Gk(y, r;φ(·, ·)) = e−iy·ξdFk(−y, r; τy,−rφ(·, ·)), y ∈ Zd, r ∈ R.

Then from (6.86) we see that the Gk(y, r;φ(·, ·)) satisfy the equations

(6.88)

ηG2(y, r;φ(·, ·))−∂G2(y, r;φ(·, ·))
∂r

+Λ∇∗y∇yG2(y, r;φ(·, ·)) = ΛP∇∗y[e−iy·ξδ(−y, r)Db̃(φ(y,−r))v] ,

ηGk(y, r;φ(·, ·))− ∂Gk(y, r;φ(·, ·))
∂r

+ Λ∇∗y∇yGk(y, r;φ(·, ·)) =

ΛP∇∗y[e−iy·ξδ(−y, r)Db̃(φ(y,−r)))∂ξFk−1(τy,−rφ(·, ·))+b̃(φ(y,−r))∇yGk−1(y, r;φ(·, ·))] if k > 2.

Instead of estimating the norm of the function ak(g, ξ, η)v of (6.85) directly by
using the Poincaré inequality as in (6.61), we begin with the Clark-Okone formula
(6.9). Let φ(·, t), t > 0, be the solution of (6.3) with initial condition φ(·, 0) = 0.
We extend the function φ(·, t) to t < 0 by setting φ(·, t) = 0 for t < 0. It is then
easy to see that

(6.89) ‖ak(g, ξ, η)v‖2 = lim
T→∞

varΩQ,Mal[ H(τ0,Tφ(·, ·)) ] ,

where the function H(φ(·, ·)) is given by the formula

(6.90) H(φ(·, ·)) =
∑
y∈Zd

∫ ∞
−∞

ds g(y, s)b̃(φ(y,−s))∂ξFk(τy,−sφ(·, ·)) .

We have now from (6.45) that for x ∈ Q, t > 0, the Malliavin derivativeDMalH(x, t; τ0,Tφ(·, ·)) =
σ1,T (x, t;φ(·, ·)) + σ2,T (x, t;φ(·, ·)), where

(6.91) σ1,T (x, t;φ(·, ·)) =∑
y∈Zd

∫ T−t

−∞
ds g(y, s)e−m

2(T−t−s)/2G(x, y, t, T−s, φ(·, ·))Db̃(φ(y, T−s))∂ξFk(τy,T−sφ(·, ·)) ,
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withG(·, ·, ·, ·, φ(·, ·)) being the Green’s function (6.15). The function σ2,T (x, t;φ(·, ·))
is given by the formula
(6.92)

σ2,T (·, ·;φ(·, ·)) =
∑
y∈Zd

∫ ∞
−∞

ds g(y, s)b̃(φ(y, T − s))DMal[∂ξFk(τy,T−sφ(·, ·))] .

It follows from (6.9) that

(6.93) ‖ak(g, ξ, η)v‖ ≤ lim
T→∞

∑
x∈Q

∫ ∞
0

dt |〈 σ1,T (x, t;φ(·, ·)) | Ft 〉ΩQ,Mal
|2
1/2

+ lim
T→∞

∑
x∈Q

∫ ∞
0

dt |〈 σ2,T (x, t;φ(·, ·)) | Ft 〉ΩQ,Mal
|2
1/2

.

To estimate the first term on the RHS of (6.93) we argue as in Lemma 6.1. Thus
from (6.91) we have that

(6.94)
∑
x∈Q

∫ ∞
0

dt |σ1,T (x, t;φ(·, ·)) |2 =

2
∑
x∈Q

∫
0<t<T−s<T−s′

dt ds ds′ e−m
2(T−t−s)/2e−m

2(T−t−s′)/2h(x, s) · h(x, s′) ,

where
(6.95)

h(x, s) =
∑
y∈Q

G(x, y, t, T − s, φ(·, ·))g(y, s)Db̃(φ(y, T − s))∂ξFk(τy,T−sφ(·, ·)) .

