STRONG CONVERGENCE TO THE HOMOGENIZED LIMIT OF
PARABOLIC EQUATIONS WITH RANDOM COEFFICIENTS

JOSEPH G. CONLON AND ARASH FAHIM

ABSTRACT. This paper is concerned with the study of solutions to discrete
parabolic equations in divergence form with random coefficients, and their
convergence to solutions of a homogenized equation. It has previously been
shown that if the random environment is translational invariant and ergodic,
then solutions of the random equation converge under diffusive scaling to so-
lutions of a homogenized parabolic PDE. In this paper point-wise estimates
are obtained on the difference between the averaged solution to the random
equation and the solution to the homogenized equation for certain random
environments which are strongly mixing.

1. INTRODUCTION.

Let (Q, F, P) be a probability space and denote by ( - ) expectation w.r. to
the measure P. We assume that the d dimensional integer lattice Z? acts on Q by
space translation operators 7,0 : 0 = {2, x € Z¢, which are measure preserving and
satisfy the properties 7, 07y,0 = Ta+4y,0, To,0 = identity, z,y € Z%. We assume also
that either the integers Z or the real line R acts on {2 by time translation operators
To,t : 8 — €, where t € Z in the former case and ¢t € R in the latter. In either
case we assume that for all £, s, one has 79,79, s = 70,t+s, and that the operators 7
commute with the operators 7,9, so we may set 7, ; = 7,070t = 70,tT%,0-

Consider a bounded measurable function a : Q — RH4+1/2 from Q to the space
of symmetric d x d matrices which satisfies the quadratic form inequality

(1.1) My <a(w) < Al, w € €,

where I is the identity matrix in d dimensions and A, A are positive constants. In
the case when Z acts on €2 by operators 7y, we shall be interested in solutions
u(x,t,w) to the discrete parabolic equation

(1.2) u(z, t+1,w)—u(z, t,w) = —V*a(r,w)Vu(z,t,w), z€Zt>0, wecQ,
with initial data
(1.3) u(z,0,w) = hiz), z€Z we.

In the case when R acts on Q by operators 7y, we shall be interested in solu-
tions u(z,t,w) to the corresponding continuous in time, discrete in space parabolic
equation

ou(z, t,w)

(1.4) — 5 = —V*a(rgw)Vu(z, t,w) , z€ 7% t>0, weQ,
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with initial data (1.3). In (1.2) and (1.4) we take V to be the discrete gradient
operator, which has adjoint V*. Thus V is a d dimensional column operator and
V* a d dimensional row operator, which act on functions ¢ : Z% — R by
(15)  Vo(x) = (Vio(2),... Vad(x)), Vid(x) = d(z +e;) — ¢(x),

Vip(z) = (Vid(@),... Vis(@)), Vid(@)=o(x—e;) - d(x).
In (1.5) the vector e; € Z? has 1 as the ith coordinate and 0 for the other coordi-
nates, 1 <i < d.

One expects that if the translation operators 7, ; are ergodic on 2 then solutions
to the random equation (1.2) or (1.4) converge to solutions of a constant coefficient
homogenized equation under diffusive scaling. Thus suppose f : R* — R is a C®
function with compact support and for € satisfying 0 < ¢ < 1 set h(z) = f(ex), = €
Z4, in (1.3), and let u.(,t,w) denote the corresponding solution to (1.2) or (1.4)
with this initial data. It has been shown in [21], just assuming ergodicity of the
translation operators, that u.(x/e,t/e% w) converges in probability as ¢ — 0 to a

function unom(z,t), x € R¢, ¢ > 0, which is the solution to a constant coefficient
parabolic PDE

OQUnom (T, t
(1.6) %ﬁd) = —V*apomVinom(z,t), z€R% ¢ >0,
with initial condition
(1.7) Upom (7,0) = f(z), z€R?.

The d X d symmetric matrix apoy, in (1.6) satisfies the quadratic form inequality
(1.1). Similar results under various ergodic type assumptions on € can be found
in [1, 6, 12, 28]. In time-independent environments the corresponding results for
elliptic equations in divergence form have been proven much earlier -see [19, 20, 26,
33].

In this paper we shall confine ourselves to studying the expectation ( u(z,t,-) )
of the solution w(z,t,w) to (1.2) and(1.4) with initial condition (1.3). Our first
theorem is consistent with the result of [21] already mentioned:

Theorem 1.1. Let f : R* = R be a C*® function of compact support and set
h(z) = f(ex), x € Z% in (1.3). For the translation group 7., * € Z4,t € Z, on Q
assume that one of the operators Te; 0, j = 1,..,d, or 701 is ergodic on (Q,F, P).
Then if 4dA < 1 the solution uc(z,t,w) of (1.2) with initial data (1.3) has the
property
(1.8) lim sup |(ue(x/e,t/2,-) ) — tupom(z,t)| = O.
=0 z€eZd tee?Z+
For the translation group 7,4, T € Z¢ t € R, on Q assume that one of the operators
Te; 0o J = 1,..,d, or the continuous 1 parameter group To:, t € R, is ergodic on
(Q,F,P). Then the solution uc(x,t,w) of (1.4) with initial data (1.3) has the
property
(1.9) lim  sup  |( uc(z/e,t/e%,) ) — Unom(x,t)| = 0.
€70 peezd >0

It as been shown in the case of homogenization of elliptic equations in divergence
form with random coefficients, that a rate of convergence in homogenization can be
obtained provided the random environment satisfies some quantitative strong mizing
property. The first results in this direction were proven in the 1980’s by Yurinski
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[32], but there have been several papers more recently extending his work. In
particular, Caffarelli and Souganidis [10] have obtained rates of convergence results
in homogenization of fully nonlinear PDE. In recent work of Gloria and Otto [15]
an optimal rate of convergence result was obtained for linear elliptic equations in
divergence form. Following an idea of Naddaf and Spencer [24], they express the
quantitative strong mixing assumption as a Poincaré inequality. This formulation
of the strong mixing assumption is very useful when the random environment is a
Euclidean field theory with uniformly convex Lagrangian.

For the case of parabolic equations in divergence form with random coefficients,
we shall obtain a rate of convergence, but only for the averaged solution to the
parabolic equation as in Theorem 1.1, and for two particular environments. For
the discrete time problem (1.2), (1.3) we assume the environment is i.i.d. That is
we assume the variables a(7, ), (x,t) € Z%"1 are i.i.d. For the continuous time
problem (1.3), (1.4) we assume the environment is the stationary process associated
with a massive Euclidean field theory. The only paper we were able to find in the
literature proving results on rate of convergence in homogenization for the parabolic
problem is the recent preprint [23], in which the environment is assumed fixed in
time. In [23] as in the present paper, the results are restricted to establishing
rates of convergence for the mean (u.(z/e,t/e2,-)) of the solution of the parabolic
equation with random coefficients to upom(z, t).

The Euclidean field theory is determined by a potential V : R — R, which is
a C? uniformly convex function, and a mass m > 0. Thus the second derivative
a(-) = V"(-) of V(-) is assumed to satisfy the inequality (1.1). Consider functions
¢ : Z% x R — R which we denote as ¢(z,t) where x lies on the integer lattice Z¢
and t on the real line R. Let € be the space of all such functions which have the
property that for each z € Z? the function t — ¢(x,t) on R is continuous, and
F be the Borel algebra generated by finite dimensional rectangles {¢(:,:) € Q :
|p(ws,t;) — a;| < iy i =1,...,N}, where (z;,t;) € Z' xR, a; €R, 7, >0, i =
1,..,N, N > 1. The translation operators 7,; : @ — Q, (z,t) € Z¢ x R, are
defined by 7, ¢(2,8) = ¢(z + 2, t +5), z € Z¢,5s € R.

For any d > 1 and m > 0 one can define [7, 14] a unique ergodic translation
invariant probability measure P on (2, F) which depends on the function V and
m. In this measure the variables ¢(z,t), € Z¢ t > 0, conditioned on the variables
¢(x,0), x € Z¢, are determined as solutions of the infinite dimensional stochastic
differential equation

(1.10)
o

do(z,t) = _W;d %{V(Vq’)(m’,t))—&—qub(m’,t)2/2} dt+dB(z,t), x€Z%t>0,

where B(xz,-), € Z%, are independent copies of Brownian motion. Formally
the invariant measure for the Markov process (1.10) is the Euclidean field theory
measure

(1.11) exp |— Z V (Vo(x)) + m?p(z)?/2 H d¢(x) /normalization.
z€Z4 zeZd

Hence if the variables ¢(z,0), x € Z¢, have distribution determined by (1.11), then
o(-,t), t > 0, is a stationary process and so can be extended to all t € R to yield
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a measure P on (2, F). For this measure the translation operators 7, ., (z,t) €
Z¢ x R, form a group of measure preserving transformations on (€2, F, P).

Theorem 1.2. Let f : RY — R be a C*® function of compact support and set

h(z) = f(ex), x € Z% in (1.3). Then if 4dA < 1 and the variables a(,"), (z,t) €

Z4HL are i.i.d., the solution u.(x,t,w) of (1.2) with initial data (1.3) has the prop-

erty

(1.12) sup [ ue(x/e,t/e?,) ) — upom(z,t)] < Ce¥ 0<e<1,
r€eZd tee?2Z+

where a > 0 is a constant depending only on d, A/ and C is a constant depending

only on d, A, \ and the function f(-).

Let a : R — RUHD/2 pe g C' function on R with values in the space of
symmetric d x d matrices which satisfy the quadratic form inequality (1.1). Let
(Q,F, P) be the probability space of fields ¢(-,-) determined by (1.10), (1.11) and
set a(-) in (1.4) to be a(¢) = a(¢4(0,0)), ¢ € Q. Suppose in addition that the
derivative Da(-) of a(-) satisfies the inequality ||Da(-)||co < A1. Then the solution
ue(x,t,w) of (1.4) with initial data (1.3) has the property
(1.13) sup | ue(z/e,t/e?,) ) — upom(z,t)| < Ce¥, 0<e<l,

x€eZd t>0
where a > 0 is a constant depending only on d, A/ and C is a constant depending
only on d, A, \,m, A1 and the function f(-).

Remark 1. [t is clear that the exponent o > 0 in Theorem 1.2 must satisfy o < 2.
This follows from the fact that the error in approximating the solution to the heat
equation on R? by the solution to the corresponding lattice problem on eZ¢ is O(£?).
One can conclude from our method of proof that if A\/A is sufficiently close to
1, then the exponent o can be taken equal to 1. The exponent o can be taken
equal to 2 for /A sufficiently close to 1 provided V in (1.2), (1.4) is defined by
central difference rather than forward difference as in (1.5) and a(-) is a diagonal
matriz. In addition the environment (2, F, P) must satisfy a reflection invariant
condition. The i.i.d. environment satisfies this reflection invariance condition, but
the massive field theory environment determined by (1.10) satisfies it only if the
function V : R — R is reflection invariant (see Appendiz).

We consider what Theorem 1.2 tells us about the expectation of the Green’s
function for the equations (1.2) and (1.4). By translation invariance of the measure
we have that

(1.14) (u(z,t,-) )= Z Ga(z —y,t)h(y), =€z,
A

where Ga(x,t) is the expected value of the Green’s function. Setting h(z) =
f(ex), x € Z4, then (1.14) may be written as

(1L15)  (ue(wfe t/e?, ) ) = /Zd g—daa(

R t) f(2) dz, x€eZ?,

e g2

where integration over ¢Z¢ is defined by

(1.16) /Zd g(z) dz = Z g(z) €%
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Let Ga,,.(z,t), = € R% t > 0, be the Greens function for the PDE (1.6). One
easily sees that Ga, (-, -) satisfies the scaling property

(1.17) e Ga,. (x)e,t/e?) = Ga,.. (x,1), >0, 2RI t>0.

Hence Theorem 1.2 implies that averages of e =G (7 /¢, t/e?) — e 9Ga,,. (v /e, t/?)
with respect to & € €Z? are bounded by Ce® for some constant C. Conversely
Theorem 1.2 is implied by the point-wise estimate on Green’s functions:

(1.18)

B B Ce> .| | |?
d 2 _—d 2 e _ 1z}
’5 Ga(z/e,t/e)—e “Ga,.. (x/c, t/c )‘ < AL+ 2T EXP[ len{ . )

provided At > €% and x € ¢Z¢.
It is clear that the inequality (1.18) for ¢ < 1 follows from the same inequality
fore =1:
< #ex —vmin { |z] 2/
= [At + 1](dte)/2 b= TAt+1)] 7

provided At > 1 and x € Z%. We shall prove such an inequality and also similar
inequalities for the derivatives of the expectation of the Green’s function,
(1.20)

VGa(2.1) = VGay,, (2.1)]

(1.19) |Ga(z,t) — Gay,n (2,1)]

2
< C . ||
> [At+1](d+1+a)/2 exp —7y min |Z‘|, At+1 )

(1.21)

IVVGa(@, 1)~ VVGa,., (z,1)] ¢

: |z
S [Arg @iz P {_Wmm {'x’ A+1f]"

Theorem 1.3. Let (Q,F,P) and a(w), w € §, be as in the statement of The-
orem 1.2. Then for d > 1 there exists a,y > 0 depending only on d and A/,
such that (1.19), (1.20) and (1.21) hold for some positive constant C. In the dis-
crete time case C depends only on d, A, \, and in the continuous time case only on
d7 )\, A7 m, A1 .

The proofs of Theorem 1.2 and Theorem 1.3 follow the same lines as the proofs
of the corresponding results for elliptic equations proved in [10]. One begins with
a Fourier representation for the average of the solution to the random parabolic
equation, which was obtained in [8]. Then for the i.i.d. environment the general-
ization by Jones [18] of the Calderon-Zygmund theorem [5] to parabolic multipliers,
together with some interpolation inequalities, yields Theorem 1.2 and the inequal-
ities (1.19), (1.20) of Theorem 1.3 in the discrete time case. Similarly to [10] we
need to use the result of Delmotte and Deuschel [11] on the Holder continuity of the
second difference VVGy(2,1) in order to prove (1.21). In the continuous time case
we need in addition to prove some Poincaré inequalities for time dependent fields.
To do this we follow the methodology of Gourcy-Wu [16] by using the Clark-Ocone
formula [25].

2. FOURIER SPACE REPRESENTATION AND HOMOGENIZATION

In this section we shall prove the homogenization result Theorem 1.1. The proof
of this is based on a Fourier representation for the solutions of (1.2), (1.4) which
was given in [8].
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We begin by summarizing relevant results from [8] for the discrete time equation
(1.2). Thus we are assuming a probability space (2, F, P) and a set of translation
operators 7, ¢, T € Ze,t € Z, acting on Q. For ¢ € R% and v : Q — C a measurable
function we define the £ derivative of 9 (-) in the j direction 0;¢, and its adjoint
07 ¢, by

(2.1) djetp(w) e (1o, 0 w) — (W),
0 ev(w) = €Y(Toe;0 w) — P(w).

The d dimensional column £ derivative operator O is then given by 0z = (01¢, ..., Og.¢)-
Similarly to (1.5) its adjoint Of is given by the row operator 0; = (95 ¢, ..., 0 ¢)-
Let P: L?(Q) — L?(Q) be the projection orthogonal to the constant function, and

n € C with real part denoted by Rn and imaginary part by S so that n = Rn+iSn.
Then for ¢ € R? and n € C with R > 0 there is a unique square integrable solution
®(&,nm,w) to the equation

(22) en@(g’ 7]77-0,10*)) - (I)(€7777w) + Paga(w)aﬁ‘l’(fa 7’],LU) = _Paga(w)v

provided 4dA < 1. Thus there is a unique row vector ®(¢,n,w) = [®1(&,n,w), ..., Pa(&, 7, w)]
with ®;(¢,n,-) € L*(Q), j = 1,..,d, which satisfies (2.2). Let ¢(&,1) = [gr. (£, 7)]
be the d x d matrix function given in terms of the solution to (2.2) by the formula

(2.3) q(&n) = (a() )+ (a()9:2(n,-) ) -

One can easily see that the homogenized diffusion constant apem, of (1.6) in the case
of an ergodic environment (2, F, P) is given by the formula apom = lim, 0 ¢(0, ).
This follows by observing that the solution to (2.2) in the case £ =0, Rn > 0 is
also the solution to the equation

(24) en(I)(Oa m, TO,lw) - (b(f, m, (.d) + 683(0))80‘1’(5, 7, LU) = —883(00) ’

since ( ®(0,n,-) ) = 0. The standard formula for anem is given by apem =
lim,,_,0 ¢(0, 1), where ®(0,7n,w) is the solution to (2.4) -see [15, 32] for the ellip-
tic case 79,1 = identity and [21] for the parabolic case.

We define the d dimensional periodic column vector e(£) € C? to have jth entry
given by the formula e;(§) = e7%'¢ — 1, 1 < j < d. It was shown in [8] that the
solution u(x,t,w), € Z4t = 0,1,2,...,w € Q, to the initial value problem (1.2),
(1.3) has the representation
(2.5)

u(z,t,w) = [1 4+ @(&,m, Taw)e(§)] d[Sn] de,

1 h(f)e—if.z+n(t+1)
(2m)d+t /[—w,ﬂ]dﬂ e —1+e(§)*q(&,n)e(§)

where h(-) is the Fourier transform of h(-),

(2.6) h(E) = Z h(x)e’™ .

TzEZ?

