Sequence Alignment

Generally speaking, this course is about those
things which you can learn about biological
questions of interest from genomic (DNA or
RNA) and protein (amino acid composition)
sequence information, or the development of
sequence information from other forms of data
(e.g., de novo peptide sequencing).

The oldest problem in the area is a natural one
form the point of view of computer science:
finding matches in sequences. Finding exact
matches of a given string of letters inside an-
other is not a hard problem. What makes the
problem more difficult for our context is evolu-
tion. For a start, let us say that we are look-
ing for related proteins across species, or down
through evolutionary time. One already sees
that the essential problem here will be to cre-
ate a measure of how similar proteins are from
the sequence data, appropriate to any given
problem at hand. This may be driven by some



biochemical understanding of evolution as it
happens at the amino acid composition level,
or by expert knowledge of the chemical prop-
erties of particular amino acids. These latter
differ markedly, which is why proteins are able
to carry out such diverse functions. For the
moment let us start with the abstract sequence
alignment problem.

We are given a finite alphabet A = {aq,...,an},
and we are given two strings of letters

The letters in the string are taken from A, and
can be repeated.

We want to see how similar they are. If m = n,
there is an obvious alignment:



al...an
* {bl...bn

If we think of each position in the alignment
as independent, we could score the similarityof
this alignment by assigning a score number to
each pair s(a,b) where the letters a,b € A. The
score of the alignment x could then be given

as
n

S(a,b) = Z s(a;, b;).

i=1
This additivity corresponds to a simple prob-
abilistic model of the behavior of sequences.
Modeling will enter here when we try to choose
the scoring matrix s(a,b), What is relevant here?

Note first however that this is an inadequate
framework since over time the amino acid com-
position of a protein with a given function may
have evolved, and so there will have been mu-
tations. Some of these will have been favored



evolutionarily, and this kind of scoring for a
“mismatch”. Finally, particular letters (amino
acid constituents) might have been eliminated
or new ones inserted into the protein sequence.
And we may simply be trying to compare se-
quences of different lengths. In any case we
have to consider realigning the original sequences,
searching for the best match. So if we have

we can try
a* = (a1,--., =5y Gjyerey—y...,an) = (ai,...,a})
matched with

b*:(b17'"7_7"'7b’i7"'7_7"'7bn):(b*7""bz)



Here we interpret the dashes as insertions or
deletions, or indels, which can be anywhere
(more or less: see below), and we have filled
the sequences out to the same length. We
have enlarged the alphabet, or assume it to
have an extra letter “-”". Now we can align the
sequences a* and b* in the obvious fashion, and
we score

L
S(a*,b*) = > s(aj,b])
i—=1
and set
S(a,b) = max S(a*,b").
all spacings *
Note:

1) we need s(a,—) and s(—,a) for all letters a.
2) don't allow a - to align against another -.

3) there are many possible alignments now —
see PS1 — so we can’'t find S(a,b) by enumer-
ating cases, calculating and taking the highest
number in the list.



4) when a - appears in a position, call it an
indel; if two letters are aligned it is a match or
a mismatch.

Issues:
1) designing the scoring matrix
2) scoring indels

3) calculating the score and the optimal align-
ment (which yields the best score)

All of this will depend on the basic null model
assumption: that each position in the sequence
is independent of every other, and that the
scoring should be the same (as above) from
position to position. Neither of these is, of
course, true in reality, but it will give us a ref-
erence point from which to measure. Mak-
iINng more sensitive, position dependent scoring
methods will be a significant |later part of the



course. For now we go with the simplified as-
sumptions.

1) Designing Scoring Matrices

These are best described for protein sequences
because they are the ones which are more di-
rectly subject to evolutionary pressure. DNA
has minimal requirements and while its detailed
structure and conformation can be quite infor-
mative in cases, it is relatively featureless at
this level. (The overall frequencies of A,C, G, T
can be quite different among species, how-
ever.)

The original scoring matrices were due to Mar-
garet Dayhoff, the PAM matrices. A PAM ma-
trix is 20 x 20, and is symmetric. PAM =
Point Acceptable Mutation because it is built
up from a notion of point mutation in a pro-
tein. That is, we assume that there is a unit
of evolutionary time with a fixed chance of a
given amino acid residue changing once. This



has to be established by data, which means a
collection of related proteins which one knows
to have changed by one, two, etc., residues.
T hereafter, there is generated a family of ma-
trices by a Markov model of evolution.

(Discrete) Markov Chains:

We have a set of states 1,...,n (say the amino
acid residue in a given sequence position), and
a probability distribution p1,...,pn ON these states.