It follows from (6.29) that

(6.96)
∑
x∈Q
|h(x, s)|2 ≤

∑
y∈Q
|g(y, s)Db̃(φ(y, T − s))∂ξFk(τy,T−sφ(·, ·))|2 ,

and so we conclude from (6.94) that
(6.97)∑
x∈Q

∫ ∞
0

dt |σ1,T (x, t;φ(·, ·)) |2 ≤ 1

m2

∫ ∞
t−T

∫ ∞
t−T

ds ds′ e−m
2|s−s′|/2k(s, τ0,Tφ(·, ·)) k(s′, τ0,Tφ(·, ·)) .

The function k(s, φ(·, ·)) is given by the formula
(6.98)

k(s, φ(·, ·)) =

∑
y∈Q
|g(y, s)Db̃(φ(y,−s))∂ξFk(τy,−sφ(·, ·))|2

1/2

= ‖g(·, s)‖2 k1(s, φ(·, ·)),

where ‖g(·, s)‖2 denotes the L2 norm of the d×d matrix valued function g(y, s), y ∈
Zd. Observe next that (6.97), (6.98) and the Schwarz inequality imply that
(6.99)∑
x∈Q

∫ ∞
0

dt |σ1,T (x, t;φ(·, ·)) |2 ≤ 1

m2

∫ ∞
t−T

∫ ∞
t−T

ds ds′ e−m
2|s−s′|/2‖g(·, s)‖2‖g(·, s′)‖2k1(s, τ0,Tφ(·, ·))2 .
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Hence on using the fact that for any s ∈ R, one has

(6.100) lim
T→∞

〈 k1(s, τ0,Tφ(·, ·))2 〉ΩQ,Mal
≤ CΛ2

1

Λ2
〈 |∂ξFkφ(·, ·))|2 〉ΩQ ,

where the constant C depends only on d, we conclude as in the argument showing
(6.80) that for 1 ≤ p ≤ 2 there is a constant C depending only on d such that

(6.101) lim
T→∞

∑
x∈Q

∫ ∞
0

dt |〈 σ1,T (x, t;φ(·, ·)) | Ft 〉ΩQ,Mal
|2 ≤

CΛ2
1

Λ2m2(3−2/p)

[∫ ∞
−∞
‖g(·, s)‖p2 ds

]2/p

〈 |∂ξFkφ(·, ·))|2 〉ΩQ .

From (6.86) we see that for ξ ∈ Rd

(6.102) 〈 |∂ξFk(φ(·, ·))|2 〉ΩQ ≤ (1− λ/Λ)2(k−1)|v|2 ,

and so (6.101) implies that for ξ ∈ Rd the first term on the RHS of (6.93) is bounded
as
(6.103)

lim
T→∞

∑
x∈Q

∫ ∞
0

dt |〈 σ1,T (x, t;φ(·, ·)) | Ft 〉ΩQ,Mal
|2 ≤

{
CΛ1

Λm3−2/p
‖g(·, ·)‖p (1− λ/Λ)k−1|v|

}2

,

where the p norm of g(·, ·) is given by (3.9).
We can estimate the second term on the RHS of (6.93) by following the argument

of Proposition 6.3. Thus we have that

(6.104) lim
T→∞

∑
x∈Q

∫ ∞
0

dt |〈 σ2,T (x, t;φ(·, ·)) | Ft 〉ΩQ,Mal
|2 ≤

4

m4

∑
z∈Q

∫ ∞
−∞

ds

〈 ∣∣∣∣∣∣
∑
x∈Zd

∫ ∞
−∞

dt g(x, t) b̃(φ(x,−t))ei(x−z)·ξ∇Gk(x− z, t− s; τz,−sφ(·, ·))

∣∣∣∣∣∣
2 〉

ΩQ

=
4

m4

∑
z∈Q

∫ ∞
−∞

ds

〈 ∣∣∣∣∣∣
∑
x∈Zd

∫ ∞
−∞

dt g(x, t) b̃(φ(x− z, s− t))ei(x−z)·ξ∇Gk(x− z, t− s;φ(·, ·))

∣∣∣∣∣∣
2 〉

ΩQ

,

where we have used the invariance of the operators τz,−s, z ∈ Zd, s ∈ R, on
(ΩQ,FQ, PQ). As in Proposition 6.3 we are justified in taking the limit Q→ Zd in
(6.104), and hence (6.69), (6.70), (6.88) imply that ∇G2(·, ·;φ(·, ·)) is given by the
formula

(6.105) ∇G2(y, r;φ(·, ·)) = Λeηr∇∇∗GΛ(y,−r)P [Db̃(φ(0, 0))v] ,

if y ∈ Zd, r < 0, ∇G2(y, r;φ(·, ·)) = 0 if y ∈ Zd, r > 0.