Note that the integration in (2.5) with respect to S7 over the interval [—7, 7] is for
any fixed value of $t > 0. Since the integrand is a function of n which is analytic
in n for ¥ > 0 and also periodic of period 27 with respect to Jn, the integral on
the RHS of (2.5) is independent of Rn > 0. It follows from (2.5) that the Fourier-
Laplace transform Gy (&,7) of the averaged Green’s function G-, ) for (1.2), (1.3)
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given by

(2.7) Ga(&,n) = Z Z Galx,t)expliz.é —nt] , € €RY, Ry >0,

t=0 gz

has the representation

(2.8) Gal&n) = €"/[e" =1+ e(€) (&, m)e ()] -

The solution to (2.5) can be generated by a convergent perturbation expansion.
Let () be the Hilbert space of measurable functions v : 2 — C? with norm |||
given by [[¢]|? = ( [¢(-)]* ). We define an operator T, on H(f2) as follows: For
any g € H, let ¥(&,n,w) be the solution to the equation

1 ” *
(29) K [677 ’l/)(fa 1, TO,lw) - 7/}(53 m, w)] + 65 8511[}(5) m, w) = af g(w) .
Then T¢ »g(-) = 0c90(§, 7, ), or more explicitly
(2.10) Tepg(w) = A Z e M+ Z {VV*Gp(,t)}" exp[—iz.&] g(Te—1—1w),

t=0 xeZd
where G4 (+) is the solution to the initial value problem
(2.11) Ga(z,t +1) — Ga(z,t) + AV*VGA(z,t) = 0, z€Z% teZ t>0,
Ga(z,0) = 0(z), z€Z?.

Equation (2.11) has a unique solution provided 4dA < 1, and the function G (x,t)
satisfies an inequality

(212) 0 < Galz,t) + (At 4+ DY2VGA(2,1)] + (At + 1)|VV*Ga(z, 1))

< Cy ox _min{|x|, lz2/(At +1)}
~ [At 4 1]4/2 P Cy ’

where Cy > 0 is a constant depending only on dimension d. The inequality (2.12)
can be proved using the Fourier inversion formula and contour integration, since
the Fourier transform of G can be explicitly computed from (2.11).

The operator T ,, is bounded on H () with || T¢ , || < 1, provided £ € R4, Ry > 0.
Now on setting a(-) = A[I; — b(-)], one sees that (2.2) is equivalent to the equation

(2.13) Oe®(&;m,-) = PTep[b(-)0®(E,m, )] + PTe y[b()] -

Since ||Te »|| < 1 and ||b(w)|| < 1—-A/A, w € Q, the Neumann series for the solution
to (2.13) given by

(2.14) 0®(&,m,-) = Y [PTeb()™,
m=1

converges in H ().

It will be useful later to express the operator T¢ , in its Fourier representation.
To do this we use the standard notation for the Fourier transform of a function
h : Z4! — C which we denote by h(z,t), = € Z%,t € Z. Letting h((,0), ¢ €
[—7, 7%, 6 € [-7, 7], be the Fourier transform of h(-,-), then

(2.15) h(C.0) = D h(z,t)em <ttt

x€Zd teZ
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The Fourier inversion formula yields
1

(216)  h(e,0) = G

/ h(C,0)e™ ™S qc dh, xeZiteZ.
[—m,m]dtt

Now the action of the translation group 7,0, € Z%, on Q can be described by a
set Ay, ..., Ag of commuting self-adjoint operators on L?(2), so that

(2.17) f(20-) = expliz.Alf(:), z¢€ Z fe L*(Q),

where A = (A4,..,A4). Similarly the action of the translation group o4, t € Z,
on € can be described by a self-adjoint operator B on L?(Q2) which commutes with
Ay, .., Ag, so that

(2.18) (o) = exp[-itBlf(), t€Z, fel*Q)
It follows then from (2.9),(2.17), (2.18) that
Ae(§ — A)e (€ — A)
2.1 Te () = — N
( 9) 5,719( ) eﬁ_lB —1 + A€(§ _ A)*e(é- _ A) g( )
The Neumann series (2.14) for the solution to (2.13) yields a convergent per-

turbation expansion for the function ¢(&,n) of (2.3). Thus for m = 1,2..., let the
matrix function h,,(€,7m) be defined for ®n > 0, £ € R%, by

(2.20) hm(§,m) = { b(-) [PTe.ab()]™ ),
whence (2.3), (2.14) imply that

(2.21) g&m) = (a() ) =AY k(&) -

It is easy to see that the function ¢(&,n) is O for ¢ € R4, ®n > 0. As in [8, 10]
we can extend this result as follows:

Proposition 2.1. Suppose that 4dA < 1 and any of the translation operators
Te; 00 1 < j < d, or 1o is ergodic on Q. Then the limit lime ) 0,0y q(§,n) =
q(0,0) exists. If any of the translation operators is weak mizing [27] on Q then
q(&,m), €€ RE, Rn > 0, extends to a continuous function on € € R4, Rn > 0.

Proof. We follow the same argument as in Lemma 2.5 of [8] and Proposition 2.1 of
[10]. O

Remark 2. Note that the projection operator P in equation (2.2) plays a critical
role in establishing continuity. For a constant function g(-) = v € C¢, one has

(2.22) Teng(:) = [e(€) vle(€)/[(e" = 1)/A + e(€)"e(€)]
which does not extend to a continuous function of (£,7) on the set & € RY, Rn > 0.

Next we show that the function ¢(¢,7) with domain ¢ € R4, R > 0, can be
extended to complex £ = RE + iS¢ € C? with small imaginary part.

Lemma 2.1. The C* operator valued function (§,m) — T¢,, with domain {(§,n) :
¢ € R4, Ry > 0} and range the space of bounded linear operators B[H(Q)] on H (L),
has an analytic continuation to a region {(£,n) € CL 0 < Ry < A, |$¢] <
Cy\/Rn/A}, where Cy is a constant depending only on d. For (§,7) in this region
the norm of Te,, satisfies the inequality ||Te || < 14 C2|S€|?/[Rn/A], where the
constant Co depends only on d.
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Proof. That there is an analytic continuation to the region {£ € C?: 0 < Rnp <

A, IS¢ < Cry/Rn/A} follows from (2.10), (2.12) using the fact that |[VV*Ga(z, t)]

is bounded by (At + 1)~! times the RHS of (2.12). For (&, n) in this region one has

that

(2.23)

R[-n(t+1)—iz-€ < sup [-0*A(t+1)+C10|z]] < min{C|z|, Ci|z[*/4A(t+1)} .

0]<1

Hence using the representation (2.10) for T¢ ,,, we see that the analytic continuation

extends to any region {£ € C?: 0 < Ry < A, |I¢| < Cy1y/Rn/A} provided Oy

satisfies the inequalities C7 < C;l, C? < 40[;1, where Cjy is the constant in (2.12).
The bound on ||T¢ || can be obtained from (2.9). Thus on multiplying (2.9) by

(€, m, T0.1w) we see that

(2.24)

e?Rn _ _
S &R < 16 1 701 )T—AOFON(E 1, ) ) I B(E 1 01105 9())].

Since 4dA < 1 it follows that for ¢ € RY the operator I — A@g O¢ is symmetric
non-negative definite. Hence if £ € R? one has that

(2.25)  [( (& m 00 ) [ = ADDelp(&,m,0) )| <

S Dm0~ AGZO(E . 017) ) + 54 FlE,m, VT — MO, )

Similarly one has that

(2.26) [( (& 70,1)9:9() ) < S {0 (& n, 70,1°)[0£ Oe]vo (&, m 70.17) ) + %IIQ(')H2 :

We conclude from (2.24)-(2.26) that ||7¢ || < 1 provided ¢ € R and R > 0. This
argument can then be extended as in Lemma 2.1 of [10] to & € C%. (]

N | =

Corollary 2.1. The d x d matriz function q(§,n) with domain {({,n) : € €
R?, Rn > 0}, has an analytic continuation to a region {£ € C¢ : 0 < Rn <
A, IS¢ < Ci/ARn/A2}, where Cy is a constant depending only on d. There is a
constant Co depending only on d such that for & in this region,

CoA? 3¢
(2.27) la(&,m) — R Ml < — JR/A

Proof. The fact that ¢(£,n) has an analytic continuation follows from the rep-
resentations (2.20), (2.21), Lemma 2.1 and the matrix norm bound |b(w)| <
1—MA/A, w e Q. On summing the perturbation series (2.21), we conclude that
for ¢ satisfying |S¢| < C1/ARn/A2Z, then |q(€,n)|| < C2A?/\ for a constant Cy
depending only on d, provided C7 is chosen sufficiently small, depending only on
d. By arguing as in Lemma 2.1 we also see that there are positive constants Cy, Cs
such that

(228)  ||Ten — Trenll < CofSE/VRN/A, €€ CT[SE] < Cry/Rn/A .
The inequality (2.27) follows from (2.28). O
It follows from Corollary 2.1 that for ¢ € C¢, n € C with fixed 3¢ € R?, Rnp >

0 satisfying 0 < Rn < A, |S¢] < Ci1/ARn/A2, the periodic matrix function
(RE, ) — q(€,m) on R4 with fundamental region [, w]4+!, is bounded.
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Corollary 2.2. There exist positive constants Cy, Cy depending only on d and A/
such that

(2.29) le" — 1+ e(€)* (€, me(€)] = Cof [ + Ale(RE)*]

provided 0 < Ry < A, || < Cr1/Rn/A.

Proof. The inequality (2.29) follows from Corollary 2.1 and Lemma 2.7, Lemma 2.8
of [8]. O

Proof of Theorem 1.1-discrete time case. Taking h(x) = f(ex), we have from (2.5)
that
(2.30)

1 7 /e> E2f€ (g)e—ig.:r+n(t+e2)
2 - - x
(2,112, )) = i /[/ B / e g

where
(2.31) f©) = D ettt

y€eZd
We also have that

—15 z+nt

2.32 Uhom (T,1) = / d[Sn)] dE,
( ) h ( 27Td+1 R R77+§* )f [77] 3
where f(-) is the Fourier transform of f(-),
(239 for = [ rweriay. eerr

Since f: R? — R is C™ of compact support it follows from (2.31), (2.33) that
(2.34)

sup O+ < oo, sup (€)= FEOIA+EPN /e* < o0,
0<e<lg€[—7/e,m/e]d 0<e<l€[—7/e,m/e]?
where N in (2.34) can be arbitrarily large.
We first observe from (2.34) and Lemma 2.9, Lemma 2.10 of [8] that

7/e? EQfE(ﬁ)e_ig‘m+"(t+52)
2.35 5 Al
(2:3) /|s|>1/x/A7 /—w/a2 e — 1+ e(e€)*q(e€, e2n)e(£) (3]

for a constant C' depending only on the function f(-) and d, A, A. Since the function
q(&, 1) is continuous at (£,7) = (0,0), we similarly see there exists for any § > 0 an
€(9) > 0 depending only on d,d, A\, A, such that if € < &(J), then

¢ < Ce,

(2.36)
w/e? 2,n(t+e?) 2,n(t+e%)

/ 2 =° - 2 = d[%n] < d
—m/e? e —1+ 6(55)*61(5575277)6(55) e’ —1+ 6(66)*(](0,0)6(65)

for all ¢ € [—7/e,m/e]¢ such that |¢| < 1/V/Ae. Tt follows from (2.34), (2.35),
(2.36) that for any § > 0 there exists €(d) > 0 depending only on §,d, A\, A, and the
function f(-), such that

(2.37)
w/e? 2 ¢ —if-x+n(t+e?)
2 e*f(§)e "
€ ) )" - 2 d >~
a\cEz»:ZEﬁE,f;'?Z+ <u (‘T/E t/g ) > /[—ﬂ'/a,ﬂ'/a]d /—7\'/52 e —1+ 6(55) Q( ) (Ef) [ ] f

<9
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provided e < (). If we use the identities
(2.38)
1 (/e g2en(t+e?)

21 ) jer e — 1+ (2€)*q(0, 0)e(<)

2

d[Sn] = [1—e(e8)*q(0,0)e(=&)]"/*

1 et
2.39 —/7d377 = exp[—{&"q(0,0)¢}¢t]
@30) g [ e ) = e 00,08
we can conclude from (2.32),(2.37) that for any § > 0 there exists €(4) > 0 depend-
ing only on §,d, \, A, and the function f(-), such that

(2.40) sup |< ue(z/e,t/e%,) ) — uhom(x,t)| <94
z€eZd tee?Z+

provided & < g(6). O

Remark 3. It is easy to see that if 7e; 0 for some j, 1 < j < d, or 791 acts
ergodically on ) then

(2.41) [e®r —1] @& n, )| = 0.

lim
(£,m)—(0,0)
In the case of an elliptic equation with random coefficients, the limit corresponding
to (2.41) implies that the solution to the random equation converges in distribu-
tion to the solution of the homogenized equation [10]. This is not the case for the
parabolic problem due to the fact that integrand in (2.30), when multiplied by an
arbitrary bounded function of n, can have a logarithmic divergence upon integration
with respect to 3.

In the continuous time case there is a similar development to the above. The
solution u(z,t,w) to (1.3), (1.4) has the representation
(2.42)

1 oo }AL é— —i&.x+nt o
U(l’,t,UJ) = W /[_ﬂ—)ﬂ—]d /_OO n i e((ge [1 + é(faﬂﬁx,tw)e(@] d[\m] df,

)*q(&me(§)

where now the d dimensional row vector ®(£,n,w) is the solution to the equation
(2.43) n®(§;n,w) + 0P(&,n,w) + POz a(w)de (£, n,w) = —Pd;a(w) .

In (2.43) the operator 9 is the infinitesimal generator of the time translation group
7o, t € R. The d x d matrix function ¢(&,n) in (2.42) is given in terms of the
solution to (2.43) by the formula (2.3). It follows from (2.42) that the Fourier
transform Ga(&,7) of the averaged Green’s function Gy (-, -) for (1.4) defined by

(2.44) Ga(é,n) = /00 dt Z Ga(z,t) expliz.§ —nt] ,

0 z€Z?

has the representation

(2.45) Gal&m) = Vn+e(©*q&me©)], ¢eR Ry>0.
Let G(x,t), x € Z%, t > 0, be the solution to the initial value problem
(2.46) aag,t) +V*'VG(z,t) = 0, z€Z t>0,

G(x,0) = 6(z), zcZ.
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Then the equation (2.43) is equivalent to (2.13) where the operator T¢ , is given by
the formula

24T) Teqat) = A [ e it 3 (VT G0} explin] alra )
rcZd

with Ga(7,t) = G(x,At), * € Z%t > 0. Note that in the continuous time case
there is no restriction on the value of A > 0. The operator T ,, of (2.47) is bounded
on H() with ||T¢,|| < 1, provided ¢ € R%, Rn > 0, and hence the Neumann series
for the solution of (2.13) converges in H(2).

As in the discrete time case it will be useful later to express the operator T¢ , in
its Fourier representation. To do this we use the standard notation for the Fourier
transform of a function h : Z? x R — C which we denote by h(z,t), z € Z%,t € R.
Letting fz({, 0), ¢ € [-m, 7%, 6 € R, be the Fourier transform of h(-, ), then

(2.48) hc. ) = /°° i Z h(z, t)eiwSHitd |
- z€Zd

The Fourier inversion formula yields
1 > R A .
(2.49) h(=z,t) = (27r)d+1/ /[ y h(C,0)e™ @0 dc dh, zecZteR.

Now the action of the translation group 7,0, = € Z?, on ) can be described by a
set Aq, ..., Ag of commuting self-adjoint operators on L?(f2), so that

(2.50) f(Te0) = expliz. Alf(-), z€Z¢ felL*Q),

where A = (A1,.., Ag). Similarly the action of the translation group 794, t € R,
on ) can be described by a self-adjoint operator B on L?(Q) which commutes with
Aq, .., Ag, so that

(2.51) frog) = exp[-itB]f(-), teR, feL*Q),

whence the infinitesimal generator 0 in (2.43) is given by 0 = —iB. It follows now
from (2.47),(2.50), (2.51) that

Ae(§ — A)e"(E— A)
n—iB+ Ae(§ — A)*e(E — A)
The Neumann series for the solution to (2.13)-with the operator T, given now
by (2.52)- yields a convergent perturbation expansion (2.20), (2.21) for the function
q(&,m). It is easy to see that the analogues of Proposition 2.1, Lemma 2.1 and

Corollary 2.1 continue to hold for the continuous time case. In the continuous time
analogue of Corollary 2.2 the inequality (2.29) is replaced by

(2.53) n+e() (&, me(©)] = C[In| + Ale(RE)[] -
The inequality (2.53) follows from Lemma 5.3 of [8].

(2.52) Teng()) = 9() -

Proof of Theorem 1.1-continuous time case. We proceed as in the discrete time
case replacing (2.5) by (2.42) and using Lemma 5.4, Lemma 5.5 of [8] in place
of Lemma 2.9, Lemma 2.10 of [8]. O
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3. RATE OF CONVERGENCE IN HOMOGENIZATION

In this section we shall prove Theorem 1.2 under the assumption that the solu-
tions ®(&,n,w) of (2.2), (2.43) satisty a certain property which we describe below.
In §5 we shall show that this property holds for the independent variable environ-
ment, and in §6 for the massive field theory environment. We first consider the
discrete time case, whence ®(&, 7, w) is a solution to (2.2).

For 1 < p < oo let LP(Z41, C? ® C?) be the Banach space of d x d matrix
valued functions g : Z4*! — C? @ C? with norm ||g||, defined by
(3.1)

lgll; = sup > lglatPifp<oo,  gllo = sup sup |g(z,t)v] |
veC:|v|=1 (2,t)€Z+1 veC:|v|=1 | (z,t)€ZI+T

where |g(z,t)v| is the Euclidean norm of the vector g(z,t)v € C%. We assume the
following:

Hypothesis 3.1. There exists po(A/A) > 1 depending only on d, A/ and a con-
stant C' such that for 1 <p < po(A/N),

(3.2) 1P Y glat)b(re—)[o + 0B (& n, To,—e )]l < Cligllplo]
(z,t)€Zd+1

forall¢ € R, ne C with0 < Rn < A, and g € LP(Z+!,C?® CY), v € C4.

