Sequence Alignment, cont.
5. Heuristic Algorithms. BLAST.

ALthough Smith-Waterman is a fast method
for aligning two sequences optimally, in prac-
tice, when the reference sequence is, in fact,
the entire GenBank database, for example, this
is still too long for large scale use.

SW guarantees the exact soluiton to the opti-
mization problem. A heuristic algorithm is one
which will search for this optimum, but is not
guaranteed to find the best solution. For pair-
wise sequence alignment, the standard heuris-
tic version of SW is BLAST, which we have
already used once. Some information, mostly
practical, is available through the BLAST tu-
torial:

http://www.ncbi.nlm.nih.gov/

Education/BLASTinfo/tutl.html

I will only give an outline of the BLAST tech-
niqgue. We will talk about the underlying statis-
tics. The basic idea is that in a long, ideal



sequence alignment, there seem to be shorter
streetches of high scoring alignment, or high
scoring matchess (HSM's). BLAST in effect
preprocesses the query sequence, looking for
“neighborhood words” which might match the
query sequence very well over a short stretch.
The neighborhood words are 11 positions long
for n.a. data, and 3 for a.a. data (i.e., this is
the default setting). The list is determined by
thresholding, and the thresholding is measured
by a score density cutoff. So, if we normal-
ize our probabilistic scores to be measured in
bitrs, the cutoff is usally about 2 bits per po-
sition. (For n.a., this compares to an abstract
maximum of 4.)

Next, BLAST searches the database using the
list of these neighborhood words, and pulls out
sequences which hav a HSM with one of them.
There follows a step which is called “hit exten-
sion” . Here the HSM is extended in both direc-
tions to a maximal scoring hit. This procedure
IS also heuristic, though seems very good in
practice.



As we have seen, BLAST then reports a list of
the best scoring matches which it has found,
together with the associated alignments, and
an E-value. (See below.)

Originally BLAST found matches without gaps,
but now does. There is now currently available
a morepowerful tool PSI-BLAST, wher PSI =
Position-dependent Scoring Iterative. We will
be using Hidden Markov Models as a method
for achieving position dependent scoring. This
amounts to a change of the underlying proba-
bility model of the sequences one is comparing.

6. Scoring Statistics.

We will use at first the simplest measures of
significance for a score, the p-value.

For a random variable X, we say that a value
of X (“score”) has p-value c if

Prob(X > c¢) < p.



This measures whether the score is an outly-
ing value, at the high end (there are two-sided
versions of this, of course). So, if we want to
know how significant it is that our sequence
alignment has the score it got, a first measure
is this p-value. Lower p-value = more signifi-
cant.

p-values can be obtained two ways: analytically
and by simulation. In either case, one has to
have a null model, or reference model.

In the analytic case, one has to solve at least
approximately, for the distribution function of
X and its properties, which is rarely done. (Main
example for us: Karlin-Altschul statistics for
ungapped BLAST.)

In the case of simulation, one relies on a pseu-
dorandom number generator to simulate draws
from the score distribution. Thus one would
sample the distribution of scores from a ran-
dom model of sequence generation. Here one



would generate sequences randomly (PRNG)
and then calculate the scores. One assumes
the sample distribution converges to the dis-
tribution of scores. This is how p-values are
computed for the SW algorithm scores in the
USC software.

The behavior of such scores is a rather subtle
matter. Here is an example which began the
analytical work on the subject.

Consider flipping a coin, where H appears with
bias p. Suppose we flip the coin n times, and
we ask ourselves the question: what is the
longest run of heads we shall see, if we track
the sequence of H's and T1's? This is a very
simple model of what we are trying to do in se-
quence comparison: if we look for the longest
run of heads, then we are comparing our se-
quence (query sequence) from the experiment,
say

H,HT,H,.. ,THT.



to the reference sequence
H HH,.. H H.

We score with 1 for a match and —oo for a mis-
match, and no gaps are allowed. (l.e., s(a,—) =
—00.) Then the maximum score will be ex-
actly the length of the longest match. Let
X be this random variable, the “length of the
longest match™.

It is clear that the answer to this problem should
depend on the length n and the bias p. The ba-
sic result (from around 1960!) is due to Erd&s
and Renyi:

E(X) ~ |Ogl/p n.

Remark: this is somewhat higher than what
intuition tells us. This is useful for gambling
situations, but has led to some misestimations
in the sequence comparison literature.

What makes this a difficult problem is that, al-
though our scores our computed against a null



model of independent positions for sequence
score increments, the RV we are looking out in-
volves grouping sveral positions together. Thus
if we think of moving from left to right in the
sequence, and we know that we have a match
of length ¢, and then we shift over 1 positon,
there is a much higher than usual probability
that we will have a match of length ¢ begin-
ning at the second position than if we were
to take a position at random without knowing
what the previous ¢ positions looked like.