We similarly have that for k > 2
(6.106)
∇Gk(y, r;φ(·, ·)) = eηrhk(y, r;φ(·, ·)) + PTη[B(·, ·;φ(·, ·))∇Gk−1(·, ·;φ(·, ·))] ,
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where the function B(·, ·;φ(·, ·)) is as in (6.73) and

(6.107) hk(y, r;φ(·, ·)) = Λ∇∇∗GΛ(y,−r)P [Db̃(φ(0, 0))∂ξFk−1(φ(·, ·))] ,

if y ∈ Zd, r < 0, hk(y, r;φ(·, ·)) = 0 if y ∈ Zd, r > 0.

Defining the functionAk : Zd×R×Ω→ Cd byAk(y, r;φ(·, ·)) = eiy·ξ∇Gk(y, r;φ(·, ·)),
we see from (6.106) that for k > 2 the function Ak(·, ·;φ(·, ·)) satisfies the equation

(6.108) Ak(·, ·;φ(·, ·)) = Dk(·, ·;φ(·, ·)) + PTξ,η[B(·, ·;φ(·, ·))Ak−1(·, ·;φ(·, ·))] ,

where Dk(y, r;φ(·, ·)) = eiy·ξ+ηrhk(y, r;φ(·, ·)) and from (6.70) it follows that the
operator Tξ,η is given by (6.81).

Just as in Proposition 6.3 we see that if ‖ · ‖q denotes the q norm (6.77) then for
ξ ∈ Rd and 1 < q ≤ 2
(6.109)

‖A2‖q ≤ CqΛ1|v|/Λ1/q , ‖Dk‖q ≤ Cq(1− λ/Λ)k−2Λ1|v|/Λ1/q for k > 2,

where the constant Cq depends only on d, q and diverges as q → 1. It follows
then from (6.108), (6.109) that for ξ ∈ Rd one has the inequality ‖Ak‖2 ≤ Ck(1−
λ/Λ)k−2Λ1|v|/Λ1/2 for some constant C depending only on d. We can extend this
inequality by using Corollary 6.1. Thus for (ξ, η) satisfying the conditions of Lemma
5.2 for sufficiently small constant C1 depending only on d, there exists q0(Λ/λ) < 2
such that for some constant C depending only on d,Λ/λ one has the inequality

(6.110) ‖Ak‖q ≤ Ck(1−λ/Λ)k−2
(
1 + C2|=ξ|2/[<η/Λ]

)k−2
Λ1|v|/Λ1/q for k ≥ 2,

provided q0(Λ/λ) ≤ q ≤ 2. We can bound now the RHS of (6.104) in terms of ‖g‖p
with p = 2q/(3q − 2) by using (6.110) and Young’s inequality. If we combine this
with the inequality (6.103) then we conclude from (6.93) that

(6.111) ‖ak(g, ξ, η)v‖ ≤ CΛ1

Λm3−2/p
‖g(·, ·)‖p (1− λ/Λ)k−1|v|

+
CkΛ1

m2Λ3/2−1/p
‖g(·, ·)‖p (1− λ/Λ)k−2

(
1 + C2|=ξ|2/[<η/Λ]

)k−2 |v| .

Evidently the inequality (6.111) implies that (6.83) holds provided (ξ, η) satisfy
the conditions of Lemma 5.2 for sufficiently small C1 depending only on d,Λ/λ.
Restricting ξ to be in Rn then (3.10) follows, and hence we have proven that
Hypothesis 3.2 holds in the massive field theory case.