Remark 4. Note from Lemma 2.3 of [8] that since |0 ®(&,n, - )v||* < Av|?/X for

¢ € R4 Ry > 0, the inequality (3.2) holds for p = 1. Hence if (3.2) holds for

p = po(A/N), by the Riesz convexity theorem [31] it also holds for any p satisfying
1<p<po(A/N).

We show that if Hypothesis 3.1 holds then the function ¢(&,n) defined by (2.3)
is Holder continuous with exponent depending on d, A/\.

Lemma 3.1. Assume Hypothesis 3.1 holds. Then there exists o > 0 depending
only on d,A/X\ and a constant C, such that the d x d matriz function q(&,n) of
(2.8) satisfies the inequality

(3.3) la(€'sn') —a(&m)ll < Cal[ 1€ =& + [0 —n)/A|*/? ]

forall ¢,6 € RY, 0 < Ry, R < A.

Proof. Tt follows from (2.20) that
(3.4)

k
hi (€0 ~hw(€m) = D (b() [PTer b ()~ PlTer sy —Te]b() [PTeyb()]* ) .
j=1

Hence we conclude from (2.13), (2.21) and (3.4) upon using the inequality || Tz, || <
1 that for v € C%,

(35) la(€n) = a&mlvll < (A*/N)||P[Te .y — Tenlb(") [v+ 0e®(&,n, )]l -

From (2.10) we see that the RHS of (3.5) is the same as the LHS of (3.2) with the
function g(-,-) given by the formula

(3.6) g(z,t) = A[VV*Gp(z,t — 1)) [ e timiwe — gmm—izd ]
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Observe now that for 0 < o < 1 one has
(3.7)

e 1€ eS| < exp [ min (R, R )t ] {Jal ¢’ — €1 + (A2 —m)/AI*/2}

Hence from (2.12) the function g(-,-) is in LP(Z*!, C?® C?) with p > (d+2)/(d+
2 —a), and with ||g(-,-)||, satistying the inequality

(3.8) ()l < CpA PLIE = €1+ |(n' —m)/A1*? ],
where the constant C), depends only on d,p. The Holder continuity (3.3) for suffi-
ciently small o > 0 follows from (3.5) and (3.8). O

Proof of Theorem 1.2-discrete time case. We follow the proof of Theorem 1.1 using
the Holder continuity of the function ¢(-, -). O

For the continuous time case we prove Theorem 1.2 assuming a hypothesis anal-
ogous to Hypothesis 3.1. For 1 < p < oo let LP(Z? x R, C? ® C?%) be the Banach
space of d x d matrix valued functions g : Z¢ x R — C? @ C¢ with norm ||g||,
defined by
(3.9)

oo
oz = sw S [ dtlg@opPitp<oo  lgle= s | sup gl |
vECd:|v\=1mezd —oco veCe:|v|=1 | (z,t)€Z¢XR

where |g(z,t)v]| is the Euclidean norm of the vector g(z,t)v € C%.

Hypothesis 3.2. There exists po(A/\) > 1 depending only on d, A/X and a con-
stant C such that for 1 < p < po(A/N),

(3.10) ||PZ/ dt g(z, t)b(1e,—¢*)[v + O R(&, 0, 7o~ )] < Cllgllplv]
zeZd ¥~

forall¢ e R, ne Cwith0 <Ry <A, and g € LP(Z? x R,C? @ C%), v € C4.
It is easy to see that Hypothesis 3.2 implies the Holder continuity of the matrix

function ¢(-,-) defined by (2.3), (2.43). We conclude that Theorem 1.2 holds for
the continuous time case also.

4. FLUCTUATIONS OF AVERAGED GREEN’S FUNCTIONS

In this section we shall prove Theorem 1.3 under the assumption that the solu-
tions ®(&,n,w) of (2.2), (2.43) satisfy stronger versions of Hypothesis 3.1 and 3.2
of §3. Thus in the discrete time case our hypothesis is:

Hypothesis 4.1. Let T¢, be the operator (2.10) on the Hilbert space H(Q2) and
T¢, denote its adjoint. Then for k > 1, pp =p3 = -+ =pr = 1, and S¢, = Tey
or Se, =17, there exists po(A/N) > 1 depending only on d,A/\ and a constant
C(k) such that

k
(4.1) > L1955, t)7e,,—¢, PO = PSeyb(-)] " 4w

(z1,81),.. (kb)) €EZITLE | J=1
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k
< Ck) [T llgjllp, lv|  for g; € LP (244, C* @ CY), j=1,..k veC
j=1

provided 1 < p; < po(A/N) and € € C% n € C satisfy 0 < Ry < A, |I¢] <
Civ/Rn/A, with Cy depending only on d, A/\.

Remark 5. Note that from (2.138) and Lemma 2.1 we see that the inequality (4.1)
holds for p1 = 1. Hence if (4.1) holds for p1 = po(A/X), by the Riesz convexity
theorem [31] it also holds for any p1 satisfying 1 < p1 < po(A/N).

We define spaces LP([—m, 7]+ x Q, C? @ C) of d x d matrix valued functions
g:[—m 7w x Q — C?® C? with norm ||g||, defined by

(4.2)

1
b— " su 7/ LS, o2 VP2 d[Sn) de o if p < oo,
lolf = s gy [l Sn el Y di de ity

lglee = sup l sup  ( [g(€, S, )uf? )2
veCe:|v|=1 | (£,8n)€[—m,m]dtL,

We consider ¢ € C% n € C with ¢ having fixed imaginary part, n having fixed
positive real part, and satisfying the conditions of Hypothesis 4.1. For k > 1 we
define a multilinear operator T} g¢ %y from a sequence [g1, g2, .., gx] of k functions
g; 74+ 5 Ccle Y j = 1,..,k, to periodic functions T, 5¢,%n915 925 --Gk] -
[, 7] x Q — C? ® C? by

(4.3)  Trsemnlor 920 g} (RE, S, ) =

k
> [ g tp)e RS0, PH()[I = PTe jb(-)] 7 .
(z1,t1),- (@, i) €ZATT j=1
Note that the RHS of (4.3) depends on (¢, 3E) and (Rn, Sn) through taking & =
RE + 3¢ and n = Rn +iS7 in the operator Ty ,, as well as through the exponential
term. We similarly define multilinear operators Tkﬁﬁ,%n by replacing T ,, in (4.3)
with Tﬁ*m' For p satisfying 1 < p < oo let p’ be the conjugate of p, so 1/p+1/p’ = 1.
In [8] the following result was obtained:

Lemma 4.1. Suppose 2 < g < oo and py,...,pr with 1 < p1,...,px < 2 satisfy the
identity

1 1 1 1
(4.4) —+ =+ = -,
pP1 Do Py, q

and for j = 1,..k, the functions g; € LPi(Z4T C? @ C4). Then there ex-
ist positive constants C1,Cy depending only on d,A/\ such that if 0 < Rn <

A, [S¢] < Cry/Rn/A, the function Sksesnlgr: 92,--9k] = Thsennlg1, 92, --gx] or
Skse.29091, 92, -9k = Ths6,09[91, 92, --gx] s in LU([—m, 7] x Q,C? @ C?) and

k

(4.5) | Sk.semalgr g2, 98] g < C5 T llgslly, -
=1

If we assume Hypothesis 4.1 we can improve Lemma 4.1 as follows:
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Lemma 4.2. Suppose Hypothesis 4.1 holds with po(A/X) <2, and q,p1, ..., pr with
2<qg<o00, 1<p1,...,pr <2 satisfy the inequality

1 1 1 1 1 1 2
4.6 <++~~~+§+[1] [1}
(4.6) qa ~ Py ph P~ a po(A/A) q
Then there exists a positive constant C7 depending only on d, A/ such that if 0 <

Ron < A, |SE] < Cry/Rn/A, the function Sk .se wnl91, 92, --9r] = Th,se,39[915 92, -9k
or Sk,se.mnlg1, 92, -gk] = Tk,us,%ren[gugz, ~gk] is in LY([—m, 7] x Q,C?® C?) and

(4.7) || Sk,semnlo1,92,--9%] Il < C(k HHQJHPJ )

for some constant C(k).

Proof. We assume first that po = p3 = --- = p;, = 1, in which case Hypothesis 4.1
and Lemma 4.1 imply respectively that (4.7) holds for 1/p] < 1—1/po(A/)N), ¢ = oo,
and for p; = ¢ = 2. The Riesz convexity theorem then implies that (4.7) holds if
P}, q satisfy (4.6) with po = p3 = --- = pp = 1. Next assume for induction that we
have proved (4.7) in the case when (4.6) holds with p,11 = pyyo =+ =p, = 1 for
some r > 1. Hence (4.7) holds for 1/pf+---1/pl. <1-1/po(A/N), pry1 =1, ¢ =0
where the functions g1, ..,gr are fixed with p,4 2 = p,13 = -+ = py = 1. From
Lemma 4.1 we see that (4.7) also holds for 1/p} +---1/p,, = 1/2, ¢ = 2, with
the same functions g,41,..,gx. Now we fix the functions ¢1, .., gr, gr+2, .., gr With

Drg1 =Drg2=--=pr=1land 1/pj +---1/p,. <1—1/po(A/X) < 1/2. Applying
the Riesz convexity theorem to the functions g,41, we conclude that (4.7) holds if
D1, .-, Dr41 satisfies (4.6) with p,yo =prg3 =+ =pp = 1. O

For 1 < p < oo let LP ([—, w]4*1) be the space of functions g : [-7, 7] — C
which are weakly p integrable. The norm ||g||,,. of ¢ is defined to be the minimum
number satisfying the inequality
(4.8)

(2m) " Dmeas{(¢, Sn) € [—m, 7T 1 |g(&,Sn)| > 2} < |lgllB., /2" for all z > 0.

Proposition 4.1. Assume Hypothesis 4.1 holds, 4dA < 1 and m is a positive
integer. Then there exist positive constants C1 and o < 1 depending only on d and
A/, such that

(4.9) llg(€,n') —q(&n)| < CA [ & =€l + (0" —m)/A[*? } ,
for 0 < Ry, Ry’ <A, ¢,¢ e C? with |S¢| + || < C1/Rn/A

where C' is a constant.
If € € C4 n € C with fived I¢ € R, Ry > 0 satisfying 0 < Ry < A, [S¢| <
Civ/Rn/A, and m < 1+d/2, the function

amqr,r/ (57 77)

(1.10) (R, S) — ),

(RE, In) € [-m, @]+,

is in the space LE ([—m, 7]™) with p = (1+d/2)/(m—a/2) and its norm is bounded
by CA*="11/P for some constant C.
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If m is the largest integer strictly less than 1 +d/2 and 0 < 6 < 1+ d/2 —m,
then for any p € R satisfying |p| < 1, the function

m

0 .
(411) (%ga %77) - 87’]77” [ qr,r! (57 n+ Zp) — Qr (ga 77) ] /|p|(S
is in the space LE ([—m, 7|™) with p = (1 + d/2)/(m + § — a/2) and its norm is
bounded by CpAlfm"Hl/p, where the constant C), can diverge as p — 1.

Proof. The Holder continuity (4.9) of the function ¢(-, -) has already been proven in
Lemma 3.1. We first prove that the derivative (4.10) with m = 1isin L2 ([—7, 7]?+1)
with p = (1+d/2)/(1 — a/2) for some a > 0 depending only on d, A/A. Observe
from (2.20) and (2.21) that

(4.12)

0 1[0 _
(55 ) €m = =8B = PTegbOI {5 T} PBOIE -~ PTebOT )
Denoting by [-, ] the inner product for #(2), we therefore have for vy, v, € C? that

(4.13)
0\ . -
<(977> Uﬂ](fﬂ?)”? =—A Tl,SE,ERTI 9(%5737% ')Ula Tl,gfﬁﬁn h(%f,%ﬂa ')U2 ]
for certain d x d matrix valued functions g(z,t), h(z,t), x € Z%,t € Z. The functions
g(-,+), h(-,-) are determined from their Fourier transforms (2.15) by the formula

Ae(iSE — Q)e(—iSE — ()
[eR1=i0 — 1+ Ae(—iSE — () e(iSE — O

(4.14) 9(¢,0)"h(¢,0) = —

which follows from (2.19). We take A(-,-) to be given by the formula

. A2 14 e(—iSE - Q)"
(4.15) h(¢.0) = (d> [eR1=10 — 1 + Ae(—iS€ — )*e(iS€ — )]

where 14 is the d dimensional column vector with all entries equal to 1. From (2.11)
and (4.15) it follows that
(4.16)

AN? N
h(z,t) = <d) 14 {VGa(z,t — 1)} eSS if t > 1, h(z,t) = 0 otherwise.

Assuming 0 < Rn < A, |S¢] < C/Rn/A, for sufficiently small positive constant C
depending only on d, it follows from (2.12), (4.16) that h(-,-) is in L (Z*1) with
p=(d+2)/(d+1) and ||h||p.. < CAY271/P for a constant C' depending only on d.

Observe now that by the Hunt interpolation theorem [29] the inequality (4.7) also
holds for the operator T1 g¢ g, as a mapping from LPI(Z+1) to LI ([—m, w4t x
Q, C4® C?). Hence T} g¢,gyh is in LI ([—m, 7]+ x Q, C?@ C?) provided g satisfies
the inequality in (4.6) with p1 = (d + 2)/(d + 1). Evidently we can choose ¢
so that ¢/2 > 1+ d/2. Since we can make an exactly similar argument for the
function g(x,t) and T1 ¢, g, we conclude from (4.13) that dg,. .+ (£,1)/dn is in the
space LY?([—m, 7)) with norm bounded by A2~2/? times a constant. We have
proved for m = 1 that the derivative (4.10) is in the appropriate weak LP space.
We proceed similarly to estimate the higher derivatives (4.10) and the fractional
derivative (4.11). O
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Remark 6. Proposition 4.1 with o = 0 was proven in [8]. In that case the constant
C' in the statement of the Proposition depends only on d, A/\.

Proposition 4.1 enables us to compare the averaged Green’s function Ga(x,t), © €
24t € Z7 for (1.2), (1.3) to the lattice Green’s function G@tiee(z 1), z € Z%, t €
Z7T defined by

(4.17)  Gttice(y ¢) =

Ahom

1 —i.x+n(t+1)
/ ¢ d[Sn] de .

(27()[“_1 [—m, ]+t en—1+ e(g)*Q(Oa 0)6(5)
Theorem 4.1. Assume Hypothesis 4.1 holds and 4dA < 1. Then there exist positive

constants «, v, with a < 1, depending only on d,A/\ and a constant C' such that
forxz € Z tcZ,t>0,

atti C . ||?
_ lattice < _
(4.18) |Ga(w,t) — Ga (2, t)] < At T 1@ exp [ ~ min {|:r|, Al ,
(4.19)
|VGa(z,t) — VGt (g )| < ¢ exp |—ymin < |z] [2I*
a\ @hom ) - [At+1](d+1+o¢)/2 TAt+1 ’

If 0 satisfies 0 < & <1 then there exists o,y > 0 depending only on d,A/\,0 and a
constant Cs such that the following inequality holds:

(4.20) | [VGa(2/,t) — VG2 (2! #)] — [VGa(z,t) — VG (2, t)] |
Cs .
[Af + 1](@r2—d+a)/z OXP | 77 S va

The constant a in (4.20) must satisfy a < 0.

< |/ —z|t7? H ;o xeZd 172 < (|2'|+1)/(Jz|4+1) < 2.

Proof. From (2.8), (4.17) and Corollary 2.1 there is a constant C' depending only
on A/ such that for a € R? with |a| < 1,

(4.21)

. 2/C+ Aal?(t+ 1
Ga(,1) =G (a,t) = expla-r/C + Mal (¢t + 1)

(27)d+1

[ e e ) de dln),
[—m,m]d+t
where the function f, (£, Sn) is given by the formula

e(€ —ia/C)*{q(0,0) — q(& + ia/C, Ala|? + i) Ye(€ + ia/C)
[exp[Alal? +iSn] — 1+ e(§ — ia/C)*q(0,0)e(§ + ia/C)]
1
[exp[Alal? +iSn]) — 1+ e(€ —ia/C)*q(€ + ia/C, Alal? + iSn)e(€ +ia/C)]
The exponential decay in the inequalities (4.18)-(4.20) is obtained by choosing a in
(4.21) to be given by

(4.22)  fa(&,Sn) =

(4.23) a = —z/(C+1)(At+1)if |z| < At+1, a=—z/(C+1)lx|if |z| > At+1.

It follows from (2.29), Proposition 4.1 and Corollary 2.1 that there is a positive
constant Cy such that the function in (4.22) is bounded by

Cille(§)* + laf’]

Ry — d+1
= A[|Sn]/A + |e(§)]? + |a|?]2—a/2 7 for (¢,9m) € [—m, 7.