We also have a notion of (discrete) time, and
the distribution over the states evolves with
time. We have at each step a transition matrix
P(; jy where the entries have the interpretation

P(; jy = conditional probability “start at state i,

go to state j”

The Markov condition is that the distribution
at “time” n depends only on the distribution
at time n— 1 and the Markov process is called
stationary if the probabilities are given by a



transition matrix P, 5y which is independent of
time. If we write the time in explicitly, we have

pj(n+1) = Zpi(n)P(q;,j)a

where the matrix doesn’'t depend on n. Under
these assumptions there follows a very simple
but very useful relation, the Chapman - Kol-
mogoroff equation. If we let let P(i,j)(n) de-
note the transition probability from state : — 3
in n units of time, then the CK equation states

P j(n+m) = Ek: P ky(n) - P iy (m).

That is, the evolution can be calculated by
steps. This is just matrix multiplication of the
transition matrices. In particular, the relations
imply that

P(n) = P(1)".

This is what Dayhoff used to establish the PAM
matrices. The point is that the probabilities of
seeing an amino acid residue mutation are as-
sumed to be independent random events where
the position of occurrences are independent.



It seems fair to say that the underlying chem-
istry should be time independent over evolu-
tionary history. Thus the PAM 1 matrix is the
transition probability matrix for one amino acid
residue to mutate to another. To examine sim-
ilarities between sequences which one assumes
are more distant evolutionarily, one uses the
CK equation to find the more distant evolu-
tionary probabilities.

WARNING: I have simplified things here: for
ease of computation, the matrices have been
scaled to have integer entries, and data is cor-
rected to guarantee the Markov property.

One critique of the system is that the data was
symmetrized: this means that for a given step,
a transition W — T', say, was binned together
with a transition T' — W, leading to a symmet-
ric matrix P(1). Alternatives have been tried,
though they are not conclusively better at this
stage (PAM matrices are still used).



The approximation implied by the PAM ma-
trices was surprisingly good. More data was
analyzed about 25 years later, leading to the
BLOSSUM matrices. These were calibrated
more independently on the different time scales,
and prove to be slightly more accurate. The
PAM matrices tended to miss multiple muta-
tions over longer time periods.

Back to scoring: we have at a given position
the probability that we have a mutation a — b
calculated from PAM, say, and we compare this
joint distribution to the independent distribu-
tion, as in mutual information:

p(a,b)

p(a)p(b)

Here p(a) are the overall frequencies of the
amino acids.

s(a,b) = log

(Question: are these time independent?? That
IS, while it is clear that in a given position the
relative frequencies of a the various amino acid
residues should change, it is less clear whether



the overall distribution changes, and whether
some sort of overall conservation constraint
should be imposed)

2. Scoring Indels (= Gaps):

It is harder to say what one should do to model
indels, or gaps (= string of indels). There are
two methods standardly used, though some of
the motivation is clearly computational simplic-
ity. The first is simply linear gap penalties. set

S(CL, _) — S(_7a’) — _d7

for all a, and some d. Usually d will be j O,
so that one is lowering the score by aligning
two sequences with gaps. Under the additivity
assumption, then, the score for a gap of length
n will be nd.

However, it seems that there are at least two
quantities involved here: it appears relatively
unlikely to find gaps in the first place, but then,
once they have opened, e.g., in DNA coding



sequence, their lengths seem to be modeled
well by the linear model above. This leads to
the affien gap penalty: the penalty for a gap
of length n > 0 is {e + (n — 1)d}. Here e is
an initiaton penalty, usually quite a bit higher
than d, which continues to be the penalty for
extending the gap by one amino acid position.
Notice that now one has to be aware of more
than what position one is at when scoring an
alignment, since one needs to know whether
one is starting a gap or continuing it.

These scores are also interpretable in terms of
a probability model of the situation. The linear
gap penalty is related to a simple geometric
model for the length of a gap: waiting for the
arrival of the next non-gap amino acid residue.
The affine gap penalty has an interpretation as
a conditional geometric model: given that the
gap has opened, the probability of waiting so
long for it to close. See PS1.

3. Scoring Algorithms: Dynamic Program-
ming:



As mentioned earlier, there are too many possi-
ble alignments (an exponentially large number)
of two sequences of lengths m and n, especially
when one considers the sequences are consid-
ered as a query sequence and a reference se-
quence, where the reference sequence is actu-
ally a data base of sequences, such as GenBank
at the NCBI. This database is, itself, growing
exponentially. Fortunately, the linearity of the
strings gives a way to make the computatioin
necessary very efficiently (in time O(mn)).