To complete the proof of Hypothesis 4.2 we first observe that the above argument
immediately applies to the situation where the functions g2, .., gk are delta functions
gj(x, t) = δ(x−xj , t− tj), j = 2, .., k. The inequality (4.72) then follows for general
g2, .., gk ∈ L1(Zd ×R,Cd ⊗Cd) from the triangle inequality. �

Appendix A. Optimal rates of convergence

Here we shall show that if λ/Λ is sufficiently close to 1 then one can take α = 1
in Theorem 1.2. First we prove that if λ/Λ is sufficiently close to 1 then some
derivatives of the function q(ξ, η) are uniformly bounded as η → 0.
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Lemma A.1. Assume (Ω,F , P ) and a(·) are as in the statement of Theorem 1.2.
Then there exists δ > 0 depending only on d such that if 1 − λ/Λ < δ the d × d
matrix function q(ξ, η) of (2.3) satisfies the inequality
(A.1)
‖∂q(ξ, η)/∂η‖+ ‖∇ξq(ξ, η)‖+

∥∥∇ξ∇∗ξq(ξ, η)
∥∥ ≤ CΛ, ξ ∈ Rd, 0 < <η < Λ,

for some constant C. If (Ω,F , P ) is the i.i.d. environment then C depends only on
d, δ,Λ. If (Ω,F , P ) is the massive field theory environment then C additionally de-
pends on m and ‖Dã(·)‖∞. Furthermore each of the functions on the LHS of (A.1)
are Hölder continuous. Thus if g(ξ, η) is either of the functions ∂q(ξ, η)/∂η, ∇ξ∇∗ξq(ξ, η)
then there exists α > 0 depending only on d, δ such that

(A.2) ‖g(ξ′, η′)− g(ξ, η)‖ ≤ CΛ[ |ξ′ − ξ|α + |(η′ − η)/Λ|α/2 ]

for all ξ′, ξ ∈ Rd, 0 < <η′,<η < Λ. The constant C in (A.2) has the same
dependency as the constant C in (A.1).

Proof. We just consider the case of the i.i.d. environment since the proof for the field
theory environment is similar. It is easy to see from the argument of Proposition
4.1 that ‖∂q(ξ, η)/∂η‖ ≤ C. To see this note that in the representation (4.12) for
∂q(ξ, η)/∂η the function h of (4.16) is in Lp(Zd+1) for p > (d + 2)/(d + 1). Since
we can choose p < 2 the uniform boundedness of ∂q(ξ, η)/∂η, provided λ/Λ is
sufficiently close to 1, follows from the generalized Jones’ theorem [18] -see Corollary
5.1.

We can bound the derivatives of q(ξ, η) with respect to ξ similarly. To bound
∇ξq(ξ, η) we can argue as in Lemma 3.1. We see from (3.6) that the function gj(x, t)
corresponding to ∂q(ξ, η)/∂ξj is given by the formula

(A.3) gj(x, t) = Λ[∇∇∗GΛ(x, t− 1)]∗ e−ηt−ix·ξxj ,

which is in Lp(Zd+1) for p > (d + 2)/(d + 1). Hence ∂q(ξ, η)/∂ξj is uniformly
bounded, provided λ/Λ is sufficiently close to 1, by the argument of the previous
paragraph.

To bound ∇ξ∇∗ξq(ξ, η) we note that we need to differentiate twice the series

on the RHS of (2.14). The differentiated series can be written as a sum of two
parts. The first part includes all terms where each gradient ∇ξ and ∇∗ξ act on

different operators Tξ,η on the RHS of (2.14), whereas the second part includes all
terms where both gradients act on the same operator Tξ,η. This in turn implies
that a second derivative of v∗1q(ξ, η)v2 with v1, v2 ∈ Cd is a sum Σ1 + Σ2 with Σ1

corresponding to the first part of the differentiated series (2.14). We therefore have
as in (4.13) that

(A.4)

(
∂2

∂ξj∂ξk

)
v∗1q(ξ, η)v2 = Σ1 + Σ2, where

Σ2 = −Λ

100∑
r=1

[
T̃1,=ξ,<η gr(<ξ,=η, ·)v1, T1,=ξ,<η hr(<ξ,=η, ·)v2

]
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for any d× d matrix valued functions gr(x, t), hr(x, t), x ∈ Zd, t ∈ Z, r = 1, .., 100
satisfying
(A.5)

100∑
r=1

ĝr(ζ, θ)
∗ĥr(ζ, θ) =

(
∂2

∂ζj∂ζk

)
Λe(i=ξ − ζ)e(−i=ξ − ζ)∗

[e<η−iθ − 1 + Λe(−i=ξ − ζ)∗e(i=ξ − ζ)]
.