(4.24) [fa(&,Sn)
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To complete the proof of the theorem we need to obtain the polynomial decay in
[At + 1] in (4.18)-(4.20), whence we may assume that At > 1. We divide the torus
[—7, ]9t into various regions, the first of which is

(4.25) Eoo = {(&Sm) € [-m 7)™+ Atle(€)]* <1, [Sn| <1/t }.
It follows then from (4.24) that there is a constant Cy such that

(4.26) /E |fa(€,Sn)| d€ d[S] < Cof[At+ 1)(0F)/2

Next we consider for k = 1,2, .., regions
(4.27) Eox = {(€,Sn) € [=m, 7)™+ Atle(¢)? <1, 2¥71/t <[ <2M/t } .
From (4.24) we see that if |a| < 2/At there is a constant C3 such that
(4.28)

[ et p (6 ) de dS) | < Cazn RO e g 1052
Eo,k

In general a = O(1), so we need to take advantage of the oscillatory nature of the
integral in (4.28). Let p = m/(t + 1) so that e = —1, and Ef , = { (£,9n) :
(&,3n+ p) € Eox }- Then the LHS of (4.28) is bounded by

(4.29) %/E - | fa(&,3m) — fa(&, S0+ p)| dE d[Sn]+
1 N N N X
2 /EE [fal(&, Sm)| d€ d[Sm] + 5 /E gy, MalE Sl de i

It follows again from (4.24) that the last two integrals on the RHS of (4.29) are
bounded by the RHS of (4.28). In order to bound the first integral we observe from
the Holder continuity (4.9) of the function ¢(-,-) that there are constants Cy, Cs
and

) — fal6,S Culle(©)I + [al*](p/2)*/*
(430) 1fal&sS0) = fal& S0+ 0)l = oS AT O + o

Cs[le(9)I” + la*(p/A)
AlISnl/A+[e(©)1? + lal]P~/2
Since we are assuming |a| > 2/At it follows from (4.30) that

(4.31) Z/E 1a(&,Sn) = fa(&,Sn+ p)| dE d[Sy] < Cg/[At 4 1))/

k>1 FokNEG

for (£,3n) € Eor, N Ef,, .

for some constant Cg. We therefore conclude from (4.26)-(4.31) that there is a
constant C7 and

(432) >

k>0

/ e TSI ¢ (¢ ) dE d[Sm) | < Cr/[At 4 1]@+/2
Eok

The inequality (4.32) can also be derived by using the fact from Theorem 3.1
that the derivative dq(& + ia/C, Ala|? 4 i3n)/9[Sn] is in the space LE ([—m, ]2 +1)
with p = (1 +d/2)/(1 — «/2). Thus we observe that
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o 1
(433) ‘ e e sy de i | < g [ e o) ag
1 0fa(&,Sn) o
LR N \df Al

where OFj j is the union of sets {(£,Sn) : Atle(€)]? < 1, In = constant} with the
constant given by +2% /t or £2F~1 /t. Tt follows from (4.24) that the first integral on
the RHS of (4.33) is bounded by the RHS of (4.28). To bound the second integral
we use the inequality

Of.(¢,5m) Cse(©)F + |af?]
(4.34) ‘ 337 ‘— RE[SJA 1 ()P + [aPPP=o72
Colle(©) +[aZ] | 9ale + ia/C, Alaf? + iSn)
N2[Sn]/A + e@)F + [aP P o] ’

where Cg, Cy are constants. We can bound the integral of the first term on the RHS
of (4.34) just as we did with the second term on the RHS of (4.30). To bound the
integral of the second term we use the well known fact that if f € L2 ([—7, 7]?+!)
with 1 < p < oo, then for any measurable set F', one has

(4.35) /F < Gl

where the constant C, depends only on p. Taking p = (1 + d/2)/(1 — a/2) we
conclude from Proposition 4.1 that 1/(¢ 4+ 1) times the integral over Ejj of the
second term on the RHS of (4.34) is bounded by

Clo[l/At+ |CL|2] 2k(1-1/p)
At[2F /At + |al?]? [At + 1)(d+e)/2
for some constant C1g. Summing (4.36) over k > 1 we obtain the inequality (4.32)
again.
For r > 1, k>0, let E, be defined by
(4.37)
Erp={(6,3n) € [-m, 7] o 277 < Atle(€)]? <27, 2t < (S| <28/t )}, k> 1,
Ero={(&,3n) € [-m, w1 0 277 < Atle(€)2 <27, Q| <1/t ).
Then we have that

[pwm(E) 7

(4.36)

(139) Y [ ey ¢ a) de dfon] -
k=0" Er.k

Z‘m

N L )
_ " ig.ation+1) 9" fal&SN) 0 e
R ;_;‘)/E ¢ ST AN

Just as in (4.34) we see from Proposition 4.1 that
amfa(ﬁ,%n) _ |€(€)‘2 + ‘a|2 . (5 gn)
o™ N2[[Snl/A + [e(©)F + [aP2 IS

where for m < 1+ d/2 the function g4 (,-) is in LE ([—m, 7]4*1) with p = (1 +
d/2)/(m — a/2). Thus there is a constant C;; such that

(4.39)

(4.40) / |9am (&, S0)| d€ d[Sn] < Ch =" FVPm(F)VP L F C [oma]
F
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It follows from (4.39), (4.40) that
(4.41)

(t +11)m /Ek

for some constant Cy5. Observe that

" fa(§, )
I[Sn|m

Cro  204/24R)(1-1/p)
23 <
‘ dediSnl < @ gy g

x 2(rd/2+k)(1—l/p)

(4.42) ZZW < o0
k=0r=1

provided m satisfies the inequality m > (d + «)/2. If d is odd then there is an
integer m satisfying d/2 < m < 1+ d/2, whence (4.32), (4.38), and (4.41) imply
that (4.18) holds for some « > 0.

In the case when d is even we note from (4.38) that

(443) Y [E e et £ (¢, Sn) dé d[Sn) =
k=0 Tk

" — —i€ z4iSn(t+1) 9™ fa(&,Sn) _6mfa(5v%77+p) de dIs
2@%1yn§5%/;,ke [ oS o)™ Sl

where m is the largest integer satisfying m < 1+ d/2 and p = 7/(t + 1). Similarly
to (4.39) we have that

(4.44)
1W%£ﬁm_wn@%+m]— e(©)1? + laf? N
[l [ IRV S = NS0/ + L@ 1 e Y0 & S

where for 0 < § < 14 d/2 —m the function g, s(-,-) satisfies an inequality (4.35)
with p = (14+d/2)/(m + § — a/2). Hence as in (4.41) we conclude that
(4.45)

where C13 also depends on ¢ as well as A, d, A/\. Now (4.18) for some o > 0 follows
from (4.32), (4.43), and (4.45) by choosing ¢ in (4.45) so that 0 < § < 1.

In order to prove (4.19) we follow the previous argument, replacing the function
fa(&,3m) by the function e(§) f, (&, Sn). To prove (4.20) we use the inequality

m o~ m Y (rd/2+k)(1—-1/p)
O™ fal&,Sn) 9™ fal&, S0+ p) de d[S] < Ci3 2 7
O[S o[ AL+ 1)@re)/2 " 27 + ok

(446) |ei§~(w_w’) . 1| < 10|.T B l‘/ 1_6|€(§)|1_6 ,

and replace the function f,(&,37) by the function |e(€)[?70 f.(€,3n) in the argu-
ment to prove (4.18). O

Remark 7. In the case when o = 0 the constant C in (4.18), (4.19) depends only
on d,A/X. For a > 0 the constant C also depends on the constant in the inequality

(4.1) of Hypothesis 4.1.

The inequalities (1.19), (1.20) of Theorem 1.3 are a consequence now of Theorem
4.1 and the following result which compares the lattice Green’s function Ggfotr‘:e(x, t)
to the Green’s function G, (z,t) for the PDE (1.6):
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Lemma 4.3. Assuming 4dA < 1, then there exist positive constants v, C' depending
only on d, A/X such that for x € Z¢, t € Z with At > 1,

(4.47)
~ c | o
lattice
G :0) = G100, )] < sz oxp | —ymin {Jal. 57 )
(4.48)
VG (1)~ vt < — oo T min {ap, L2
Ahom ’ Ahom Y — [At + 1](d+2)/2 p ’Y Y At +1 ’
(4.49)

i c , |z
_ lattice —
IVVGaypon (2,1) =VV G4 (2, )] < TSN exp [ ~ min {|x, il

Proof. Taking apom = ¢(0,0) in (1.6), we see from (4.17) that G*ice(. .) is the
Green’s function for the discrete parabolic equation corresponding to (1.6),

(4.50) w(z,t+1,w) —u(z, t,w) = —VapemVu(z,t,w), =€z t=0,1,2...

To prove the theorem we follow a standard method of numerical analysis for esti-
mating error between the solution of a continuous problem and its approximating
discrete problems. The method is to regard the solution of the continuous prob-
lem as an approximate solution to the discrete problem. An alternative approach
based on comparison of the Fourier representation (4.17) of the lattice Green’s func-
tion Gﬁt:we(, -) to the Fourier representation of the continuous Green’s function
Ga,,,, (-, ) is pursued in [22] for the case of elliptic equations.

Let f : R = R be a nonnegative C* function with support contained in the
ball {z € RY: |z| < 1} and u(x,t) = unom(,t) be the solution to the initial value
problem (1.6), (1.7). With V,, V% denoting the discrete operators (1.5), we have
that

(4.51) w(x+z,t+1) —ulx+2,t) + Vianem Vou(r + 2,t) =
u(z+z,t+1) —u(z+2,t)+ Trace[apem A(z +2,1)], z€Z¢ € R t=0,1,..,

where the d x d matrix A(y,t) = [A4; ;(y,t)], y € R% ¢t > 0 is given by the formula
(4.52)

02 Y.t
A iy, t) = u(y, t)+u(y+e;j—e;, t)—u(y+e;, t)—u(y—e;, t) = —E [ u(y+3)}

Oy 0y,

with Y; ; the random variable uniformly distributed in the unit square {y;e; —y;e; €
R%:0 <y;,y; <1}. It follows then from (4.51), (4.52) that

(4.53) u(z+z,t+1)—u(x+2,t)+Viapom Vou(z+2,t) = hi(x+z,t)—ho(x+2,1t) ,
where the functions h;(-,-), j = 1,2 are given by the formulas

ou(y,t + T)] ~ Ou(y,t)

ye Ryt >0,

458 hyt) = E[ . v,

(4.55)
d
ha(y,t) = ) @noml(i, )

4,j=1

{E [ 0?u(y + Yi’j,t)} _ PPu(y,t)

., yeRLt>0.
0y 0y, 0y 0y, } Y



STRONG CONVERGENCE 23

In (4.54) the random variable T is uniformly distributed in the interval 0 < T < 1.
Since u(z + 2,0) = f(z + 2), = € Z%, we conclude from (4.53) that

(4.56)
u(z+z,t) Z Gf}f:::e (x—y,t) f(y+=z Jrz Z Gzﬁfe (z—y,t—r)hy (y+2,7—1)
yeZd yeZd
Y G gt ety s D
r=1ycZd

Let Qo C R? be the unit cube centered at the origin. Then we have that

(4.57) / de u(w+2t)— 3 Gty ) f(y+2)| =
0

yeZ

Ahom

[Gapon (. 1) — G2 (. )] [ f(y) dy + Error(z) ,
Rd

where |Error(x)| is bounded by the RHS of (4.47).
Next observe from (1.6), (4.54), (4.55) that

(4.58) / dz Y hi(y+zt) = 0 forj=1,2.
Qo

yEeZ?

It follows from (4.58) that if we integrate the third term on the RHS of (4.56) with
respect to z € Qg it is equal to

(4.59) / dz Z Z Gla”ttlce —y,t—r)— Glf”]f;:e(x, t—r)ho(y +2,7—1).

r=1yecZd

Using the fact that the distribution of Y;; is the same as the distribution of —Y; ;
we see from (4.55) that ha(-, ) is bounded by the fourth derivative of u(-,t), whence
we conclude that there are constants v, C' depending only on d such that

CAlflloo [ 2yl
[At + 1](d+4)/2 At +1

(4.60) |ha(y,t)] < }, y e Rt > 0.

We also have that there are constants v, C' depending only on d such that
(4.61)

; C
lattice _ . d +
‘vGahonl (y7t)| < [At + 1}(d+1)/2 exp |: 7y min {|y|7 At+1 }:| S Z at SVAR

Using (4.60), (4.61) we can estimate (4.59) and see that it is bounded by the RHS
of (4.47). Since we can do a similar estimate with the function hs replaced by
hi we conclude from (4.57) that (4.47) holds. We can obtain the bounds (4.48),
(4.49) by taking the gradient of (4.56) with respect to z and following the previous
argument. O

The inequality (1.21) of Theorem 1.3 is a consequence of Lemma 4.3 and the
following:
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Theorem 4.2. Assume Hypothesis 4.1 holds and 4dA < 1. Then there exist positive
constants «, vy, with a < 1, depending only on d,A/\ and a constant C' such that
forx e Z?, tcZ,t>0,

(4.62)

YV Gale, t) — VUG (4 1)] < ¢

. |z|?
AL £ 1)@z exp [’ymm{|z|, Al .

Proof. Let x : R¥! — R be a C™ function with compact support such that the
integral of x(-) over R%*! equals 1. We write

(4.63) Ga(z,t) = xr1 *Ga(x,t) + [Galx,t) — x1 * Ga(z,t)]

where xp(x,t) = AL~ (2 x(x/L,At/L?), = € R4t € R, and * denotes convo-
lution on Z*. Let x1(¢,0), ¢ € [-m,7]%, 6 € [—7, 7] be the Fourier transform
(2.15) of xz(-,-) restricted to the Z4+! lattice. Since xr(-,-) has compact support
Xr(-,-) has an analytic continuation to C%*!. Furthermore for L > 1 there is a
constant C' such that

(4.64) [xL(0,0)-1| < C/L,

XL(¢ +ia, 8 — iA|a|2)| < Cexp[Clal*L?] acR™
There also exists for positive integers n constants C,, such that

Cn
L+ ZI¢ + L?[6]/AT"

(4.65) |XL(C +ia,0 —iA|a]?)| < [ if la|L < 1.

We assume now that R < /At +1 < 2R and choose L = R'~? for some § > 0.
Then from (2.5) we see that
(4.66)

1
WAV Galit) = g e [a~x/C+A|a2(t+1)]/[ o,

where a is given by (4.23) and f,({,0) is defined by
(4.67)

fa(C,0) = en(¢ +ia/C)e;(C +1ia/C)XL(C +ia/C, 0 — ih|af?)e” "+ HOUHY
G el i 1 (¢ —ia/C)*q(¢ +ia/C, Ala|? 4+ i0)e(C + ia/C)
It follows from Corollary 2.2 and the second inequality of (4.64) that if |a|L > 1

there is a constant C; such that

(4.68) exp [a-/C + Ala*(t +1)] /[_ ]d/jr 1fa(C,0)] d6 dC <

#ex —~min { |x] 2
(At + 1)@+3)/z &P |77 A LS]

If |a|L < 1 we also have from Corollary 2.2 and (4.65) that

(4.69) / / |£a(C,0)] dO d¢+
[~m,7ldn{[¢|>1/R1=28} J —n

|£a(C,0)] d6 dC < Cy/[At + 1](@+3)/2

/[Wm]d /[Wﬂf]ﬂ{\/ 16]/A>1/R' =29}

for some constant C7.
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To estimate the integral of f,(,6) over the set {(¢,0) : |¢| < 1/R'™2%, \/]0]/A <
1/R'=29} we use the Holder continuity (4.9) of the function g(-,-). Thus let g,(-,)
be defined similarly to the function f,(:,-) by

(4.70)
gy — (C+1ia/C)e;(C +ia/C)Ru(C +ia/C,6 — iMaf?)e C-oHOUHD
9a(G,0) = eMal?+i0 — 1 4 e(¢ —ia/C)*q(0,0)e(¢ + ia/C)
Then from (4.9) we see that
(4.71)

/ / 1£2(C.) — 9a(C.6)] 9 dC < Caf[At 4 1]4+240)0-20)
{IcI<1/R=2%} Jy /10| /A<1/R1 =20

for some constant Cy. We choose now § > 0 in (4.71) sufficiently small so that
(d+2+a)(1—20) > d+ 2. It follows then from (4.68), (4.69), (4.71) that |xr *
ViV;Ga(z,t) — xp * Vi V;G2%ce (g 1)] is bounded by the RHS of (4.62).

To complete the proof of the inequality (4.62) we use the Holder continuity result
of [11]. Thus from the first inequality of (4.64) and [11] we see that |V V;Ga(z,t)—
X1 * ViV ;Ga(x,t)]| is bounded by the RHS of (4.62) for some o > 0. The result
follows. O

We can essentially repeat the foregoing arguments for the continuous time av-
eraged Green’s function Ggu(z,t), z € Z% ¢ > 0, for (1.4). In the continuous time
case our hypothesis is:

Hypothesis 4.2. Let T¢, be the operator (2.47) on the Hilbert space H(Q2) and
T¢, denote its adjoint. Then for k > 1, pp =p3 = - =pr =1, and S¢; = Ty
or Sey =T¢,, there exists po(A/N) > 1 depending only on d,A/\ and a constant
C(k) such that

(4.72)

k
/ dty - - dty, ng(xj,tj)rxj’,tjpb(-)[l—Psg,,,b(-)}—l v
R i=1

11,...Ik€zd+1
k

< C(k) [T llgsllp,lv| for g; € LP(Z¢ x R,C*®@ C%), j=1,..k, ve C,
Jj=1

provided 1 < p; < po(A/N) and € € C4, n € C satisfy 0 < Ry < A, |I¢] <
Civ/Rn/A, with Cy depending only on d, A/\.

Assuming Hypothesis 4.2 holds, we can prove the analogues of Proposition 4.1,
Theorem 4.1 and Theorem 4.2 for the continuous case. Theorem 1.3 therefore
follows in the continuous time case once we are able to establish Hypothesis 4.2.

5. INDEPENDENT VARIABLE ENVIRONMENT

Our goal in this section will be to prove Hypothesis 3.1 and its generalized
form Hypothesis 4.1 in the case when the variables a(7, ), = € Z%,t € Z, are
independent. Following [9] we first consider the case of a Bernoulli environment.
Thus for each x € Z4,t € Z, let Y, + be independent Bernoulli variables, whence
Y, = £1 with equal probability. The probability space (2, F,P) is then the
space generated by all the variables Y, ;, (z,t) € Z%*1. A point w € Q is a set of
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configurations {(Y,,n) :n € Z41}. For (x,t) € Z4! the translation operator 7, ;
acts on 2 by taking the point w = {(Yy,n) : n € Z4} to 74w = {(Vni(z,—1): 1) :
n € Z41}. The random matrix a(-) is then defined by

(5.1) aw) = (1+9Yo) g, w={(Yn,n):necZ¥t},

where 0 <y < 1.

In [9] we defined for 1 < p < oo Fock spaces FP(Z*1) of complex valued
functions, and observed that F2(Z*!) is unitarily equivalent to L?(2). We can
similarly define Fock spaces H5-(Z4T!) of vector valued functions with range C¢,
such that HZ(Z9!) is unitarily equivalent to H(2). Hence we can regard the
operator Tg,, of (2.10) as acting on H%(Z4*!), and by unitary equivalence it is
a bounded operator satisfying ||T¢,| < 1 for £ € R4, Ry > 0. From (2.10) we
see that T¢, acts as a convolution operator on N particle wave functions ¢¥n(-) in
HZ(ZH) as

(6.2) Tepvn(xr,ty,...,zN,tN) =

o0
A Z e Z {VV*GA(2' V' — 1)} exp[—iz’-€] Yn(x1—2', ti—t, .., an—a  tn—t) .
t'=1 r€Z4
Note that for all NV particle wave functions, 7% , acts as a convolution operator on
functions on Z4+!. Hence its action is determined by its action on 1 particle wave
functions. Let 1, (¢,0), ¢ € [-m,7|%, 6 € [=7, 7], be the Fourier transform (2.15)
of the 1 particle wave function vy (z,t), x € Z%,t € Z. We see from (5.2) that for

£ € C? Ry > 0, the action of T¢ n in Fourier space is given by
(5.3)

Te i (¢, 0) = Ae(§ = Qe(§ - Q) .

d
o1 1 Ae(@ - Oree g 1) celmall b el

Hence the result of Lemma 2.1 for the Bernoulli case follows from:

Lemma 5.1. Assume 4dA < 1. Then there exist positive constants Cy,Cy depend-
ing only on d such that for (£,n) in the region {(£,1) € CHL 0 < Ry < A, 3¢ <

C1\/Rn/A}, there is the inequality
(5.4)  Amax[ [e(§)]%, [e(©)] < (1+ CofSE?/[Rn/A]) [e" — 1+ Ae(§)e(€)] -
Proof. We have that

(55) [e" =1+ Ae(€)"e(§)] > €™ — |1 - Ae(€)"e(6)|

> ™11 4 Ae(RE)*e(RE) — Ale(RE) e(RE) — e(€)e(€)]

where we have used the fact that 4dA < 1. Observe that there is a constant C
depending only on d such that

(5.6)  Ale(Re)"e(RE) — e()"e(§)] < CA[IE* +[3¢][e(R¢)]]

< C*{Ae(RE) (RO HSE?/[R/A] + [1/4+ CCF Ry .
We conclude then from (5.5), (5.6) that
(5.7) le"=1+Ae(©)e(€)| > [3/4—CCRn+[1—C?|SE/[Rn/A]Ae(RE) " e(Re) -
The inequality (5.4) follows from (5.7) by observing similarly to (5.6) that
(5-8) Ale(€)]* < Ae(RE)"e(RE) + CASE + [S¢|le(Re)]] -
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d

Lemma 5.2. Assume 4dA < 1. Then there exist positive constants Cy,Cs,Cs
depending only on d such that for (&,m) in the region {(£,m) € C4H1 .0 < Rny <
A, |S¢| < Ci/Rn/A}, the operator T¢,, of (5.2) is bounded on H5%(ZH1) for
p =3/2 or p =3, and the norm ||T¢ ,|l, of T¢,, satisfies the inequality ||Te |, <
Cs (1 + Cz‘%£|2/[9?17/1\]).

Proof. Tt will be sufficient for us to prove the theorem on the space of 1 particle
wave functions. To do this we follow the argument of Jones [18], which adapts the
methodology of Calderon-Zygmund [5] to Fourier multipliers associated with para-
bolic PDE. A more general theory of Fourier multipliers can be found in Chapter IV
of [30], but because of the generality it is hard to estimate the values of constants
using this theory.

For a set E C Z%*!, we denote by |E| the number of lattice points of Z?*!
contained in E. Let ¢(z,t), * € Z%t € Z, be a 1 particle wave function with
finite support. We shall show that for any v > 0, the set E, = {(z,t) € Z¢*+!
|Te ntb(x,t)| > v} satisfies the inequality

(5.9) |B,| < Ca(1+ColSEP/Rn/A) v~ > minf[g(a, t)], 12 +C58"(7)

(z,t)eZd+!

where C is the constant of Lemma 5.1 and Cy, C5 depend only on d. The function
B¥(+) is defined in [5, 18] in terms of the distribution function of (-, -). Once (5.9)
is proved the result follows from the argument of [5], which shows that ||T¢ ||, is
simply bounded in terms of the constants occurring in (5.9).

We use a Calderon-Zygmund decomposition to prove (5.9). Recalling that 1/A >
4d, let Ny > 2 be the integer which satisfies 2V < 1/A < 2Notl We choose
a1, ..a4,b € Z and sufficiently large integer Ny such that the rectangle R = {(z,t) =
(x1,.,2q,t) E R ¢ a;+1/2<2; <2M +a;4+1/2, j=1,...d, and b+1/2<
t < 22Ni+No 4 4 1/2 } contains the support of ¢(-,-) and
(5.10) =Y el <.

|R| (z,t)ERNZA+1

Note that the length of the side of R in the t direction is 2¥0 times the square of
the length of a side in an x; direction for all 1 < j < d. We subdivide R into 24 x 4
sub-rectangles with the same property and continue to similarly subdivide until we
reach a set of disjoint rectangles R,,, m =1, .., My, with side in the z;, 1 < j < d,
direction a non-negative power of 2, which satisfy the inequality

1
(5.11) Y < e Y, )] < 2%y, 1<m < My,

| B (z,t)ERm

together with a set of rectangles R],,, m = 1,2,...M», with side in the z;, 1 < j < d,

m>s

direction equal to 1 and equal to 2™V0 in the ¢ direction which satisfy

LS @) < v

/
| m| (z,t)ER.,

(5.12)

We subdivide the rectangles R),, m =1, .., M3, into 2 rectangles with side in the ¢
direction of length 2Vo~! and continue to subdivide until we reach a set of disjoint
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rectangles R,,,, m = My +1,.., M, with side in the ¢ direction a non-negative power
of 2, which satisfy the inequality

1
(5.13) v < == Y, W@t <2y, Mi+1<m<M,

[ B (#,t)ERm
together with a set of unit cubes centered at lattice points of Z9+!. Setting D, =

UM_| R,,, one sees that R — D, is a union of unit cubes centered at lattice
points of Z4+!, whence
(5.14) [z, t)| < v for (z,t) € Z"™ N R — D, .

We consider the distribution function v — [{(z,t) € Z41 : |¢(z,t)] > v}
of ¢(-,-) with domain {vy > 0}, which is a piece-wise constant right continu-
ous decreasing function with range 0 < s < |supp[¢)(+,-)]|. The decreasing re-
arrangement 1*(s) of ¥(+,-) with domain s > 0 is also a piece-wise constant right
continuous decreasing function satisfying *(0) = sup | (+,-)| and ¢*(s) = 0 for

s > |supp[t(+, -)]|. Tt is the approximate right continuous inverse of the distribution
function for 0 < s < [supp[¢p(-,-)]| . In view of (5.11), (5.13) we have that

1 1 | D~ .
615 1< 5 X Wl < g [ e ds = 8,00

| ’Y| (z,t)eD~

where the function Sy(s) with domain s > 0 is decreasing and continuous with
range 0 < 7 < sup [¢(+, -)|. There is a well-defined inverse function 3% (7) for By (:)
with domain 0 < v < sup |¢(+, )|, and (5.15) implies that |D.| < 8% (7).

We write ¢(-,-) = 91(-,-) + 12(-, -), where the function 1 (-,-) is defined by

(5.16)
1

Uy (x,t) = Rl Z (' ') if (x,t) € Ry, for some m, 1 <m < M,
(2 ) ERm
1(x,t) = (z,t) otherwise .

From Lemma 5.1 and (5.14) we have then that

(5.17) [{(z,t) € Z9* ¢ |Te yhi(z,t)] > /2 }] <

(1+ CoISEPR/n/A) {4972 30 minfo(a, )], A2 + 2249 D, |
(z,t)eZat1
To bound the distribution function of (-, -) which has support contained in D.,
we consider a rectangle R,,, 1 <m < M, with center (z™,t™) € Z4*! and let R
be the double of R,,. We observe that similarly to (2.12) there is a constant Cy
depending only on d such that the function VV*G(z,t) satisfies inequalities

(5.18) |e FntHD-ieSEgy Q, (x,t 4 1) — e RMTCSEYVIGy (2, 1)

- Cy o _min{|x|, |x|2/(At—|—l)}
= (t+ 1)[At + 1])d/2+1 P Cy ’

(5.19) e Rnt=i@te) SEGT Gy (x4 €, 1) — e RMTVEGTEG Y (x, 1))
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ci min {Jal, [of2/(A¢ + 1)}
At + 1]d/2+3/2 €exXp | — Cy )

< .7 =1, d7

[
provided ¢ € C?, 15 € C, satisfy the conditions in the statement of the lemma.
Extending the function Gy (z,t), = € Z%, t = 0,1,2, .., defined by (2.11) to have
domain Z4*! by setting Ga(x,t) = 0 for x € Z¢, t < 0, we conclude from (5.18),
(5.19) that if (2/,¢') € R,,, then there is a constant Cy depending only on d such
that

(5.20) Z A |ePnt=t)—ile—a)SEGG* Gy (2 — ¢ — 1)
(z,t)€ZI+1—R,,

_ e*§Rn(t7tm)7i(mfmm')~%§vv*GA(x _ JJm,t _ tm)| < Cd-
It follows from (5.11), (5.13), (5.20) that if D, = UM_, R,,, then
(5.21) Z Ten2(z,t)| < Cay|Dy|

(z,t)€Zd+1-D,

for some constant C; depending only on d. Hence we have that
(5.22)
{(z,t) € Z7 ¢ |Teyipa(x,t)| > v/2 Y| < 2Ca|D,| +|D,| < 204 +272]|D, |

The inequality (5.9) follows from (5.17) and (5.22). O

Corollary 5.1. Under the assumptions of Lemma 5.2 the operator It , is bounded
on HP(ZM) for3/2 < p <3, and | Te 5|, < [14+8(p)] (1 + C2[SE]?/[Rn/A]), where
the function 6(-) depends only on d and lim,_,5 6(p) = 0.

Proof. The result follows from Lemma 5.1, Lemma 5.2 and the Riesz-Thorin inter-
polation theorem [31]. O

Proof of Hypothesis 4.1. We choose gy = go(A/A\) with 1 < gp < 2 so that d(gp) <
A/2A, where 0(+) is the function in the statement of Corollary 5.1. It follows then
from Young’s inequality that Hypothesis 4.1 holds if we choose pg = po(A/N) >
1 with 1/po + 1/q0 = 3/2. It is shown in [9] how to extend the argument for
the Bernoulli environment corresponding to (5.1) to general i.i.d. environments
a(7e4), (z,t) € Z41. We have therefore proven Hypothesis 4.1 for a(7,.+-), (z,t) €
Z9*1' ii.d. such that (1.1) holds. O

6. MAsSIVE FIELD THEORY ENVIRONMENT

In this section we show that Hypothesis 3.2 and its generalization Hypothesis 4.2
holds if (2, F, P) is given by the massive field theory environment determined by
(1.10), (1.11). We recall the main features of the construction of this measure. Let L
be a positive even integer and Q = Q1 C Z? be the integer lattice points in the cube
centered at the origin with side of length L. By a periodic function ¢ : @ x R = R
we mean a function ¢ on @ x R with the property that ¢(z,t) = ¢(y,t) for all
z,y € Q, t € R, such that x —y = Lej for some k, 1 < k < d. Let Qg be
the space of continuous in time periodic functions ¢ : Q@ x R — R and Fg be the
Borel algebra generated by the requirement that the functions ¢(-,:) — ¢(z,t) from
2o — R are Borel measurable for all z € @ and ¢ rational. For m > 0 we define a
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probability measure Pg on (g, Fg) by first defining expectations of functions of
the variables ¢(z,0), = € @, as follows:

(6.1) < F(o(0) >a0=

L oo, 2 S
/RLd F(é(-)exp | — Z {V(V(b(x)) + 5m o(x) } H d¢(x)/normalization ,

zeQ z€EQ

where F : RF = R is a continuous function such that |F(2)| < CexplA|z]], z €
RLd, for some constants C, A. By translation invariance of the measure (6.1) we
see that (¢(z,0))q, = 0 for all x € @ and hence the Brascamp-Lieb inequality
[2] applied to (6.1) and function F(¢(-)) = exp[(f, ¢)], where (-, -) is the Euclidean
inner product for periodic functions on @, yields the inequality

(62) Rl 0ne < o |52 +mt) )

The variables ¢(z,t), © € Q,t > 0, are determined from the variables ¢(x,0), = €
@, by solving the stochastic differential equation

(6.3)
B

dd)(l‘, t) = _W m% %{V(V(b(l'/,t))+m2¢($/,t>2/2} dt-ﬁ-dB(.’E,t) , T € Qvt > 0;

where B(z,-), « € @, are independent copies of Brownian motion modulo the pe-
riodicity constraint on @. Since (6.1) is the invariant measure for the stochastic
process ¢(-,t), t > 0, it follows that (6.1), (6.3) determine a stationary process for
t > 0, which therefore can be extended to all ¢ € R. Furthermore the functions
t — ¢(z,t) on R are continuous with probability 1 for all x € Q. The proba-
bility measure Py on (g, Fg) is the measure induced by the stationary process
o(-,t), teR.

The probability space (€2, F, P) on continuous in time fields ¢ : Z¢ x R — R is
obtained as the limit of the spaces (Qq, Fg, Pg) as |Q| — oco. In particular one has
from Lemma 2.4 of [7] the following result:

Proposition 6.1. Assume m > 0 and let F : R¥ — R be a C' function which
satisfies the inequality

(6.4) IDF(z)| < Aexp| Blz|], =€ RF,

for some constants A, B. Then for any x1,....x) € Z%, and ty,..,t; € R, the limit
(6.5)
lim <F (¢((E1,t1),¢($27t2), """ 7¢(xk7tk))>QQ = <F (¢($1,t1)7¢)(1'2,t2)7 """ 7¢(xkatk))>

|Q|—o0

exists and is finite.

From (6.2) and the Helly-Bray theorem [3, 13] one sees that Proposition 6.1
implies the existence of a unique Borel probability measure on RF corresponding
to the probability distribution of the variables (¢(x1,t1),..,¢(2k,tx)) € RF, and
this measure satisfies (6.5). The Kolmogorov construction [3, 13] then implies the
existence of a Borel measure on fields ¢ : Z¢ x R — R with finite dimensional
distribution functions satisfying (6.5). We have constructed the probability space
(Q, F, P) corresponding to (1.10),(1.11) for which Q is the set of continuous in
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time functions ¢ : Z¢ x R — R, and it is clear that the translation operators
7oty T € Z% t € R, are measure preserving and form a group.

The BL inequality [2] plays a crucial role in establishing the existence of the limit
(6.5) in [7, 14]. In particular it yields a Poincaré inequality for the measure (6.1).
Thus if F: RLY = R is a C! function such that |DF(2)| < Cexp[Alz]], z € RE",
for some constants C, A, then
(6.6)

vara, [F(¢(-,0))] = ( [F((-,0)) = (F(¢(-,0))]*)aq < #ﬂ\dF(fb(wO))IIQmQ ;

where dF(¢(-,0)) € R is the gradient of F at #(-,0). A simple proof of (6.6)
follows from the Helffer-Sjostrand (HS) representation [17]

(6.7)

(Fi(e(, 0)Fa((-,0))aq = (dF1(6(-,0)[d"d+V V" (Ve(-) V4m?] " dFa(6(-,0)))ay,

which holds for C! functions Fi, Fy : RLY — R that satisfy |F;(2)| + |DF;(z)| <
CexplA|z|], z € R, j = 1,2, for some constants C, A, and (F1(9(-,0)))a, = 0.
In (6.7) the operator d* is the adjoint of the gradient operator d with respect to
the measure (6.1), and hence d*d is a non-negative self-adjoint operator.

Our first goal here will be to prove strong mixing of the operator 7., o on
(Q,F,P). In order to do this we will need a Poincaré inequality for the measure
(Qq, Fq, Pg), in particular a generalization of (6.6) to functions F(¢(-,t1), .., #(-, tx))
depending on values of the field ¢(-,-) at different times. To do this we follow
the development of Gourcy-Wu [16] who make use of the Malliavin calculus [25]
to prove a log-Sobolev inequality for such measures. The basic insight of the
Malliavin calculus is that the Wiener space generated by independent Brownian
motions B(z,t), * € Q,t > 0, can be identified with a probability space whose
set of configurations is the Hilbert space L?(Q x R"), where R" is the open in-
terval (0,00). We denote the Euclidean inner product on L?(Q x R™) by [, ].
The measure on L?(Q x R¥) is uniquely determined by the requirement that the
variables ¢ — [¢,v¢;], 7 = 1,..,k, are i.i.d. standard normal for any set of or-
thonormal vectors ¢;, j = 1,..,k. We denote this Malliavin probability space by
(20 . Mals FQ.Mal, Po Mal), where Qg var = L2(Q x RT) and Fg pal is determined
by the requirement that the functions ¢ — [1, 1] from Qg Mma to R are Borel
measurable for all 1y € L%(Q x R*).