Since Σ1 can be bounded by arguing as in the previous paragraph, it will be suffi-
cient to show that the gr, hr, r = 1, .., 100 in (A.5) can be chosen so that they are
in Lp(Zd+1) for p > (d + 2)/(d + 1). Observe that if one of the derivatives on the
RHS of (A.5) is applied to the denominator and the other to the numerator we are
in a situation like (4.13), whence the corresponding functions gr, hr on the LHS of
(A.5) can be chosen so that they are in Lp(Zd+1) for p > (d + 2)/(d + 1). If both
derivatives on the RHS of (A.5) are applied to the denominator then the typical
situation we are in is to find a factorization

(A.6) ĝ(ζ, θ)∗ĥ(ζ, θ) =
Λ3er1(−ζ)er2(−ζ)er3(−ζ)er4(−ζ)

[e<η−iθ − 1 + Λe(−ζ)∗e(−ζ)]
3 ,

such that g, h are both in Lp(Zd+1) for p > (d + 2)/(d + 1). Taking ĝ(ζ, θ) to be
given by the formula

(A.7) ĝ(ζ, θ) =
Λ2er1(ζ)er2(ζ)er3(ζ)

[e<η−iθ − 1 + Λe(−ζ)∗e(−ζ)]
2 ,

it follows from (2.11) that g(x, t), h(x, t) are the functions

(A.8) g(x, t) = t∇∗r1∇
∗
r2∇

∗
r3G(x, t− 2), h(x, t) = Λ∇r1G(x, t− 1) .

Now (2.12) implies that h is in Lp(Zd+1) for p > (d + 2)/(d + 1), and by similar
argument we see that g is also.

We have proved (A.1). The proof of (A.2) is similar. �

Proposition A.1. Let δ be as in the statement of Lemma A.1. Then the inequality
(1.12) of Theorem 1.2 holds with α = 1 if 1−λ/Λ ≤ δ. If q(0, 0) is self-adjoint and
∇ξq(ξ, η) = 0 at (ξ, η) = 0 then (1.12) holds with α = 2.

Proof. We first consider the discrete time case of (1.2). Similarly to (2.35) we have
from (2.34) and Lemma 2.9, Lemma 2.10 of [8] that

(A.9)

∫
[−π,π]d

∣∣∣∣∣
∫ π/ε2

−π/ε2

ε2[f̂ε(ξ)− f̂(ξ)]e−iξ.x+η(t+ε2)

eε2η − 1 + e(εξ)∗q(εξ, ε2η)e(εξ)
d[=η]

∣∣∣∣∣ dξ ≤ Cε2 ,

for a constant C depending only on the function f(·) and d, λ,Λ. We write q(ξ, η) =
q̃(ξ, η̃) where η̃ = eη − 1 and use the Taylor inequality
(A.10)∣∣∣∣q̃(ξ, η̃)− q̃(ξ, 0)− η̃ ∂q̃(ξ, 0)

∂η̃

∣∣∣∣ ≤ |η̃|1+α

1 + α
sup

0≤s≤1

∣∣∣∣ 1

|sη̃|α

[
∂q̃(ξ, sη̃)

∂η̃
− ∂q̃(ξ, 0)

∂η̃

]∣∣∣∣ .
Since

(A.11)
∂q̃(ξ, η̃)

∂η̃
− ∂q̃(ξ, 0)

∂η̃
= (e−η − 1)

∂q(ξ, η)

∂η
+

[
∂q(ξ, η)

∂η
− ∂q(ξ, 0)

∂η

]
,
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it follows from Lemma A1 and (A.10), (A.11) that
(A.12)∣∣∣∣q(ξ, η)− q(ξ, 0)− (eη − 1)

∂q(ξ, 0)