The identification of the Wiener space with (Q¢ ma1, FQ,Mal, Po Mal) follows from
the fact that the expectation of a function F'(¢(-, -)) with respect to (¢ ma1, FQ,Mal, P, Mal)
is the same as the expectation of F(W (-, -)) with respect to Wiener space, where
W (-,-) is the white noise process corresponding to B(-,-) in (6.3). Hence the iden-
tification may be summarized as follows:

(6.8) Y(x,t) & W(x,t), Wz, t)=dB(z,t)/dt, x€Q,t>0.

For t > 0 let F; be the o—field generated by the Brownian motions B(z,s), x €
Q,s < t, of (6.3), so from (6.8) we can regard F; as a sub o—field of Fg mal.
We consider next vector fields G : L?(Q x RT) — L?*(Q x RT) on Qg ma which
are measurable in the sense that for any ¢y € L?(Q x R*) the function 9(-,-) —
[G(W(-,-)), 0] is (29 Mal, FQMal) measurable. The vector field is predictable if
for any t, 0 < t < o0, ¢ has support in the interval @ x [0,¢] implies that the
function [G(¢(-,-)), ¥o] is F: measurable. The Martingale representation theorem
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[25] implies that for any function F' € L?(2g ma1) there is a predictable vector field
G:L*(Q xR*Y) = L?(Q x R") such that

(69) VaI'QQ,Mal[F(')] = < HG()”2 >QQ,Ma1 ’

F@() = (FC) = [GW(G), 960
Suppose now that F' € L? (Q0,Ma1) also has a Malliavin derivative DyiarF : L2(Q x
R") — L*(Q x R") with the property that ( [[DyaF())|1? oo < 00. The
Clark-Ocone formula [25] states that the vector field G(¢(-,-)) in (6.9) can be
expressed in terms of the Malliavin derivative Dy F'(¢(, -)). Denoting the values of

G(w(’ ))7 DMalF(w('v ))’ at (Ji,t) € Q xRT by G('Tvt; Z/J(’ ))a DMalF(xat; w(a ))

respectively, then

(610) G(xat;w('a )) = < DMalF(xat;w('a )) | Fi >QQ,Ma1 S Qvt > 0.

We show how the Clark-Ocone formula (6.9), (6.10) implies the HS formula
(6.7). Let ¢(-,T) be the solution at time T' > 0 of (6.3) with initial data ¢(-,0) =0
and f : @ — R. We can find an expression for the Malliavin derivative of the
function F(¢(-,-)) = (f(-),¢(-,T)) by analyzing the first variation equation for
(6.3). Evidently one has that Dy F(z,¢;¢(-,+)) =0 for x € Q,t > T. To get an
expression for Dy F'(x,t;9(+,+)) when ¢ < T we first note from (6.3) that
(6.11)

%(f(-),qﬁ(-,t)) = —%{(Vf('),V'(Vcﬁ(wt)))+m2(f(-),¢(-,t))}+(f('),W(-,t))7 t>0.

It follows from (6.11) that for ¢ € L?(QxR™) the function £(+,t) = [Dyar@(+, 1)), o]
from @ to R is a solution to the initial value problem

(6.12) %(f('),ﬁ(wt)) = —%{(Vf('),V”(V¢(-,t))V§(ut))+
m(f(), 600} + (f(),%o( 1) for t >0, f:Q =Ry £(-,0) =0.

From (6.12) we see that {(z,t), = € Q,t > 0, is the solution to the initial value
problem for the parabolic PDE
9¢(,t)

613) B = TV (T, 0)VEr, 1) + mP (e, )+ (),

&(x,0) = 0.
Consider now the terminal value problem for the backwards in time parabolic PDE

(6.14) 8“((;’ H o _ %V*V”(v(p(x,t))vu(:c,t), t<T,

u(z, T) = wup(x),

with solution
(6.15) u(@t) = Y Gla,y,t, T,6(,)uoly) , t<T.
yER

Then the solution to (6.13) is given by the formula

T
(616) E(ya T) = A eimQ(Tit)/th Z G(I‘, Y, t, Tv ¢(7 ))1/’0(1'7 t) , Y€ Q
zEQ
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We conclude from (6.16) that
(6.17)

(f(')aDMal¢(xat§ '7T)) = e_m2(T_t)/2(f(')’G(x’ "t7T7¢('7 )))7 re@,t<T, f:Q—R.

Suppose now that ' : RX — R is a C! function such that |IDF(z)| < CexplA|z]], z €
RE", for some constants C, A. Then from (6.17) it follows that

(6.18)
DMalF(xat; ¢(>T)) = e_mZ(T_t)/2(dF('a(b('aT))vG(xv '7taT7¢('a )))? T € Qvt < T7
DMalF(xat;Qs('aT)) = 07 T e Qat >T.

Next we observe from (6.14), (6.18) that the conditional expectation (6.10) is given
by the formula

(619) < DM&IF('vt; d)(aT)) | Fi >QQ,Ma1 = eiH(Tit)/QdF('aqs("t)) , t<T,

where the operator H is as in (6.7), so H = d*d + V*V"(Vé(-))V + m?2. Since
for any fixed s > 0 the distribution of ¢(-,T — s) converges as T — oo to the
distribution of ¢(-) for the invariant measure (6.1), it follows that

(6.20)

Th_rf(l)o< ‘< DMalF('ﬂT_S; ¢(7T>) | Fr_s >QQ,I\’Ia1 ? >QQ‘Mal = <dF(7¢()) e_HSdF('7¢(')) >QQ .

Now (6.7) for Fy = Fy follows from (6.9), (6.20) on letting 7" — co. The identity
(6.7) for general Fy, Fy is then a consequence of the symmetry of the LHS of (6.7)
in Fl, FQ.

Proposition 6.2. Let (2, F, P) be the massive field theory probability space defined
by Proposition 6.1. Then the operators Te, 0, 1 < j < d, on §) are strong mizing.

Proof. We proceed as in the proof of Proposition 5.2 of [10]. It will be sufficient to
prove that for k > 1 and (z;,t;) € Z* xR, j=1,...,k,
(6.21)

lim ( f(¢(x1 + nei,tr), ..., 0(xx + ney, tx)) glo(z,t1), ..., p(ag, tr)) ) =

([, t1), ooy O(anstr)) ) (g((21, 1), o Pk, ) )

for all C*° functions f, g : R* — R with compact support. Let Q C Z¢ be a large
cube centered at the origin with side of length an even integer L. We define hg r(n)
for n € Z and T > 0 large by

(6.22)
hqr(n) = ( f(¢(x1+tner, t1i+T), ..., d(zrtner, tx+T)) g(d(z1,t1+T), oos ¢(h, th+T)) )g Mal —
(flp(@r, t1+T), oy d(@h, ti+T)) Yrg Mat { 9(P(21,81+T), s @@k, i+ T)) Y2, Mal -

The function hgr : Z — R is periodic on the interval I, = ZN[-L/2,L/2]. We
shall show that there is a constant C independent of L,T as L,T — oo such that

(6.23) > lhqr(n)f < C.
nelr,

Then (6.21) follows from (6.23) and Proposition 6.1 as in Proposition 5.2 .of [10].
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To estimate the LHS of (6.23) we go into Fourier variables, using the Plancherel
theorem

(6:24) 3 hortl® = o [ lha(OF
nelr,
Let a(f, ¢, o(, )) be the function
(6.25) a(f.C.0(~) = Y f(dlar+ner,tr+T), ..., p(xx + ney, ty + 1)) e
nely,

Then the Fourier transform of hg r(-) is bounded by

(626) |EQ,T(C)‘2 < i VarQg mal [a(f’ Ca ¢(7 ))] VarQg man [a‘(ga Cv ¢(7 ))} .

72
From (6.17) we see that
(6.27)
k 2
‘DMala(x7 t; fa Cv ¢(7 ))| S ||Df(||00 Z Z e ™ (T+tj7t)/2G(xa ZZ:j#dn’eh ta T+tja QZS(, )) )

j=1lnelr

where we are using the convention G(-,+,s,5) =0 if s > S. It follows from (6.27)
that

628 Z |DMala 7f7<7¢(7))|2 =
z€Q

k
kLHDf(”io Ze_m2(T+t sup Z Z G .13 y+ne17t T+t_]’¢( )) (x7y7t7T+tj,¢('a )) .

j=1 YEQ 1eQnel,

Observe now that

(629) Z G(.’I,‘,y/7t7T,¢('7 )) = Z G(x/7y7taTa¢('7 )) = 1? z, Yy € Qat <T.

y'€Q z'eQ
We conclude from (6.9), (6.28), (6.29) that
(6.30) varo, v [a(f. ¢ 6 )] < K L|Df (|5, /m?
The inequality (6.23) follows from (6.24), (6.26), (6.30). O

To proceed further we need to obtain a more general Poincaré inequality than
was used in Proposition 6.2. In order to do this we consider functions F'(4(:,-)) of
continuous in time fields ¢ : Q@ x R — R.. For h € L*(Q x R), which is continuous
in time, we define the directional derivative of F(¢(-,-)) in direction h by

(6.31) dFu(¢(,-) = Hm[F(o(,) +eh(:)) = Flo())]/e -

For the functions F(¢(-,-)) we shall be interested in, the directional derivative (6.31)
can be written as

(6.32)  dFy(¢ Z/ dt dF (z,t; ¢(-,-))h(z,t) = [dF(¢(-,-)), h] .
z€Q

We shall call dF(-,-;¢(-,-)) the field derivative of F(¢(-,-)). One can use the HS
formula (6.7) to obtain a Poincaré inequality for functions F'(¢(,-)) of the form

(6.33) meo>=‘/wgmawmw>ﬁ,
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where ¢ : R — C is a continuous function of compact support and G(¢(+)) is a
complex valued C! function of fields ¢ : Q — R which satisfies |G(2)| + |DG(z)| <

Aexp[B|z|), z € RE", for some constants A, B . Evidently from (6.32) we see that
the field derivative of the function (6.33) is given by the formula

(6.34) dF(z,t;¢(-,-)) = g(t)dG(z,é(-, 1)), x€Q,t€R.
Let us define now the correlation function i : R — C by
(6.35) A(t) = (G(8(1) G(&(-0)) )ag — ( G(d(-, 1) Yoy ( G(8(-,0)) )ag, -

Then the variance of F(¢(-,+)) is given in terms of the Fourier transforms of g(-)
and h(-) by

1 [, -
(6.36) varaq [F(4(-,-))] = 19(O)Ih(C) dC -

2r ) o

Note that the function h(-) is real and non-negative. Observe next that h(t) can be
written as an expectation with respect to the measure (6.1) by using the operator
d*d which occurs in (6.7). Thus we have that

(6.37)

h(t) = (=" 2[G(e(-,0)=(G(6(-, 0))ag] [G(&(-, 0)—(G(6(-,0)00] Jag » >0,

with a similar formula for ¢ < 0. For ¢ € R let u(¢, #(-)) be the solution to the
elliptic PDE

(6.38) [d*d/2 +icJu(C, 0() = [G(¢() = (G(e())agl, ¢:Q—=R.
We conclude from (6.37), (6.38) that
(6:39) h(¢) = ([G(6(-,0)) = (G((- 0)g] [u(C, &(-0)) + u(=C, 6(-,0))] )ag -

If we apply the gradient operator d to (6.38) we obtain the equation
(6.40)
[d*d + 2i¢ + V'V (VO()V +m?] du(- ¢, 6()) = 20G(~6()) . ¢:Q = R.

Hence (6.39), (6.40) and the HS formula (6.7) imply that
(6.41) h(¢) = 4 x real part of
(dG(-, ¢ 0)) [d*d+ V*V"(VO()V +m?] " [d*d + 2i¢ + V*V"(VH()V +m?] " dG(-,¢(-,0)) ag -
Just as (6.6) follows from (6.7), we see from (6.41) that
A 4

(6.42) 0 < h(¢) < —{1dG(6(-,0)[*)aq -

It follows from (6.36), (6.42) that
4
mi

oo

NG 6. 0) [Py / ()2 dt.

— 00

(6‘43) varqg [F((b(v ))] <
Since from (6.34) the inequality (6.43) can be rewritten as

(6.44) varg, [F(4(-,-))] < %<”dF('7';¢("'))H2>QQ’

we have obtained a Poincaré inequality for functions F(¢(-,-)) of time dependent
fields which are of the form (6.33). We generalize this as follows:
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Lemma 6.1. Let F(¢(-,-)) be a bounded function of continuous in time fields ¢ :
Q x R — R which is C' with respect to the L?(Q x R) metric, and assume that
the field derivative function dF(-,-, ¢(-,-)) with range L?(Q x R) is also bounded.
Then the inequality (6.44) holds.

Proof. Let T' > 0 be large and consider F'(mo r¢(-,-)) as a function of solutions
¢(x,t), © € Q,t > 0, to the stochastic equation (6.3). By the chain rule we have
that

(6.45) DvaF(z,t;707¢(,7)) =

oo

Z ds dF(y7 53 TO,T¢('a '))DMa1¢(ma tvyaT + S) ) S Qat > 0.
yeQ t—T

It follows then from (6.17) that
(6 46) DMalF(.’L' t'To T¢( )) =

> / ds dF(y, s 7o.06( ) € T+ D2G a1, T+5,6(-)), 7€ Qyt > 0.
ye 't
Hence we have that

(647) 3 / dt | Dy F (.t 70 760, )

z€Q
2 Z/ dt ds ds' e_m2(T+S_t)/26_m2(T+S/_t)/Qh(x,s)h(x,s’) ,
we0 JO<t<T+s<T+s’
where
(648) h(l‘, S) = Z G(Z‘, Y, ta T + S, ¢(7 )) dF(y7 S TO,T¢(') )) .
yeQ
It follows from (6.29) that
(6.49) Z |h(z,s)]* < Z |dF(y, s;70109(-,)? ,
zeQ yeQ
and so we conclude from (6.47) that
(6.50)
o
> [t DwaF e mrot DE < X [ ds s ot )R
2eQ”0 veQ”
Hence (6.9), (6.10) imply that
4
(6.51) varog mal[F(r0,06(, )] < —(1dF (5 700¢(5 )M og Mar -

The result follows now by observing that the limit of the LHS of (6.51) as T — oo
is equal to the LHS of (6.44). Similarly the RHS of (6.51) converges to the RHS of
(6.44). O

We shall show how the Poincaré inequality (6.44) can be used to improve the
most elementary of the inequalities contained in §2. Thus let us consider an equation
which differs from (2.43) only in that the projection operator P has been omitted,
(6.52)

n®(&,m,w) +0P(&, n,w) + Ofa(w)de (&, n,w) = —0fa(w), n>0, {ERY, weQ.
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For any v € C? we multiply the row vector (6.52) on the right by the column vector
v and by the function ®(£, 7, w)v on the left. Taking the expectation we see that

Alv
(653) [Poca(en. ol < loe(e.n o] < 2
where || - || denotes the norm in H(f). Let g : Z¢ x R — C? ® C? be in LP(Z¢ x
R, C? ® C?) with norm given by (3.9). If p = 1 then (6.53) implies that

o Alv
650 1PY [ dgtenoen el < Sl
zeZd " T~
The Poincaré inequality (6.44) enables us to improve (6.54) to allow g € LP(Z? x
R, C?® C?) for some p > 1.

Proposition 6.3. Suppose a(-) in (6.52) is as in the statement of Theorem 1.2.
Then for ¢ € R, Rn > 0, there exists po(A/)\) depending only on d and A/\
and satisfying 1 < po(A/X) < 2, such that for g € LP(Z¢ x R,C? @ C?%) with
1<p<po(A/N) and v € C4,

i CA1|’U|
655 IPY [ dtawno(en ol < —ahlrlol,

z€Ze " T

where Ay is the constant in Theorem 1.2 and C depends only on d and A/\.

Proof. We shall first assume that g(-,-) is continuous in time and has compact
support in Z¢ x R. For a cube @Q such that Q x R contains the support of g(-,-), let
D5 (&, n,-) be the solution to (6.52) with a(¢) = a(4(0,0)), ¢ € Qg, so the random
environment for (6.52) is (Qq, Fg, Pg). The inequality (6.44) implies that

6.36) [P / dt (e, 0)0eD(E,n, oy 0|® <

r€Za”

4 © b 0o .
O e e gzzd/mdt 9@ 0@, a0

zEQ Y T

where we are using the notation 9/9¢(z, s)F(¢(-,-)) to denote the value of the field
derivative dF(z, s; ¢(+,-)) defined by (6.32) of a function F(¢(-,-)) at (z, ).

Translation operators 7,:, = € Z4 t € R, act on functions Fg : Qg — C
by Te1FQ(o(-,-)) = Fo(1ut¢(-,-)). We shall also need to use translation opera-
tors T, ¢, * € Z%t € R, which act on functions Gg : @ x R x Qg — C by
T::Gqo(z,80(-,-) = Go(z+x,s +t;¢(-,+)), so Ty + acts on the first two variables
of Gg(+,+;¢(+,)). The operators 7,,, * € Z%t € R, act on the third variable of
Go(-, - 9(-,+)), and it is clear that they commute with the T, ;, z € Z%t € R. Let
Fg : Qg — C be a function which is C! with respect to the L?(Q x R) metric as
in Lemma 6.1. One easily sees from (6.31), (6.32) that

(6.57) At iFQ] = Tow _4ToidFg, x€Z% tcR,

whence it follows from (2.1) that

(6.58) .

d[0,eTe,—1Fg) = [e7 " T g, 0Te; 0~ 1T 470, —+dFg, 1<j<d z€Z% teR.