∂η

∣∣∣∣ ≤ C|eη − 1|1+α, ξ ∈ Rd, 0 < <η < Λ,

where α > 0 is as in (A.2). Hence we have that

(A.13) eε
2η − 1 + e(εξ)∗q(εξ, ε2η)e(εξ) = |e(εξ)|2|eε

2η − 1|1+αError(εξ, ε2η)

+ {1 + e(εξ)∗[∂q(εξ, 0)/∂η]e(εξ)} (eε
2η − 1) + e(εξ)∗q(εξ, 0)e(εξ) ,

where by (A.12) the function Error(ξ, η) is uniformly bounded for ξ ∈ Rd, 0 <
<η < Λ. It follows from Corollary 2.2, Lemma A1 and (A.13) that there are
positive constants ν, C1, C2 such that

(A.14)

∣∣∣∣∣ 1

2π

∫ π/ε2

−π/ε2

ε2eη(t+ε2)

eε2η − 1 + e(εξ)∗q(εξ, ε2η)e(εξ)
d[=η]−

1

2π

∫ π/ε2

−π/ε2

ε2eη(t+ε2)

{1 + e(εξ)∗[∂q(εξ, 0)/∂η]e(εξ)} (eε2η − 1) + e(εξ)∗q(εξ, 0)e(εξ)
d[=η]

∣∣∣∣∣
≤ C1

∫ π/ε2

−π/ε2

|ξ|2|eε2η − 1|1+α

(|η|+ Λ|ξ|2)2
d[=η] ≤ C2(ε|ξ|)2 if ε|ξ| ≤ ν .

We can restate (A.14) similarly to (2.38) as

(A.15)

∣∣∣∣∣ 1

2π

∫ π/ε2

−π/ε2

ε2eη(t+ε2)

eε2η − 1 + e(εξ)∗q(εξ, ε2η)e(εξ)
d[=η]−

1

1 + e(εξ)∗[∂q(εξ, 0)/∂η]e(εξ)

[
1− e(εξ)∗q(εξ, 0)e(εξ)

1 + e(εξ)∗[∂q(εξ, 0)/∂η]e(εξ)

]t/ε2 ∣∣∣∣∣ ≤ C2(ε|ξ|)2 .

Estimating integrals with respect to ξ for ε|ξ| > ν as in (2.35) we conclude from
(A.15) that

(A.16) |〈 uε(x/ε, t/ε2, ·) 〉 − uhom(x, t)| ≤ C4ε
2+∫

ε|ξ|<ν
dξ |f̂(ξ)|

∣∣∣∣∣ exp[−{ξ∗q(0, 0)ξ}t]−

1

1 + e(εξ)∗[∂q(εξ, 0)/∂η]e(εξ)

[
1− e(εξ)∗q(εξ, 0)e(εξ)

1 + e(εξ)∗[∂q(εξ, 0)/∂η]e(εξ)

]t/ε2 ∣∣∣∣∣ ,
for some constant C4. It follows from Lemma A1 upon using the interpolation
identity

(A.17) eb − ea = (b− a)

∫ 1

0

eρb+(1−ρ)a dρ ,

that there is a constant C5 such that the integral on the RHS of (A.16) is bounded
by C5ε in general, and by C5ε

2 if q(0, 0) is self-adjoint and ∇ξq(0, 0) = 0. We have
therefore proved the proposition in the discrete time case.

The argument for the continuous time case is similar. Instead of Lemma 2.9,
Lemma 2.10 of [8] we use Lemma 5.4, Lemma 5.5 of [8]. The main point to note is
that integrals with respect to =η over regions |=η| > π/ε2 are O(ε2). �
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Remark 8. The real matrix q(0, 0) is self-adjoint if the environment is time-
independent i.e. τ0,t = identity for all t ∈ Z or t ∈ R. In general it is not
self-adjoint -see Lemma 2.6 of [8].

There does not appear to be any general criteria which would imply that q(0, 0)
is self-adjoint and ∇ξq(0, 0) = 0 for the PDE (1.2), (1.4) with ∇ defined by the
forward difference (1.5). However if we define ∇ by the central difference in which

(A.18) ∇iφ(x) =
1

2
[φ(x+ ei)− φ(x− ei)] , ∇∗i = −∇i, i = 1, .., d,

then there are such criteria. First we note that for the PDE (1.2), 1.4) with ∇
defined by (A.18) the identities (2.2), (2.3), (2.5) hold if instead of (2.1) we set

∂j,ξψ(ω) =
1

2

[
e−iej ·ξψ(τej ,0 ω)− eiej ·ξψ(τ−ej ,0 ω)

]
,(A.19)

ej(ξ) =
1

2

[
e−iej ·ξ − eiej ·ξ

]
, j = 1, .., d.(A.20)

It follows from (A.20) that there is a constant C depending only on d such that

(A.21) ‖ε−2e(εξ)∗q(0, 0)e(εξ)− ξ∗q(0, 0)ξ‖ ≤ Cε2|ξ|4, ξ ∈ [−π, π]d .

Hence if ∇ is defined by the central difference (A.18) the argument of Proposition
A1 and (A.21) imply that we can take α = 2 in (1.12) provided ∇ξq(0, 0) = 0 and
λ/Λ is sufficiently close to 1.

We show that ∇ξq(0, 0) = 0 if the environment (Ω,F , P ) is reflection invariant.
To define reflection invariance of Ω first denote by Ri : Zd → Zd, i = 1, .., d, the
reflections on Zd which are the linear maps determined by the relations Riej =
ej − 2δ(i − j)ei, j = 1, .., d. We say that (Ω,F , P ) is reflection invariant if there

exist mappings R̃i : Ω → Ω, i = 1, .., d, which are measure preserving involutions
(R̃2

i = identity) and τx,tR̃i = R̃iτRix,t for x ∈ Zd and t in Z or R.

Lemma A.2. Assume (Ω,F , P ) is a reflection invariant environment, a(·) is a

diagonal matrix and a(R̃kω) = a(ω), ω ∈ Ω, k = 1, .., d. If ∇ is defined by the
central difference (A.18) and q(·, ·) is the function defined by (2.3) then

(A.22) q(Rkξ, η) = q(ξ, η) for ξ ∈ Rd, <η > 0, k = 1, .., d.

Proof. Observe from (A.19) that ∂∗j,ξ = −∂j,ξ, j = 1, .., d, ξ ∈ Rd. We also have

that R̃k∂j,ξ = ∂j,RkξR̃k if k 6= j and R̃k∂j,ξ = −∂j,RkξR̃k if k = j. It follows by

applying R̃k to (2.2) that if a(·) is a diagonal matrix then

(A.23) Φj(ξ, η, R̃kω) = [1− 2δ(k − j)]Φj(Rkξ, η, ω), ξ ∈ Rd, ω ∈ Ω .

We conclude from (A.23) that if Ψ(ξ, η, ω) = ∂ξΦ(ξ, η, ω) then the d × d matrix
Ψ(ξ, η, ω) = [Ψi,j(ξ, η, ω)] has the property

(A.24) Ψj,j(ξ, η, R̃kω) = Ψj,j(Rkξ, η, ω), ξ ∈ Rd, ω ∈ Ω, j = 1, ., d.

Now (A.22) follows from (2.3) and (A.24) on using the fact that R̃k is measure
preserving on Ω. �

In the case of an environment (Ω,F , P ) for which Ω is a set of mappings ω :

Zd ×T → Rn with T = Z or R, we can define R̃k by R̃kω(x, t) = ω(Rkx, t), x ∈
Zd, t ∈ T . Both the i.i.d. and massive field theory environments of Theorem 1.2 are
of this nature. In the i.i.d. case n = d(d+1)/2 and ω(x, t) = a(x, t), x ∈ Zd, t ∈ Z,
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with P being a product measure on Ω. In the field theory case ω(x, t) = φ(x, t), x ∈
Zd, t ∈ R. The mapping R̃k is clearly measure preserving in the i.i.d. case, but is
only measure preserving in the massive field theory case if V (Rkz) = V (z), z ∈ Rd.
Hence the i.i.d. environment is always reflection invariant, and the field theory
environment is reflection invariant provided the function V (z), z ∈ Rd, is reflection
invariant.
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