Hence if we define a function Gg : @ x R x Qg — C by
(659) GQ(yaT; ¢(a )) = eiiy.ngQ(*ya T Ty,—r¢('> ))7 Y€ Qa e R,
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then (6.58) implies that
(6.60)
d[0 eTe,—t FOl(2, —s;0(+,-)) = el@=2)¢ V;iGo(z—z,t—s,72 _s0(-,)), 1<j<d, z,zeZ% t,seR.

On taking Fg(¢(-,-)) = ®o(&,n, ¢(-,-))v and defining Gg by (6.59), we conclude
from (6.60) that (6.56) is the same as

©661) [Py / dt g(a, 0000 (6,1, ool <

z€Zd”

4 oo oo .

LY@l T [ dr g VG - it - s, o)
zeQ” T zezd” T

We can find an equation for Gg(-,-; ¢(-,-)) by applying the operator 9/0¢(-,-)
to (6.52). To see this let h € L?(Q x R) be C! as a function of time and of compact
support. Then (6.52) holds for w = ¢(+,-) and w = ¢(-,-) + €h(:,-). On subtracting
the equations (6.52) for the different values of w, dividing by ¢ and letting ¢ — 0,
we have from (6.31), (6.32) that the first term on the LHS of (6.52) converges to
Nd®(&,n, ¢(-,-))v, h] = n[dFgo(H(-,-)), h]. To find a similar expression for the limit
as € — 0 of the second term on the LHS of (6.52), we observe that for § > 0,

(6.62) lim FQ(000:) +eh()]) = Fo(road()) _

e—0 g
[dFQ(10,69(,+)): To,sh] = [To,—sdFq(70,60(-,-)), h] .

Hence, assuming one can interchange the limits ¢ — 0 and § — 0, we see from
(6.62) that the second term on the LHS of the difference of the two equations
(6.52) converges to

(6.63)  lim TO»—édFQ(To,W(-;S-))—dFQ(¢('7'))

h| = [DodFo(6( ), 1]

To find the limit as &€ — 0 of the term on the RHS of (6.52) we use the fact that
a(o(+,+)) = a(¢(0,0)). Thus we obtain the expression

(6.64)
ofa(e(-,-))v — dfa(o(-,- h(-,))v
lim = o) f;‘” JERCDY ipe 50, )DAG(0,0))0}, 1]

where the operators De = (D1, .., Dg¢) and D; = (Di§7 - D;yé) are given by the
formulae

(6.65) Dj¢=[e 4T ¢, 07e,0— 1], Dj¢=[e"Te, 07—, 0—1], 1<j<d.
The function 6 : Q@ x R — R in (6.64) is the delta function, 6(0,¢) = §(¢), d(z,t) =

0, z # 0, where §(-) is the Dirac delta function. The limit as ¢ — 0 of the third
term on the LHS of (6.52) can be expressed by a similar formula. Thus we have

(6.66)
lim 8ga(¢(’ ) + Eh(7 ))85‘1)(6 m, (b(v ) + €h(7 ))U - aga<¢(’ ))85(I><§7 7, ¢(> ))U
e—0 c
= [Dza(¢(0,0)) D¢ dFq(@(-,)) + D{d(-, ) Da(6(0,0))0eFo(6(-, )}, h] -
It follows from (6.52) and (6.63)-(6.66) that dFg(¢(-,-)) satisfies the equation

(6.67) ndFq(4(:,-)) + DodFq(¢(;-)) + Dga((0,0)) De dFg(¢(:,-))
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= —Dglo(, ) Da(¢(0,0)){v + 0 Fo(o(:, )} -
Evidently for any (y, —r) € Z? x R we can replace ¢(-,-) in (6.67) by 7, —,¢(-, ).
If we now evaluate (6.67) with 7, _,¢(-,-) substituted for ¢(-,-) and with the first

variable of dFg(-,;7y,—r®(-,-)) equal to —y and the second variable equal to r, we
obtain an equation for the function Gg(-,-; ¢(-,-)) of (6.59),

(6:68) nGaly.rso( )~ 2CLETD 4 gratay, )V, Galy,ri6(,)

= =V, le7¢5(~y,r)Da(¢(y, —){v + dcFo(ry,—re(-,)}] -

We define an operator 7;, on functions g : Z% x R x Q — C? as follows: Let
u(y,r; ¢(+,+)) be the solution to the equation

(6.69)
du Yy, 7 ¢ 2R * *
muly,rio(- ) - LT gy 6(,)) = AVl ri0(0)
Then T,g(y,7; 6(-,)) = Vyuly,r;9(-,-), y € Z%,r € R. It is easy to see that T},
is a bounded operator on L?(Z? x R x 2, C?) with norm ||T,|| satisfying ||T,,|| < 1.
We can obtain a formula for T;, which is similar to (2.47). Thus we have that

(6.70) Tyglyrio ) = A [ e dt 30 (VT Galet) gly—a,r+ti(0)
0 zE€EZ?
with Ga(z,t) = G(z,At), z € Z4, ¢t > 0, and G(-, -) the Green’s function (2.46). We
can similarly define operators T, ¢ on periodic functions gg : @ xRxQ — C? by ex-
tending g periodically to the function gg : Z% x R x Q — C¢ and setting T, 09q =
Th9q. If we now take gg to be given by the RHS of (6.68), so Ago(y,r;¢(-,-)) =
efzy{a(_y, T)Da(¢(y7 —T)){U+85FQ (Ty7—7”¢('7 ))}7 then T"?ngQ (yv T d)(a )) = eth (y7 T ¢(a ))
where
(6.71)

ho(y. () = Y e W LTV Gy + nL, —r)} Da((0,0){v+3Fo((- )} .
nezd
ifye@, r<0, holy,ro() = 0ifye@, r>0,
where L is the length of the side of Q.
We can rewrite (6.68) using the function hq of (6.71). Thus let ug(y,7;6(-,-)), vy €
Q,r € R, be the solution to the periodic equation (6.69) with g = gg. Then (6.68),
(6.69) imply that vg = Gg + ug is the solution to the equation

672) mg(y,r:o(, ) ~ 22T L Grato(y, 1)Vl of- )

= _eM]AvZ[b(¢(y7 _T))hQ(yv L (b(’ ))] )
where a(-) = A[l; — b(-)]. Tt follows from (6.53) that dzFgo(é(-,-)) is in H(Q)
and [|0¢Fo(o(-,))|| < AJv|/A. Since [VV*Ga(z,t)], € Z4,t > 0, is bounded by
1/(At + 1) times the RHS of (2.12), it follows from (6.71) that hq is in L?(Q x
R x Q,C%) and ||hg|| < CV/AA|v|/A, where C is a constant depending only on d,
and A; is the constant in the statement of Theorem 1.2. Since from (6.72) we see
that ||Vug| < Allhgl|/), we conclude that | VGg| < CA1|v|(A/X)?/V/A. Tt follows

now from (6.61) and Young’s inequality that (6.55) holds for p = 1 provided we
can show that the LHS of (6.61) converges as Q — Z? to the LHS of (6.55). To
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see this note that we are assuming that the function g(-,-) in (6.61) has compact
support and that 7 > 0. Hence we can use the perturbation expansion obtained
from (2.13) and Proposition 6.1 to prove the convergence.

We can also show that the RHS of (6.61) converges as Q — Z¢ by generating the
function VG from a perturbation expansion. Thus let B : Z¢ x R x Q — C¢® C?
be defined by B(y,7;¢(-,-)) = b(o(y, —r)), y € Z%,r € R. It follows from (6.69),
(6.72) that Vug is the solution to the equation

(6.73) Vog(-,9(+-) = TpB(, 500, ){Vua(, 5 6(-))—ehq(- - o(- )} -

Since g € L'(Z? x R) it follows by the uniform in Q estimates of the previous
paragraph that it is sufficient to prove convergence as Q — Z? for any finite number
of terms in the Neumann series expansion of (6.73). The convergence for a finite
number of terms follows from Proposition 6.1 using the fact that the function g(-,-)
in (6.61) has compact support and that ®n > 0. We have shown now that

674 |PY / dt g(x, )0eB(E, 1, 7 Y0P <

r€Zd Y
4 o] o0 .
— > / ds || > / dt g(z, 1)e' D E VG (x — 2.t — 5,6(-, )| .
m 2€Zd "’ T xeZd "V —®

where VG = Vv — h with

(6.75)  h(y,r; () = {VV*Galy, —r)}" Da((0,0){v + e Fq(4(-,-))} ,
if ycZ4 r<0, h(y,roé(,-) = 0if yeZ, r>0,

and Vv is the solution to the equation
(676) VU('? ) ¢(7 )) = T"? [B(? ) ¢(a )){vv(a ) ¢(7 )) - erﬂh(_, ) ¢(a ))}] .

We can now easily extend the previous argument by using the continuous time
version of the Calderon-Zygmund theorem, Corollary 5.1, to prove (6.55) for a
range of p > 1. Define for ¢ > 1 the Banach space L(Z% x R x €, C%) of functions
g:Z%x R x Q — C? with norm ||g|, given by

(6.77) ol = >/ "t gy, o N7

yeZa "

where ||g(y,r; (-, )| is the norm of g(y,r; ¢(-,-)) € H(R2). By following the ar-
gument of Lemma 5.2, we see that T, is bounded on L(Z? x R x ,C?) for
g > 1 with norm ||T,||; < 1+ 6(q), where limg_,26(¢) = 0. Noting that [|h|, <
Cy A ~1/9A |v| /) for a constant C; depending only on d, ¢, we conclude from (6.76)
and the Calderon-Zygmund theorem that there exists go(A/A) < 2 depending only
on d,A/), such that VG is in LY(Z? x R x Q,C%) for qo(A/)\) < ¢ < 2, and
VG|, < CA=Y A, |v| where the constant C' depends only on d, A/). The inequal-
ity (6.55) with p = 2¢/(3¢ — 2) follows from (6.74) and Young’s inequality. O

In order to establish Hypothesis 4.2 for the massive field theory environment
(Q, F, P) we shall need a refinement of the Poincaré inequality (6.44). We can see
what this refinement should be by considering again functions of the form (6.33), for
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which (6.36) and (6.41) hold. It follows from (6.41) that i (¢) satisfies the inequality

4
1 4G C 0 P)ag -

Substituting the RHS of (6.78) into (6.36) we obtain the inequality

(6.78) 0 <hC) <

(6.79)
g (PO < oz [ [ a0l e ds (4G o 0],

ARG 560, ) g

Observe now that the first integral on the RHS of (6.79) can be written as a con-

- i/m (B dt ([dG (-, 0)P)a, =

m* J_

volution [g, f*g] where f(t) = 711_26_’”2‘”/27 t € R. Hence it follows from Young’s
inequality that for 1 < p < 2,

650)  varag [P0 )] € g o3G0 0)ag

where ||g||, denotes the L” norm of g(-) and C' is a universal constant. The Poincaré
inequality (6.44) only implies (6.80) for p = 2.

We shall also need a continuous time version of Corollary 5.1, as we already did
in the proof of Proposition 6.3. Thus let T¢ , act on functions g : Z¢ x R — C? as

(6.81) Tengly,r) = A/ e dt Z {VV*Glz,t)} e Sg(y —a,r+1) .
0

r€Z4

Comparing the operator T¢ , of (6.81) to the operator T¢, of (5.2), we see that
one can easily extend the argument of §4 to obtain a continuous time version of
Corollary 5.1:

Corollary 6.1. For (£,n) satisfying the assumptions of Lemma 5.2 the opera-
tor Te, of (6.81) is bounded on HP(Z? x R) for 3/2 < p < 3, and ||T¢,ll, <
[1+ 6(p)] (1 + Ca|SE[?/[Rn/A]), where the function &(-) depends only on d and
lim, ,2 d(p) = 0.

Proof of Hypothesis 4.2. We shall first prove Hypothesis 3.2. We assume g : Z¢ x
R — C?® C? has compact support and for k = 1,2, ..., denote by ax(g,&,n) the
random d X d matrix

(6.82) Rg&m) = > / dt g(x,t)7s 1 Pb(-) [PTe.,b()]"~

VA

Evidently Hypothesis 3.2 will follow if we can show there is a constant C' such that

(6.83) > llan(g, &mvll < Cligllplvl  for 1< p < po(A/N), ve CL

We establish (6.83) by obtaining a bound |lax(g,&,n)v|| < Ckllgllplv| where Cy
decays exponentially in k£ as k — oo.
In the case k = 1 we have from the Poincaré inequality (6.44) that

689 (g &mel® < 5 3 / dt ||g(x,£)DB((0,0))u]?

z€Z4
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2A, 2
< | apllellalel)

We also have that a1(g,&,m) = G(A, B)Pb(:), where § is the Fourier transform
(2.48) of g and A, B are the self-adjoint operators (2.50), (2.51). Hence we have
that ||a1(g,&,n)v]l < |lgllilv]. We conclude therefore from (6.84) and the Riesz-
Thorin interpolation theorem [31] there is a constant Cy such that ||ai(g, &, n)v]| <
Cillgllplv| for 1 <p < 2.

When k > 1 we write

(685)  arlg.&mo = P / "t g, )7, b()OF(( )

r€Z4”

where the functions Fy(¢(-,-)) are defined inductively. For & € R? the Fy(¢(-,"))
satisfy the recurrence equations

(6.86) [+ O] F2(o(-,-)) + MDD Fa(¢(-, ) = API[b(¢(0,0))0] ,

[0+ Oy (0(, ) + ADZOcFi(9(-, ) = APOE[B(6(0,0))0Fr—1(o(-,-))] if k > 2.
The Fj(4(-,-)) for £ € C? are defined by analytic continuation from the values

of Fi(é(-,-)) when & € RY. Similarly to (6.59) we define for k& > 2 functions
Gk:ZdXRXQ%be

(687) Gk(ya r ¢(7 )) = eiiy.dek(fyvr;Ty,—rQS('a ))a ye Zda r€R.
Then from (6.86) we see that the Gy (y,r; ¢(-,)) satisfy the equations
(6.88)

nGa(y,r: 6, )~ 2200, )

g +AV,V,Ga(y, 5 9(-, 7)) = APV;[e_iy‘Eé(—y,T)Df)(gb(y, —r)],

nGu(wrio(, ) - ST | vGeg Gu(yrio, ) =

APV [e™6(=y, ) Db(9(y, 1)) 0 Fi1 (7y,—rd (-, ))+D((y, =1))Vy Gror (y, 75 6, ))] it k> 2.

Instead of estimating the norm of the function ax(g,&,n)v of (6.85) directly by
using the Poincaré inequality as in (6.61), we begin with the Clark-Okone formula
(6.9). Let ¢(-,t), t > 0, be the solution of (6.3) with initial condition ¢(-,0) = 0.
We extend the function ¢(-,t) to t < 0 by setting ¢(-,t) = 0 for ¢t < 0. It is then
easy to see that

(6.5 laxg. € mell* = tim varag aial Hmro(-)) ]
where the function H(¢(:,-)) is given by the formula

690 HO(D) = X [ ds o0 )b(0( ~9)0Filr (.0

yeZL "
We have now from (6.45) that for z € @, ¢t > 0, the Malliavin derivative Dy H (z, ¢ 70 7¢(+, ) =
JLT(‘Ta t; (rb(? )) + UQ,T(I7 t; ¢(a ))a where
(691) Ul,T(xv t; ¢(a )) =

T—t ~
Z / ds g(y, S)e_m (T_t_s)/QG($7 y,t,T—s, ¢(, ))Db(¢(y7 T_S))aka(T%T*s(b(" )5
yezd ¥ X
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with G(-, -, -, -, ¢(-,-)) being the Green’s function (6.15). The function oo r(x,t; ¢(-,-))
is given by the formula
(6.92)
o2,1(s 5 ¢ = > / ds g(y, $)b(¢(y, T — ) Dyiat[0c Fi(ry 056 (-,-))] -
y€eZL”

It follows from (6.9) that
1/2

(6.93)  [lar(g,&mo]| < lim [Z/ dt [ o17(z,t6(4) | Fi dag sl

zEQ
1/2

+ lim Z/ dt‘ U2T~'Et¢( ))‘]:t >QQ,Ma1|2

T—o0
z€Q

To estimate the first term on the RHS of (6.93) we argue as in Lemma 6.1. Thus
from (6.91) we have that

(6.94) z/ dt oy (., t:6(- ) |

zeQ
2 Z / dt ds ds' eme(Tftfs)/2efm2(Tftfs')/Qh(x, s) - h(z,s),
z€Q 0<t<T —s<T—s’

where
(6.95)

h(xv S) = Z G(l‘, Y, t: T— S, d)(a ))g(yv S)Db(¢(y7 T — S))aEFk(Ty,T—s¢('v )) .

yeQ
It follows from (6.29) that
(6.96) > |h(@s)> < D 19y, )Db((y, T — $)e Fio(ry (-, )|
2€Q yeQ

and so we conclude from (6.94) that
(6.97)

> / dtlorr(etiol D P < oz [ [ dsds ek ol ) K morl ).

z€Q

The function k(s, ¢(-,-)) is given by the formula
(6.98)

1/2
k(s, ¢(-,+)) = {Z Ig(y,S)DB(cb(y,S))ang(Ty,—saﬁ(u'))IQ} =g, s)ll2 k1 (s, o(-,-)),
yeQ

where ||g(-, s)||2 denotes the L? norm of the d x d matrix valued function g(y, s), y €
Z<. Observe next that (6.97), (6.98) and the Schwarz inequality imply that
(6.99)

zEQ

1 oo o0 ,
3 / dtor (e, 60, ) [P < — / / ds ds' e~ 1512\, 9)||allg(-, )|k (5, 70 76, ))°
m= Ji—7 Ji—T
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Hence on using the fact that for any s € R, one has
: 2 CAR 2
(6'100) Th—rgo< k1 (8, TO,T¢('7 )) >QQ,NIa1 < A2 < |a€Fk¢(7 ))' >QQ )

where the constant C' depends only on d, we conclude as in the argument showing
(6.80) that for 1 < p < 2 there is a constant C' depending only on d such that

(6.101)  lim Z/OOO dt [{ orr(@,t:6()) | Fi Jaguul® <

T—o0

z€Q

OA? > 2 )
A2m2(-2/p) [/ lg(-5 8)l5 ds} (10eFko(-s )] ag -

From (6.86) we see that for ¢ € R?
(6.102) (10eF(@( DI Jag < (1= A/A)P Vo,

and so (6.101) implies that for ¢ € R? the first term on the RHS of (6.93) is bounded
as
(6.103)

_ o0 CA _ ?
Jim 32 [t (et ) | F gl < {Mnmm (1 A/A)* 1v|} ,

T€EQ

where the p norm of g(-,-) is given by (3.9).
We can estimate the second term on the RHS of (6.93) by following the argument
of Proposition 6.3. Thus we have that

T—o00

(6.104) Jim 3 / 0t |( o2z (@, 660, 7) | Fo gl <
z€Q 0

2

Qg

2

< Z / dt g(x,t) B(d)(x_zvs_t))ei(wizygvc;k(x_Zat_s;d)("‘)) > 7
zeZd” T Q0
where we have used the invariance of the operators 7. s, z € Z4 s € R, on
(Qq, Fo, Pg). As in Proposition 6.3 we are justified in taking the limit Q — Z¢ in
(6.104), and hence (6.69), (6.70), (6.88) imply that VGa(:,-; ¢(-,)) is given by the
formula

(6.105) VGa(y,m:¢(-,-)) = Ae"VV*Gy(y, —)P[Db($(0,0))v] ,
ifyeZd r<0, VGi(y,r;é(--) = 0if y € Z% r>0.

We similarly have that for & > 2
(6.106)

VGk(ya ry ¢(» )) = enrhk(yv T3 ¢(a )) + PTW[B(a ) ¢(7 '))VGk—l('a ) ¢(7 ))] P
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where the function B(-,-; ¢(+,+)) is as in (6.73) and

(6.107)  hy(y,r;6(-.-)) = AVV*Galy,—r)P[Db(¢(0,0))de Fr—1(o(-,-))] ,
ifyez r<o, hi(y,r;0(-,7)) = 0ify € Ze r>0.

Defining the function A4y, : Z4xRxQ — C by Ax(y,7;9(-,-)) = eV VGL(y, 75 6(-,)),
we see from (6.106) that for & > 2 the function Ag(-,-; ¢(+,)) satisfies the equation

(6'108) Ak(vv¢(>)) = Dk('a';¢('7'))+PTE,U[B('a'§¢('7'))Akfl('f;(b("'))} y

where Dy (y,7;¢(-,-)) = eV hy (y,7;¢(-,-)) and from (6.70) it follows that the
operator T¢ , is given by (6.81).

Just as in Proposition 6.3 we see that if || - ||, denotes the ¢ norm (6.77) then for
£eRYand 1< ¢<2
(6.109)

[ally < Cohalol/AYVT . [Dully € Cyll = MAY=2AsJul/AY for k > 2,

where the constant C; depends only on d,q and diverges as ¢ — 1. It follows
then from (6.108), (6.109) that for ¢ € R? one has the inequality ||A|l2 < Ck(1 —
AN/ A)F=2A1|v|/AY? for some constant C' depending only on d. We can extend this
inequality by using Corollary 6.1. Thus for (£, ) satisfying the conditions of Lemma
5.2 for sufficiently small constant C; depending only on d, there exists go(A/\) < 2
such that for some constant C' depending only on d, A/X one has the inequality

(6.110) [ Axlly, < Ch-A/A) (14 CalSE/[Rn/A) "> Asfol /A for k > 2,

provided go(A/A) < ¢ < 2. We can bound now the RHS of (6.104) in terms of ||g||,
with p = 2¢/(3q — 2) by using (6.110) and Young’s inequality. If we combine this
with the inequality (6.103) then we conclude from (6.93) that

CA _
(6.111) flan(g & mpvl < 5 llgCoo)lly (1= A/A) ol
CkAy
* EAe i 19

Evidently the inequality (6.111) implies that (6.83) holds provided (£,7n) satisfy
the conditions of Lemma 5.2 for sufficiently small C; depending only on d, A/\.
Restricting £ to be in R™ then (3.10) follows, and hence we have proven that
Hypothesis 3.2 holds in the massive field theory case.

To complete the proof of Hypothesis 4.2 we first observe that the above argument
immediately applies to the situation where the functions gs, .., g are delta functions
g;j(z,t) =6(x—xj,t—t;), j =2,.., k. The inequality (4.72) then follows for general
g2, gx € L' (Z? x R, C? ® C9) from the triangle inequality. O

(5l (1= A/A)2 (14 Col €/ [/ A) " o

APPENDIX A. OPTIMAL RATES OF CONVERGENCE

Here we shall show that if A/A is sufficiently close to 1 then one can take o =1
in Theorem 1.2. First we prove that if \/A is sufficiently close to 1 then some
derivatives of the function ¢(&,n) are uniformly bounded as n — 0.
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Lemma A.1. Assume (Q, F, P) and a(-) are as in the statement of Theorem 1.2.
Then there exists 6 > 0 depending only on d such that if 1 — A/A < § the d x d
matrixz function q(&,n) of (2.3) satisfies the inequality
(A1)

10g(&,m)/0nll + IVeq(&, M| + [|[VeVia(€ m)|| < CA, €€R, 0<Ry <A,

for some constant C. If (Q, F, P) is the i.i.d. environment then C depends only on
d,o,A. If (Q,F, P) is the massive field theory environment then C additionally de-
pends on m and || Da(-)||s. Furthermore each of the functions on the LHS of (A.1)

are Holder continuous. Thus if g(§,m) is either of the functions 9q(§,n)/0n, VeViq(§,m)
then there exists a > 0 depending only on d,d such that

(A.2) lg(¢',n") = g(&m < CALIE" — €| + (' —m)/A[*/? ]

for all ¢,6 € R4, 0 < Ry, Ry < A. The constant C in (A.2) has the same
dependency as the constant C in (A.1).

Proof. We just consider the case of the i.i.d. environment since the proof for the field
theory environment is similar. It is easy to see from the argument of Proposition
4.1 that ||0g(&,n)/0n|| < C. To see this note that in the representation (4.12) for
dq(&,m)/0n the function h of (4.16) is in LP(Z9*1) for p > (d +2)/(d + 1). Since
we can choose p < 2 the uniform boundedness of 9q(&,n)/0n, provided A\/A is
sufficiently close to 1, follows from the generalized Jones’ theorem [18] -see Corollary
5.1.

We can bound the derivatives of ¢(&,n) with respect to & similarly. To bound
Veq(€,m) we can argue as in Lemma 3.1. We see from (3.6) that the function g;(x,t)
corresponding to dq(&,n)/0¢; is given by the formula

(A.3) gi(z,t) = A[VV*Gp(z,t — 1)) e M@y,

which is in LP(Z4Y) for p > (d + 2)/(d + 1). Hence 9q(&,7)/0¢; is uniformly
bounded, provided A\/A is sufficiently close to 1, by the argument of the previous
paragraph.

To bound nggq(ﬁ,n) we note that we need to differentiate twice the series
on the RHS of (2.14). The differentiated series can be written as a sum of two
parts. The first part includes all terms where each gradient V¢ and VZ act on
different operators T¢ , on the RHS of (2.14), whereas the second part includes all
terms where both gradients act on the same operator T¢,. This in turn implies
that a second derivative of viq(&,n)ve with vy, vs € C? is a sum ¥; + $o with X
corresponding to the first part of the differentiated series (2.14). We therefore have
as in (4.13) that

82\ .
(A.4) (8@8&) viq(§,m)va = X1+ s, where

100
Ty = A [ T s¢,30 9r(RE, S, Jvr, Thsemy he(RE, S, -)va

r=1
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for any d x d matrix valued functions g, (z,t), h,(z,t), v € Z4,t € Z, r = 1,..,100
satisfying
(A.5)
100 , .
N wr 0? Ae(iS€ — Qe(—iS€ — O)*
607 in60) = (5050 ) s
—t 9¢0Ck ) [0 — 1 4 Ae(—iS§ — )*e(iSE — ()]

Since ¥; can be bounded by arguing as in the previous paragraph, it will be suffi-
cient to show that the g, h,, r =1,..,100 in (A.5) can be chosen so that they are
in LP(Z*1) for p > (d +2)/(d + 1). Observe that if one of the derivatives on the
RHS of (A.5) is applied to the denominator and the other to the numerator we are
in a situation like (4.13), whence the corresponding functions g,., h,. on the LHS of
(A.5) can be chosen so that they are in LP(Z4t1) for p > (d + 2)/(d + 1). If both
derivatives on the RHS of (A.5) are applied to the denominator then the typical
situation we are in is to find a factorization

Aer, (=C)ery (—Qery (—Q)er ()
[e®1=i0 — 1 4 Ae(—C)*e(—C)]°

such that g, h are both in LP(Z9*1) for p > (d +2)/(d + 1). Taking §(¢,6) to be
given by the formula

(A.6) 9(C.0)"h(C.0) =

)

Aer (Qery (Qery (€)
[eRn—i0 — 1 4 Ae(—C)*e(_C)]2

it follows from (2.11) that g(z,t), h(z,t) are the functions

(A7) 9(¢,0) =

)

(A.8) g(z,t) = tV; V; V. G(x,t—2), h(z,t) = AV, G(z,t—-1).

Now (2.12) implies that h is in LP(Z*1) for p > (d +2)/(d + 1), and by similar
argument we see that g is also.
We have proved (A.1). The proof of (A.2) is similar. O

Proposition A.1. Let ¢ be as in the statement of Lemma A.1. Then the inequality
(1.12) of Theorem 1.2 holds with o = 1 if 1 —X/A < §. If ¢(0,0) is self-adjoint and
Veq(€,m) =0 at (§,m) =0 then (1.12) holds with o = 2.

Proof. We first consider the discrete time case of (1.2). Similarly to (2.35) we have
from (2.34) and Lemma 2.9, Lemma 2.10 of [8] that

/&> A 7 it 2
(A.9) /[- ]d/ 2[fo(§) = f(§)e e mtnitre)

Crjer €571 — 1+ e(e€) q(e€, en)e (<€)
for a constant C' depending only on the function f(-) and d, A, A. We write ¢(£,n) =
G(&,7) where 7 = 7 — 1 and use the Taylor inequality

(A.10)
~ S
e - a(e.0) - 12250 < I

¢ < Ce?,

d[Sm]

1 [aq(g,sﬁ) B 5‘(1(5’0)” .

on 1+ a g<s<1||s7]® on on
Since
0q(&,m)  0q(&,0) dq(&,m) | [0q(&m)  0q(&,0)
WD o e~ €U, % o o ]
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it follows from Lemma A1l and (A.10), (A.11) that

(A.12)
(&) —a(6.0) — (- )PED] < cper— i, ceRY 0 <Ry < A,

where o > 0 is as in (A.2). Hence we have that
(A.13) e — 1 + e(e€)*q(e€, e%n)e(ef) = |e(5§)|2|652" — 1|*"*Error(e¢, %)

+ {1+ e(e€)"[9q(=€, 0)/Omle(s€)} (77 — 1) + e(e€)"g(e€, 0)e(<)

where by (A.12) the function Error(f n) is uniformly bounded for ¢ € R4, 0 <
Rn < A. It follows from Corollary 2.2, Lemma Al and (A.13) that there are
positive constants v, Cy, Cy such that

(A.14)

w/e e2en(t+e?)
7/ 2 * 2 d[%n]_
21 J_qyez €77 — 1+ e(e)*q(e€, e?n)e(eS)

1 m/e en(t+e”) JS
ol B e Y e A
T gflestn — 1t
<C LT
= e (Il +AJg)?
We can restate (A.14) similarly to (2.38) as

dlSn] < Calele)? it el¢l < v

(A.15)

1 /e g2en(t+e”)
L / : S d[S)—
27 ) jee € — 1+ e(2€) (€, 2n)elcE)

1 [1 B e(€)*q(e€, 0)e(c€) :|t/52
1 + e(e€)*[0q(e€, 0)/Onle(e€) 1+ e(e€)*[0q(€,0)/Onle(e€)

Estimating integrals with respect to & for |¢| > v as in (2.35) we conclude from
(A.15) that

(A16)  |( ue(x/e,t/e?, ) ) — Unom(x,t)| < Cue+

/£< ¢ |£(©)
1 {1 B e(€)*q(e€, 0)e(e€) :|t/52
1+ e(£€)*[0q(£€,0) /Onle(e€) 1+ e(e€)*[0q(e€,0) /Onle(€)

for some constant Cy. It follows from Lemma Al upon using the interpolation
identity

< Oafelgh)?®.

exp[—{€"¢(0,0)&}¢]—

)

1
(A.17) el —e® =(b- a)/ ertr=ra q,
0

that there is a constant Cs such that the integral on the RHS of (A.16) is bounded
by Cse in general, and by Cse? if ¢(0,0) is self-adjoint and V¢q(0,0) = 0. We have
therefore proved the proposition in the discrete time case.

The argument for the continuous time case is similar. Instead of Lemma 2.9,
Lemma 2.10 of [8] we use Lemma 5.4, Lemma 5.5 of [8]. The main point to note is
that integrals with respect to 31 over regions |Sn| > 7/e2 are O(g?). O
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Remark 8. The real matriz q(0,0) is self-adjoint if the environment is time-
independent i.e. To; = identity for allt € Z ort € R. In general it is not
self-adjoint -see Lemma 2.6 of [8].

There does not appear to be any general criteria which would imply that ¢(0,0)
is self-adjoint and V¢q(0,0) = 0 for the PDE (1.2), (1.4) with V defined by the
forward difference (1.5). However if we define V by the central difference in which

(A18)  Vidlz) = %[qb(a:—&—ei)—qzﬁ(x—ei)}, Vie Vi i=1,..d

then there are such criteria. First we note that for the PDE (1.2), 1.4) with V
defined by (A.18) the identities (2.2), (2.3), (2.5) hold if instead of (2.1) we set

(A.19) Ojet(w) = % [e7707 %4 (Te,,0 W) — €74 (g, 0 W)]

(A.20) ej(€) = % [emiert —eleit] - j=1,.,d

It follows from (A.20) that there is a constant C' depending only on d such that
(A.21) le™%e(6)"q(0, 0)e(=€) — £°¢(0,0)¢]| < Ce*l¢l*, € € [-m,a]" .

Hence if V is defined by the central difference (A.18) the argument of Proposition
Al and (A.21) imply that we can take a = 2 in (1.12) provided V¢q(0,0) = 0 and
A/A is sufficiently close to 1.

We show that V¢q(0,0) = 0 if the environment (2, F, P) is reflection invariant.
To define reflection invariance of € first denote by R; : Z¢% — Z<, i = 1,..,d, the
reflections on Z? which are the linear maps determined by the relations Rie; =
e; —26(i —j)e;, j =1,..,d. We say that (Q, F, P) is reflection invariant if there
exist mappings R; : Q — Q, i = 1,..,d, which are measure preserving involutions
(Rf = identity) and Tw)t]%i = ]:ZiTRmt for x € Z% and t in Z or R.

Lemma A.2. Assume (0, F,P) is a reflection invariant environment, a(-) is a

diagonal matriz and a(Ryw) = a(w), w € Q, k = 1,..,d. If V is defined by the
central difference (A.18) and q(-,-) is the function defined by (2.3) then

(A.22) a(Ri&,n) = q(&m) for E€RY, Ry >0, k=1,..d

Proof. Observe from (A.19) that 07, = —0;¢, j=1,..,d, § € R?. We also have
that Rkﬁj@ = aj,ngék if K # j and Rkajé = _aj,ngﬁ{k if £ = j. It follows by
applying Ry, to (2.2) that if a(-) is a diagonal matrix then

(A.23) ®;(&,m, Ryw) = [1 —26(k — 5)]®;(Ri&,myw), E€RY weQ.

We conclude from (A.23) that if ¥(&,n,w) = 0:P(§,n,w) then the d x d matrix
(&, m,w) = [¥;,;(§ n,w)] has the property

(A.24) W& m Rw) = ¥ 5(Ri&nw), €€RY weQ, j=1,.d
Now (A.22) follows from (2.3) and (A.24) on using the fact that Ry is measure
preserving on ). O

In the case of an environment (€, F, P) for which Q is a set of mappings w :
Z? x T — R" with 7 = Z or R, we can define Ry, by Ryw(z,t) = w(Rpz,t), x €
Z?, t € T. Both thei.i.d. and massive field theory environments of Theorem 1.2 are
of this nature. In thei.i.d. casen = d(d+1)/2 and w(z,t) = a(z,t), v € Z¢, t € Z,
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with P being a product measure on 2. In the field theory case w(x,t) = ¢(x,t), = €
Z? t € R. The mapping Ry, is clearly measure preserving in the i.i.d. case, but is
only measure preserving in the massive field theory case if V(Ryz) = V(z), z € R%.
Hence the i.i.d. environment is always reflection invariant, and the field theory
environment is reflection invariant provided the function V(z), z € R4, is reflection
invariant.
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